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delle Scienze - 33100 - Udine (UD) - Italy

E-mail: giulio.croce@uniud.it

Abstract. When a continuous film flows on a nonwettable substrate surface, it may break up,
with the consequent formation of a dry-patch. The actual shape of the resulting water layer
is of great interest in several engineering applications, from in-flight icing simulation to finned
dehumidifier behavior modeling. Here, a 2D numerical solver for the prediction of film flow
behavior is presented. The effect of the contact line is introduced via the disjoining pressure
terms, and both gravity and shear are included in the formulation.
The code is validated with literature experimental data for the case of a stationary dry-patch
on an inclined plane. Detailed numerical results are compared with literature simplified model
prediction. Numerical simulation are then performed in order to predict the threshold value
of the film thickness allowing for film breakup and to analyze the dependence of the dynamic
contact angle on film velocity and position along the contact line. Those informations will be
useful in order to efficiently predict more complex configuration involving multiple breakups on
arbitrarily curved substrate surfaces (as those involved in in-flight icing phenomena on aircraft).

1. Introduction

A thin layer of liquid can spread over a solid substrate as a collection of tiny droplets, as an
ensemble of rivulets or as a continuous film. The details of this transitions have an impact on
different engineering problems: as an example, in-flight icing phenomenon on aircraft surface
is driven by the evolution of the water layer fed by a stream of super-cooled droplets from the
cloud; depending on the cloud water content and the fluid flow field and temperature, the liquid
layer may take one of the above mentioned forms and influence the consequent ice accretion
and its effect on aircraft aerodynamics. Also fogging and defogging of a car windshield or heat
transfer on dehumidifier fin surfaces are affected by condensation and evaporation phenomena
with droplets growth, coalescence and motion over solid substrates.

The early studies reported in open literature followed an analytical/integral approach: a first
paper by Hartley and Murgatroyd [1] considered the separation of a laminar film flowing vertically
under gravity, proposing a critical breakup threshold for the liquid flow rate based on a force
balance at the apex of the dry-patch. In [2], the authors modeled the transition between still
droplets and moving ones via a Lagrangian approach, simulating the process of birth, growth,
coalescence of the individual droplets and detecting their motion by a force balance. A different
approach is the straightforward numerical solution of the two dimensional lubrication equation.
Witelski and Bowen [3] proposed an efficient implicit scheme for the numerical integration of the
lubrication equation, via an ADI factorization. The authors considered only fully wetted surfaces.
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Schwartz and Eley [4] introduced the disjoining pressure term in order to model the substrate
wettability and the development of dry-patches. The disjoining pressure definition was adjusted
to match the static contact angle. The modeling of the contact angle via disjoining pressure
term was later validated by Zhao and Marshall [5], who also investigated the finger instability
phenomenon, induced by surface heterogeneity. Sellier [6] considered the perturbation induced
by a 3D obstacle on the one dimensional flow of a film flowing down a vertical plane, focusing on
the liquid distribution around the obstacle and the influence of the obstacle shape, rather than
on the dry-patch dynamics.

The aim of this paper is the development of an efficient solver for the governing lubrication
equation suitable as a first step for the analysis of complex, real world configurations like the
one encountered, as an example, in in-flight icing configuration, involving the evolution and
interaction of several rivulets, film and dry-patches. Thus, a general, fully implicit, 2D solver is
described, commenting on its CPU time efficiency. An upwind discretization is chosen, rather
than the central schemes used in [3–8], in order to be able to model also the convection dominated
flows where the shear stress is the main driving force (as done, for continuous films, in [9]). The
code is first validated with experimental evidences [10, 11] and then applied to the analysis of
dry-patch stability dynamics. In particular, the maximum mass flow rate allowing for the growth
of a dry-patch is computed from the fully 2D model. Furthermore, the evolution of the contact
angle along the whole 2D profile of the patch is presented and commented, while in previous
literature references the analysis was limited to the region close to the patch apex.

