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Sepsis is a high mortality syndrome characterized by organ dysfunction due to a severe and

dysregulated acute inflammatory response to infection. Research into therapies for this syn-

drome has historically ended in failure, which has largely been attributed to the elevated

levels of subject heterogeneity. What may have been previously attributed to variability in

sepsis may be due to mechanistic differences between patients. Endotypes are distinct sub-

types of disease, where underlying causes such as mechanistic or pathway related differences

manifest into phenotypes of disease.

The lack of mechanistic understanding of immune mediator dynamics and the responses

they trigger necessitates a mathematical modeling approach to analyze its complexities. A

transfer function model is proposed to describe and cluster the dynamics of key inflamma-

tory mediators. Five sepsis endotypes were discovered and revealed motifs of overwhelming

inflammation, various levels of immunosuppression, sustained inflammation, and immunod-

eficiency. An accurate clinical tool was proposed to classify subjects into endotypes using

six-hour trajectories of clinical data.

A physiological ordinary differential equation model of sepsis is proposed that charac-

terizes the interactions of inflammatory signaling molecules, neutrophils, and macrophages

across the bone, blood, and tissue compartments of the body. This model used to gener-

ate individual subject fits against human sepsis data. Population-level parameter analysis

implicated macrophage cell death and cytokine half- dynamics in endotype-level differences.

Several proof-of-concept statistical models were introduced to demonstrate that it is

possible to estimate the pre-hospital time of sepsis subjects and to quantify their sepsis-
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induced systemic tissue damage. A nearest-neighbor-based method was verified against

animal and human data and revealed that identifying infection time-zero of sepsis patients

can be quickly estimated with high accuracy using commonly measured clinical features.

A logistic regression ensemble model demonstrated revealed early organ dysfunction were

significant contributors to systemic damage and mortality. Knowledge of time-zero and

systemic damage levels, in combination with an endotype classifier, provides clinicians with

a clear depiction of where a subject is located on their sepsis trajectory. Such a decision

support system enables therapy timing, early organ support, and targeted therapies to guide

personalized treatment and shift patients towards better outcomes in sepsis.

Keywords: mathematical modeling, sepsis, cytokines, ordinary differential equations, ma-

chine learning, statistical analysis.
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1.0 INTRODUCTION

1.1 BACKGROUND AND SIGNIFICANCE

Each year, sepsis afflicts millions worldwide with extensive morbidity and mortality [1]. This

syndrome predominately affects opposite sides of the age spectrum: the pediatric and the

elderly, where the incidence and mortality rates increase for each [2]. As such, mortality

exceeds 40% for the 85 and older age group [2]. Treatment of sepsis has proven to be

a challenge because of the fast-changing dynamics, multiple trajectories, and outcomes of

the syndrome [3, 4]. Clinical features of sepsis are highly variable and are dependent on the

infection site, type of infection, patient demographics, coexisting illnesses, organ dysfunction,

and time since sepsis onset [5]. In the past year, sepsis was redefined for the third time, out-

dating several diagnosis criteria, such as the Systemic Inflammatory Response Syndrome and

the Logistic Organ Dysfunction System. The prevalence of multiple criteria is indicative of

the current debate and disagreement among medical professionals [6]. As a result, there is

currently no gold standard with which to diagnose sepsis [7].

Advancements in sepsis therapeutics can be generalized as stagnant, where within the

past 30 years, the majority of clinical trials for pharmacological interventions in sepsis showed

either no effect or a negative effect on mortality [5, 8]. The most promising sepsis therapy,

activated protein-c, was briefly approved by the Food and Drug Administration (FDA)

following a successful trial in 2001. However, by 2011, a follow-up study revealed that this

therapy was ineffective at decreasing mortality and thus the FDA subsequently removed

it from the market [1]. To date, there is currently no FDA-approved drug that replaced

activated protein-C to treat sepsis [7].
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The various pathways to failure as well as the fact that sepsis is often coupled with many

comorbidities result in high inter- and intra-patient variabilities of the syndrome. This has

led to difficulties in defining, diagnosing, and treating sepsis[7].

Sepsis is a severe acute physiological response that results from the systemic effects

of a dysregulated acute inflammatory response to infection and is characterized by organ

dysfunction [7]. Acute inflammation represents the first line of defense against infection.

First, the body mobilizes immune mediators [3]. These mediators enable the body to mount

an antimicrobial response to remove the source of infection, but in doing so damages healthy

cells during the process. During severe infections and/or severe damage, overwhelming

inflammation may occur [9]. This leads to the systemic inflammation syndrome known

as sepsis. Once triggered, three outcomes are possible [3]. The first (i) is the healthy

outcome, where the body is able to remove the infection source and inflammatory pathways

are properly deactivated. The second (ii) is immunosuppression or immunodeficiency, which

can lead to recurrent infection or uncontrolled growth of the invading pathogens [3]. The

third case (iii), aseptic sepsis, is persistent inflammation where the dysregulation causes

sustained inflammation even after the infection source has been dealt with [3].

During an acute inflammatory response, there are three phases: initiation, the inflam-

mation response, and resolution. Embedded in almost all tissue, resident macrophages are

responsible for the recognizing nearby pathogens and initiating the inflammatory response

by producing a variety of inflammatory mediators including chemokines, cytokines, and va-

soactive agents [10]. Important cytokines such as Tumor Necrosis Factor-α (TNF-α) and

Interleukin-6 (IL-6) recruit neutrophils towards the site of infection by effecting change

on the cell membrane, causing neutrophils to physically roll along endothelial walls [11].

The Interleukin-8 (IL-8) chemokine stops the rolling and allows neutrophils to extravasate

through endothelial walls without erythrocyte leakage [10, 11]. Neutrophils migrate through

the tissue and, upon reaching the infection site, become activated and release toxic sub-

stances to eliminate the pathogen. Most of these substances are reactive oxygen species.

During this stage, M1 (pro-inflammatory monocyte-derived) macrophages are simultane-

ously recruited to the infection site via similar cytokine and chemokine interactions in order

to aid the elimination effort and to produce additional mediators to sustain inflammation
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[12, 13]. Upon removing the pathogen, macrophages shift production from pro-inflammatory

mediators to anti-inflammatory mediators and begin the resolution phase [10, 13]. IL-6 tran-

sitions its effect from a neutrophil recruiter to a monocyte recruiter [14]. During this stage,

recruited monocytes exhibit an anti-inflammatory phenotype and may differentiate into M2

macrophages [13]. M2 macrophages become more prevalent in tissue and are responsible for

producing Interleukin-10 (IL-10), a master anti-inflammatory cytokine [13, 15]. Addition-

ally, macrophages remove dead tissue and promote repair [10, 12]. Finally, the inflammatory

cascade is turned off due to the presence of IL-10 and by the lack of IL-6 and TNF-α produc-

ing M1 macrophages. This healthy scenario represents case (i). This process is illustrated

by the simplified diagram shown in Figure 1.1. The healthy scenario, case (i), occurs when

pathogens are fully eliminated and the anti-inflammatory compartment successfully resolves

the inflammatory compartment.

Figure 1.1: Simplified schematic of the inflammatory response. Pathogens invading the host triggers
an inflammatory response. This response eliminates pathogens, but causes unavoidable collateral
damage to healthy tissue, thereby causing damage. This damage further initiates inflammation.
Inflammation also triggers an anti-inflammatory response. The anti-inflammatory response inhibits
the inflammatory response. Adapted from Reynolds, et al, 2006 [4].

Sepsis may result when one or more aspects of acute inflammatory response become

dysregulated. This often occurs due to high pathogen load or within the immunocompro-

mised elderly. During the neutrophil-dominant stage, high levels of neutrophil activity may

trigger the aseptic sepsis case (iii). The substances released by neutrophils are highly toxic

and cause unavoidable collateral damage to nearby tissue [10]. This damage triggers further

inflammation and leads to a persistent inflammatory response, which in turn causes more tis-
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Table 1.1: Overview of Select Sepsis Therapeutic Agents and Their Efficacy in Animal Models and
in Human Trials.

Therapeutic Agent Mortality Benefit

Name Description Positive None or Negative

IL1-RA IL-1 receptor antagonist Mouse[16], Baboon[17] Human[18]
MPSS Glucocorticoid Baboon[19] Human [20]
Lenercept TNF-α receptor antagonist Baboon[21] Human [22]
CDP571 anti-TNF-α antibody Baboon[23] Human [24]
BN 5021 PAF antagonist Mouse [25] Human [26]
BB-882 PAF receptor antagonist Mouse [27] Human [28]
TCV-309 PAF antagonist Mouse [29] Human [30]
TAK-242 TLR-4 inhibitor Mouse [31] Human [32]
Tifacogin Preventing coagulation Mouse [33], Baboon [34] Human [35]

(IL1-RA: Interleukin-1 receptor antagonist, MPSS: Methylprednisolone sodium succinate,
TNF-α: Tumor necrosis factor alpha, PAF: Platelet activating factor, TLR-4: Toll-like receptor 4)

sue damage. This cycle persists even if the pathogen is fully eliminated. Organ dysfunction

and failure, prolonged ICU stays, metabolic abnormalities, and/or death are common con-

sequences of this case [7]. Another dysregulation occurs if the anti-inflammatory pathway is

triggered prior to the full elimination of pathogens, triggering case (ii). A high inflammatory

response may trigger a similarly high anti-inflammatory response too early. In this scenario,

the host immune response is unable to mount a sufficient attack on the pathogen and the

host may succumb to the infection.

1.2 PROBLEMS WITH CURRENT APPROACHES IN SEPSIS THERAPY

Given the complexities of the inflammatory pathways, much of sepsis research and exper-

iments are derived from animal models. Promising therapies in animal models have often

failed in human trials due to a lack of efficacy or due to safety concerns [36, 37]. Table

1.1 outlines several promising sepsis therapeutic agents over the years that demonstrated

significant mortality benefits in animal trials but not human trials. The historical lack of
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successful clinical trials has resulted in pharmaceutical companies referring to sepsis as a

“graveyard” [38]. The sheer amount of inter- and intra-patient variability in septic humans

contribute to this translational disconnect. For example, this disconnect may result from

patient differences in pre-existing disease burden or the timing of applied therapeutics [39–

42]. Animal models typically use identical animals with uniform levels of inflammation (low

genetic variability and controlled induction of sepsis) and controlled therapy timing (applied

exactly x hours after experimentally induced sepsis). Applying this level of control in human

trials is currently infeasible because of the inability of clinicians to quantify such variability

for each human patient.

Mechanistic understanding of sepsis may hold the answers behind sepsis heterogeneity

and differences in inflammatory pathways. The mechanistic differences in inflammatory path-

ways can result from immunosenescence, age-related differences in immunity [43]. Analysis

of genomic data from human sepsis subjects suggests that certain populations are predis-

posed to sepsis due to mechanistic implications of certain gene mutations [44]. Furthermore,

a fixed-effect analysis of this data, a statistical approach to identify confounding effects on

these gene mutations, revealed that age, ethnicity, and comorbidities may be important fac-

tors. These findings lend evidence to the idea that sepsis heterogeneity can be attributed to

pathological mechanistic differences between certain populations.

Given the long historical failure of sepsis therapies and the issues with patient variability,

the preconception of a “one-size-fits-all” therapy may be inappropriate [41, 45]. Post-hoc

analyses of several past human trials suggest several cohorts of sepsis patients may have

benefited from the experimental therapies (despite the overall conclusion of no mortality

benefit across trial subjects) [18, 46]. A targeted therapeutic approach to sepsis may be a

promising outlook for treatment. Targeted therapeutics can be developed by understand-

ing and use the disease subtypes to formulate a therapy. This has been shown to be an

effective approach in the treatment of asthma. Asthmatic research using disease subtypes

to develop targeted therapies have been successful, which lends support to the hypothesis

that a singular therapy for sepsis is inappropriate [47, 48]. An “endotype” is a disease sub-

type characterized by pathological and mechanistic differences. Sepsis subtype identification

has immense potential to improve clinical outcomes (such as lowering mortality or lowering
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multiple organ failure rates), which is why it is surprising that there is a lack of existing

literature on the topic. The existence of subtypes in sepsis has been hypothesized over the

years, but few have tried to identify and characterize them [45, 49, 50].

1.3 DECISION SUPPORT SYSTEMS

To address the clinical challenges with sepsis, mathematical model-based decision support

may provide the solution. Mathematics and in silico studies in sepsis have offered descrip-

tive models that can aid clinicians in understanding the ongoing dynamics of sepsis and

ascertain the effects of potential treatments [3, 4, 51–55]. Some of these studies have an-

alyzed parameter-based outcome bifurcations, revealing that mechanistic differences in the

parameter space may lead to death or survival states [3, 4]. However, few models in exist-

ing literature have been calibrated against human sepsis data, limiting the translatability

of its results to the clinic. The goal of this dissertation is to use mathematical models,

calibrated on human sepsis data, to produce insights into how and why sepsis endotypes

manifest and to provide clinicians with the appropriate quantitative tools to deal with the

sepsis heterogeneity.

1.4 DISSERTATION OVERVIEW

The focus of this dissertation is to identify, characterize, and analyze the subtypes of adult

sepsis. The underlying hypothesis is that providing clinicians with the ability to classify

patients into sepsis subtypes will improve sepsis therapy and improve clinical outcomes.

Endotype-driven approaches may address major components of the translational disconnect

between animal models and human trials. Identifying sepsis endotypes may capture the root

cause of much of the variability associated with the syndrome. Analysis of specific subtypes

can identify how mechanistic differences cause the dysregulations in Section 1.1. Knowledge
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of such mechanistic differences can enable the discovery of new pharmaceutical targets for

therapy or reveal cohorts that benefit from specific treatments.

The secondary focus of this dissertation is the creation of translatable clinical tools to

support clinicians in their decision-making process during the treatment of sepsis patients.

These tools aim to provide early sepsis subtype classification and enable therapy timing and

were designed with (i) low measurement burden (relatively easy to measure biomarkers) and

(ii) low temporal burden (short sequential measurements only).

The dissertation is organized as follows. Chapter 2 identifies clusters of sepsis patients

with similar clinical features using a statistical approach. Hierarchical clustering revealed

that inflammatory mediators predominately drove the formation of the clusters and that

they are associated with sepsis-related mortality and organ dysfunction.

Chapter 3 studies how the dynamics of cytokines, the aforementioned inflammatory

mediators, reveal distinct patterns. These behaviors were characterized by five distinct

groups. This work was extended as a proposed clinical tool, which quickly classified a

subject’s endotype within 6 hours of clinical presentation.

Chapter 4 focuses on the importance of cytokines and their dynamical relationship to

endotyping in sepsis. Cytokines are responsible for recruiting white blood cells, which ulti-

mately carry out the relevant antimicrobial actions during acute inflammation. To analyze

the discovered endotypes in the broader context of sepsis, a tissue and blood compartmental

mechanistic ordinary differential equation model was developed to capture both white blood

cell and cytokine dynamics. This model was used to generate endotype-specific fits, which

was used to analyze endotype pathology.

Chapter 5 describes exploratory models that address other aspects of sepsis variability

that can improve the translatability of animal research to humans. To address the tight

experimental controls with regards to therapy timing and controlled injury levels seen in

animal research, machine-learning approaches were taken to identify sepsis time zero in

patients and to quantify global tissue damage during sepsis. With the knowledge of disease

time zero and systemic damage, a clinician can be provided with a grasp of where a septic

patient is located along an endotype’s disease trajectory. This combined knowledge can be
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used to finely select suitable patients for clinical trials and may offer improvements to the

status quo of care.

Chapter 6 describes several notable mathematical tools developed for this project. A

network optimization tool is first introduced as a method to detect inflammatory pathways

in data. This tool identifies the best boolean rule network that best describes a dataset to aid

in the analysis of immune pathways and model structure design. A parameter fitting toolkit,

APT-MCMC, is then introduced as an efficient Monte Carlo method to fit such models.

APT-MCMC contains features for advanced fitting scenarios pertaining to mathematical

models in medicine, including fitting initial conditions, handling of infusions, and fitting

left-censored data.

Chapter 7 provides perspective on the contributions this dissertation makes in the field

of sepsis. Short and long-term future improvements are proposed, with the ultimate goal

envisioned as a simple to use bedside tool to enable clinicians to personalize treatment for

each septic patient under their care.
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2.0 HIERARCHICAL CLUSTERING APPROACH TO IDENTIFY SEPSIS

ENDOPHENOTYPES

Clinical features of sepsis vary greatly among patients and are dependent on pathogen fac-

tors, host factors, time elapsed between onset of infection and clinical presentation, and

interventions [5]. Failure to understand the vital interplay between these factors has con-

tributed to many failed sepsis clinical trials in the past few decades, and there is a clinical

need to revisit the current approach to sepsis research [8, 56, 57]. Sepsis research may ben-

efit by borrowing a promising technique from another disease area that may be the key to

capturing physiologic variability: the study of disease endotypes.

Asthma research has demonstrated success in applying clinical endotypes for the purposes

of clinical diagnosis and classification, predictions, and therapy development [47]. Endotypes

are disease subtypes that are caused by pathobiological differences and are often expressed

through phenotypic variability [48]. Several severe asthma endotypes and their indicative

biomarkers have been identified, enabling the research and development of targeted thera-

peutics [48]. For instance, glucocorticoids are the gold standard for asthma treatment, but

their efficacy varies, sometimes to the point of no benefit, among asthma endotypes [47].

Furthermore, asthma endotypes are being used to guide clinical study design [47]. Consider-

ation of endotypes in sepsis, which dispels the notion of a single therapeutic approach, may

lead to better targeted and more effective treatment [45].

The use of endotypes in sepsis may reveal key underlying pathobiological differences

between different host responses to sepsis and may address much of the clinical variability

observed in septic patients. In the field of asthma, researchers have demonstrated that endo-

types can be derived from clusters of phenotypes despite differences in clinical presentations

and disease severity [47].
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Several groups have previously identified sepsis clusters with differing mortality rates

[49, 50]. Fjell, et al., used an unsupervised clustering approach to segregate patients using

cytokines and other signaling molecules [49]. They identified three groups of varying cy-

tokine magnitudes. The highest cytokine group was associated with elevated mortality and

morbidity such as renal failure and coagulopathy. Knox, et al., used a self-organizing map

approach to identify four clusters with differing clinical outcomes [50]. This approach trained

a map of nodes to represent a dimensionally-reduced version of a clinical data set (with vari-

ables such as temperature, white blood cell count, etc.). The identified node clusters were

re-colored to visually demonstrate differences between clusters in sepsis-related organ failure

assessment (SOFA) scores and sepsis severity [58].

The ideal endotype classification system for sepsis would involve a combination of a few

highly informative signaling molecules (cytokines) and intuitive clinical biomarkers, such as

vital signs, to be practical in a clinical setting. The work presented by Fjell, et al., utilizes

only signaling molecules, many of which are rarely collected in an ICU. The work by Knox,

et al., takes a dimension reduction approach which renders it difficult to interpret the clinical

features of each endophenotype.

The underlying hypothesis for this work was sepsis endotypes were identifiable and sep-

arable via clinical and diagnostic biomarkers in a multi-dimensional manner. Because endo-

types are generally explained by genetic differences (or some other underlying mechanistic

distinction), the stratified groups in this work are better described as endophenotypes. The

hierarchical dendrogram clustering and heatmap approach from Fjell, et al. was adapted for

use with a rich and longitudinal human sepsis data set. This approach allowed the visualiza-

tion of defining features of each endophenotype that would be lost in a dimension-reduction

approach. Finally, an important end goal was to establish endophenotypes with distinct

clinical features, including 14-day all-cause mortality and risk of multiple organ failure.
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2.1 METHODS

A retrospective analysis of the Protocol-Based Care for Early Septic Shock (ProCESS) trial

was conducted [59]. This trial was propelled by the seminal 2001 journal article by Rivers,

et al., which demonstrated mortality benefits from early goal-directed therapy (EGDT) in

sepsis [60]. EGDT involves monitoring hemodynamics using a central venous catheter and

controlling arterial pressures and hematocrit to within pre-set therapeutic zones via fluids

and vasopressors [60]. The ProCESS trial encompassed 31 emergency departments in the

United states and enrolled 1341 subjects into one of three treatment arms to compare the

clinical outcomes of EGDT, protocol-based care (combination of EGDT and standard care),

and standard care. The primary clinical outcome was 60-day in-hospital mortality. At the

conclusion of the study in 2014, the ProCESS investigators determined that there were no

mortality differences among any of the three treatment arms. Furthermore, a retrospective

analysis of all EGDT studies (including ProCESS) in 2015 concluded that EGDT had no

effect on mortality outcomes in sepsis patients [61].

In light of this result, the ProCESS trial amassed a rich data set from its subjects.

Longitudinal and high fidelity clinical data were collected for many of the 1341 subjects. This

data was retrospectively analyzed for this chapter. 84 biomarkers were measured temporally.

The variance among different biomarkers varied in scale and those with high variance were

selected for analysis. Biomarkers were converted to the z-score (zero-mean and one standard

deviation). The biomarkers were sorted by the range in z-scores (highest range to lowest

range to represent the amount of variance within a biomarker). The top 50% of biomarkers

were selected for inclusion in the heatmap analysis.

An availability analysis at baseline, as defined by trial enrollment, was performed on the

remaining 42 biomarkers. To improve biomarker availability, missing baseline values were

substituted by a measurement within 3 hours of time-zero, when necessary. This yielded a

convenience cohort of 493 patients with the following biomarkers fully measured at baseline:

glucose, platelet count, systolic and diastolic blood pressure, urine output, temperature,

heart rate, Tumor Necrosis Factor-alpha (TNF), Interleukin-10 (IL-10), Interleukin-6 (IL-

6), lactate, blood urea nitrogen, creatinine, white blood cell count, respiratory rate, and
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Table 2.1: Comparison of convenience cohort for hierarchical clustering against the rest of ProCESS
database.

ProCESS Database Whole Cohort
Characteristic n=847 n=493

Age 61.5±17.9 60.0±17.2
Male sex – no. (%) 457 (54.0%) 290 (58.8%)
Race – no. (%)

White 575 (67.9%) 340 (69.0%)
Black 224 (26.4%) 109 (22.1%)
Other 48 (5.7%) 44 (8.9%) *

Source of sepsis – no. (%)
Pneumonia 272 (32.1%) 171 (34.7%)
Urinary Tract Infection 160 (18.9%) 124 (25.2%) *
Intraabdominal infection 127 (15.0%) 49 (9.9%) *
Infection of unknown source 112 (13.2%) 58 (11.8%)
Skin or soft-tissue infection 63 (7.4%) 33 (6.7%)
Catheter-related infection 27 (3.2%) 11 (2.2%)
Central nervous system infection 7 (0.8%) 3 (0.6%)
Endocarditis 4 (0.5%) 3 (0.6%)
Other 52 (6.1%) 33 (6.7%)
Determined not to have infection 23 (2.7%) 8 (1.6%)

Positive blood culture – no. (%) 249 (29.4%) 147 (29.8%)
Injury Severity

APACHE II 20.5±7.5 21.2±7.8
APACHE III 60.8±22.3 61.7±23.2
Charlson 2.6±2.6 2.7±2.7
SOFA 7.1±3.5 7.3±3.6

Physiological variables
Systolic blood pressure – mmHG 100.6±23.9 98.7±25.0 *
Heart rate – beats/min 103.3±20.6 103.0±20.1
Temperature – C 37.3±1.3 37.3±1.4
Respiratory rate – breaths/min 23.0±6.6 22.6±7.1
Total bilirubin – mg/deciliter 1.5±2.2 1.4±1.8
Serum lactate – mmol/liter 2.9±2.5 3.0±3.0

Outcome
14 All-cause Mortality – no. (%) 149 (17.6%) 90 (18.3%)
Mortality – days 48.6±71.8 58.3±84.7
Multiple Organ Failure – no. (%)

Baseline 468 (55.3%) 282 (57.2%)
Within 14 Days (Any) 473 (55.8%) 276 (56.0%)

New Organ Failure in the first week – no. (%)
Cardiovascular 506 (59.7%) 303 (61.5%)
Respiratory 289 (34.1%) 183 (37.1%)
Renal 27 (3.2%) 20 (4.1%)

Stay in hospital – days 12.1±11.6 10.8±10.0
ICU 5.3±7.3 4.5±4.6

Serious Adverse Events – no. (%) 53 (6.3%) 29 (5.9%)

∗ denotes p≤ 0.05 from Dunn’ or Chi-Squared tests to determine differences between continuous or categorical
variables, respectively.
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potassium. This convenience cohort was compared against the rest of the ProCESS subjects

and the statistical results are presented in Table 2.1. Very few cohort characteristics or

clinical outcomes were statistically different, indicating that this convenience cohort was

representative of the ProCESS patients as a whole.

Missing baseline biomarkers were imputed in order to increase the number of analyz-

able biomarkers within the convenience cohort. Biomarkers with less than 5% missing at

baseline were included after imputation using the predictive mean matching program from

the mice package in R. Imputed biomarkers were sodium, chloride, hemoglobin, thrombin-

antithrombin (TAT) complex, D-Dimer, and calcium. Finally, bilirubin, with 18% missing

baseline values, was imputed using a linear model, where other baseline biomarkers served

as predictors (see Equation 2.1).

Xbilirubin(0) = β0 +
N∑
i=1

βiXi(0) (2.1)

Fitting the β coefficients were performed via the linear regression function from the Scipy

package in Python. The result was a complete dataset consisting of 493 subjects and 18

biomarkers at baseline. In order to analyze changes within this cohort over time, 6 and

24-hour post-trial enrollment data were considered as well. Missing measurements at these

time points were imputed using a last measured value carried forward approach. Data values

for patients that died by 6 or 24 hours were not imputed and were left as black columns

within the heatmaps.

The final step of data processing was to normalize the data. The natural log of the

data was taken to prevent biomarkers from exhibiting large ranges (such as cytokine mea-

surements). An empirical cumulative distribution function (eCDF) was calculated for each

biomarker across the entire convenience cohort using measurement values at 0, 6, 24, and 72

hours. Measurements at 72 hours were included to provide more data points for the eCDF

but were not used to generate heatmaps due to the excessive amounts of missing measure-

ments. Each biomarker was evaluated against their respective eCDF to obtain a normalized

value between 0 and 1. This normalized value was linearly transformed to boundaries of

[-10, 10]. A value of zero (corresponding to white on a heatmap) represents the population

median for a biomarker. An important note is that a value of zero makes no indication
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of a “healthy” state. Given the large number of biomarkers included for analysis and the

severely ill cohort, no consideration was performed to account for each biomarker’s crite-

ria for healthy levels. This normalization scheme step ensured comparability of biomarkers

among endophenotypes and time points.

2.1.1 Heatmap

Identifying patterns of distinct septic responses is nontrivial and necessitates unsupervised

clustering because there is no currently accepted classification of sepsis in clinical practice.

