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Abstract  
Purpose: To investigate the effect of pigment dispersion on trabecular meshwork (TM) cells. 

Methods: Porcine TM cells from ab interno trabeculectomy specimens were exposed to pigment 

dispersion, then analyzed for changes in morphology, immunostaining, and ultrastructure. Their abilities to 

phagocytose, migrate, and contract were quantified. An expression microarray, using 23,937 probes, and a 

pathway analysis were performed. 

Results: TM cells readily phagocytosed pigment granules. Pigment induced stress fiber formation (pigment 

(P): 60.1 ± 0.3%, n=10, control (C): 38.4 ± 2.5%, n=11, P<0.001) and contraction at 24 hours onward 

(P<0.01). Phagocytosis declined (P: 68.7 ± 1.3%, C: 37.0 ± 1.1%, n=3, P<0.001) and migration was reduced 

after 6 hours (P: 28.0.1 ± 2.3, n=12, C: 40.6 ± 3.3, n=13, P<0.01). Microarray analysis revealed that Rho, 

IGF-1, and TGFβ signaling cascades were central to these responses. 

Conclusions: TM cell exposure to pigment dispersion resulted in reduced phagocytosis and migration, as 

well as increased stress fiber formation and cell contraction. The Rho signaling pathway played a central 

and early role, suggesting that its inhibitors could be used as a specific intervention in treatment of pigment 

glaucoma. 
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Introduction 
Reduced outflow at the level of the trabecular meshwork (TM) is a principal cause of elevated intraocular 

pressure (IOP) in open-angle glaucomas.1,2 Pigment dispersion has been reported to result in pigmentary 

glaucoma (PG), a form of secondary open-angle glaucoma, in 10% of patients after five years.3,4 Medical 

treatment of PG is often more challenging than other glaucomas, and patients can exhibit high, fluctuating 

IOP.5,6 Pigment released from the iris has been observed to accumulate in the TM, thereby increasing the 

IOP; however, the mechanism for this process is not well-understood. There is an insufficient quantity of 

pigment in the TM to cause a simple physical outflow obstruction7; yet, relatively low amounts of pigment 

are able to induce a hypertensive phenotype in ex vivo perfusion cultures.8,9 Additionally, microarray 

expression analysis suggests a central role for ROCK and IGF-18 in the onset of PG. 

In the present in vitro study, we sought to separate the TM cells from potentially confounding perfusion 

system-related factors, including regional outflow differences,10 while avoiding potentially confounding in 

vivo factors, including an immune response.11  We characterized changes in the TM cytoskeleton, 

contraction, motility, adhesion, tight junctions, and phagocytosis, as well as pathways associated with these 

factors.12–15 Specifically, we characterized changes in the Rho family of small GTPases (Rho, Rac, and Cdc42), 

which act to rearrange the actomyosin cytoskeleton.16 Importantly, lysophosphatidic acid, an activator of 

Rho GTPase, can increase the formation of actin stress fibers17 and reduce aqueous outflow facility by 37%; 

a ROCK inhibitor can reverse these effects.17 Further, Rac GTPase can modulate the intercellular adherens 

junctions18 that contribute to TM cell motility19 and phagocytosis.9 We hypothesized that iris pigment 

particles may act on Rho GTPases to cause formation of actin stress fibers, thereby reducing TM 

contraction, motility, and phagocytosis. 
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Materials and Methods 

Primary culture and characterization of porcine trabecular meshwork cells 
Porcine eyes were obtained from a local abattoir (Thoma Meat Market, Saxonburg, PA) and processed 

within two hours of sacrifice. Extraocular tissues were carefully removed. After decontamination of globe 

exteriors in 5% povidone-iodine solution (3955-16, Ricca Chemical Company, Arlington, TX) for 3 minutes 

and three rinses with phosphate-buffered saline (PBS, 14190250, Thermo Fisher Scientific, Waltham, MA), 

TM tissues were carefully excised by ab interno trabeculectomy under a surgical microscope (S4, Carl Zeiss 

Meditec, Jena, Germany). The isolated TM tissues were then cut into 1-mm3 fragments and cultured in 

Reduced Serum Media (Opti-MEM, 31985-070, Gibco, Life Technologies, Grand Island, NY), supplemented 

with 5% fetal bovine serum (FBS, 10438026, Thermo Fisher Scientific, Waltham, MA) and 1% 

antibiotic-antimycotic (15240062, Thermo Fisher Scientific, Waltham, MA). The medium was changed on 

day 7 and every 3 days thereafter. Cells were passaged after achieving 100% confluence. Only the first four 

passages of primary TM cells were used for this study. 