2. Mathematical model

Consider a thin film of height h flowing along an inclined plane under the action of both gravity
and shear. Let α be the inclination of the plane with respect to the horizontal and τa the shear
applied by an external gas flow. The continuity equation offers:

∂h

∂t
= −∇ · Q = −∇ · (uh) (1)

For low Reynolds numbers, Re ≤ 1, the lubrication theory allows to write the average film
velocity as a function of the shear stress and of the gradient of pressure p:

u = −
∇p

3µ
h2 +

τa

2µ
h (2)

Substituting Eq. (2) in Eq. (1) leads to

∂h

∂t
= −∇ ·

(

−
∇p

3µ
h3 +

τa

2µ
h2
)

(3)

The pressure field of the liquid is given by Schwartz and Eley [4] as

p = ρ g
(

h cosα− x sinα
)

− σ∇2h−Π (4)

where

• ρ g (h cosα− x sinα) represents the contribution of gravity pressure, x increasing in the
downhill direction of the plane;

• the capillary pressure σ∇2h is due to the curvature of the liquid-gas interface;
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• the disjoining pressure Π, related to the intermolecular forces between liquid and solid
substrate, is given by

Π = B

[(

hwet

h

)n

−

(

hwet

h

)m]

(5)

where hwet is the height of the precursor film and the parameters m, n, B have to be defined
according to the constraints 1 < m < n, B > 0.

In particular, writing the equilibrium of forces for a liquid volume near the contact line, Schwartz
and Eley [4] obtained the following expression of the coefficient B,

B =
1

hwet

(n− 1)(m− 1)

(n−m)
σ (1− cos θe) (6)

where θe is the equilibrium contact angle.
Zhao and Marshall [5] demonstrated consistency of Eq. (6), but they observed that values of

the precursor film height hwet much larger than the physical one (which is related to the range of
intermolecular forces) are usually chosen for numerical simulations, leading to inaccurate results.
Hence they introduced the correction factor f ,

f = 1 + 6.069

(

hwet

h∞

)

+ 161.7

(

hwet

h∞

)2

− 1547

(

hwet

h∞

)3

+ 5890

(

hwet

h∞

)4

(7)

which multiplies the coefficient B.
Defining the non-dimensional quantities

h̄ =
h

h∞
; x̄ =

x

h∞
; t̄ =

t

(h∞/u∞)
; τ̄a =

τa
(σ/h∞)

; p̄ =
p

(σ/h∞)
; Π̄ =

Π

(σ/h∞)
(8)

and introducing Bond and Capillary numbers, Eqs. (3) and (4) can be rearranged in non-
dimensional form

∂h̄

∂t̄
= −

1

Ca
∇ · Q̄ = −

1

Ca
∇ ·

(

−
∇p̄

3
h̄3 +

τ̄a

2
h̄2
)

(9)

p̄ =Bo
(

h̄ cosα− x̄ sinα
)

−∇2h̄− Π̄ (10)

The fourth order, non-linear PDEs, Eqs. (9) and (10), are solved numerically on a 2D domain
on the inclined plane surface. The special case of gravity and shear acting in the same direction
is considered. Thus, the average velocity of the undisturbed film is given by:

u∞ =
ρ g sinα

3µ
h∞

2 +
τa
2µ

h∞ (11)

3. Spatial discretization

The 2D spatial domain Lx × Ly is discretized using an uniform, orthogonal grid composed by
nel = ni × nj elements of dimensions ∆x and ∆y. The convective term ∇ · Q of Eq. (1) is
discretized via a first order upwind scheme. Hence, the flux Q = uh is decomposed into two
contributions. With reference to x direction, Qx+ = u+ h refers to the the wave propagation
with positive velocity, while Qx− = u− h refers to the wave propagation with negative velocity.

Using finite volume notation and referring to non-dimensional quantities, the volume integral
of the divergence for the i, j−th element can be expressed as an integral over its boundary surface
Ωi,j , with n̂ outward unit normal vector:

1

Vi,j

∫

Vi,j

∇ · Q̄ =
1

Vi,j

∫

Ωi,j

Q̄ · n̂ dΩ =
Q̄xi+ 1

2
, j − Q̄xi− 1

2
, j

∆x̄
+

Q̄yi, j+ 1

2

− Q̄yi, j− 1

2

∆ȳ
(12)
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The fluxes that cross the faces of the i, j−th element in the x direction can be calculated as:

Q̄xi− 1

2
, j =

1

2

(

Q̄x+i−1,j +
∣

∣Q̄x+i−1,j

∣

∣

)