Hierarchical clustering was selected as the clustering algorithm because clusters merges can

be visualized intuitively via a dendrogram tree. Hierarchical clustering and subsequent heat

map visualization were performed using the heatmap3 package in R. Clustering options

was set to Euclidean distance and to the complete linkage function for bottom-up clustering.

Clustering was performed on the baseline dataset with both biomarker and patient clustering

enabled. Endophenotype identification was performed by analyzing the resulting heatmap

and dendrogram. Biomarker differences in the heatmap, the heights of the patient-level

dendrogram tree, and clinical intuition informed the creation of similar groups within the

heatmap. Hourly visualizations of patient data at 6 and 24 hours were performed with

the heatmap technique and ordered using the hierarchical clustering results of the baseline

dataset to preserve the identified endophenotype groups.

Clinical outcomes were defined by 14-day all-cause mortality and 14-day multiple organ

failure rates within each endotype. Unlike the clinical outcome in the ProCESS database

(60-day in-hospital mortality), 14-day all-cause mortality isolated mortality likely due to

the septic shock rather than downstream complications of sepsis, which is consistent with

previous literature [62]. Furthermore, sepsis severity definitions were rendered obsolete by

the 2016 redefinition of sepsis and multiple organ failure rates served as a proxy for sepsis

severity for each endotype [7]. SOFA values were calculated for each of the 493 patients using

the appropriate values at baseline and then on days 1 through 14 using daily maximum or

minimum values. A distinction was made between baseline MOF and 14-day MOF in order

to distinguish patients that were sick upon clinical presentation (with baseline MOF) or
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patients who worsened (no baseline MOF, but developed within 14-days). Baseline MOF

was defined by baseline SOFA ≥ 2. 14-day MOF was defined by any daily SOFA ≥ 2.

2.1.2 Statistical Analysis

Kruskal-Wallis and Chi-squared tests were performed on continuous and discrete variables,

respectively, test for statistically significant differences in variables among each endophe-

notype (p< 0.05). Patient characteristics such as infection source, demographics, injury

severity, and baseline physiological variables were analyzed. Outcomes such as mortality,

multiple organ failure, and hospital length of stay were also evaluated. Significance testing

was used to identify comorbidity differences between each endophenotype.

Further statistical testing was performed to test if any generated endophenotype was

a time-shift of another (for example, is group A at hour 0 the same as group B at hour

6?). Pair-wise testing was performed between each time point of each endophenotype. The

energy-distance test statistic was chosen due to its ability to compare two multivariate dis-

tributions and generate a distance between them [63]. This statistic was used to generate

a multivariate distribution of clinical biomarkers (generated on raw values prior to log and

CDF transformation) for each endophenotype at each time point. Using these distributions,

the energy-distance algorithm tested for any statistical differences between each time point

of each endotype. The R package energy was used for these computations. To account for

dependency issues arising from multiple comparisons, permutation testing (10,000 replicates

for each pair-wise test, significance at p< 0.05) was conducted.

2.2 RESULTS

Figure 2.1 shows the results of the clustering algorithm and the groups are visualized via

heatmap. White (zero in the normalized scale) represented the population median for a

biomarker. Red and blue colors indicate biomarker levels relative to the population; dark

red indicated that a patient’s biomarker was elevated with respect to the population me-

15



Figure 2.1: Heatmap of clustered baseline biomarkers in 493 patients with 6 identified subclusters.
Biomarkers are individually normalized to be between -10 and 10, with 0 (white) representing
the biomarker median. Dendrograms illustrate the clustering performed on biomarkers (left) and
on patients (top). Subgroups were identified by analyzing the patient dendrogram. Group A is
characterized by high cytokinemia, high lactate, and elevated mortality and multiple organ failure
rates. Group B is characterized by medium cytokinemia and lower lactate. Group C is characterized
by elevated blood pressure and low mortality rates. Group D is characterized by low cytokinemia
and low mortality rates. Group E is characterized by a low IL-6 response and low values of creatinine
and BUN, which is indicative of renal health. Group F is characterized by high IL-10 and TNF
responses along with elevated creatinine and BUN, which is indicative of poor renal health. (BUN
= blood urea nitrogen, IL-# = Interleukin-#, TNF = Tumor Necrosis Factor-α)
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Figure 2.2: Heatmap of 6-hour biomarkers in 493 patients with 6 identified subclusters. Hierarchical
clustering was not performed. Cluster ordering and Groups A-F were preserved from Figure 2.1.
This heatmap demonstrates the progression of the 493 patients since baseline. Generally, there are
improvements in all groups. Patients with elevated cytokinemia begin to taper down (return toward
baseline). Blood pressure and urine output generally increased. Those with elevated temperatures
at baseline tended to abate by 6 hours.

dian and dark blue indicated reduced levels. The analysis of the dendrogram yielded six

endophenotypes, labeled A-F. Figures 2.2 and 2.3 demonstrate patient progression over the

next 6 and 24 hours, respectively, with patient ordering preserved (using the ordering in-
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Figure 2.3: Heatmap of 24-hour biomarkers in 493 patients with 6 identified subclusters. Hierar-
chical clustering was not performed. Cluster ordering and Groups A-F were preserved from Figure
2.1. This heatmap demonstrates the progression of the 493 patients since baseline. There are more
white biomarkers in this heatmap than in Figures 2.1 and 2.2, indicating a tendency of biomarkers
to move away from their extremes. Abatement of cytokinemia is demonstrated in Group A, but
the majority of patient IL-6 and IL-10 levels were still in the red, which portend worse prognoses.
Group D continues to have a low cytokine response.

formed from baseline clustering). Table 2.2 shows the patient characteristics and outcome

differences between each endophenotype, including significant differences in mortality, organ

failure events, and the length of ICU stay.
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Table 2.2: Comparison of endophenotypes identified via hierarchical clustering.

Endophenotype

A B C D E F

Characteristic n=158 n=64 n=30 n=46 n=78 n=117

Age 61.2±17.2 58.6±16.4 57.8±18.7 61.5±15.6 58.7±16.1 59.8±18.2

Male sex – no. (%) 100 (63.3%) 32 (50.0%) 15 (50.0%) 24 (52.2%) 48 (61.5%) 71 (60.7%)

Race – no. (%)

White 107 (67.7%) 47 (73.4%) 15 (50.0%) 31 (67.4%) 52 (66.7%) 88 (75.2%)

Black 38 (24.1%) 9 (14.1%) 13 (43.3%) 10 (21.7%) 21 (26.9%) 18 (15.4%) *

Other 13 (8.2%) 8 (12.5%) 2 (6.7%) 5 (10.9%) 5 (6.4%) 11 (9.4%)

Source of sepsis – no. (%)

Pneumonia 56 (35.4%) 23 (35.9%) 11 (36.7%) 14 (30.4%) 32 (41.0%) 35 (29.9%)

Urinary Tract Infection 42 (26.6%) 17 (26.6%) 6 (20.0%) 11 (23.9%) 14 (17.9%) 34 (29.1%)

Intraabdominal infection 15 (9.5%) 8 (12.5%) 1 (3.3%) 4 (8.7%) 12 (15.4%) 9 (7.7%)

Infection of unknown source 17 (10.8%) 6 (9.4%) 5 (16.7%) 2 (4.3%) 5 (6.4%) 23 (19.7%) *

Skin or soft-tissue infection 8 (5.1%) 3 (4.7%) 2 (6.7%) 5 (10.9%) 11 (14.1%) 4 (3.4%) *

Catheter-related infection 5 (3.2%) 1 (1.6%) 0 (0.0%) 2 (4.3%) 0 (0.0%) 3 (2.6%)

Central nervous system infection 1 (0.6%) 0 (0.0%) 0 (0.0%) 1 (2.2%) 0 (0.0%) 1 (0.9%)

Endocarditis 1 (0.6%) 2 (3.1%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 0 (0.0%)

Other 13 (8.2%) 3 (4.7%) 2 (6.7%) 7 (15.2%) 3 (3.8%) 5 (4.3%)

Determined not to have infection 0 (0.0%) 1 (1.6%) 3 (10.0%) 0 (0.0%) 1 (1.3%) 3 (2.6%) *

Positive blood culture – no. (%) 75 (47.5%) 20 (31.2%) 1 (3.3%) 8 (17.4%) 18 (23.1%) 25 (21.4%) *

Injury Severity

APACHE II 23.1±8.0 21.6±8.0 20.0±8.6 18.7±6.2 17.9±7.1 21.8±7.3

APACHE III 63.4±23.5 67.8±22.0 57.4±21.8 57.4±19.9 56.1±23.8 62.5±23.1

Charlson 2.9±2.8 3.0±2.7 2.7±2.7 2.4±2.2 2.5±2.3 2.8±2.9

SOFA 8.9±3.7 7.9±3.9 5.5±3.3 5.5±2.8 6.0±2.6 6.8±3.2 *

CNS 0.8±1.2 0.8±1.2 1.3±1.4 0.5±1.1 0.7±1.2 0.9±1.3

Cardiac 2.5±1.6 2.6±1.5 0.9±1.4 1.8±1.4 2.1±1.6 1.8±1.5 *

Coagulation 1.0±1.2 0.9±1.1 0.1±0.2 0.2±0.7 0.4±0.9 0.2±0.7 *

Liver 0.8±1.0 0.8±1.1 0.4±0.8 0.2±0.5 0.5±0.9 0.3±0.7 *

Renal 1.7±1.2 1.2±1.3 0.9±1.2 1.4±1.5 0.5±0.7 1.7±1.2 *

Respiratory 2.1±1.2 1.6±1.1 1.9±1.0 1.4±1.0 1.7±1.0 1.8±1.1 *

Physiological variables

Systolic blood pressure – mmHG 95.6±25.2 90.8±13.0 134.7±28.3 97.1±28.3 97.2±22.1 99.4±21.3 *

Heart rate – beats/min 110.2±17.9 93.7±19.7 108.9±18.5 95.5±21.5 102.2±18.1 100.3±20.2 *

Temperature – C 37.8±1.4 36.4±1.4 37.4±1.0 36.9±1.1 37.8±1.2 36.7±1.2 *

Respiratory rate – breaths/min 24.7±7.9 21.4±5.9 21.2±7.9 18.4±5.3 21.9±4.3 22.7±7.4 *

Total bilirubin – mg/deciliter 1.8±2.0 2.5±3.3 0.8±0.3 1.2±1.2 1.0±0.7 1.0±1.1 *

Serum lactate – mmol/liter 4.0±3.2 3.8±4.6 2.5±2.2 1.5±1.2 2.3±1.9 2.9±2.6 *

Outcome

14 Day All-cause Mortality – no.(%) 41 (25.9%) 13 (20.3%) 1 (3.3%) 3 (6.5%) 7 (9.0%) 25 (21.4%) *

Mortality – days 35.9±67.9 62.4±76.9 78.0±73.1 116.4±103.8 84.8±110.9 56.1±82.8 *

Multiple Organ Failure – no. (%)

Baseline 120 (75.9%) 36 (56.2%) 13 (43.3%) 15 (32.6%) 32 (41.0%) 66 (56.4%) *

Within 14 Days (Any) 119 (75.3%) 40 (62.5%) 12 (40.0%) 16 (34.8%) 29 (37.2%) 60 (51.3%) *

New Organ Failure in the first week – no. (%)

Cardiovascular 118 (74.7%) 43 (67.2%) 9 (30.0%) 23 (50.0%) 42 (53.8%) 68 (58.1%) *

Respiratory 77 (48.7%) 23 (35.9%) 12 (40.0%) 9 (19.6%) 14 (17.9%) 48 (41.0%) *

Renal 14 (8.9%) 1 (1.6%) 0 (0.0%) 0 (0.0%) 0 (0.0%) 5 (4.3%) *

Stay in hospital – days 11.2±11.9 10.4±7.7 11.4±9.4 8.3±4.3 10.3±9.0 11.5±10.5

ICU 5.3±5.4 4.5±3.2 3.8±5.0 2.9±2.8 3.3±3.2 4.9±5.1 *

Serious Adverse Events – no. (%) 19 (12.0%) 1 (1.6%) 0 (0.0%) 0 (0.0%) 2 (2.6%) 7 (6.0%)

∗ denotes p≤ 0.05 from Dunn’ or Chi-Squared tests to determine differences between continuous or categorical
variables, respectively.
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2.2.1 High-Risk Endophenotypes

Endophenotypes A, B, and F were at high risk of cardiovascular, respiratory, and renal

failure. 14-day mortality was > 20% and 60-day mortality was > 30%. Together, these

endophenotypes represent 339 of 493 patients analyzed. Endophenotype A was highly dis-

tinctive due to the presence of elevated cytokines (Interleukin-6, Tumor Necrosis Factor-α,

and Interleukin-10) across all patients. D-Dimer, TAT-complex, lactate, and bilirubin were

elevated as well, indicating coagulation, tissue perfusion, and hepatic issues. This group

had the highest incidence of MOF (both baseline and within 14-days) and 14-day mortality.

Table 2.2 shows that this group also had the highest incidence of positive blood cultures, 28

and 60-day mortality, cardiovascular, respiratory, and renal failure, and number of serious

adverse events. This endophenotype also had the largest number of early deaths for any

endophenotype (out of 158 patients, 2 died within 6 hours and 11 died within 24 hours).

Patients with elevated creatinine and blood urea nitrogen (BUN), which is indicative of renal

deficiency or failure, were at particularly high risk, with 4 deaths prior to 24 hours. Patients

with elevated diastolic and systolic blood pressure at baseline had lower rates of MOF and

mortality. Overall, patients in this group demonstrated a severe and sustained systemic

inflammatory response to infection. At baseline, a typical patient had high cytokinemia

and multiple biomarkers indicating the beginning of multiple organ system failure. This

endophenotype was most likely descriptive of early-stage sepsis patients.

Endophenotype F patients demonstrated low baseline cytokinemia, high white blood cell

counts, platelet counts, and elevated potassium levels. In addition, TAT complex decreased

in most patients within 24 hours. Despite the apparently protective profile of these clin-

ical biomarkers, this endophenotype had the second highest levels of MOF and mortality.

Defining feature were high levels of creatinine, BUN, and lactate. Temperature, heart rate,

hemoglobin, respiratory rate, white blood cell count, platelet count, and potassium tended

to drop among patients. Two patients died within 24 hours. Table 2.2 showed that this

group had the highest incidence of infection from an unknown source. Furthermore, this

group was at high risk of cardiovascular and respiratory failure. Overall, biomarker pro-

gressions indicate that this group was most likely succumbing to infection during late-stage
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sepsis. A possible mechanism could relate to the emergence of an immunosuppressed profile,

as indicated by an elevated IL-10 and decreased IL-6 among most patients. Furthermore,

most endophenotypes did not exhibit clear or consistent trends in white blood cell counts

(WBC), while group F patients uniformly exhibited elevated levels at baseline that depleted

over a 24-hour period.

A portion of Endophenotype B patients presented with baseline cytokinemia, but cy-

tokine magnitudes and clinical outcomes were more favorable than that of A or F. Glucose

and systolic blood pressure were uniformly decreased in this group. Half of the patients

exhibited elevated lactate, creatinine, and BUN (Figure 2.1, group B, left, highest branch of

the vertical dendrogram), while half did not (Figure 2.1, group B, right, highest branch of

the vertical dendrogram). There were no significant biomarker changes over 24 hours except

for decreasing IL-6. Table 2.2 showed that this group had the second highest incidences

of positive blood culture and second highest 60-day all-cause mortality. Additionally, this

group had the highest levels of baseline APACHE III severity of illness score and Charl-

son burden of chronic illness score [64, 65]. This suggests that this group of patients may

have been enrolled later in the course of illness, possibly after peak cytokine levels had been

reached [66]. This endophenotype launched a (relatively) appropriate inflammatory response

to infection. However, the late complications of sepsis, rather than the initial insult, were

responsible for the high mortality.

2.2.2 Low-Risk Endophenotypes

Endophenotypes C, D, and E demonstrated lower rates of MOF and mortality. These groups

were characterized by low to no cytokinemia and low lactate. Furthermore, the 154 patients

from these groups presented with low injury severity scores and low SOFA scores.

Endophenotype C contained patients exhibiting elevated baseline heart rates, hemoglobin,

platelet count, lactate, and diastolic and systolic blood pressures. This group was not af-

flicted with cytokinemia: despite varying levels of TNF and IL-10, IL-6 was uniformly low

among this cohort. Except for blood pressure, biomarkers had decreasing trends within 24

hours. While only 1 of 30 patients died within 14-days, Table 1 revealed elevated rates of res-
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piratory failure and 60-day mortality. This suggested that deaths within this endophenotype

were caused by later complications rather than the initial sepsis insult.

Endophenotype D contained patients with low or nonexistent baseline cytokinemia, low

lactate values, and elevated platelet counts. This group had the lowest risk of MOF and

14-day mortality. Table 1 showed that this group had the lowest 60-day mortality as well,

indicating fewer late-stage complications.

Endophenotype E contained patients with elevated temperatures, and low creatinine

and BUN values. Few patients had baseline cytokinemia. This group had slightly higher

rates of MOF and mortality than endophenotypes C and D. One patient died within 6

hours and another died within 24 hours. Over time, IL-6 decreased faster than IL-10. This

group appeared to have a normal inflammatory response and baseline biomarkers were not

indicative of any organ deficiency.

2.2.3 Similarity between Endophenotype

Figure 2.4 illustrates the results of the multivariate distance matrix to compare the similarity

between each endophenotype and their time points. Many of the 0-vs-6 hour comparisons and

the 0-vs-24 hour comparisons yielded significant differences, which further support the notion

that the identified endophenotypes were not mere time-shifts of one another. Endophenotype

A at 0 and 6 hours were significantly different from most other endophenotypes and time

points. Furthermore, none of the pair-wise comparisons yielded low dissimilarity statistics

between any test (no dark colors). The darkest region occurs within the 24-vs-24 hour

comparisons, indicating that there were some similarities among endophenotypes at 24 hours.

This demonstrated that patients that segregate into different baseline endophenotypes may

progress to similar clinical states after a period, but their baseline clinical values and time-

series progression may still play a larger role in determining outcomes.

Interestingly, endophenotypes A and F had similar 14-day mortalities, demonstrating

that distinct baseline profiles and sepsis trajectories may have similar risks of death. The

largest notable difference between these endophenotypes was the level of cytokinemia present

at baseline. Furthermore, white blood cell counts within endophenotype F were uniformly
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Figure 2.4: Multivariate energy-distances between endophenotypes A-F and their time points. The
distances are displayed in a heatmap where darker colors represent similar groups and lighter colors
represent differing groups. Most group-vs-group comparisons do not reveal any similarities. Some
similarities are present between different groups at time 24 hours. Cells with an asterisk indicate
that the null hypothesis (of equal multivariate distributions, p < 0.05) is rejected.

elevated at baseline and decreased over time, while patients within endophenotype A split

(half were elevated and half decreased at baseline) and remained unchanged over time.

2.3 DISCUSSION

Despite improving understanding of sepsis pathology, one of the critical issues afflicting sepsis

therapies and research is high inter-patient variability and the need for better patient stratifi-

cation. The goal of this study was to explore clinical values to identify the types of subgroups

that may exist in clinical sepsis populations. Outside of differing clinical outcomes, there

were clear differences between each endotype presented in Figure 2.1. Most notable were

the differences in cytokinemia and lactate. However, endotype F demonstrated that even
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low baseline cytokinemia may lead to high mortality and MOF and that biomarker progres-

sion over time is worthy of additional study. This exploratory work supports the notion of

endotype-specific therapies. Heat map clustering of patient cytokines and other laboratory

and clinical features is a promising method to group patients into distinct endotypes. Avail-

ability of additional domains of data would enhance the richness of their description, offer

further segregation of endotypes, and potentially offer insight as to underlying mechanisms.

Classification of these endotypes can act as a basis for more precise therapies even at the

rather coarse level of the description presented. The high-risk endophenotypes A, B, and F

are distinctive enough to warrant specific treatment or therapy options. Immunosuppression

drugs would likely be harmful to the slightly immunosuppressed patients in endophenotype

F, but could be beneficial for the high cytokinemia patients in endophenotype A. Knowledge

of sepsis endotypes has the clear potential to shift the current paradigm of research and trial

design towards better outcomes. For example, clinical trials can benefit from better patient

characterization at enrollment, to better match intervention and presumed pathophysiology,

or later, to interpret subgroup benefit of such interventions.

The identified groups in this work were dubbed endophenotypes due to their discovery

using observable clinical biomarkers (phenotypes). However, these biomarkers were hypoth-

esized to be clinical manifestations of distinct underlying pathophysiological differences (en-

dotypes). Along the spectrum between endotypes and phenotypes, the identified groups fall

somewhere in the middle. The visualization of clinical data as heatmaps revealed areas of

similarity and dissimilarity between groups, which indicated that clinical biomarkers alone

cannot fully explain the endotypes present in sepsis. The ability to discriminate the under-

lying endotype from the clinical phenotype with good accuracy is a strength of the current

approach. Clinical decisions are based on what clinicians can readily observe and measure,

and many of the markers characterizing endotypes, even at the coarse level we present, are

not readily available in a timely fashion. This issue will presumably be amplified as endo-

type enriching work proceeds. Thus, there is a trade-off between extensive knowledge of

endotypes with their implied underlying biology, and the pragmatic decisions clinicians are

facing when treating sepsis. Thus, endotype characterization allowing precise therapies to
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be applied in a timely fashion is key to the translational relevance of detailed endotyping

work.

In previous reports on sepsis clustering, Kellum, et al., studied cytokine (IL-6 and IL-10)

longitudinal profiles in the GenIMS cohort of patients admitted with community-acquired

pneumonia. These authors identified cytokine-based clusters with different outcomes. Specif-

ically, high cytokinemia trajectories in IL-6 and IL-10 corresponded to a higher overall bur-

den of inflammation and mortality, which corroborates our findings with endophenotype A.

Fjell, et al., analyzes signaling molecules and cytokines using a similar hierarchical clustering

method, but their biomarkers were pre-selected and did not include any clinical biomark-

ers [49]. Our approach using a non-biased feature selection (based on standard deviations

and subject to data availability) demonstrated biomarker progressions over time within each

endophenotype. Knox, et al., used similar clinical variables, but underwent a dimension

reduction technique, rendering it difficult to interpret the resulting clusters in a clinically

meaningful way [50]. The resulting clusters had to be recolored to present one variable at a

time, while the approach we took presented all clinical information in a multivariate way.

It has been demonstrated that the baseline time point in human sepsis data may not

be meaningful due to the variability associated with each patient’s pre-hospital time, but

this time could be recovered using clinical measurements [41]. Thus, the biomarker simi-

larity within each endophenotype suggests that the pre-hospital time (or true sepsis time

zero) for grouped subjects appears to be close, and patients are at similar points along the

endotype-specific sepsis trajectory. A dissimilarity test indicated that each heatmap was not

similar enough to be grouped together at any time point or cluster. The implication is that

classifying a patient into an endotype may be sufficient to estimate his or her pre-hospital

time (true sepsis time zero) and may be a one-step procedure for tailoring a suitable therapy.

Comorbidities played an influential role in each endophenotype. High-risk endopheno-

types A and F had the highest rates of renal failure as a comorbidity. Diabetes was most

prevalent in endophenotype F and lowest in B and E. Endophenotype B had the largest

population of AIDS patients (10%), which partially explains why B also had the largest

population of immune-compromised patients. Endophenotypes E had the highest incidence

of unknown infection source, which may suggest that these patients may not have received
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appropriate or timely antibiotic coverage. The lowest 14-day mortality groups, endopheno-

type C and D, were predominately characterized by the hypertension comorbidity (70%+

within either cohort). This suggested that hypertension may be somewhat protective during

the initial onset of sepsis.

2.3.1 Study Limitations

This work can be improved via validation using a larger dataset. Despite the small co-

hort sizes used in this study, the ProCESS database is still one of the largest of its kind.

A validation database would enable the exploration of other clinically interesting variables

because many had to be eliminated for this work due to low sample sizes or rates within

the ProCESS population. Furthermore, there is an element of subjectivity in the current

approach. Determining the height to “cut” the dendrogram tree in Figure 1 affected the

resulting groups, ranging from 2 groups at the top level to 493 groups at the bottom-most

level. While endophenotype A was clearly distinct from the rest (largest height on den-

drogram tree), the division of the remaining groups was based on cutting the dendrogram

to yield visually distinctive regions. As a result, segregating the data required a degree of

human intervention. Despite the subjectivity, Table 2.2 revealed many differences between

the endophenotypes discovered.

2.3.2 Application into Temporal qSOFA Trajectories

The hierarchical clustering approach outlined in Section 2.1 was extended to explore the

predictive capability of sequential measurements of the quick Sequential Organ Failure As-

sessment (qSOFA) score with respect to mortality. The qSOFA score was recommended by

the recent sepsis redefinition (Sepsis-3) as a fast method of assessing a patient with suspected

infection without the need of laboratory tests [7]. The qSOFA score consisted of measuring

respiratory rate, systolic blood pressure, and the Glasgow Coma Score (GCS). Each clinical

feature may contribute 0 or 1 to the overall qSOFA score for a total of 3 points (worst score).

The manuscript for this work is pending co-author review (Kievlan, Zhang, et al., Evalu-

26



Figure 2.5: Clustered Trajectories of qSOFA scores in patients with suspected infection. Shades of
red indicate the severity of qSOFA scores and gray indicates missing measurements. Patients with
low baseline qSOFA scores (qSOFA=0,1, survivors) were more likely to remain low over 48 hours
than nonsurvivors. Two patients with a baseline qSOFA score of 3 survived.

ation of repeated qSOFA measurements among patients with suspected infection; awaiting

submission to American Journal of Respiratory and Critical Care Medicine).
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A retrospective cohort study among adult hospital encounters (age /geq 18 years) with

suspected infection in 2012 at twelve community and academic hospitals in southwestern

Pennsylvania was conducted. From this data, qSOFA scores were calculated for each patient.

Within the first 48 hours, data was broken into six-hour intervals and the maximum qSOFA

score was calculated from each interval. The heatmap hierarchical clustering outlined in

this section was used to group these trajectories together to evaluate the trends in qSOFA

trajectories among differing baseline values and survivors/nonsurvivors.

The cohort consisted of 37,591 subjects with baseline qSOFA measurements. Of these

subjects, 4.7% (1,769) died in the hospital. Figure 2.5 illustrates that survivors tended to

have improving qSOFA trajectories. Nonsurvivors’ qSOFA scores remained higher for longer.

The majority of the baseline qSOFA=3 subjects belonged to the nonsurvivor group and gen-

erally did not see any decrease in their qSOFA scores over time. Among the low baseline

qSOFA subjects, those that survived tended to remain low while nonsurvivors’ qSOFA trajec-

tories tended to increase over 48 hours. Furthermore, the survivors with baseline qSOFA=2

tended to improve over time while the nonsurvivors tended to deteriorate. This suggests

that in clinics where regular SOFA scores are difficult to obtain, qSOFA monitoring over

time provides a fast risk/mortality assessment method.

