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Abstract 

Objective: To evaluate three different microincisional ab interno trabeculectomy procedures in a porcine eye 

perfusion model. 

Methods: In perfused porcine anterior segments, 90 degrees of trabecular meshwork (TM) were ablated using the 

Trabectome (T; n=8), Goniotome (G; n=8), or Kahook device (K; n=8). After 24 hours, additional 90 degrees of TM 

were removed. Intraocular pressure (IOP) and outflow facility were measured at 5 µl/min and 10 µl/min perfusion to 

simulate an elevated IOP. Structure and function were assessed with canalograms and histology. 

Results: At 5 µl/min infusion rate, T resulted in a greater IOP reduction than G or K from baseline (76.12% decrease 

versus 48.19% and 47.96%, P=0.013). IOP reduction between G and K was similar (P=0.420). Removing another 90 

degrees of TM caused an additional IOP reduction only in T and G but not in K. Similarly, T resulted in the largest 

increase in outflow facility at 5 µl/min compared with G and K (first ablation: 3.41 times increase versus 1.95 and 

1.87; second ablation: 4.60 versus 2.50 and 1.74) with similar results at 10 µl/min (first ablation: 3.28 versus 2.29 and 

1.90 (P=0.001); second ablation: 4.10 versus 3.01 and 2.01 (P=0.001)). Canalograms indicated circumferential flow 

beyond the ablation endpoints. 

Conclusions: T, G and K significantly increased the outflow facility. In this model, T had a larger effect than G and K.  

 

 

  



Introduction 

Two common surgical procedures that are employed to treat patients with glaucoma involve trabeculectomy 

and glaucoma drainage devices. However, these invasive procedures are typically reserved for patients who are 

suffering from moderate or advanced glaucoma due to their risk profile and the associated complications, which 

include blebitis, corneal endothelial damage, diplopia, endophthalmitis, hardware erosions, and hypotony 1. In an 

attempt to address the issues that impede trabeculectomy and glaucoma drainage devices, microincisional glaucoma 

surgeries (MIGS) have emerged 2. MIGS involve an ab interno microincisional approach that spares the conjunctiva 3. 
Research to date indicates that these processes offer an improved risk profile, reduce IOP, and improve the patient’s 

visual function. As such, they represent a viable surgical alternative to trabeculectomy and glaucoma drainage 

devices for treating patients who exhibit mild-to-moderate glaucoma 4. A further advantage of MIGS is that they can 

be carried out together with cataract surgery. This is advantageous because glaucoma and cataracts frequently 

coexist and cataract surgery has been proven to contribute to a further reduction in intraocular pressure (IOP) 5.  

MIGS improve pressure-dependent outflow via various approaches (1). These include shunting past or 

eradicating the trabecular meshwork (TM), (2) enhancing uveoscleral outflow by shunting into the suprachoroidal 

space, (3) reducing the ciliary body’s production of aqueous humor, or (4) generating a subconjunctival drainage 

pathway 6. The Trabectome (T), Goniotome (G), and Kahook (K) devices have all been effectively employed to 

remove the TM, the main site of outflow resistance in open-angle glaucoma 7. T (Neomedix, Tustin, CA, USA) consists 

of a 19.5 gauge handpiece with an insulated footplate that contains aspiration, electrocautery, and irrigation. It was 

designed for movement along the TM while ablating a strip of TM and the inner wall of Schlemm’s canal. This allows 

the aqueous humor to subsequently flow directly from the anterior chamber into the Schlemm’s canal 6. As opposed 

to ablating a strip of the TM, the Kahook dual blade (New World Medical, CA, USA) incorporates a special blade that 

was designed to fit the drainage angle anatomy of the eye to efficiently cut the TM tissue 8. Unlike T, the K maintains 

the anterior chamber during the surgical procedure through viscoelastic material. However, previous research 

studies into the use of K during cataract surgeries have found that retained viscoelastic material in patients can 

result in postoperative IOP spikes 9,10. The Goniotome (Neomedix, Tustin, CA, USA) is a new device that combines 

elements of both K and T. Like K, G consists of dual blades that cut into the TM tissue but they are serrated to initiate 

a double cut more reliably. However, like T, G involves an active irrigation and aspiration to control the stability of 

the anterior chamber without the need for viscoelastic material 11,12. Although separate studies have assessed and 

confirmed the efficacy of T and K, no study to date has evaluated G or performed a comprehensive comparison of 

the three techniques. In the past, outflow tracers were the primary method of examining flow 12–16 and the impact on 

the outflow facility was not assessed. The purpose of this study was to compare the increase of outflow facility in a 

porcine perfusion model by each. 