TM cells were immunostained to validate their identity. Cell monolayers were fixed in 4% PFA for 1 hour 

and washed three times with PBS. Goat polyclonal anti-MGP (1:100, sc-32820, Santa Cruz, Dallas, Texas), 

rabbit polyclonal anti-alpha-SMA (1:100, ab5694, Abcam, Cambridge, MA) and anti-AQP1 (1:100, sc-20810, 

Santa Cruz, Dallas, Texas) antibodies were incubated overnight with the monolayers at 4°C. After washing 

three times with PBS, donkey anti-goat Alexa Fluor® 647 (1:1000, ab150131, Abcam, Cambridge, MA) and 

goat anti-rabbit IgG Superclonal™ (1:1000, A27034, Thermo Fisher Scientific, Waltham, MA) secondary 

antibodies were incubated with the samples at room temperature for 45 minutes. Cells incubated with PBS, 

instead of primary antibodies, served as a negative control condition. DAPI (D1306, Thermo Fisher 

Scientific, Waltham, MA) was added to the samples for 5 minutes to stain nuclei. Images were obtained 

with an upright laser scanning confocal microscope at 400-fold magnification (BX61, Olympus, Tokyo, 

Japan). 

Induction of myocilin (MYOC), using dexamethasone, was used to confirm typical TM cell behavior. Briefly, 

cells at 50% confluence were exposed to 500 nM dexamethasone for 7 days. Cells cultured without 

dexamethasone-containing media served as the control condition. Cells were lysed in TriZol reagent 

(15596026, Invitrogen, Thermo Fisher, Waltham, MA), whole RNA was extracted, and a cDNA library was 

established using a reverse-transcription kit (4368814, Thermo Fisher Scientific, Waltham, MA). Following 

the manufacturer’s instructions, quantitative PCR was performed on a Real-Time PCR System (4376600, 

Thermo Fisher Scientific, Waltham, MA). The primers used in the study were as follows: MYOC: sense: 

GGTCATTCCGGCAGTGAAGAA, antisense: ACGCCGTACTTGCCAGTGATT; GAPDH: sense: 

CCCCACCACACTGAATCTCC, antisense: GGTACTTTATTGATGGTACATGACAAG. 

Preparation of pigment suspension 
Irises of 10 porcine eyes were isolated and frozen at –80°C for 2 hours, then thawed at room temperature 

for 2 hours. This process was repeated twice to release pigment granules from lysed cells of the pigment 

epithelial layer. A total of 15 mL PBS was added to the suspension, and a 3-mL transfer pipette (13-711-20, 

Fisher Scientific) was used to promote further pigment release through 20 cycles of aspiration and 
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expulsion. The suspension was filtered through a 70-μm cell strainer (431751, Corning Incorporated, 

Durham, NC). The pigment suspension was diluted to 15 mL with PBS, then spun at 3000 rpm for 20 

minutes; this step was repeated twice. The supernatant was discarded, and the pellet containing the 

isolated pigment was re-suspended in 4 mL PBS for use as a stock solution. The stock solution was diluted 

1000-fold to count pigment particles on a hemocytometer, using 600 magnification (Eclipse TE200-E, Nikon 

Instruments Inc., Melville, NY), to determine their concentration. 

Actin cytoskeleton 
TM cells were seeded at a concentration of 1×105 cells/well into a 6-well plate atop cover glasses (2855-18, 

Corning Incorporated, Durham, NC) placed at the bottom of each well. After pigment dispersion (P) or 

control vehicle (C) for 7.5 days, cells were fixed with 4% PFA for 1 hour and washed three times with PBS. 