2.3.3 Summary

In summary, these findings suggest that biomarkers offer discriminatory power upon clinical

presentation to segregate subjects into clusters of distinct clinical trajectories. Each cluster,

dubbed an endophenotype due to their basis in observable clinical features, has distinct rates

of mortality and organ failure. These clusters suggest the existence of separate endotypes in

sepsis, which is currently not well understood. The results of this work motivate the following

chapters under the hypothesis that research into these endophenotypes will reveal richer

features and improved mechanistic understanding behind these clusters. The end goal is to

classify incoming septic patients from readily available clinical and serum biomarkers into

an endotype which suggests potential dysregulation mechanisms and may lead to targeted

therapies.

28



3.0 MIXTURE MODELING APPROACH TO IDENTIFY SEPSIS

ENDOTYPES

Chapter 2 identified clusters of subjects with similar clinical features and demonstrated

the existence of distinct sepsis subtypes. This motivated further research into sepsis endo-

types by refining these clusters and characterizing the biological mechanisms behind these

distinctions. This Chapter builds upon this work by addressing two major clinical concerns

associated with sepsis in critical care. First, the identified clusters in Chapter 2 were deemed

endophenotypes because no mechanistic considerations were involved during the clustering

process. There is currently a lack of mechanistic understanding behind sepsis and much

is unknown about the dysregulated pathways that lead to sepsis [67, 68]. Mathematical

models of sepsis have previously demonstrated success in characterizing the dynamics and

mechanisms of inflammatory pathways in sepsis, but have not been validated against human

data [3, 4, 69, 70]. This deficiency is caused by the second concern: the clinical practice

of defining subject baselines at the time of clinical presentation renders characterization of

sepsis difficult. From a dynamics point-of-view, analyzing data without initial conditions

introduces significant ambiguity to mathematical findings. The clinical status quo is the

result of a lack of knowledge of a subject’s pre-hospital time and trajectory. When queried

about the duration of their acute inflammatory response, subjects in the ProCESS cohort

estimated time-spans of up to one year [59]. The lack of consideration of pre-hospital dura-

tions weakens the findings and translatability of current sepsis research, including the results

from Chapter 2.

This section improves upon the previous method of hierarchical clustering by addressing

clinical concerns via the development of a novel mathematical modeling-based approach to

the identification of sepsis endotypes. Considerations for inflammatory dynamics and subject
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pre-hospital times were taken into account using a mathematical model that initiated at the

beginning of the inflammatory response. A mixture-modeling-based approach is introduced

where each subject was parameterized in accordance with the mathematical model and then

clustered based on their parameters. The resulting clusters were deemed endotypes rather

than endophenotypes because of the mechanistic focus on the inflammatory response rather

than the phenotype-based method in Chapter 2.

As readouts of the inflammatory response, cytokines are desirable candidates for mod-

eling and characterizing inflammatory pathway endotypes. Although cytokines represent a

minute portion of the extensive inflammatory response to a pathogen, they are highly potent

mediators that are vital for initiating, sustaining, and suppressing inflammation [37, 71]. The

very small concentrations of cytokines that are produced upon encountering pathogens elicit

large systemic changes [10]. Interleukin-6 and Interleukin-10 (IL-6 and IL-10, respectively)

are well-known cytokines with distinctive trajectories during sepsis [39]. Thus, it is reason-

able to posit that endotypic differences might be reflected in cytokine expression patterns,

even if such patterns do not represent a comprehensive endotypic characterization. The cur-

rent clinical consensus is that both the pro-inflammatory response and the anti-inflammatory

response are important in clearing an infection, allowing tissue recovery, and determining

sepsis outcomes [5]. A cytokine was selected as the proxy of the pro-/anti- inflammatory

response.

Interleukin-6 (IL-6) is a pro-inflammatory cytokine that is characterized by a fast rise

during the inflammatory response. IL-6 is initially secreted by tissue-resident macrophages

and is responsible for mobilizing and recruiting neutrophils and monocytes to the site of

infection. Recruited monocytes may differentiate into macrophages of the pro-inflammatory

phenotype, M1, which further produce IL-6 [14]. This positive feedback is responsible for

the fast rise in IL-6. Experiments involving endotoxin challenges in healthy volunteers reveal

that many cytokines follow a fast rise and fall dynamic. In the case of IL-6, it peaks at 3

hours and returns to baseline by 8 hours after endotoxin challenge [39]. However, research

has shown that cytokine responses differ between endotoxin challenges and sepsis, which is

likely attributed to the fast clearance of endotoxin versus the sustained presence of infection

in sepsis [37]. In sepsis, IL-6 peaks later and has a long protracted decline [37, 39]. As such,
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IL-6 serves as a good proxy of the pro-inflammatory response and provides information on

infection severity/injury and the type of host response [68].

Similarly, IL-10 is the de facto anti-inflammatory cytokine. IL-10 has a fast rise, peaks

slightly after IL-6, and has a long protracted decline during sepsis [15, 39]. It is secreted by

monocytes and M2 macrophages and prevents the synthesis of pro-inflammatory mediators

[13, 39]. The timing and trajectory of IL-10 are extremely important and, if inappropriate,

can lead to uncontrolled infection or dysregulated inflammation [15].

Knowledge of sepsis endotypes, as defined by pro- and anti-inflammatory responses,

can reveal the underlying pathobiological differences between different host responses to

sepsis and capture some of the clinical variability observed during sepsis. Consideration of

endotypes in sepsis, which dispels the notion of a single therapeutic approach, can lead to

better targeted and more effective treatment [45]. It was assumed that a finite number of

characteristic sepsis responses exist and that each case manifests into distinct IL-6 and IL-10

trajectories, given their importance as master regulators of inflammation.

Identification of sepsis endotypes is an exercise in unsupervised clustering and proved an

interesting engineering challenge. First, there is a lack of clinical understanding regarding the

mechanisms that lead to sepsis because current clinical work is heavily focused on identifying

phenotypes that predict outcomes. Mathematical models of sepsis (such as mechanistic

compartmental ordinary differential equation models) can supplement or improve clinical

understanding, but few exist in the literature that has been validated against human sepsis

data. Second, human sepsis data is inherently left-censored (because data collection can

begin only after clinical presentation) and this causes problems in generating unique clusters.

Figure 3.1 illustrates the problems posed by left-censorship. Suppose an arbitrary cytokine

is measured from two separate subjects at 0, 6, and 24 hours after they arrive in the hospital

(or are enrolled in the study, as shown in Figure 3.1A) and that these subjects belong to

the same sepsis endotype (demonstrated in Figure 3.1B). By disregarding the dynamics that

describe how these trajectories manifest, they would be binned into two clusters (Figure

3.1A) by popular algorithms such as K-means or ‘proj-traj’ [72].
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Figure 3.1: Schematic of clustering challenge associated with endotype identification. A: Diagram
illustrating a sample result from traditional clustering methods based on time since enrollment.
Magnitude heavily affects clusters. Blue and red time courses are binned into separate clusters. B:
Diagram illustrating that the previous blue and red time sources may come from similar trajectories.
Magnitude differences are attributed to different sampling time points along a single trajectory.

Due to the sparsity of temporal cytokine data from sepsis subjects and the variability

in patient pre-hospital time prior to measurements, traditional clustering techniques were

ineffective and necessitated a dynamics-based approach. This requires a mixture modeling

approach that can simultaneously (i) recover dynamics from censored trajectories of IL-6 and

IL-10 and (ii) conduct unsupervised clustering on recovered dynamics. The resulting method

utilized a combination of systems analysis, hierarchical clustering, and mixture models.

3.1 METHODS

A retrospective analysis of the Protocol-Based Care for Early Septic Shock (ProCESS) trial

was conducted [59]. A description of this trial is available in Chapter 2. The ProCESS trial

collected rich longitudinal and high-fidelity clinical data from its subjects. A convenience

cohort of 390 subjects was selected from the database of 1341 subjects in accordance to

the selection criteria of IL-6 and IL-10 measurement availability at 0, 6, and 24 hours,

where the zero baseline was the time of trial enrollment. This was different from the 493

subject cohort in Chapter 2, where the selection criteria were the availability of certain
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Table 3.1: Comparison of convenience cohort for mixture model against the rest of ProCESS
database

Analyzed Cohort Rest of ProCESS
Characteristic n=390 n=951

Age 61.0±16.9 60.9±17.9
Male sex – no. (%) 236 (60.5%) 512 (53.8%) *
Race – no. (%)

White 268 (68.7%) 648 (68.1%)
Black 88 (22.6%) 245 (25.8%)
Other 34 (8.7%) 58 (6.1%)

Source of sepsis – no. (%)
Pneumonia 133 (34.1%) 310 (32.6%)
Urinary Tract Infection 93 (23.8%) 191 (20.1%)
Intraabdominal infection 37 (9.5%) 140 (14.7%) *
Infection of unknown source 46 (11.8%) 124 (13.0%)
Skin or soft-tissue infection 25 (6.4%) 71 (7.5%)
Catheter-related infection 15 (3.8%) 23 (2.4%)
Central nervous system infection 3 (0.8%) 7 (0.7%)
Endocarditis 3 (0.8%) 4 (0.4%)
Other 29 (7.4%) 56 (5.9%)
Determined not to have infection 6 (1.5%) 25 (2.6%)

Positive blood culture – no. (%) 138 (35.4%) 258 (27.1%) *
Injury Severity

APACHE II 20.8±7.4 20.7±7.7
APACHE III 61.4±22.8 61.1±22.5
Charleson 2.5±2.4 2.7±2.7
SOFA 7.3±3.6 7.1±3.6

Physiological variables
Systolic blood pressure – mmHG 97.9±24.1 100.7±24.4 *
Heart rate – beats/min 104.1±20.5 102.8±20.4
Temperature – C 37.3±1.4 37.3±1.3
Respiratory rate – breaths/min 22.7±7.2 22.8±6.6
Total bilirubin – mg/deciliter 1.3±1.6 1.5±2.3
Serum lactate – mmol/liter 4.5±2.9 5.0±3.4 *

Outcome
14 Day All-cause Death – no. (%) 39 (10.0%) 200 (21.0%) *
Mortality – days 72.0±88.2 45.6±71.6 *
Multiple Organ Failure – no (%)

14 Days 250 (64.1%) 631 (66.4%)
Stay in hospital – days 11.8±9.5 11.5±11.6 *

ICU 5.2±5.2 4.9±6.9 *
Serious Adverse Events – no. (%) 15 (3.8%) 67 (7.0%) *

∗ denotes p≤ 0.05 from Dunn’ or Chi-Squared tests to determine differences between continuous or categorical
variables, respectively.
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biomarkers at 0 hours. Treatment arm was not included in the selection criteria because the

ProCESS trial concluded that clinical outcomes among all three arms were effectively similar

[59]. A comparison of the cohort against the rest of the ProCESS database is available in

Table 3.1, which demonstrates that the convenience cohort was not entirely representative of

the ProCESS cohort. Specifically, the convenience cohort contained a higher population of

males, lower serum lactate, higher 14-day all-cause mortality outcomes, and fewer numbers

of serious adverse events than the rest of the ProCESS cohort. This was reasonable because

the selection criteria identified a group of subjects that (i) survived up to 24 hours and

(ii) was clinically stable enough to have blood drawn for cytokine assays. In contrast, the

convenience cohort contained a higher percentage of patients with blood infections and lower

systolic blood pressures, which are correlated with negative outcomes. This suggested that

the convenience cohort also responded better to sepsis despite having worse infections.

Of the 390 subjects, 165 had an additional IL-6 and IL-10 measurement at 72 hours

post-trial enrollment. 72-hour cytokine measurements for the remaining 225 subjects were

imputed via a nearest neighbor technique based on their measured vital signs and blood-

based biomarkers (refer to Chapter 5) [41]. Specifically, the first 6 hours of measurements

of respiratory rate, heart rate, temperature, urine output, systolic blood pressure, tumor

necrosis factor α (TNF), IL-6, and IL-10 were used. These biomarkers were matched against

those of the 165 subjects with 72-hour cytokine measurements. The one nearest neighbor

within the 165 cohort provided the imputation results. Finally, any measurements less than

10 pg/ml were treated as 10 pg/ml. Due to the different assaying techniques used by the

multiple centers that participated in the ProCESS trial, there were many different lower

limits of cytokine detection (LLD) present in the data, with 10.0 being the highest LLD.

3.1.1 Systems Analysis and Mixture Modeling

The pro- and anti-inflammatory responses were modeled after a mass-spring-damper response

to a bump (see Figure 3.2). This physical system was simplified using transfer functions and

their step response. Transfer functions provide a mathematical formalism where model pa-

rameters can be directly linked to dynamics characteristics of the system response (such
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Figure 3.2: Schematic of a mass-spring-damper system serving as a physical analog to the inflam-
matory response. The cytokine response was likened to a mass-spring-damper physical system.
Cytokine trajectories were modeled as the unit step response of a second-order transfer function
to a pathogen presence (analogous to a car suspension responding to a “road bump”). The steady
state gain of the response was set to unity.

as oscillation, overshoot, etc.), thereby facilitating model identification from data. Further-

more, transfer functions represent entire classes of mathematical systems exhibiting a desired

behavior. The inflammatory response (output) may be characterized as the response to a

rectangular wave of infection for a specified duration (input). However, the short temporal

length of the cytokine data from the ProCESS trial (up to 72 hours after trial enrollment),

in combination with an assumption that subjects still had ongoing infection by 72 hours, led

to the simplification of this input to a step change (as shown in Figure 3.2, bottom right). A

similar cytokine modeling approach (authors used a state-space realization of second-order

transfer functions) was taken in a journal article by Yiu, et al [73].

Analysis of the cohort cytokine data revealed three types of step response dynamics,

which are represented by the second-order transfer functions in Figure 3.3). The first transfer
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Figure 3.3: Sample unit step responses of the three transfer functions used. Each response reaches
a steady state output value of 1.0 but the trajectory to reaching steady state is characteristically
different for each model. The first category, oscillatory response, is a three-parameter system (τ ,
ζ, τ3) characterized by a damped oscillating approach to 1.0. The second category, overshoot
response, is a three-parameter system (τ1, τ2, τ3) characterized by a fast rise followed by a decline
to 1.0. The third category, rising only response, is a two-parameter system (τ1, τ2) characterized
by a rising trajectory to 1.0 with no overshoot.

function enforced an oscillatory response to capture the primary rise and fall motif and a

secondary lower-magnitude peak. Such peaks have previously been observed in the clinic

[74]. The damping parameter of this transfer function, ζ, was of particular interest. ζ

controls the oscillatory nature of the system and bounds were set to prevent it from taking

low values near zero, thereby preventing the system from oscillating for many periods at a

relatively high magnitude. The second transfer function captured the primary rise and fall

motif only. Finally, the third transfer function enforced a rising only behavior to capture

subjects whose inflammatory responses keep rising.

36



The data from the convenience cohort was normalized to account for extensive magnitude

differences between subjects.The normalization criterion consisted of dividing each patient’s

IL-6 and IL-10 trajectory by their respective 72-hour measurements. The normalization

procedure was assumed to normalize both the magnitude of inflammatory response and the

magnitude of infection for each patient. A benefit of this normalization was that it removed

the need to estimate a gain for the transfer function model. The dynamics of the resulting

normalized pro- and anti-inflammatory responses were clustered.

The first step was fitting the 390 subjects’ IL-6 and IL-10 responses (after taking the

log10 of cytokine concentrations) to each type of transfer function response. The 0, 6, and

24 cytokine measurements were normalized by dividing by their respective IL-6 or IL-10

72-hour measurement. The normalized IL-6 and IL-10 trajectories were fit against each of

the three transfer function categories in Figure 3.3. Parameter fitting was performed using

the Levenburg-Marquardt algorithm provided by the Python lmfit package.

This approach fully addressed the problem previously illustrated by Figure 3.1. Step

responses for second order transfer functions always begin at 0. This enabled the objective

function to also fit a discrete hourly time shift parameter (bounded to [0,78] hours) to

estimate the pre-hospital time for each patient. Each patient was then classified into one of

nine categories (three possibilities each for IL-6 and IL-10, yielding 9 combinations) based

on the lowest sum of squared errors.

The next step further split each of the 9 categories by identifying similar clusters of

subjects in parameter space. Splitting within each category allowed for the possibility of

different behaviors of the oscillatory, overshoot, and rising-only responses. Parameters for

each subject were assumed to be distributed about a Gaussian mixture. Gaussian mixtures

were identified via the expectation maximization algorithm and subjects were segregated

in accordance to the highest probability of membership to a certain Gaussian. Expecta-

tion maximization is a well known statistical algorithm that (i) calculates a probability of

membership for each subject (expectation-step), (ii) calculates all Gaussian component pa-

rameters (µi, σi) via the maximum likelihood approach in accordance to each component’s

membership (maximization-step), and then (iii) repeat steps (i)-(ii) iteratively. The learning

step and mixture modeling were performed via the sklearn package in Python. The number
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of components in the Gaussian mixture model for each of the 9 categories was a user input

and was varied over multiple simulations until a minimum Bayesian Information Criteria

(BIC) was obtained. Low membership clusters (n < 10) were removed and those subjects

were reassigned to the next most similar cluster.

The third step generated a master inflammatory response trajectory for each remaining

cluster. The parameters from each cluster were averaged and used to generate a representa-

tive IL-6 and IL-10 trajectory for the cluster. Subjects within each cluster were then shifted

in time (original measurement intervals were preserved) to best align their IL-6 and IL-10

trajectories to the respective master response trajectory.

Clinical outcomes were defined by 14-day all-cause mortality and 14-day multiple organ

failure rates. This was done for the same reasons outlined in the previous chapter. No

distinction was made between baseline MOF and 14-day MOF because this method iden-

tifies patient time zeros, which overrides the clinical definition of baseline (time of clinical

presentation).

Statistical analysis of the resulting clusters was conducted on patient demographics,

outcomes, and clinical biomarkers taken within 6 hours of trial enrollment. Statistically

significant differences (p < 0.05) were identified using the non-parametric Dunn’s test for

continuous variables and the Chi-squared test for categorical variables. Multiple pair-wise

testing, to specifically identify which clusters were different from each other, was performed

via Dunn’s test and Chi-squared tests. Bonferroni corrections were applied to counteract

the error effects of multiple comparisons.

3.2 RESULTS

Figure 3.4 shows the resulting five distinct inflammatory responses that were identified across

the 390 subjects. Cluster 1 illustrates a fast and high magnitude pro- and anti-inflammatory

response to infection. This cluster had the highest 14-day mortality and the highest incidence

of 14-day multiple organ failure (MOF). This high-risk cluster also described the most sub-

jects, with nearly 30% membership. Cluster 2 illustrates a fast and medium magnitude pro-
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Figure 3.4: Results from cluster identification process (5 sepsis subtypes). Each row of subplots
represents a distinct cluster. The left subplots show the IL-6 (pro-inflammatory) response and the
right subplots show the IL-10 (anti-inflammatory) response. The Y-axis represents the normalized
log10 values of the associated cytokine. The bold black curves indicate the master response for
each cluster. Subject data (dots) was time-shifted to best align with these trajectories.
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and anti-inflammatory response. Compared to Cluster 1, the anti-inflammatory response

of Cluster 2 had a slower, protracted decline. Cluster 3 illustrates a low magnitude and

slower pro-inflammatory response. The anti-inflammatory response was steadily increasing.

This cluster had the lowest 14-day mortality and lowest incidence of 14-day MOF. Cluster 4

represents a fast rise and then sustained pro-inflammatory response. The anti-inflammatory

response rose to a magnitude higher than that of Cluster 1 and then descended swiftly. Clus-

ter 5 shows a medium magnitude (similar to Cluster 2) pro- and anti-inflammatory response

characterized by a faster rise and decline. Cluster 5 was unique in that it represents a fast-

inflammatory response while all other clusters demonstrated protracted responses. Table 3.2

summarizes the dynamics of five clusters.

Table 3.2: Summary of the Five Identified Endotypes

Endotype Description

1 Overwhelming inflammatory response to infection (elevated cytokinemia)
2 Prolonged anti-inflammatory response, (mild immunosuppression)
3 Rising only anti-inflammatory response, (immunosuppression)
4 Prolonged pro-inflammatory response, (sustained inflammation)
5 Fast dynamic response that ends within two days (immunodeficiency)

The calculation of a model-based master response trajectory within each cluster allowed

the time-axis to start at the estimated onset of infection rather than to the start of data

collection. Subjects were shifted up to 78 hours (representative of pre-hospital time) to best

align with cluster master trajectories. It appears that subjects in Cluster 5 were enrolled

into the ProCESS trial earlier along their disease timeline due to the shorter estimated onset

times. In contrast, Cluster 1 subjects were enrolled later, with the majority of subjects within

20-60 hours after infection onset. The subjects within Cluster 4 were enrolled even later,

between 40-80 hours after infection onset, as evidenced by their sustained IL-6 response.

Clusters 2 and 3 appeared to have a larger variety of patient onset times.
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Table 3.3: Comparison of baseline characteristics and outcomes between each endotype.

Endotype

1 2 3 4 5
Characteristic n=116 n=67 n=69 n=63 n=75

Age 63.4±17.7 60.6±16.5 58.1±16.8 62.6±15.1 58.9±16.9
Male sex – no. (%) 74 (63.8%) 38 (56.7%) 38 (55.1%) 36 (57.1%) 50 (66.7%)
Race – no. (%)

White 81 (69.8%) 50 (74.6%) 50 (72.5%) 43 (68.3%) 44 (58.7%)
Black 23 (19.8%) 13 (19.4%) 13 (18.8%) 16 (25.4%) 23 (30.7%)
Other 12 (10.3%) 4 (6.0%) 6 (8.7%) 4 (6.3%) 8 (10.7%)

Source of sepsis – no. (%)
Pneumonia 45 (38.8%) 24 (35.8%) 24 (34.8%) 15 (23.8%) 25 (33.3%)
Urinary Tract Infection 24 (20.7%) 17 (25.4%) 13 (18.8%) 20 (31.7%) 19 (25.3%)
Intraabdominal infection 17 (14.7%) 3 (4.5%) 5 (7.2%) 6 (9.5%) 6 (8.0%)
Infection of unknown source 12 (10.3%) 8 (11.9%) 8 (11.6%) 9 (14.3%) 9 (12.0%)
Skin or soft-tissue infection 9 (7.8%) 7 (10.4%) 5 (7.2%) 1 (1.6%) 3 (4.0%)
Catheter-related infection 5 (4.3%) 3 (4.5%) 2 (2.9%) 2 (3.2%) 3 (4.0%)
Central nervous system infection 0 (0.0%) 0 (0.0%) 1 (1.4%) 1 (1.6%) 1 (1.3%)
Endocarditis 0 (0.0%) 1 (1.5%) 0 (0.0%) 0 (0.0%) 2 (2.7%)
Other 4 (3.4%) 4 (6.0%) 7 (10.1%) 9 (14.3%) 5 (6.7%)
Determined not to have infection 0 (0.0%) 0 (0.0%) 4 (5.8%) 0 (0.0%) 2 (2.7%) *

Positive blood culture – no. (%) 52 (44.8%) 21 (31.3%) 13 (18.8%) 29 (46.0%) 23 (30.7%) *
Injury Severity

APACHE II 21.0±7.5 21.2±6.8 19.7±6.4 20.8±8.3 21.1±7.9
APACHE III 65.1±20.8 52.3±19.1 60.7±21.5 63.0±25.2 62.8±25.4
Charleson 2.5±2.4 2.5±2.5 2.5±2.2 1.9±2.1 2.9±2.7
SOFA 8.1±3.7 7.0±3.1 5.9±3.2 7.7±3.8 7.0±3.8

Physiological variables
Systolic blood pressure – mmHG 94.9±23.4 96.8±21.4 100.2±24.8 100.0±24.6 99.9±25.6
Heart rate – beats/min 108.9±17.9 102.0±19.5 97.7±21.6 103.5±22.9 104.8±20.1 *
Temperature – C 37.5±1.2 37.2±1.3 37.0±1.1 37.0±1.7 37.3±1.7
Respiratory rate – breaths/min 23.9±7.0 22.9±7.2 20.4±5.8 22.4±8.2 23.1±7.4 *
Total bilirubin – mg/deciliter 1.5±1.9 1.3±1.7 0.9±0.5 1.7±2.3 1.2±0.9
Serum lactate – mmol/liter 4.9±2.9 4.1±2.9 3.6±2.5 5.3±3.6 4.6±2.4 *

Outcome
14 Day All-cause Death – no. (%) 14 (12.1%) 7 (10.4%) 4 (5.8%) 6 (9.5%) 8 (10.7%)
Mortality – days 84.8±110.9 63.2±67.8 109.6±108.9 47.1±41.7 47.5±55.4
Multiple Organ Failure – no (%)

14 Days 85 (73.3%) 43 (64.2%) 33 (47.8%) 46 (73.0%) 43 (57.3%) *
Stay in hospital – days 11.5±10.7 12.3±8.2 11.5±9.8 13.6±10.1 10.5±7.4 *

ICU 5.6±6.0 4.7±4.1 4.7±5.4 5.4±4.3 5.2±5.4
Serious Adverse Events – no. (%) 7 (6.0%) 2 (3.0%) 5 (7.2%) 1 (1.6%) 0 (0.0%)

∗ denotes p≤ 0.05 from Dunn’ or Chi-Squared tests to determine differences between continuous or categorical
variables, respectively.
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3.2.1 Statistical Analysis of Endotypes

Patient demographics, vital signs at hospital admission, baseline physiological variables, and

outcomes from each cluster endotype are shown in Table 3.3. The most striking difference

between endotypes was the differing levels of 14-day incidence of multiple organ failure

(MOF). Clusters 1 and 4 had the largest population of subjects that tested positive for

blood culture infections, which corresponded with high rates of MOF. Clinical biomarkers

such as heart rate, respiratory rate, and serum lactate demonstrated significant difference

as well. Overall, Table 3.3 does not reveal many statistically significant differences among

the five endotypes. This lack of significant differences reveals that patient demographics and

admission vital signs were unable to fully classify subjects into a cytokine response cluster.

Figure 3.5 shows the 47 clinical biomarker trajectories that were analyzed. Of these, 29

biomarkers were identified to be significantly different between clusters. This demonstrated

that, despite being similar to measurements taken at hospital admission, these biomarkers

diverged within six hours. Other biomarkers such as cytokines, urine output, and white blood

cell adhesion molecules were significantly different between clusters. Furthermore, pairwise

testing revealed that these biomarkers offer high discriminatory power among clusters. For

example, all pair-wise testing of IL-6 values involving cluster 1 were significantly different

from all other clusters.