 

Methods and Materials 

Study design 

The aim of this study was to evaluate differences in how three microincisional procedures, T, K and G (Figure 

1), efficiently reduced IOP. Two separate studies were performed. The first of these consisted of an eye perfusion 

study in which eight freshly dissected porcine anterior segments for each group were perfusion cultured at an 

infusion rate of 5 µl/min. After the baseline IOPs were obtained, each of the three devices, T, K, and Goniotome, 

were used to remove 90 degrees of TM from the sample. After 24 hours, a further 90 degrees of the TM were 

removed using the same procedure. Since it may not be possible to use glaucoma surgery to achieve a detectable 

IOP reduction in an eye that has a low baseline IOP 17, we also examined the IOP reduction at a higher infusion rate 

of 10 µl/min. The main outcomes of this study were IOP reduction and increase in outflow facility, the latter of which 

was calculated using Goldmann's equation. H&E staining was used for the histology. To access a direct view of the 

outflow pattern changes, two fresh pig eyes in each group underwent the corresponding procedures. The specimens 

then underwent a two-color canalogram 13,16. An upright fluorescence dissecting microscope was employed to 

visualize the outflow pattern. 
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Figure 1. Three microincisional glaucoma devices. T has a bipolar electrode that molecularizes and ablates 

the TM. It incorporates active irrigation and aspiration (A) ports. G has serrated dual blades that stretch and cut the 

TM. An active irrigation and aspiration direct the TM into the opening between the blades (B). K has dual blades that 

cut the TM tissue. It has no irrigation or aspiration (C).  

Porcine eye perfusion culture, IOP, and outflow facility 
The anterior segment perfusion culture followed our previous protocols 12,18,19. Briefly, within two hours of 

sacrifice, fresh pig eyes from a local slaughterhouse were sterilized with 5% Betadine and subsequently bisected. The 

choroid, iris, lens, retina, and vitreous were gently removed. After undergoing a washing process with PBS three 

times, the anterior chambers were mounted onto an ex vivo perfusion system, and IOP measurements were taken in 

real time. The perfusion medium was composed of DMEM with 1% FBS and antibiotics. The baseline IOPs were 

obtained at 48 hours at a constant infusion rate of 5 µl/min. Following that, the uppermost 90 degrees of the TM 

was removed using either T, G or K. To ascertain how further TM removal resulted in an additional IOP reduction, a 

further 90 degrees of the TM was removed using the same procedure. Since a low baseline IOP may lead to an 

insignificant IOP reduction, we also examined the IOP responses at a higher perfusion rate of 10 µl/min at the 

baseline and after the first and second TM removal processes. If any clear signs of leakage (IOP< 5 mmHg at the 

baseline), contamination or obstruction (IOP>50 mmHg at any point) were observed at any time during the process, 

the samples were removed from the experiment 20. 

Transducers were connected to each perfusion dish to measure the IOP in real time. The model incorporated 

the assumption that the episcleral venous pressure was zero. Thus, the individual outflow facility values were 

calculated from the infusion rates divided by the corresponding IOPs, according to Goldmann's equation 17,21. 
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Canalograms 
Outflow canalograms were performed in accordance with our previous protocol with some minor 

modifications  13,16. In brief, two fresh pig eyes were assigned to each group. After the retrobulbar adipose tissue and 

muscles were removed, the eyeballs with conjunctiva were mounted onto a foam head stand. A 3 mm corneal 

incision was made at the temporal side, the nasal TM was removed using either T, G or K. Two eyes with sham 

procedures served as the control. After the cornea incision was sealed with super glue, all the eyes were subjected to 

a two-color canalogram: A 20 gauge needle was intracamerally inserted through the nasal cornea, then the perfusate 

mixed with Texas Red (0.028 mg/ml, J60581, Alfa Aesar, Ward Hill, MA) and fluospheres® carboxylate-modified 

microspheres (1:100 dilution, F8813; Thermo Fisher, Eugene, OR) were gravity perfused into the chambers at a 

hydrostatic pressure equivalent to 15 mmHg. The differential outflow pattern was visualized with an 

epifluorescence dissecting microscope (Olympus SZX16 and DP80 Monochrome/Color Camera; Olympus Corp., 