+
1

2

(

Q̄x−i,j −
∣

∣Q̄x−i,j

∣

∣

)

(13)

Q̄x+i,j =
(

ū+ h̄
)

i,j
=

(

−
1

3

p̄i+1,j − p̄i,j
∆x̄

h̄2i,j +
τ̄a
2
h̄i,j

)

h̄i,j (14)

Q̄x−i,j =
(

ū− h̄
)

i,j
=

(

−
1

3

p̄i,j − p̄i−1,j

∆x̄
h̄2i,j +

τ̄a
2
h̄i,j

)

h̄i,j (15)

The expressions of the fluxes Q̄x+i,j and Q̄x−i,j ensure that the pressure gradient on each face
is always computed with a centered difference:

(

∂p̄

∂x̄

)

i± 1

2
,j

=
p̄(i± 1

2)+
1

2
,j
− p̄(i± 1

2)−
1

2
,j

∆x̄
(16)

The pressure field, Eq. (10), is calculated from the values of the film distribution h̄ and
substituted in Eqs. (14) and (15). The capillary pressure ∇2h̄, the only contribution depending
on the spatial derivates of h̄, is implemented via a centered scheme, leading to

(

∂2h̄

∂x̄2

)

i,j

=
h̄i−1,j + h̄i+1,j − 2 h̄i,j

∆x̄2
(17)

for the x direction. Combining centered scheme to calculate the capillary pressure and upwind
to calculate the fluxes through the element faces, it is easy to demonstrate that the higher order
derivates of h̄ are treated with a centered scheme.

4. Time discretization

Von Neumann analysis for an explicit Euler discretization of the linearized PDE

∂h̄

∂t̄
= −

1

3Ca

∂4h̄

∂x̄4
(18)

gives the following stability constraint for the time step:

∆t̄ ≤
3

8
Ca∆x̄4 (19)

Eq. (19) clearly shows that an explicit scheme to solve Eqs. (9) and (10) is computationally too
expensive if good resolution (∆x̄ < 1) is required. The same conclusion is reported by several
authors [3–5, 12]. Thus, an implicit Euler scheme is chosen. A straightforward implementation
would lead to a sparse system of non-linear algebraic equations. However, on the structured grid
used in the present work, the computational time can be greatly reduced following an alternate
direction implicit (ADI) scheme. Witelski and Bowen [3] considered the numerical resolution of
high-order non-linear diffusion equations and suggested to treat explicitely the mixed derivates
of h̄ when applying the ADI approximate factorization.

Thus the film flux is decomposed into two components isolating the mixed derivates of h̄,
which derive from the gradient of the capillary pressure, in the expression of Q̄:

Q̄ = F̄ +
h̄3

3



















∂

∂x̄

(

∂2h̄

∂ȳ2

)

∂

∂ȳ

(

∂2h̄

∂x̄2

)



















(20)
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Linearizing F̄ by means of the Jacobian matrix and applying the approximate factorization of [3],
the sparse, non-linear system of algebraic equations can be decomposed into two pentadiagonal,
linear systems to solve together.

It is worth to point out that only first-order accuracy in time is obtainable from two-step
schemes (as Eulero and Crank-Nicolson) when mixed derivates are involved in ADI factorization.
The time step ∆t̄ is dinamically adjusted as,

∆t̄ =
κ

max

{

|h̄n+1

i,j
−h̄n

i,j|
h̄n+1

i,j

} ∆t̄ (21)

where κ is maximum allowed increment ∆h/h (usually κ ≤ 0.02).

5. Boundary and initial conditions

At the inlet boundary (x = 0), the undisturbed film flow per unit length V̇ = u∞ h∞ is supposed
to enter the domain, giving Q̄in · n̂ = 1; remembering Eq.(4), this condition implies that the
inlet pressure equals the one of the undisturbed film, p̄∞ = Bo cosα + Π̄∞. At the outlet
boundary (x = Lx), zero flux entering the domain and zero pressure gradient, Q̄in · n̂ = 0 and
∇p̄ · n̂ = 0 respectively, are imposed. At the lateral boundaries, simmetry conditions Q̄ · n̂ = 0
and ∇p̄ · n̂ = 0 are imposed.

