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Crack identification in rods and beams under uncertain boundary conditions

Michele Dilenaa, Marta Fedele Dell’Ostea, Antonino Morassia,∗,

aUniversità degli Studi di Udine, Dipartimento Politecnico di Ingegneria e Architettura, via Cotonificio 114, 33100 Udine, Italy

Abstract

This paper deals with the inverse problem of identifying a crack in a rod in axial vibration with partially unknown end conditions
from a minimum number of resonant frequency variations. It is assumed that the crack is small and is modelled by an elastic spring
acting along the rod axis. A first set of results concerns a uniform bar with both ends restrained by means of elastic springs having
unknown flexibility. Under the hypothesis that the flexibility caused by the crack is small and of the same order of the flexibility
of the elastic end constraints, it is shown that the inverse problem can be formulated in terms of the variations of the first three
natural frequencies measured from the undamaged bar under ideal condition of fixed ends. It is proved that knowledge of this set
of eigenfrequency variations can uniquely determine the overall flexibility induced by the end conditions, and the position (up to
symmetry) and severity of the crack, by means of closed form expressions. The identification method can be also applied to axial
vibrations of uniform cantilevers with elastically restrained end condition, and to transversely vibrating uniform beams either under
elastic transverse support at both ends or under cantilever end conditions. The method was verified by numerical simulation and, in
the case of the cantilever in bending vibration, by experimental data. Numerical analysis allowed to study in detail some singular
situations occurring in the mathematical formulation of the inverse problem and to test the robustness of the method to errors on
the data.
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1. Introduction

In this paper we are concerned with the identification of a sin-
gle open crack in a beam by natural frequency measurements.
This topic has been the object of extensive research in the last
three decades and, therefore, it is not easy to draw a complete
bibliographic overview. Here, we limit ourselves to mention
some of the contributions from which the interested reader can
certainly obtain more information. Adams et al. wrote at the
end of ’70s the paper [1], which is considered the pioneering
work on crack identification in beams from natural frequency
data. They proved that, in case of localized and small dam-
age, the ratio between the variation of two natural frequencies
depends on the position of the damage only, not on its inten-
sity. This property was subsequently extended by Hearn and
Testa [10] and used for the implementation of a damage de-
tection strategy in beam-like structures. Vestroni and Capecchi
developed in a series of papers [23], [4], [24] a method for the
identification of localized damage, such as cracks or notches, in
beam structures based on the minimization of an objective func-
tion constructed with the differences between the experimental
values of the natural frequencies and their counterparts obtained
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from a numerical model of the system. The procedure involves
a first stage in which the damage is to be located, and a subse-
quent stage in which its intensity is estimated. Sinha et al. [22]
proposed simplified models of cracked beams for which appro-
priate identification procedures mainly based on optimization
problems were set. Khiem and Toan developed in [12] a method
for the identification of multiple cracks in transversely vibrat-
ing uniform beams with clamped ends. The procedure is based
on the so-called crack scanning method, recently proposed by
the same authors, and on an improved Rayleigh’s quotient type
technique for calculating the crack induced changes in the natu-
ral frequencies. The detection of concentrated damage in more
complex structures, such as parabolic arches or frames, by mea-
sured frequency variations has been approached in the papers
by Pau et al. [17], [9]. Caddemi and Caliò [2], [3] have re-
cently developed a multiple crack damage identification proce-
dure in beams based on closed form solutions of the free vibra-
tion problem. The method makes use both of natural frequency
data and pointwise mode shape information.

A closer analysis of the literature leads to the conclusion that
most of the papers on damage identification in beam structures
by frequency measurements are based on variational approach.
This class of techniques allows one to deal with systems of high
complexity (beams of variable profile under general set of end
conditions, for example), but the approach has several draw-
backs. They are mainly connected with the non-convexity of
the error function and, as a consequence, with the appearance
of several local and global minima. Basic questions such as how
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many natural frequency data are necessary to ensure uniqueness
of the solution, at least in local sense, are rarely discussed in the
literature and are mainly still open.

A different line of research was initiated by Narkis in the
middle of ’90s. In his paper [15], Narkis indicated certain con-
ditions on a minimal set of measured natural frequencies which
allow to determine uniquely the position of a small open crack
in a uniform beam under axial or bending vibration with both
ends free or pinned, respectively. Following Freund and Her-
rmann [8], the crack was modelled by means of a suitable elas-
tic link connecting the two portions of beam adjacent to the
damage. By linearizing the explicit expression of the character-
istic equation of the damaged system in a neighborhood of the
undamaged configuration, Narkis proved that the knowledge of
the first order variation in the first two natural frequency in-
duced by the crack can uniquely locate the crack by means of
closed form expression. The result by Narkis was subsequently
extended and generalized to other sets of end conditions by
Morassi [14], who also obtained an explicit expression of the
severity of the crack in terms of a suitable pair of natural fre-
quencies. The perturbative approach used by Morassi was dif-
ferent from that of Narkis and, following Hearn and Testa [10],
it was essentially based on the determination of an explicit ex-
pression of the first order derivative of the natural frequencies
with respect to the damage severity in terms of quantities of
the undamaged configuration of system. The uniqueness of the
crack location in symmetric beams was resolved by Dilena and
Morassi [6], who suggested to include appropriate anti-resonant
frequency measurements in the input data.

The above-mentioned methods by Narkis [15], Morassi [14]
and Dilena-Morassi [6] have been applied up to now to beams
in axial or bending vibration under ideal boundary conditions,
namely for beams with free, pinned or clamped ends. As far
as we are aware, and despite the elastic constraints often rep-
resent a more realistic description of the boundary conditions
of the real structural systems, studies on the identification of
damage in beams with elastic constraints are rather rare. We
refer, for example, to the contributions by Chondros and Di-
marogonas [5], Ismail et al. [11], Sinha et al. [22]. In these
works, the identification of damage - typically an open crack in
a beam - is carried out separately from the determination of the
elastic constants involved in the boundary condition descrip-
tion. Chondros and Dimarogonas [5] placed the crack exactly
at the clamped end of a cantilever. Ismail et al. [11] estimated
preliminarily the elastic support of a cantilever before proceed-
ing to the identification of the damage. The same approach was
followed by Sinha et al. [22]. The only paper that, at the best
of our knowledge, contemplates simultaneously crack identi-
fication and boundary condition identification was authored by
Narkis and Elmalah [16]. The authors considered a transversely
vibrating uniform cantilever that, under operating conditions,
shows a simultaneous flexibility of the clamped support and the
occurrence of an open small crack in an interior cross-section.
Under the assumption that the frequency variations caused by
the weakening of the clamped end and that produced by the
crack are small and of the same order, the authors showed that
the crack position can be determined, without knowing exactly

the boundary condition and the severity of damage, by mea-
suring the variations in the first three natural frequencies of the
cantilever.