Coverslips were removed from their wells and incubated with DAPI for 5 minutes to label nuclei, and with 

Alexa Fluor 488 Phalloidin (1:60 dilution, A12379, Thermo Fisher, Waltham, MA) for 30 minutes to label 

F-actin. Cells were washed with PBS and twenty pictures from each experimental group were taken under 

an upright laser scanning confocal microscope (BX61, Olympus, Tokyo, Japan). Cells with stress fibers were 

counted. 

Phagocytic activity assay 
Primary TM cells were seeded at a density of 1×105 cells/well into a 6-well plate (657160, Greiner Bio-One, 

Frickenhausen, Germany). Three wells were exposed to pigment dispersion (P) at a concentration of 

1.67×107 granules/mL for 24 hours, and three wells served as the pigment-free control (C). To assess 

phagocytosis, cells were incubated with FITC-labeled microspheres (F8813, Thermo Fisher, Waltham, MA), 

at a concentration of 5×108 microspheres/mL, for 1 hour. Monolayers were thoroughly washed three times 

with pre-warmed PBS, then cells were dissociated with trypsin and filtered with a 70-μm cell strainer. A 

single-cell suspension was made, and the percentages of fluorescent TM cells were measured by 

fluorescence-activated cell sorting (FACS). TM cells not incubated with microspheres served as a control 

condition. 

Cell contraction assay 
A cell contraction assay (CBA-201, Cell Biolabs, San Diego, CA, USA) was conducted according to the 

manufacturer's instructions, with minor modifications. In brief, a total of 1×106 cells were seeded into each 

of four T-75 flasks and maintained in TM medium. Pigment was added to one flask at a final concentration 

of 1.67×107 granules/mL, while the three control flasks were sham-treated with an equal volume of PBS. 

The medium was changed every 3 days. After 7.5 days, cells were trypsinized and resuspended in media. 

Collagen type I solution (3.0 mg/mL) was diluted in DMEM to a concentration of 1.9 mg/mL. Neutralized 

collagen type I solution was mixed with suspensions of TM cells at a final cell density of 6×105 cells/mL; 

mixing was performed on ice. A total of 125 μL of the cell-collagen mixture was added to each well of a 

96-well plate (3596, Corning Incorporated, Durham, NC) and the mixtures were incubated at 37°C for 1 

hour to allow gel formation. After gels had polymerized, 100 µL of TM cell media was added to each well, 

and the cell-collagen mixture was incubated at 37°C for 2 days. After incubation, 30-gauge needles were 

used to gently detach the gels from the inner walls of each well to initiate contraction. The gels were 

imaged at 0, 24, and 48 hours post-release. The size of the gels was measured using ImageJ software 
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(Version 1.50i, National Institutes of Health). Before gel detachment, the cells which were treated with the 

contraction inhibitor, 10 mM 2,3-Butanedione Monoxime (BDM) (CBA-201, Cell Biolabs, San Diego, CA, 

USA) served as a negative control, while the cells which were treated with a contraction promoter, 50 µM 

pilocarpine (61314020415, Sandoz, San Francisco, CA) served as a positive control. 

Cell motility assay 
TM cells were seeded into a 6-well plate at 3×105 cells/well and incubated at 37°C in TM medium, according 

to our previously published protocol.20 After cells reached confluency, they were treated with 10 μg/mL 

Mitomycin (M4287, Sigma Aldrich) for 1 hour. Cells were washed with PBS three times, and new 

prewarmed TM media was added to the wells. A cell-free gap was created in the monolayer using a 10-μL 

sterile pipette tip (F1732031, Gilson, Middleton, WI). Detached cells were gently washed away by a 

combination of gentle plate agitation of the plate and three exchanges of prewarmed TM media. For cells 

in the P group, pigment granules were added into each well at a concentration of 1.67×107 granules/mL, 

while cells in the C group received an equal volume of PBS vehicle. Cells were cultured in a microscope 

stage incubator (H301-TC1-HMTC, Okolab, S.r.L., Ottaviano, NA, Italy), and pictures were taken at 40 

magnification, every 6 hours for a total of 48 hours, using a live cell microscope system (Nikon Eclipse TI-E, 

Nikon, Tokyo, Japan). The cells infiltrating the wound area in each visual field were counted in ImageJ. 