The onset of the dry-patch is induced by a discontinuity in the initial wetting properties of
the substrate, rather than introducing a physical obstacle as in [6]. In particular, the film flow is
iniatialized with a nonwettable small square patch, imposing: zero flux through the nonwettable
patch boundaries, Q̄ · n̂ = 0; fixed film height h̄i,j = h̄wet inside the nonwettable patch.

Two sets of different initial conditions can be chosen:

• dry condition ⇒ h̄i,j =

{

1 if xi,j < 0.1Lx

hwet

h∞

if xi,j > 0.1Lx

• wet condition ⇒ h̄i,j = 1.

The wet condition describes the flow of a film, initially undisturbed, perturbed by the obstacle;
the dry condition allows to study the contact line motion and possibly the phenomena related
to finger instability.

6. Validation

We validate the code simulating the experimental configurations of [10, 11] and comparing the
dry-patch shape with the prediction of the empirical model of Podgorski et al. [10], which
validity is confirmed by its perfect agreement with several experimental data [10, 11]. Silicon oil,
ρ = 950

(

kg/m3
)

, µ = 0.019 (Pa s) and σ = 0.021 (N/m), and equilibrium contact angle equal
to θe = 20◦ are chosen for the following simulations.

Starting from an undisturbed film flow on the inclined plane, we apply the nonwettable small
patch defined in the previous paragraph in order to perturb the flow and eventually generate a
dry-patch. The choice of the obstacle size Lo follows Sellier [6]:

Lo

h∞
= (Bo sinα)−

1

3 (22)

Each computation is identified by the inclination α of the plane with respect to the horizontal,
the magnitude of the shear τa and the undisturbed film flow per unit length V̇ ; τa is set to zero
for the following simulations. Grid independence analysis suggested the use of a non-dimensional
spatial discretization step in the range [0.025 − 1], and the precursor film heigth hwet is set at
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Figure 1. Computed film height (a); dry-patch validation (b). V̇ = 5.9× 10−3 cm2/s, α = 30◦.

5% of h∞, following [4, 5]. The choice of disjoning pressure parameters (m, n) = (2, 3) is driven
by stability considerations [4, 5].

The numerical result of figure 1(a) shows the stationary distribution h(x, y) of the film height.
Confirming both experimental and analytical evidences [10, 11, 13], a capillary ridge with higher
film thickness and flow rate appears near the contact line of the resulting dry-patch. Moreover,
some residual drops, that are slowly draining, can be observed. Figure 1(b) compares numerical
results with the dry-patch model given in [10]: it can be noticed that the numerical dry-patch
fits exactly the empirical model.

7. Results and discussion

The implicit code was applied to the dry-patch stability analysis, estimating the maximum
critical mass flow allowing for its persistence. Following the procedure of experimental tests in
[10], the undisturbed flow is first perturbed in order to generate a dry-patch, as in the previous
paragraph. Once the stationary condition is reached, the obstacle is removed: if the dry-patch is
stable (i.e. the contact line doesn’t move and a new stationary condition is immediatly reached)
the imposed flow rate V̇ is lower then the critical one; if the contact line starts advancing or the
dry-patch closes up, V̇ is higher than V̇cr.

Running the code for increasing value of the film flow rate until the critical condition is reached,
a set of points describing the critical flow rate dependence on the inclination of the plane was
obtained. This allowed us to compare the numerical results with an empirical model, which
simplifies the determination of the critical flow rate. This model derives from the assumption
that a capillary ridge, where the liquid flows along the contact line direction, surrounds the dry-
patch. Following [10, 14], mass, momentum and energy balances are written for the ridge volume
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surrounding the dry-patch apex. Following the procedure described in detail in [14] we obtain:

1− cos θe = We + Bo

(

cosα+
Sr

h∞
2
sinα

)

(23)

p

(σ/h∞)
=

We

2
+ Bo

(

cosα+
1

2

Lr

h∞
sinα

)

(24)

where Sr and Lr are the ridge transverse section area and the ridge width, normal to the contact
line, respectively. The mean pressure inside the ridge is given by the capillary pressure:

p = −
1

Lr

∫ Lr

0

σ
d2h

dl2
dl = −

σ

Lr

[

dh

dl

]Lr

0

=
σ

Lr

[

tanΘ
]θe

0
= σ

tan θe
Lr

(25)