In this paper we shall extend and generalize in several di-
rections the results by Narkis and Elmalah. Our main goal is
to determine a minimal set of natural frequency measurements
that can guarantee the unique (where possible) determination
of both the crack position and severity in the presence of elastic
end supports with unknown stiffness. As in [16], we shall as-
sume that the frequency variations produced by weakening the
boundary conditions and those produced by the crack are small
and of the same order. In Section 2.1 we shall consider the axial
vibrations of a uniform beam with a single crack and with both
ends elastically restrained with unknown stiffness. In Theorem
2.1 we shall show that knowledge of the variations in the first
three natural frequencies allows to uniquely determine the posi-
tion of the crack (up to symmetry) and its severity by means of
closed form expressions. An extension of this result to the case
of one free end and one elastically restrained end is presented
in Theorem 2.2. The case of bending vibrations for a uniform
beam with a small open crack and both ends supported by elas-
tic constraints is considered in Section 2.2 (Theorem 2.3).

Our analysis is based on a suitable generalization of the crack
identification method introduced in [14]. In the case of elasti-
cally restrained end conditions with unknown flexibility, how-
ever, the identification procedure becomes more involved than
the case with ideal end conditions, and the analysis requires a
new, specific treatment. One distinguish feature of our results
is the determination of closed form expressions of the unknown
parameters in terms of frequency variations. Another charac-
teristic is the inability to estimate the flexibility of each end
elastic constraint, since only the global support flexibility can
be determined. Moreover, the analysis shows the presence of
few singular situations in which one or more unknown quan-
tities either cannot be identified or cannot be uniquely deter-
mined. These cases generally involve special positions of the
crack and may have some relevance in the practical application
of the method, as they may lead to inaccurate estimations of the
unknown physical quantities. This is evidenced in the numeri-
cal and experimental simulations illustrated in Section 3.

2. Identification: Theory

2.1. Axial vibrations of rods
The infinitesimal, free, undamped longitudinal vibration of

a thin uniform fixed-fixed rod, with radial frequency ωn and
amplitude un = un(z), is governed by the eigenvalue problem

EAu′′n + λnρun = 0, z ∈ (0, `) (1)
un(0) = 0, (2)
un(`) = 0. (3)

Here, E is the Young’s modulus of the material, A denotes the
cross-sectional area, and ρ is the mass per unit length. The
length of the rod is ` and λn = ω2

n is the eigenvalue associated
to the nth eigenfunction un = un(z), n ≥ 1. Hereinafter, f ′(z)
denotes the first derivative of the function f = f (z).
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Problem (1)–(3) is considered as the reference eigenvalue
problem of the supported rod. It is assumed that, during ser-
vice, the rod is simultaneously affected by the degradation of
the ideal constraint at the ends z = 0 and z = `, and by the oc-
currence of localized damage - a crack - at the cross-section of
abscissa zd ∈ (0, `). The boundary condition at each end is mod-
elled by means of an elastic spring reacting along the axis direc-
tion connecting each end to the fixed support. The end springs
have stiffness K0 > 0 at z = 0 and K` > 0 at z = `. Following
an approach commonly adopted in damage identification, the
crack at zd is assumed to remain open during vibration and it is
modelled by inserting a translational elastic spring, of stiffness
K > 0, at the damaged cross-section. The value of K can be
expressed in terms of the geometry of the cracked cross-section
and the properties of the material, see, for example, [8].

Under the above assumptions, the free longitudinal vibration
of the cracked rod with elastically restrained ends (in brief, the
perturbed rod) is governed by the eigenvalue problem

EAũ′′n + λ̃nρũn = 0, z ∈ (0, zd) ∪ (zd, `), (4)
K0ũn(0) = EAũ′n(0), (5)
K[[̃un(zd)]] = EAũ′n(zd), (6)
[[̃u′n(zd)]] = 0, (7)
K`ũn(`) = −EAũ′n(`), (8)

where (̃λn, ũn(z)) is the nth perturbed eigenpair, n ≥ 1, and
[[ f (zd)]] = limz→z+

d
f (z) − limz→z−d f (z). The eigenvalue prob-

lem (4)–(8) coincides with the reference problem (1)–(3) as,
simultaneously, K0, K` and K tend to infinity.

In this paper we shall consider rods in which the deviation
of the end condition from the ideal case (e.g., perfect support)
is small, namely the flexibility K−1

0 , K−1
` at both the end elastic

supports is small and of the same order of smallness. More-
over, also the flexibility K−1 induced by the crack is assumed
to be small, and of the same order of smallness of the support
flexibility. Under the above assumptions, the inverse problem
consists in determining the flexibility of the supports, the loca-
tion and severity of the damage by measuring the variations in
the first three natural frequencies of the rod from the reference
to the perturbed configuration.

By adapting the perturbation approach proposed in [13], the
first order change in the nth eigenvalue δλn = λ̃n − λn is given
by

δλn = −
N2

n (zd)
K

−
N2

n (0)
K0

−
N2

n (`)
K`

, (9)

where

Nn(z) = EAu′n(z), z ∈ (0, `), (10)

is the axial force associated to the nth eigenfunction of the un-
perturbed system, normalized as

∫ `

0 ρu2
n(z)dz = 1. A direct cal-

culation shows that

λn =
EA
ρ`2 (nπ)2, un(z) =

√
2
ρ`

sin
(
nπ

z
`

)
, n ≥ 1. (11)

By writing (9) for n = 1, 2, 3 we obtain the following system of
three nonlinear equations in the unknowns ξ, s and F :

C1 = ξ cos2(πs) + F , (12)
C2 = ξ cos2(2πs) + F , (13)
C3 = ξ cos2(3πs) + F , (14)

where

ξ =
EA/`

K
, F =

EA
`

(
1

K0
+

1
K`

)
, s =

zd

`
(15)

and

Cn = −
δλn

2λn
, Cn > 0. (16)

Two remarks on the system (12)–(14) are in order. First, the
relative eigenvalue shifts δλn

λn
are equally affected by the end

conditions and, in addition, the effect of the flexibility at the
left and right end is not distinguishable by frequency measure-
ments. Second, if (s, ξ,F ) is a solution to (12)–(14), then also
(1 − s, ξ,F ) solves (12)–(14). This latter property is a conse-
quence of the symmetry of the unperturbed configuration with
respect to z = `

2 , and it suggests to assume

s ∈
(
0,

1
2

]
. (17)

Our first result is as follows.

Theorem 2.1. The knowledge of {δλi}
3
i=1 determines uniquely

the unknowns s, ξ,F , with s satisfying (17), by means of closed
form expressions.

The proof of Theorem 2.1 is based on two main steps. In Step
1, the system (12)–(14) is reduced to a second degree polyno-
mial equation on a suitable trigonometric function of the dam-
age location. In Step 2, a careful study of the solutions of this
polynomial equation concludes the proof.