Cell adhesion assay 
We also quantified cell-matrix adhesion. TM cells were seeded into a 6-well plate at 1×105 cells/well and 

incubated at 37°C in TM medium. After 7.5 days of exposure to pigment dispersion (P) or pigment-free 

control (C), confluent TM monolayers were washed by PBS for three times and 300 µl trypsin was added to 

each well. After 5 minutes trypsinization, TM cells were fixed with 4% PFA for 10 minutes and washed with 

PBS gently to remove the floating cells. The images were taken by a phase-contrast microscope at 200x 

magnification. The cells adhering on the well bottom in each visual area were counted by ImageJ. 

  

H&E staining and transmission electron microscopy 
Hematoxylin and eosin (H&E)-stained monolayers were utilized for gross histological evaluation. Pictures of 

samples were acquired under a SPOT microscope (BX60, Olympus, Tokyo, Japan) at 400  magnification. To 

observe finer changes in cellular ultrastructure, transmission electron microscopy (TEM) was used. TEM 

sample preparation followed a previous protocol21, with minor modifications. Briefly, samples were fixed 

for 24 hours using 2.5% glutaraldehyde in 0.05 M cacodylate buffer, then washed with PBS three times. 

Samples were fixed overnight in a 1% osmium tetroxide solution. After washing with PBS three times, 

samples were dehydrated in an ascending ethanol series (30%, 50%, 70%, 90% and 100% ethanol, 

45-minute incubations in each solution), and embedded in epon resin (Energy Beam Sciences, East Granby, 

CT). Epon was exchanged every hour for 3 hours and blocks were cured for 2 days at 60°C. A microtome 

(Reichert-Jung Ultracut 701701 Ultra Microtome) was used to cut 300-nm sections that were stained with a 

0.5% Toluidine Blue O Solution (S25613, Thermo Fisher Scientific, Waltham, MA) to find areas of interest on 

bright-field microscopy. Ultrathin sections (65-nm thickness) were then obtained, placed on grids, and 

stained with uranyl acetate and lead citrate. Pictures were taken under an 80 kV Jeol transmission electron 

microscope (Peabody, The Jeol Legacy, MA) at 20,000  magnification. 
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Gene microarray 
For the P group, TM cells were seeded into 60-mm dishes at 8×105 cells per dish (n=3 per group) using TM 

media supplemented with 1.67×107 pigment granules/mL, while cells in the C group were treated with an 

equal volume of PBS. After 7.5 days, cells were lysed with Trizol Reagent. The lysates were processed at the 

Genomic Core Facility of the University of Pittsburgh to ensure quality control. RNA extraction followed our 

previous protocol22 and RNA purity was measured with a spectrophotometer (ND-2000, Fisher Scientific, 

Waltham, MA). For amplification and hybridization, we utilized an Affymetrix Porcine 3'IVT Array, which 

contains 23,937 probe sets to investigate 23,256 transcripts in pig, representing 20,201 Sus scrofa genes. 

The Affymetrix CEL files were loaded and normalized by Transcriptome Analysis Console (TAC) (Version 3.1, 

Affymetrix, Santa Clara, CA). Differential gene expression profiles were determined by applying a threshold 

of >1.5-fold linear change, with a p-value of <0.05. Genes that met the above criteria were mapped by 

bioinformatic pathway analysis software (Ingenuity Pathway Analysis, Qiagen, Hilden, Germany). 

Statistics 
All quantitative results were represented as mean ± standard error (SE). Differential gene expression and 

other quantitative data were processed by TAC and PASW 18.0 (SPSS Inc., Chicago, IL, USA) using one-way 

ANOVA, respectively. A p-value ≤0.05 was considered statistically significant. 

 

Results 

Characterization of primary porcine TM cells 
After culture of freshly dissected TM, primary TM cells migrated into the flask and formed clones. These 

cells exhibited an even, polygonal shape different from the elongated shape of fibroblasts. As we previously 

reported,8 primary TM cells became larger after 4–6 passages, indicative of a change in TM cell behavior. 

Because of this, our experiments only included TM cells that had undergone four or fewer passages. These 

cells stained positively for the TM markers alpha-SMA (Figure 1B), AQP1 (Figure 1C) and MGP (Figure 1D). 

