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Dear Editor, 

 

We send to your attention the research article entitled "Application of different drying techniques to 

obtain food ingredients with target functionalities from fresh-cut salad waste" by Stella Plazzotta, 

Sonia Calligaris and Lara Manzocco. Following, we report the abstract. 

 

Wastes (external leaves and core) from iceberg salad fresh-cut processing were submitted to air-drying, 

freeze-drying, and supercritical-CO2-drying with or without ethanol as co-solvent. Drying was 

differently combined with grinding to obtain flours. Samples were analysed for macro- and micro- 

appearance, particle size, dietary fiber, polyphenol content, antioxidant activity, water vapour sorption, 

water and oil holding capacity. Air-drying produced a collapsed material which underwent browning 

reactions but allowed a flour rich in fiber with high antioxidant activity to be obtained. Freeze-drying 

highly maintained vegetable structure and colour while partly retaining polyphenolic content. Finally, 

supercritical-CO2-drying, using ethanol as co-solvent, produced an expanded material, which 

completely lost the original salad colour and was able to entrap huge amounts of water and oil. Salad 

waste flours could be used as food ingredients, bulking agents, adsorbents for oil spills and structuring 

agents for liquid oil. 

 

Best regards, 

 

Sonia Calligaris 

 

Cover Letter



ANSWERS TO REVIEWERS 

 

Reviewer #1: According to my point of view a suggestion is listed below: 

1.    Key words should be: Iceberg salad; Drying techniques; Fibre; Polyphenol; Antioxidant activity; Food 

ingredients. 

Keywords have been modified as suggested. “Iceberg salad” was not included in the keyword list as the latter 

should not exceed 5 words. The word salad is however present in the title (lines 1-2). 

 

Reviewer #2:  

1.    In terms of "salad waste", were the external leaves shredded, sliced orchopped prior to drying?  

Salad leaves and core were removed from salad heads simulating operations that are industrially carried out 

and chopped before treatment using a sharp knife.Details were added to the manuscript (lines 81-82). 

 

2.    Generally pretreatments may be applied to hot air drying to preserve the phenolic compounds, physical 

properties and microstructure as well as to shorten drying time (in some cases). Using hot air drying alone 

was certainly not a good choice for preparation of dried vegetables. 

We definitely agree with the reviewer that hot-hair drying efficacy can be increased by a number of different 

pretreatments, including but not limited to dipping in acid solutions, osmotic treatments, US and IR. As 

stated in the paper aims (lines 63-65), the objective of the research was to evaluate the possibility to valorize 

salad waste by the application of different drying technologies. The latter were applied as a unique 

processing step, before or after salad grinding, in the absence of any other pre-treatment. To our knowledge,  

no prior studies were carried out about salad leaves drying. For this reason, we decided to test its efficacy in 

the absence of additional variables deriving from possible pretreatments.In the case the process had allowed  

interesting materials to be prepared (as it actually was demonstrated in the Results and Discussion section), 

direct drying of salad waste would have been certainly more simple and affordable in an industrial context. 

However, it is not excluded that possible evolution of the research activity could include the study of the 

effect and economic sustainability of the application of additional pretreatments before drying.  

 

3. Also give drying time and RH during drying n3.      

This information was added in the text (lines 87-91, 115-117). 

 

Give reason for hot air drying at 70  

Air-drying temperature was selected in the range of temperatures generally reported in the literature to 

produce flours from fruit and vegetable materials. This information, supported by adequate references, was 

added in the text (lines 42-45).  

 

4.    Title should be changed as the term "target functionalities" is too wide. Please be more specific 

Title was modified, as suggested by the reviewer (line 1-2). In particular, the generic terms “food ingredients 

with target functionalities” were substituted with more specific ones (“food ingredients rich in antioxidants 

and with high solvent loading capacity”).  

 

5.    Explain "Drying was differently combined with grinding to obtain flours" in the abstract. 

The sentence was simplified (line 10), removing the term “differently”.  

  

6.    Explain "structuring agents for liquid oil" as stated in abstract and conclusion. 

*Detailed Response to Reviewers



Abstract (line 19), Manuscript (lines 346-347) and Conclusion (lines 356-359) sections were improved to 

increase clarity.  

 

7.    What was the best drying technique recommended for this work and based on what criteria? This 

information should be stated in the abstract. 

Results indicated that derivatives with different properties, and thus different potential use, are obtained 

depending on the applied drying techniques. For this reason, a unique criteria to compare efficacy of the 

different drying technologies was no presented. By contrast the peculiar advantages of their application were 

discussed. To better clarify this approach, abstract (lines 17-19) and conclusions (lines 355-356) were 

modified accordingly. 

 

8.    What was the form of sample, whole leaf or chopped leaf? 

This information was added in the text (lines 81-82). 

 

How to get an even drying if the whole leaves were subject directly to hot air drying as the thickness of 

midrib and leaf blade are different?  

We agree with the reviewer that salad waste material presents an intrinsically high variability. In order to 

obtain representative samples, we decided to proceed as usually reported in the literature to dry leaf plant 

matrices (Nilnakara, S., Chiewchan, N., &Devahastin, S. (2009). Production of antioxidant dietary fibre powder 

from cabbage outer leaves. Food and Bioproducts Processing, 87, 301–307). In addition, variability was 

reduced by drying more leaves and performing analyses at least three times on two replicated samples. 

 

Could freeze drying be conducted without any other preparation? Please also state the size of sample prior 

to drying. 

Similarly to air drying, also freeze drying was applied as a unique processing step, in the absence of any other 

pre-treatment, which could have modified the final result. Information relevant to size of samples was added 

(lines 81-82). 

 

9.    Generally pretreatments may be applied to hot air drying to preserve the phenolic compounds, physical 

properties and microstructure as well as to shorten drying time (in some cases). Using hot air drying alone 

was certainly not a good choice for preparation of dried vegetables. 

10. Also give drying time and RH during drying.10.    Give reason for hot air drying at 70  

See answers 2 and 3. 

 

11.    Why the SCCD-EtOH sample contained TDF content similar to those of other samples? GenerallyEtOH 

could dissolve other components in the sample. The remaining part should be mainly plant cell wall 

components, which account for dietary fiber. Therefore the fraction of TDF content in the treated sample 

should be higher. 

The mean value of TDF in SCCD-EtOH sample was actually higher than that of the other samples. In 

agreement with the reviewer comment, this could be attributed to the extraction of leaf waxes and other 

compounds (Table 2). However, although more analyses were performed on each sample, the difference in 

TDF values was not demonstrated to be statistically significant, probably due to the intrinsic variability of the 

vegetable material. 