We start with Step 1. By introducing the auxiliary variable

x = cos(2πs) ∈ [−1, 1), (18)

system (12)–(14) becomes
2C1 = ξ(1 + x) + 2F , (19)
C2 = ξx2 + F , (20)
2C3 = ξ(2x − 1)2(1 + x) + 2F . (21)

Combining the pair of equations (19)–(20) and (20)–(21), we
can eliminate the unknown F , obtaining the reduced system in
the unknowns ξ and x:{

C1 = ξ(2x + 1)(x − 1), (22)
C2 = ξ4x(1 + x)(x − 1), (23)

where

C1 = 2(C2 −C1), (24)
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C2 = 2(C3 −C1). (25)

If C1 = 0, then (22) gives x = − 1
2 , and the crack is uniquely

localized at

s =
1
3
. (26)

If C2 = 0, then (23) gives either x = 0 or x = −1, and the crack
is localized respectively at

s =
1
4

or s =
1
2
. (27)

In both cases, the flexibilities ξ and F can be uniquely deter-
mined by (19)–(21). When C1 = 0, the two equations (19), (20)
are linearly dependent and it is necessary to include the third
equation (21) in the analysis. By inserting x = − 1

2 in (19) and
(21), we obtain the linear system 2C1 =

ξ

2
+ 2F , (28)

2C3 = 2ξ + 2F , (29)

which has the unique solution

ξ =
4
3

(C3 −C1), F =
4C1 −C3

3
. (30)

When C2 = 0 and x = 0, from (19), (20) one finds

ξ = 2(C1 −C2), F = C2. (31)

Finally, if C2 = 0 and x = −1, then

ξ = C2 −C1, F = C1. (32)

To complete the discussion of the singular cases, let us notice
that conditions C1 = C2 = 0 can be also attained in the limit
when s tends to 0+ or, equivalently, when x → 1−. In fact, by
continuity, equations (22) and (23) show that both C1 and C2
simultaneously tend to 0 as x → 1−, and equations (19)–(21)
coincide, namely, (ξ + F ) = C1 = C2 = C3. This means that
the individual value of ξ and F remains unknown, and only the
global flexibility (ξ +F ) can be determined when the crack ap-
proaches the support. We will see in the section of applications
that this condition seriously affects the accuracy of the identifi-
cation.

Suppose now that C1C2 , 0. Then, the ratio C2/C1 does not
depend on ξ, e.g.,

C2

C1
=

4x(1 + x)
1 + 2x

, (33)

and we obtain the following second degree polynomial equation
in x:

4C1x2 + 2(−C2 + 2C1)x − C2 = 0, (34)

having the two distinct real solutions

x1 =
1
4


(
C2

C1
− 2

)
−

√
4 +

(
C2

C1

)2
 , (35)

x2 =
1
4


(
C2

C1
− 2

)
+

√
4 +

(
C2

C1

)2
 , (36)

with x1 < x2. Expressions (35), (36) suggest that the study of
the ratio C2

C1
as a function of the damage location is useful in

the present problem. It is convenient to rewrite C1 and C2 as
functions of the new variable

t = cos2(πs), t ∈ [0, 1), (37)

namely

C1(t) = 2ξ(1 − t)(1 − 4t), (38)

C2(t) = 16ξt(1 − t)(1 − 2t). (39)

The behavior of C1(t) and C2(t) is sketched in Figure 1 for ξ >
0, whereas the graph of the quotient

C2(t)
C1(t)

=
8t(1 − 2t)

1 − 4t
, t ∈ [0, 1), (40)

is shown in Figure 2. By (35) and (36), it is easy to see that

if
C2

C1
< 0, then x1 < −1 (41)

and

if
C2

C1
>

8
3
, then x2 > 1. (42)

Therefore, in both cases only one solution of the pair {x1, x2}

is admissible, namely either x2 or x1 in case (41) or in case
(42), respectively. In other words, if either s ∈

(
1
4 ,

1
3

)
or s ∈(

1
3 , s
∗ = 1

π
arccos

(
1
√

6

)
' 0.366

)
, the position of the crack can

be uniquely determined. At this stage, the flexibilities ξ and F
can be evaluated uniquely using, e.g., (22) and, then, (19).

Let now examine the case in which the crack is located on
the first quarter of the rod, e.g.,

s ∈
(
0,

1
4

)
, that is t = cos2(πs) ∈

(
1
2
, 1

)
, (43)

and let us try to determine the flexibility ξ of the damage by
using equation (22):

C1(t) = −ξ(1 + 2x1(t(s)))(1 − x1(t(s))), (44)

where x1 is given in (35). We want to show that the flexibility
ξ in (44) turns out to be negative and, therefore, the solution x1
is not admissible or, equivalently, the damage location is again
determined uniquely in

(
0, 1

4

)
by using the second solution x2.

If t ∈
(

1
2 , 1

)
, then Figure 1(a) shows that C1(t)

ξ
< 0 in

(
1
2 , 1

)
.

Then, to find the contradiction it is enough to show that the
right hand side of (44) is positive, that is (note that 1 − x1 ≥ 0)

x1(t) < −
1
2

when t ∈
(

1
2
, 1

)
. (45)
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Putting η =
C2(t)
C1(t) , from Figure 2 we deduce that η ∈

(
0, 8

3

)
when

t ∈
(

1
2 , 1

)
, and it is easy to show that (45) leads to

1
4

(
η − 2 −

√
4 + η2

)
< −

1
2
, (46)

that is

η <

√
4 + η2, (47)

which is obviously always true. We conclude that (45) holds
and, therefore, the left hand side of (44) is negative whereas the
right hand side is positive, which is the desired contradiction.

Finally, the above discussion can be repeated to prove that
also when

s ∈
(
s∗,

1
2

)
, (48)

the identification of the crack position is unique. In brief, con-
dition (48) implies t ∈

(
0, 1

6

)
. Then, from Figure 2 we deduce

that η =
C2(t)
C1(t) ∈

(
0, 8

3

)
, and the solution x1 leads to negative

stiffness. The proof of Theorem 2.1 is complete.