Compared with the normal TM control, transcription of the MYOC gene was upregulated 1.5-fold after cells 

were incubated in 500 nM dexamethasone for 7.5 days. Our TM cells readily phagocytosed fluorescent 

microspheres. 

Exposure to pigmented iris debris at a concentration of 1.67×107 granules/mL, resulted in considerable 

morphological changes in TM cells, which gradually gained an elongated and polygonal appearance within 1 

week (Figure 1E, F, G, J). H&E staining revealed that most of the phagocytosed pigment particles were 

localized near the nucleus (Figure 1J). TEM demonstrated activation of lysosomes and phagosomes in the 

pigment group. Many pigment particles were ingested and were found in different stages of the lysosomal 

pathway, including hydrolysis by secondary lysosomes (Figure 1L). No pigment granules were found in the 

control TM culture (Figure 1K). 

Morphological and functional changes 
Pigment dispersion with a particle concentration of 1.67x 107 granules/mL caused TM cells to gradually take 

on an elongated and polygonal shape (Figure 1E, F, G, J). H&E staining revealed that most of the 

phagocytosed pigment particles were localized around the nucleus (Figure 1J, red arrows). Some 
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contraction of cell bodies was observed (Figure 1F, G, H, J, green arrows). TEM indicated the activation of 

lysosomes and phagosomes in the pigment-exposed TM cells. Many pigment particles were in different 

stages of being hydrolyzed by secondary lysosomes (Figure 1L).  

F-actin stress fibers labeled with Alexa Fluor 488 Phalloidin in normal primary TM had a normal 

organization and the actin filaments were smooth and thin (Figure 2A, red arrows). After 24h of exposure 

to pigment dispersion, labeling showed thick, long, and curved stress fibers (Figure 2B, yellow arrows). The 

percentage of cells with stress fibers in P (60.1±0.3%, n=10 frames) was significantly higher than in controls 

(38.4±2.5%, n=11 frames, P<0.001). 

TM phagocytosis of fluorescent microspheres quantified by FACS showed that pigment dispersion reduced 

the phagocytosis by 46.1% within 1 day (68.7±1.3% in the pigment group versus 37.0±1.1% in the control, 

P<0.001, Figure 3). TM cell contractile ability declined after pigment exposure for 7.5 days. The change in 

gel area was calculated at 24h and 48h after gel detachment and was significantly lower in P than in C at 

24h (P:55.2±1.1%, C:29.6±1.8%, n=5, P<0.01) and at 48h (P:49.6±0.9%, C:23.6±2.2%, n=5, P<0.01, Figure 4).  

We also evaluated the effects of pigment on cell migration using a wound healing assay. The numbers of 

TM cells which migrated into the wounded area were quantified at the 6, 12, and 18 hours post exposure. 

The results showed significantly less TM cell migration in P at all three time points, compared with C ((C: 

40.6±3.3)% versus (P: 28.0±2.3)%, P<0.01 at the 6 hours; (C: 65.7±4.2)% versus (P:46.5±3.1)%, P<0.01 at the 

12 hours; and (C: 86.1±5.9)% versus (P: 62.2±4.3)%, P<0.01 at 18 hours, Figure 5). After 7.5 days, the 

adhesion was reduced by 28.0±5.2% compared to controls (p<0.01).  

Activation of Rho signaling by IGF-1 and TGF beta after pigment exposure 
Signal pathways that are related to cellular contraction, migration, phagocytosis, cytoskeletal function, and 

tight junctions were altered. A total of 24,123 porcine genes were analyzed, of which 262 were significantly 

upregulated (Figure 6A, red dots in volcano plot and Figure 6B, red lines in the heat map) and 631 were 

significantly down-regulated (Figure 7A, green dots in volcano plot in and Figure 6B, green lines in heat 

map) by >1.5-fold (P<0.05). 