Center Valley, PA). Pictures were taken at baseline and every 3 min up to 12 min at a 680 × 510-pixel resolution 

with 16-bit depth and 2 × 2 binning at a 200 ms exposure. 

Histology 
After perfusion culture, the anterior segments were dismounted and fixed with 4% PFA for 48 hours, 

embedded in paraffin, and then sectioned into 6 micron-thick slides. Hematoxylin and eosin (H&E) staining was 

subsequently performed for the histology using a previous protocol18. 

Statistics  

A sample size calculator was used to determine the minimum number of subjects for adequate study power 
22. With a baseline IOP of 11.64+/- 1.45 mmHg 18, a minimum sample size of 7 is required to detect an 18% IOP 

reduction 23 with an alpha of 0.05 and a power of 0.80. 

The quantitative results of this study are presented as the mean +/- standard deviation. The data were 

processed by PASW 18.0. A one-way ANOVA was used to compare the data for different groups at individual time 

points. Paired t-tests were used for an in-group comparison of IOP and outflow facility before and after treatment. 

 

Results 

IOP reduction 

A total of 21 eyes were included in the perfusion study, of which, 8 were in K, 7 in G, and 6 in T. Two eyes in 

T exhibited clear signs of leakage and one eye in G showed signs of infection; as such, these three samples were 

excluded from further analysis.  

At a 5 µl/min infusion rate, the baseline IOPs were comparable across the three groups (16.50+/- 4.34 mmHg 

in T, 14.20+/- 1.00 mmHg in G, and 15.93+/-2.08 mmHg in K, P=0.795). The removal of the first 90 degrees of the TM 

using T resulted in greater IOP reduction than the reduction achieved by removing 90 degrees of the TM using G and 

K (76.12% versus 48.19% and 47.96% in IOP reduction from each respective baseline, P=0.013); however, the level of 

IOP reduction with G was similar to K (P=0.420). An additional 90 degrees of TM removal caused a further minor IOP 

reduction in T (4.45% decrease) and Gs only (9.32% decrease) but not in K (6.98% increase). The largest IOP 

reduction (13.30+/-4.08) and lowest postoperative IOP (3.21+/-0.70 mmHg) was achieved using T. 

When the infusion was increased to 10 µl/min, the baseline IOPs increased to 22.53+/-8.23 mmHg in T, 22.60 

mmHg +/- 0.98 mmHg in G, and 24.73+/- 3.72 mmHg in K. No significant difference in the baseline was observed 

(P=0.910). Like the IOP response at 5 µl/min infusion, T resulted in the greatest IOP reduction after both the first and 

second processes of removing 90 degrees of the TM (75.03% versus 54.20% and 53.48% after the first 90 degree TM 

removal; 80.02% versus 63.97% and 54.32% after the second 90 degrees of TM removal), while G and K did not 

further reduce the IOP (54.20% versus 53.48%, P=0.445 and 63.97% versus 54.32%, P=0.090, respectively). 
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Figure 2. Reduction of intraocular pressure. (Left) IOP reduction is shown for T, G and K at 5 µl/min. All three groups 

had a comparable baseline IOP (T: n=6; G: n=7; K: n=8; NS = no significance). T resulted in the greatest reduction in 

IOP in comparison to the other two groups (*P<.05) with no significance between G and K. (Right) IOP reduction at 

10 µl/min. The baseline was higher for all groups. T resulted in the greatest reduction in IOP compared to G and K 

(**P<.01).  

