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A METHODOLOGY  WITH DISTRIBUTED ALGORITHMS FOR LARGE-SCALE 

HUMAN MOBILITY PREDICTION 

QiuLei Guo, PhD 

University of Pittsburgh, 2017 

 

In today’s era of big data, huge amounts of spatial-temporal data related to human 

mobility, e.g., vehicle trajectories, are generated daily from all kinds of city-wide 

infrastructures. Understanding and accurately predicting such a large amount of spatial-

temporal data could benefit many real-world applications, e.g., efficient transportation 

resource relocation. However, the mix of spatial and temporal patterns among these 

activities and the scale of the data (in a city level) pose great challenges for accurate 

predictions under real-time constraints. 

To bridge the gap, this dissertation proposes a methodology for the prediction of 

large-scale human mobility, especially a city level’s vehicle trajectory distribution across 

the road network. The thesis has several major components: (1) a novel model for the 

prediction of spatial-temporal activities such as people’s outflow/inflow movements 

combining the latent and explicit features; (2) different models for the simulation of 

corresponding flow trajectory distributions in the road network, from which hot road 

segments and their formation can be predicted and identified in advance; (3) different 
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MapReduce-based distributed algorithms for the simulation and analysis of large-scale 

trajectory distributions under real-time constraints. 

First, our proposed methodology quantifies the latent features of spatial and 

temporal factors through tensor factorization, given existing mobility datasets. We model 

the relationship between spatial-temporal activities and the latent and other explicit 

features as a Gaussian process, which can be viewed as a distribution over the possible 

functions to predict human mobility. 

After the prediction of overall inflow/outflow, we further model these movements’ 

trajectory distributions in the road network, from which the corresponding hot road 

segments and the possible causes, among other things, can be predicted in advance. For 

example, based on prediction, in the next half hour, a high percentage of vehicles that 

travel from region A/B toward region C/D might pass through the same road segment, 

which indicates a possible traffic jam/bottleneck there. This process is computationally 

intensive and requires efficient algorithms for real-time response because the scale of a 

city’s road network and the possible number of trajectories that people might take during 

certain time periods could be very large. Efficient distributed algorithms are proposed 

and validated. 
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1.0 INTRODUCTION 

A large amount of spatial-temporal data related to human mobility accumulates daily 

from all kinds of city infrastructures, because of the rapid development and common use 

of location-sensing technologies, such as GPS and RFID sensors. Solving many real-

world problems requires understanding and correctly predicting these spatial-temporal 

activities (for example, the outflow/inflow of people), as well as these movements’ 

trajectory distributions in the road network. For example, by predicting the number of 

people who would leave or enter certain neighborhoods during the next half hour, taxi 

companies or Uber can optimally allocate their vehicles. Correspondingly, traffic 

agencies could further investigate and simulate these vehicle movements’ corresponding 

trajectories in the road network and find the set of hot road segments with high centrality 

where lots of vehicles would pass by, from which future traffic congestions and their 

possible causes, among other things, can be predicted even before it happens. For 

example, based on the prediction, a high percentage of vehicles that travel from region 

A/B heading to region C/D might pass the same route in the next half hour, which would 

indicate a possible traffic jam or bottleneck there later—and as a result, we could send 

suggestions to some of those drivers to avoid this route if possible. 
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These problems pose many technical challenges. First, in order to predict spatial-

temporal activities (for example, people’s outflow/inflow in the urban environment), one 

natural approach is to identify both the spatial and temporal features of these activities 

and use these features to train a predictive model for future prediction. However, the mix 

of spatial and temporal patterns among human activities makes it difficult to identify and 

extract the spatial and temporal features, respectively, from existing mobility datasets. By 

assuming overall spatial and temporal closeness, many existing techniques use the 

information from adjacent spatial areas and recent time periods as the spatial and 

temporal features for prediction (Williams and Hoel 2003, Froehlich, Neumann et al. 

2009, Kaltenbrunner, Meza et al. 2010, Chen, Hu et al. 2011, Nishi, Tsubouchi et al. 

2014). However, there are a few problems with such methodologies. For example, there 

is no definition of how close two areas should be to one another in order to share a 

similar pattern, and also, close areas do not necessarily share a similar pattern. Existing 

works have similar problems with temporal characteristics. At the same time, it is 

difficult for these exiting methods to inherently take both spatial and temporal 

characteristics into consideration, given that spatial and temporal features have different 

scales and that there are unknown relationships between them and human mobility. 

As for the second problem (the simulation of corresponding movements’ 

trajectory distribution in the road network and the detection of hot road segments with 

high centrality), it poses many technical challenges in the areas of uncertainty and big 

data. First, we would need to accurately predict the flow of people across neighborhoods. 
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To infer their corresponding trajectory distributions in the road network, we would need 

to know how many people leave a place and their probable trajectories. However, 

considering that there are usually multiple routes from which people can choose from one 

place to another, it is hard to tell which route people might follow and/or the 

corresponding possibilities of them following each particular route. Besides this overall 

uncertainty, the scale of a city’s road network and the number of trajectories that people 

usually take during certain time periods could be quite large. Take New York City as an 

example. There are 388,409 road intersections and 523,442 road segments 

(OpenStreetMap 2017). In 2001, people made approximate 209 million vehicles trips (a 

trip by a single privately operated vehicle) and traveled 3 billion vehicle miles (one 

vehicle mile of travel is the movement of one privately operated vehicle for one mile, 

regardless of the number of people in the vehicle) (Patricia S. Hu 2001). As for taxi cabs 

(one of the most important transportation modes in New York City), each day they carry 

over one million passengers and make, on average, 500,000 trips—adding up to 170 

million trips during 2011 (Ferreira, Poco et al. 2013). These numbers indicate that the 

task of predicting a city level’s trajectory distribution is computationally intensive and 

would require efficient algorithms for real-time responses. 

To tackle these challenges, this dissertation proposes a comprehensive 

methodology for the prediction of large scale of human spatial-temporal mobility, 

especially a city level’s trajectory distributions in the road network. An overview of our 
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methodology is given in Figure 1.1. Specifically, our methodology comprises several 

specific components. 

First, we propose a novel methodology for prediction of spatial-temporal 

activities (such as human outflow/inflow and their corresponding destination/origin 

distribution) using the latent spatial and temporal features extracted through tensor 

factorization, given historical mobility datasets. One major motivation behind our 

methodology is that we suspect the patterns of many spatial-temporal activities, such as 

human mobility, are highly correlated to or dependent on the characteristics of spatial 

environments, temporal periods, and other factors. For example, residential 

neighborhoods and office districts have high volumes of outflow and inflow in the 

morning and in the evening, respectively. While this is an interesting observation 

analyzed qualitatively, it is not sufficient to allow for any prediction, such as the number 

of people who would be leaving/entering a residential neighborhood during certain time 

periods. With our proposed methodology, we can use this simple initial qualitative 

information to predict various spatial-temporal activities. In particular, we first identify 

and quantify the latent characteristics of different spatial environments and temporal 

factors through tensor factorization. Next, we propose to model the hidden relationship 

between spatial-temporal activity and extract latent features as a Gaussian process, which 

can be viewed as a distribution over the possible functions. One major advantage of this 

proposed methodology is that it inherently considers both spatial and temporal data 

characteristics. In particular, through mathematically modeling the characteristics of 
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different spatial areas, different time periods, and their relationship to mobility patterns as 

a Gaussian process, predictions can be made using the data from not only one specific 

spatial area or temporal time period of interest, but also from other areas and time periods 

with similar patterns. 

After predicting the flow of people between neighborhoods, we further 

investigated and simulated those movements’ corresponding trajectories in the road 

network, from which we could predict some important phenomenon, for example, finding 

a set of road segments that many vehicles would use and identify the causes or reasons 

for their heavy use, such as the origins or destinations of the majority of the traffic in 

those road segments. Given that there are usually multiple routes that people can choose 

to go from one place to another, there is a challenge of uncertainty. Some previous works 

(Matthias and Zuefle 2008, Ren, Ercsey-Ravasz et al. 2014, Deri and Moura 2015) 

assumed people always choose the shortest paths. However, this might not be the case 

since people seldom strictly follow the shortest paths in their daily driving. To bridge the 

gap, we propose several models of vehicles’ trajectory distributions in the road network, 

such as one based on the multivariate kernel density estimation. We provided a case 

study of Beijing’s taxi data and compared our proposed models with traditional models, 

such as the shortest path. Experimental results demonstrate the advantage of our proposed 

model. 

It is worth pointing out that the problems discussed above are very 

computationally intensive when considering the scale of a city’s road network and the 
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numerous trajectories that people might take during a certain time period. With the 

advent of emerging cloud technologies, a natural and cost-effective approach to manage 

such large-scale data is to store them in a cloud environment and process them using 

modern distributed computing paradigms, such as MapReduce (Dean and Ghemawat 

2008). In this work, different MapReduce-based distributed algorithms are proposed for 

(1) simulating vehicle trajectory distributions in the road network, based on the predicted 

outflow/inflow movements between neighborhoods from the previous step; and (2) 

analyzing the synthetic large-scale trajectory distributions in order to find interesting 

phenomena, such as the road segments that many vehicles might use, as well as the 

causes of these phenomena, like the origin and destinations of the majority of the traffic. 

It should be pointed out that a trajectory is a unique way to represent people’s 

spatial-temporal activity. It can be viewed as a sequence of time-ordered location records, 

such as a series of GPS points with latitude and longitude, or as a sequence of connected 

road segments in the road network. There are many techniques developed to predict a 

single vehicle’s future trajectory, based on its initial partial trajectory (Liu and Karimi 

2006, Froehlich and Krumm 2008, Chen, Lv et al. 2010, Jeung, Yiu et al. 2010). One 

major difference between these existing works and the proposed work in this thesis is that 

we focus more on people’s/vehicle’s movements at a city level and the corresponding 

trajectory distributions, instead of on a single vehicle’s personal routing preference in the 

road network, based on its partial initial trajectory and history patterns. For several 

reasons, these personal predictions cannot be aggregated to achieve a city-level prediction. 
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First, the mobility problem addressed in this paper is quite different from those that have 

been addressed in previous works. In particular, most existing works seek to answer the 

question: Given a partial initial trajectory of a vehicle already in the road network, what 

is its most likely future trajectory in the road network? However, our methodology tries 

to answer the questions: How many people are heading from one specific neighborhood 

to another in the near future, say in the next hour?; What are the probable trajectories of 

these movements?; Which road segments would have a high degree of centrality (a lot of 

vehicles would pass by) and result in traffic jams?; and What are the origins and 

destinations of the traffic that passes through those hot road segments? Besides, due to 

privacy and technical issues, it is difficult to collect and store everyone’s trajectory at the 

necessary level of detail (such as every two minutes) at the city level. On the other hand, 

some mobility datasets with less detail (namely, those with only origin and destination 

information for each trip) are more widely available, such as the census data/travel survey 

(Jiang, Ferreira Jr et al. 2012), mobile phone records (Gao, Liu et al. 2013), check-ins 

from location-based social networks such as Foursquare (Wei, Zheng et al. 2012), and 

others. Our proposed methodology is flexible and can properly handle both cases. Finally, 

the scale of the problem (a city-level trajectory distribution computation) is 

computationally intensive and requires efficient distributed algorithms to achieve suitable 

performance. 

There are also some other related works, such as those that include the discovery 

of popular trajectories or hot routes from historical datasets (Li, Han et al. 2007, Chen, 
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Shen et al. 2011, Wei, Zheng et al. 2012, Han, Liu et al. 2015) and an estimation of the 

current traffic situation from Twitter (Sayyadi, Hurst et al. 2009, Castro, Zhang et al. 

2012, Chen, Chen et al. 2014, Liu, Fu et al. 2014, Wang, Li et al. 2016). While these 

proposed techniques can find some interesting phenomena, such as popular routes and 

traffic jams that have previously happened or that are happening at the moment, they 

provide little assistance to future predictions. For example, there could be a local event in 

a neighborhood today with several road segments blocked by the police, which would 

cause some of the nearby roads to be congested with a higher traffic volume than usual—

or maybe not, depending on people’s mobility at that time and the nearby road network 

topology. Mining historical hot routes cannot predict these abnormal situations. On the 

other hand, with the proposed methodology in this work, we can predict people’s flow 

volume across neighborhoods at a city level, simulate their corresponding trajectories in 

the road network by blocking corresponding road segments, and check to see if any 

nearby road segments would become crowded or remain clear. 

The proposed methodology in this paper could also shed light on a future 

Intelligent Transportation System prototype that would help alleviate traffic congestion 

problems in metropolitan cities. Specifically, as self-driving vehicles become feasible and 

even prevalent in the future, our methodology could be used in a public cloud 

environment, where self-driving vehicles on the road network would act as the clients and 

send their movement information to the cloud in advance, including both their origins and 

destinations. The cloud would aggregate this information, estimate the trajectory 
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distribution in the road network based on the routing strategies of self-driving vehicles, 

and detect the corresponding levels of traffic. If a congestion is predicted (too many 

vehicles would try to use the same route in the near future), the cloud would send this 

information to affected self-driving vehicles so that they could update their routes 

(choose less crowded routes). 

 

 

 

  Figure 1.1  an overview of the proposed methodology 
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1.1 Research Problems 

This thesis tackles the challenges of the prediction of human mobility on a large scale. In 

particular, we focus on people’s spatial-temporal mobility of outflow/inflow, and their 

trajectory distributions in the road network, from which we could optimally reallocate 

transportation resources, such as taxis or Uber vehicles, and estimate future traffic 

situations, such as congestion and its possible causes, among others. In particular, this 

research addresses the following questions: 

1. How can we quantify the features of the spatial and temporal factors, based on the 

existing mobility dataset? 

2. How can we mathematically model the relationship between the extracted spatial-

temporal features and people’s mobility, such as outflow/inflow in an urban 

environment, for future predictions? 

3. How can we accurately model people’s trajectory distributions in the road 

network based on the previous predicted flows? 

4. How can we efficiently simulate the huge amount of movement trajectory 

distributions in a city level’s road network? 

5. How can we efficiently process the large scale of trajectory distributions 

generated from previous steps for some useful information, such as predicting the 
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set of hot road segments and identifying where the majority of traffic in those 

road segments are coming from or going to? 

1.2 Contributions 

The research in this thesis has six major contributions: 

(1) A comprehensive methodology for the prediction of people’s mobility at a 

large scale. 

(2) A novel model to predict spatial-temporal activity using latent spatial-

temporal features extracted from existing mobility data. 

(3) Different models for the estimation of vehicle trajectory distributions in a road 

network. 

(4) A distributed algorithm for the real-time simulation of large-scale trajectory 

distributions in a road network. 

(5) Different distributed algorithms for the processing and analysis of large-scale 

trajectory distribution, such as the prediction of hot road segments that are based on such 

analyses. 

(6) Case studies based on real-world data collected from New York City and 

Beijing’s taxi trip data sets. 
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1.3 Chapters Overview 

The rest of the proposal is organized as follows. Section 2 reviews background 

information and related work. Section 3 presents the proposed novel methodology for the 

prediction of human spatial-temporal mobility, using latent features. Section 4 presents 

the models of trajectory distributions in the road network. Section 5 provides different 

MapReduce-based distributed algorithms, including the simulation of the corresponding 

trajectory distributions in the road network and the analysis of the simulated trajectory 

distributions, such as the prediction of hot road segments. Section 6 conducts case studies 

with data sets of taxi trips taken in both New York City and Beijing, and systematically 

evaluates our proposed methodology. Section 7 provides the conclusions of this thesis 

and future research direction. 
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2.0 BACKGROUND AND RELATED WORK 

Issues of human mobility have attracted lots of attention for a long time from researchers 

in a wide variety of fields, such as urban planning, sociology, computer science, and 

geology, among others. This chapter reviews how existing work analyzes and predicts 

human spatial-temporal activities from different perspectives, their limitations, and the 

difference between them and the proposed work in this thesis. 