The analysis presented above can be extended to include an-
other set of end conditions, which is of importance in practical
applications, namely the clamped-free rod or cantilever. Un-
der the assumptions introduced at the beginning of this section,
and using the same notation, the perturbed rod is elastically re-
strained (ER) at the left end at z = 0, whereas the right end, at
z = `, is free. The longitudinal vibration of the cantilever with
a crack of flexibility 1

K at z = zd is governed by an eigenvalue
problem as in (4)–(8), with the exception of the end condition
at z = ` which is replaced by the Neumann end condition

(̃uC
n )′(`) = 0. (49)

Hereinafter, (̃λC
n , ũ

C
n = ũC

n (z)) is the nth eigenpair of the per-
turbed rod, n ≥ 1. The unperturbed eigenpairs have the explicit
expression

λC
n =

EA
ρ`2

(
π

2
(2n − 1)

)2
, uC

n (z) =

√
2
ρ`

sin
(
π

2
(2n − 1)

z
`

)
,

(50)

n ≥ 1, and, as above, the flexibilities K−1
0 , K−1 are assumed to

be small and of the same order of smallness. By writing (9) for
n = 1, 2, 3, we obtain the nonlinear system

CC
1 = ξ cos2(

π

2
s) + F C , (51)

CC
2 = ξ cos2(

3π
2

s) + F C , (52)

CC
3 = ξ cos2(

5π
2

s) + F C , (53)

where ξ, s, s ∈ (0, 1), are as in (15) and

F C =
EA
`

1
K0
, CC

n = −
δλC

n

2λC
n
, (54)

with δλC
n = λ̃C

n − λ
C
n , n ≥ 1. In this case, it is convenient to

introduce the position variable

xC = cos(πs) ∈ (−1, 1). (55)

Then, system (51)–(53) takes the form
2CC

1 = ξ(1 + xC) + 2F C , (56)
2CC

2 = ξ(1 + xC)(2xC − 1)2 + 2F C , (57)
2CC

3 = ξ(1 + xC)(1 + 2xC − 4(xC)2)2 + 2F C . (58)

Subtracting (56) from (57) and (58) side by side, we obtain{
CC

1 = ξ(1 + xC)((2xC − 1)2 − 1), (59)
CC

2 = ξ(1 + xC)((1 + 2xC − 4(xC)2)2 − 1), (60)

where we have defined the quantities CC
1 , CC

2 as

CC
1 = 2(CC

2 −CC
1 ), (61)

CC
2 = 2(CC

3 −CC
1 ). (62)

We distinguish two main cases, depending on the value of
CC

1 . If CC
1 = 0, then by (59) and recalling that xC ∈ (−1, 1),

we have xC = 0, and the crack is located at mid-span, e.g.,
s = 1

2 . Replacing xC = 0 in (56)–(58), it is easy to see that
only the ”global” flexibility (ξ + 2F ) can be determined, e.g.,
(ξ + 2F ) = 2CC

1 = 2CC
2 = 2CC

3 , the individual values ξ and
F being unknowns. Moreover, by repeating the analysis de-
veloped above for the ER rod, two additional singular cases
with C1 = C2 = 0 occur as the crack approaches either the left
(s → 0+, or xC → 1−) or the right (s → 1−, or xC → −1+) end
of the rod. In the first case, we have CC

1 = CC
2 = CC

3 = ξ + F C

and the individual value of each flexibility remains unknown,
whereas in the second case we obtain CC

1 = CC
2 = CC

3 = F C ,
and the estimate of ξ is missing. As before, it is expected that
this indeterminacy will influence the numerical implementation
of the identification method.

We shall now consider the case CC
1 , 0. Forming the quotient

CC
2 /C

C
1 , it turns out that the position variable xC

1 satisfies the
second degree polynomial equation

(0 <)(xC)2 =
1
4

+
CC

2

CC
1

, (63)

that is

xC
1 = −

√
1
4

+
CC

2

CC
1

(< 0), xC
2 =

√
1
4

+
CC

2

CC
1

(> 0). (64)

Now we shall prove that one of the two solutions (64) can al-
ways be excluded. To show this we insert the expression of CC

1
in (59), and we test it for xC = xC

1 and xC = xC
2 . Recalling that

xC ∈ (−1−1), it should be noticed that the factor ((2xC−1)2−1)
on the right hand side of (59) takes positive or negative values
when it is evaluated for xC = xC

1 or for xC = xC
2 , respectively.

Therefore, if CC
1 < 0, then the solution xC

1 should be excluded,
since ξ must be a positive quantity. Similarly, when CC

1 > 0 then
the solution xC

2 is discarded. In conclusion, only one solution of
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the pair (64) remains and, since the function x = x(s) = cos(πs)
is one-to-one from (0, 1) into (−1, 1), the crack is uniquely lo-
calized. Finally, the flexibility ξ of the crack can be determined
uniquely using (59). Once s and ξ have been uniquely identi-
fied, also F C can be uniquely determined.

In conclusion, we have proved the following result for the ER
cracked cantilever.

Theorem 2.2. The knowledge of {δλC
i }

3
i=1 determines uniquely

the unknowns s, ξ,F C , for s ∈ (0, 1) \ { 12 }, by means of closed
form expressions. If s = 1

2 , then the crack can be localized
uniquely, but only the global flexibility (ξ + 2F C) can be deter-
mined.

2.2. Bending vibrations of beams
The first model that we shall consider is a uniform, thin, elas-

tic Euler-Bernoulli beam under non-perfect end supports, and
with an open crack at the cross-section of abscissa zd ∈ (0, `),
where ` is the length of the beam. Each support of the beam is
modelled by inserting a vertical elastic spring, acting transver-
sally with respect to the beam axis, and with stiffness K0 and K`

at the end z = 0 and z = `, respectively. The crack is modelled
by inserting a localized rotational spring of stiffness K at the
cracked cross-section, see, for example, [8]. The infinitesimal,
undamped, free bending vibration, of radian frequency

√
µ̃n and

amplitude ṽn = ṽn(z), is governed by the eigenvalue problem

EĨv′′′′n − µ̃nρ̃vn = 0, z ∈ (0, zd) ∪ (zd, `), (65)
ṽ′′n (0) = 0, (66)
K0ṽn(0) = −EĨv′′′n (0), (67)
[[̃vn(zd)]] = 0, (68)
K[[̃v′n(zd)]] = EĨv′′n (zd), (69)
[[̃v′′n (zd)]] = 0, (70)
[[̃v′′′n (zd)]] = 0, (71)
K`ṽn(`) = EĨv′′′n (`), (72)
ṽ′′n (`) = 0, (73)

where E is the Young’s modulus of the material, I is the mo-
ment of inertia of the cross-section, and ρ is the mass per unit
length. The eigenpairs {µn, vn(z)}∞n=1 of the reference beam, e.g.,
the beam simply supported at the ends and without damage,
can be obtained as limit of the problem (65)–(73) as, simulta-
neously, K0, K` and K tend to infinity. We have

µn =
EI
ρ`4 (nπ)4, vn(z) =

√
2
ρ`

sin
(
nπ

z
`

)
, n ≥ 1. (74)

As in previous section, we assume that the elastically supported
cracked beam is a perturbation of the reference beam, that is we
assume K−1

0 , K−1
` , K−1 small and of the same order of smallness.

Following [13], the first order change in the eigenvalue δµn,
δµn = µ̃n − µn, induced by the damage and by the flexibility of
the end conditions is given by

δµn = −
M2

n(zd)
K

−
T 2

n (0)
K0

−
T 2

n (`)
K`

, (75)

where Mn(z) = −EIv′′n (z), Tn(z) = −EIv′′′n (z) is the bending mo-
ment and the shear associated to the normalized eigenfunction
vn(z), respectively.