A comparison of endotype memberships between the cohort described in Section 3.1

and Chapter 2 is illustrated in Table 3.4. Chi-Squared testing revealed that the endotypes

from both Chapters were not independent. The subjects of high cytokinemia endotype 1

predominantly belonged to high-risk endophenotypes A from Chapter 2 and some were split

into high-risk endophenotypes E and F. The anti-inflammatory dominant endotype 3 was

mostly represented by endophenotype D. However, endotypes 2, 4, and 5 were spread out

across endophenotypes A-F.
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Figure 3.5: Omnibus testing (Dunn’s test) on 6-hour biomarker trajectories from each endotype.
A significance cutoff of p≤ 0.05 was applied (shown on right panel). Paired numbers on each
row reveal pair-wise differences revealed by Dunn’s test pertaining to that biomarker. Note that
x-axis spans of left and right plots are different. The phrase ”None” indicates that single pair-wise
endotype differences did not exist.

3.3 DISCUSSION

A model-based approach to identify clusters of similar cytokine responses was presented.

Five distinct types of IL-6 and IL-10 responses were discovered. Table 3.3 shows that patient

demographics and baseline vital signs were unable to distinguish between patients in different

clusters. While seemingly similar at the beginning of the ProCESS trial, differences were

clearly expressed in cytokine responses over time. This suggested that patient differences

were rooted deeper than clinical phenotypic manifestations.

Endotypes 1 and 3 represent drastically different inflammatory responses and highlight

the need for a more personalized approach to sepsis therapy. Intuitively, the predominately
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Table 3.4: Contingency table comparing endotype memberships between Chapters 2 and 3.

Chapter 2 Cohort 321 of 493

A B C D E F
∑

1 47 8 1 4 20 16 96

Chapter 3 Cohort 2 19 12 2 1 9 13 56

321 of 390 3 2 5 8 36 6 10 61

4 20 4 6 0 4 16 50

5 19 13 2 4 6 14 58∑
107 42 19 39 45 69 321

Chi-Squared test of independence between the endotype memberships between the two chapters rejected
the null hypothesis with a p-value < 0.00001.

anti-inflammatory response of cluster 3 corresponded with a low MOF and mortality while

the characteristically high magnitude responses of endotype 1 resulted in high MOF and

mortality. Furthermore, 29% of patients in endotype 3 returned to baseline IL-6 and IL-10

values (lower limit of detection) by 72 hours while only 6% returned in endotype 1. Endotype

1 may not benefit from immune-stimulating therapies and endotype 3 may not benefit from

immune-suppressing therapies. Interestingly, the other endotypes had low rates of returning

to baseline (< 5%).

Figure 3.6 illustrates the progression of commonly used clinical biomarkers in sepsis

for each endotype. To normalize biomarkers for easy comparison, an empirical cumulative

distribution function (eCDF) was calculated for each biomarker over the entire convenience

cohort. This process was described in detail in Chapter 2.1. The resulting normalized dataset

ranged between [-10, 10] for all biomarkers, and 0 represented median values. Each patient

data column was then organized in the order they were sorted in Figure 3.4 to present a clear

map of biomarker progression over each endotype’s disease timeline. Biomarkers within each

endotype clearly diverged over time. Endotype 3 had overall lower levels of bilirubin, lactate,

TNF, IL-6, and IL-10. Endotypes 1 and 4 were defined by higher initial levels of creatinine,
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Figure 3.6

45



Figure 3.6
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Figure 3.6: Heatmap illustrating clinical biomarker progression over each endotype. Columns
(unlabeled) consist of time, relative to estimated time of infection as estimated from Figure 3.4.
Individual subjects were not distinguished in heatmaps. Rows consist of commonly measured
clinical biomarkers. A cumulative distribution function-based method was used for biomarker
normalization to enable comparability (refer to Chapter 2.1).

TAT complex, blood urea nitrogen (BUN), and potassium. Blood pressure, sodium, chloride,

platelet count, and white blood cell counts followed similar trends in both clusters. Figure

3.6 demonstrate that the identified endotypes manifest into several observable phenotypic

differences once pre-hospital times are used to temporally organize the data.

3.3.1 Study Limitations and Potential Improvements

The biggest assumption with this method was the use of a 72-hour measurement for normal-

ization. Analyzing step response behavior forced the method to assume a nonzero steady-

state value. Converting each subject’s IL-6 and IL-10 trajectories to end at a value of unity

was convenient for the method, but required an assumption that cytokines were at pseudo-
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Figure 3.7: Machine Learning Derived regions of mortality based on IL-6 and IL-10 values at 72-
hours. Using a 60/40 training-test split on the convenience cohort, a multi-layer perceptron classifier
(neural network) was able to learn the regions of varying 14-day all-cause mortality based on 72-
hour measurements of IL-6 and IL-10. The sklearn package in Python (MLPClassifier function,
α = 1 and other options set to default) was used. The algorithm was able to generate mortality
predictions with 91% accuracy. Regions of uniform color represent regions of similar outcomes.
The top right, associated with elevated levels of 72-hour IL-6 and IL-10, corresponds with high
rates of mortality.

steady-state by hour 72. As a result, the mixture model method focused on the dynamics,

rather than magnitude, of the inflammatory response up to 72 hours. The lack of mag-

nitude consideration removed the need to estimate a steady state gain from the transfer

function models but can be improved upon, considering a large body of clinical literature

associating cytokine magnitudes with sepsis severity and mortality [74–77]. Furthermore,

long-term daily cytokine measurements in a separate study revealed that cytokine values in

severely septic patients do not stabilize by 72 hours [66]. While the ProCESS dataset is one

of the richest sepsis datasets, the method can benefit from a dataset with longer and more

frequently measured cytokine trajectories.

48



Figure 3.8: Schematic of impulse-response behaviors to explore in order to address current method-
ological weaknesses. Impulse-response behaviors prevent the need to assume any steady-states in
cytokine trajectories. The bottom set of three graphs illustrate the types of behaviors this system
is capable of depending on the value of the damping parameter, ζ.

Magnitude considerations may be integrated into the current method by using the IL-6

and IL-10 values at 72-hours to provide further stratification. For example, each cluster may

be further stratified into low, medium, or high IL-6 and IL-10 72-hour magnitudes. Statistical

modeling revealed distinct mortality regions in their magnitudes. These mortality regions

were distinctive (see Figure 3.7) and machine learning algorithms can learn these regions

and generate updated risks of 14-day all-cause moralities.

The next step was to consider transfer functions with impulse-response inputs, rather

than the steps used in Section 3.1. A major benefit of this approach is that impulse-response

behaviors always decay back to 0, removing the need for any steady-state assumptions in

the inflammatory response. A system is proposed in Figure 3.8, which illustrates a slight
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modification to the oscillatory system in the method. This system can generate a variety of

responses depending on the value of the damping parameter, ζ.

Finally, a major difficulty with the use of mixture models is the tendency of such methods

to collapse all subjects into one cluster. The iterative process of recovering dynamics from

cytokine segments and clustering them was very sensitive to (i) initial conditions, steady-

state gain, and/or magnitude of the input, (ii) the types of transfer functions and how

different their responses were, and (iii) the time shift parameter to realign subjects to a

master trajectory. Currently attempts with the impulse response model illustrated in Figure

3.8 have resulted in one cluster because the model was subject to all three problems. In

contrast, the method in Section 3.1 removed the need to estimate the parameters that cause

issue (i) and used 3 transfer function models with step-responses that allowed sufficient

separation (issue (ii)). A potential solution to improve the impulse response model is to

estimate pre-hospital times via a separate approach (thereby tackling issue (iii)), which may

improve the identifiability of model parameters, including steady-state gain.

3.3.2 Bedside Endotype Classification Tool

The endotypes identified within this section necessitated the development of a bedside clas-

sification tool to guide clinical decisions. The requirements of this tool are twofold: (i) it

makes accurate endotype predictions and (ii) it generates predictions quickly upon clinical

presentation of a subject. To accommodate requirement (ii), predictors for this tool were

artificially limited to the first six hours of measurements (relative to the ProCESS trial start).

First, the entire selection of machine learning classification algorithms from the Python

SciKit-Learn package was tested. The 29 significant biomarkers identified in Figure 3.5 were

used to train each classifier and were broken into 70%-30% training-test sets. The best per-

forming algorithms were decision tree-based algorithms, which yielded up to 54% accuracy

on the test set. Confusion matrices of algorithmic performance revealed that algorithms were

able to predict endotypes 1 and 3 accurately, but missed endotypes 2, 4, and 5. This sug-

gested that endotypes 1 and 3 were clearly distinguishable, which was important considering

the differing clinical support required by either endotype.
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Second, a decision-tree support vector machine (SVM) was trained on the data [78].

This approach breaks a multi-class classification problem into separate problems: use a

SVM to separate one class from others, then repeat over the remaining classes to generate

predictions in a decision-tree-like process. The algorithm, using radial basis functions, yielded

between 75% to 89% accuracy on one-class-versus-rest problems. However, overall endotype

accuracy was 30% to 45%, which is an improvement on a null result of 20% accuracy (random

assignment to 5 clusters). Further analysis revealed that the SVM accurately identified

subjects from endotypes 1 and 3, but were unable to fully distinguish between endotypes 2,

4, and 5.

Finally, a nearest neighbor algorithm yielded the best results [41]. The imputation

method to obtain 72-hour cytokine measurements of 225 subjects utilized only biomarkers

collected within 6 hours. A one nearest neighbor approach was tested to verify if 0 and 6-hour

measurements of IL-6 and IL-10 can provide endotype segregation. Matching normalized (by

imputed 72-hour values) IL-6 and IL-10 measurements, limited to 0 and 6 hours, to one of

the 5 master response curves in Figure 3.4 yielded 73% endotype prediction accuracy. This

result suggests that a 6-hour temporal trajectory of vital signs combined with 0 and 6-hour

measurements of cytokines can be used to predict patient endotypes with good accuracy. This

algorithm satisfied both requirements of the bedside classification tool. However, this tool

warrants further research via a traditional machine learning algorithm given the promising

statistical segregation suggested by Figure 3.5.

3.3.3 Clinical Implications

The 73% classification accuracy of the aforementioned classifier demonstrated that a clini-

cian, rather than having to measure a subject’s cytokines over 72 hours, may instead iden-

tify a patient’s endotype with high accuracy using a mixture of cytokines and vital signs

measured over six hours. This provides a clinician a potential bedside tool to gauge the

endotype-associated risk of mortality and MOF, which may improve patient outcomes in the

clinic. High-risk patients may receive preemptive organ support therapies before the onset
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of MOF. For patients with low risk of succumbing to the initial septic shock in 14-days,

clinicians can focus on preventing downstream complications.

Endotypes of sepsis have not been extensively studied, but the ability to identify them

has profound implications on how sepsis research is conducted in the future. The results

suggest that a one-size-fits-all approach to sepsis therapy may be inappropriate or even

detrimental to certain scenarios. For example, Figure 3.6 highlighted significant biomarker

differences between endotypes 1 and 3, suggesting that an endotype-specific therapeutic

approach might be warranted. Specifically, an immuno-modulatory drug may benefit the

high magnitude responses characteristic of endotype 1, but may be harmful to patients

exhibiting the low magnitude IL-6 response in endotype 3. By identifying cohorts that may

be harmed or benefit from certain treatments, endotype stratification may explain why so

many clinical trials in sepsis have failed in the past [57]. Furthermore, improvements can

be made in patient populations enrichment in future clinical trials. This method may allow

clinicians to pre-screen candidates for endotype, and possibly pre-hospital times, to select

those who may benefit from a proposed therapy.

3.3.4 Summary

This Chapter provides an extension of the work in Chapter 2 by incorporating mechanistic

understandings into the clustering of the inflammatory response to sepsis. A novel method-

ology for endotype identification was developed by simultaneously reconstructing the dy-

namics of IL-6 and IL-10 trajectories and clustering on these dynamics. Reconstruction

of these dynamics was performed by parameterizing each subject via mathematical models

and estimating pre-hospital time. Representative master trajectories of the pro- and anti-

inflammatory response were calculated for each endotype. These master trajectories revealed

distinct and varied responses within a 390 subject cohort from the ProCESS trial. Statis-

tical analysis of these endotypes revealed significant differences within 6 hours of patient

enrollment, but an accurate early-detection classification tool (current accuracy is at 73%,

which needs improvement) from phenotypic patterns is not yet available. The five endo-

types identified in this Chapter were not fully explainable by phenotypes alone. Additional
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research will further improve mechanistic understandings of these endotypes, discover novel

segregation strategies, and reveal richer features, all of which will enable the translation of

sepsis endotyping into the clinic.
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4.0 MECHANISTIC DIFFERENCES BETWEEN ENDOTYPES

The key to improving sepsis therapies starts with understanding the mechanisms involved in

the dysregulations that cause a normal inflammatory response to turn into a sepsis response.

For example, Chapter 6.1 reveals that there are age-related immune pathway differences in

mice which manifests into longer inflammatory durations within older mice. Such differences

support the notion of mechanistic differences driving the five distinct sepsis behaviors seen in

Chapter 3. Improved understanding of these pathobiological differences can provide targets

for pharmaceutical intervention.

Mathematical modeling provides a quantitative framework to understand the mechanisms

behind the complex sepsis syndrome. A myriad of mechanistic sepsis models exist to capture

the representative inflammatory behaviors, but few have been calibrated against human data

[3, 4, 52, 55, 70, 79, 80]. The models that have been calibrated against human data are based

on endotoxin responses, which is mechanistically different from sepsis [37, 81–83].

A mechanistic model, tailored for the ProCESS data, was generated in response to the

shortcomings of existing mathematical models. The model focused on fitting the temporal

white blood cell (monocytes and neutrophils) and cytokine (TNF-α, IL-6, IL-10) measure-

ments within the ProCESS data in a compartmental-based (blood, bone marrow, infected

tissue) framework. The model characterized known phenomenological dynamics and inter-

actions of each state to mimic the inflammatory response. Model structure was modified to

include additional pathways that were deemed necessary to capture desired behaviors in the

data. First, the methods of model calibration are discussed. Second, the final iteration of

the model is presented. Finally, an endotype-level (from Chapter 3) parameter analysis of

the subjects is conducted and discussed.

54



4.1 METHODS

The model initiated as a project to fit a porcine model of sepsis (unpublished data, Soheyl

Bahrami, Ph.D., Ludwig Boltzmann Institute of Experimental and Clinical Traumatology).

14 pigs were subject to surgically induced peritonitis (introduction of bacteria into the ab-

dominal organs), 7 of which were given an experimental super-oxide dismutase therapy. The

7 control pigs were used for model fits. Measurements of serum TNF-α (TNF), IL-6, IL-8 (a

chemokine that attracts neutrophils from serum into tissue), IL-10, neutrophils, and mono-

cytes were available in 2-hour increments up to hour 12 post sepsis induction. The model

development phase was broken into three steps. First, as drivers of the inflammatory re-

sponse, cytokines TNF, IL-6, IL-8, and IL-10 were independently fit using the step-response

transfer function method outlined in Chapter 3.1. The step-response of the overshoot-type

transfer function was used. The step-response was appropriate here because the nonzero

lower limit of detection was treated as a steady-state value, which was modeled by a steady-

state gain. A delay term (e−θs) was included to account for the delay between the onset of

sepsis (start of peritonitis) to the initial rise of each cytokine. Once these cytokine models

were developed, the next step was to use them to develop the model structure governing

white blood cell dynamics. Filter functions of TNF and IL-6 were generated to account

for the delays and timing of downstream white blood cell dynamics. Three compartments,

Bone, Tissue, and Blood, were designed to account for the relevant recruitment dynamics

of white blood cells. The third step was to use the resultant white blood cell model to replace

the transfer function cytokine models with a mechanistic one.

With model structure defined, calibration was performed using a human endotoxin infu-

sion experiment [84]. Although the endotoxin inflammatory response is not entirely mecha-

nistically similar to sepsis, the model structure tweaks in this step served as a transitional

step to adapt the model for human data. Endotoxin was administered at 10, 20, and 40

ng/kg for three groups of subjects. Measurements were taken of serum TNF, IL-6, IL-8,

IL-10, neutrophils, and monocytes at hours 0 (start of experiment), 1, 1.5, 2, 3, 4, 6, 8, 12,

and 24.
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The porcine experimental data helped develop the white blood cell and cytokine model

structure. The human endotoxin experiment was used to adjust the IL-6 and IL-8 filter

functions to reflect the slower dynamics in humans compared to the porcine response. Fur-

thermore, the fast circulating neutrophil dip within 2 hours justified the addition of an LPS

state to allow for IL-8 independent recruitment of neutrophils into the Tissue compartment.

The ProCESS data described in Chapter 2.1 was used for model fitting. Temporal tra-

jectories of serum TNF-α, IL-6, IL-10, and neutrophils were available for model calibration.

Serum monocytes were not explicitly available but given measurements of total white blood

cell counts and neutrophil counts, an upper bound for serum monocytes were available. Un-

der normal conditions, monocytes account for less than 10% of white blood cells. During

inflammatory periods, monocyte composition increases, but numbers were not available in

literature. An assumption was to limit monocytes to an upper limit of 40% of the non-

neutrophil white blood cell counts. Dynamics began at the onset of infection and patient

data were shifted in accordance with the estimated pre-hospital times in Chapter 3.2. Sim-

ulation time was 0 to 150 hours post-infection (first week of sepsis) to fit the assumptions

made in Chapter 3.1 (maximum pre-hospital time was bounded at 78 hours and a patient

may have up to 72 hours of cytokine measurements).

4.1.1 Model Formulation and Simulation

Parameter-fitting was performed using the Pyomo Python package and the IPOPT solver

using the ma86 linear solver. Pyomo is a framework of tools designed to convert a model

specified in Python into the algebraic modeling programming language (AMPL) for use with

a variety of numerical optimization solvers [85, 86]. IPOPT was used for optimization and

is a solver that uses the interior point method. This method uses barrier functions to solve

linear programming problems and a well-written explanation is provided by Robere [87].

Take, for instance, a generic LP:

min cTx (4.1)

s.t. Ax = b

x ≥ 0

56



The inequality constraint can be replaced with a barrier function and reformulated into a

similar problem while preserving the Karush–Kuhn–Tucker conditions of the original problem

(when µ = 0).

min cTx− µ
N∑
i=1

lnxi (4.2)

st. Ax = b

The benefit of solving Equation 4.2 over Equation 4.1 is that it relaxes the inequality con-

straints via nonzero values of µ. Interior point methods iteratively solves Equation 4.2 for

decreasing values of µ, which effectively traverses the interior of the feasible region as it

approaches an inequality constraint. At µ = 0, the optimum to Equation 4.2 is also the

optimum to Equation 4.1 as well.

The Pyomo framework comes with a differential algebraic equation (DAE) package which

enables numerical optimization of problems involving ordinary/partial differential equations.

The DAE package converts algebraic differential equation expressions into forward or back-

ward finite difference approximations or orthogonal collocation on finite elements. For this

Chapter, all parameter fitting was conducted on ordinary differential equations (ODEs) with

the Pyomo DAE package set to the backward finite difference approximation option. The

objective function was formulated as the minimization of the weighted sum of squared errors

between the data and their relevant model states. Weights were applied on the TNF and

white blood cell states to capture the quick responses to inflammation.

On the ProCESS database, a regularization term was included (λ = 1) to penalize

nonzero values of cytokines by hour 150, which was a phenomenon that tended to occur in

the absence of a data-driven reason. To prevent numerical issues pertaining to scaling, all

data was scaled (divided by 10i) to homogeneously range within [0,100]. Finally, an addi-

tional inequality constraint was posed on monocytes to enforce the aforementioned maximum

monocyte limit.

Pyomo requires setting bounds on each parameter, which was a difficult task because

most of the parameters have no literature sources. Initial parameter-fitting simulations were

performed in APT-MCMC (see Chapter 6.2) using large, uninformative bounded uniform
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distributions to obtain the posterior distribution of parameters. A posterior distribution is

the distribution of a parameter after it has been conditioned upon observed data (fitted in

accordance to the maximum likelihood estimator) and APT-MCMC calculates these distri-

butions via Baye’s Theorem (Equation (6.18)). The posterior distributions from the initial

APT-MCMC simulations on the ProCESS data informed the Pyomo parameter bounds.

4.1.1.1 Initiation of Inflammation and the Cytokine Storm

dTNFT
dt

= (VmtMacro+Rmacro)
P

Kpmt + P
− µttTNFT − dtTNFt (4.3)

dIL6T
dt

= Vm6Macro

(
P

Kpm6 + P

)(
K106

IL10T +K106

)
− µ6tIL6T − d6IL6T (4.4)

dIL8T
dt

= (Vm8Macro+Rmacro)

(
P

Kpmt + P

)(
K86

IL10T +K86

)
− µ8tIL8T − d8IL8T

(4.5)

dIL10T
dt

= (Vm10Macro+Rmacro)

(
P

Kpmt + P

)
+ Vn10µntNT

(
1− TNFT

Ktn + TNFT

)
(4.6)

− µ10tIL10T − d10IL10T (4.7)

The inflammatory response begins with the presence of Pathogen (P ) in the infected Tissue

compartment. Resident macrophages that reside in the infected tissue detect the presence

of pathogen via a Michaelis-Menten dynamic: P/(Ki + P ) and produce cytokines: TNF,

IL-8, and IL-10 (TNFT , IL8T , IL10T , respectively) [13, 55, 73]. IL-6 is also produced by

macrophages (recruited and resident macrophages), but the model does not allow resident

macrophages to produce IL-6 to enforce a delay between TNF and IL-6 peaks [39]. These

cytokines leave the Tissue compartment via two pathways: natural decay/degradation (µit

term) and diffusion into the Blood compartment (di term). Once cytokines diffuse into the

blood, they each take on different inflammatory roles.

Eventually, blood monocytes are recruited towards the infected tissue. Upon arrival,

recruited monocytes differentiate into macrophages (Macro) where they begin to produce

TNF, IL-6, IL-8, and IL-10. This production is governed by a rate constant (Vmi) and the

aforementioned Michaelis-Menten dynamic. Together, recruited and resident macrophages

58



produce large amounts of cytokines to emulate the cytokine storm phenomena during the

early phases of sepsis [73]. While neutrophils are able to produce cytokines, monocytes are

able to synthesize cytokines at a rate that is 50-100 times faster [88]. The model simplifies

this dynamic by delegating the role of cytokine production to monocytes/macrophages only.

IL-10 is an anti-inflammatory cytokine and its primary mechanism for countering the

pro-inflammatory response is to halt macrophage production of TNF, IL-6, and IL-8 [15].

This mechanism is governed by a non-competitive inhibitory Michaelis-Menten dynamic:

1− IL10T/(Ki + IL10T ) = K ′i/(IL10T +K ′i)

This inhibitory behavior blocks macrophage production of IL-6 and IL-8. IL-10 inhibition

of TNF was not included in the model because TNF was used to drive the early dynamics

of the inflammatory response. A fast and high magnitude peak of TNF is desired and

necessary to trigger model dynamics and the inclusion of IL-10 inhibitory effects damped

such behaviors. Finally, there is an additional IL-10 dynamic associated with neutrophils

that will be discussed in Section 4.1.1.3.

4.1.1.2 Cytokine Diffusion and their Roles

dTNFB
dt

= dtTNFT − µtbTNFb −KTconsumeTNFB(MC +NC) (4.8)

dIL6B
dt

= d6IL6T − µ6bIL6b − k6consumeIL6B(MC +NC) (4.9)

dIL6F1

dt
= d6IL6b − d6IL6F1 (4.10)

dIL6F2

dt
= d6IL6F1 − d6IL6F2 (4.11)

dIL6F3

dt
= d6IL6F2 − d6IL6F3 (4.12)

dIL6F4

dt
= d6IL6F3 − d6IL6F4 (4.13)

dIL8B
dt

= d8IL8T − µ8bIL8B − k8consumeIL8b
Nc

Knc8 +Nc

(4.14)

dIL8F1

dt
= d8IL8b − d8/3IL8F1 (4.15)

dIL10B
dt

= d10IL10t − µ10bIL10b (4.16)
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Once cytokines diffuse into the Blood compartment at a rate of di, they undergo natural

decay/degradation (µib). To capture the fast decline of TNF, IL-6, and IL-8 within the

porcine and human LPS data, an additional sink term, with the rate constant kiconsume,

was added. Biologically, this represents the binding of these cytokines onto the receptors

of circulating (in the blood) neutrophils and/or monocytes to activate/prime them. While

more detailed neutrophil models exist differentiating circulating neutrophils into activated

and not-activated pools, none of the neutrophil data in the available data was granular

enough able to justify such distinction [70]. The kiconsume rate constant has no effect on

neutrophil or monocyte behavior and exists merely as a Blood compartment cytokine sink.

IL-8 is a chemokine that is responsible for recruiting neutrophils into the tissue by way of

extravasation (movement through endothelial walls) [89]. IL-6 is a pro-inflammatory cytokine

that is able to recruit neutrophils and monocytes [14]. IL-6 and IL-8 both have filter functions

which serve as delays in their induction of specific inflammatory pathways. These were

deemed necessary during the migration from time-delayed transfer function cytokine models

to mechanistic cytokine models during the porcine model calibration step. Furthermore,

the filter functions captured cytokine migration towards their appropriate target (such as

diffusion into the spleen to recruit marginated neutrophils into the blood) without explicitly

modeling additional compartments.

The primary role of blood TNF in the model is to recruit monocytes into the infected

Tissue compartment to sustain the inflammatory response. Monocyte recruitment is a

complex process that is not well understood in humans [12]. Human monocyte recruitment is

likely the result of a combination of CC-chemokine receptor 2 (CCR2) and CX3C-chemokine

receptor 1 (CX3CR1), which was not measured in any of the calibration datasets [12]. Blood

TNF took on the role of CCR2 in the model due to its fast acting pro-inflammatory profile.

Blood IL-10 has no role in the model because the majority of its role lies in the Tissue-

level inhibition of the macrophage production of cytokines [15]. Blood IL-10 was explicitly

modeled because all three data sets contained serum measurements of IL-10.
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4.1.1.3 Neutrophil Dynamics

fNexchange = kP (1 + 5
IL8F1

Knr8 + IL8F1

)NM − 5kP (1− IL8F1

Knr8/5 + IL8F1

)NC (4.17)

Under homeostatic conditions, the majority of neutrophils are under intravascular margina-

tion, where they are stored in the spleen (primarily), bone marrow, and liver [90]. Despite

being kept in storage, radio-labeling techniques have revealed that neutrophils are able to

migrate from the marginated pool into blood within 2-10 minutes [90]. The size of the

marginated neutrophil pool is currently unknown and under much debate. An assump-

tion was made that the marginated neutrophil pool was 5 times larger than basal circulat-

ing neutrophil levels to capture the fast rise in neutrophils seen in the human endotoxin

data. Furthermore, because neutrophil margination storage occurs in several compartments

throughout the body, the model simplified this mechanism to a single state within the Blood

compartment. Equation (4.17) describes the rate of exchange between the circulating and

marginated neutrophil pools (NC and NM , respectively) and was formulated in a journal

article by Ho, et al [91]. In Equation (4.17), a positive sign indicates flow into the circulating

neutrophil pool.