2.1 Traffic Prediction 

Traditionally, researchers have used static models, such as the gravity model (Wilson 

1967), to estimate the amount of interactions between two geographic areas, such as two 

cities. With the invention of some infrastructure sensors, such as a traffic loop that can 

count the number of vehicles passing a road segment, these models have been widely 

deployed in cities’ road networks. Many models have been developed to predict the 

traffic situation from these data. Davis and Nihan (Davis and Nihan 1991) suggested a 

nonparametric k-nearest neighborhood approach to predict short-term traffic volume. The 

general idea is to use the recent traffic volume from a to-be predicted freeway and its 
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adjacent freeways as the input vector, to find the top-k closest vectors in history, and 

compute the average value. Clark (Clark 2003) proposed a similar k-NN approach, but 

with more input variables and different outputs; besides the traffic volume, this model 

also collects and predict the speed, flow, occupancy, and other factors, as well as explores 

the accuracy between different univariate or multivariate models. Williams and Hoel 

(Williams and Hoel 2003) presented the theoretical basis for modeling univariate traffic 

condition data streams as seasonal autoregressive integrated moving average processes. 

Shekhar and Williams (Shekhar and Williams 2008) presented an adaptive parameter 

estimation methodology for univariate traffic condition forecasting through the use of 

three well-known filtering techniques: the Kalman filter, recursive least squares, and least 

mean squares. 

One limitation of these works is that they can only predict the traffic volume of a 

single road segment in isolation, and cannot provide any other information, such as the 

causes of possible traffic jams or the patterns of people’s mobility at a higher level, 

leaving the question open as to where the traffic in those road segments is coming from 

or where it is going. This information would help traffic agencies optimize the traffic 

resource more efficiently. Figure 2.1 (Li, Han et al. 2007) gives a good example of this 

issue. It shows traffic data in the San Francisco Bay Area on a weekday at approximately 

7:30 am local time. Different colors show different levels of congestion (for example, 

dark red shows heavy congestion). We can see that there are some congestions in the road 

network, but we do not know why this congestion is occurring. If we can predict that 



 

 
    

15 

traffic jams are formed because many people are driving from location Y to location X, 

the traffic agencies could increase the frequency of corresponding public buses traveling 

from Y to X during those time periods to reduce the volume of private traffic. 

 

 

  

(a) The Bay Area  (b) A closer look at the congested area 

Figure 2.1 Snapshots of San Francisco traffic 

 

Besides these limitations, the high cost of deploying and maintaining the 

infrastructure of traffic loops also limits their coverage. Motivated by the popularity of 

location-based applications and social networks such as Twitter, many recent studies 

have been conducted to explore these social media data for its use in estimating traffic 

situations. The core idea of this field is to detect traffic-related tweets and use them to 
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estimate the current traffic situation. Sayyadi et al. (Sayyadi, Hurst et al. 2009) proposed 

and developed an event-detection algorithm which creates a keyword graph and uses 

community detection methods analogous to those used for social network analysis to 

discover and describe events. Liu et al. (Liu, Fu et al. 2014) presented an application for 

traffic event detection and summaries, based on mining representative terms from the 

tweets posted when anomalies occur. Chen et al. (Chen, Chen et al. 2014) presented a 

unified statistical framework that combines two models based on hinge-loss Markov 

random fields (HLMRFs) to monitor traffic congestion through feeds from tweet streams. 

Although using crowd-sourced data from social networks have some advantages 

in some cases, these existing methodologies also have limitations such as failing to detect 

many ongoing traffic events, due to the sparsity of traffic-related information on social 

networks (since few people are likely to tweet about the traffic situation while driving) 

and they also gain little insight of people’s travelling patterns. In addition to these 

limitations, the proposed technique in this thesis and the works above also have different 

foci. Those works previously cited focus more on the estimation of the current traffic 

situation through extracting the traffic-related information from the tweets that people 

posted about their current traffic situations. However, our proposed methodology focuses 

more on the prediction of future movements; people’s outflow/inflow across 

neighborhoods, their corresponding possible trajectory distribution in the road network, 

and the set of hot road segments where lots of vehicles might pass by in the near future. 
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There are also some other related works such as the abnormal spatial events 

detection, e.g., people’s gathering events.  (Neill 2009) proposed a two-step approach 

based on the expectation-based scan statistic for the detection of emerging spatial patterns 

through monitoring a large number of spatially localized time series. (Hong, Zheng et al. 

2015) modeled human mobility as Spatio-Temporal Graph (STG) for the detection of 

phenomena, entitled black holes and volcanos. Specifically, a black hole is a subgraph (of 

STG) that has the overall inflow greater than the outflow by a threshold while volcanos is 

the other way around. (Zhou, Khezerlou et al. 2016) proposed a model of Gathering 

directed acyclic Graph (G-Graph) for the early detection of gathering events. To improve 

the computation efficiency, they also designed an algorithm called SmartEdge. 

Apart from vehicles’ traffic in the road network, there are also some studies on 

other modes of transportation or urban activity such as pedestrians, shared bicycle system, 

etc. Nishi et al. (Nishi, Tsubouchi et al. 2014) described a statistic-based method to 

estimate trends in the pedestrian population using location data collected from Yahoo! 

Japan app users. Froehlich et al. (Froehlich, Neumann et al. 2009) provided a spatial-

temporal analysis of bicycle station usage in Barcelona and compared experimental 

results from four simple predictive models. Kaltenbrunner et al. (Kaltenbrunner, Meza et 

al. 2010) also provided spatial-temporal analysis for bicycle usage in Barcelona and 

adopted an autoregressive-moving-average (ARMA) model to predict the number of 

bikes and docks available at each bike station. 
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2.2 Trajectory Mining 

The pervasive use of location-sensing technology such as GPS receivers and WiFi 

embedded in mobile devices has led to the accumulation of huge amounts of trajectory 

data. Generally, a trajectory can be viewed as a sequence of data points with location 

information (Figure 2.2a) or as road segments (Figure 2.2b). 

 

(a) Trajectory of data points 
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(b) Trajectory of road segments 

Figure 2.2. Illustrations of trajectory data 

 

2.2.1 Individual Trajectory Predictions 

Among the various topics in the field of trajectory mining, predicting the future trajectory 

of a person or vehicle is of great interest. Liu and Karimi (Liu and Karimi 2006) 

presented two models for trajectory prediction: a probability-based model and a learning-

based model. Froehlich and Krumm (Froehlich and Krumm 2008) developed the 

algorithms for predicting the end-to-end route of a vehicle, mainly based on GPS 

observations of the vehicle’s past trips. Jeung et al. (Jeung, Yiu et al. 2010) presented a 

maximum likelihood and a greedy algorithm for predicting the travel path of an object, 

based on a developed mobility model that offers a concise representation of mobility 
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statistics extracted from massive collections of historical object trajectories. Scellato et al. 

(Scellato, Musolesi et al. 2011) created a spatial-temporal location prediction model for a 

single user, based on his/her own historical trajectories. Zhang et al. (Zhang, Lin et al. 

2016) introduced EigenTransitions, a spectrum-based, generic framework for analyzing 

mobility datasets and predicting an individual user’s mobility, such as the next area they 

are likely to visit. As discussed above, the major application of these studies was to 

predict a single vehicle’s personal routing preference in the road network, based on its 

partial initial trajectory and history patterns. On the other hand, the proposed work in this 

thesis focuses on people’s movements at a city level and their corresponding trajectory 

distributions, which is computationally intensive. As a result, an efficiently distributed 

solution is needed. Furthermore, due to privacy and technical issues, it is difficult to 

frequently collect a series of GPS points from many individual users to gain an overview 

of a city level’s mobility and the corresponding traffic situation in the near future, as with 

the input data required by these studies; in contrast, our methodology can handle some 

less detailed datasets, such as a huge number of anonymous trips with only origins, 

destinations, and their corresponding timestamps. 

2.2.2 Popular Trajectory Mining 

Mining popular routes from existing trajectory datasets is another topic that is close to 

our proposed methodology. Li et al. (Li, Han et al. 2007) proposed a density-based 

algorithm named FlowScan to cluster road segments based on the density of common 
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traffic they share. Zhu et al. (Zhu, Luo et al. 2010) proposed a novel three-phase 

approach to discover a tropical cyclone’s trajectory corridors, based on clustering 

methods. Chen et al. (Chen, Shen et al. 2011) investigated the most popular route (MPR) 

between two locations by observing the traveling behaviors of many previous users. They 

developed an algorithm to retrieve a transfer network from raw trajectories that would 

indicate all the possible movements between locations. After that, the absorbing Markov 

chain model is applied to derive a reasonable transfer probability for each transfer node in 

the network. Comito et al. (Comito, Falcone et al. 2015) defined and implemented a 

novel methodology to mine popular travel routes from geo-tagged posts. Han et al. (Han, 

Liu et al. 2015) designed a road-network aware approach, named NEAT, for the fast and 

effective clustering of trajectories of mobile objects travelling in road networks. More 

specifically, NEAT can discover spatial clusters as groups of sub-trajectories that 

describe both dense and highly continuous flows of mobile objects. 

Compared with our proposed methodology in this thesis, these existing techniques 

focus on mining phenomena such as popular routes or historical traffic jams, but cannot 

provide much information for future situations, especially when some of conditions 

change. For example, there might be a parade in a neighborhood this afternoon that 

would cause several road segments to be blocked by the police, which could lead to a 

drastic change in trajectory patterns. In order to estimate the overall impact of such an 

event, the city agencies can use our proposed methodology to predict people’s 

movements and simulate the corresponding trajectory distributions by blocking those 
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road segments, so they could check if any of nearby road segments would become too 

crowded. 

2.2.3 Other Trajectory Mining 

Other studies have also been conducted to mine trajectory datasets to reveal different 

interesting urban activities. Guo et al. (Guo, Liu et al. 2010) developed a graph-based 

approach that converts trajectory data to a graph-based representation and treats it as a 

complex network, to which they further apply a spatially constrained graph partitioning 

method to discover natural regions defined by trajectories. Liu et al. (Liu, Liu et al. 2010) 

presented a novel, non-density-based approach called mobility-based clustering to 

identify hot spots of moving vehicles in an urban area. The key idea is to use the sample 

objects’ instant mobility (taxi trajectory data) as the “sensors” to perceive the vehicle 

density in nearby areas. Liu et al. (Liu, Zhu et al. 2012) proposed a novel algorithm for 

recognizing urban roads with coarse-grained GPS traces from probe vehicles moving in 

urban areas. Zhang et al. (Zhang, Wilkie et al. 2013) proposed a step toward real-time 

sensing of refueling behavior and citywide fuel consumption using the reported 

trajectories from a fleet of GPS-equipped taxicabs. Wang et al. (Wang, Zheng et al. 2014) 

presented a citywide and real-time model for estimating the travel time of any path in real 

time in a city, based on the GPS trajectories of vehicles received in current time slots and 

over a period of history, as well as information from map data sources. 
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2.3 Urban Community and Event Analysis 

In addition to the trajectory dataset, exploring and discovering hidden interesting 

phenomena based on other spatial-temporal datasets, such as location-based social 

networks, has also attracted much attention. Spatial community discovery/analysis is one 

of the hottest research topics, among others. Cranshaw et al. (Cranshaw, Schwartz et al. 

2012) introduced a clustering model and research methodology for studying the structure 

and composition of a city on a large scale, based on the social media information that its 

residents generate. Noulas et al. (Noulas, Scellato et al. 2011) also proposed an approach 

to cluster geographic areas with similar categories. This study also clustered the users 

according to the types of places they check in and the frequency of check-ins. Yuan et al. 

(Yuan, Zheng et al. 2012) proposed a framework (titled DRoF) that discovers regions of 

different functions in a city, using both human mobility among regions and points of 

interests (POIs) located in a region. 

Many other interesting phenomena have been explored besides the spatial 

community. Comito et al. (Comito, Falcone et al. 2015) proposed a methodology to infer 

interesting locations and frequent travel sequences among these locations in a given geo-

spatial region from geo-tagged tweets. Kamath et al. (Kamath, Caverlee et al. 2012) 

explored how the factors of spatial influence and interest affinity affect the global spread 

of social media. Noulas and Mascolo (Noulas and Mascolo 2013) inferred the functions 
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of each neighborhood in the city by using Foursquare POIs and cellular data. Finally, 

Quercia et al. (Quercia, Aiello et al. 2015) explored the possibilities of using social media 

data from Flickr and Foursquare to automatically identify safe and walkable streets. 

Other datasets, such as phone usage, census-based data, and public transportation 

records, among others, have also attracted much attention, in addition to location-based 

social networks. Lathia et al. (Lathia, Quercia et al. 2012) explored the correlation 

between London’s urban flow of public transport and the well-being of London’s census 

areas (measured by census-based indices), from which some phenomena are found, such 

as a segregation effect. Lam and Bouillet (Lam and Bouillet 2014) proposed an efficient 

real-time algorithm to cluster the events generated by the sensors available from traffic 

light control systems, which are composed of an induction loop which is triggered 

whenever a metallic object is detected, such as a car. Zheng et al. (Zheng, Liu et al. 2014) 

inferred the fine-grained noise situation at different times of day for each region of NYC 

by modeling the noise situation of NYC with a three-dimensional tensor and 

supplementing the missing entries of the tensor through a context-aware tensor 

decomposition approach. Finally, Liu et al. (Liu, Wang et al. 2012) derived urban land-

use information by classifying the study area into six types of “source-sink” areas 

through taxi data on pick-ups and drop-offs in Shanghai. 
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2.4 Distributed Computing 

Since the scale of many spatial-temporal datasets nowadays could be as large as tens of 

hundreds of gigabytes (or even larger), creating a real-time query and prediction method 

to use this large amount of data poses great challenges for a single commodity computer. 

As cloud computing has emerged as a cost-effective and promising solution for both 

computing- and data- intensive problems, a natural approach to manage such large-scale 

data is to store and process these datasets in a cloud service using modern distributed 

computing paradigms such as MapReduce. 

2.4.1 MapReduce 

MapReduce is a programming model and an associated implementation for processing 

and generating large datasets that is amenable to a broad variety of real-world tasks 

(Dean and Ghemawat 2008). Hadoop is a popular open source implementation of the 

MapReduce framework. Hadoop is composed of two major parts: the storage model 

(the Hadoop distributed file system , or HDFS), and the compute model (MapReduce). 

Figure 2.3 shows an execution overview of the MapReduce model. 
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Figure 2.3 Execution overview of MapReduce model (Dean and Ghemawat 2008) 

 

A key feature of the MapReduce framework is that it can distribute a large 

job into several independent maps, and reduce tasks over several nodes of a large 

data center and process them in parallel. At the same time, MapReduce can effectively 

leverage data locality and processing on or near the storage nodes, and results in faster 

execution of the jobs. The framework consists of one master node and a set of worker 

nodes. In the map phase, the master node schedules and distributes the individual 

map tasks to the worker nodes. A map task executed in a worker node processes the 

smaller chunk of the file stored in HDFS and passes the intermediate results to the 

appropriate reduce tasks that are being executed in a set of worker nodes. The reduce 
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tasks collect the intermediate results from the map tasks and combine/reduce them to 

form the final output. Since each map operation is independent of the others, all map 

tasks can be performed in parallel. The same process occurs with reducers, as each 

reducer works on a mutually exclusive set of intermediate results produced by mappers. 

2.4.2 Spatial Data Processing in Hadoop 

Since MapReduce/Hadoop has become the defacto standard for distributed computation 

on a massive scale, some recent works have developed several MapReduce-based 

algorithms for spatial problems. Puri et al. (Puri, Agarwal et al. 2013) proposed and 

implemented a MapReduce algorithm for distributed polygon overlay computation in 

Hadoop. Ji et al. (Ji, Dong et al. 2012) presented a MapReduce-based approach that 

constructs an inverted grid index and processes kNN query over large spatial data sets. 