The diagnostic problem consists in determining the position
and the severity of the crack, and the flexibility of the supports,
by minimal eigenfrequency data. Replacing the expressions of
Mn(z) and Tn(z) in (75), and writing this equation for n = 1, 2, 3,
we obtain

B1 = ζ sin2(πs) + G, (76)
B2 = ζ sin2(2πs) + 4G, (77)
B3 = ζ sin2(3πs) + 9G, (78)

where

ζ =
EI/`

K
, G = π2 EI

`3

(
1

K0
+

1
K`

)
, s =

zd

`
(79)

and

Bn = −
δµn

2µn
, Bn > 0. (80)

By the symmetry of the reference system, if (s, ζ,G) is a solu-
tion to (76)–(78), then also (1− s, ζ,G) solves (76)–(78). There-
fore, in what follows we shall assume

s ∈
(
0,

1
2

]
. (81)

With the position variable

y = cos(2πs) ∈ [−1, 1), (82)

the system (76)–(78) becomes
2B1 = ζ(1 − y) + 2G, (83)
B2 = ζ(1 − y2) + 4G, (84)
2B3 = ζ(1 − 4y3 + 3y) + 18G. (85)

Using the first two equations (83)–(84) we can express G in
terms of the remaining unknowns, and we obtain the reduced
system{

B1 = ζ(1 − y)2, (86)
B2 = 2ζ(1 − y)2(2 + y), (87)

where

B1 = 4B1 − B2, (88)

B2 = 9B1 − B3. (89)

If either B1 = 1 or B2 = 0, then y = 1 and the crack is located
at s = 0. Therefore, unknowns ζ and y disappear in equations
(83)–(85), and only the global boundary flexibility G can be
determined.

If, conversely, y , 1 then we can form the quotient B2/B1
and find

B2

B1
= 2(2 + y), (90)
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that is the unknown y is uniquely determined as

y =
B2 − 4B1

2B1
. (91)

Since the function y = y(s) = cos(2πs) is one-to-one from
(
0, 1

2

]
to [−1, 1), the position of the crack is uniquely determined in(
0, 1

2

]
. Once y is known, equations (83), (84) can be used, for

example, to determine ζ and G.
We have proved the following result.

Theorem 2.3. The knowledge of {δµC
i }

3
i=1 determines uniquely

the unknowns s, ζ,G, for s ∈
(
0, 1

2

]
, by means of closed form

expressions.

We conclude the section by considering the inverse problem
posed above for a cracked cantilever with non-perfect clamped
end condition at the left end z = 0. We will see that the analysis
of this case is more complicated and no closed form solutions
are available.

Assume that the transverse displacement at z = 0 is hin-
dered and the rotation of the end cross-section is contrasted by
a rotational linearly elastic spring with stiffness K0. The crack
is modelled as above. The infinitesimal bending vibration of
the perturbed cantilever is governed by the eigenvalue problem
(65)–(73), in which the end conditions (66), (67) and (72), (73)
at z = 0 and z = `, respectively, are replaced by

ṽC
n (0) = 0, K0 (̃vC

n )′(0) = EI (̃vC
n )′′(0), (92)

(̃vC
n )′′(`) = 0, (̃vC

n )′′′(`) = 0. (93)

The eigenvalues of the perturbed and reference beam are de-
noted by {̃µC

n }
∞
n=1 and {µC

n }
∞
n=1, respectively. Assuming K−1

0 , K−1

small and of the same order of smallness, the analysis in [13]
shows that

δµn = −
(MC

n (zd))2

K
−

(MC
n (0))2

K0
. (94)

If vC
n = vC

n (z) is an eigenfunction of the reference cantilever with
the left end clamped and the right end free, then MC

n = MC
n (z) =

−EI(vC
n )′′(z) is an eigenfunction of the same cantilever with re-

versed end conditions. It follows that the end value (MC
n (0))2

can be expressed as

(MC
n (0))2 = 4µC

n
EI
`
, (95)

where the normalization condition
∫ `

0 ρ(vC
n (z))2dz = 1 has been

taken into account [18]. Writing (94) for n = 1, 2, 3 we obtain

B′1 = ζ
(MC

1 (s))2

µC
1

+ 4G′, (96)

B′2 = ζ
(MC

2 (s))2

µC
2

+ 4G′, (97)

B′3 = ζ
(MC

3 (s))2

µC
3

+ 4G′, (98)

where ζ and s are as in (79) and

B′n = −
δµC

n

µC
n
, G′ =

EI
`K0

. (99)

Subtracting (96) from (97) and from (98), and dividing the
obtained equations side-by-side, the possible positions of the
crack are the solutions of the equation

B′3 − B′1
B′2 − B′1

=
(MC

3 (s))2(µC
3 )−1 − (MC

1 (s))2(µC
1 )−1

(MC
2 (s))2(µC

2 )−1 − (MC
1 (s))2(µC

1 )−1
≡ f (s), (100)

where s ∈ (0, 1) and the difference B′2 −B′1 is supposed not van-
ish. Equation (100) can be used to locate the crack for given
(measured) value of the ratio B′3−B′1

B′2−B′1
. In fact, the possible po-

sitions of the crack are the abscissae of the intersection points
between the function Y = f (s) and the straight line Y =

B′3−B′1
B′2−B′1

.
The expression of the function f (s) is universal, that is holds
for all the uniform cantilevers of length `. However, the study
of the qualitative behavior of f (s) it seems not easy to per-
form, since it involves the differences of the squared bending
moments weighted with the inverse of eigenvalues. Postponing
the general study of f (s) to future work, in the section of appli-
cations we shall investigate on the numerical solutions of (100)
in some specific cases.

3. Identification: Applications

In this section, numerical applications of the identification
method are presented, both for longitudinal and bending vibra-
tions. For the sake of simplicity, we shall consider a uniform
rod or beam with unitary values of the physical parameters, i.e.,
E = A = I = ` = ρ = 1. The identification problem is formu-
lated by using pseudo-experimental frequency data, that is res-
onant frequencies are obtained by solving the direct eigenvalue
problem in referential and perturbed configuration for different
flexibilities of the support and different position and severity of
the crack.