During non-inflammatory conditions, to maintain a 1:5 (circulatory to marginated pool)

ratio, neutrophils flow into the circulating rate at kp and flow back into the marginated

pool at 5kp. Under inflammatory conditions, a delayed IL-8 signal (due to transit time from

blood flow into these marginated compartments) was used to modify kp to greatly prefer

transit into the circulating pool [92]. During inflammation, circulating neutrophils typically

dip within the first 2 hours and is followed by a fast rise to above basal levels [88]. This

can also be seen in the porcine and human endotoxin data sets. The marginated-circulating

mechanism prevented neutrophil depletion and provided a source for the fast increase in

neutrophil count.
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Prog

dt
= KtrmProg

(
Mcbasal

Mc

)γm
−KtrmProg (4.18)

+KtrnProg

(
Ncbasal

Nc

)γn
−KtrnProg (4.19)

dT1N
dt

= KtrnProg −KtrnT1N (4.20)

−Kn6
IL6F4

Knr + IL6F4

T1N
1

NM +KT3NM

1

KT inhibit + T3N

1

KT inhibit + T2N
(4.21)

dT2N
dt

= KtrnT1N −KtrnT2N −Kn6
IL6F4

Knr + IL6F4

T2N
1

NM +KT3NM

1

KT inhibit + T3N
(4.22)

dT3N
dt

= KtrnT2N −KtrnT3N −Kn6
IL6F4

Knr + IL6F4

T3N
1

NM +KT3NM

(4.23)

The time span of the ProCESS data was three days and with the pre-hospital time shift,

the model simulated one week of inflammatory dynamics from the infection onset. The

long timespan necessitated a slower-acting source of neutrophils to supplement the dead

neutrophils within the body. Neutrophil recruitment from the bone marrow is governed by

G-CSF and various chemokine receptors [91, 93, 94]. Within the bone marrow, progenitor

cells called hematopoietic stem cells differentiate into common myeloid progenitor (CMP)

cells that can differentiate into monocytes or neutrophils [13, 89]. Under the neutrophil dif-

ferentiation pathway, the CMP cells (Prog) differentiate into metamyelocytes (T1N ), band

cells (T2N ), and then segmented granulocytes (T3N ) [91, 95]. The results provided by Friberg,

et al., and Ho, et al. both reveal that the bone marrow is capable of increasing the circulat-

ing neutrophil pool within 5-10 days, which is an appropriate time frame for the ProCESS

data [91, 95]. Between Prog and T1N -T3N , Ktrn governs the natural maturation rate that

it takes for cells to mature into each classification and includes the non-inflammatory mi-

gration of segmented granulocytes into the circulating pool. The progenitor cells receives

a feedback signal from the Blood compartment:
Ncbasal

Nc

γn
, which induces progenitor cell

growth if circulating neutrophils levels fall below normal levels.

In the model, the immature neutrophils within the bone marrow are available for emer-

gency recruitment source should the marginated neutrophil pool subceed a certain level

(governed by an inhibitory mechanism: 1/(NM + KT3NM
)). The body first draws upon the

segmented granulocytes (T3N ) if the marginated neutrophil pool is too low. It then draws

62



upon the band cells (T2N ) and finally the metamyelocytes (T1N ).This model formulation was

provided by Ho, et al [91].

dNM

dt
= −fNexchange (4.24)

dNC

dt
= fNexchange − Vn8Nc

IL8T
Kn8 + IL8T

+ ktrnT3N − µnb
Nc(1−

TNFB
Ktn + TNFB

) (4.25)

+Kn6
IL6F4

Knr + IL6F4

(4.26)

∗ 1

NM +KT3NM

(
1

KT inhibit + T3N

(
T1N

1

KT inhibit + T2N
+ T2N

)
+ T3N

)
(4.27)

−KlnNcLPS (4.28)

The model uses filtered IL-6 to drive the recruitment from bone marrow into blood.

The fourth IL-6 filter was used as a way of approximating the pro-inflammatory signaling

cascade (chemokines and chemokine receptors) that interact with the relevant bone marrow

cells [96]. This interaction was modeled with Michaelis-Menten kinetics. The recruited

neutrophils migrate into the circulating neutrophil pool where they can be stored in the

marginal pool, undergo natural degradation, or migrate into infected tissue.

IL-8 forms a chemotactic concentration gradient which attracts circulating neutrophils

[89]. Specifically, circulating neutrophils migrate towards regions of increasing IL-8 concen-

trations via endothelial wall rolling, adhesion, and then intraluminal crawling [96]. This pro-

cess, called extravasation, is governed by many chemokines and receptors, but the model sim-

plifies these dynamics with a single Michaelis-Menten term on Tissue IL-8: Vn8IL8T/(Kn8+

IL8T ). The attempts involving a difference term to represent the chemotactic gradient

(IL8B − IL8T ) caused unexpected model behavior because the term often changed signs.

Neutrophils are capable of also following chemotactic gradients produced by endotoxins

and lipopolysaccharide (LPS), which are molecular patterns indicative of a pathogen [88].

This mechanism provides quick neutrophil response into infected tissue prior to IL-8 driven

recruitment and explains why the inflammatory response is typically faster in endotoxin

experiments than in sepsis [37]. This term is represented by a simple kinetic rate constant,

Kln. LPS is modeled separately from pathogen to represent the release of endotoxin/LPS
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into nearby tissue, thus forming a separate chemotactic gradient that can independently

recruit neutrophils.

dNT

dt
= Vn8NC

IL8T
Kn8 + IL8T

− µntNT

(
1− TNFT

Ktn + TNFT

)
+KlnNcLPS (4.29)

Once neutrophils have entered the infected Tissue compartment, its only sink is death by

degradation. Natural neutrophil degradation occurs at rates µnb
NC and µntNT in the blood

and tissue, respectively. However, TNF is known to prolong neutrophil lifespans [11, 97].

Within the model, the natural degradation term is modulated by 1− TNFj/(Ktn + TNFj)

to represent a prolonged lifespan under inflammatory conditions.

The death of neutrophils contributes to the resolution of inflammation [97]. Neutrophils

may die via one of two pathways: necrosis or apoptosis. Necrosis contributes to further

inflammation because the cellular walls of neutrophils break down and release toxic, pathogen

killing, molecules into the tissue. Apoptosis represents a “healthy” neutrophil death which

involves signaling nearby macrophages for safe clearance of the dying neutrophil and its

toxic contents [97–99]. Neutrophil apoptosis promotes the synthesis of IL-10 and other anti-

inflammatory signals [97]. The model uses a rate parameter, Vn10, to govern the induction

of IL-10 production due to apoptotic neutrophil death:

Vn10µntNT

(
1− TNFT

Ktn + TNFT

)

The model does not currently separate neutrophil death into apoptotic or necrotic stages

due to the lack of monocyte measurements in the ProCESS database.
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4.1.1.4 Pathogen Dynamics

dP

dt
= Kp1P

(
1− P

P∞

)(
P − ε
P + ε

)
− kNPNT

P

Kp2 + P
(4.30)

dLPS

dt
= kppP − kpp2LPS (4.31)

Pathogen is located in the infected Tissue compartment and is introduced via a nonzero

initial condition. Pathogen grows at a rate of Kp1 but is limited by the P∞ term to rep-

resent growth limitations due to the conditions within the Tissue compartment (nutrition

availability, unfavorable environmental conditions, etc). A similar approach was taken in

a journal article published by Reynolds, et al [4]. The ε term was introduced to prevent

oscillations at low values of pathogen close to zero. Tissue neutrophils kill pathogen with a

Michaelis-Menten kinetic, kNPP/(Kp2 + P ). Finally, pathogens release LPS (LPS) into the

tissue, which forms a chemotactic mechanism that can drive Tissue neutrophil recruitment.

4.1.1.5 Macrophage Dynamics

fMexchange = kpm(1 +
IL6F1

Km6 + IL6F1

)MM − 3.5kPM(1− IL6F1

Km6 + IL6F1

)MC (4.32)

Similar to neutrophils, monocytes circulate the blood and are sequestered in marginated

compartments during non-inflammatory conditions at an estimated 1:3.5 circulating to marginated

count ratio in human studies [12, 13, 100].Marginated monocytes, MM , was represented as

a single state within the Blood compartment. The dynamic sequestration exchange of MM

with circulating monocytes, MC , is represented by Equation (4.32). Current knowledge

monocyte recruitment from marginated compartments are not well known. The model as-

sumes that a pro-inflammatory signal, represented by a filtered IL-6 (IL6F1), biases Equation

(4.32) towards MC to increase circulating monocyte levels.
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dT1M
dt

= KtrmProg −KtrmT1M (4.33)

dT2M
dt

= KtrmT1M −KtrmT2M (4.34)

dT3M
dt

= KtrmT2M −KtrmT3M −Kr
IL6F4

Kt6 + IL6F4

T3M
1

MM +KT3MM

(4.35)

Monocytes are derived from the same progenitor cells (CMP, represented by Prog) that

differentiate into neutrophils [12]. Decreases in basal monocyte levels result in a growth

signal to the CMP cells:
Mcbasal

mc

γM
. Monocyte development can also be staged into 3 phases:

progenitor granulocyte-macrophage progenitor (T1M ), macrophage/dendritic cell progenitor

(T2M ), and common monocyte progenitor (T3M ). While little is known about immature

monocyte recruitment during inflammatory conditions, recent literature suggested that this

mechanism occurs in mice [101]. A conservative assumption was made to use only the

common monocyte progenitor state to replenish monocytes under inflammatory conditions.

The model utilizes IL6F4-driven recruitment from the T3M immature state when the marginal

monocyte pool becomes low.

dMM

dt
= −fMexchange (4.36)

dMC

dt
= fMexchange (4.37)

− kmmtMc ∗
TNFB

Ktm + TNFB
(4.38)

+ ktrmT3M − µmb
Mc (4.39)

+Kr
IL6F4

Kt6 + IL6F4

T3M
1

MM +KT3MM

(4.40)

Circulating monocytes are affected by the exchange dynamic in Equation (4.32) and re-

plenished from the T3M state (ktrm represents normal replenishment and Kr represents in-

flammatory driven replenishment). MC decays at a rate of µmb in the blood. Unlike neu-

trophils, there are no lifespan prolonging mechanisms for monocytes. Monocyte recruitment
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into tissue is driven by a complex chemokine signaling pathway that is approximated by a

Michaelis-Menten interaction involving TNFB.

dMacro

dt
= kmmtMC

TNFB
Ktm + TNFB

− µmt(1 +Macro
P

kmtp + P
) (4.41)

Monocyte, upon entering the Tissue compartment, differentiate into macrophages (Macro).

While macrophages are able to eliminate pathogens directly via phagocytosis, this interac-

tion occurs on the orders of minutes compared to seconds for neutrophil-related elimination

[99]. Macrophage elimination of pathogens is not modeled due to this rate difference. The

primary role of macrophages is to synthesize cytokines. The secondary role of macrophages is

phagocytosis and efferocytosis. Efferocytosis refers to the removal of apoptotic cells (mostly

neutrophils) [98, 99]. Macrophages that undergo phagocytosis have been shown to exhibit

elevated rates of death [102, 103]. The model includes macrophage death at a constant basal

rate of µmt due to the longevity of macrophages. Under inflammatory conditions, this rate

can be accelerated due to phagocytosis via a simplified mechanism involving pathogen levels:

P/(kmtp + P ).

4.1.2 Model Post-hoc Analysis

Figure 4.1 illustrates the aforementioned model structure. The model has 58 parameters

and 28 states. Of the 28 states, the initial conditions for circulating monocytes, circulating

neutrophils, and initial pathogen concentration were fitted (as part of the 58 total param-

eters). Initial conditions for marginated monocytes and neutrophils were set to 3.5x and

5.0x their respective circulating counterpart’s initial conditions. The initial conditions for

the progenitor cells and the immature white blood cell states within the Bone were set to

1000 105/mL. All other initial conditions were set to zero.

Individual fits for every subject within the 390 cohort in Chapter 3 was conducted using

Pyomo and IPOPT. Cytokines TNF, IL-6, and IL-10 were scaled to fall within a range of

[0,100] and their units were 101pg/mL, 102pg/mL, or 103pg/mL. Circulating neutrophils

and monocytes were scaled to 105/mL and 104/mL, respectively.
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Figure 4.1: Diagram illustrating the sepsis ODE model. The tissue compartment is in yellow, blood
in red, and bone in gray.

From each endotype, the 10 subjects with the lowest objective function values were

considered to be “representative” patients of that endotype and selected for post-hoc anal-

ysis. Two tests were used to identify endotype-specific parameter differences. First, the

Anderson-Darling omnibus test was used to identify differences between parameters within

each endotype. Pair-wise differences (1 vs 4 and 2 vs 3) were tested with the Anderson-

Darling test and a Bonferroni correction. Second, a nonlinear fixed-effect model using the

covariates age, gender, and endotype was used. This model explicitly included age and

gender, two well-known covariates that confound parameter differences between groups.

K = θ exp

(
η0 +

∑
i

ηiXi

)
(4.42)

logK = log θ + η0 +
∑
i

ηiXi (4.43)
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Equation (4.42) represents the nonlinear fixed-effects of X={Age, Gender, Endotype} on an

arbitrary parameter, K. Taking the log of both sides yields Equation (4.43), which results in

a linear model. The package statsmodels in Python was used to conduct linear regression for

57 parameters (the parameter for the initial condition of pathogen was excluded). The F-

statistic of overall significance was calculated to reveal the significance of the ηi coefficients.

A p-value≤ 0.05 cutoff was used to determine if a covariate was significantly better than an

intercept-only model.

4.2 RESULTS

Figures 4.2-4.6 shows sample fits from each one of the five endotypes. The filtered states for

IL-6 and IL-8 are not shown. For the subjects that had neutrophil data, monocyte upper

bounds were calculated and represented in green dashed lines. The bottom row of each figure

demonstrate the cytokines. For TNF and IL-6, there were often scale differences between the

blood (red trajectories) and tissue (blue trajectories) concentrations. As a result, their units

varied to ensure similar scaling. Blood and tissue y-axes were the left and right, respectively.

Figure 4.2 illustrates a subject from endotype 1, which was representative of a high mag-

nitude pro-inflammatory and anti-inflammatory response followed by a fast decline. Large

amounts of pathogen were estimated for this subject. LPS immediately recruited circulating

neutrophils, which accounted for the fast dip during the first day. Cytokines rose slowly

and peaked on the second day, which was the estimated time of clinical presentation. IL-6

and IL-10 declined sharply during this day, which was a characteristic feature of endoype

1. The fourth filtered signal of IL-6 reached the bone marrow during day 3, which recruited

immature neutrophils and monocytes from the Bone compartment into the Tissue, causing

the hour 80 peaks. At 5 days, IL-8 was no longer present in the body and enabled the

accumulation of circulating neutrophils.

Figure 4.3 illustrates a subject from endotype 2, which was representative of a pro-

tracted anti-inflammatory response and a fast-acting pro-inflammatory response. This sub-

ject’s neutrophils and monocytes were quickly depleted following an aggressive and fast pro-
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Figure 4.2: Sample fit for endotype 1, which was characterized by overwhelming inflammation.
Subject 200039 is shown.

inflammatory response on the first day of infection. There was a sustained IL-10 response

during the entire week, which indicated an immuno-suppressed state. This was further

evidenced by a nonzero pathogen level by the end of the simulation.

Figure 4.4 illustrates a subject from endotype 3, which was representative of a rising-

predominant anti-inflammatory response. This subject eliminated all pathogen by the 5th

day, but the pro-inflammatory cytokines TNF, IL-6, and IL-8 were elevated during the entire
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Figure 4.3: Sample fit for endotype 2, which was characterized by a protracted anti-inflammatory
response. Subject 560054 is shown.

duration. IL-10 was sustained during this duration and caused the shark fin-like shape in the

pro-inflammatory cytokines. The secondary IL-10 peak was caused by neutrophil apoptosis

following the elimination of pathogens at hour 100. Finally, the lag between the steep decline

of IL-6 at hour 100 (on day four) and the filter functions of IL-6 caused the circulating

neutrophil dip around 110 hours, which ended immature neutrophil recruitment.
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Figure 4.4: Sample fit for endotype 3, which was characterized by immunosuppression. Subject
210085 is shown.

Figure 4.5 illustrates a subject from endotype 4, which was representative of a sustained

inflammatory response and an ineffective anti-inflammatory response. The TNF and IL-10

response in the Tissue rises quickly and remains elevated until pathogen elimination at 100

hours. However, the IL-6 presence remained elevated for days after pathogen elimination.

The sustained inflammatory response caused rapid depletion of neutrophils and monocytes

in both the circulating and marginal compartments. The unique aspect of this subject was
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Figure 4.5: Sample fit for endotype 4, which was characterized by sustained inflammation. Subject
360025 is shown.

that the pathogen generated a large number of LPS, which also contributed to neutrophil

depletion. Within one week, the values of T3M and T3N significantly declined. Due to the

sustained pro-inflammatory response, neutrophils were recruited into tissue after pathogen

elimination.

Figure 4.6 illustrates a subject from endotype 5, which was representative of a quick rise

and fall of both pro- and anti-inflammatory responses. The TNF, IL-6, and IL-8 responses
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Figure 4.6: Sample fit for endotype 5, which was characterized by a quick and short inflammatory
response. Subject 420021 is shown.

for this subject comprised of a fast up-down response and reach a nadir by hour 60 (on

day 2). The body detected a rise in pathogen around this time and a secondary response

occurred. As a result, full pathogen elimination occurred late (on day 5) compared to the

other endotypes (with the exception of Figure 4.3 representing a subject from endotype 2).

IL-10 dipped around hour 20 due to the decrease in pathogens. The subsequent IL-10 rise was

caused by the neutrophil apoptosis mechanism (due to elevated levels of tissue neutrophils).
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For this subject, IL-10 appeared to be heavily influenced by the apoptosis mechanism, which

indicated a preference towards immuno-suppression.

The Anderson-Darling statistical test revealed two parameters to be different between

endotypes. The first parameter was µmt , which governed macrophage cell death rate (which

could be accelerated by phagocytosis). Pair-wise testing revealed that µmt was significantly

different between endotypes 4 and 5 versus 1, 2, and 3. Furthermore, it was also revealed

that µmt within endotype 5 was different from 1, 2, 3, and 4. The second parameter was

µ10b , which governed the decay of IL-10 in the blood. Pair-wise testing revealed that this

value was significantly different between endotypes 1 and 2 versus endotypes 3, 4, and 5.

The covariate model revealed several parameters of interest. First, endotypes had a

significant effect on the parameters kmtp, µ10b , and µtb . The parameter kmtp is the half-

max term of the Michaelis-Menten term describing accelerated macrophage death due to

phagocytosis. Specifically, the relevant term is 1 +MacroP/(kmtp + P ). The parameter µtb

describes the natural decay rate of TNF within the Blood compartment. Second, age had

a significant effect on the parameters Knr and KTconsume. The parameter Knr is the half-

max term of the Michaelis-Menten kinetic that governs immature neutrophil recruitment

from the bone compartment. The parameter KTconsume governs the mechanism of neutrophil

activation by blood TNF. Finally, age had a significant effect on the parameters dt, µtb , and

KTconsume.

4.3 DISCUSSION

Figure 4.7 shows the estimated distributions for the four parameters that were found to be

significantly different among endotypes. Parameter kmtp demonstrated bimodal peaks. En-

dotypes 1 and 2 were predominantly distributed at low values for kmtp, which resulted in a fast

rate of macrophage death. These two endotypes were characteristic of high cytokinemia. One

possibility was that overproduction of cytokines caused macrophage death. Alternatively,

the overproduction of cytokines may have been a response to macrophage death: more TNF

was needed to replace the dying macrophages to sustain the inflammatory effort. Endotypes
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Figure 4.7: Distribution of significant parameters among endotypes. Stacked histograms, color
coded by endotype, are shown. A Gaussian kernel density estimation (shaded trajectory) within
each panel is shown. X-axis represents the log value of the parameter. Y-axis is not shown because
the Gaussian densities are not normalized and scaled to encompass the histograms.

4, and 5 were distributed between high and low values of kmtp. Most subjects within endo-

type 3 consisted of high values of kmtp, which resulted in a slower macrophage death rate.

Slower macrophage death resulted in a smaller TNF signal because monocyte recruitment

was unnecessary given the large presence of macrophages in tissue. The presence of large

numbers of macrophages may have also contributed to the resolution of inflammation (and

therefore a predominant anti-inflammatory state) via the neutrophil apoptosis mechanism.

Parameter µ10b demonstrated a similar bimodal behavior: endotypes 1 and 2 preferred

low values and endotypes 3, 4, and 5, were distributed between high and low values. Slow

IL-10 degradation may partially explain the high cytokinemia response in endotypes 1 and

2.

Parameter µtb had bimodal peaks as well. Endotype 3 preferred low values of the TNF

blood decay parameter while the other endotypes were fairly spread out. It is possible that

76



TNF signals are prolonged (due to longer half-life) within endotype 3 and the high anti-

inflammatory response is caused by a compensatory mechanism to offset the TNF response.

Subjects from endotype 1 also dominated low values of µtb . TNF may have contributed to

the high cytokinemia response that was characteristic of this endotype. A negative con-

sequence of high cytokinemia and longer cytokine lifespans is the improper recruitment of

neutrophils, misdirecting them into healthy tissue, which may explain the high organ failure

rates associated with endotype 1 [9, 91].

Parameter µmt was primarily distributed within the [-4,0] log values. However, several

subjects from endotypes 3, 4, and 5 formed a smaller peak at lower values of µmt , which

indicated longer overall macrophage lifespans.

Two parameters involving macrophage death dynamics were identified to be significantly

different among endotypes and were subject to further analysis. Figure 4.8 illustrates a joint

density plot for log parameter values of kmtp and µmt . The majority of subjects had low

values of kmtp, which the lower bound set in Pyomo for that parameter during optimization.

Two subjects from endotype 1 exhibited both low kmtp and low µmt , a combination that

resulted in a decreased natural macrophage death rate, but increased macrophage death

rate during inflammatory conditions. There was a cluster of subjects, mostly consisting of

endotype 5, that exhibited high values of kmtp and low values of µmt . This behavior was

associated with decreased natural macrophage death rate and decreased inflammatory-driven

death. The long lifespan macrophages precluded the need for a sustained inflammatory signal

and may explain the fast decline of cytokines in endotype 5. For high values of µmt , there

were two regions. The region with high kmtp and high µmt consisted of subjects from every

endotype. This parameter space described a high macrophages natural death rate and a low

inflammatory death rate. Endotype 3 had a greater presence in this area. The region with

low kmtp and high µmt also consisted of subjects from every endotype. However, endotypes

1 and 2 was almost located within this region. This parameter space described fast dying

macrophages: both the natural death rate and the inflammatory death rate were high.

Figure 4.9 illustrates the joint density plot for log parameter values of µ10b and µtb . This

plot describes the parameter space concerning cytokine decay for blood IL-10 and TNF.

Endotypes 1 and 2 were located exclusively in regions of low µ10b values, which may be
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Figure 4.8: Joint distribution plot of significant macrophage parameters. X-axis is the log of kmtp,
the half-max parameter in Michaelis-Menten term that accelerates macrophage death. Y-axis is
the log of µmt , the non-inflammatory death rate of macrophages. Histograms of the parameters are
shown at the top and right edge of the figure. Contour lines represent Gaussian kernel estimates.
Scatter plots of parameter locations for each color-coded endotypes are shown.

responsible for the high cytokinemia in those groups. Endotype 3 was centered around low

µ10b and low µtb , a parameter region that resulted in the slow decay of IL-10 and TNF.
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Figure 4.9: Joint distribution plot of significant cytokine decay parameters. X-axis is the log of
k10b , the decay of blood IL-10. Y-axis is the log of µtb , the decay of blood TNF. Histograms of the
parameters are shown at the top and right edge of the figure. Contour lines represent Gaussian
kernel estimates. Scatter plots of parameter locations for each color-coded endotypes are shown.
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Endotype 4 was centered in regions of high µ10b (fast IL-10 decay), which supported the

hypothesis in Chapter 3 that it represented a sustained inflammatory response. Endotype 5

was spread out across the entire distribution and did not appear to have a central location.

4.3.1 Study Limitations

The 390 subjects from the ProCESS trial offered many challenges in parameter fitting:

fitting initial conditions, unknown pre-hospital time, and the lack of dense temporal data.

White blood cell measurements were rarely collected in the 390 patients. Furthermore, IL-

8, a crucial driver of neutrophil dynamics, was not measured. These deficiencies limit the

translatability of these results into the clinic.

The lack of dense temporal data resulted in high parameter confidence intervals. Profile

likelihood, a popular method in systems biology to determine parameter identifiability and

confidence intervals, could not be applied to the existing model [104]. A profile likelihood

simulation was run but did not finish by the end of two months. The combination of the lack

of dense fitting data and the complexity of the model caused non-identifiability problems

and extremely large confidence intervals, rendering profile likelihood, as a method, infeasible

for this application.

Mathematical insights from sepsis ODE models cannot be obtained without dense tem-

poral data. There are numerous difficulties associated with obtaining human sepsis data,

but the results in this Chapter suggests that data collection may be worth the resources and

effort.

4.4 SUMMARY

A mathematical model of sepsis was developed and fitted to human sepsis data from the

ProCESS trial. The 390 subjects from Chapter 3 were individually fit to the model and

an omnibus post-hoc analysis was conducted to identify population-level differences in pa-

rameters between endotypes. Macrophage cell death was an important distinguishing fac-
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tor between endotypes because two parameters affecting the death rates of macrophages

were deemed statistically significant. Furthermore, cytokines IL-10 and TNF had endotype-

specific rates of decay, which may explain why some septic patients have high cytokinemia

while others have low cytokinemia. These mechanistic insights begin to shed light on the

innate differences between sepsis endotypes and the causes of variability in the syndrome.

Such insights may also provide targets for pharmaceutical therapy to address the underlying

cause of inflammatory dysregulation in sepsis rather than treat the symptoms of it.
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5.0 IDENTIFICATION OF TRUE SEPSIS TIME-ZERO AND

QUANTIFYING SEPSIS-INDUCED DAMAGE

5.1 PRE-HOSPITAL TIME IDENTIFICATION

Chapter 3 lacked to the ability to identify pre-hospital times for sepsis subjects in the clinic.