Akdogan et al. (Akdogan, Demiryurek et al. 2010) designed a unique spatial index and 

Voronoi diagram for given points in 2D space, which enables the efficient processing of a 

wide range of geospatial queries, such as RNN, MaxRNN and kNN with the MapReduce 

programming model. (Guo, Palanisamy et al. 2014) developed a MapReduce-based 

parallel polygon retrieval algorithm which aims to minimize the IO and CPU loads of the 

map and reduce tasks during spatial data processing. Hadoop-GIS (Wang, Lee et al. 2011) 

and Spatial-Hadoop (Eldawy, Li et al. 2013, Eldawy and Mokbel 2013) are two scalable, 

high-performance spatial data processing systems for running large-scale spatial queries 
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in Hadoop. These systems provide support for some fundamental spatial queries, such as 

the minimal bounding box query. 

However, these studies only support some static spatial queries. They do not 

support spatial-temporal trajectory predictions, simulations, and the corresponding 

discovery of hot road segments that are addressed in this thesis. As a result, we propose 

to devise specific optimization techniques for an efficient implementation of the parallel 

trajectory prediction and simulation functions in MapReduce.  
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3.0 NOVEL SPATIAL-TEMPORAL PREDICTION USING LATENT 

FEATURES 

In this section, the spatial-temporal prediction methodology that uses the latent features 

will be presented in detail. First, we describe how to model people’s spatial-temporal 

fluxes as a tensor and extract the latent spatial-temporal features through factorization. 

Then, we present how to mathematically model the relationship between those extracted 

latent features and human mobility using a Gaussian process regression for future 

prediction. 

3.1 Tensor Model of the Spatial-Temporal Activities 

A tensor is a multidimensional array. Decompositions of a higher-order tensor can be 

used to extract and explain the properties among the tensor, which have wide applications 

in computer vision, numerical analysis, data mining, neuroscience, graph analysis, and 

elsewhere (Kolda and Bader 2009). In this thesis, we propose to model human fluxes 

between different neighborhoods with a 3-dimensional tensor ℋ ∈ ℛ𝑁×𝑁×𝐿, as shown in 

Figure 3.2. The first dimension of the tensor ℋ  denotes 𝑁  origin neighborhoods, the 
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second dimension denotes 𝑁 destination neighborhoods, and the third dimension denotes 

𝐿 time slots, respectively. Each entry of the tensor ℋ(𝑖, 𝑗, 𝑙) stores the average number of 

trips starting from neighborhood 𝑖 to neighborhood 𝑗 during time period 𝑙. 

With this tensor model, we extract the latent spatial features of each origin 

neighborhood, destination neighborhood, and the latent temporal feature of each time slot 

through a Tucker decomposition. The Tucker decomposition can be thought of as the 

form of higher-order Principal Component Analysis (PCA). It decomposes a tensor into a 

core tensor multiplied by a matrix along each dimension (Kolda and Bader 2009). In our 

case, we decompose the tensor ℋ into three matrices 𝒮𝑜
𝑁×𝑃, 𝒮𝑑

𝑁×𝑄, 𝒯 
𝐿×𝑅

, and a core 

tensor 𝐺𝑃×𝑄×𝑅 , respectively, as shown in Figure 4.3. Mathematically, this relationship 

can be expressed as in Equation 3.1: 

ℋ ≈ 𝐺 ×1 𝒮𝑜 ×2 𝒮𝑑 ×3 𝒯 = ∑ ∑ ∑ 𝑔𝑝𝑞𝑟𝑟𝑞𝑝 𝒮𝑜:,𝑝
°𝒮𝑑:,𝑞

°𝒯:,𝑟 (3.1) 

Each element ℋ is: 

ℎ𝑖𝑗𝑙 ≈ ∑ ∑ ∑ 𝑔𝑝𝑞𝑟𝒮𝑜𝑖,𝑝
𝒮𝑑𝑗,𝑞

𝒯𝑙,𝑟𝑟𝑞𝑝  (3.2) 

Here, the symbol "°" stands for the vector outer product, which means that each 

element of the tensor is the product of the corresponding vector elements. 𝒮𝑜:,𝑝
 indicates 

the 𝑝𝑡ℎ  column of matrix 𝒮𝑜 and 𝒮𝑜𝑖,𝑝
 is the 𝑖𝑡ℎ element in the 𝑝𝑡ℎ  column. 𝒮𝑜, 𝒮𝑑 and 𝒯 

are the factor matrices and can be viewed as the principal component of the tensor’s three 

corresponding dimensions. In other words, the row 𝑖 of matrix 𝒮𝑜 , 𝒮𝑜𝑖,:
, is the feature 

vector that indicates the characteristics of origin neighborhood 𝑖. Similarly, the row 𝑗 of 
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matrix 𝒮𝑑 , 𝒮𝑑𝑗,:
, is the feature vector that indicates the characteristics of destination 

neighborhood 𝑗 . 𝒯𝑙,:,  is the feature vector that indicates the characteristics of the 

corresponding time slot 𝑙 . Each entry of the core tensor 𝐺  indicates the level of 

interaction among different components of 𝒮𝑜, 𝒮𝑑, and 𝒯, respectively. 

This decomposition problem can be turned into an optimization problem: 

min ||ℋ -𝐺 ×1 𝒮𝑜 ×2 𝒮𝑑 ×3 𝒯||2 (3.3) 

subject to 𝐺 ∈ ℛ𝑃×𝑄×𝑅, 

𝒮𝑜 ∈  ℛ𝑁×𝑃 , 

𝒮𝑑 ∈  ℛ𝑁×𝑄, 

𝒯 ∈  ℛ𝐿×𝑅 

To solve this optimization problem, (De Lathauwer, De Moor et al. 2000) 

designed a higher-order orthogonal iteration algorithm. In our case, the algorithm is 

shown in Figure 3.1: 
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Figure 3.1. Higher-order orthogonal iteration algorithm 

The motivation behind using the tensor factorization is that we think the existence 

of some latent features and interactions among them usually determine the patterns of 

many spatial-temporal activities such as how people in one neighborhood (origin) move 

to another neighborhood (destination) during certain time periods. For example, two 

residential neighborhoods would both have a high volume of outflow (to an office district) 

in the morning. Similarly, two nightlife districts would both attract a high volume of 

inflow in the evening. This is a simple qualitative analysis that is difficult to extend to 

general cases, since most regions are not monofunctional and people’s flow is usually a 

mix of a variety of life patterns. However, by discovering the latent features and the 

interactions among them, we can mathematically model people’s movements with respect 

to a certain neighborhood during certain time periods for future prediction. This is 
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somewhat similar to the recommendation system like the one Netflix uses, where a 

multidimensional tensor represents how different users rate different movies under 

various contexts, such as different times. For example, two users might give a high rating 

to a certain movie if they both liked the actors/actresses in the movie, or if the movie was 

a romantic movie, which was preferred by both users in the previous couple of weeks. 

Hence, if we can discover these latent features, we should be able to predict a rating with 

respect to a certain user and a certain item under specific contexts. Similarly, given the 

extracted latent features of origin neighborhoods (like users), destination neighborhoods 

(like movies), the specific time period, and some other features, we could predict 

people’s flow. 

 

Figure 3.2 Tensor model of human spatial-temporal movements 
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Figure 3.3 Tensor factorization 

3.2 Prediction Using Gaussian Process Regression (GPR) 

3.2.1 GPR Model between Spatial-Temporal Activities and Latent Features 

After the extraction of latent spatial-temporal features, we mathematically model the 

relationship between spatial-temporal activities such as human mobility and the extracted 

latent features for prediction. For this, we assume that people’s mobility is generated 

from a smooth and continuous process. This process has typical amplitude and variations 

in the function which takes place over spatial, temporal, and other characteristics. For 
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example, to predict the volume of outflow 𝓍𝑜𝑖,𝑙
 in the neighborhood 𝑖 during time period 

𝑙 (or the volume of inflow 𝓍𝜄𝑖,𝑙
), we can model the relationship as below: 

𝓍𝑜𝑖,𝑙
= 𝑔(𝒮𝑜𝑖,:

,  𝒯𝑙.:,  𝓍𝑜𝑖,𝑙−1
, … ) (3.4) 

𝓍𝜄𝑖,𝑙
= 𝑔(𝒮𝑑𝑖,:

,  𝒯𝑙,:,  𝓍𝜄𝑖,𝑙−1
, … ) (3.5) 

Note that instead of relating this relationship to some specific models such as 

linear, quadratic, cubic, or even non-polynomial models, which may have numerous 

possibilities, we modeled this relationship as a free-form Gaussian process. One reason 

for using the Gaussian process is that for any spatial-temporal activity 𝑦 (e.g., 𝓍𝑜𝑖,𝑙
) to be 

predicted, it will likely be generated by the same process and have similar values as the 

historical processes that share similar latent spatial-temporal features. We can take 

advantage of this relationship and use it for prediction. Formally, the Gaussian process 

can be represented as (Rasmussen 2006): 

�⃗�~𝑔(𝕏 )~𝐺𝑃 (𝑚(𝕏),  𝐾(𝕏 , 𝕏)) (3.6) 

where �⃗�  is a vector that contains a series of spatial-temporal activities 

(𝑦1, 𝑦2, … , 𝑦𝑛), 𝕏 is the features matrix of �⃗� (here for an activity 𝓍𝑜𝑖,𝑙
, the corresponding 

feature in 𝕏 would be (𝒮𝑜𝑖
,  𝒯𝑙,  𝓍𝑜𝑖,𝑙−1

,…)); 𝑚(𝕏) is the expected value of the generating 

process 𝑔(𝕏); and 𝐾(𝕏, 𝕏) is the covariance matrix where its element 𝑘𝑖,𝑗 measures the 

similarity between the input features of activity 𝑦𝑖  and 𝑦𝑗 . We can also represent the 

relationship above as: 
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𝑝(𝒚(𝕏)) ~ 𝒩(𝑚(𝕏), 𝐾(𝕏 , 𝕏)) (3.7) 

For a future activity 𝑦∗ to be predicted, we have: 

𝑝 ( �⃗⃗�
𝑦∗) ~ 𝒩(( 𝑚(𝕏)

𝑚(𝕏∗)
) , [ 𝐾 𝐾∗𝑇

𝐾∗ 𝐾∗∗
]) (3.8) 

where 𝐾, 𝐾∗ , and 𝐾∗∗  are the abbreviations of the covariance matrix 𝐾(𝕏, 𝕏) , 

𝐾(𝕏∗, 𝕏), and 𝐾(𝕏∗, 𝕏∗), respectively, and 𝑇 indicates a matrix transposition. The key 

ideas in Equation-3.7 and Equation-3.8 are that we assume that future data are generated 

from the same process as the existing data. In other words, the future data and existing 

data have the same distribution. This is a reasonable assumption, since the characteristic 

of many spatial environments and temporal periods, as well as the patterns of 

corresponding spatial-temporal activities, are usually stable and will not change 

significantly over a short period of time. 

Since we already have historical datasets, we are more interested in the 

conditional probability of 𝑝(𝑦∗|�⃗�) that given the exiting datasets, what is the probability 

distribution of an unknown value 𝑦∗. Based on the transformations given by Rasmussen 

(Rasmussen 2006), this conditional probability distribution is: 

𝑦∗|�⃗� ~ 𝒩(𝑚(𝕏∗) + 𝐾∗𝐾−1(�⃗� − 𝑚(𝕏)), 𝐾∗∗ − 𝐾∗𝐾−1𝐾∗𝑇) (3.9) 

The best estimate for 𝑦∗ is the mean value of this distribution: 

𝑦∗ = 𝑚(𝕏∗) + 𝐾∗𝐾−1(�⃗� − 𝑚(𝕏)) (3.10) 
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3.2.2 Prediction of the Volume of Outflow/Inflow 

Based on the inference above, in our problem, the prediction for the volume of outflow 

𝓍𝑜𝑖,𝑙
 became (similar for 𝓍𝜄𝑖,𝑙

): 

𝓍𝑜𝑖,𝑙
= 𝑚(𝕏∗) + 𝐾∗𝐾−1( 𝓍𝑜⃗⃗ ⃗⃗⃗ − 𝑚(𝕏∗)) (3.11) 

Many applications generally assume that the mean function 𝑚(𝕏) is a constant 

value, e.g., 0. Here we assume 𝑚(𝕏) is a constant ∁𝑜 . 

𝓍𝑜𝑖,𝑙
= ∁𝑜 + 𝐾∗𝐾−1( 𝓍𝑜⃗⃗ ⃗⃗⃗ − ∁𝒐) (3.12) 

Note that in the input features, we have past values 𝓍𝑜𝑖,𝑙−1
, …; here, we only 

consider one step backwards 𝓍𝑜𝑖,𝑙−1
.  

One problem is that the input feature (𝒮𝑜𝑖,:
,  𝒯𝑙,:,  𝓍𝑜𝑖,𝑙−1

) of 𝓍𝑜𝑖,𝑙
 contains three 

variables, the spatial latent feature 𝒮𝑜𝑖,:
, the temporal latent feature 𝒯𝑙,:, and the past 

outflow volume 𝓍𝑜𝑖,𝑙−1
, each having different meanings, amplitudes, and dimensions. To 

collectively consider the spatial factors, temporal factors, and flow volume, we design a 

new covariance function: 

𝑘 ((𝒮𝑜𝑖1,:
,  𝒯𝑙1,:,  𝓍𝑜𝑖1,𝑙1−1) , (𝒮𝑜𝑖2,:

,  𝒯𝑙2,:,  𝓍𝑜𝑖2,𝑙2−1)) = 𝜎𝑠
2 exp (−

1

2𝑙𝑠
2 |𝒮𝑜𝑖1,:

−

𝒮𝑜𝑖2,:
|2) +𝜎𝑡

2 exp (−
1

2𝑙𝑡
2 |𝒯𝑙1,: − 𝒯𝑙2,:|

2
) + 𝜎𝑝

2 exp(−
1

2𝑙𝑝
2 | 𝓍𝑜𝑖1,𝑙1−1 −  𝓍𝑜𝑖2,𝑙2−1|2)  (3.13) 

where 𝜎𝑠, 𝜎𝑡, 𝜎𝑝, 𝑙𝑠, 𝑙𝑡, 𝑙𝑝 are all hyper parameters to be inferred, while |𝒮𝑜𝑖1,:
−

𝒮𝑜𝑖2,:
|, |𝒯𝑙1,:

− 𝒯𝑙2,:
|, and | 𝓍𝑜𝑖1,𝑙1−1 −  𝓍𝑜𝑖2,𝑙2−1| are the Euclidean distance between latent 
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spatial features, temporal features, and past outflows, respectively. Equation 3.13 

computes the differences between spatial features, temporal features, and mobility in 

isolated infinity dimensional spaces and merges them. Therefore, by defining the 

covariance function like this, the predictions made through Equation 3.12 are based on 

the historical datasets of different (but similar) spatial areas, temporal time periods, and 

mobility trends, instead of just one specific neighborhood and time period of interest. 

3.2.3 Flow between Neighborhoods 

With the predicted outflow (inflow) of each neighborhood, we could further predict the 

flow between any two neighborhoods. One problem here is that the flow between any 

two neighborhoods could be relatively sparse and has unstable temporal pattern, which 

makes it difficult to model and predict directly. However, based on our observations, for 

a given neighborhood, the ratio of trips heading to different neighborhoods during a 

specific time period is relatively stable. So we propose to predict 𝜃𝑖,𝑙 = (𝜃𝑖,𝑙,1, … 𝜃𝑖,𝑙,𝑗 , … ) 

first, where 𝜃𝑖,𝑙,𝑗  is the percentage of vehicles which start from neighborhood 𝑖 would 

head to neighborhood 𝑗 during time period 𝑙 as:  

𝜃𝑖,𝑙 = 𝛽 × 𝜃𝑖,𝑙 + (1 − 𝛽) × 𝜃𝑖,𝑙−1 (3.14) 

∑ 𝜃𝑖,𝑙,𝑗 = 1𝑗  (3.15) 
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Where 𝛽 is a constant parameters between 0 and 1, and 𝜃𝑖,𝑙 is the corresponding 

history average value of 𝜃𝑖,𝑙. Intuitively, this equations uses a weighted sum model to 

predict 𝜃𝑖,𝑙 based on the corresponding values of its history and previous hour. 