Simulations performed with noise-free data shall be pre-
sented in the next two subsections 3.1 and 3.2. It should be
noticed, however, that even in these cases an intrinsic error is
present on the frequency data, since the higher order terms on
K−1, K−1

0 , K−1
` are neglected in the first order Taylor series ap-

proximation (9).
To test the robustness of the method to errors on the data, in

Subsection 3.3 the exact eigenvalue shift δλn has been perturbed
as follows

δλerr
n = δλn(1 + τ), (101)

where τ is a Gaussian variable with vanishing mean and stan-
dard deviation σ given by σ = Π/3. Here, the number Π

is the maximum error admitted on the eigenvalue shift, and
simulations have been performed for values of Π equal to
0.05, 0.10, 0.20, corresponding to errors up to 5%, 10%, 20%,
respectively.
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3.1. Axial vibrations of rods

The first series of simulations has been developed for the ER
cracked rod (4)–(8). Figure 3 shows the results of identifica-
tion varying the position s of the crack in the interval

(
0, 1

2

]
and for selected flexibility values ξ, F of the crack and of the
elastic support, respectively. The flexibilities ξ and F have
the same order of magnitude and each subfigure in Figure 3
shows three graphs corresponding to ξ = 5 · 10−3, 15 · 10−3,
30 · 10−3. The three columns of Figure 3 refer to results ob-
tained for F = 5 · 10−3, 15 · 10−3, 30 · 10−3, from the left to
the right, respectively. The values of F correspond to relative
eigenvalue shifts δλn/λn, n = 1, 2, 3, of about 1%, 3%, 5% of
the unperturbed value, respectively, whereas the three levels of
damage severity ξ cause relative eigenvalue shifts up to 1%,
3%, 5%, for the first three vibration modes. These percentage
changes are typical of small levels of damage.

Identification errors on damage position are of order of few
points per cent. The discrepancy increases as the crack ap-
proaches the support and as the severity of the damage in-
creases. The determination of the flexibilities ξ and F is less
accurate, with errors up to 10 − 15% for damage location
s ∈

(
1
10 ,

1
2

)
. When the crack is approaching the support, the

estimates become very inaccurate and the identification of the
flexibilities is seriously compromised. This behavior is a conse-
quence of the singular conditions discussed in Section 2.1 and,
specifically, it depends on the lack of estimates of the individual
values of ξ and F when the crack is very closed to the elastic
support. Numerical simulations suggest, however, that the ac-
curacy improves as the flexibility F increases.

The second series of simulations concerns the cantilever rod
analyzed in the second part of Section 2.1. Figure 4 shows the
main results varying the position of the crack along the beam
axis, and using the flexibility values F C, ξ as in previous Figure
3. The estimate of the crack position s turns out to be quite ac-
curate, with percentage errors generally less then 5−6%. There
are two exceptions. According with the analysis of the singu-
lar cases s → 0 and s → 1 of Theorem 2.2, the estimate of
the crack position is not reliable in a neighborhood of the mid-
point of the rod axis and a neighborhood of the free end of the
rod. Within these regions and near the clamped end, numeri-
cal results show that the estimate of ξ is affected by large er-
rors, which seem to prevent the use of the identification method
in the intervals

(
1
2 −

1
10 ,

1
2 + 1

10

)
,
(
0, 1

10

)
and

(
8

10 , 1
)
, at least for

the levels of damage considered here. Also the estimate of the
boundary flexibility F C is affected by this pathological behav-
ior, although the accuracy of identification improves as the flex-
ibility F C increases.

3.2. Bending vibrations of beams

Identification for the elastically supported cracked beam
(65)–(73) is discussed in this section. Due to the symmetry
of the reference system, the results are presented in Figure 5 for
crack belonging to the left half of the beam axis, i.e., s ∈

(
0, 1

2

]
.

The global flexibility G of the supports has been chosen equal
to 1 ·10−4, 2 ·10−4, 6 ·10−4, corresponding to average percentage
variation δλ

λ
of the first three eigenvalues of about 1%, 2%, 5%

of the unperturbed values, respectively. The three levels cho-
sen for the damage severity ζ, that is ζ = 5 · 10−3, 15 · 10−3,
30 · 10−3, cause maximum percentage changes in the first three
eigenvalues of about 1%, 2%, 5%, respectively.

Identification errors on damage position are small and of or-
der of few points in the interval

(
1

10 ,
1
2

)
for values of the global

boundary flexibility G equal to 1 ·10−4 and 2 ·10−4, whereas the
estimates are less accurate in the interval

(
0, 1

10

)
, see columns

(a) and (b) in Figure 5. For G = 6 · 10−4 a good agreement is
found in a smaller interval

(
3
20 ,

1
2

)
, see column (c) in Figure 5.

As already observed in the axial vibration cases, this behav-
ior depends on the lack of estimates of the individual values of
ζ and G when the crack is very closed to the elastic support. In
addition, numerical simulations suggest that the accuracy im-
proves as the ratio G/ζ between the global and the internal flex-
ibilities increases. As for the determination of G and ζ, the
errors grow up to 30 − 40% for the worst cases in the interval(

3
20 ,

1
2

)
. In the proximity of the beam supports the estimates are

not accurate.

3.3. Sensitivity to errors
In presence of perturbations on the eigenvalues, 1000 sim-

ulations have been performed for each level of maximum er-
ror Π, as defined in Section 3. The results obtained for target
values s = 0.30, ξ = 5 · 10−3 and F = F C = 5 · 10−3, cor-
responding to small level of damage or boundary defect, are
shown in Tables 1 and 2 for axial vibrations of rods under elas-
tically supported and cantilever end conditions, respectively. It
can be seen that the estimate of the crack position is accurate
even for the maximum level of error Π = 0.20, with percentage
deviations, defined as the ratio between the standard deviation
and the average of the considered parameter, less than 6%. The
identified values of the two flexibilities are more sensitive to
errors, with deviations up to 18% and 8%, respectively for the
internal spring and the elastic constraint, with Π = 0.20.

Table 3 shows the results of the identification for the elasti-
cally supported beam in bending vibration considered in Sec-
tion 3.2. Target parameters are s = 0.30, ζ = 5 · 10−3 and
G = 1 · 10−4. It is confirmed that the errors on the input data
are not strongly amplified by the identification method, and the
determination of the crack position is more stable than the es-
timates of the two flexibilities. As for the damage position,
the percentage deviations are equal to 2%, 4%, 8% for max-
imum level of error Π = 0.05, 0.10, 0.20, respectively. The
corresponding discrepancies for both the flexibilities are almost
twice than previous values.

3.4. An experimental test
In this section we consider the cantilever in bending vibration

analyzed in the second part of Section 2.2. The experimental re-
sults described in [16] are used to test the proposed identifica-
tion technique. In that paper, the specimen consisted of a steel
uniform beam having a rectangular cross section 30×3 mm and
length 200 mm, see Figure 6. Young’s modulus and density of
mass were equal to 206000 MPa and 7800 kg/m3, respectively.
The beam was fixed at one end to a vibration device using two
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tightening bolts. The non-perfect clamped condition was ob-
tained by partially reducing the tightening torque in one bolt,
whereas, to simulate an internal crack, a notch 0.1 mm wide
and 0.2 mm deep was formed at a distance 40 mm (s = 0.20)
from the fixed end. Dynamic tests were performed in the unper-
turbed and perturbed configurations; the first three frequencies
were measured using an harmonic excitation, see Table 4.