 

12.    It seems like the "dry weight" was used for the basis of calculation. Was it the bone dry mass or just 

weight of "the dried sample", which still contained certain amount of water? 



Dried samples were evaluated for residual moisture using AOAC gravimetric method (material and method 

section, $2.9, lines 155-156). Calculation are thus based on dried matter of dried samples. 

 

13.    How could the hot air dried samples possess higher phenolic content than the fresh samples and the 

freeze dried sample? Could the authors recheck the basis of calculation? 

We have accurately check data. A possible explanation is the formation of novel compounds upon thermal 

treatment, such as Maillard reaction derivatives. Even if they are not polyphenols, they may actually react with 

Folin reagent leading to data shown in Table 2.  Although it is one of the most used methods for determining 

TPC in vegetable matrices, Folin-Ciocalteau method is not specific for phenolic compounds. Rather, it 

measures the ability of both phenolic andnonphenolic compounds in alkaline medium to reduce the 

phosphomolybdic/phosphotungstic acid reagent to blue complexes thatare detected spectrophotometrically 

(V.L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Oxidants and Antioxidants,Pt A 299 (1999) 152–178). This 

information was added into the text (lines 306-307). 

 

14.    As described in Line 157, the water and oil holding capacities were calculated based on 1 g of dried 

sample. Therefore, the unit presented in Tables 2 and 3 should be for WHC and OHC should be per gram 

dried sample not dry weight. 

We thank the reviewer for correcting this error. Table 1 and 2were revised accordingly. 

 

15.    Rewrite lines 344-345. Do both products really have a potential to be used as those claimed in the 

mentioned sentence? Have to make this clear. 

The text was modified to increase clarity (lines 355-359). 

 

16.    The output from this work was only to improve the technological properties, in terms of water and oil 

holding capacities, of the products from salad waste.  

As indicated in the introduction (lines 24-32), salad waste has very low nutritional value and represents 

nowadays an environmental burden and a company cost. Based on this consideration, it is our impression 

that also the possibility of turning it intoa value-added derivative with some technological function could be 

regarded as a successful valorization strategy. 

 

 

  



Editor's corrections 

Please check that your manuscript is conform to the instructions to authors of LWT Food Science and 

Technology, and in particular: 

 

-Reference style: 

o    Give issue numbers for all or none of the Journals 

References were modified accordingly (lines 368-475). 

 

-Use SI units, and in particular  

o    The authors' guide clearly mentions that "%" is not accepted unit for concentration and composition and 

yet you have extensively used %. All the % units used for concentration/composition must be changed to 

direct unit of g/kg or g/L as appropriate. 

oexpress concentrations in g/L or mL/L or g/kg, not w/w, v/v, w/v ppm etc 

oexpress pressures in Pa pascals, not atm (L85) 

oexpress centrifugal force in x g, not rpm (L155). The actual official unit is the m/s2 calculated as omega 

square x radius (omega: angular speed in radian per second (1 rpm = 0.105 radian/second)); to have it in g 

divide by 9.8 m/s2) . There is usually an abacus with the centrifuge. 

Unitswere modified accordinglyalong the text.  

 

oLatin binomials in italics, including in references;  

o Allium cepa NOT Cepa L356 

Text was modified accordingly (lines 369, 386, 393, 415, 425, 442). 

 

-    Highlights should be short, active sentences that "convey the core findings of the article", as written in the 

instructions for authors, i.e.  contain the most significant results, not a summary of the study: rewritenotably 

highlights 1 & 5 

Based on the instruction for authors, a number of highlights from 3 to 5 is recommended.For this reason, we 

decided to omit highlights 1 and 5 and maintain highlights 2-4 which contained significant results relevant to 

the main effects of the three drying technologies assessed in the research. 

 

-    The Abstract should contain tangible, quantitative, results, not only generalities 

Abstract was added with quantitative data relevant to fiber content, polyphenol concentration, antioxidant 

activity, water holding capacity and oil holding capacity (lines 13-14, 15, 17). 

 

L99: NL? 

Text wascorrected (line 109). 

 

Table 4: number of replicates and SDs? 

Analyses were carried out at least three times in two replicated experiments (line 221-222). The standard 

deviation for polyphenol HPLC data was added in Table 3. 

 

- Tables 1 and 3 should be merged.  

According to Editor’s suggestion, data initially shown in Table3were merged to dataoriginally shown in Table 

1 and 2. 

 

- When you quote numbers, make sure you use the minimum number of significant digits or decimal places, 

as explained for example in Taylor, J. R. (1997). Error analysis: The study of uncertainties in physical 

measurements Sausalito, CA: University Science Books. Particularly, the following rules must be applied: 1.The 

mean cannot be more accurate than the original measurement. 2. The mean has the same significant digits 

as the standard deviation which determines the number of significant digits. 3. Standard deviation has been 

rounded to one significant digit (first value different to zero). 



 

-    Fig 1: The keys of symbols must be at the end of captions text and not all over the graph or below the x-

axis. For titles of axes use the convention "Entity (unit). Please follow the format for this journal.  

Figure 1 was modified as suggested. 

 

-    Fig 2: increase font sizes for the axes (numbers and axes titles). 

Figure 2 was modified as suggested. 



Air-drying allows salad flours rich in fibre and antioxidants to be obtained 1 

Freeze-drying partly maintains fresh salad structure, colour and polyphenols 2 

Supercritical-CO2-drying with ethanol as co-solvent produces highly porous flours 3 

*Highlights (for review)



1 
 

Application of different drying techniques to fresh-cut salad waste to obtain food ingredients rich 1 

in antioxidants and with high solvent loading capacity 2 

 3 

Plazzotta, S., Calligaris, S. *, Manzocco, L. 4 

Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Italy 5 

*e-mail: sonia.calligaris@uniud.it; Tel: +39 0432-558571 6 

 7 

Abstract 8 

Wastes from iceberg salad fresh-cut processing were submitted to air-drying, freeze-drying, and 9 

supercritical-CO2-drying with or without ethanol as co-solvent. Drying was combined with grinding to 10 

obtain flours. Samples were analysed for macro- and micro-appearance, particle size, dietary fibre, 11 

polyphenol content, antioxidant activity, water vapour sorption, water and oil holding capacity. Air-12 

drying produced a collapsed brown material allowing a flour rich in fibre (>260 g/kg) and polyphenols 13 