Introducing the non-dimensional parameter γ = Lr h∞/Sr in order to describe the ridge shape,
calculating Weber number and Bond number with respect to the inlet film flow rate V̇ = u∞ h∞,
the critical flow rate V̇cr can be calculated solving Eqs. (23), (24) and (25). Figure 2 shows

0 15 30 45 60 75 90
0

0.5

1

1.5

2

2.5

3

3.5
x 10

−3

α (deg)

V
cr

 (
cm

2 /s
)

 

 

Eqs. (23), (24), (25)
numerical results

Figure 2. Critical flow rate for θe = 20◦.

the critical flow rate as a function of the plane inclination for θe = 20◦ deriving from numerical
simulations (circles), fitted by the simplified model (continuous line). The empirical model
described above best fits the numerical results when γ = 0.921.

The dynamics of dry-patch re-wetting was also studied: if the imposed flow rate exceeds the
critical value the dry-patch is unstable and will be someway shed away once the nonwettable
patch is removed. Figure 3(a) shows the dry-patch contact line at different time step for a high
value of the film flow rate, V̇ >> V̇cr. The dry-patch first adjusts its shape after the obstacle
removal and then advances with a constant velocity, due to gravity force, rather than closing up.
In figure 3(b) the position of dry-patch apex is traced as a function of time, confirming that a
characteristic draining velocity, lower then the undisturbed film velocity u∞, is reached. From
other simulations, which results are not shown due to space limitation, it was observed that,
when the flow rate is close to the critical value, V̇ ≃ V̇cr, a characteristic draining velocity is still
reached, confirming the dry-patch motion along the inclined plane, but the dry-patch also tends
to close up with a lower velocity, perpendicular to the contact line itself, due to capillary effect.

Finally, the consistence of the disjoining pressure model for describing the dynamics near the
contact line is also analyzed. The value of the equilibrium θe, in fact, is used to define the
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Figure 3. Contact line at different time (a); dry-patch apex position as a function of time (b).
V̇ = 7.5× 10−3 cm2/s, α = 30◦.
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Figure 4. Dynamic contact angle for 1D film flow as a function of contact line velocity,
∆x = 0.1h∞ (a); influence of discretization accuracy on regression coefficients of Eq.(26) (b).

disjoining pressure from Eq. (6). However, the actual θ is calculated from the slope of the
film thickness distribution at the contact line, i.e. from the local modulus of the gradient of
h. Zhao and Marshall [5] validated Eqs. (5) and (6) in the case of one dimensional film flow
advancing along an inclined plane, concluding that the calculated dynamic contact angle respects
the modified Tanner−Hoffman−Voinov formula,

θ3 = θ3e

(

C1 + C2

µuc
σ

)

;
uc
u∞

=
1− (hwet/h∞)3

1− (hwet/h∞)
(26)

where θ and θe are the dynamic and static contact angles respectively, uc is the contact line
velocity, which depends on the undisturbed film velocity and the precursor film thickness, and
C1, C2 are constants (C1 depending on the spatial discretization accuracy, which influences the
calculated value of θ).
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Simulations were run considering the 1D problem (a film flowing over an inclined plane initially
dry) with θe = 20◦ and α = 30◦. Figure 4(a) shows the dynamic contact angle as a function of
the contact line velocity uc: the 1D numerical results (circles) are fitted by Eq. (26); in order
to guarantee a good resolution near the contact line, it was chosen a spatial discretization step
equal to ∆x/h∞ = 0.1. The effect of a change in the spatial discretization accuracy on the
evaluation of θ is shown in figure 4(b). It can be noticed that the regression coefficient C1 of Eq.
(26) tends to 1 (i.e. the condition θ = θe if uc = 0 is respected) for high discretization accuracy
(∆x → 0).