Lastly, with 𝓍𝑜𝑖,𝑙
 and 𝜃𝑖,𝑙,𝑗, we can compute 𝓍𝑖,𝑙,𝑗, the number of trips starting 

from neighborhood 𝑖 heading to neighborhood 𝑗 during time period 𝑙 as: 

𝓍𝑖,𝑙,𝑗 = 𝓍𝑜𝑖,𝑙
× 𝜃𝑖,𝑙,𝑗 (3.16) 
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4.0 TRAJECTORY DISTRIBUTIONS IN THE ROAD NETWORK 

After predicting the flow between neighborhoods, this section further presents how we 

modeled and estimated the corresponding trajectory distributions in the road network, 

based on the previously predicted flow volume. We first give the mathematical definition 

of trajectory distributions. The simulation of the trajectory distributions comprises two 

parts: (1) predicting the flow volume between the origin and destination road segments; 

and (2) finding the probable trajectories between the origin and destination road segments 

and estimating their corresponding possibilities. We will describe how to solve these two 

sub-problems in detail. 

4.1 Definitions 

We will first provide the symbols and definitions of road network, trajectory, and 

trajectory distributions respectively. 

The road network can usually be viewed as a directed graph 𝐺 = (𝑉, 𝐸), where 𝐸 

represents the set of road segments and 𝑉 is the set of vertices that represent the road’s 

end points or the intersections between road segments. 
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Trajectory 𝑡𝑟 can be thought of as a series of consecutive road segments with 

location information that a vehicle/person passes by. In particular, we define 𝑡𝑟 =

(𝑒𝒾1, 𝑒𝒾2, . . , 𝑒𝒾𝑚), where 𝑒𝒾 is a road segment in the road network. 

In this thesis, we are more interested in the eventual traffic situation. So instead of 

studying the trajectory of an individual user, we focus on the overall distribution of 

trajectories throughout a city level’s road network. Mathematically, we define the 

trajectory distribution as 𝑡𝑟𝑑 = ((𝑒𝒾1, 𝑒𝒾2, . . , 𝑒𝒾𝑚), 𝜇) , where (𝑒𝒾1, 𝑒𝒾2, . . , 𝑒𝒾𝑚)  is a 

trajectory, while  𝜇 is the estimated number of people or vehicles that would follow this 

trajectory. Figure 4.1 gives an example of trajectory distribution 𝑡𝑟𝑑 =

((𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6), 3), which indicates that there are three vehicles that would follow 

the trajectory (𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5, 𝑒6). 

To infer all the trajectory distributions in the road network, there are two specific 

questions that must be answered: 

(1) Given any pair of origin and destination road segment (e.g., 𝑒1 and 𝑒2) , how 

many vehicles will travel from segment to another?  

(2) What are the probable trajectories that people would follow from the origin road 

segment to the destination road segment, and what is the corresponding possibility 

of each trajectory? 

We will address these two questions in the next subsections including their 

challenges, and our proposed solutions. 
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Figure 4.1: An illustration of a trajectory distribution 

4.2 Flow Volume Between Road Segments 

The traffic that moves from one road segment to another over a short time period could 

be sparse, which would make it difficult to directly predict. Because we are more 

interested in the overall traffic situation in a city level, we could take advantage of the 

previously predicted flow of traffic between any two neighborhoods. Based on these 
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predictions, we could further estimate the corresponding flow volume between any two 

road segments. 

In particular, a trip that would head from one neighborhood (e.g., neighborhood 𝑖) 

to another neighborhood (e.g., neighborhood 𝑗), it could start from any road segment in 

neighborhood 𝑖 and end in any road segment in neighborhood 𝑗. But in the real world, we 

might find that some road segments are more popular as origins and some road segments 

are more popular as destinations during different time periods. For example, a road 

segment  in New York City that includes a large office building such as One World Trade 

Center, the tallest building in New York with 104 stories and 3 million square feet of 

office space (WorldTradeCenter 2017), would definitely be a much more popular 

destination in the morning and origin in the evening, respectively, as compared with other 

road segments. Given the number of people/vehicles heading from neighborhood 𝑖  to 

neighborhood 𝑗, in order to estimate how likely they would start from a road segment 𝒾 

(in origin neighborhood 𝑖 ) and end at another road segment 𝒿  (in destination 

neighborhood 𝑗), we adapt the idea of a spatial interaction gravity model, as proposed by 

(Wilson 1967). We first estimate the spatial interaction level between any origin road 

segment 𝒾 (in neighborhood 𝑖) and destination road segment 𝒿 (in neighborhood 𝑗) during 

time period 𝑙 as: 

𝑓( 𝒾, 𝒿, 𝑙) = 𝒢
𝑤𝑜𝒾,𝑙×𝑤𝜄𝒿,𝑙

𝑑𝒾,𝒿
 (4.1) 
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where 𝒢  is a constant parameter, 𝑤𝑜𝒾,𝑙
 is the weight of road segment 𝒾  as the 

origin during time period 𝑙, 𝑤𝜄𝒿,𝑙
 is the corresponding weight of road segment 𝒿 as the 

destination, and 𝑑𝒾,𝒿 is the Euclidean distance between them. It is worth noting that some 

previous works use different categories of data to approximate the weight 𝑤. Among all 

those categories of data, one of the most widely used is the population of corresponding 

spatial area (Hua and Porell 1979)-but the static population of corresponding area does 

not work in this scenario. One major reason is that because we focus on the short term 

prediction, e.g., a city level’s mobility in an hour, while the population feature might be 

more suitable for some long-term and static prediction. For example, in urban areas, 

especially those central business districts, people come and go from time to time every 

day, making it impossible to accurately count or even estimate the population of each 

area every hour. As a result, we would like to estimate weight 𝑤 based on our history 

mobility dataset. In particular, in our implementation, we use the historical average 

number of trips that started from road segment 𝒾 during time period 𝑙 as the weight 𝑤𝑜𝒾,𝑙
, 

and the corresponding historical average number of trips that ended at 𝑒𝒿 as the weight 

𝑤𝜄𝒿,𝑙
. 

Instead of estimating a constant value for 𝒢 like some previous works, we propose 

to normalize the interaction level between each pair of road segments 𝒾 and 𝒿 in origin 

neighborhood 𝑖 and destination neighborhood 𝑗, and multiply it by 𝓍𝑖,𝑙,𝑗 (the flow volume 

from neighborhood 𝑖 to neighborhood 𝑗), in order to obtain the flow volume between 
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those road segments. Eventually, 𝑥𝑒𝒾,𝑙,𝒿, the number of vehicles that are heading from 

road segment 𝒾 (in neighborhood 𝑖) to road segment 𝒿 (in neighborhood 𝑗) during time 

period 𝑙 is computed as: 

𝓍𝑒𝒾,𝑙,𝒿 = 𝓍𝑖,𝑙,𝑗

𝑤𝑜𝒾,𝑙×𝑤𝜄𝒿,𝑙

𝑑𝒾,𝒿

∑ ∑
𝑤𝑜𝑝,𝑙×𝑤𝜄𝑞,𝑙

𝑑𝑝,𝑞
𝑞𝑝

 (4.2) 

The intuition behind this equation is that if the road segments 𝑒𝒾  and 𝑒𝒿  have 

strong spatial interaction during time period 𝑙  given the historical dataset, a new trip 

heading from neighborhood 𝑖 to neighborhood 𝑗  will also be likely to start from road 

segment 𝑒𝒾 and end at 𝑒𝒿 then. 

4.3 Trajectory Distribution Simulation 

After the estimation of flow between road segments in the road work, we turn to our 

second question: What are the probable trajectories of vehicles heading from one road 

segment to another and the corresponding possibility of each trajectory?. This problem is 

also nontrivial, due to the fact that there are usually multiple routes for a vehicle to travel 

from one place to another in the road network. Figure 4.2 shows an example of the 

different types of trajectories that can be used to travel from one road segment to another. 
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There are different strategies we can use to infer a trajectory. For example, we can 

observe user driving patterns (such as how likely they are to make a right turn at a 

specific intersection) from historical trajectories (Liu and Karimi 2006, Froehlich and 

Krumm 2008, Jeung, Yiu et al. 2010). However, these strategies require users to keep 

uploading their GPS points frequently, sometimes as often as every two minutes, which 

can be difficult to acquire, due to both privacy and technical issues. Besides, many people 

will simply follow the directions of Google Maps or Waze when they are heading to 

some places, and as a result, there is no personal routing preference, as some of these 

studies claim. 

In this paper, we propose different general models to estimate trajectories and 

simulate the corresponding trajectory distributions, instead of focusing on the exact 

trajectory of each individual user. One simple trajectory simulation model is to use the 

shortest path between any two places, as done by some previous works (Matthias and 

Zuefle 2008, Deri, Franchetti et al. 2016). Mathematically, assuming that the shortest 

path between road segment 𝑒𝒾 and 𝑒𝒿 is 𝑡𝑟𝒾,𝒿
1 , then the possibility that vehicles that are 

heading from 𝑒𝒾 to 𝑒𝒿 would follow 𝑡𝑟𝒾,𝒿
1  is: 

ℎ(𝑡𝑟𝒾,𝒿
1 ) = 1 (4.3) 

The corresponding trajectory distribution would be: 

𝑡𝑟𝑑𝒾,𝒿
1 =(𝑡𝑟𝒾,𝒿

1 ,  𝓍𝑒𝒾,𝑙,𝒿 ∗ 1) (4.4) 
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 However, in practice, while people will not always follow the shortest path from 

one place to another, they are also unlikely to make long detours. Based on this 

observation, we propose the following two trajectory distribution simulation methods. 

 

 

 

Figure 4.2 Some possible trajectories for a given origin-destination pair. 

 

The first simulation method is that to go from one place to another, we assume 

people would take one of the top-K shortest paths with equal probability. Mathematically, 

assuming that 𝑡𝑟𝒾,𝒿
𝑘  is one of the top-K shortest paths between road segment 𝑒𝒾  and 𝑒𝒿, 
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then the possibility that vehicles that are heading from road segment  𝑒𝒾  to 𝑒𝒿  would 

follow 𝑡𝑟𝒾,𝒿
𝑘  is: 

ℎ(𝑡𝑟𝒾,𝒿
𝑘 ) =

1

𝐾
 (4.5) 

The corresponding trajectory distribution: 

𝑡𝑟𝑑𝒾,𝒿
𝑘 =(𝑡𝑟𝒾,𝒿

𝑘 ,  𝓍𝑒𝒾,𝑙,𝒿 𝐾⁄ ) (4.6) 

Taking one of the top-K shortest paths might more accurately portray people’s 

daily driving behaviors rather than assuming that they always follow the shortest path. 

However, due to the complexity of the road network’s structure, people’s driving 

preference might be skewed rather than equally prefer any one of the top-K shortest paths. 

For example, taking the 𝑘 + 1𝑡ℎ shortest path sometimes might result in much more extra 

travel distance compared with the 𝑘𝑡ℎ shortest path, and as a result, people will be careful 

to avoid that particular path. Instead of assuming that people would take any one of the 

top-K shortest paths with equal probability, we would estimate the probability of each 

trajectory, based on their actual distance and the distance of theoretical shortest path, 

given the historical dataset. For example, given a pair of origin and destination road 

segments whose shortest travel distance is 10 miles, what is the probability that people 

would take a path with the distance of 11.5 miles, 12 miles, 15 miles, or 20 miles? 

Although it is difficult to collect detailed GPS points from every anonymous trip, we 

could know the miles of each trip through the odometer, which is a common feature of all 

vehicles. Consequently, we estimate the possibility of each trajectory by its actual 
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distance and theoretical shortest path’s distance through a multivariate kernel density 

estimation (Simonoff 1996). Formally, for vehicles heading from road segment 𝑒𝒾 to 𝑒𝒿, 

the possibility of following a trajectory 𝑡𝑟𝒾,𝒿 = (𝑒𝒾, . . , 𝑒𝒿) is: 

ℎ(𝑡𝑟𝒾,𝒿) =
1

𝑛
∑ (2𝜋)−1|𝐻𝑖,𝑗|

−
1

2𝒦( 𝑧 − 𝑧𝑐)𝑐  (4.7) 

𝒦(𝑧)=𝑒−
1

2
𝑧𝑇𝐻𝑖,𝑗

−1𝑧, (4.8) 

𝑧 = (|𝑡𝑟𝒾,𝒿
1 |,  |𝑡𝑟𝒾,𝒿| − |𝑡𝑟𝒾,𝒿

1 |), (4.9) 

where 𝒦() is the kernel function, 𝑧𝑐 is a history record, 𝑡𝑟𝒾,𝒿
1  indicates the shortest 

path from road segments 𝒾 to 𝒿, and 𝐻 is the bandwidth matrix (covariance matrix). It is 

worth noting that in order to increase the estimation accuracy of trajectory possibilities 

(equation 4.7), we compute the bandwidth matrix 𝐻𝑖,𝑗  for each pair of origin 

neighborhoods 𝑖 and destination neighborhoods 𝑗, instead of using the same bandwidth 

matrix 𝐻  for all the trips. The major reason for doing this is that the road network 

structure between different pairs of origin and destination neighborhoods could be very 

different, which makes people’s driving preferences and the corresponding trajectory 

distributions vary. As a result, the parameters (the bandwidth matrix) between each pair 

of origin and destination neighborhoods should also vary. 

Based on this possibility, we propose a top-K likely trajectory distribution 

simulation strategy that for any given pair of origin and destination road segments, we 

would find the trajectories that have one of the top-K largest possibilities based on the 

historical dataset. Mathematically, we model the problem as: 
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𝑡𝑟𝑑𝒾,𝒿=(𝑡𝑟𝒾,𝒿 ,  𝓍𝑒𝒾,𝑙,𝒿 × ℎ̃(𝑡𝑟𝒾,𝒿)) (4.10) 

ℎ̂(𝑡𝑟𝒾,𝒿) = ℎ(𝑡𝑟𝒾,𝒿)/ ∑ ℎ(𝑡𝑟𝑝,𝑞)𝑡𝑟𝑝,𝑞
 (4.11) 

where 𝑡𝑟𝒾,𝒿  is a trajectory from road segment 𝒾  to 𝒿  with one of the K largest 

possibilities ℎ(𝑡𝑟𝒾,𝒿).  

Note that we would keep the trajectory simulation as an independent module. By 

doing so, people can also try other trajectory simulation methods besides the proposed 

methods here and use the one that is most suitable for their application. For example, 

when there are a certain amount of self-driving vehicles in the road network, the 

prediction system can simulate those self-driving vehicles’ trajectories through adapting 

their routing strategy, such as taking one of the fastest paths by aggregating the collected 

traffic information. 

4.4 Trajectory Distributions Analysis and Applications 

After the simulation of the trajectory distributions, we can further process and analyze the 

synthetic data for a great deal of interesting information, such as predicting hot road 

segments with high centrality where many  vehicles would pass by, which might be an 

indication of potential traffic jams or bottlenecks. We could simply go over each 
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trajectory distribution, sum the number of people/vehicles that would pass through the 

specific road segments, and output those hot road segments. It is worth pointing out that 

there could be different definitions of hot road segments under different scenarios, such 

as the road segments with the top-K largest traffic volumes, or the road segments that 

have a  traffic volume that is larger than a given threshold. Our methodology is flexible 

and can handle either definition, but to be consistent in this paper, we adopted the first 

definition and will output the hot road segments with the top-K largest traffic volume 

later in the experiment. 

Besides the prediction of hot road segments where potential traffic jams might 

form, we are able to further predict and reveal the formation of them; namely, what are 

the top-K primary origin/destination neighborhoods of the traffic that is passing through 

those hot road segments? This is a major advantage of our methodology as compared 

with traditional traffic prediction, which focuses on predicting an individual road 

segment’s traffic situation but provides little additional information about the origins or 

destinations of those vehicles, which is a vital element for understanding the formation of 

some traffic jams.  