(3.05 mg GAE/gdw) with antioxidant activity(6.04 OD
-3

/min/gdw)to be obtained. Freeze-drying 14 

maintained vegetable structure and colour while partly retaining polyphenols(1.23 mg 15 

GAE/gdw).Supercritical-CO2-drying with ethanol as co-solvent, produced an expanded material able to 16 

entrap huge amounts of water and oil(43.2 and 35.2 g of water and oil for g of dry sample).Air-dried 17 

salad waste derivatives could be used as functional food ingredients, while supercritical-CO2-dried 18 

ones can be exploited as bulking agents and absorbers of oil spills or edible oils. 19 

 20 

Keywords: Drying techniques; Fibre; Polyphenol; Antioxidant activity; Food ingredients 21 

 22 

1. Introduction 23 

Salad represents about 50% of the entire fresh-cut market in Europe and US (Cook, 2015; Rabobank 24 

International, 2010). Although highly convenient, fresh-cut salad processing produces huge amounts of 25 

wastes. To this regard, a recent survey in a large Italian fresh-cut company revealed that, in a standard 26 

iceberg salad process, up to 40% of the initial salad weight is wasted due to removal of core and 27 

external leaves (Plazzotta, Manzocco, & Nicoli, 2017).  28 

Salad waste can be exploited as soil conditioner or composted. However, these waste management 29 

strategies can absorb only limited amounts of salad residues, due to the risk of pathogen development 30 

and nitrate enrichment in soil and water. Biogas production from salad waste is also possible but with 31 

*Manuscript
Click here to view linked References
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low yields, requiring thus co-digestion with other organic wastes in centralized plants with high 32 

transport and disposal costs (Zheng, Phoungthong, Lü, Shao, & He, 2013).  33 

Salad waste management would thus require redirection towards more profitable valorisation strategies. 34 

The latter are based on exploitation of vegetable waste to produce value-added derivatives, such 35 

asfood-grade dried materials and flours, rich infibre and antioxidants (Galanakis, 2012; Ferreira et al., 36 

2015). Dried salad waste derivatives are expected to be microbiologically stable and have lower 37 

volume, reducing packaging, storage and transport issues (Ahmed, 2010; Karam, Petit, Zimmer, 38 

Baudelaire, & Marie, 2016). 39 

The main drawback of salad waste drying lays in the cost of water removal from a material containing 40 

more than 900 g/kg moisture (Strumillo & Adamiec, 1996). Nevertheless, different drying techniques 41 

could be exploited to increase process affordability. Air-drying is based on the contact of wet materials 42 

with a hot air flow. Temperatures usually applied during air-drying to produce flours from fruit and 43 

vegetable wastes are generally in the range 65-90 °C (Ferreira et al., 2015; Nilnakara, Chiewchan, & 44 

Devahastin, 2009). The processis energy intensive and is associated to material shrinkage, hardness, 45 

poor appearance, reduced ability to rehydrate and bioactive loss. On the other hand, it is the most 46 

commonly applied food drying technique and has limited investment costs (Ratti, 2001; Strumillo & 47 

Adamiec, 1996). On the contrary, freeze-drying produces high-quality dried products, due to water 48 

removal by sublimation of ice crystals. However, equipment is costly, drying rates are low and much 49 

energy is consumed for freezing and vacuum phases(Ratti, 2001).Novel drying techniques, such as 50 

supercritical-CO2-drying, have been claimed to increase environmental sustainability of traditional 51 

drying processes. In this case, water is slowly removed from the food material by a continuous 52 

supercritical-CO2 flow. Temperature and pressure conditions are mild (20-50 °C and 10-20 MPa), 53 

guaranteeing a good bioactive retention. Moreover, co-solvents such as ethanol can be used to 54 

significantly reduce drying time(Brown, Fryer, Norton, Bakalis, & Bridson, 2008). Supercritical-CO2-55 

drying avoids the formation of vapour-liquid interfaces, allowing product structure to be preserved 56 

(Brown et al., 2008; García-González, Camino-Rey, Alnaief, Zetzl, & Smirnova, 2012). Investment 57 

and running costs are high but they could be counterbalanced using non-toxic carbon dioxide, which 58 

leaves no residues and can be recycled (Viganó, Machado, & Martínez, 2015).  59 

Although drying of salad waste is costly, it could lead tangible profit due to the reduction of company 60 

waste management costs and the development of an eco-friendly image, highly appreciated by 61 

consumers(Vermeir & Verbeke, 2006). 62 
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The aim of the present work was to investigate the possibility to valorise fresh-cut iceberg salad waste 63 

by turning it into dried materials and flours via traditional (air-drying and freeze-drying) and novel 64 

(supercritical-CO2-drying with or without ethanol as co-solvent) drying techniques. Dried salad waste 65 

and flours were analysed for macro- and micro-appearance, particle size, dietary fibre, polyphenol 66 

content, antioxidant activity, water vapour sorption, water and oil holding capacity. Results were 67 

discussed to suggest possible uses of salad waste submitted to different drying and grinding processes 68 

in food and non-food sectors. 69 

 70 

2. Materials and methods 71 

 72 

2.1. Salad waste preparation 73 

A 10-kg batch of iceberg salad (Lactuca sativa var.capitata) was purchased at the local market and 74 

stored overnight at 4 °C. Outer leaves and core were manually removed from salad heads, simulating 75 

operations that are industrially carried out during fresh-cut salad processing. Salad waste amounted 76 

to351±35g/kg of the entire processed salad, with external leaves representing the majority of the 77 

overall waste (274±23 g/kg).Salad leaves were washed with flowing water (18±1 °C) and sanitized 20 78 

min in a chlorinated bath containing 200 mg/L of NaClO with a100g/L salad/water ratio. Leaves were 79 

then rinsed with flowing water and centrifuged in a manual kitchen centrifuge (mod. ACX01, 80 

Moulinex, France) for 1 min (Manzocco, Ignat, Bartolomeoli, Maifreni, & Nicoli, 2015)Salad waste 81 

was manually chopped in homogeneous pieces (about 5 x 5 cm) with a sharp knife and immediately 82 

submitted to drying. 83 

 84 

2.2. Salad waste drying 85 

Air-drying 86 

Salad waste (1 kg) was spread on a perforated tray in single layers and dried at 70±0.5 °C at a relative 87 

humidity in the drying chamber in the range 55-65%, using an air-drying oven (UM100, Memmert, 88 