After exclusion of 224 porcine genes with unclear biological functions, 669 porcine genes were mapped 

with Ingenuity Pathway Analysis (IPA). There was a significantly different expression of transcripts from 15 

pathways related to phagocytosis, motility, tight junctions, actin cytoskeleton, and extracellular matrix 

remodeling (Figure 7). The Rho pathway played a central role in the response to pigment exposure, in that 

Rho was activated via stimulation of secreted bioactive molecule receptors, like transforming growth factor 

(TGF) β and type 1 insulin-like growth factor receptor (IGF-1). Activation of the Rho pathway was linked 

with regulation of myosin light chain (MLC), which was predicted to increase actin stress fiber 

polymerization and focal adhesion formation. This alteration would likely cause increased cellular 

contraction and decreased cellular migration, as well as inhibition of phagocytic ability (Figure 8). IL-8, 

JAK-Stat, and endothelin-1 signal pathways were involved in regulating cellular migration, while tight 

junctions were concurrently altered by over-expression of occludin (OCLN) and claudin 3 (CLDN3).  
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Discussion 
In PG, pigment particles and stromal debris are released due to posterior iris bowing and friction with lens 

zonules and ciliary processes.3 A heavily-pigmented TM is a distinct clinical feature of pigmentary glaucoma 

eyes that, when removed, results in normalization of outflow.23 Our previous studies in perfusion cultures 

match this pattern, revealing that a low concentration of iris pigment particles increased intraocular 

pressure by 75%, relative to baseline; however, the underlying cellular and intracellular mechanisms 

remained unclear.8 In our current study, we found significant reductions in TM phagocytosis, motility, 

contraction, along with an increase in TM stress fiber formation. Consistent with our ex vivo findings, 

TGF-β, IGF-1, and ROCK signaling are the three predominant pathways involved in the aforementioned 

cellular processes. 

The cytoskeleton is composed of actin microfilaments, intermediate filaments, and microtubules24, which 

can all impact the aqueous outflow; this occurs through cell contraction, movement, adhesion, and 

phagocytosis.25–27 Formation of actin stress fibers, as we observed, can cause TM cell contraction28 and 

increased aqueous outflow resistance.14 These stress fibers can be observed after cells have undergone 

dexamethasone14 or oxidative stresses.29 Conversely, knockdown of 14-3-3z30 and posttranscriptional 

inhibition of Rho kinase, using either a micro-RNA12 or the carboxamide Y-2763219, decreases contraction 

and increases outflow. In our studies, pigment caused TM cells to contract. 

Phagocytosis is another feature of TM that presumably maintains outflow homeostasis by ensuring that the 

outflow tract remains free of debris.31,32 The present study confirms that TM cells can phagocytose new 

debris within hours, beginning active breakdown in phagosomes and lysosomes, and that this process can 

become saturated relatively quickly. Our prior study found that a pigment-induced IOP elevation occurred 

prior to a decline in phagocytosis,9 indicating that outflow-impacting cytoskeletal changes may occur even 

earlier. Like phagocytosis and contraction, TM cell migration declined within hours of pigment exposure, 

similar to the inhibitory effect of glucocorticoids33, which also results in an elevation of IOP.34 This effect can 

be countered by use of a Rho-kinase inhibitor.19 Interestingly, Gottanka et al.7 observed shortening of the 

inner wall of Schlemm’s canal in PG that resulted in a partial (65%) lumen obstruction. 

Consistent with our ex vivo perfusion findings, this signal pathway analysis also showed that activation of 

the Rho signaling pathway, through TGFβ and IGF-1, played a central role in the responses that are 

triggered by pigment exposure. A TGFβ-mediated activation of RhoA has also been described in primary 

open-angle glaucoma (POAG).35,36 Elevation of IGF-1 can result in ocular neovascularization,37 extracellular 

matrix (ECM) remodeling38 and Rho pathway activation.39 Conversely, inhibition of Rho signaling can result 

in reduced cell contraction and decreased IOP.12,40,41 Taken together, these data suggest that rho-kinase 

inhibitors, which are currently in preclinical trials42,43, may have potential to address the early mechanism of 

PG pathogenesis. 