The dynamic contact angle is also studyed in the 2D case: a dry-patch is generated perturbing
the undisturbed flow by an obstacle, which is then removed allowing for the contact line
movement. Simulations were run for different values of the imposed flow rate V̇ : a moving dry-
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Figure 5. Dynamic contact angle as a function of the contact line inclination for two
different flow rates (a); dependence of the contact angle on contact line velocity, for V̇ =
0.75, 1.5, 2.0, 3.0 × 10−2 cm2/s (b).

patch is captured and the contact angle calculated. Figure 5(a) demonstrates that the dynamic
contact angle strongly depends on the position, here identified by the angle β between the normal
to the contact line and the x direction (β = 0 at the patch apex). The contact angle θ decreases

for increasing value of β. This trend is confirmed by the relation tan θ ∝ x−
3

4 , obtained via
post-processing of the results of [13], where the authors solved analitically a simplified version
of Eqs. (3) and (4). Two different shapes of θ as a function of β, see figure 5(a), were obtained
for two different flow rates: the discrepancy between the two curves is due to the additional
dependence of θ from the contact line velocity. In figure 5(b) three values of β are chosen and
the contact angle θ is plotted, for each β, against the contact line velocity, showing that Eq.
(26) is still valid. The contact line velocity is calculated numerically, tracing shape and position
of the contact line when marching in time, under the assumption that it always moves along its
normal direction.

Comparing the performances of the implicit code with the explicit one on the same test case
of figure 1 reveals a gain of about 102−103 on ∆t and a corresponding strong reduction in terms
of simulation time, of the order of 10−2. Moreover, time step of about 106 the Neumann limit,
Eq. (19), are reached running the ADI code with spatial discretization step of about hwet.
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8. Conclusion

An implicit code was implemented in order to predict the distribution of a gravity driven film
over an inclined plane under the assumpions typical of lubrication theory. The code was first
validated generating a dry-patch by the implementation of an obstacle and comparing its shape
with the one predicted by a literature empirical model of Podgorski et al. [10].

The dry-patch stability analysis allowed to define a critical flow rate, above which the dry-
patch moves under the action of gravity. Such threshold value is of obvious importance for a
number of practical implementations including heat transfer and film flows. As confirmed also by
experimental evidences [10, 11], the model of Hartley and Murgatroyd [1] is not able to predict
whenever a dry-patch is stable or not. A novel symplified model for the critical mass flow rate,
useful as a quick and easy global threshold value for practical applications, was thus described
and validated against numerical predictions.

Once the disjoining pressure model for describing the surface wettability had been validated
for a 1D film flow, the dynamic contact angle along the contact line of a moving dry-patch was
analyzed: the contact angle decreases when the liquid flows along the contact line tangential
direction, in agreement with previous analytical evidences.

The model allows for the analysis of shear driven film and the numerical solution of lubrication
equations can be applied to more complex problems, including multiple dry-patch generation,
dynamics of drops growth and coalescence or problems involving condensation and evaporation.
Moreover, practical problems, such as in-flight icing phenomena or fogging and defogging sim-
ulations on car windshield, involve complex geometries, which may require unstructured grids
for an easier description of the physical domain. However, even in the present structured grid
form, the code may provide a useful insight on the physical mechanisms driving the evolution of
a discontinuous film, as well as important quantitative indication on proper threshold values for
possible film breakups and transitions.

Nomenclature

B disjoining coefficient (N m−2)
C1,2 THV formula coefficients
g acceleration of gravity (m s−2)
h film thickness (m)
L length (m)
m,n disjoining exponents
p pressure (N m−2)
Q mass flow per unit length (m2 s−1)
S section area (m2)
t time (s)
u flow velocity vector (m s−1)

V̇ undisturbed film flow rate (m2 s−1)
x, y Cartesian coordinates (m)

Greek symbols:
α inclination of the plate (deg)
β angle between the normal to the contact

line and the plate downhill direction (deg)
γ aspect ratio
θ contact angle (deg)
µ dynamic viscosity (Pa s)

Π disjoining pressure (N m−2)
ρ density (kg m−3)
σ surface tension (N m−1)
τ shear stress (N m−2)

Dimensionless numbers:
Bo = ρ g h∞

2/σ Bond number
Ca = µu∞/σ Capillary number
Re = ρ u∞ h∞/µ Reynolds number
We = ρ u∞

2 h∞/σ Weber number

Subscripts and superscripts:
¯ dimensionless
∞ undisturbed film
a external gas flow
cr critic
e equilibrium
i, j number of the grid element
n number of the time step
o obstacle
r capillary ridge
wet precursor film
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