  



 

 
    

52 

5.0 LARGE-SCALE TRAJECTORY DISTRIBUTION SIMULATION 

The problem of trajectory distribution simulation is computationally intensive and 

difficult to accomplish under real-time constraints, because the scale of a metropolitan 

city’s road network and the corresponding number of trajectories that people might 

choose to take during a certain time period could both be extremely large. To tackle this 

challenge, we present a MapReduce-based distributed solution. Based on the synthetic 

trajectory distributions, we further design different MapReduce-based algorithms to 

predict the hot road segments and identify the popular origins/destinations of the traffic 

passing through those hot road segments of interest. 

5.1 MapReduce-Based Trajectory Distribution Simulation 

To implement the simulation methods from Section 4, one key step is to find the probable 

trajectories, namely, the top-K shortest paths for each pair of origin and destination road 

segments. A naive algorithm is to simply enumerate all possible routes between any two 

road segments, which would cost 𝑂(2|𝐸|). This is not an acceptable level of performance, 

especially for real-time decision making, given that the number of road segments 𝐸 in a 
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city level could be in the range of tens of thousands. We can improve this time 

complexity by using Yen’s top-K shortest paths algorithm (Yen 1970), which would take 

𝑂(𝐾 ∗ |𝐸|2 ∗ log (|𝐸|)) to compute each pair’s top-K shortest paths, if it is optimized 

with a priority queue. For all pairs’ top-K shortest paths, it would still take 𝑂(𝐾 ∗ |𝐸|4 ∗

log(|𝐸|)), which is computationally intensive and requires efficient algorithms for a real-

time response. 

To tackle this problem, here we propose a MapReduce-based distributed 

algorithm to simulate all the trajectory distributions in the road network. To be clear, we 

do specifically give the algorithm of the top-K likely trajectory distribution simulation 

discussed in the Section 4, but our algorithm is very flexible and can handle all the 

models of trajectory distribution discussed in the Section 4. 

Algorithms 5.1 and 5.2 show the pseudo-code in detail. The general idea is that in 

the Map phase, we distribute the flow volume 𝑥𝑒 between each pair of road segments to 

the reduce phase. The key of the Map phase output is the id of the origin road segment, 

and the values of the Map phase output are the corresponding destination road segments 

and flow volumes. In this way, the fluxes between each pair of road segments will be 

aggregated in the Reduce phase, based on the origin road segments. As previously 

discussed, the weights of different road segments are unevenly distributed. Some road 

segments might have almost zero people either starting or ending there during certain 

time periods. To reduce the amount of data to be processed and increase the time 

performance of the program, we could skip some of the trips that few people took in the 
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past. Each Reduce task will be in charge of searching the trajectories with increasing 

distance that start from the given road segment, namely, 𝑒𝑖. For each found probable 

trajectory, we compute its corresponding possibility and flow volume, then output it. 

Since the map stage (Algorithm 5.1) is pretty straightforward and the reduce stage 

(Algorithm 5.2) is the core of our trajectory distribution simulation, we will go over it in 

detail. During the description of the algorithm, we use the word “path” and “trajectory” 

interchangeably, since they both indicate a series of road segments. In lines 1–3, we read 

in the processed data, such as the road network, bandwidth matrices 𝐻, and the history 

trip records 𝑡𝑟𝑐 from disk (the Hadoop distributed file system). In line 4, we initialize an 

array 𝑠, where 𝑠𝑗 would store the length of the shortest path from origin road segment 𝑒𝑖 

to 𝑒𝑗. With the help of array 𝑠, we can skip the trajectories that are long detours for the 

given threshold (line 14) and improve the performance of our algorithm. In line 5, we 

construct a min heap Q to store the destination road segments and the corresponding 

distances (from origin road segment 𝑒𝑖 to them) for a trajectory search. With such a min 

heap Q, we can get and update the smallest record with only 𝑂(1) and 𝑂(log(𝑁)) time, 

respectively. In line 6, we use an array of min heap 𝑅𝑗 to keep track of the trajectories 

with the top-K highest possibilities ending at road segment 𝑒𝑗. In line 7, we store each 

node’s parent node in order to rebuild the corresponding trajectory. Note that since we 

are interested in finding several probable trajectories between each pair of origin and 

destination road segments (rather than a single shortest path), we need to keep track of all 
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the corresponding parent nodes, based on the distance. For example, if there is a path 

from 𝑒𝑖  to 𝑒𝑗  with a total length of 𝑑 , we store the previous road segment of 𝑒𝑗  as 

𝑝𝑎𝑟𝑒𝑛𝑡𝑗,𝑑 . In other words, there is a path from from 𝑒𝑖  to 𝑒𝑗 , <𝑒𝑖 ,…, 𝑝𝑎𝑟𝑒𝑛𝑡𝑗,𝑑 , 𝑒𝑗>, 

which has a total length of 𝑑 + |𝑒𝑗|. Within the while loop that starts from line 8 to line 

35, we process the path, starting from the origin road segment, with increasing distance. 

During each iteration, when we have a path ending at road segment 𝑒𝑗, we check that if 

the path is a long detour by comparing it to the theoretical shortest path (line 14). If it is a 

long detour, we skip the path since people are unlikely to take long detours during the 

course of their daily driving. Otherwise, we proceed with processing the trajectory. To 

save storage space, we only store the last road segment of each path during the search, 

and rebuild the whole trajectory through iterating the parent pointers (lines 16–19). In 

line 21, without a loss of generality, we compute the possibility of the trajectory with a 

multivariate kernel density estimation (Equation 4.10). After we finish processing the 

current found trajectory, we expand the search and update the adjacent road segments of 

the finalized road segment (𝑒𝑗) and push the updated values into the min heap Q (lines 

28–33). Note that during people’s daily driving, they seldom pass the same road segment 

multiple times in a trip (unless they get lost or find themselves in other uncommon 

situations). As a result, during the search, we only update the adjacent road segments that 

have not yet been visited by the current trajectory in order to avoid duplicate road 

segments (line 30). Finally, we compute the volume of vehicles that would follow the 

found trajectory and output the corresponding trajectory distributions (lines 36–41). 
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We will also provide the time complexity analysis of Algorithm 5.2. First, let’s 

assume that, based on the threshold we set in line 14, each road segment will be visited a 

maximum of 𝑈 times, so the while loop (line 8–line 35) will be executed a maximum of 

𝑈𝐸 times. Within the while loop, there are several major operations. The first operation is 

to find the destination road segment with current minimal distance (line 9–10). Since we 

use the min heap, the time complexity of this operation is log (𝑈𝐸). The second operation 

is reconstructing the whole trajectory, based on the parent pointers (lines 16–19), which 

will be executed a maximum of 𝑂(𝐸)  times. The third operation is to compute the 

possibility of the found trajectory, based on the history records in line 21 (assume that 

there are 𝑀 records). If necessary, we then update the min heap 𝑅𝑗 with time complexity 

of O(logK) (lines 22–27). The last operation is to update the adjacent road segments 

(lines 28–33). Note that in the road network, the degree of each road segment is relatively 

stable and small. For example, most road segments would have a maximum of three to 

four adjacent road segments. Hence, updating the adjacent road segments and checking 

the duplicate road segments would simply cost 𝑂(𝐸) time. When considering all the 

factors, the overall time complexity of Algorithm 5.2 is 𝑂(𝑈𝐸 ∗ (log(𝑈𝐸) + log(𝐾) +

𝐸 + 𝑀)). For the simulation, we need to compute the trajectory distributions starting 

from all the road segments, and we assume that there are ℛ reducers available in the 

Hadoop cluster. The final time complexity of the MapReduce based trajectory 

distribution simulation is 𝑂(
𝑈𝐸2∗(log(𝑈𝐸)+log(𝐾)+𝐸+𝑀) 

ℛ 
). 
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Algorithm 5.1. Map phase of trajectory distribution simulation. 
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Algorithm 5.2. Reduce phase of trajectory distribution simulation. 

5.2 MapReduce-based Trajectory Distribution Analysis 

Based on the simulation of trajectory distributions, we can predict the hot road segments 

that have a high degree of centrality, which are likely places for potential traffic jams or 

bottlenecks to happen. Besides that, we can further identify the primary origin/destination 

neighborhoods of the hot road segments of interest, from which it would be possible to 

reveal the causes of potential traffic jams, such as the primary origins and destinations of 

the traffic in some specific road segments. One major challenge here is that there could 

be up to 𝑂(𝐾𝐸2) trajectory distributions outputted from the previous simulation step. 

Considering that there are tens of thousands of road segments in a city level’s road 

network (and especially in a major metropolitan area), there could be almost one billion 

generated trajectory distributions. As a result, MapReduce-based distributed algorithms 

are specifically designed for the analysis of trajectory distributions. 

For the hot road segments, we propose a flow-volume-based dynamic 

betweenness centrality to measure the popularity of each road segment during a specific 

time period in the sub-section 4.3. Intuitively each road segment’s dynamic betweenness 
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centrality equals the aggregated number of people/vehicles that would pass it based on 

our synthetic traffic distributions. Our generated trajectory distributions are a good source 

to compute such a dynamic betweenness centrality. We could simply go over each 

trajectory distribution, sum the number of people/vehicle that would pass each specific 

road segment, and output the hot ones through ranking. The pseudocode of the designed 

MapReduce based hot road segment prediction is shown in Algorithms 5.3 and 5.4. 

Generally, we send the synthetic trajectory distributions to different mappers in the 

Algorithm 5.3. The mappers go over each road segment of the passed-in trajectory and 

the corresponding traffic volume. Then the reducers will get the id of each road segment 

as the key, and a list of traffic volume as the values so we can sum them up. After that, 

we can use a simple sorting algorithm to quickly identify the hot road segments with the 

top-K highest traffic volume—or the road segments with a traffic volume higher than a 

given threshold. 

 

 

 

Algorithm 5.3. Map phase of Hot Roads Prediction. 
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 Algorithm 5.4. Reduce phase of Hot Roads Prediction. 

 

After predicting those hot road segments, a city agency might also want to further 

investigate the top-K major origins or destinations of the traffic that passes through one 

or more specific hot road segments, which is essential to identify the causes of those 

traffic jams. Such information could also be used to optimize the road network, public 

transportation systems, and emergency management. For example, if the police want to 

block several streets for events later in a given day, by querying the major 

origin/destination neighborhoods where people would pass by at that time, the system 

could send notifications to corresponding drivers or even to self-driving vehicles so that 

they could update their schedules or routing. We provide the corresponding MapReduce-

based algorithm for these scenarios, as shown in Algorithms 5.5 and 5.6. Intuitively, the 

algorithms work similarly to Algorithms 5.4 and 5.5. The synthetic trajectory 

distributions are sent to different mappers, which will go over each road segment. If the 

road segment is one of those in which we are interested, we pass its origin and destination 
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neighborhoods and amount of corresponding traffic volume to the reducers, and the 

reducers will aggregate the results. 

 

 

 

Algorithm 5.5. Map phase of popular origin/destination mining. 

  

 
Algorithm 5.6. Reduce phase of popular origin/destination mining. 
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6.0 EXPERIMENT RESULTS 

In this section, we present the experimental results of our methodology. In particular, we 

conducted case studies using the taxi trip data collected from Beijing and New York City. 

First, we introduce and analyze the collected dataset. Next, we discuss a series of 

experiments that we conducted to evaluate the accuracy of our methodology, such as (1) 

the prediction of outflow/inflow across different areas and time periods, (2) the prediction 

of flow between neighborhoods and (3) the prediction of hot road segments and their 

primary origin/destination neighborhoods. After that, we investigated the time 

performance of our proposed MapReduce-based algorithms, particularly in terms of their 

scalability. 

6.1 Dataset  

In this thesis, we conduct two cases study through collecting the taxi data from New York 

City and Beijing. Taxis play a very important transportation role in many metropolitan 

areas. Given the popularity and the importance of taxis, many previous works view them 

as the ubiquitous mobile sensors constantly probing a city’s rhythm and pulse, such as 



 

 
    

64 

traffic flows on road surfaces and citywide travel patterns of people (Zheng, Liu et al. 

2011). In New York City, each day almost 13,000 taxis carry over one million passengers 

and make, on average, 500,000 trips—totaling over 170 million trips a year (Ferreira, 

Poco et al. 2013). Predicting how people move around through taxis not only help 

optimize the taxi operation itself, but also reveals the cultural and geographic aspects of 

the city and detects abnormal events, among other things. It is worth mentioning that our 

methodology can be applied to diverse mobility datasets (the dataset might contain the 

detailed trajectories of every trip, or just some origin/destination information), such as 

census data/results of travel surveys, mobile phone records, check-in data from location-

based social networks, and others. In our work, we use the taxi dataset, which could 

contain detailed trajectories for each trip of the taxi, so that we can compare the results of 

our trajectory distribution prediction methodology with the ground truth. 

For New York City’s taxi trips, we collected data spanning from September 1, 

2014, to October 31, 2014, a total of approximately 29 million distinct trip records. The 

data is shared by the New York government through an open data project named “NYC 

Open Data” (NYCOpenData 2016) which provides data to the public, including millions 

of taxi trip records. Each taxi trip record has the pick-up time, pick-up location, drop-off 

time, drop-off location, and the travel distance, among others. As for Beijing, we 

obtained the taxi trajectory dataset shared by (Yu, Zhao et al. 2010, Zhang, Zhang et al. 

2011). The dataset consists of 27 days of trajectory data recorded from May 1, 2009 to 

May 29, 2009 (the data from both May 10 and May 20 are missing). The dataset was 



 

 
    

65 

collected from 28,000 taxicabs in Beijing, which include approximately 42% of the total 

number of taxis in Beijing. Compared with the taxi dataset for New York, which only 

contains the information of origin and destination of each trip, the Beijing taxi dataset 

contains a series of GPS points uploaded by the taxis every few minutes with additional 

information (for example, whether the taxi is carrying passengers or not). We divided 

each taxi’s sequentially uploaded points into a series of trips, based on several criteria. 

The major criterion is that if the status of an uploaded point changes, such as from empty 

to loaded or vice versa, we will mark the point as the beginning or the end of a trip. Note 

that the first week of May is a national holiday in China and as a result, people’s mobility 

patterns are quite different from other days;  we excluded these days from the experiment. 
We first visualized NYC’s pick-ups and drop-offs distribution in the morning 

(10:00 – 10:59 am) and at night (09:00 – 9:59 pm) in a randomly selected day in Figure 

6.1. From these visualizations we noticed most of the taxi activities happened within the 

Manhattan district although there were some pick-ups and drop-offs outside the 

Manhattan at night. Among all the neighborhoods within Manhattan district, the districts 

near Times Square generally have the most pick-ups and drop-offs. This phenomenon is 

reasonable since Times Square is a highly commercial district, with many people 

working there, and a tourist attraction. Another observable interesting phenomenon is that 

in the lower east district, there are significantly more pick-ups and drop-offs at night 

compared with the daytime, a sign of night life district. The spatial clustering result in the 

next subsection based on the extracted latent features will also confirm this. 



 

 
    

66 

 

(a) Drop-off activities (10:00-10:59 am) (b) Drop-off activities (9:00-9:59 pm) 

 

(c) Pick-up activities (10:00-10:59 am) (d) Pick-up activities (9:00-9:59 pm) 

Figure 6.1: Pick-up and drop-off activities of NYC in a single day 

 

Since most of the taxi pick-up and drop-off activities happen in Manhattan district, 

we will focus our analysis on that district. We partitioned the district into small 
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parallelogram grids, each with approximately 0.8 km on each side. As discussed in (Liu, 

Liu et al. 2015), while exploring human’s spatial-temporal activities with social sensing 

data, discretizing the studied areas into spatial units with area between 0.25 𝑘𝑚2 and 1 

𝑘𝑚2  would be appropriate and has been adopted by many previous works(Reades, 

Calabrese et al. 2009, Liu, Wang et al. 2012, Toole, Ulm et al. 2012). So the resolution 

we used (0.64 𝑘𝑚2 per unit) is reasonable and fine enough to demonstrate the accuracy 

of our prediction methodology in small areas where human’s mobility patterns might 

have high variances.  