In conclusion, we investigated the impact of pigment dispersion on the primary trabecular meshwork. We 

found decreases in phagocytosis and cell migration, along with increases in cell contraction and stress fiber 

formation. A pathway analysis of pigment dispersion-related gene expression indicated a central role for 

Rho. 
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Figures 

Figure 1 

 

Figure 1. Primary trabecular meshwork (TM) cell characterization and pigment exposure. Probing with 

TM-specific markers alpha-SMA (Figure 1, B), AQP1 (Figure 1C) and MGP (Figure 1D) revealed positive 

staining for all markers. Phase-contrast imaging of TM cells after 1 day (Figure 1F, red arrows), 4 days 

(Figure 1G, red arrows) and 7.5 days (Figure 1H, red arrows) of pigment showed accumulation of pigment 

granules in the cytoplasm and around the cell nuclei. H&E staining of TM cells showed that the pigment 

granules were located within cells (Figure 1J, red arrows). Some contraction of cell bodies was observed 

(Figure 1F, G, H, J, green arrows). Transmission electron microscopy showed the ultrastructure of 

organelles (Figure 1K). In the control (C) group, there were no pigment granules within cells, but in the 

pigment dispersion group, abundant pigment granules were found in the cytoplasm (Figure 1L, red arrows). 

Some pigment granules were in different stages of phagolysosomal digestion (Figure 1L, yellow arrows). 
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Figure 2  

 

Figure 2. F-actin stress fibers formation. In the control group, trabecular meshwork (TM) cells exhibited 

smooth and thin F-actin filaments (Figure 2A, red arrows). After 24 hours, TM cells exhibited F-actin with 

thick, long, and curved stress fibers (Figure 2B, yellow arrows). The pigment dispersion group (60.1 ± 0.3%, 

n=10) contained a significantly larger number of cells with stress fibers, compared to the control group 

(38.4 ± 2.5%, n=11, ***P<0.001; Figure 2C). 
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Figure 3 

 

Figure 3. Reduced phagocytosis. Uptake of yellow-green fluorescent microspheres in the pigment 

dispersion group was significantly lower (37.0 ± 1.1%) than uptake in the control group (C, 68.7 ± 1.3%, n=3, 

***P<0.001) 
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Figure 4 

 

 

Figure 4. TM cell contraction. Gel contraction is shown at 24 and 48 hours post detachment from a 

baseline of 30 mm2. Pigment contracted the most followed by pilocarpine, the control, and contraction 

inhibitor 2,3-Butanedione monoxime (BDM). Gel area in the pigment-treated group (P) were significantly 

smaller than gel size in the control group (C) at 24 hours (P: 8.3 ± 0.6 mm2, C: 13.6 ± 0.0 mm2, n=2, 

***P<0.001) and at 48 hours (P: 5.9 ± 0.3 mm2, C: 10.7 ± 0.0%, n=2, **P<0.01, Figure 4). 
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Figure 5 

 

 

Figure 5. Reduced cell migration. Top panels show representative phase-contrast images of the control 

group (C) at 0–18 hours after wounding. Bottom panels show the pigment-dispersion group (P) at the same 

time points. Bar chart reveals that cell migration into the denuded area is significantly higher in C than in P 

at 6 hours (Figure 4, C: 40.6 ± 3.3, P: 28.0.1 ± 2.3, **P<0.01), 12 hours (C: 65.7 ± 4.2, P: 46.5 ± 3.1, 

**P<0.01), and 18 hours (C: 86.1 ± 5.9, P: 62.2 ± 4.3, **P<0.01) (C: n= 13 frames per time point, P: n=12 

frames per time point).  
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Figure 6 

 

Figure 6. Gene expression changes. A total of 24,123 porcine genes were analyzed, of which 262 were 

significantly upregulated (red dots in volcano plot (Figure 6A) and red lines in heatmap (Figure 6B)) and 631 

were significantly down-regulated (green dots in volcano plot in and green lines in heat map) by >1.5-fold, 

following pigment dispersion (P<0.05). 
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Figure 7 

 

Figure 7. Signal pathway changes after pigment exposure. Regulation was significantly different in 15 

signal transduction pathways related to phagocytosis, motility, tight junctions, actin cytoskeleton, and 

extracellular matrix remodeling. The z-score is a statistical measure of the match between expected 

relationship direction and observed gene expression. 