Schwabach, Germany). During each experiment 3-5 g of the sample was taken out at various intervals 89 

to determine its moisture content. The air-drying oven operated until the mass of the sample reached 90 

the equilibrium value. 91 

 92 

Freeze-drying 93 
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Salad waste (1 kg) was dried in single layers and frozen at -30 °C for 24 h and then freeze dried for 72 94 

hat 4053 Pa by using the pilot plant model Mini Fast 1700 (Edwards Alto Vuoto, Milan, Italy). 95 

 96 

Supercritical-CO2-drying 97 

An amount of 5 g salad waste was dried usingsupercritical-CO2-drying with or without previous 98 

substitution of salad water with ethanol. In this case, salad waste was immersed(100 g/L) in pure 99 

ethanol (J.T.Baker, Centre Valley, USA) for 24 h twice. During this time, water was progressively 100 

removed from salad leaves, as indicated by monitoring the decrease in the alcoholic degree of the 101 

ethanol solution by a lab alcoholmeter (Alcolyzer plus, Anton Paar, Graz, Austria). Additional samples 102 

were prepared by grinding (MC3001, Moulinex, China) the salad waste submitted to ethanol 103 

substitution and subsequently removing excess solvent by vacuum filtration before supercritical-CO2-104 

drying.Supercritical-CO2-drying was performed by using a plant developed at the Department of 105 

Agricultural, Food, Environmental and Animal Sciences (University of Udine), previously described by 106 

Manzocco, Valoppi, Calligaris, Andreatta, & Nicoli (2017). Sample was placed inside the reactor in 107 

which CO2 was then pressurized at 11±1 MPa and 45 °C. The outlet flow through the reactor was set at 108 

6.0L/min. This flow was selected since allowing drying time to be minimized while maintaining the 109 

structural integrity of the material as visually assessed. Samples in which water had been previously 110 

substituted with ethanol were considered dried when ethanol was no more detectable in the gaseous 111 

outlet. Decompression from 11 MPa to atmospheric pressure was then carried out in 30 min. In the case 112 

of samples not submitted to water substitution with ethanol, at increasing drying times, samples were 113 

removed from the reactor and weighted. The end of the drying process was set in correspondence of a 114 

residual moisture in the sample lower than 50 g/kg. Drying time was of  2.5, 5.0 and 1.5 hours for salad 115 

waste in which water was substituted with ethanol, for samples containing water and for ground 116 

samples, respectively. 117 

 118 

2.3. Salad waste flour 119 

Dried salad waste was finely ground using a ball mill (MM2, Retsch, Hann, Germania) for 15 min.  120 

 121 

2.4. Sample storage 122 

Dried salad waste and flours were stored at 20 °C in sealed aluminized aseptic bags until use.  123 

 124 

2.5. Particle size distribution 125 
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An amount of 20 g of flour was sieved on a set of sieves with mesh sizes of 500, 250, 125, 63 and 20 126 

µm (Endecotts Ltd, London, UK). The amount of flour remaining in each sieve was weighted and 127 

expressed with reference to the initial flour weight (g/kg). 128 

 129 

2.6. Colour determination  130 

Colour was determined using a tristimulus colorimeter (Chromameter-2 Reflectance, Minolta, Osaka, 131 

Japan) equipped with a CR-300 measuring head. The instrument was standardized against a white tile. 132 

Colour was expressed in L*, a* and b* Hunter scale parameters (Chen, Zhu, Zhang, Niu, & Du, 2010).  133 

 134 

2.7. Image acquisition 135 

Images were acquired using an image acquisition cabinet (Immagini& Computer, Bareggio, Italy) 136 

equipped with a digital camera (EOS 550D, Canon, Milan, Italy) placed on an adjustable stand, 137 

positioned 45 cm above a black cardboard base where samples were placed. Light was provided by 4 138 

100 W frosted photographic floodlights, in a position allowing minimum shadow and glare. Images 139 

were saved in jpeg format resulting in 3456 x 2304 pixels.  140 

 141 

2.8. Optical and electronic microscopy 142 

Samples were observed at room temperature using a Leica DM 2000 optical microscope (Leica 143 

Microsystems, Heerburg, Switzerland). The images were taken at 200Xmagnification using a Leica 144 

EC3 digital camera and elaborated with the Leica Suite Las EZ software (Leica Microsystems, 145 

Heerburg, Switzerland). 146 

For scanning electron microscopy, samples were mounted on aluminium sample holders and sputter 147 

coated with 10 nm of gold using a Sputter Coater 108 auto (Cressington Scientific Instruments, 148 

Watford, United Kingdom). The aluminium holder was transferred to the SEM unit (EVO 40XVP, Carl 149 

Zeiss, Milan, Italy), which was at ambient temperature and under vacuum. Samples were imaged using 150 

an acceleration voltage of 20 kV and SmartSEM v. 5.09 (Carl Zeiss, Milan, Italy) application software 151 

was used to capture images of the samples. Images were taken at 1000X magnification and saved in tiff 152 

format resulting in 1696 x 2048 pixels.  153 

 154 

2.9.Moisture content 155 

Moisture content was calculated according to AOAC gravimetric method (AOAC, 1997). 156 

 157 
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2.10. Water vapour sorption 158 

Samples (2 g)were inserted into dried weighting bottles and transferred into desiccators containing 159 

distilled water. Sample weight increase was monitored for 5 h during rehydration. 160 

 161 

2.11. Water and oil holding capacities 162 

Dried salad waste leaves (2 g)were immersed into water or sunflower oil for 24 h at room temperature 163 

under gentle mixing. Samples were accurately drained on a wire mesh for 10 min.  164 

In the case of flours, an accurately weighted amount of sample was inserted into tared 2-mL Eppendorf 165 

tubes and added with 2 mL of distilled water or sunflower oil. Tubes were stirred using a vortex 166 

(Vortex 1, Ika, Milan, Italy) three times for 30 s and centrifuged at 1327 x g 30 min (Mikro 20, Hettich 167 

Zentrifugen, Tuttlingen, Germany). The sediment obtained after centrifugation was weighted. Water 168 

and oil holding capacities were calculated as g of water or oil held by 1 g of dried sample.  169 

 170 

2.12. Total dietary fibre 171 

Total dietary fibre (TDF) was calculated according to the AOAC international method (AOAC, 1997) 172 

using a total dietary fibre assay kit (TDF-100A, Sigma-Aldrich, St. Louis, Missouri, USA).  173 