The results of the identification are summarized in Table 5
and Figure 7. In particular, the graph of the function f (s) de-
fined in (100) and the horizontal straight line Y =

B′3−B′1
B′2−B′1

are
shown in Figure 7. The intersections between the curve and the
line correspond to all the possible positions si of the crack sat-
isfying the inverse problem (96)–(98). Once the positions are
found, the flexibilities of the springs can be evaluated by means
of equations (96) and (97). For the studied case, however, the
solutions s2 and s3 can be discarded, since the corresponding
values for the flexibility of the internal spring are negative, see
Table 5. The remaining solution s1 = 0.22 is closed to the ef-
fective position of the crack, with a relative error of about 2%.
The result of identification coincides with the conclusions of the
analysis developed in [16] (Section 4.2), even if we were unable
to follow the arguments used by the authors to conclude that the
solution of the inverse problem is unique without evaluating the
values of the damage flexibility.

Finally, it can be observed from Figure 7 that the identifica-
tion problem admits a unique solution for the position of the
crack only in a narrow interval closed to the vertical asymptote
s = 0.364.

4. Conclusions

Crack identification in beams can be developed by using
changes in the resonant frequencies between an initial, refer-
ential state and a subsequent, damaged state. Results available
in the literature mainly concern with the identification of the
damage under the assumption that the boundary conditions are
of ideal type (i.e., either free or perfectly fixed end conditions)
and cannot change from the initial to the current configuration.

In this paper we have considered the identification of a sin-
gle small open crack in a beam under elastically restrained end
conditions of unknown flexibility. Under the assumption that
the end flexibility is small and of the same order of the localized
flexibility induced by the crack, a method was developed for the
identification of the damage by using a minimum number of
natural frequency information. Sufficient conditions allowing
the unique solution of the inverse problem have been obtained
in terms of the variations in the first three natural frequencies.
Results have been obtained for initially uniform beams, either
under axial or bending vibration, with different sets of elasti-
cally restrained end conditions. The location of the crack, its
severity and the global flexibility induced by the end conditions
have been determined, in most cases, by means of closed form
expressions.

The method has been tested on an extended series of numeri-
cal simulations performed varying the position of the crack and
for various values of the severity of the damage and flexibility

of the end supports. A validation of the method on experimen-
tal data taken from [16] was also developed. Analytical results
agree well with numerical and experimental tests.

Numerical simulations allowed to study in detail some singu-
lar situation, already emerged in the mathematical treatment of
the inverse problem, in which one or more unknown quantities
either cannot be identified or cannot be uniquely determined,
even in presence of error free data. It can be shown that these
pathological cases occur only for special positions of the crack,
and are due to the truncation error in approximating the natural
frequency variation by its first-order term in the Taylor’s expan-
sion (see, for example, (9)). Numerical results show that these
cases may have some relevance in the practical application of
the method since they may lead to inaccurate estimation of the
unknown physical quantities. Generally, estimates of damage
severity and boundary flexibility suffer from major errors when
the crack is placed close to the ends of the beam. This sug-
gests that the proposed method is accurate when the crack is far
enough from the ends of the beam. The crack position estimate,
on the contrary, is much less affected by these errors.

This error amplification had already partially emerged in the
identification of two cracks in a simply supported uniform beam
by natural frequency measurements of the bending vibration
[20]. In that case, errors in crack severity estimates increase
for close cracks placed near one end of the bar. Our analy-
sis shows that in case of uncertain end conditions these effects
are more important and could produce significant errors on the
quantities to be identified. One way to reduce these unwanted
effects would be to remove the hypothesis of small damage and
work with generic severity of the crack by adapting the Lambda
Curve Method proposed in [19]. In fact, this would avoid the
introduction of truncation errors in the Taylor’s series of the
eigenvalues. The use of the Lambda Curve Method, however,
is not trivial and, at present, its application to beams with elas-
tically restrained end conditions is known only for bars in axial
vibration with known boundary flexibility [7].

Finally, a possible extension of the proposed method is to the
problem of identification of multiple small open cracks. It is
likely that the method proposed recently by Shifrin [21] in the
case of an initially uniform beam under ideal end conditions
can be useful in this regard.
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Table Captions

Table 1. Results of identification for the cracked rod E = A = ` = ρ = 1 with elastically restrained ends (4)–(8) and with noisy
data as in (101). Unknown parameters: s = 0.30, ξ = 5 · 10−3, F = 5 · 10−3. Percentage errors: errs = 100 × (saverage − sexact)/`,
errξ = 100 × (ξaverage − ξexact)/ξexact and errF = 100 × (Faverage − Fexact)/Fexact.

Table 2. Results of identification for the cracked rod E = A = ` = ρ = 1 under cantilever end conditions and with noisy data
as in (101). Unknown parameters: s = 0.30, ξ = 5 · 10−3, F = 5 · 10−3. Percentage errors: errs = 100 × (saverage − sexact)/`,
errξ = 100 × (ξaverage − ξexact)/ξexact and errF C = 100 × (F Caverage − F

C
exact)/F Cexact.

Table 3. Results of identification for the transversely vibrating beam E = I = ` = ρ = 1 with elastic supports (65)–(73) and with
noisy data as in (101). Unknown parameters: s = 0.30, ζ = 5 ·10−3, G = 1 ·10−4. Percentage errors: errs = 100× (saverage− sexact)/`,
errζ = 100 × (ζaverage − ζexact)/ζexact and errG = 100 × (Gaverage − Gexact)/Gexact.

Table 4. Experimental natural frequencies and their relative variations between undamaged and damaged configurations. Data
taken from [16]. Frequency variations: ∆ f = 100 × ( fUnd − fDam)/ fUnd.

Table 5. Results of damage identification for the cantilever in bending vibration. Actual damage location: zd = 40 mm.
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Figure Captions

Figure 1. Graph of the functions C1(t) and C2(t) defined in equations (38) and (39), respectively.

Figure 2. Graph of the function C2(t)
C1(t) defined in equation (40).

Figure 3. Elastically restrained cracked rod (4)–(8): identification using the variations of the first three eigenfrequencies of the
longitudinal vibration. Values of F : F = 5 · 10−3 (left column), F = 15 · 10−3 (central column), F = 30 · 10−3 (right column).
Percentage errors: err(s) = 100 × (sident − sexact)/`, err(ξ) = 100 × (ξident − ξexact)/ξexact, err(F ) = 100 × (Fident − Fexact)/Fexact.

Figure 4. Elastically restrained cracked cantilever: identification using the variations of the first three eigenfrequencies of the
longitudinal vibration. Values of F C: F C = 5 · 10−3 (left column), F C = 15 · 10−3 (central column), F C = 30 · 10−3 (right column).
Percentage errors: err(s) = 100× (sident− sexact)/`, err(ξ) = 100× (ξident−ξexact)/ξexact, err(F C) = 100× (F Cident−F

C
exact)/F Cexact.