 

 

 

20 



 

 

Figure 8 

 

Figure 8. Network analysis. The Rho signaling pathway played a crucial role in the response to pigment 

exposure, and was activated via stimulation of TGFβ and IGF-1. Activation of the Rho pathway resulted in 

MLC upregulation, which is predicted to lead to actin stress fiber polymerization and focal adhesion 

formation. This process would likely result in increased cellular contraction and decreased cellular 

migration, as well as inhibition of phagocytic ability. Key tight junction genes, including OCLN and CLDN3, 

were upregulated after pigment exposure. Orange: up-regulation, Blue: down-regulation. 
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Tables 

Table 1. Expression changes in key genes and their pathways, following exposure to pigment  

Gene 

Symbol Entrez Gene Name 

Fold 

Change 

P-value 

(ANOVA) 

Signal Pathways 

OCLN occludin 8.26 

0.036 Tight junction signaling, Sertoli cell-sertoli cell junction 

signaling 

FCGR3A/FC

GR3B 
Fc fragment of IgG 

receptor IIIa 5.07 
0.039  Phagosome formation 

ITGA4 integrin subunit alpha 4 4.12 

0.007 RhoGDI signaling, actin nucleation by ARP-WASP 

complex, integrin signaling, regulation of actin-based 

motility by Rho, phagosome formation 

IGFBP3 

insulin like growth 

factor binding protein 3 3.73 
0.003 IGF-1 signaling 

CLDN3 claudin 3 2.76 

0.024 Tight junction signaling, Sertoli cell-sertoli cell junction 

signaling 

RHOB 

ras homolog family 

member B 1.89 

0.004 RhoGDI signaling, actin nucleation by ARP-WASP 

complex, integrin signaling, regulation of actin-based 

motility by Rho, IL-8 signaling, phagosome formation 

MYL4 myosin light chain 4 1.87 

0.023 RhoA signaling, RhoGDI signaling, regulation of 

actin-based motility by Rho, tight junction signaling, 

protein kinase A signaling 

TGFB1 

transforming growth 

factor beta 1 1.56 

0.012 TGF-β signaling, tight junction signaling, protein kinase A 

signaling 

TGFBR1 

transforming growth 

factor beta receptor 1 -1.54 

0.039 TGF-β signaling, tight junction signaling, protein kinase A 

signaling 

IGF1R 

insulin like growth 

factor 1 receptor -1.56 
0.037 RhoA signaling, IGF-1 signaling 
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RHOQ 

ras homolog family 

member Q -1.58 

0.040 RhoGDI signaling, actin nucleation by ARP-WASP 

complex, integrin signaling, regulation of actin-based 

motility by Rho, IL-8 signaling, phagosome formation 

ARHGAP12 

Rho GTPase activating 

protein 12 -1.87 
0.001 RhoGDI signaling, RhoA signaling 

ITGB8 integrin subunit beta 8 -1.9 0.024 integrin signaling 

ARHGAP5 

Rho GTPase activating 

protein 5 -1.93 
0.047 RhoGDI signaling, RhoA signaling, integrin signaling 

ITGAV 

integrin subunit alpha 

V -1.96 
0.018 IL-8 signaling, integrin signaling 

TGFB2 

transforming growth 

factor beta 2 -1.99 

0.029 TGF-β signaling, tight junction signaling, protein kinase A 

signaling 

ROCK1 

Rho associated 

coiled-coil containing 

protein kinase 1 -2.1 

0.009 RhoA signaling, actin nucleation by ARP-WASP complex, 

integrin signaling, regulation of actin-based motility by 

Rho, IL-8 signaling, protein kinase A signaling 

ITGA1 integrin subunit alpha 1 -2.24 0.017 integrin signaling 

IGFBP1 

insulin like growth 

factor binding protein 1 -2.52 
0.022  IGF-1 signaling 

ITGA2 integrin subunit alpha 2 -2.55 

0.010 RhoA signaling, actin nucleation by the ARP-WASP 

complex, integrin signaling, regulation of actin-based 

motility by Rho, phagosome formation 

RND3 Rho family GTPase 3 -2.91 

0.045 RhoA signaling, actin nucleation by ARP-WASP complex, 

integrin signaling, regulation of actin-based motility by 

Rho, phagosome formation, IL-8 signaling 
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