 174 

2.13. Preparation of salad waste extract 175 

An amount of 10 g of salad waste, trimmed with a sharp knife, or flour were extracted by reflux with 176 

boiling water for 60 min applying a dilution of 250 g/L and 50 g/L respectively. Extracts were cooled 177 

at room temperature, vacuum filtered thorough Whatman no. 1 filter paper (Maidstone, UK), freeze-178 

dried at -50 °C and stored in a desiccator containing P2O5 at room temperature until use. 179 

 180 

2.14.Totalpolyphenolic content  181 

Total polyphenolic content (TPC) was determined using Folin-Ciocalteau reagent (Singleton & Rossi, 182 

1985). The reaction mixture contained 100 μL of salad waste extract solubilised in water (0.1 g/mL), 183 

500 μL of the Folin-Ciocalteau reagent, 4 mL of water and 2 mL of a sodium carbonate-water solution 184 

(0.15 g/mL). After 2 h reaction at ambient temperature, mixture absorbance was read at 750 nm using 185 

US-Vis spectrophotometer (Shimadzu UV-2501PC, UV-Vis recording spectrophotometer, Shimadzu 186 

Corporation, Kyoto, Japan). A calibration curve was made with standard solutions of gallic acid in the 187 

range 0.1–1000 mg/L (R
2
=0.99). Results were expressed as mg of gallic acid equivalents per g of dry 188 

weight (mg GAE/gdw). 189 



7 
 

2.15. HPLC 190 

Freeze-dried extracts (10 mg)were dissolved in 1 mL of distilled water, filtered through a 0.45 µm 191 

membrane filter (GVS, Meckenheim, Germany)and analysed using a HPLC system equipped with a 192 

Prostar 230 pump (Varian, Walnut Creek, USA) and a Prostar 330diode array detector(Varian, Walnut 193 

Creek, California, USA). To this aim, 20 µL sample was injected in a C18 column (Alltima, 5 microns, 194 

250 x 4.6 mm, Grace, Lokeren, Belgium). The mobile phase was waterwith 50 mL/L formic acid 195 

(Fluka, St. Louis, Missouri, USA) (solvent A) and HPLC grade methanol (Chromasol≥99.9%, Sigma-196 

Aldrich St. Louis, Missouri, USA)(solvent B) at a flow rate of 1 mL/min. The linear gradient started 197 

with 10% B in A to reach 20% B at 25 min, 50% B at 40, 50% B at 45 min and 90% B at 60 min. 198 

Chromatograms were recorded at 335nm. Data elaboration was performed by Polyview program 199 

(v.5.3).Phenolic compounds identification was based on their UV spectra and retention times (DuPont, 200 

Mondin, Williamson, & Price, 2000; Llorach, Barberàn, & Ferreres, 2004; Tomás-Barberán, Loaiza-201 

Velarde, Bonfanti, & Saltveit, 1997). Chicoric acid was quantified (Lee & Scagel, 2013) using an 202 

external standard while other compounds were quantified as 3-O-caffeoylquinic acid by comparison 203 

with external standard (Sigma-Aldrich, St. Louis, Missouri, USA).  204 

 205 

2.16. Chain-breaking activity (DPPH· assay) 206 

The chain-breaking activity (CBA) was measured following the bleaching rate of 2,2-diphenyl-1-207 

picrylhydrazyl (DPPH·) in the presence of the sample. 3mL of 6.1x10
-5

 M DPPH· methanol solution 208 

was used. The reaction was started by the addition of 150 μL of salad waste extract solubilised in water 209 

(0.1 g/mL). DPPH· bleaching was followed at 515nm (UV-2501PC, UV-Vis Recording 210 

Spectrophotometer, Shimadzu Corporation, Kyoto, Japan) at 25 °C for 10 min. DPPH· bleaching rate 211 

was proportional to sample concentration. The following equation was chosen to obtain the reaction 212 

rate of DPPH· bleaching, k(Manzocco, Mastrocola, & Nicoli, 1999): 213 

kt
AA

3
11

3

0

3
  (1) 214 

where A0 is the initial optical density (OD) and A is the optical density at increasing time, t. The chain-215 

breaking activity was expressed as k/g of dry weight (OD
-3

/min/gdw). The chain-breaking phenolic ratio 216 

(CBP) was also determined dividing the chain-breaking activity of the sample by its phenol content 217 

(OD
-3

/min/mgGAE). 218 

 219 

2.17. Data analysis 220 
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Analyses were carried out at least three times in two replicated experiments. Analysis of variance 221 

(p<0.05) and linear regression analysis were performed using R (The R foundation for statistical 222 

computing, v.3.1.1). Goodness-of-fit was evaluated based on R
2
and p-values. 223 

224 
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3. Results and discussion 225 

 226 

3.1. Characterization of salad waste 227 

External leaves of iceberg salad from fresh-cut processing presented the typical green colour and a 228 

moisture level exceeding900 g/kg (Table 1 and 2). Salad waste resulted particularly rich in fibre, in 229 

agreement with nutritional databases relevant to edible salad (USDA, 2016). By contrast, salad waste 230 

polyphenol content resulted about 4 times lower than that reported by Llorach et al. (2004). Different 231 

factors, including agronomic practices, salad variety and extraction solvent, could significantly affect 232 

polyphenol quantification (Llorach, Martìnez-Sànchez, Tomàs-Barberan, Gil, & Ferreres, 2008). 233 

Nevertheless, due to its polyphenol content, comparable to that of grape marc, salad waste can be 234 

considered an always-available and cheap source of antioxidants (Table 2) (Bonilla, Mayen, Merida, & 235 

Medina, 1999). 236 

 237 

3.2. Characterization of dried salad waste 238 

Water content of salad waste makes it microbiologically unstable, posing critical management issues. 239 

To increase its stability, dehydration could be performed, as proposed for other vegetable wastes 240 

(Annadurai, Juang, & Lee, 2002; de Oliveira et al., 2009). Air-dried (AD), freeze-dried (FD), 241 

supercritical-CO2-driedsamples were thus prepared. The latter were produced in the absence (SCCD 242 

sample) or presence (SCCD-EtOH sample) of ethanol as co-solvent.  243 

Drying techniques exerted different effects on salad waste colour (Table 1). AD sample appeared 244 

brown, due to enzymatic and non-enzymatic reactions, prevailing in the initial and advanced phases of 245 

the process, respectively (Adam, Mühlbauer, Esper, Wolf, & Spiess, 2000). FD leaves maintained the 246 

original colour, confirming the ability of freeze-drying to minimize quality damage (Argyropoulos, 247 