Such an ability can improve clinical outcomes and significantly change how sepsis therapies

are developed. Because of the dynamic nature of the physiologic response to infection, both

the nature and the timings of potential interventions are likely to be determinant factors in

influencing outcome [3, 105]. For example, an abrogation of the early TNF response increased

mortality in some animal models, while most pre-clinical treatment models showed benefit

[106, 107]. This may explain, at least in part, why many sepsis therapies that showed promise

from animal models, where timing is known, failed in human studies.

In addition to clinical benefits of a pre-hospital time estimation tool, mathematical mod-

els of sepsis can significantly improve and reveal valuable mechanistic insight. Several math-

ematical and statistical models have been posed to elucidate the fast-acting dynamics of sep-

sis and to offer predictions regarding the potential effects of interventions and their timing

[3, 4, 51, 69, 70, 108]. However, training and fitting parameters of these models for indi-

vidual patients is challenging, in part due to the aforementioned timing issues with human

data collection. For the purposes of such models, a population mean is typically computed

from data pooled at time points relative to the time of enrollment. Näıve pooling becomes a

problem because these data points are located at various points along temporal trajectories

of individual patients. Methodological obstacles in developing robust models, such as inter-

individual timing and variability and response, combined with a lack of familiarity of the
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research community with such computational tools have delayed the introduction of such

advanced tools as core to the design of clinical trials of sepsis.

Identifying the time of onset of infection offers two advantages in human sepsis research.

First, it potentially enables the revisiting of previously failed trials with the purpose of

analyzing, a posteriori, possible relationships between the elapsed time from onset and effec-

tiveness. Second, identifying onset time enables patient biomarker data to be shifted relative

to the time of infection, therefore, allowing more effective translation between animal results

and human expectations. Further, mathematical models can be properly trained and pro-

vide more accurate predictions if mechanistically-based, biomarker-driven interventions are

contemplated.

There are currently no proposed methods to identify the time of onset of an inflammatory

challenge for sepsis or non-sepsis data. This motivated the development of a tool to estimate

pre-hospital times with the requirements of (i) estimation generation within a few hours of

hospital admission and (ii) the use of commonly measured clinical features.

5.1.1 Methods

A baboon sepsis dataset was retrospectively analyzed for this work [109]. The original ex-

perimental design was to investigate the therapeutic effects of a nitric oxide synthase (NOS)

inhibitor of septic shock. Thirty-three baboons of the species Papio ursinus were sedated

and 2 ∗ 109 colony forming units/kg of Escherichia coli (E. Coli) were infused intravenously

into each subject over two hours. Fluid resuscitation and antibiotic therapy were provided

to all subjects throughout the experiment. The proposed NOS inhibitor treatment began

after hour 12 on sixteen subjects. Animals were treated in accordance with National Insti-

tutes of Health guidelines. The experimental protocol was reviewed and approved by the

Institutional Animal Care and Use Committee of Biocon Research Laboratories, Pretoria,

South Africa. 73 biomarkers were obtained as time series for each baboon including vital

signs, arterial blood gases and lactate, hemodynamic parameters, complete blood counts

and differential, and biochemistry. Baseline measurements were taken 30 minutes prior to

E. Coli infusion. Additional measurements were collected at specified times throughout the

83



experiment. Subjects that survived the experiment had final measurements taken prior to

sacrifice. Biomarkers that were intermittently measured throughout the experiment were

eliminated from the analysis. This reduced the number of biomarkers to 29, where measure-

ments were available for all baboons at hours -0.5, 0, 0.5, 1, 2, 3, 4, 5, 6, 11, and 12, where

hour 0 marked the beginning of the E. Coli infusion. This time point was considered the

true time of onset of infection. Time points past 12 hours post-infection were not utilized in

this analysis. Baboons in the sham and treatment groups were combined for analysis. The

biomarkers evaluated herein are listed in Table 5.1.

For validation of the method, two pig datasets were used. The first dataset contained

14 pigs that were subjected to surgically induced peritonitis, of which 7 subjects received a

super-oxide dismutase treatment. Measurements were collected at 2, 4, 6, 8, 10, 12 hours after

abdominal closure. Both groups were combined during analysis because trajectories between

groups were not significantly different. The second dataset included 22 pigs subjected to

one hour infusions: 12 subjects received 1 µg/kg/h and 10 received 10 µg/kg/h. Half of

the animals received biliverdin. Measurements were collected at 0, 1, 2, 3, 4, 5, 7 hours

after the start of infusion. Despite significant differences in trajectories between E. Coli

doses, all groups were combined during analysis to test the method’s performance on a

non-homogeneous database. In both porcine studies, baboon-comparable biomarkers were

utilized.

5.1.1.1 One-Nearest-Neighbor

Figure 5.1 provides an illustration of the process to estimate the time of onset of infection

for a given subject. The temporal trajectories of biomarkers for this subject were left censored

at all possible time points to simulate prospective monitoring at any given moment along the

subject’s sepsis trajectory. Trajectories were right censored to 1,2,3, or 4 consecutive points

to simulate a time period of monitoring. The one-nearest-neighbor method compared the

subject’s sub-trajectory against a database of equal length from the remaining 32 subjects,

identified the most similar sub-trajectory, and assigned the time of onset as the known time

of onset for the most similar sub-trajectory.
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Table 5.1: Dictionary of biomarker acronyms. Acronyms used for physiological measurements
obtained longitudinally in the animal experiments, the means through which these measurements
were obtained, and whether these means are considered invasive, minimally invasive, or noninvasive.
Column three indicates how the biomarker was measured within the baboon data. Column four
indicates the feasibility of measuring the biomarker in patients within a clinical setting.

Acronym Meaning Method of Measurement

WBC White blood Cell count Arterial and mixed venous blood sample M

HR Heart Rate Straightforward N

HCO3A Bicarbonate Arterial blood gas analysis M

SVR Systemic vascular resistance Arterial catheter I

HB Hemoglobin Arterial and mixed venous blood sample M

CO Cardiac output Thermal-dilution technique with Swan-Ganz catheter Ia

CI Cardiac index Calculated from CO and body surface area N

CcO2 Capillary oxygen content Calculated from APO2 I

ABEA Arterial base excess Calculated from HCO3A and pHA M

MAP Systemic arterial pressure Arterial catheter Nb

PVR Pulmonary vascular resistance Arterial catheter I

PaO2 Arterial oxygen tension Arterial blood gas analysis M

RBC Red blood cell count Arterial and mixed venous blood sample M

CaO2 Arterial oxygen content Calculated from arterial and mixed venous blood sample I

PLT Platelet count Arterial and mixed venous blood sample M

APO2 Alveolar oxygen tension Arterial catheter M

HCT Hematocrit Arterial and mixed venous blood sample M

PWP Pulmonary wedge pressure Pulmonary artery catheter I

RAP Central venous pressure Arterial catheter I

PaCO2 Arterial carbon dioxide tension Arterial blood gas analysis M

TEMP central blood temperature Swan-Ganz catheter Nb

O2DEL Oxygen delivery Calculated from respirometry and AaDO2 I

SATAO2 Arterial oxygen saturation Calculated from arterial blood sample Nb

MPAP Mean pulmonary artery pressure Arterial catheter I

RR Respiratory rate Straightforward N

HOROW Horowitz index Calculated from PaO2 and fraction of inspired oxygen M

QUOTIENT Respiratory quotient Respirometry N

PHA Arterial pH Arterial blood gas analysis M

AaDO2 Alveolar-arterial oxygen difference Calculated from PaO2 and APO2 I

N=noninvasive-to-measure, M=minimally invasive-to-measure, I=very invasive-to-measure.
aCardiac output can be estimated via an ultrasound technique, but this technique is not widely adopted.
bWidely accepted noninvasive methods exist to obtain or closely estimate this value.
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Figure 5.1: Schematic demonstrating data preparation process for testing of the pre-hospital time
estimation tool. An entire white blood cell count trajectory (normalized to healthy baseline) is
shown for a baboon and is censored prior to testing the nearest-neighbor method. Left censoring
(left shaded area) was performed to simulate the passage of time between the onset of sepsis and
the first measurement taken at simulated hospital enrollment. All subsequent time points were
renumbered to simulate clinical time points where data is relative to hospital enrollment time.
Right censoring (right shaded area) was performed to emulate sparseness of human data. In this
case, measurements ended at 2 hours post enrollment for a total of 3 subsequent measurements
(right censor level 3).

Suppose a three hour WBC data segment was available for a study subject. A Euclidean

distance was calculated between this segment and all possible three consecutive WBC points

in the database. Figure 5.2 conceptualizes this methodology. This process was repeated for

each additional biomarker and their distances were summed. The three-hour length sub-

trajectory in the database with the shortest distance to the study subject’s was identified

as the nearest-neighbor. The first time point of this sub-trajectory was used to estimate
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Figure 5.2: Schematic demonstrating the method of the pre-hospital time estimation tool. The
normalized and censored white blood cell count (WBC) trajectory from Figure 1 was compared
against the WBC database of the remaining 32 baboons (normalized to respective healthy baseline).
The 3-point WBC trajectory was compared against every group of three sequential points in the
database by calculating a Euclidean distance. Each type of line visualized represents one such
comparison. If additional biomarkers were included for analysis, the Euclidean distances from all
biomarkers were summed.

the study subject’s elapsed time since infection. Using more than one nearest-neighbor was

tested, but it did not improve the accuracy of results.

Xbaselinei = β0 +
N∑

j=1,2,..N ;j 6=i

βjXbaselinej) (5.1)

To account for scaling differences across biomarkers and for inter-baboon variability, data

were normalized on a per-baboon basis. Each subject’s biomarker trajectories were normal-

ized to its respective baseline (value at t=-0.5hr prior to infusion). However, the baseline

values for the study subject were unknown due to left censoring. A linear regression model

for estimating baseline was created for each biomarker using all time points in the database.
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This is represented in Equation 5.1, where the baseline value for biomarker Xi estimated

using available baseline measurements. The intercept, β0, represents a population average

baseline and the slope parameter, β1, represents a subject-specific shift to this baseline.

Once all missing baseline values were imputed, each study subject’s biomarker trajectory

was normalized by their specific baseline measurements.

To test estimation accuracy, we use leave-one-out validation. For each of the 33 subjects,

every possible left censoring within the interval [0.5hr, 12hr] was tested to emulate a maxi-

mum of 9 possible “arrival” times. Estimations were generated for each of these cases and

accuracy was determined by dividing the number of correct estimations by the total number

of estimations generated. An estimated infection time within a tolerance of pm one-time

point from the actual infection time was deemed correct.

5.1.1.2 In Silico Experiments and Validations A combinatorial search was per-

formed in order to find the set of biomarkers that yielded the highest accuracy in estimating

time of infection while minimizing the number of invasive clinical measurements required.

The majority of the 29 biomarkers within the dataset were the result of invasive measure-

ments and some of these are difficult to collect from human patients. To improve the clinical

feasibility of the method, the search was performed involving single point measurements of

minimally invasive biomarkers, i.e., blood samples and vital signs.

The first accuracy experiment tested the individual estimation capacity for the time of

onset of each of the 29 biomarkers across various levels of right censoring. The best biomark-

ers were identified by calculating the mean accuracy across the four right censoring durations

and selecting the top ten. Additionally, the null hypothesis was tested by making estimations

based on randomly generated trajectories sampled from a zero mean lognormal distribution.

The second accuracy experiment exhaustively searched all possible combinations of the pre-

viously identified top ten biomarkers. A combinatorial 10Cn search, where n ∈ 2, 3, ..., 10,

was performed to identify the best n combinations of biomarkers that identify infection time.

This search was performed for each of the right censoring options.

The first feasibility experiment tested the ability of a mixture of time series biomarkers

and single point measure biomarkers to estimate infection time. Vitals heart rate (HR),
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mean arterial blood pressure (MAP), temperature (TEMP), oxygen saturation (SATAO2),

and respiratory rate (RR) are noninvasive-to-measure and were made available in time series.

Minimally invasive biomarkers white blood cell count (WBC), PaO2 , and platelet count (PLT)

were chosen due to their diagnostic abilities as listed in the Surviving Sepsis Guidelines (1).

Additionally, the top three minimally invasive biomarkers from the first accuracy experiment

were included as well. All combinations of these vitals and minimally invasive biomarkers

were tested for their infection time estimation accuracy. This experiment was repeated for

right censoring at 2, 3, and 4 hours. The second feasibility experiment further explored

this combination of time series biomarkers and single-point biomarkers by comparing two

diagnostic panels that can be realistically performed at the time of patient enrollment. Two

minimally invasive diagnostic panels were chosen: arterial blood gas test (yielding: arterial

base excess [ABEA], PaO2 , arterial bicarbonate [HCO3A]) and blood analysis (yielding:

WBC, PLT, HB). Similar to before, vitals were available in time series and this panel of

biomarkers was available at the time of simulated enrollment for a given emulated patient. All

combinations of the aforementioned vitals (except for RR) were tested with data from either

or both diagnostic panels. RR was excluded because it was not among the top performers

in the previous experiment. This experiment was repeated for right censoring at two, three,

and four hours.

For validation, the first accuracy experiment (single biomarker search) and the first feasi-

bility experiment (vitals+1 search) were repeated on each of the pig datasets. The biomarkers

used in those experiments were selected to be comparable to those of the baboons’.

5.1.2 Results

Table 5.2 shows the infection time estimation accuracy of individual biomarkers. Only the

top 15 best-performing biomarkers are shown in addition to the null hypothesis test. The

entire table displaying the results for all tested biomarkers are available in Appendix A1. The

first right censor duration tested only a single time measurement and yielded low accuracies

throughout the table. Accuracy increased as more of the study subject’s temporal points

were included in the search. Biomarkers were sorted by decreasing mean accuracy across
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Table 5.2: Time-of-infection estimation accuracy over varying right censor values (temporal dura-
tions).

Baboon Accuracy Pig Peritonitis Accuracy Pig LPS Accuracy

Biomarker R 1 R 2 R 3 R 4 Mean R 1 R 2 R 3 Mean R 1 R 2 R 3 Mean

WBC 51.8% 67.0% 83.0% 93.1% 73.7% 60.7% 58.6% 76.8% 65.4% 46.5% 64.4% 73.4% 61.4%

HR 42.1% 58.2% 74.6% 84.8% 65.0% 64.6% 83.8% 87.0% 78.5% 47.2% 61.0% 69.1% 59.1%

HCO3A 48.5% 56.2% 67.8% 75.3% 62.0% - - - - - - - -

SVR 32.7% 59.3% 72.0% 79.7% 60.9% 50.0% 57.4% 63.0% 56.8% 50.7% 63.6% 66.0% 60.1%

HB 34.8% 58.2% 70.8% 79.2% 60.8% 53.6% 67.1% 83.9% 68.2% 52.8% 73.7% 84.0% 70.2%

CO 33.6% 54.5% 68.9% 84.8% 60.5% 46.3% 51.5% 64.8% 54.2% 45.8% 55.1% 63.8% 54.9%

CI 32.1% 51.9% 72.0% 84.4% 60.1% - - - - - - - -

CcO2 33.9% 55.9% 70.8% 79.7% 60.1% - - - - - - - -

ABEA 44.8% 51.5% 65.9% 74.5% 59.2% 59.8% 73.5% 77.8% 70.4% 50.4% 63.9% 69.6% 61.3%

MAP 33.0% 50.8% 65.9% 82.7% 58.1% 43.9% 50.0% 61.1% 51.7% 53.5% 65.3% 77.7% 65.5%

PVR 38.5% 52.5% 66.7% 74.5% 58.0% - - - - - - - -

PaO2 45.2% 49.5% 63.6% 70.6% 57.2% 53.7% 51.5% 64.8% 56.6% 47.2% 49.2% 61.7% 52.7%

RBC 29.7% 49.8% 67.4% 78.8% 56.4% 52.4% 74.3% 87.5% 71.4% 54.2% 73.7% 83.0% 70.3%

CAO2 30.9% 51.2% 64.0% 77.1% 55.8% 51.2% 50.0% 57.4% 52.9% 47.9% 56.8% 57.4% 54.0%

PLT 50.9% 49.2% 56.1% 60.6% 54.2% 61.9% 70.0% 82.1% 71.3% 41.5% 50.0% 61.7% 51.1%

Mean Null 26.6% 29.0% 32.3% 36.7% 31.2% 38.1% 44.7% 55.0% 45.9% 42.7% 49.1% 57.7% 49.8%

Results were generated with available biomarkers from the baboon data and then sorted by mean accuracy.
The top 15 performing biomarkers are shown in addition to the null hypothesis (Full Table is available in
Appendix A1). The null hypothesis, tested with randomized biomarkers, performed worse than all of the
tested biomarkers. This method was repeated on the two porcine data sets for validation. Only 3 right
censor durations were tested due to the sampling rate and duration limitations of those experiments.
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the four right censor durations. WBC was the top biomarker in all columns and yielded a

maximum estimation accuracy of 93.1% when using four sequential hourly points. Jackknife

resampling of the data revealed that the standard deviation of accuracies across biomarkers

and right censor durations had a mean of 0.7%. No entry within Table 5.2 fell below their

respective right censor level null accuracy. The mean null hypothesis accuracy increased

with higher right censor levels due to the shrinking of estimation possibilities.

All possible combinations of the top ten biomarkers from Table 5.2 were tested to max-

imize the accuracy at each level of right censorship. The top result for each right censor

level is shown in Table 5.3. Remarkably, single time point measurements of six biomark-

ers yielded roughly 70% estimation accuracy. WBC was selected in all cases. There was a

strong preference given to arterial blood gas measurements, hemoglobin, and cardiovascular

measurements.

5.1.2.1 Feasibility Experiments

The goal of the feasibility experiments was to identify a parsimonious set of biomarkers, in

Table 5.3: Multiple biomarker prediction accuracy. All possible n biomarker combinations of
the top 10 (baboon) biomarkers from Table 5.2 were tested for their predictive accuracy. The
best biomarker set is shown for each right censor duration under baboon accuracy. Validation of
these biomarkers were performed on the porcine datasets. Arterial bicarbonate, cardiac index, and
capillary oxygen content were unavailable for the porcine datasets and were respectively substituted
by pH, cardiac output, and PaO2 .

Accuracy

Right Censor Length Biomarkers Baboon Pig Peritonitis Pig LPS

1 time points WBC HCO3A HR SVR CI ABEA 72.70% 71.95% 58.87%

2 time points WBC HCO3A MAP HB CO CcO2 85.90% 70.59% 72.41%

3 time points WBC HR HCO3A MAP SVR HB 93.20% 87.04% 93.48%

4 time points WBC HR MAP CO CcO2 HCO3A HB CI 97.80% - -

LPS = lipopolysaccharide, HCO3A = arterial bicarbonate, HR = heart rate, SVR = systemic vascular
resistance, CI = cardiac index, MAP = mean arterial blood pressure, HB = hemoglobin, CO = cardiac
output, CcO2 = capillary oxygen content.
Dashes indicate measurements not available in porcine experiments.
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both time series and single-point measurements, which were minimally invasive to measure in

humans and yielded a good accuracy in their ability to estimate the time of infection onset.

HCO3A, hemoglobin (HB), and cardiac output (CO) were the top performing minimally

invasive biomarkers in Table 5.2 and were included in the experiment. Table 5.4 shows

the best results from each measurement collection (one minimally invasive biomarker plus a

combination of vitals in time series), organized by right censor duration. For comparison,

accuracies were calculated for each entry with vitals alone and with all biomarkers in time

series. The inclusion of a point measurement had the greatest impact on accuracy for the

lower right censor durations. A single value of WBC combined with two hours of HR data

improved accuracy from 58.2% to 71.4%. HCO3A and WBC were consistently selected

throughout the table. Point measures of biomarkers helped many entries achieve over 90%

estimation accuracy.

Time series of invasive measurements did not improve accuracy, thus not warranting the

extra probing of subjects. For example, two measurements of HR and WBC yielded an

estimation accuracy of 81.1%. The same accuracy was achieved by using two measurements

of MAP and HR along with a single measurement of HCO3A. Furthermore, the use of MAP,

SATAO2 , and HR + 1x HCO3A outperformed the majority of entries in each right censor

category.

The second feasibility experiment tested the accuracy of using multiple single point

biomarkers with time series vitals. The top three results from the combinatorial search are

shown in Table 5.5 with results sorted based on accuracies from the “Both Panels” column.

The information gained by administering both diagnostic panels aided in almost all entries

of the 2 and 3-time point right censor levels, achieving maximum accuracies of 84.2% and

90.2%, respectively. Regardless, despite the added data from the diagnostic panels, many

entries from Table 5.4 using a point biomarker yielded equal or higher accuracies.

5.1.2.2 Validation on Porcine Data

Table 5.2 shows single biomarker accuracies for both pig experiments. Accuracies were, in

general, equivalent or higher than those of the baboons. Time of onset estimation differed

slightly among the models. For example, HB, TEMP, and HCT performed better in both

92



Table 5.4: Prediction accuracy of longitudinal vital signs With a single blood biomarker.

Accuracy

Right Censor Time Series Biomarkers Point Biomarker No Point With Point Time Series Point

HR WBC 58.2% 71.4% 81.1%
HR HCO3A 58.2% 70.0% 71.7%
MAP HCO3A 50.8% 69.4% 70.0%
MAP HR HCO3A 70.0% 81.1% 81.1%
MAP HR WBC 70.0% 77.8% 81.1%

2 time points SATAO2
HR WBC 60.3% 76.1% 81.8%

MAP SATAO2 HR HCO3A 76.8% 81.8% 81.5%
TEMP MAP HR HCO3A 73.4% 81.1% 81.1%
TEMP MAP HR PAO2 73.4% 79.1% 81.1%
TEMP MAP SATAO2

HR HCO3A 75.4% 81.8% 81.8%
TEMP MAP SATAO2 HR WBC 75.4% 80.1% 82.2%
TEMP MAP SATAO2

HR PAO2
75.4% 80.1% 81.8%

HR WBC 74.6% 76.9% 86.4%
MAP HCO3A 65.9% 75.8% 81.8%
HR HCO3A 74.6% 75.4% 78.4%
MAP HR HCO3A 87.5% 89.8% 92.0%
MAP HR HB 87.5% 89.0% 90.5%

3 time points MAP HR PAO2
87.5% 88.3% 92.8%

MAP SATAO2 HR HCO3A 88.3% 92.0% 92.8%
MAP SATAO2

HR PAO2
88.3% 91.3% 93.9%

MAP SATAO2 HR HB 88.3% 89.4% 91.7%
TEMP MAP SATAO2

HR HCO3A 87.5% 92.0% 92.8%
TEMP MAP SATAO2 HR PAO2 87.5% 90.5% 93.9%
TEMP MAP SATAO2

HR HB 87.5% 89.4% 91.3%

MAP HCO3A 82.7% 88.3% 89.2%
MAP WBC 82.7% 86.1% 94.4%
HR HCO3A 84.8% 85.7% 88.7%
MAP HR WBC 94.4% 94.8% 94.4%
MAP HR HCO3A 94.4% 94.8% 95.2%

4 time points MAP HR HB 94.4% 93.9% 94.4%
MAP SATAO2

HR HCO3A 95.2% 96.1% 96.5%
TEMP MAP HR WBC 93.9% 95.2% 93.9%
MAP SATAO2

HR WBC 95.2% 95.2% 94.8%
TEMP MAP SATAO2

HR WBC 95.7% 95.2% 94.8%
TEMP MAP SATAO2

HR HCO3A 95.7% 95.2% 96.5%
TEMP MAP SATAO2

HR PAO2
95.7% 95.2% 97.0%

HR = heart rate, HCO3A = arterial bicarbonate, MAP = mean arterial blood pressure, SATAO2
= arterial

oxygen saturation, TEMP = temperature, HB = hemoglobin.
Results from the first feasibility experiment where vital signs in time series were combined with single-
point measurements (at the time of simulated enrollment) of minimally invasive biomarkers to estimate
infection time. Vitals temperature, mean arterial blood pressure, arterial oxygen saturation, heart rate,
respiratory rate, or in any combination thereof, was tested in conjunction with a single blood biomarker for
their prediction accuracy. The top three biomarker sets for each combination and right censor duration are
shown, with their accuracies listed in the “with point” column. “No point” shows the estimation accuracy
for the vitals without the point biomarker. “Time series point” shows the estimation accuracy when all
biomarkers (vitals and point) were available in time series.
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Table 5.5: Prediction accuracy of longitudinal vitals With different diagnostic blood panels.

Accuracy

Right Censor Time Series Biomarkers Both Panel Blood Panel ABG Panel

MAP 81.8% 74.7% 69.0%
HR 79.5% 71.0% 70.4%
TEMP 77.4% 65.0% 58.3%
MAP HR 82.2% 78.8% 78.8%
MAP SATAO2

77.8% 76.1% 70.0%
2 time points TEMP MAP 77.4% 76.1% 70.0%

TEMP MAP HR 82.8% 79.8% 78.5%
MAP SATAO2 HR 82.2% 80.5% 78.5%
TEMP MAP SATAO2

77.8% 77.1% 69.7%
TEMP MAP SATAO2 HR 84.2% 81.1% 77.8%

MAP 86.7% 77.7% 75.8%
HR 85.6% 70.5% 75.4%
TEMP 81.1% 62.2% 54.9%
MAP HR 83.7% 84.5% 84.5%

3 time points TEMP MAP 79.9% 78.4% 75.8%
MAP SATAO2 79.6% 80.7% 76.9%
TEMP MAP HR 83.7% 85.2% 84.8%
MAP SATAO2 HR 83.7% 86.0% 85.2%
TEMP MAP SATAO2

80.7% 80.3% 77.3%
TEMP MAP SATAO2 HR 90.2% 86.7% 85.2%

MAP 90.5% 84.8% 81.8%
HR 89.2% 80.5% 78.8%
SATAO2

87.5% 68.4% 64.5%
MAP HR 89.6% 95.2% 88.7%

4 time points MAP SATAO2
87.0% 87.0% 83.5%

TEMP MAP 86.2% 85.3% 82.7%
TEMP MAP HR 90.0% 94.8% 89.6%
MAP SATAO2 HR 89.6% 95.7% 90.9%
TEMP MAP SATAO2

87.5% 87.0% 83.5%
TEMP MAP SATAO2 HR 93.5% 95.2% 90.9%

ABG = arterial blood gas, MAP = mean arterial blood pressure, HR = heart rate, TEMP = temperature,
SATAO2 = arterial oxygen saturation. Results from the comparison of two types of diagnostic panels:

arterial blood gas (arterial bicarbonate, PaO2 , and arterial base excess) and blood analysis (WBC, platelet
count and hemoglobin). Vitals temperature, mean arterial blood pressure, arterial oxygen saturation, heart

rate, or in any combination thereof were tested in conjunction with either or both diagnostic panels for
their estimation accuracy. The top performing combinations are shown.
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pig data sets. Alternatively, PLT performed similarly between the baboon and the pig LPS

data but was more informative in the pig peritonitis data. This may be the result of the

differences in sepsis induction protocols across the three models and suggestive towards the

existence of sepsis endotypes characterized by distinctive biomarker trajectories.