 

Increase of outflow facility 
According to the Goldmann equation, there is an inverse relationship between outflow facility and IOP when 

the episcleral vein pressure is zero. At a 5 µl/min infusion, the baseline outflow facility was comparable across the 

three groups (0.39+/-0.11 µl/min/mmHg in T, 0.36+/-0.03 µl/min/mmHg in G, and 0.36+/-0.05 µl/min/mmHg in K). 

Consistent with the IOP responses, the outflow facility in T increased by 3.41 times from the baseline after the first 

90 degrees of TM ablation. This increase was significantly higher than the 1.95 times observed in G and 1.87 times 

that observed in K. An additional 90 degrees of TM was removed by either T (from 3.41 to 4.60) or Goniotome (from 

1.95 times to 2.50 times), resulting to a further increase in the outflow facility. However, the removal of an 

additional 90 degrees of the TM using K did not significantly increase the outflow facility (1.87 times increase after 

the first TM removal versus 1.74 times after the second TM removal). 

The outflow facility increased when the infusion rate was increased to 10 µl/min; however, there was no 

statistical difference among the groups at the baseline (P= 0.590). The first 90 degrees of TM ablation with T resulted 

in a 3.28 times increase in the outflow facility from the baseline, significantly higher than that of G (2.29 times) and K 

(1.90 times) (P=0.001). The removal of an additional 90 degrees of the TM resulted in increased trabecular outflow in 

T and G only but not in K. Overall, T achieved a 4.1 fold increase in outflow facility compared to 3.01 fold in G and 

2.01 times in K (P=0.001). 

 



 

Figure 3. Increase in outflow facility. (Left) The outflow facilities are shown for T, G and K at 5 µl/min. All three 

groups had a comparable baseline IOP (T: n=6; G: n=7; K: n=8; NS = no significance). T resulted in the greatest 

increase in outflow facility compared to the other two groups (***P<0.001). (Right) Outflow facility at 10 µl/min. T 

led to the greatest increase in outflow facility compared to the other two groups (***P<0.001).  

Outflow pattern 

To better visualize the differential outflow pattern, we performed a two-color canalogram on the fresh pig 

eyes after surgery. Consistent with our previous studies, the TM permeability of the control eye with intact TM to 

0.5um microspheres was very low (Fig. 3 A, the middle band), while all three surgeries promoted the microspheres 

passing through the TM removal site into downstream outflow tracts (Fig. 3B, 3C, and 3D, the middle bands). In 

contrast to the 0.5um microspheres, Texas Red with a smaller size in diameter can easily access the downstream 

outflow tracts. The fluorescence intensity increased as the time lapsed. The post-surgery specimens exhibited an 

earlier Texas Red filling and a higher fluorescence intensity at the TM removal sites (Fig. 3B, 3C, and 3D, the upper 

band), than the control (Fig. 3A, the upper band).  



 

Figure 4. Outflow pattern in canalograms. Canalograms are shown at different time points using Texas Red to trace 

all outflow and fluorescent microspheres (Fluo Beads) to indicate the entry points into the downstream outflow 

system. Almost no microspheres passed through the TM in the control eye after 12 minutes (Figure 4A) compared to 

the eyes that had been operated on using T (Figure 4B, white arrows), G (Figure 4C, white arrows), and K (Figure 4D, 

white arrows). The post-surgery eyes exhibited a greater fluorescence intensity than the control.  

 



Histology 

Normal porcine TM exhibited a multilayer structure that was pigmented in a scattered way (Figure 5). Unlike 

the human eye, the size of pig Schlemm’s canal was smaller and not continuous (black arrows). No obvious damage 

to the adjacent sclera and corneal endothelium was observed following any of the three procedures. In the samples 

in T, a larger proportion and the full thickness of the TM was centrally ablated in comparison to that observed in the 

samples in K and G. Occasional contracted collagen was noted along the residual TM in T suggesting a thermal effect. 

All devices removed the large porcine TM incompletely. 

 

Figure 5. Histology of the anterior chamber angle (H&E staining). TM: trabecular meshwork. SCLS: Schlemm’s 

canal-like segments of the porcine angular aqueous plexus. CE: corneal endothelium. CB: ciliary body stump. 