Heindl, & Mu, 2011). Similarly, SCCD samples resulted green, suggesting this technology as a valid 248 

alternative to freeze-drying (Brown et al., 2008). Interestingly, SCCD-EtOH sample completely lost the 249 

original colour, probably due to pigment extraction during salad immersion into ethanol. In fact, the 250 

SCCD sample, which had not been immersed in ethanol, highly retained the original colour (Table 1). 251 

Pigment extraction by supercritical-CO2was probably negligible since the pressure here applied (<12 252 

MPa) was lower than that required for chlorophyll extraction (>25 MPa) (Guedes et al., 2013). 253 

The drying technique strongly affected sample physical structure, as shown by visual appearance and 254 

microscopic analyses (Table 1).AD samples resulted severely shrunk, since water evaporation created 255 

intense capillary tensions in cellular structure(Ahmed, 2010). On the contrary, FD samples maintained 256 
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cellular organization thanks to water removal by sublimation of ice, which provides structural rigidity 257 

(Ratti, 2001). However, no clear morphology of cells was revealed by SEM, probably due to the 258 

presence of the typical wax protective layer on vegetable surface. SCCD samples appeared completely 259 

collapsed. This phenomenon was prevented by adding co-solvents during drying (Table 1). Cells of 260 

SCCD-EtOH sample were actually visible and appeared even swallowed in microscopic images. 261 

Similar effects were also observed in carrot slices and can be attributed to tissue expansion during 262 

CO2decompression (Brown et al., 2008). In addition, in SEM image of SCCD-EtOH sample, no 263 

protective wax layer was evident onto sample surface, probably due to its solubilization in the 264 

supercritical-CO2 flow (Roy, Goto, Kodama, & Hirose, 1996).  265 

To better assess the effects of drying treatments on salad waste properties, the ability of the dried leaves 266 

to interact with water vapour was evaluated (Figure 1A).All samples showed a progressive vapour 267 

adsorption upon maintenance in a moisture-rich atmosphere. The evolution of vapour sorption was 268 

significantly affected by the drying technique. AD and SCCD samples showed a slow vapour uptake, 269 

probably due to their dense microstructure(Table 2)(Argyropoulos et al., 2011; Ratti, 2001).A faster 270 

water vapour sorption was observed for FD sample, which well maintained structure (Table1). The 271 

expanded SCCD-EtOH sample (Table 1) showed the fastest and highest vapour uptake. These findings 272 

suggest that drying-induced structure deeply affects the ability of samples to interact with solvents. To 273 

confirm this hypothesis, samples were analysed for water and oil holding capacity (WHC, OHC). 274 

AWHC much higher than OHC was observed for all samples (Table1), being vegetable waste rich in 275 

hydrophilic polysaccharides (Ferreira et al., 2015). SCCD-EtOH sample showed the highest WHC and 276 

OHC values(Table 1). Excellent rehydration properties were also observed for carrot slices submitted 277 

to supercritical-CO2-drying using ethanol as co-solvent (Brown et al., 2008). Rehydration ability was 278 

attributed to the capacity of supercritical-drying with ethanol as co-solvent to beget highly porous 279 

materials, favouring water capillary adsorption. Interestingly, the amount of water held by 1 g of 280 

SCCD-EtOH sample resulted much higher than that originally present in the fresh salad waste tissue 281 

(circa 16 g H2O/gdw, as computed based on moisture content, Table 2).The capacity of SCCD-EtOH 282 

sample to absorb water beyond the amount entrapped in the native plant tissue could be attributed to 283 

the expanded structure obtained by supercritical-CO2-drying and to water solvation of polysaccharides, 284 

which would favour sample swallowing. By contrast, oil adsorption did not promote swallowing of 285 

sample, which retained circa 16 g oil/gds, indicating that oil simply substituted voids left upon water 286 

removal.  287 
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The interesting ability of dried salad wastes to interact with water and oil suggeststheir possible 288 

exploitation as ingredients in dried instant foods (e.g. soups, noodles, meat). 289 

 290 

3.3. Characterization of salad waste flours 291 

The possibility to valorise salad waste by turning it into flours was studied. The attention was focused 292 

on AD, FD and SCCD-EtOH salad wastes. SCCD sample was not considered since characterised by a 293 

collapsed structure with low WHC and OHC (Table 1, Figure 1A). AD and FD samples were ground to 294 

flour with a 95% yield. On the contrary, grinding yield of SCCD-EtOH sample resulted<10%, possibly 295 

due to the difficulty in grinding an expanded tissue. The flour was thus obtained by grinding salad 296 

waste after ethanol substitution before supercritical-CO2-drying. All salad flours presented most 297 

particles in the range 200-250 µm (Table 2). However, a lower size particle fraction was observed in 298 

flours from AD and FD samples, confirming their grinding to be particularly efficacious. Samples 299 

showed similar moisture and fibre content (Table 2). The latter resulted higher than that of rice (210 300 

g/kg) and oat (150 g/kg) bran(USDA, 2016), suggesting the possible suitability of salad flours as 301 

ingredients to increase fibre content of foods (e.g. instant foods, bakery products). 302 

Drying treatment significantly affected both polyphenol content and antioxidant activity of flours(Table 303 

2).AD flours showed the highest polyphenol content and antioxidant activity, which resulted 304 

significantly higher than those of fresh sample (p<0.05) (Table 2). This can be attributed to the 305 

formation of partially-oxidised polyphenols and Maillard reaction products able to react with Folin-306 

Ciocalteau reagent and with a prominent antioxidant action (Mrkìc, Cocci, Dalla Rosa, & Sacchetti, 307 

2006). Freeze-drying allowed polyphenol content and antioxidant activity of fresh salad waste to be 308 

partly retained (Table 2). Due to the low process temperature and almost complete absence of oxygen, 309 

degradation reactions are minimized during freeze-drying (Michalska, Wojdyło, Lech, Łysiak, & 310 

Figiel, 2017).Nevertheless, phenols could be enzymatically oxidised upon enzyme de-311 

compartmentalization during freezing (Chang, Lin, Chang, & Liu, 2006). SCCD-EtOH flour presented 312 

a phenolic content lower than that of FD sample, probably due to partial polyphenol extraction by 313 

supercritical-CO2. The latter is actually applied for polyphenol extraction from vegetable matrices 314 