Besides NYC’s data, we also visualized Beijing’s taxi activities (the uploaded 

GPS points) in the morning (10:00 – 10:59 am) and at night (09:00 – 9:59 pm) in a 

randomly selected day as shown in Figure 6.2. Because the collected taxi data in Beijing 

is very sparse (containing only 42% of the taxis in Beijing), we partitioned the city into 

grids with a coarser resolution (with approximately 1.5 km on each side). For both cities, 

we used one hour as the time unit for the analysis and prediction latter.  
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(a) Taxi activities (10:00-10:59 am)                      (b) Taxi activities (9:00-9:59 pm) 

Figure 6.2: Taxi activities of Beijing  in a single day 

6.2 Outflow (inflow) Volume Prediction  

With the collected data, we would first investigate the accuracy of our proposed spatio-

temporal prediction methodology using the latent features and compared it with existing 

ones. In particular, for each city we constructed a mobility tensor as described in Chapter 

3. Then we conducted the tensor factorization to extract the latent spatial features of each 

partitioned grid as the origin and destination respectively, and the latent temporal features 

of each hour. With the extracted latent features, we further trained a Gaussian Process 

Regression model and used it for prediction. We named our methodology (Gaussian 
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process regression with latent spatial and temporal features) as GPR-LST for short and 

compared it with two existing models. One is the parametric seasonal ARIMA model 

where we take each grid as a fixed point and build seasonal ARIMA models for its time-

series outflow and inflow, respectively. Another methodology is the non-parametric 

model, naive Gaussian Process regression (GPR), which uses the explicit previous time-

serious records like (𝓍𝑜𝑖,𝑙−1
, 𝓍𝑜𝑖,𝑙−2

, 𝓍𝑜𝑖,𝑙−3
,…,) as the input features and the squared 

exponential kernel with a separate length scale per predictor as the covariance function. 

We named this methodology (Naive Gaussian process regression for time series records) 

as GPR-Naive for short. We have one GPR-Naive model for outflow and one GPR-Naive 

model for inflow.  

We performed all the prediction methodologies on each partitioned grid of the 

city and predicted each grid’s outflow (inflow) in the next hour iteratively. For NYC, we 

used 4 weeks data as the training dataset and the next 2 weeks data for the verification. 

For Beijing, we used 8 days data for the training and the rest 3 days for verification. To 

measure the accuracy of prediction, we used three metrics: (1) root mean squared error 

(RMSE), (2) mean absolute scaled error (MASE) (proposed by (Franses 2016)) and (3) 

our designed mean error ratio (MAE). Equation 6.3 – 6.5 show how three metrics are 

calculated. 

𝑅𝑀𝑆𝐸 = √
1

𝑇
∑ (𝑦�̂� − 𝑦𝑡)2𝑇

𝑡=1  (6.3) 

𝑀𝐴𝑆𝐸 =  
1

𝑇
∑ |𝑦�̂�−𝑦𝑡|𝑡

1

𝑇−1
∑ |𝑦𝑡−𝑦𝑡−1|𝑇

𝑡=2

 (6.4) 
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𝑀𝐸𝑅 =
∑ |𝑦�̂�−𝑦𝑡|𝑇

𝑡=1

∑ 𝑦𝑡
𝑇
𝑡=1

 (6.5) 

Where 𝑦�̂�  is the predicted value at time 𝑡 while 𝑦𝑡  is the corresponding ground 

truth. Note that the general idea of MASE is to compare the prediction methodology with 

the naive one-step forecast methodology that makes predictions based on the previous 

value, e.g., to predict human’s outflow 𝓍𝑜𝑖,𝑙
 at time period 𝑙 ; the one-step forecast 

methodology uses the value of 𝓍𝑜𝑖,𝑙−1
 directly. And as for the mean error ratio (MER), 

we designed it in order to measure the scale of the prediction error vs the ground truth. 

We conducted a series of experiments to verify our prediction methodology. We 

used the prediction error of NYC’s outflow in the workday as the baseline, and would 

like to see how different methodologies perform under different scenarios such as (1) 

outflow vs inflow, (2) workdays vs weekends, and (3) NYC vs Beijing. 

Table 1: Outflow vs Inflow ( NYC’s Workdays) 

 Outflow Inflow 

 RMSE MASE MER RMSE MASE MER 

GPR-LST 33.175 0.481 0.096 30.872 0.485 0.097 

Seasonal-

ARIMA 

45.384  0.678 0.133 35.715 0.583 0.115 
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GPR-Naive 71.865 0.909   0.185 69.575 0.974 0.200 

 

Table 2: Workdays vs Weekends (NYC’s outflow) 

 Workday Weekend 

 RMSE MASE MER RMSE MASE MER 

GPR-LST 33.175 0.481 0.096 32.203 0.655 0.111 

Seasonal-

ARIMA 

45.384 0.678 0.133 42.813 0.880 0.149 

GPR-Naive 71.865 0.909 0.185 48.567 0.890 0.151 

 

From the table-1 we can see different methodologies have similar prediction 

errors when predicting the outflow and inflow. And based on the table-2, it seems several 

methodologies achieved higher prediction accuracy (made smaller prediction errors) in 

the workday, which might indicate people’s mobility pattern is more regular in the 

workdays compared with the pattern in the weekends. Generally, from these two tables 

we can see that our proposed prediction methodology using the latent features achieves 

the highest accuracy (makes least prediction errors). 
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We would also like to see how our methodology performs across different cities. 

So we predicted the outflow of NYC and Beijing in the workdays and the results are 

shown in table-3. From the table we can see for Beijing, all methodologies achieved less 

RMSE but had larger MASE and MER compared with NYC. One reason is that the 

collected taxi data from Beijing is just a small sample of all the taxis (42%) and hence 

much sparser than the data from NYC. So the average number of taxi activities (pickups 

and dropoffs) in each partitioned grid of Beijing has a smaller scale than the 

corresponding one of NYC, resulting smaller RMSE. On the other hand, the sparsity of 

the data makes the temporal pattern relatively unstable and more difficult to model, 

resulting in larger MASE and MER. What’s more, we have limited data of Beijing’s taxi 

data for training which could all increase the prediction error (MASE and MER). But still, 

our proposed methodology performs best and achieves least prediction errors among all 

the methodologies.  

Table 3: NYC vs Beijing (Outflow in the workdays) 

 NYC Beijing 

 RMSE MASE MER RMSE MASE MER 

GPR-LST 33.175 0.481 0.096 13.432 0.611 0.125 
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Seasonal-

ARIMA 

45.384  0.678 0.133 15.925 0.707 0.146 

GPR-Naive 71.865 0.909   0.185 18.779 0.843 0.170 

 

We further investigated the prediction errors of different methodologies at 

different time periods. We used NYC’s outflow in the workdays as the main source for 

analysis. We divided a day into three main time periods, morning (6:00 am–11:59 am), 

afternoon (12:00 pm–17:59 pm), and evening (18:00 pm–23:59 pm) and plotted the 

prediction errors (MASE and MER) of different methodologies in Figure 6.3. From these 

plots, we can see that our proposed methodology (GPR-LST) performs best at any time 

period. 

Apart from the advantage of our methodology, there are also some other 

interesting phenomena worth mentioning. The first one is that for both metrics, majority 

of the methodologies are more accurate in the morning compared with evening.  The 

reason for this could be that people’s mobility pattern in the morning is simpler and 

easier to be predicted since most people probably would just head to work places then. 

However, people’s mobility pattern gets more complicated in the evening since they 

might go to restaurants, home, theaters, night clubs, etc., which makes an exact prediction 

more difficult. But for the prediction in the afternoon, two metrics show different trends. 

All methodologies had larger MASE but made smaller MER. We found that it is because 
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the flow volume across neighborhoods in the afternoon is  usually stable while there are 

demand peaks in the morning and evening respectively (lots of people need to go to/get 

off work). Hence the naive one step prediction (the baseline of MASE) does a better job 

in the afternoon which results in the increase of the MASE value of all the prediction 

methodologies. 

 

 

(a) MASE 
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(b) MER 

Figure 6.3. Prediction error at different time periods 

From the experiments above, we can see that our proposed methodology performs 

best, compared with some of the existing methodologies, and reduces the prediction error 

significantly. Furthermore, we assessed how our prediction methodology performed 

across different regions. More specifically, for each partitioned grid, we explored the 

relationship between the prediction error (MASE) of our methodology and the POI (point 

of interest) distribution. We collected NYC’s POI data from the OpenStreetMap 

(OpenStreetMap 2017) and focused on 5 types of POIs: food, nightlife, 

professional/office, shop & service, transport. We do not consider the residential data 

here because the residential data in OpenStreetMap is very sparse and incomplete. Note 
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that the size of different POI types varies, e.g., in an office area, there could be more 

restaurants than actual offices. Hence, it is difficult to judge the function of a region 

based on the absolute number of POIs. To address this, we normalize the scale of each 

POI type in each partitioned grid into the range of (0,1) with: 

𝑃𝑖,𝑘

′
=  

𝑃𝑖,𝑘−𝑚𝑖𝑛𝑖 (𝑃𝑖,𝑘)

𝑚𝑎𝑥𝑖(𝑃𝑖,𝑘)−𝑚𝑖𝑛𝑖 (𝑃𝑖,𝑘)
  (6.6) 

where 𝑃𝑖,𝑘  is the number of POI of type 𝑘 within grid 𝑖 and 𝑃𝑖,𝑘

′ is the normalized 

𝑃𝑖,𝑘. We plot the prediction error (MASE) and the normalized POI values of each grid in 

Figure 6.4. It is a stacked area plot where the x-axis indicates the MASE of our prediction 

methodology for different grids and the y-axis indicates the normalized value of different 

POIs in the corresponding grid. From the plot, we can see when there are certain amounts 

of POIs (the sum of normalized POI values is larger than a threshold, like 0.8) in an area, 

our prediction methodology generally makes less errors (the MASE is less than 0.5). This 

makes sense since in the urban areas with more POIs and more people’s activities, the 

pattern of taxis’ pick-ups and drop-offs tend to be more regular compared to suburban 

areas where people would take taxi less frequently and more randomly. But this 

relationship does not change smoothly. In other words, there is no strict increase/decrease 

function and some exceptions do exist. One reason for this is the inherent complication of 

human’s mobility pattern, and many people usually do not take taxi frequently and 

regularly. Another reason could be that our collected POI data is not very complete, e.g., 

lack of residential data and the scale/popular of each POI is also not considered here, e.g., 
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a big office POI like New York City Hall would definitely have a larger impact on the 

taxi demand than a POI of small company. Lastly, our sample is relatively small, with 

less than hundred grids in a city.  

 

 

 

(a) Outflow 
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(b) Inflow 

Figure 6.4 The prediction error (MASE) at different spatial units 

 

Besides the number of POIs, we also explored the relationship between the 

number of passengers and prediction MASE in each area. The result is plotted in Figure 

6.5, from which we can see there is a reciprocal relationship between them. When there 

are more people who took taxis in an area (more than 2500 pick-ups/drop-offs a day), our 

prediction methodology achieved quite high prediction accuracies (with MASE less than 

0.5), confirming one of our hypotheses that when there are more human activities, it is 

easier to predict the number of pick-ups and drop-offs. But this relationship is also not a 

strict increase/decrease function. 
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Figure 6.5 The number of pick-ups and drop-offs vs. prediction error (MASE) 

 

Lastly we would also like to explore that for our proposed GPR-LST 

methodology, whether there is a relationship between the absolute prediction error and 

the standard deviation of the Gaussian Process Regression. We plot the distribution of 

absolute prediction error and the standard deviation in the Figure 6.6. From the plotting, 

it seems although in some cases the prediction error did increase as the standard deviation 

got larger, there is no strong relationship between them. 
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(a) Original Distribution    (b) Distribution with Log Scale 

Figure 6.6 Absolute Prediction Error vs Standard Deviation 

6.3 The Flow Volume Between Neighborhoods 

After the prediction of outflow (inflow) across the partitioned grids, we further clustered 

those grids with similar mobility pattern into neighborhoods and predict the flow volume 

between them. In particular, we clustered the grids with similar latent spatial features. 

Since each grid can be either an origin or a destination, we defined the mobility feature 

vector of grid 𝑖 as: 

𝒮𝑖 = (𝒮𝑜𝑖
, 𝒮𝑑𝑖

)  (6.7) 

and the distance between the two grids 𝑖 and 𝑗 as: 
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𝑠𝑖𝑗 = |𝒮𝑖 − 𝒮𝑗|𝛼 ∗ (
𝒮𝑖∗𝒮𝑗

|𝒮𝑖|∗|𝒮𝑗|
) 𝛽 (6.8) 

 

The left part is the Euclidean distance while the right part is the cosine between 

two spatial vectors. This distance function takes both direction and magnitude of the 

latent spatial features into account. 

To cluster the grids with similar spatial latent features in neighborhoods, we 

adapted a bottom-up spatial hierarchical clustering approach. Specifically, in the 

beginning we assumed every grid is a neighborhood. Then we iteratively searched the 

pair of adjacent neighborhoods that have the smallest complete-linkage and merged them 

together. We repeated this merging procedure until certain criteria are met; for example, 

the smallest complete-linkage is larger than a given threshold. The clustered results of 

NYC and Beijing are shown in Figure 6.7 and Figure 6.8.  

With the clustered neighborhoods, we can explore mobility patterns between them. 

For our analysis, we chose four representative neighborhoods: 1, 2, 6, and 12. We plotted 

their average volume of inflow and outflow in a day (see Figure 6.9). One notable 

common pattern among all four neighborhoods (but unrelated to neighborhood 

characteristics) is the drop of outflow volume between 3:00 pm and 4:00 pm that is 

caused by the shift switch of taxi drivers. We also observed that these four neighborhoods 

have very unique mobility patterns. The neighborhood 1 has the highest inflow peak in 

the morning at around 9:00 am, and the peaks of both inflow and outflow at around 7pm 
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– 8 pm, which indicates neighborhood 1 is an office district mixed with some residential 

functions; in fact, neighborhood 1 is mainly composed of financial district, one of the 

busiest business and tourist areas in New York City and many luxury apartments. On the 

other side, neighborhood 6, which is mainly composed of Upper West Side (an affluent, 

primarily residential area), has the highest peaks of outflow and inflow are in the morning 

and evening, respectively, which is a typical sign of residential district mixed with some 

other functions. Different from other areas, neighborhood 2 has significantly high volume 

of inflow in the evening, a sign of nightlife district. From these examples we can see that 

our extracted latent features generally distinguish different neighborhoods with diverse 

unique characteristics.  
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Figure 6.7 The clustered neighborhoods of NYC 

 

Figure 6.8 The clustered neighborhoods of Beijing 

 

(a) Neighborhood-1 
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(b) Neighborhood-2 

 

(c) Neighborhood-6 
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(d) Neighborhood-12 

Figure 6.9 Average hourly inflow/outflow of selected neighborhoods 

 

Based on the clustered neighborhoods, we would predict the flow volume 

between them using the method described in section 3.2.3. We also compared our 

methodology with the Seasonal-ARIMA and GPR-Naïve. For each pair of origin and 

destination neighborhoods, we trained a Seasonal-ARIMA model for it. As for GPR-

Naïve, we trained one model with all the flow volume between any pair of neighborhoods.  

We first compared the results between NYC and Beijing. From the table-4 we can 

see the proposed methodology achieves better prediction accuracy and reduces the 

prediction error by 15%-20% compared with others such as Seasonal-ARIMA. 