 

Discussion 

This is the first ex vivo study to systematically assess the change of outflow facility after a different extent of 

TM ablation using three different techniques. The juxtacanalicular meshwork and the inner wall of Schlemm’s canal 

are the major aqueous outflow resistant sites, accounting for approximately 75% of the conventional outflow 

resistance 24. Either removing 25,26 or bypassing 21,27 these tissues can lead to a reduction in IOP. In our previous study, 

we characterized an ab interno goniotomy device with an active irrigation and aspiration and found that the anterior 

chamber depth and the nasal angle remained steady throughout the entire procedure, in contrast to a significantly 

lower anterior chamber stability in a passive dual blade goniotomy 12. In the current study, we investigated the 

IOP-lowering efficacy of the same newly developed device in a porcine eye perfusion model and compared its 

performance with a plasma-mediated ablation and a passive dual blade. In the current study, T resulted in the 

highest IOP reduction but these results have to be interpreted with caution because porcine eyes have an angular 

aqueous plexus different from human eyes 28: the TM is thicker and a single lumen Schlemm’s canal is absent. 

Consequently, the TM ablation is deeper allowing the adjacent TM to prolapse into the plasma ablation area which 

may lead to thermal effects that are absent in human eyes.  

In the current study, we utilized a well-established ex vivo eye perfusion system that allowed us to 

continuously perfuse the tissue-culturing medium at a wide range of infusion rates 29. IOP can be measured at 1 min 

intervals using a pressure transducer. We found that T was a slightly more effective method of reducing IOP. With a 

similar baseline, T reduced IOP by 76.12% in comparison to 48.19% in G and 47.96% in K after the first 90 degrees of 

TM ablation.  

We found that the most IOP reduction and increase in outflow facility was observed after the first 90 

degrees of TM removal in all three procedures. Additional TM removal achieved only a minor further reduction in 
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IOP. This observation was aligned with the findings of a clinical study by Khaja and colleagues, that there was no 

significant correlation between the ablation arc and IOP reduction or final IOP after Trabectome surgery 30. Similar 

results have been observed in studies of alternative devices for MIGS. Under a human eye perfusion culture, Hunter 

et al. found that a single trabecular bypass stent decreased IOP by 6 mmHg from the baseline while the addition of a 

second one  reduced the IOP by another 2.9 mmHg 31. One possible explanation for this observation was that, once 

the minimum TM removal required to maintain the circumferential aqueous outflow in the Schlemm’s canal was 

established, the additional arc of TM removal became less important. Despite no continuous Schlemm’s canal in the 

pig, there is circumferential flow as our prior studies demonstrated 13,14,16, presumably because the Schlemm’s 

canal-like segments are connected. Limited access to angle structures, highlighted by the microsphere canalograms 

are sufficient to provide  outflow beyond the ablated TM. We have observed the preferential entry of a tracer into 

the supranasal and infranasal quadrants before 15.  

Previous studies suggested that the episcleral venous pressure (EVP), which is part of the IOP Goldmann 

equation, is higher in glaucomatous eyes 32,33. In contrast to glaucoma patients, the EVP in our model is likely very 

low without an existing blood circulation. This can explain why the postoperative IOPs in the current study reached a 

level that is lower than typically reported in clinical studies and it may provide indirect evidence of the role of 

elevated EVP in the etiology of glaucoma 34.  

This study had several limitations. First, our results were based on an ex vivo perfusion model. Immune 

response and fibrosis, both of which could significantly impact postsurgical IOP, were not taken into consideration 
35,36. Second, pig eyes have a much thicker TM layer than human eyes without a continuous Schlemm’s canal 37. These 

anatomic differences between species may result in a different IOP response. Third, the EVP was considered to be 

zero in the perfusion model; however, it is higher in glaucoma patients 32,33.  

In conclusion, in this porcine ex vivo model,three MIGS all yielded a significant enhancement of outflow. 

Plasma-mediated trabecular meshwork ablation (Trabectome) yielded slightly more IOP reduction and a higher 

increase of outflow facility than a new dual blade device that has active irrigation and aspiration ports (Goniotome) 

or than a passive dual blade device (Kahook dual blade).  
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