(Cavalcanti, Navarro-Díaz, Santos, Rostagno, & Angela, 2012; Gadkari, Balarman, & Kadimi, 2015). 315 

HPLC was performed for polyphenol qualitative (Figure 2) and quantitative (Table 3) analyses. HPLC 316 

profile of fresh salad waste revealed the presence of different phenolic acids, in agreement with 317 

literature (Llorach et al., 2004). The main identified phenolic acid was dicaffeoyltartaric acid (chicoric 318 

acid) (peak 7), followed bycaffeoyltartaric acid (peak 2) and 5-O-caffeoylquinic acid (peak 4). The 319 
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latter can isomerise in warm aqueous phase, leading to 3-O-caffeoylquinic acid (peak 1) and 4-O-320 

caffeoylquinic acid (peak 3) (Llorach, Carlos, Tomás-Barberán, & Ferreres, 2003). Flavonoid 321 

compounds, such as luteolin derivatives (luteolin 7-O-glucuronide, peak 9) and quercetin derivatives 322 

(quercetin 3-O-glucuronide, peak 10) were also detected. Independently on the applied technology, 323 

salad waste drying always promoted a severe decrease in the intensity of peaks relevant to naturally 324 

occurring polyphenols (Table 3). However, AD flour chromatogram also showed an intense peak at 325 

low retention times(5.8 min), probably ascribable to Maillard reaction compounds, which can account 326 

for the high antioxidant activity of this flour (Table 2) (Mrkìc et al., 2006). Drying technology thus 327 

affected not only content but also composition of flour phenols(Table 3) and, consequently, their chain-328 

breaking activity. This was confirmed by the chain-breaking phenolic ratio (CBP, Table 2) that allows 329 

comparison of antiradical activity of samples with different phenolic content (Manzocco et al., 1999). 330 

AD flours showed the highest CBP, confirming the high antioxidant activity of compounds formed 331 

during air-drying. FD and SCCD-EtOH flours presented CBP similar to that of fresh samples (Table 2), 332 

suggesting supercritical-CO2-drying as a suitable technology for producing high-quality dried products 333 

(Brown et al., 2008).  334 

Salad waste flours were then evaluated for their water vapour sorption (Figure 1B).As expected, vapour 335 

uptake of flours, which have high absorptive surface, was higher than that observed in the not-ground 336 

samples (Figure 1A). Flour vapour uptake was in the order AD<FD<SCCD-EtOH, in accordance with 337 

decreasing sample structural collapse upon drying (Table 1). SCCD-EtOH flour also showed the 338 

highest WHC and OHC values (Table 2).Moreover, SCCD-EtOH flour presented a similar 339 

tendencytointeract with water and oil (Table 2). It can be inferred that performing grinding before 340 

supercritical-CO2-drying allowed obtaining an extremely porous flour with excellent solvent-loading 341 

capacity and in which absorption would be mainly driven by capillary forces rather than chemical 342 

interactions. Large amounts of different solvents could be thus easily embedded into the pores of 343 

SCCD-EtOH flour. This property could have interesting practical relevance, suggesting the possible 344 

exploitation ofthis flour asoil spill absorber or bulking agent in food formulations. It could also be used 345 

to structure liquid oil, leading to the development of innovative materials, such as oleogels, able to 346 

simulate technological performances of fats while reducing saturated fatty acid content. 347 

 348 

4. Conclusions 349 

Salad waste drying represents a possible strategy to valorise this critical industrial discard by obtaining 350 

derivatives rich in fibre and antioxidant compounds with tailored physico-chemical properties. 351 
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Thesecan be steered by exploiting different drying mechanisms such as evaporation, sublimation or 352 

supercritical-fluid extraction. In this latter case, grinding before drying and using ethanol as co-solvent 353 

allowed obtaining a flour with excellent ability to absorb both water and oil.  354 

In particular, air-dried materials and flours from salad waste could be exploited as functional food 355 

ingredients, while supercritical-dried ones as bulking agents or oil absorbers. The latter could be 356 

applied not only to absorb oil spills but also edible oils, thus begetting novel materials, such as 357 

oleogels, able to simulate the technological performance of fats while having a much lower saturated 358 

fatty acid content. The selection of the drying technology should be driven by proper considerations 359 

about target use, process costs and product sustainability. In addition, salad waste derivatives intended 360 

for food-use should be accurately assessed for safety aspects such as microbial quality and presence of 361 

contaminants deriving from cultivation practises, as well as for their sensory properties and 362 

technological performances.  363 
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Figure captions 477 

Figure 1. Adsorption of water vapour of dried salad waste leaves (A) and salad waste flours (B) 478 

submitted to air-drying (  ), freeze-drying (  ), and supercritical-CO2-drying without (X) or with (   ) 479 

ethanol. ds = dry sample. 480 

 481 

Figure 2. HPLC profiles of water extracts of fresh salad waste (Fresh) and flour samples obtained by 482 

air-drying (AD), freeze-drying (FD) and supercritical-CO2-drying using ethanol as co-solvent (SCCD-483 

EtOH). Peak identification: (1) 3-O-caffeoylquinic acid; (2) caffeoyltartaric acid; (3) 4-O-484 

caffeoylquinic acid; (4) 5-O-caffeoylquinic acid; (5) caffeic acid derivative; (6) isochlorogenic acid; (7) 485 

chicoric acid; (8) caffeic acid derivative; (9) luteolin 7-O-glucuronide; (10) quercetin 3-O-glucuronide. 486 

AU = arbitrary units. 487 

 488 

 489 

Table captions 490 

Table 1. Visual appearance, hunter scale colour parameters (L*, a*, b*), microscopic images (optical 491 

and SEM), water and oil holding capacities (WHC, OHC) of fresh salad waste leaves and dried samples 492 

obtained using air-drying (AD), freeze-drying (FD), and supercritical-CO2-drying without (SCCD) or 493 

with (SCCD-EtOH) ethanol. 494 

 495 

Table 2. Particle size distribution, moisture, total dietary fibre (TDF), total phenolic content (TPC), 496 

relevant chain-breaking activity (CBA), chain-breaking phenolic ratio (CBP) and water and oil holding 497 

capacities (WHC, OHC) of fresh salad waste and of flour samples obtained using air-drying (AD), 498 

freeze-drying (FD), and supercritical-CO2-drying with ethanol as co-solvent (SCCD-EtOH). 499 

 500 

Table 3. Quantification of phenolic compounds identified by HPLC in fresh salad waste (Fresh) and in 501 

flour samples obtained using air-drying (AD), freeze-drying (FD), and supercritical-CO2-drying with 502 

ethanol as co-solvent (SCCD-EtOH). 503 

 504 



Table 1. Visual appearance, hunter scale colour parameters (L*, a*, b*), microscopic images 1 

(optical and SEM), water and oil holding capacities (WHC, OHC) of fresh salad waste leaves and 2 

dried samples obtained using air-drying (AD), freeze-drying (FD), and supercritical-CO2-drying 3 

without (SCCD) or with (SCCD-EtOH) ethanol. 4 

Salad 

waste 

Visual 

appearance 

Colour Microscopy WHC 

(g H20/gds) 

OHC 

(g oil/gds) L* a* b* Optical SEM 

Fresh 

 

71.4±1.3
b
 -16.9±1.2

e
 31.6±1.4

a
 

 

n.d. n.d. n.d. 