Table 4: The prediction of flow volume between neighborhoods (NYC vs Beijing) 
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 NYC Beijing 

 RMSE MASE MER RMSE MASE MER 

GPR-LST 6.766 0.586 0.144 8.9773 0.5848 0.1299 

Seasonal-

ARIMA 

7.959 0.680 0.170 9.7870 0.6631 0.1473 

GPR-Naive 9.843 0.815 0.209 22.0454 0.9486 0.2009 

 

We also investigated how different methodologies perform in different time 

periods. Same as the previous section, we divided a day into three different time periods, 

morning, afternoon and evening. And we plotted the results in Figure 6.10 and Figure 

6.11, which shows similar patterns as the previous section (the prediction of 

outflow/inflow), for example, most methodologies achieve  better accuracy (less 

prediction error) in the morning compared with the evening. Because the flow volume in 

the afternoon has relatively stable temporal pattern compared with the ones in the 

morning and evening, all methods have higher MASE in the afternoon but less MER. 
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(a) NYC     (b) Beijing 

Figure 6.10 Prediction error(MER) at different time periods 

  

(a) NYC     (b) Beijing 

Figure 6.11: Prediction error (MASE) at different time periods. 

 

We also investigated how different lengths of the training dataset would affect the 

prediction errors. Specifically, we trained each methodology with 1, 2, 3, 4 weeks data of 

NYC and used the next 2 weeks data for the verification. We plotted the results in the 
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Figure 6.12. From the figure we can see our proposed methodology achieves acceptable 

performance even with just 1 week’s training data. And the prediction errors of all the 

methodologies become stable with 4 weeks’ training data. 

 

 

  

(a) MASE     (b) MER 

Figure 6.12  Prediction error with different Training Data Lengths 

 

6.4 The Prediction of Popular Road Segments and Primary Origin/Destinations 

Based on the predicted flow between neighborhoods, we further simulated the 

corresponding trajectory distributions in the road network and verified whether our 

synthetic trajectory distributions can accurately reflect the real traffic situation, and 

specifically, the hot road segments and their primary origins/destinations. 
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We mainly explored Beijing’s taxi dataset in this section; for the New York City 

taxi dataset, there is no detailed trajectory of each trip, and we are not able to directly 

verify the correctness of our methodology. Since the taxi dataset of Beijing is a series of 

GPS points, for each trip we ran the Map-Matching algorithm proposed by (Newson and 

Krumm 2009) and projected the GPS points into a series of road segments that the taxi 

traveled through, in order to gain the ground truth. 

We collected information on Beijing’s road network from the OpenStreetMap. 

We converted the original OSM format into a nodes-edges graph with osm4routing 

(OSM4Routing 2017). We only kept the road segments within the boundary shown in 

Figure 6.8. and further removed those road segments that were only for pedestrians or 

bicycles. Eventually, 26,975 road segments and 20,334 intersections were left. 

We first showed the accuracy of the top-K hot road segments prediction. 

Specifically, we predicted the top-5%, 10%, 15%,… of hot road segments based on the 

synthetic trajectory distributions in the next hour iteratively. We define the accuracy as: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(�̂�𝑘, 𝐸𝑘) =
|�̂�𝑘∩𝐸𝑘|

|𝐸𝑘 |
 (6.9) 

where �̂�𝑘  is the predicted top k popular road segments and 𝐸𝑘  is the actual top K 

popular road segments. We plotted the results of six models (shortest-path, top 3, top 6 

shortest paths; top 1, top 3, and top 6 most likely paths) in Figure 6.13. From the figure, 

we can see that the shortest-path–based model achieves the lowest accuracy in most cases, 

and that the top-K likely based models inferred from the multivariate KDE perform 
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slightly better than the top-K shortest-path–based models—yet the advantage is not that 

significant. This could be caused by the sparsity of the data. In our collected dataset, there 

are usually just a few thousands trips each hour, which makes the statistical pattern of the 

trajectory distributions less regular. We might need to collect some more complete 

datasets in the future for further analysis. As we increase the value of K of the hot road 

segments, the accuracy of all models also increases and the accuracy difference between 

them gradually decreases. This is understandable since it becomes easier for all the 

models to predict the top-K hot road segments as we increase the value of K. 

After the prediction of hot road segments, we attempted to further identify their 

formation through the origin or destination of the traffic in those road segments. 

Specifically, we tried to predict the top, top two, and top-K popular origin/destination 

neighborhoods of every road segment, based on the synthetic trajectory distributions. In 

other words, we wanted to see which neighborhood contributes largest (the second largest, 

third largest, and so on) amount of incoming/outgoing traffic volume for each road 

segment in the next hour. To measure the accuracy of the top-K primary 

origin/destination neighborhoods, we use a similar measurement metric as the previous 

top-K hot road segments: 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦(�̂�𝑘, 𝑅𝑘) =
|�̂�𝑘∩𝑅𝑘|

|𝑅𝑘|
 (6.10) 

where �̂�𝑘  is the predicted top k primary origin/destination neighborhoods while 

𝑅𝑘  is the actual top K primary origin/destination neighborhoods. Note that in the 
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experiment, we obtained the prediction accuracy for origin and destination 

neighborhoods separately, then used the mean as the corresponding accuracy. For 

example, the prediction accuracies of the top primary origin and destination 

neighborhoods are 0.72 and 0.71, respectively. As a result, the prediction accuracy of the 

top origin/destination neighborhood is (0.72 + 0.71) / 2 = 0.715. The final result is plotted 

in Figure 6.14. From Figure 6.14 we can see that the top-K likely-path–based models also 

achieve better prediction accuracies, as compared with the top-K shortest paths based 

models, and that the advantage is more obvious. In contrast to the prediction of hot road 

segments, the top likely-path–based model performs best, while the top-6 shortest-path–

based model performs the worst in most cases. As K increases, all of the models 

generally achieve higher accuracy for the prediction of the K primary origin/destination 

neighborhoods; yet in the beginning, the prediction accuracy decreases. We found that 

one reason for this finding is because a road segment is usually visited more frequently 

by the vehicles starting from or ending at that corresponding neighborhood. As a result, 

the prediction of the top primary origin/destination neighborhood is relatively easier. It 

becomes difficult to predict the second, third, … primary neighborhoods, as there are 

more possibilities from which to choose. 
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Figure 6.13 Prediction of hot road segments. 
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Figure 6.14 Prediction of Top-K origin/destination neighborhoods. 

6.5 Time Performance of Distributed Trajectory Distribution Simulation 

Algorithms 

Finally, we demonstrated the scalability of our designed MapReduce-based trajectory 

distribution simulation algorithms. We conducted our experiments on a Hadoop cluster 

composed of six machines. Each machine in the cluster had an Intel Xeon 2.2GHz 4 Core 

CPU with 48 GB RAM and a 1 TB hard drive at 7200 rpm. There is one named node and 

six data nodes in our cluster (the named node is also a data node). The version of Hadoop 

is 2.7.1. 

We can see from Algorithm 5.1 that the Map phase is pretty straightforward. We 

simply sent a few hundred records of flow volumes between neighborhoods to mappers 



 

 
    

94 

and they generate the corresponding flow volume between each pair of edges, which 

costs just 1–3 minutes in our cluster. On the other hand, the Reduce phase is 

computationally intensive, as it is the core of the trajectory distribution simulation. As a 

result, we mainly show the running time of our program versus the increasing number of 

reducers in Figure 6.15. From Figure 6.15, we can see that the running time of the 

program decreases gradually as the number of reducers increases, which demonstrates the 

scalability of our designed algorithms. Note that since the reduce phase is 

computationally intensive and our Hadoop cluster is relatively small (with only six 

machines), it can only run up to six reducers at one time. As a result, adding additional 

reducers will not help improve time performance. For the top-K shortest-path–based 

models, the time cost of the program also increases as the value of K gets larger, which is 

reasonable since there are more potential routes to be searched. As for the top-K likely-

path–based models, there is no significant difference for different K values, because we 

generally need to search all the potential routes until we reach a certain threshold (as 

shown in line 14 of Algorithm 5.2). 
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(a) Top-K shortest paths 

 

 (b) Top-K likely paths 
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Figure 6.15 Running time of trajectory distribution simulation vs number of 
reducers. 

 

We also explored the time performance of the prediction of the top-k hot road 

segments and the primary origin/destination neighborhoods. For the prediction of the 

primary origin/destination neighborhoods, we randomly chose a road segment and ran the 

program based on the synthetic trajectory distribution. The results are shown in Figure 

6.16, and they both also showed good scalability. 

 

 

 

 (a) Popular road segments  (b) Primary OD neighborhoods 

Figure 6.16 Running time of trajectory distribution analysis versus the number of 
reducers. 
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7.0 LIMITATIONS 

Our research has provided new methods and insights into learning mobility patterns that 

can be applied to different applications. However, there are limitations to the research 

described in this thesis, discussed briefly below. 

Our model extracts the latent spatial and temporal features from datasets to 

predict mobility patterns. Our current model is limited to normal mobility activities and 

does not take into account deviation from these activities. For example, our model cannot 

predict mobility based on abnormal events,  which could dramatically change people’s 

daily mobility pattern, such as a NFL football game, a national holiday, or extreme 

weather  are not handled by our model.  

Our methods for the trajectory distribution simulation only consider distance for 

route finding. While distance is a predominant criterion for finding routes, there are other 

criteria, such as travel time and least tolls, that are important as well. 

The experiments, to validate our proposed methodology, were focused on taxi 

data only. For this, our prediction results and conclusions are only valid for  mobility 

patterns through taxi activities  and  not other mobility activities..   
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8.0 CONCLUSION AND FUTURE DIRECTIONS 

In this thesis, we propose to predict human spatial-temporal mobility at a large scale. 

Specifically, this thesis has several major components. Firstly we designed a latent 

feature based methodology for the prediction of spatial-temporal activities such as the 

outflow/inflow of the vehicles of each neighborhood. Specifically, we modeled people’s 

spatial-temporal fluxes as a tensor and extract the latent spatial-temporal features through 

factorization. Then, we mathematically modeled the relationship between those extracted 

latent features and human mobility with a Gaussian process regression for future 

prediction. Compared with the existing techniques such as ARIMA, the designed 

methodology can inherently consider the characteristics of both spatial and temporal 

features of the predicted activities.  

After that, we further predicted the vehicle trajectory distributions in the road 

network at a city level, from which the hot road segments and their formation can be 

predicted and identified in advance, such as which road segments will have high traffic 

volume, along with the origins and destinations of the majority of the traffic in those hot 

road segments. The vehicle trajectory distribution prediction comprised three steps: (1) a 

methodology for the prediction of flow between neighborhoods that combined both latent 

and explicit features; (2) different models for the simulation of the corresponding flow 

trajectory distributions in the road network, from which the hot road segments and their 
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formation can be predicted and identified in advance; and (3) different efficient 

MapReduce-based distributed algorithms for the real-time simulation and analysis for 

large-scale simulation of trajectory distributions. 

To verify the proposed methodology in this thesis, we conducted two case studies 

on Beijing and New York City’s taxi trip data with a series of experiments. For the 

prediction of people’s outflow, inflow, and the flow between neighborhoods, the results 

showed that our designed methodology achieves a high degree of accuracy. Prediction 

errors are reduced significantly, as compared with some existing methodologies, such as 

Seasonal-ARIMA. Given the predicted flow between neighborhoods, we further 

simulated their trajectory distributions in the road network. Based on that, we predicted 

the top-K hot road segments and the primary origin/destination neighborhoods of the 

traffic passing through the hot road segments of interest. The results showed that our 

synthetic trajectory distributions accurately reflected the overall traffic situation. For 

example, for the prediction of the top 15% hot road segments, our methodology generally 

achieves an accuracy of around 65%. However, different models have different 

performances under different situations. For example, for the prediction of primary 

origin/destination neighborhoods, the top-K likely-path–based models inferred from 

multivariate KDE achieves a higher degree of accuracy, compared with the top-K 

shortest-path–based models; but for the prediction of hot road segments, their advantage 

is not that significant. More experiments may be done in the future to explore how 



 

 
    

100 

different models perform under different conditions, so that people could choose the right 

model based on their specific needs. 

Finally, we explored the time performance of our designed MapReduce based 

algorithms on a Hadoop cluster consisting of six servers. The results show that as the 

number of reducers goes up, the time cost of our program goes down gradually, which 

demonstrated the scalability of our algorithm. 

With regard to future research directions, there are several topics we can explore. 

First, in this thesis we predict the dynamic betweenness centrality of each road segment, 

and identify the hot road segments based on it. In the future we could further predict the 

average speed of each road segment based on the dynamic betweeness centrality, given 

the average speed is a more intuitive indicator of potential traffic congestion. Second, 

here we propose two models for the trajectory distribution simulation including the top-K 

shortest paths based model and top-K likely paths based model. Although both of them 

show good accuracy, we can try to design some more accurate models which take more 

factors into consideration, for example, the features of each road segment (the number of 

lanes, whether it is a highway or not, etc.), and estimate the possibility of each route. 

Another future work we can do is to detect the abnormal events and analyze the potential 

causes based on the synthetic trajectory distribution. Specifically, we can detect the road 

segments which would have significantly higher (or lower) traffic volume compared with 

the historical values, and identify the corresponding causes such as which neighborhood 
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contributes significantly more (or less) incoming/ongoing traffic. We can further extract 

the feeds from some location based social network and describe what happens. 

 

  



 

 
    

102 

BIBLIOGRAPHY 
 
 

Akdogan, A., U. Demiryurek, F. Banaei-Kashani and C. Shahabi (2010). Voronoi-based geospatial query 
processing with mapreduce. Cloud Computing Technology and Science (CloudCom), 2010 IEEE Second 
International Conference on, IEEE. 

Castro, P. S., D. Zhang and S. Li (2012). Urban traffic modelling and prediction using large scale taxi GPS 
traces. International Conference on Pervasive Computing, Springer. 

Chen, C., J. Hu, Q. Meng and Y. Zhang (2011). Short-time traffic flow prediction with ARIMA-GARCH 
model. Intelligent Vehicles Symposium (IV), 2011 IEEE, IEEE. 

Chen, L., M. Lv and G. Chen (2010). "A system for destination and future route prediction based on 
trajectory mining." Pervasive and Mobile Computing 6(6): 657-676. 

Chen, P.-T., F. Chen and Z. Qian (2014). Road traffic congestion monitoring in social media with hinge-
loss Markov random fields. 2014 IEEE International Conference on Data Mining, IEEE. 

Chen, Z., H. T. Shen and X. Zhou (2011). Discovering popular routes from trajectories. 2011 IEEE 27th 
International Conference on Data Engineering, IEEE. 

Clark, S. (2003). "Traffic prediction using multivariate nonparametric regression." Journal of transportation 
engineering 129(2): 161-168. 

Comito, C., D. Falcone and D. Talia (2015). Mining Popular Travel Routes from Social Network Geo-
Tagged Data. Intelligent interactive multimedia systems and services, Springer: 81-95. 

Cranshaw, J., R. Schwartz, J. I. Hong and N. Sadeh (2012). The livehoods project: Utilizing social media to 
understand the dynamics of a city. International AAAI Conference on Weblogs and Social Media. 

Davis, G. A. and N. L. Nihan (1991). "Nonparametric Regression and Short‐Term Freeway Traffic 
Forecasting." Journal of Transportation Engineering. 

De Lathauwer, L., B. De Moor and J. Vandewalle (2000). "On the best rank-1 and rank-(r 1, r 2,..., rn) 
approximation of higher-order tensors." SIAM Journal on Matrix Analysis and Applications 21(4): 1324-
1342. 

Dean, J. and S. Ghemawat (2008). "MapReduce: simplified data processing on large clusters." 
Communications of the ACM 51(1): 107-113. 

Deri, J. A., F. Franchetti and J. M. Moura (2016). Big Data computation of taxi movement in New York 
City. Proceedings of the 1st IEEE Big Data Conference Workshop on Big Spatial Data. 

Deri, J. A. and J. M. Moura (2015). Taxi data in New York City: a network perspective. Signals, Systems 
and Computers, 2015 49th Asilomar Conference on, IEEE. 



 

 
    

103 

Eldawy, A., Y. Li, M. F. Mokbel and R. Janardan (2013). CG_Hadoop: computational geometry in 
MapReduce. Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in 
Geographic Information Systems, ACM. 