Figure 5. Elastically supported cracked beam (65)–(73): identification using the variations of the first three eigenfrequencies of the
bending vibration. Values of G: G = 1 · 10−4 (left column), G = 2 · 10−4 (central column), G = 6 · 10−4 (right column). Percentage
errors: err(s) = 100 × (sident − sexact)/`, err(ζ) = 100 × (ζident − ζexact)/ζexact, err(G) = 100 × (Gident − Gexact)/Gexact.

Figure 6. The cracked cantilever in bending vibration considered in [16]. (a) Schematic illustration of the experimental setup; (b)
mechanical model; (c) cracked cross-section. Length in mm.

Figure 7. Results of damage identification for the cantilever in bending vibration. Actual damage location: s = 0.20.
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Table 1: Results of identification for the cracked rod E = A = ` = ρ = 1 with elastically restrained ends (4)–(8) and with noisy data as in (101). Unknown parameters:
s = 0.30, ξ = 5·10−3, F = 5·10−3. Percentage errors: errs = 100×(saverage−sexact)/`, errξ = 100×(ξaverage−ξexact)/ξexact and errF = 100×(Faverage−Fexact)/Fexact .

Π = 0.05 Π = 0.10 Π = 0.20

Stat. Property s ξ F s ξ F s ξ F

max 0.314 0.00563 0.00524 0.324 0.00632 0.00558 0.349 0.00792 0.00627
min 0.290 0.00412 0.00457 0.277 0.00353 0.00430 0.249 0.00196 0.00362

average 0.301 0.00492 0.00496 0.301 0.00496 0.00494 0.301 0.00502 0.00492
error (%) 0.3 −1.6 −0.8 0.3 −0.8 −1.2 0.3 0.4 −1.6
std dev 0.004 0.00023 0.00010 0.007 0.00045 0.00019 0.015 0.00087 0.00039
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Table 2: Results of identification for the cracked rod E = A = ` = ρ = 1 under cantilever end conditions and with noisy data as in (101). Unknown parameters:
s = 0.30, ξ = 5 · 10−3, F = 5 · 10−3. Percentage errors: errs = 100 × (saverage − sexact)/`, errξ = 100 × (ξaverage − ξexact)/ξexact and errF C = 100 × (F Caverage −

F Cexact)/F Cexact .

Π = 0.05 Π = 0.10 Π = 0.20

Stat. Property s ξ F C s ξ F C s ξ F C

max 0.320 0.00557 0.00523 0.336 0.00633 0.00558 0.422 0.00788 0.00599
min 0.292 0.00416 0.00471 0.282 0.00343 0.00445 0.264 0.00230 0.00385

average 0.304 0.00489 0.00496 0.305 0.00486 0.00497 0.305 0.00496 0.00494
error (%) 1.3 −2.2 −0.8 1.7 −2.8 −0.6 1.7 −0.8 −1.2
std dev 0.004 0.00022 0.00009 0.008 0.00044 0.00017 0.017 0.00087 0.00034
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Table 3: Results of identification for the transversely vibrating beam E = I = ` = ρ = 1 with elastic supports (65)–(73) and with noisy data as in (101).
Unknown parameters: s = 0.30, ζ = 5 · 10−3, G = 1 · 10−4. Percentage errors: errs = 100 × (saverage − sexact)/`, errζ = 100 × (ζaverage − ζexact)/ζexact and
errG = 100 × (Gaverage − Gexact)/Gexact .

Π = 0.05 Π = 0.10 Π = 0.20

Stat. Property s ζ G s ζ G s ζ G

max 0.320 0.00540 0.000110 0.337 0.00613 0.000116 0.368 0.01018 0.000126
min 0.282 0.00446 0.000088 0.263 0.00412 0.000074 0.209 0.00359 0.000007

average 0.303 0.00488 0.000100 0.302 0.00493 0.000099 0.301 0.00503 0.000097
error (%) 1.0 −2.4 0.0 0.7 −1.4 −1.0 0.3 0.6 −3.0
std dev 0.006 0.00014 0.000003 0.011 0.00029 0.000006 0.023 0.00069 0.000014
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Table 4: Experimental natural frequencies and their relative variations between undamaged and damaged configurations. Data taken from [16]. Frequency variations:
∆ f = 100 × ( fUnd − fDam)/ fUnd.

Mode Undamaged Damaged
[Hz] [Hz] ∆ f [%]

1 56.63 55.21 2.5
2 358.10 350.00 2.3
3 1015.60 991.40 2.4
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Table 5: Results of damage identification for the cantilever in bending vibration. Actual damage location: zd = 40 mm.

Solution s = zd/L zd [mm] ζ K [N m] G’ K0 [N m]

1 0.2217 44.3 0.00248 28613 0.01118 6339
2 0.3865 77.3 -0.01395 -5081 0.01557 4552
3 0.5974 119.5 -0.00288 -24635 0.01254 5652
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Figure 1: Graph of the functions C1(t) and C2(t) defined in equations (38) and (39), respectively.
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Figure 2: Graph of the function C2(t)
C1(t) defined in equation (40).
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Figure 3: Elastically restrained cracked rod (4)–(8): identification using the variations of the first three eigenfrequencies of the longitudinal vibration. Values
of F : F = 5 · 10−3 (left column), F = 15 · 10−3 (central column), F = 30 · 10−3 (right column). Percentage errors: err(s) = 100 × (sident − sexact)/`,
err(ξ) = 100 × (ξident − ξexact)/ξexact , err(F ) = 100 × (Fident − Fexact)/Fexact .
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Figure 4: Elastically restrained cracked cantilever: identification using the variations of the first three eigenfrequencies of the longitudinal vibration. Values of
F C: F C = 5 · 10−3 (left column), F C = 15 · 10−3 (central column), F C = 30 · 10−3 (right column). Percentage errors: err(s) = 100 × (sident − sexact)/`,
err(ξ) = 100 × (ξident − ξexact)/ξexact , err(F C) = 100 × (F Cident − F

C
exact)/F Cexact .
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Figure 5: Elastically supported cracked beam (65)–(73): identification using the variations of the first three eigenfrequencies of the bending vibration. Values
of G: G = 1 · 10−4 (left column), G = 2 · 10−4 (central column), G = 6 · 10−4 (right column). Percentage errors: err(s) = 100 × (sident − sexact)/`, err(ζ) =

100 × (ζident − ζexact)/ζexact , err(G) = 100 × (Gident − Gexact)/Gexact .
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Figure 6: The cracked cantilever in bending vibration considered in [16]. (a) Schematic illustration of the experimental setup; (b) mechanical model; (c) cracked
cross-section. Length in mm.
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Figure 7: Results of damage identification for the cantilever in bending vibration. Actual damage location: s = 0.20.
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