AD 

 

61.2±0.3
c
 -1.5±0.2

b
 23.2±0.1

b
 

 

 

5.3±0.6
b
 1.1±0.2

b
 

FD 

 

75.6±0.3
b
 -11.2±0.1

d
 18.4±0.2

c
 

  

7.5±0.4
b
 2.1±0.4

b
 

SCCD 

 

53.4±2.0
d
 -5.2±0.7

c
 15.9±2.2

c
 

 

 

4.2±0.9
b
 1.0±0.4

b
 

SCCD- 

EtOH 

 

85.0±2.4
a
 -0.2±0.1

a
 8.7±0.4

d
 

 

 

37.1±1.1
a
 16.3±1.7

a
 

a, b, c, d 
In the same column, mean values indicated by different letters are statistically different (p<0.05); n.d. = not 5 

determined; ds = dry sample. 6 

 7 

  8 

100μm 

10 μm 

Table



Table 2. Particle size distribution, moisture, total dietary fibre (TDF), total phenolic content (TPC), 9 

relevant chain-breaking activity (CBA), chain-breaking phenolic ratio (CBP) and water and oil 10 

holding capacities (WHC, OHC) of fresh salad waste and of flour samples obtained using air-drying 11 

(AD), freeze-drying (FD), and supercritical-CO2-drying with ethanol as co-solvent (SCCD-EtOH). 12 

 13 

Salad 

waste 

sample 

Particle size  

(g/kg) Moisture 

(g/kg) 

TDF 

(g/kg) 

TPC 

(mg GAE/gdw) 

CBA 

(OD-3/min/gdw) 

CBP 

(OD-

3/min/mgGAE) 

WHC  

(g H20/gds) 

OHC  

(g oil/gds) 200-250 

µm 

<200 

µm 

Fresh 

 

n.d. n.d. 941±12
nc

 16.1±2.0
nc

 1.84±0.02
b
 6.04±0.79

b
 4.17±0.54

bc
 n.d. n.d. 

AD flour 

 

942±9
b
 61±4

a
 40±1

a
 266±4

a
 3.05±0.08

a
 27.03±1.60

a
 8.87±0.13

a
 9.1±0.7

c
 2.3±0.4

b
 

FD flour 

 

928±1
b
 80±6

a
 46±2

a
 266±4

a
 1.23±0.01

bc
 4.01±0.05

b
 3.22±0.02

c
 12.5±0.6

bc
 3.2±0.3

b
 

SCCD- 

EtOH 

flour 

996±3
a
 2±1

b
 39±8

a
 272±3

a
 0.84±0.01

c
 3.38±0.08

b
 4.04±0.06

bc
 43.2±0.4

a
 35.2±0.7

a
 

a, b, c 
In the same column, mean values indicated by different letters are statistically different (p<0.05); 

nc
 not computed in 14 

statistical analysis; n.d. = not determined; dw = dry weight; ds = dry sample. 15 

  16 



Table 3. Quantification of phenolic compounds identified by HPLC in fresh salad waste (Fresh) and 17 

in flour samples obtained using air-drying (AD), freeze-drying (FD), and supercritical-CO2-drying 18 

with ethanol as co-solvent (SCCD-EtOH). 19 

 20 

Phenolic compounds 

(mg/gdw) 

Retention time 

(min) 

Sample 

Fresh AD flour FD flour SCCD-EtOH flour 

3-O-caffeoylquinic acid 10.5±0.1 0.014±0.004 0.002±0.001 0.010±0.001 ND 

Caffeoyltartaric acid 12.8±0.2 0.158±0.003 0.060±0.003 0.074±0.004 0.023±0.002 

4-O-caffeoylquinic acid 21.5±0.1 0.012±0.001 ND ND ND 

5-O-caffeoylquinic acid 22.5±0.1 0.074±0.003 ND 0.003±0.001 ND 

Caffeic acid derivative 23.3±0.1 0.036±0.002 ND 0.002±0.001 ND 

Isochlorogenic acid 33.0±0.3 0.007±0.001 ND ND ND 

Chicoric acid 38.1±0.2 0.187±0.002 0.044±0.002 0.040±0.006 0.002±0.001 

Caffeic acid derivative 38.5±0.1 0.007±0.001 ND ND ND 

Luteolin 7-O-glucuronide 42.4±0.1 0.007±0.001 ND ND ND 

Quercetin 3-O-glucuronide 42.8±0.1 0.011±0.001 ND ND ND 

dw = dry weight; ND = not detected 21 

 22 
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Figure 1. Adsorption of water vapour of dried salad waste leaves (A) and salad waste flours (B) 

submitted to air-drying (  ), freeze-drying (  ), and supercritical-CO2-drying without (X) or with (   ) 

ethanol. ds = dry sample. 
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Figure 2. HPLC profiles of water extracts of fresh salad waste (Fresh) and flour samples obtained by 

air-drying (AD), freeze-drying (FD) and supercritical-CO2-drying using ethanol as co-solvent (SCCD-

EtOH). Peak identification: (1) 3-O-caffeoylquinic acid; (2) caffeoyltartaric acid; (3) 4-O-

caffeoylquinic acid; (4) 5-O-caffeoylquinic acid; (5) caffeic acid derivative; (6) isochlorogenic acid; (7) 

(Fresh) 

(SCCD-EtOH) 

(AD) 

(FD) 

Figure



chicoric acid; (8) caffeic acid derivative; (9) luteolin 7-O-glucuronide; (10) quercetin 3-O-glucuronide. 

AU = arbitrary units. 
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