Eldawy, A. and M. F. Mokbel (2013). "A demonstration of SpatialHadoop: an efficient mapreduce 
framework for spatial data." Proceedings of the VLDB Endowment 6(12): 1230-1233. 

Ferreira, N., J. Poco, H. T. Vo, J. Freire and C. T. Silva (2013). "Visual exploration of big spatio-temporal 
urban data: A study of new york city taxi trips." Visualization and Computer Graphics, IEEE Transactions 
on 19(12): 2149-2158. 

Franses, P. H. (2016). "A note on the Mean Absolute Scaled Error." International Journal of Forecasting 
32(1): 20-22. 

Froehlich, J. and J. Krumm (2008). Route prediction from trip observations, SAE Technical Paper. 

Froehlich, J., J. Neumann and N. Oliver (2009). Sensing and Predicting the Pulse of the City through 
Shared Bicycling. IJCAI. 

Gao, S., Y. Liu, Y. Wang and X. Ma (2013). "Discovering spatial interaction communities from mobile 
phone data." Transactions in GIS 17(3): 463-481. 

Guo, D., S. Liu and H. Jin (2010). "A graph-based approach to vehicle trajectory analysis." Journal of 
Location Based Services 4(3-4): 183-199. 

Guo, Q., B. Palanisamy and H. A. Karimi (2014). A distributed polygon retrieval algorithm using 
MapReduce. Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), 
2014 International Conference on, IEEE. 

Han, B., L. Liu and E. Omiecinski (2015). "Road-network aware trajectory clustering: Integrating locality, 
flow, and density." IEEE Transactions on Mobile Computing 14(2): 416-429. 

Hong, L., Y. Zheng, D. Yung, J. Shang and L. Zou (2015). Detecting urban black holes based on human 
mobility data. Proceedings of the 23rd SIGSPATIAL International Conference on Advances in Geographic 
Information Systems, ACM. 

Hua, C.-i. and F. Porell (1979). "A critical review of the development of the gravity model." International 
Regional Science Review 4(2): 97-126. 

Jeung, H., M. L. Yiu, X. Zhou and C. S. Jensen (2010). "Path prediction and predictive range querying in 
road network databases." The VLDB Journal 19(4): 585-602. 

Ji, C., T. Dong, Y. Li, Y. Shen, K. Li, W. Qiu, W. Qu and M. Guo (2012). Inverted grid-based knn query 
processing with mapreduce. ChinaGrid Annual Conference (ChinaGrid), 2012 Seventh, IEEE. 

Jiang, S., J. Ferreira Jr and M. C. Gonzalez (2012). Discovering urban spatial-temporal structure from 
human activity patterns. Proceedings of the ACM SIGKDD international workshop on urban computing, 
ACM. 



 

 
    

104 

Kaltenbrunner, A., R. Meza, J. Grivolla, J. Codina and R. Banchs (2010). "Urban cycles and mobility 
patterns: Exploring and predicting trends in a bicycle-based public transport system." Pervasive and Mobile 
Computing 6(4): 455-466. 

Kamath, K. Y., J. Caverlee, Z. Cheng and D. Z. Sui (2012). Spatial influence vs. community influence: 
modeling the global spread of social media. Proceedings of the 21st ACM international conference on 
Information and knowledge management, ACM. 

Kolda, T. G. and B. W. Bader (2009). "Tensor decompositions and applications." SIAM review 51(3): 455-
500. 

Lam, H. T. and E. Bouillet (2014). Online event clustering in temporal dimension. Proceedings of the 22nd 
ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM. 

Lathia, N., D. Quercia and J. Crowcroft (2012). The hidden image of the city: sensing community well-
being from urban mobility. International Conference on Pervasive Computing, Springer. 

Li, X., J. Han, J.-G. Lee and H. Gonzalez (2007). Traffic density-based discovery of hot routes in road 
networks. International Symposium on Spatial and Temporal Databases, Springer. 

Liu, M., K. Fu, C.-T. Lu, G. Chen and H. Wang (2014). A search and summary application for traffic 
events detection based on twitter data. Proceedings of the 22nd ACM SIGSPATIAL International 
Conference on Advances in Geographic Information Systems, ACM. 

Liu, S., Y. Liu, L. M. Ni, J. Fan and M. Li (2010). Towards mobility-based clustering. Proceedings of the 
16th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM. 

Liu, X. and H. A. Karimi (2006). "Location awareness through trajectory prediction." Computers, 
Environment and Urban Systems 30(6): 741-756. 

Liu, X., Y. Zhu, Y. Wang, G. Forman, L. M. Ni, Y. Fang and M. Li (2012). "Road recognition using 
coarse-grained vehicular traces." HP Labs, HP Labs2012. 

Liu, Y., X. Liu, S. Gao, L. Gong, C. Kang, Y. Zhi, G. Chi and L. Shi (2015). "Social sensing: A new 
approach to understanding our socioeconomic environments." Annals of the Association of American 
Geographers 105(3): 512-530. 

Liu, Y., F. Wang, Y. Xiao and S. Gao (2012). "Urban land uses and traffic ‘source-sink areas’: Evidence 

from GPS-enabled taxi data in Shanghai." Landscape and Urban Planning 106(1): 73-87. 

Matthias, H.-P. K. M. R. and S. A. Zuefle (2008). "Statistical density prediction in traffic networks." 

Neill, D. B. (2009). "Expectation-based scan statistics for monitoring spatial time series data." International 
Journal of Forecasting 25(3): 498-517. 

Newson, P. and J. Krumm (2009). Hidden Markov map matching through noise and sparseness. 
Proceedings of the 17th ACM SIGSPATIAL international conference on advances in geographic 
information systems, ACM. 



 

 
    

105 

Nishi, K., K. Tsubouchi and M. Shimosaka (2014). Hourly pedestrian population trends estimation using 
location data from smartphones dealing with temporal and spatial sparsity. Proceedings of the 22nd ACM 
SIGSPATIAL International Conference on Advances in Geographic Information Systems, ACM. 

Noulas, A. and C. Mascolo (2013). Exploiting foursquare and cellular data to infer user activity in urban 
environments. Mobile Data Management (MDM), 2013 IEEE 14th International Conference on, IEEE. 

Noulas, A., S. Scellato, C. Mascolo and M. Pontil (2011). "Exploiting Semantic Annotations for Clustering 
Geographic Areas and Users in Location-based Social Networks." The Social Mobile Web 11. 

NYCOpenData. (2016). "NYC Open Data."   Retrieved 01/01, 2016, from 
https://opendata.cityofnewyork.us/. 

OpenStreetMap. (2017).    Retrieved 03/01, 2017, from https://www.openstreetmap.org/. 

OSM4Routing. (2017). "OSM4Routing." from https://github.com/Tristramg/osm4routing. 

Patricia S. Hu, T. R. (2001). 2001 National Household Travel Survey. New York Add-On, New York City 
– New York County/Manhattan. 

Puri, S., D. Agarwal, X. He and S. K. Prasad (2013). MapReduce algorithms for GIS polygonal overlay 
processing. Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2013 
IEEE 27th International, IEEE. 

Quercia, D., L. M. Aiello, R. Schifanella and A. Davies (2015). The digital life of walkable streets. 
Proceedings of the 24th International Conference on World Wide Web, ACM. 

Rasmussen, C. E. (2006). "Gaussian processes for machine learning." 

Reades, J., F. Calabrese and C. Ratti (2009). "Eigenplaces: analysing cities using the space–time structure 
of the mobile phone network." Environment and Planning B: Planning and Design 36(5): 824-836. 

Ren, Y., M. Ercsey-Ravasz, P. Wang, M. C. González and Z. Toroczkai (2014). "Predicting commuter 
flows in spatial networks using a radiation model based on temporal ranges." arXiv preprint 
arXiv:1410.4849. 

Sayyadi, H., M. Hurst and A. Maykov (2009). Event detection and tracking in social streams. Icwsm. 

Scellato, S., M. Musolesi, C. Mascolo, V. Latora and A. T. Campbell (2011). NextPlace: a spatio-temporal 
prediction framework for pervasive systems. Pervasive computing, Springer: 152-169. 

Shekhar, S. and B. Williams (2008). "Adaptive seasonal time series models for forecasting short-term 
traffic flow." Transportation Research Record: Journal of the Transportation Research Board(2024): 116-
125. 

Simonoff, J. (1996). Smoothing methods in Statistics. 1996. Cité en: 163. 

https://opendata.cityofnewyork.us/
https://www.openstreetmap.org/
https://github.com/Tristramg/osm4routing


 

 
    

106 

Toole, J. L., M. Ulm, M. C. González and D. Bauer (2012). Inferring land use from mobile phone activity. 
Proceedings of the ACM SIGKDD international workshop on urban computing, ACM. 

Wang, F., R. Lee, Q. Liu, A. Aji, X. Zhang and J. Saltz (2011). Hadoop-gis: A high performance query 
system for analytical medical imaging with mapreduce, Technical report, Emory University. 

Wang, S., F. Li, L. Stenneth and S. Y. Philip (2016). Enhancing Traffic Congestion Estimation with Social 
Media by Coupled Hidden Markov Model. Joint European Conference on Machine Learning and 
Knowledge Discovery in Databases, Springer. 

Wang, Y., Y. Zheng and Y. Xue (2014). Travel time estimation of a path using sparse trajectories. 
Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, 
ACM. 

Wei, L.-Y., Y. Zheng and W.-C. Peng (2012). Constructing popular routes from uncertain trajectories. 
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, 
ACM. 

Williams, B. M. and L. A. Hoel (2003). "Modeling and forecasting vehicular traffic flow as a seasonal 
ARIMA process: Theoretical basis and empirical results." Journal of transportation engineering 129(6): 
664-672. 

Wilson, A. G. (1967). "A statistical theory of spatial distribution models." Transportation research 1(3): 
253-269. 

WorldTradeCenter. (2017). "ONE WORLD TRADE CENTER." from 
https://www.wtc.com/about/buildings/1-world-trade-center. 

Yen, J. Y. (1970). "An algorithm for finding shortest routes from all source nodes to a given destination in 
general networks." Quarterly of Applied Mathematics: 526-530. 

Yu, X., H. Zhao, L. Zhang, S. Wu, B. Krishnamachari and V. O. Li (2010). Cooperative sensing and 
compression in vehicular sensor networks for urban monitoring. Communications (ICC), 2010 IEEE 
International Conference on, IEEE. 

Yuan, J., Y. Zheng and X. Xie (2012). Discovering regions of different functions in a city using human 
mobility and POIs. Proceedings of the 18th ACM SIGKDD international conference on Knowledge 
discovery and data mining, ACM. 

Zhang, F., D. Wilkie, Y. Zheng and X. Xie (2013). Sensing the pulse of urban refueling behavior. 
Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing, ACM. 

Zhang, K., Y.-R. Lin and K. Pelechrinis (2016). EigenTransitions with Hypothesis Testing: The Anatomy 
of Urban Mobility. Tenth International AAAI Conference on Web and Social Media. 

Zhang, W., L. Zhang, Y. Ding, T. Miyaki, D. Gordon and M. Beigl (2011). Mobile sensing in metropolitan 
area: Case study in beijing. Mobile Sensing Challenges Opportunities and Future Directions, Ubicomp2011 
workshop. 

https://www.wtc.com/about/buildings/1-world-trade-center


 

 
    

107 

Zheng, Y., T. Liu, Y. Wang, Y. Zhu, Y. Liu and E. Chang (2014). Diagnosing New York city's noises with 
ubiquitous data. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous 
Computing, ACM. 

Zheng, Y., Y. Liu, J. Yuan and X. Xie (2011). Urban computing with taxicabs. Proceedings of the 13th 
international conference on Ubiquitous computing, ACM. 

Zhou, X., A. V. Khezerlou, A. Liu, Z. Shafiq and F. Zhang (2016). A traffic flow approach to early 
detection of gathering events. Proceedings of the 24th ACM SIGSPATIAL International Conference on 
Advances in Geographic Information Systems, ACM. 

Zhu, H., J. Luo, H. Yin, X. Zhou, J. Z. Huang and F. B. Zhan (2010). Mining trajectory corridors using 
Fréchet distance and meshing grids. Pacific-Asia Conference on Knowledge Discovery and Data Mining, 
Springer. 

 


	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1: Outflow vs Inflow ( NYC’s Workdays)
	Table 2: Workdays vs Weekends (NYC’s outflow)
	Table 3: NYC vs Beijing (Outflow in the workdays)
	Table 4: The prediction of flow volume between neighborhoods (NYC vs Beijing)

	LIST OF FIGURES
	Figure 1.1 An overview of the proposed methodology
	Figure 2.1 Snapshots of San Francisco traffic
	Figure 2.2. Illustrations of trajectory data
	Figure 2.3 Execution overview of MapReduce model (Dean and Ghemawat 2008)
	Figure 3.1. Higher-order orthogonal iteration algorithm
	Figure 3.2 Tensor model of human spatial-temporal movements
	Figure 3.3 Tensor factorization
	Figure 4.1: An illustration of a trajectory distribution
	Figure 4.2 Some possible trajectories for a given origin-destination pair.
	Figure 6.1: Pick-up and drop-off activities of NYC in a single day
	Figure 6.2: Taxi activities of Beijing in a single day
	Figure 6.3. Prediction error at different time periods
	Figure 6.4 The prediction error (MASE) at different spatial units
	Figure 6.5 The number of pick-ups and drop-offs vs. prediction error (MASE)
	Figure 6.6 Absolute Prediction Error vs Standard Deviation
	Figure 6.7 The clustered neighborhoods of NYC
	Figure 6.8 The clustered neighborhoods of Beijing
	Figure 6.9 Average hourly inflow/outflow of selected neighborhoods
	Figure 6.10 Prediction error(MER) at different time periods
	Figure 6.11: Prediction error (MASE) at different time periods.
	Figure 6.12 Prediction error with different Training Data Lengths
	Figure 6.13 Prediction of hot road segments.
	Figure 6.14 Prediction of Top-K origin/destination neighborhoods.
	Figure 6.15 Running time of trajectory distribution simulation vs number ofreducers.
	Figure 6.16 Running time of trajectory distribution analysis versus the number ofreducers.

	1.0 INTRODUCTION
	1.1 Research Problems
	1.2 Contributions
	1.3 Chapters Overview

	2.0 BACKGROUND AND RELATED WORK
	2.1 Traffic Prediction
	2.2 Trajectory Mining
	2.2.1 Individual Trajectory Predictions
	2.2.2 Popular Trajectory Mining
	2.2.3 Other Trajectory Mining

	2.3 Urban Community and Event Analysis
	2.4 Distributed Computing
	2.4.1 MapReduce
	2.4.2 Spatial Data Processing in Hadoop


	3.0 NOVEL SPATIAL-TEMPORAL PREDICTION USING LATENT
FEATURES
	3.1 Tensor Model of the Spatial-Temporal Activities
	3.2 Prediction Using Gaussian Process Regression (GPR)
	3.2.1 GPR Model between Spatial-Temporal Activities and Latent Features
	3.2.2 Prediction of the Volume of Outflow/Inflow
	3.2.3 Flow between Neighborhoods


	4.0 TRAJECTORY DISTRIBUTIONS IN THE ROAD NETWORK
	4.1 Definitions
	4.2 Flow Volume Between Road Segments
	4.3 Trajectory Distribution Simulation
	4.4 Trajectory Distributions Analysis and Applications

	5.0 LARGE-SCALE TRAJECTORY DISTRIBUTION SIMULATION
	5.1 MapReduce-Based Trajectory Distribution Simulation
	5.2 MapReduce-based Trajectory Distribution Analysis

	6.0 EXPERIMENT RESULTS
	6.1 Dataset
	6.2 Outflow (inflow) Volume Prediction
	6.3 The Flow Volume Between Neighborhoods
	6.4 The Prediction of Popular Road Segments and Primary Origin/Destinations
	6.5 Time Performance of Distributed Trajectory Distribution Simulation Algorithms

	7.0  LIMITATIONS
	8.0 CONCLUSION AND FUTURE DIRECTIONS