The vitals+1 biomarker search on the porcine data revealed MAP, TEMP, and SATAO2

to provide highly accurate estimates (LPS: 70 to 90+%, peritonitis: 80 to 90+%) when used

in conjunction with a single WBC or PHA measurement. Detailed porcine results from this

search are available in Appendix A3-A2 .

5.1.3 Discussion

A one-nearest-neighbor approach was selected to tackle the problem of identifying infection

time from left and right censored data. Serial measurements of non-invasive vital signs,

when combined with a single minimally invasive, yet routinely done, blood work, yielded

good accuracy to identify the time of onset of infection in an experimental baboon model of

sepsis. The method was further confirmed in two additional animal models. The one-nearest-

neighbor method was developed based on the hypothesis that cohorts of septic subjects exist

with similar characteristic biological responses. The baboon study chosen for analysis rep-

resented a homogenous cohort that all exhibited leukopenia following the E. Coli infusion.

Pig validation sets did not share this feature. Given a censored and normalized trajectory

for a study baboon, one-nearest-neighbor identified the most similar trajectory within the

database. The temporal information of this trajectory provided the time-of-infection esti-

mate for the study baboon. Nearest-neighbor is a popular non-parametric approach in data

mining and was selected here to find similarities among biomarker trajectories.

The exhaustive biomarker search revealed that certain biomarkers provide highly accu-

rate estimations of time of onset of infection. WBC, HR, HB, MAP, and HCO3A were

the top performers in Table 5.2 and had many appearances in Table 5.3. In contrast to

CO or SVR, both of which requires the insertion of an arterial catheter, WBC, HR, HB,

MAP, and HCO3A are relatively easy to measure. The modest accuracy increases from the

inclusion of CO or SVR is of doubtful clinical significance and did not seem to justify the

95



invasive measurement. This suggested that more invasive to measure biomarkers might be

unnecessary and that this time of infection onset can be estimated with easily-measured,

patient-friendly biomarkers. It is also interesting to note the consistent appearance of many

biomarkers across animal models.

Most clinicians do not perform consecutive hourly blood sample tests, and only noninva-

sive biomarkers are likely to be acquired in time series. Many biomarkers in the baboon data

cannot be obtained hourly (or ever) in human patients due to practical reasons (no avail-

able commercial assay, slow turnovers) or to unjustifiable expenses. Patients with suspected

sepsis upon enrollment sometimes have a panel of diagnostic tests administered, including

arterial blood gas tests and a WBC measurement. These measurements are typically only

taken once at the time of enrollment. In contrast, vital signs such as HR, MAP, TEMP,

and oxygen saturation are continuously monitored and universally measured in time series.

The feasibility experiments addressed these issues by using clinically-obtainable data from

humans and yielded interesting results. Specifically, they showed that: (i) the addition of

a minimally invasive point measurement generally improved time-of-infection accuracy over

the use of time series vitals alone, (ii) taking minimally invasive measurements in time series

may be unnecessary for estimating time-of-infection, and (iii) there existed a data saturation

limit where one-nearest-neighbor did not benefit from additional data.

5.1.3.1 Study Limitations

The main limitation associated with this method was the small sample size of all three

datasets. This method worked well for the heterogeneous pig datasets at least in part

because of the uniformity of the insult within datasets, thus improving the chances of a

relevant “closest looking” animal in the cohort. If the database does not contain sufficiently

similar subjects to an incoming subject for which an estimation is to be made, the method

might not be able to generate a meaningful estimate.

Three main challenges currently prevent this method from being directly translated to

human patients. First, developing a human model requires access to a temporally rich collec-

tion of physiologic markers at baseline and following time-of-infection. The second challenge

is human variability, demanding that the dataset is of sufficient size to be representative of
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most endotypes. Third, human sepsis often happens in conjunction with other inflamma-

tory stressors, such as surgery or trauma. To address these challenges, a human dataset of

sufficient breadth could potentially be assembled in a cohort of patients developing sepsis

in association with an invasive procedure, therefore bounding time of onset to within a few

hours. The impact of the procedure itself on biomarkers time series would constitute useful

additional information.

5.1.4 Translation into GLUE Grant Human Trauma Subjects

The Inflammation and the Host Response to Injury “Glue Grant” database was the result

of a multi-center initiative to collect rich longitudinal data for trauma patients undergoing

hemorrhagic shock (www.gluegrant.com). This database consists of 2007 adult subjects

with known pre-hospital times (time of trauma was known, in minutes). While trauma is

different from sepsis, the inflammatory dynamics occurring between the two are similar.

The nearest-neighbor method was validated on the Glue Grant database. The parallels

between the syndromes of hemorrhagic shock in trauma and sepsis enable using trauma data

as a human validation cohort. Given the aforementioned problems associated with collecting

human sepsis data, trauma serves as a decent proxy. Figure 5.3 illustrates the distribution of

pre-hospital times within the Glue Grant database. Correlation analysis yielded few clinical

features with linear relationships to pre-hospital time. Subsequently, patients were binned

into 10 discrete intervals of pre-hospital times and one-way non-parametric ANOVA (via

Kruskal-Wallis tests) was conducted on all measured clinical features to identify nonlinear

relationships with pre-hospital time.

Several biomarkers were identified to have significant differences between various pre-

hospital interval groups (p ≤ 0.05). Fluid resuscitation data was discovered to be significantly

different between each group, but these measurements were discarded due to potential causal

relationships with pre-hospital time. The remaining clinical features were systolic blood

pressure, hypotension, diastolic blood pressure, heart rate, Glasgow coma score, lactate,

respiratory rate, hemoglobin, and the INR (international normalization ratio, a measure of

coagulopathy).
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The one-nearest-neighbor method was tested on this dataset. Unfortunately, hourly

measurements were not available in the Glue Grant. As a result, temporal trajectories of pre-

hospital measurements (in-ambulance measurements) and emergency room measurements

were used for analysis, if possible. Otherwise, biomarkers were used as point measurements.

After removing missing values, a cohort of 946 subjects. A 60-40 training-test split revealed

that the method estimated pre-hospital times correctly, to within 60 minutes, with a test set

accuracy of 68.1%. Various modifications of the nearest-neighbor methods were attempted,

ranging from filtering the nearest-neighbor database by injury severity score to modifying

the list of predictive biomarkers. Accuracy to 75-82%, but at the cost of reduced cohorts

sizes.

Figure 5.3: Histogram of pre-hospital times in the Glue Grant database. Vertical dashed lines
represent each hour.
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5.1.5 Summary

A novel application of the nearest-neighbors application was developed to estimate the onset

time of infection (specifically, a patient pre-hospital time relative to onset) within artificially

censored baboon and porcine sepsis data. High accuracies were achieved with varying sets

of biomarkers, but some biomarkers are difficult to measure clinically in humans. A com-

promise was made between minimizing the invasiveness of measurement and maximizing

the estimation accuracy. A feasible set of clinically-measurable biomarkers was identified;

combinations of vital signs in time series and minimally invasive point measurements yielded

similar but slightly lower accuracies.

The clinical tool presented in section 3.2.1 provided suggested an accurate early classifi-

cation of a subject’s endotype was possible, but such a tool lacked estimations of pre-hospital

time. However, promising results from a human trauma database suggested that translation

of the nearest neighbor approach may be viable for sepsis data, but such a temporally-rich

sepsis database is not yet available.

There are no other approaches to estimating time-of-infection in sepsis, and the method

developed here may have profound, paradigm-shifting implications if successfully extended

for use with human data. Septic patients would be able to be grouped into early, middle,

and late infection times and treated differently, which may play a clinically meaningful

role in patient outcome. Clinical trials may be revisited or new therapeutic targets may

emerge because treatment timings can be more effectively controlled with respect to the

temporal span of infection. Finally, computational models of sepsis and immunomodulatory

interventions used in the design of such trials may immediately benefit from the knowledge

of infection times.

5.2 SYSTEMIC DAMAGE MODELS

Chapter 3 presented endotypes with distinct rates of multiple organ failure (MOF). The

ProCESS data revealed that subjects on any type of organ support therapy (e.g dialysis or

99



respiratory support) fared much worse than those without. MOF is a serious clinical incident

and a clinical tool to detect MOF early on can be beneficial. Clinicians, with early knowledge

of imminent MOF, can apply preventative therapies and respond accordingly. The clinical

need for quantifiable sepsis-induced damage motivates this section.

Mathematical models of sepsis may similarly benefit from quantifiable damage. Figure

1.1 outlined the basic acute inflammatory response. Currently, well-studied proxies for the

inflammatory and anti-inflammatory responses exist. The damage compartment is a key

player in inflammatory dynamics, but the lack of quantifiable damage during sepsis prevents

this compartment from being accurately modeled. As a result, current mathematical models

insufficiently characterizes the feedback loops that may lead to a sustained inflammatory

response. Mathematical models of sepsis in literature either ignore this dynamic or exist

within the realm of theory [3, 4]. Malkin, et al published a mathematical model of neutrophils

in sepsis, and modeled kidney damaged based on creatinine clearance data [80]. However,

creatinine clearance is a measure of kidney health and only proxies kidney damage rather

than other organs which can fail during sepsis such as the respiratory system or the liver.

Quantifying the amount of sepsis-induced damage to the body can be done by character-

izing the level of systemic tissue damage. Acute Physiology and Chronic Health Evaluation

(APACHE) and Sequential Organ Failure Assessment (SOFA) are commonly used methods

to assess damage in the clinic. Furthermore, multiple organ failure is based on the SOFA

score (≥ 2 failed organ systems). However, these assessment scores are granular assessments

and do not provide clear trajectories of how patients evolve temporally. A novel and data-

driven damage assessment tool is presented to augment APACHE and SOFA scores. The

goals of this tool are twofold: (i) provide damage trajectories using easy-to-measure biomark-

ers to reduce measurement burden and (ii) provide robustness to missing measurements to

accommodate hectic conditions within the clinic.

5.2.1 Methods

The aforementioned baboon sepsis dataset was retrospectively analyzed for this work due to

the temporally rich data and because pre-hospital times are a non-issue with animal data
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[109]. Some baboons had occasional missed measurements, but many biomarkers were mea-

sured at [−0.5, 0, 0.5, 1, 2, 3, 4, 5, 6, 1112, 23, 24, 35, 36, 47, 48, 72, 73, 144] hours post E. Coli

infusion. Some baboons had a 672-hour measurement if they belonged to the long-term

survival cohort where they had a final measurement taken prior to sacrifice at the 28-day

mark.

The risk of death was associated with global tissue damage. Logistic regression (LR)

mathematically characterized the risk of death for each baboon via biomarker odds ratios.

Odds ratios multiplied by baboon-specific biomarkers characterized the baboon’s risk of

death and level of tissue injury. A discrete time equation was formulated to generate damage

based on the odds ratios obtained from LR.

Biomarker selection was performed statistically with no a priori bias applied. Initial pre-

processing reduced the set of biomarkers to 63 by eliminating predictors that were not fully

measured for each of the 33 baboons. Collinearity was checked between the 63 biomarkers.

Each biomarker, across all time points, was compared to each other using the Spearman

rank correlation coefficient. A cutoff of Spearman’s rho (|ρ| ≤ 0.75) removed collinear

biomarkers. Finally, a univariate analysis was performed on the biomarkers to identify the

time points at which they were significant with respect to mortality outcome. Student’s

t-test was used to test the remaining biomarkers for significance with respect to mortality

at each temporal measurement (p ≤ 0.10 to provide a larger pool of biomarkers). Any

biomarkers that were deemed insignificant across all time points were subsequently removed.

The remaining biomarkers were further filtered based on their ease-of-measurement in order

to improve the translatability of this approach into the clinic. The significant time point

measurements of the easy-to-measure biomarkers served as inputs into LR models.

LR models were created for each time point from 0.5 hours to 144 hours post infusion,

with biomarkers as the input and mortality probability as the output. Mortality output

was defined as the interval (0, 1), with 0 being survival and 1 being non-survival. For each

time point, all significant biomarkers from the 0.5 hour time point up to the current time

point were included as inputs. This strategy was chosen in order to capture changes between

biomarkers at different time points. All LR models were calibrated against the experimental

mortality outcomes of the baboons. Baboons that were sacrificed at 144 hours post-infusion
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were assumed to be survivors. Each LR model was trained with one hundred replicates of

three-fold cross-validation. The odds ratios across replicate models were averaged to obtain

mean odds ratios for each biomarker.

Elastic net regularization was applied to each LR model in order to reduce the number of

inputs in the higher time point models. Elastic net regularization is a mixture of lasso regu-

larization and ridge regularization and provides the benefits of predictor selection when the

number of predictors exceeds the number of observations and predictor coefficient shrinkage

[110].

min β
1

2N

∑
i = 1N(yi − xTi β)2 + λ

[
(1− α)

1

2
||β||2 + α||β||1

]
(5.2)

A parameter, α, determines this regularization mixture, with α = 0 being fully lasso regular-

ization and α = 1 being fully ridge regularization. α = 0.25 was used to prioritize biomarker

selection. Elastic net employs a single regularization parameter, λ, to control both ridge and

lasso regularization. In order to select the regularization penalty, λ, a vector of evenly spaced

λ in natural log space was generated and LR models were fit for each λ. The model with

the best area under the receiver operating curve (AUROC) was compared. λ = e−6 yielded

consistently high AUROC (near maximum) for the majority of the time point LR models.

For consistency, elastic net regularization with this value of λ was applied to LR at all time

points. The ensemble of beta coefficients associated with this λ (3000 sets of coefficients, due

to 3 folds and 1000 replicates) were averaged to produce a set of time-varying odds ratios

for each clinical predictor.

A discrete time damage equation was implemented due to the irregular sampling rate

of biomarkers. Time was discretized into intervals of 0.5 hours to accommodate the fastest

sampling time in the data. The formulation, shown in Equation 5.3, consists of a damage

elimination term and a generation term. The negative term including k represents the body’s

healing rate. A linear mechanism was proposed as a best-case scenario; in reality, high levels

of injury typically result in cascading organ failures that impede a patient’s healing ability.

The value of k was defined as 0.1768, which corresponded to a damage half-life of about

4 hours. Humans may take months to recover from endotoxemia challenges while murine

models demonstrate remarkably fast recovery in the order of hours [8]. The value of k was

set to characterize a similarly fast damage recovery rate in baboons. Damage was generated
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by the logit (the mean odds ratio multiplied by the value of the associated biomarkers at

that time) obtained from the time relevant LR model.

DMG(`+ 1) = DMG(`)− k ∗DMG(`) + exp(β`X`) (5.3)

Two cases were defined for missing data. In the case of a missing measurement, the logit

was calculated by multiplying the most recently measured biomarker by the current odds

ratio, β`. For example, a baboon has one missing biomarker measurement at hour 47. That

specific term was calculated with β47X36. In the case of an ` at a time point that was not

sampled, the logit was calculated by multiplying the most recently measured biomarker by

the most recently calculated odds ratio. For example, the next measurement after 6 hours

post infusion was 11 hours. To calculate damage at hours 6.5 through 10.5, the logit at hour

6 was used: exp(β6hrX6hr).

5.2.2 Results

5.2.2.1 Damage Trajectories

Pre-processing reduced the pool of biomarkers from 73 to 27. 10 biomarkers were removed

because they were unavailable among all 33 baboons. 30 biomarkers were removed due to

identified collinearities in the data. Student’s t-test on the remaining 33 biomarkers revealed

6 biomarkers that were not significant at any time point. However, certain time points such

as hour 23 revealed seventeen different significant biomarkers. To satisfy the requirements

of low measurement burden (assessing 17 measurements to evaluate damage would be an

unreasonable task) and ease of measurements (quick, commonly taken measurements in the

clinic), 20 additional biomarkers were excluded, leaving 13 biomarkers. These biomarkers

are listed in Table 5.6.

A total of 18 LR models were created: one for each time point. Each LR model was

performed with three-fold cross-validation and 1000 replicates. The predictor selection fre-

quency resulting from regularization was tabulated and normalized between 0 and 1. A

specific predictor can appear in an LR model a maximum of 3000 times (appears in each

of the three cross-validation models across all 1000 replicates). Additionally, a predictor at
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Table 5.6: Acronym dictionary of biomarkers for damage results.

Acronym Meaning Measurement Method

HR Heart Rate Straightforward
MAP Mean Arterial Pressure Calculated
TEMP Temperature Straightforward
HB Hemoglobin Vein Blood Sample
PHA Arterial PH Arterial Blood Sample
ABEA Acid Base Excess Arterial Blood Sample
RR Respiratory Rate Straightforward
SHUNT Amount non oxygenated blood returning to heart Calculated
PAO2 Partial arterial pressure of Oxygen Arterial Blood Sample
PLT Platelet Count Vein Blood Sample
LACTATE Lactate Vein Blood Sample
GLUCOSE Finger Stick
RAP Right Atrial Pressure Need Central Line*

*While central line measurements are hard to obtain due to the risks associated with their insertion, severely
septic patients typically have one inserted.

time 0.5 hour can appear in all 18 LR models while a predictor at time 144 hour can only

appear once. Normalization accounted for both of these factors when scaling down the se-

lection frequency. Figure 5.4 presents the predictor selection frequency for all 18 LR models.

For example, the ensemble of LR models selected 30-minute measurements of right atrial

pressure (RAP) quite often and arterial pH (PHA) roughly 50% of the time.

The odds ratios from all 18 LR models were used to calculate the logit in Equation 5.3

and a damage trajectory was generated for each of the 33 baboons. Figure 5.6 shows all

of the trajectories. Some baboons’ trajectories were incomplete due to right-censoring via

sacrifice in accordance with experimental protocol. Trajectories with straight line segments

were the result of the zero order hold assumption. Survivor and nonsurvivor trajectories

were distinct from one another and complete separation occurs at 7-8 hours post infusion.

Intuitively, nonsurviving baboons with high damage levels die at earlier time points while

nonsurviving baboons with lower damage levels die at later time points. Interestingly, cer-

tain nonsurvivor trajectories exhibited rapid decreases of damage. However, these baboons

eventually succumbed to the septic shock. Surviving baboon trajectories were characterized
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Figure 5.4: Predictors (and their frequency) used to generate damage curves. Y-axis specifies the
predictors and X-axis specifies the time point of measurement at which the predictors were used.
White cells indicate that the corresponding predictor at that time point was not used due to a lack
of significance from Student’s t-test. Colored cells indicate that the corresponding predictor was
selected by the regularized LR model with a frequency corresponding to that color: dark red means
frequently (a maximum of 3000 times) and dark blue means very few (a minimum of 0 times) and
everything in between.

by an initial damage spike followed by a steady decline to steady states within 10−1− 10−3.

The rate of damage was assumed to be constant across all baboons, which indicated that the

survivor trajectory declivities may be attributed to the resolution of infection and inflam-

mation. Furthermore, damage levels for survivors stayed below a magnitude of 10, which

suggested a threshold of no return in terms of cascading organ damage.

To further test the robustness of this algorithm to missing measurements, entire time

points of measurements were removed from those shown in Figure 5.4 to emulate missed

measurements and/or sampling limitations in the clinic. Figure 5.5 illustrated the remain-
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Figure 5.5: Predictors (and their frequency) used to generate damage curves in a missed measure-
ment scenario. This heatmap is organized in the same fashion as in Figure 5.4. However, a sparse
measurement scenario was enacted, causing many of the measurements in Figure 5.4 to be missed.
Of the remaining predictor measurements (non-white cells), selection frequencies by regularized LR
are shown.

ing predictors and time points. The algorithm was re-applied to this set of predictors and

the updated color cells represented new LR selection frequencies. Once fully trained, these

LR models were used to recalculate the logits in Equation 5.3. The damage trajectories

that were recreated are shown in Figure 5.7. The missing measurements at early time points

(1, 3, 5, 11, 12, 23 hours post infusion) contributed to the significantly slower separation. Sep-

aration occurred at 25-26 hours, which indicate that once new measurements were available

(the last set of measurements were at hour 6), damage levels updated to reflect new informa-

tion. Additionally, overall nonsurvivor damage magnitudes decreased as compared to those

of Figure 5.6. However, the damage threshold of 10 still appeared to hold in this sparse data

scenario.
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Figure 5.6: Systemic tissue damage trajectories for baboons using easy to measure biomarkers.
Green trajectories represent baboons that ultimately survived sepsis while the purple trajectories
represent nonsurvivors. Within the baboon survivors, many were sacrificed at the end of 6 days
as per experimental protocol, which is represented by the red circles capping those trajectories.
Nonsurvivors’ times of death are represented by a red x capping the end of their trajectories. There
was a clear separation of survivors versus nonsurvivors by hour 11, where nonsurvivors exceeded
a damage of 101 and proceeded to increase sharply. While some survivors may have reached this
level of damage, their bodies recovered.
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Figure 5.7: Systemic tissue damage trajectories for baboons using sparse biomarkers. Damage
trajectories were calculated from significantly missing data (see Figure5.5. Separation was achieved
after a longer period of time (24 hours) due to missing measurements and the zero-order-hold rule.
However, whenever new data became available, the damage trajectories moved appropriately in
the survivor/nonsurvivor directions. 101 appeared to remain a valid damage cutoff in determining
mortality.

5.2.3 Discussion

Predictor selection frequency via LR identified several key biomarkers that were currently

used to calculate disease severity scores such as SOFA and APACHE II. For example, the
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method identified and favored biomarkers MAP (cardiovascular health), WBC (immune

capability),PaO2 (respiratory health), and PLT (coagulation) across many points in time.

Initial tests, prior to selecting only for biomarkers that were easily measured, revealed other

biomarkers used to calculate SOFA or APACHE II including bilirubin (liver health) and

creatinine (kidney health). These biomarkers were identified purely out of statistical methods

and a priori information from existing damage scoring systems was not taken into account.

Figure 5.6 suggests that early organ support is critical to shift subjects towards a surviv-

ing trajectory. For the first 12 hours, nonsurviving subjects had a characteristic rising-only

damage trajectory, indicating that their organ systems were worsening by the hour. Alter-

natively, survivor trajectories began declining between 6 to 12 hours post infection. This

indicated that organ function began returning in the survivors because the healing term in

Equation 5.3 dominated the dynamics.

While multiple organ failure is not clearly defined within baboons, Figures 5.6-5.7 clearly

demonstrate that there were levels of catastrophic systemic damage after which surviving

was not possible. These damage trajectories, combined with the fact that many of the

selected predictors chose known organ damage biomarkers, suggest that this approach can

be translated into the clinic.

The algorithm proposed here serves as a proof of concept of a damage assessment method

that can both be feasible and practical in a clinical setting. The biomarkers used for predic-

tions in the sparse measurement scenario demonstrated the robustness of this algorithm with

respect to extreme missing measurements. Furthermore, the easy-to-measure set of identified

biomarkers included vital signs and venous and arterial blood samples, all of which are easy

and fast to obtain. A large and temporally rich sepsis database, combined with knowledge

of pre-hospital times (estimated or otherwise) would be suitable to validate the algorithm.

This method may be possible to translate to the ProCESS trial, which is one of the

largest and richest sepsis databases in existence. Preliminary testing revealed that complete

cases of the easy-to-measure biomarkers yielded a large enough convenience cohort to apply

this algorithm. Pre-hospital times (such as those estimated from Chapter 3) would need to

be accounted for because the algorithm is heavily dependent on calibrating the logit term

in Equation 5.3 via comparable population data. One potential fallacy that the current
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algorithm does not account for would be the issue of therapy. The baboons within the

experiment only received fluid resuscitation while the subjects in the ProCESS trial received

interventions. The current algorithm is currently unable to process interventions as an input

into the ensemble of LR models. As a result, clear mortality separation is currently difficult

to achieve because a potentially life-threatening state, which would otherwise be predicted by

the LR to die, may be modulated by some intervention and survive the initial septic shock.

As a result, future work is warranted to explore the effects of treatment and therapies on

damage.

5.2.4 Summary

A data-driven algorithm was introduced to quantify sepsis-induced systemic tissue damage.

The premise of this method was to identify subjects who perished due to septic shock and

calibrate the model with the state of these subjects’ various organ systems. Biomarkers

deemed to be significant with respect to mortality via Student’s t-test served as proxies

of the health of organ systems and tissue that were significantly affected by septic shock.

At each time point, an ensemble of LR models was trained on the data available. Organ

damage was calculated as odds ratio and characterized by the logit portion in Equation 5.3.

This approach was able to characterize the initial inflammatory-induced damage to sepsis

in all subjects sepsis and demonstrated that nonsurvivors exceeded a damage threshold of

no return. These results are applicable in the clinic because subjects remained in a state of

uncertainty for several hours before setting upon a trajectory that sealed their fates. This

demonstrates both the existence of a clinical therapeutic window and the possibility of the

ability to modulate a trajectory from a “death” state to a surviving one. Combined with the

ability to estimate pre-hospital time, this systemic damage algorithm may provide clinicians

the power to apply and time preventative therapies to improve patient outcomes. This

algorithm is ready for translation and testing with human subjects.
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6.0 RELEVANT MODELING TOOLS

Several tools are introduced here to assist with the challenging task of mathematical modeling

of sepsis dynamics. First, a network optimizer is introduced to assist with the establishment

of a model framework structure. This optimizer analyzes time series data that has been con-

verted into Boolean variables (two states: on/off) and uses mixed integer linear programming

to optimize the best network that produces the data. Second, a Markov Chain Monte Carlo-

based algorithm is introduced that focuses on parameter fitting. This algorithm is written

with user-friendliness in mind and focuses on algorithmic speed, efficiency, and ease-of-use.

These tools are intended to be used in harmony; the former produces latent relationships

within the data inform and refine model structure and the latter tackles the inverse-problem

of parameter fitting to said model.

6.1 BOOLEAN-LP, A NETWORK PATHWAY OPTIMIZER

A major problem associated with mathematical modeling of sepsis is the sheer number of

potential biomarkers and the myriad of interactions between them [39]. Compounded with

the sparsity of human sepsis data, it is often difficult to pinpoint why few mathematical

models of sepsis have been validated against literature: model structure problems, failure of

the inverse-problem algorithms, or a combination of both.

Boolean Linear-Programming (Boolean-LP) is introduced as a tool to assist with the

initial steps of model creation. Boolean-LP was created in an effort to identify the underlying

inflammatory pathways between elderly and young mice (Mochan, Zhang, et al, Discrete
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dynamical modeling of influenza infection suggests age-dependent differences in immunity;

submitted to the Journal of Virology).

Model structure development is one of the initial phases of mathematical modeling,

where the modeler combines literature knowledge and intuition to propose a mathematical

characterization of certain dynamical behaviors. This begins an iterative process of fitting

data to this proposed model and then making structural model changes to accommodate

missing behaviors or other issues. Boolean-LP speeds up this approach by taking a set of

proposed network pathways between model states and identifying the network pathway that

best describes the given data.

Boolean-LP first requires the user to first discretize the data into Boolean variables.

Second, the user needs to propose a set of model pathways via Boolean rules. For example,

the rule C(t+ 1) = A(t)and not B(t) may be proposed, describing the production of state C

by state A but this process is inhibited by state B. A set of rules describing the relationships

between states A, B, and C and data are provided to Boolean-LP and it returns the rule

that best describes the data. In the case of a solution pool (multiple rules yield the same

objective function), Boolean-LP will return all of the possibilities.

To find the optimal set of Boolean rules that best described the data, the rule discovery

problem may be formulated as a mixed integer linear programming (MILP) problem. A

similar formulation has been previously reported [111]. We define our objective function as

the minimum difference between the model and the measured data, given by equation (6.1).

min
∑
s∈S

∑
t∈Ts

|Dt,s −Mt,s| (6.1)

This was later reformulated as a linear objective function using dummy variables (see Section

6.1.2, specifically equation 6.17) in order to conver the problem into a mixed-integer linear

programming (MILP). Dt,s and Mt,s represents the measured data and model, respectively,

for state s at time t.

All potential Boolean rules were expressed as a series of logical equivalences (if and

only if statements: clause1 ↔ clause2). These rules were expanded into their equivalent

conjunctive normal form, which is the conjunction (AND) of several inclusive OR clauses.
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This form allows us to represent each of the OR clauses with a single linear inequality [112].

As long as each of these linear inequalities are satisfied, the overall conjunction expression

is satisfied. The result is:

Q1 ∧Q2 ∧ · · · ∧Qn

Q1 = P11 ∨ P12 ∨ · · · =⇒ y11 + y12 + · · · ≥ DV

Q2 = P21 ∨ P22 ∨ · · · =⇒ y21 + y22 + · · · ≥ DV

(6.2)

where yij represents the Boolean value of expression Pij and DV is a Boolean decision

variable. The decision variable allows the optimizer to apply this constraint (DV = 1) or

turn it off (DV = 0).

6.1.1 MILP Formulation of Network Optimizer Problem

Specifically, all Boolean Rules can be expressed in the conjunctive normal form, which com-

prises of a series of overarching AND clauses consisting of OR operators:

RuleR = Q1 ∧Q2 ∧ · · · ∧Qn (6.3)

Qi = Pi1 ∨ Pi2 · · · ∨ Pir (6.4)

Pi1 ∈ 0, 1 (6.5)

where Qi is a series of inclusive OR operators. Let yi represent the Boolean value of clause

Pi. Each of the Qi logical OR constraints can be expressed as

Pi1 ∨ Pi2 · · · ∨ Pir ⇒ y1 + y2 + · · ·+ yr ≥ 1 (6.6)

The AND constraint, R, does not need to be explicitly constrained because (6.6) ensures

that each of its sub-clauses, Qi, are true. NOT clauses, ¬P1, can be expressed as:

1− y1 (6.7)

Implications, e.g. P1 ⇒ P2, can be expressed as ¬P1 ∨ P2, which is an OR constraint:

1− y1 + y2 ≥ 1 (6.8)
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Using this framework, we can formulate this as a MILP. Potential rules are always of the

form: Si,t+1 ← St, where St represents a series of logical operations acting upon the states

at the current time t. This logical clause will generate an update to the ith state, Si, at time

t+1. If this rule were true, then Si,t+1 ⇔ St for all time, t. Applying the above equivalences,

we obtain:

¬Si,t+1 ∨ St

¬St ∨ Si,t+1

(6.9)

which we expand into the conjunctive normal form and apply the appropriate linear con-

straints.

Finally, in order to perform rule optimization, Boolean decision variables, DVij, are

initialized for every proposed rule j in each state i. The k OR constraints generated from

the conjunctive normal form of Rule ij is now represented as:

Constraint 1: y1 + y2 + · · ·+ yr ≥ DVij

Constraint 2: y1 + y2 + · · ·+ yr ≥ DVij

· · ·

Constraint k: y1 + y2 + · · ·+ yr ≥ DVij

(6.10)

which represents a slight modification from equation (6.6) in order to allow the optimizer to

turn a constraint on or off. If DVij is 0, the values of yi are unconstrained and potential rule

ij does not apply. If DVij is 1, the rule applies. A final constraint is set:

J∑
j=1

DVij == 1 (6.11)

such that each state i may only have 1 rule selected.
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6.1.2 Detailed Formulation Example

As a detailed example, take a rule governing Interleukin-6, activated macrophages (ActiveM),

and Interleukin-8 (IL-8, a neutrophil attractant): ActiveM(t+1)← IL8(t)∧IL6(t) Working

out one implication at a time, this is equivalent to constraints (6.13),(6.14), (6.16).

ActiveM(t+ 1)⇒
[
IL8(t) ∧ IL6(t)

]
= ¬ActiveM(t+ 1) ∨

[
IL8(t) ∧ IL6(t)

]
=
[
¬ActiveM(t+ 1) ∨ IL8(t)

]
∧
[
¬ActiveM(t+ 1) ∨ IL6(t)

] (6.12)

1− ActiveM(t+ 1) + IL8(t) ≥ DV (6.13)

1− ActiveM(t+ 1) + IL6(t) ≥ DV (6.14)

[
IL8(t) ∧ IL6(t)

]
⇒ ActiveM(t+ 1) = ¬

[
IL8(t) ∧ IL6(t)

]
∨ ActiveM(t+ 1)

= ActiveM(t+ 1) ∨ ¬IL8(t) ∨ ¬IL6(t)
(6.15)

ActiveM(t+ 1) + 1− IL8(t) + 1− IL6(t) ≥ DV (6.16)

To further simplify the problem, the nonlinear objective function from equation (6.1)

may be linearized via the introduction of dummy variables At,s:

minimize
∑
s∈S

∑
t∈Ts

At,s

subject to Dt,s −Mt,s ≤ At,s

Dt,s −Mt,s ≥ −At,s

(6.17)

where Dt,s and Mt,s represents the measured data and model, respectively, for state s at

time t.

A Python (version 3.5) package was written to accept Boolean data and a list of potential

rules for each state. This package reformulates the inputs into a MILP problem for use with

the Python Optimization Modeling Objects package (Pyomo) [85, 86]. Pyomo then converts

this script into a solver-friendly file, which was then solved by the IBM ILOG CPLEX

optimization studio. CPLEX was set to populate all optimum solutions via its solution pool
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feature. Finally, our Python package parses through this solution pool and returns all valid

rules that yield the minimum objective function value. The GLPK solver was successfully

tested, but it was significantly slower then CPLEX and lacked the ability to populate a

solution pool in the case of multiple solutions. Boolean LP is available as an open source

project on GitLab.

6.1.3 Applications in Age-related Immune Pathways

The BooleanLP algorithm was created to address optimization problems in a project quan-

tifying the immunosenescence (age-related) differences in immune pathways between adult

and elderly mice. Adult (12-16 weeks) and elderly (72-76 weeks) BALB/c mice were subject

to an innocula of the Influenza virus [113]. Near daily sacrifices (in triplicate) were taken

from each group for measurements of inflammatory markers (chemokines and cytokines)

and white blood cells, including day zero baseline measurements. An ANOVA analysis was

conducted (p ≤ 0.05) to convert the entire dataset into zero (off) and one (on). A library

of possible immune pathway rules were generated and BooleanLP was applied to identify

the optimum inflammatory network that best described the data. BooleanLP indicated no

age-dependent changes in macrophage recruitment between the elderly and adult mice, but

macrophage cytokine expressions were different. Cytokine and chemokine pathways differed

vastly between the age groups and was responsible for the two day delay in the immune

response within elderly mice. The manuscript of this work is currently being updated after

the first round of reviewers.

6.2 APT-MCMC, A C++/PYTHON IMPLEMENTATION OF MARKOV

CHAIN MONTE CARLO FOR PARAMETER IDENTIFICATION

While Boolean-LP provided a method to quickly identify the optimal model structure from

a potential list of possibilities, the next daunting step is the inverse problem. The inverse

problems that mathematical modelers tackle are often very challenging due to parameter
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dimensionality, parameter correlation, and multiple optima. A topical and popular set of

inverse problems is fitting parameters to a system of ordinary differential equations (ODEs).

Most deterministic optimization algorithms can be broken down into two types: line search

and trust region [114]. During nonlinear fitting, these algorithms often get trapped within lo-

cal minima because they are highly dependent on the provided starting point. Additionally,

many advanced solvers calculate or estimate the Jacobian or Hessian of the objective func-

tion, a process which may not converge for complex ODE parameter-fitting problems. This

results in heuristic implementations that employ multi-start optimization to characterize the

optimal parameter space, and parameter estimates that are likely only locally optimal and

for which confidence intervals cannot necessarily be easily constructed. These problems are

very topical in the case of modeling the dynamics of sepsis due to the sparsity of human data

and the tightly regulated interactions that persist throughout the inflammatory response.

Markov Chain Monte Carlo (MCMC) is a stochastic sampling technique typically used

to gain information about a probability distribution that lacks a closed form. It has been

described as a “bad method” for parameter estimation to be used when all alternatives are

worse [115]. MCMC has been used in a variety of fields, such as cryptography, statistical

mechanics, and astrophysics [116, 117]. Long runtimes, simulation stochasticity, and the lack

of a robust convergence and stationarity criteria contribute to the stigma against MCMC.

However, MCMC is immediately relevant to ill-posed ODE inverse problems. Unlike deter-

ministic algorithms, MCMC is not dependent on the starting point and does not require the

computation of Jacobians or Hessians. Furthermore, an MCMC simulation provides param-

eter probability distributions, which can help elucidate parameter correlations and identify

multiple optima (see Figure 6.1).

MCMC is formulated as a stationary Markov Chain with a transition probability derived

from the parameter probability distribution. Bayesian formalism is used to reformulate a

parameter fitting problem as a search for probability distribution. That distribution can be

sampled using MCMC. Equation (6.18) describes Bayes theorem, where θ is a parameter

and D is the data.

P (θ|D) =
P (D|θ)P (θ)

P (D)
(6.18)
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Figure 6.1: MCMC results from exploring a highly correlated probability function. A: Contour
plot for an anisotropic distribution. Epsilon was set to 0.001. B and C: MCMC results yields
marginal probability distributions for x1 and x2. D: These distributions can be combined into a
joint distribution plot to identify parameter correlations.

The P (θ|D) term is the Bayesian posterior probability, which represents the probability of

the parameter set, θ, given the data. The first term in the numerator describes the likelihood

of obtaining the data, D, given the parameters, θ. The objective function for a parameter

fitting problem, reformulated as a likelihood, is used here. The second term in the numerator

describes the prior distribution of the parameters. This can vary depending on the problem,

but the simplest case is a bounded uniform distribution to provide upper and lower bounds

on θ. The denominator is a normalization constant that represents the probability of the

data, typically an unknown, but constant, term. This term is not necessary for MCMC

simulation, as shown in Equation (6.18).

To recover the Bayesian posterior distribution from a parameter fitting problem, MCMC

needs to generate many samples from the parameter space in accordance to Equation (6.18).

The MCMC sampler stochastically proposes the next parameter set, θproposed, based on

the location of the current parameter set, θcurrent [118, 119] . The Metropolis-Hastings

criterion is typically used to accept or reject θproposed by calculating the posterior probability,

P (θproposed|D). If this value is higher than the posterior probability of the current parameter
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set, P (θcurrent|D), then θproposed will be accepted with 100% probability. If the probability is

lower, then θproposed may be accepted with the nonzero probability calculated by Equation

(6.21) (with T=1). This step is repeated many times to allow the samplers to fully explore

the parameter space.

Over the course of an MCMC simulation, all the values of θ (derived from each MCMC

sample via the calculation of Equation (6.18)) are preserved for post-hoc analysis. The

posterior distribution can be recovered via histogram analysis or kernel density estimations

from the chain of θ values. θ may be broken down into its individual parameters to ob-

tain a marginal posterior probability distribution for each fitted parameter. These marginal

distributions can yield generate parameter confidence intervals, identify inter-parameter cor-

relations via joint probability distributions, and to identify the locations of multiple minima

in the parameter space based on multi-modal marginal parameter distributions. Further-

more, irreducibility and aperiodicity properties of Markov Chains guarantees convergence of

the posterior distribution [115]. The major benefit of these properties is that an MCMC

simulation will yield the correct Bayesian posterior based on the data and model structure

in finite time.

Despite the guarantee of convergence, it is impossible to test if a MCMC sampler has

converged towards its equilibrium distribution or a temporary meta-stable distribution [115].

As a result, MCMC simulations typically sample a very large number of points. The initial

samples that are taken prior to reaching the equilibrium distribution may bias the posterior

distribution. The two ways possible ways to deal with this issue are: (i) discard some initial

percentage of simulation samples or (ii) run a long simulation to minimize the bias. In either

scenario, simulations take a long time because a large number of samples are needed for

convergence.

Many variations have been proposed over the years in order to improve the efficiency of

the sampling. One issue is that MCMC samplers may get trapped in local minima for a long

time before escaping. An escape consists of several consecutive low probability parameter

moves because it requires movement towards increasing deviation from the data. At any

point, the MCMC sampler may change direction and move back into the local minima.

Parallel tempering addresses this by employing multiple MCMC interacting simulations in
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parallel [52, 120]. Each simulation is assigned a temperature and the Boltzmann distribution,

Equation (6.21), is used to accept a parameter proposal. The Bayesian posterior probability

for the proposed and current parameter vectors are calculated as normal (Equation (6.18)),

but are treated as energies (Equations (6.19)-(6.20)) in order to fit the formalism of the

Boltzmann distribution. These energies, E1 and E0, are scaled by the simulation temperature

before determining the proposal acceptance probability. In effect, the objective function is

divided by temperatures so that samplers have higher probabilities of escaping local minima.

Figure 6.2 demonstrates how the energy “landscape” of a probability distribution can change

given a high enough temperature. The higher temperature landscape at T = 3 or T = 10

demonstrates the relative ease at which an MCMC sampler can explore the entire parameter

space compared to the lower temperature landscape where the sampler may be prone to

getting trapped in local minima.

E1 = logP (θproposed|D) (6.19)

E0 = logP (θcurrent|D) (6.20)

Parameter Acceptance = min(1, exp

(
E1 − E0

T

)
) (6.21)

Swap Acceptance = min

[
1, exp

(
−(Ei − Ej)(

1

Ti
− 1

Tj
)

)]
(6.22)

These energies, E1 and E0, are scaled by the simulation temperature before determining the

proposal acceptance probability. In effect, the objective function is divided by temperatures

so that samplers have higher probabilities of escaping local minima. Figure 6.2 demonstrates

how the energy “landscape” of a probability distribution can change given a high enough

temperature. The higher temperature landscape at T = 3 or T = 10 demonstrates the

relative ease at which an MCMC sampler can explore the entire parameter space compared

to the lower temperature landscape where the sampler may be prone to getting trapped in

local minima.

A unique feature of parallel tempering algorithms is that the tempered Monte Carlo

chains are allowed to evolve independent of each other for some time. After a user-set hy-

perparameter, nsteps (a “swap interval”) has passed, an inter-chain swap of parameters is
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Figure 6.2: Effects of varying temperatures on the Boltzmann distribution. Shown is a single pa-
rameter, θ, and the system’s energy at that parameter value. The steep local minima are difficult
to escape because the escape probability as defined by Metropolis-Hastings criterion becomes ex-
ponentially smaller. Higher temperatures modulate the energy landscape such that local minima
become shallow and easier to escape.

attempted to pass the information about potential energy minima (higher probability pa-

rameter locations) from higher temperature samplers to the lower temperature samplers.

This swap probability is calculated with Equation (6.22) by comparing the energy and tem-

perature of chain i against those of chain j [121]. If a higher temperature sampler is in a

parameter location with a larger energy value (higher Bayesian posterior and more favorable

location), then that information will pass down to a lower temperature sampler with 100%

probability. The opposite scenario, where a swap is proposed to provide a low temperature

sampler with a lower energy parameter location (less favorable), is possible, but less prob-

able (small, nonzero swap acceptance). The net effect is that high temperatures perform a

broad search over the parameter landscape and pass locations of local minima to the lower

temperatures, which conducts a depth search within these minima.
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An issue that often arises from inverse problems that estimate ODE parameters is pa-

rameter correlation. Correlations cause parameter distributions to be highly anisotropic.

Figure 6.1A illustrates a highly anisotropic system that would be very difficult for MCMC

to efficiently sample. The significant correlation between x1 and x2 can be clearly seen in the

joint probability distribution in Figure 6.1D. The majority of MCMC samples will lie outside

regions of interest and provide no information that can be used to recover the probability

distribution. As a result, to uncover the marginal distributions of x1 and x2, as illustrated

in Figures 6.1B and C, a lengthy simulation would be required. To improve the sampling

efficiency of anisotropic distributions, Goodman and Weare proposed an MCMC variant that

utilizes an ensemble of samplers with affine invariance [122]. The affine invariance property

of this algorithm means that sampling efficiency is unaffected by the anisotropic nature of a

parameter topology. This means that the ensemble of samplers can sample from the distri-

bution in Figure 6.1A just as efficiently as it can sample from an isotropic distribution (e.g.

a perfectly circular density plot).

ODE parameter fitting can greatly benefit from MCMC techniques, but several barri-

ers of entries prevent it from being commonly adopted. Most existing packages suffer from

shortcomings related to one of two categories. First, many packages exist in “prototyping

language” such as Python, R, or MATLAB in order to facilitate the coding process. Proto-

typing an MCMC simulation is more convenient, but the user pays for it greatly with the

lengthy simulation time. The second category of packages are those written in “fast lan-

guages” such as C(++) or FORTRAN. MCMC simulations compiled from these languages

are considerably faster, but suffer from the opposite problem: difficulty of programming. A

large barrier to entry needs to be overcome before research code can pass through the layers

of abstraction into a “fast language.” APT-MCMC is a C++ implementation of MCMC with

the aforementioned parallel tempering and affine-invariant ensemble of samplers [52, 122].

It aims to bridge the gap of programming accessibility by allowing the user to define their

simulation solely within a Python package, which provides code conversion to compilable

C++ code.

The rest of this section is structured as follows. First, a description of the APT-MCMC

software is provided, including a brief user guide. Second, results of a standard series of
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optimization benchmark are presented. APT-MCMC is shown to converge to the optimal

parameter set and are shown to be comparable to a popular Python MCMC package, em-

cee. Finally, generalizable MCMC hyperparameters are explored and tested against these

optimization benchmarks; hyperparameter tuning heuristics are provided.

6.2.1 Methods

6.2.1.1 APT-MCMC Package

APT-MCMC (Affine-invariant ensemble of samplers with Parallel Tempering Markov Chain

Monte Carlo) began as a C++ implementation of MCMC merging PTempEst, a parallel

tempering MCMC algorithm with Boltzmann distribution acceptance in MATLAB, and em-

cee (http://dan.iel.fm/emcee/), a (parallel tempering optional) affine invariant ensemble

of samplers MCMC algorithm in Python [52, 117]. APT-MCMC initializes with nchains con-

current ensembles at temperatures arranged in a geometric progression. The geometric step

was taken from the source code of emcee [117]. Within each ensemble, nensemble samplers

simultaneously generate the next proposed parameter step according to the “stretch-move”

technique from Goodman and Weare [122]. In short, the stretch-move utilizes the location

of another parameter set within the same ensemble to determine a movement direction. The

proposed parameter is the result of a random movement along this direction and is deter-

mined by a step size hyperparameter. This value, z, allows movement between [1
z
, z] times

the distance between the two parameters. Proposed parameter acceptance is governed by

Equation (6.21). Samplers within each temperature ensemble are allowed to move indepen-

dently of other temperature ensembles for nsteps, after which, a parameter location swap is

attempted between another sampler in a higher temperature ensemble. The probability of

this swap is governed by Equation (6.22). Table 6.1 summarizes the nomenclature used in

this work.

Despite the impossibility of determining convergence in an MCMC simulation, APT-

MCMC computes two statistical tests to provide evidence for convergence: integrated auto-

correlation and the potential scale reduction factor (PSRF) of the simulation [115, 123]. The

PSRF is a value that compares the parameter distributions between and within ensembles.
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Table 6.1: Overview of the Markov Chain Monte Carlo nomenclature used.

Nomenclature Meaning

nsteps Hyperparameter Number of MCMC sampler steps to take before a parameter location
swap is attempted between tempered chains

nensemble Hyperparameter Size of MCMC ensemble of samplers within each tempered chain
nchains Hyperparameter Number of tempered chains to simultaneously explore the problem
Swap Length Hyperparameter Number of proposed parameter location swaps among tempered chains;

determines simulation length
τ Statistical Measure Integrated autocorrelation, measure the how well an MCMC

simulation explored the parameter space (lower is better)
PSRF Statistical Measure Potential scale reduction factor, a measurement of simulation variance

between tempered chains and within-chain ensembles (lower is better)

Values close to 1.0 are desired because this statistic provides evidence for convergence by

indicating that the inter- and intra-ensemble distributions are identical [123]. APT-MCMC

calculates the PSRF value using the Welford’s variance algorithm. Integrated autocorrela-

tion time, τ , measures the correlation of a signal at every possible time lag and is calculated

according to Equations (6.23)-(6.24), where θt refers to the state of the Markov Chain (a

parameter vector) at a point in time and M represents the length of the MCMC simulation.

A property of Markov Chains is that each state depends solely on the one before it. As a

result, a high autocorrelation indicates that the Markov Chain was correlated to multiple

previous states, suggesting that the simulation was stuck in a certain parameter region. In

contrast, a low autocorrelation indicates that the simulation sampled the parameter effi-

ciently and provides evidence that the simulation has reached the true distribution of the

system [115]. APT-MCMC uses Goodman’s Acor C code in order to calculate the integrated

autocorrelation value of the simulation [122].

C(t) =
1

M − t
lim
t′→∞

[
θt+t′ − 〈θ〉

][
θt′ − 〈θ〉

]
(6.23)

τ = 1 + 2
∞∑
t=1

C(t)

C(0)
(6.24)
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A property of Markov Chains is that each state depends solely on the one before it. As a

result, a high autocorrelation indicates that the Markov Chain was correlated to multiple

previous states, suggesting that the simulation was stuck in a certain parameter region. In

contrast, a low autocorrelation indicates that the simulation sampled the parameter effi-

ciently and provides evidence that the simulation has reached the true distribution of the

system [115]. APT-MCMC uses Goodman’s Acor C code in order to calculate the integrated

autocorrelation value of the simulation [122].

ODE solving is handled by Sundials CVODE v2.6.2 [124]. Each temperature ensemble

can be run in parallel and is handled by OpenMP. It is recommended to have at least one

processor thread per temperature ensemble. The stretch-move step is nested-parallelizable

if additional threads are available (threads ≥ 2x number of temperature ensembles). Initial-

ization code to set the sequence of temperatures for a simulation was ported from Python

package emcee [117]. Random number generation is handled by TRNG, a package designed

for use with parallel Monte Carlo simulations [125]. TRNG provides a leapfrog technique,

which ensures statistically-independent pseudo-random number streams for each parallel

thread. Initial seeds for random number generators are provided by the current time plus

the thread number.

As depicted in Figure 6.3, the user is responsible for providing the parameters and their

prior distributions, the likelihood/objective function (the P (D|θ) portion from equation

6.18), fitting data, and MCMC options/hyperparameters to setup a simulation. This can be

performed in C++ or by using the Python auto-generator package tailored for ODE inverse

problems. APT-MCMC has been extensively tested on a Linux-64 platform, but it compiles

and runs under OSx with the appropriate developer tools and under Windows 10 x64 under

Cygwin and the Windows 10 Ubuntu Subsystem.

For user convenience, APT-MCMC comes with a Python 3 package to automatically

generate the necessary C++ files to run a simulation. Equation 6.25 shows the type of
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Figure 6.3: Schematic of generating an APT-MCMC simulations. Users need to specify their
parameter-fitting problem using Usermodel.cpp and set MCMC options in options.hpp. The Python
3 package can autogenerate these files by providing the ODE states and their equations, parameter
lower and upper bounds, and the dataset(s) for fitting.

problems that the package generates.

minimize
p

∑
t

[
log(Data(t))− log(X(t))

]2
(6.25)

subject to Ẋ(t) = f(X, θ, t, u(t))

X(0) = X0

X represents states, p represents a parameter set, t represents time, u represents an input

(optional). This encompasses most parameter-fitting usage cases. The user defines the pa-

rameters, ODE equations, fitting data, and MCMC options within an “aptmodel” object.

Data handling is done by defining experiment(s), where each experiment represents a sep-

arate dataset to simultaneously fit. This Python object will then generate readable and

compilable C++ code. Advanced features such as implementation of ODE inputs, fitting

unknown initial conditions, and adjusting CVODE integration options are supported within
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the Python interface. Within the objective function, the sum of squared error term is cal-

culated after taking the natural log of the data and states to prevent numerical overflow.

This addresses magnitude differences between data and model states, but may be toggled

off within the Python code.

At runtime, APT-MCMC provides information on the status of each temperature ensem-

ble, current energies, as well as the location of the best parameter set found since starting the

run. Best parameter sets are identified to the θ that minimizes Equation (6.25). Once the

simulation is completed, all relevant simulation results and variables are saved in a binary

file with a “.mcmc” extension. Python and MATLAB code is provided to read this file into

a results object for post-processing and analysis.

6.2.1.2 APT-MCMC Performance Evaluation

To evaluate the performance of APT-MCMC, several optimization benchmark functions

were tested. They were selected from the list provided by Jamil, et al [126]. APT-MCMC was

tested for its ability to recover the optimal parameter set for each function and for its runtime

and memory usage. The functions tested were Ackley 1, Adjiman, Alpine 1, Bard, Beale,

Bird, Bohachevskey 3, Booth, Bukin 6, Corana, Damavandi, Devilliers-Glasser, Eggholder,

and Griewank (most functions are visualized in Figure 6.4). They were chosen to represent

a large variety of functional landscapes: basins, valleys, multiple optima, dimensionality,

and differentiability. Function equations may be found in Appendix B. Simulations were

performed for each benchmark function in order to test if APT-MCMC reaches the optimum

parameter set. All simulations were performed with the hyperparameter values noted in

Table 6.2. Parameter histograms for each benchmark are available in the Appendix B. A

bounded uniform prior was used to provide upper and lower bounds on the parameters

specified by each benchmark function. Simulation autocorrelation and PSRF was calculated

for each benchmark.

Speed and memory for the benchmarks were compared against the popular Python

MCMC package emcee, which also features an MCMC algorithm using parallel tempering and

sampler ensembles. However, several differences exist between the two packages. First, em-
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(a) Ackley 1 (b) Adjiman (c) Alpine 1

(d) Beale (e) Bird (f) Bohachevsky

(g) Booth (h) Bukin 6 (i) Davamandi

(j) Eggholder (k) Griewank

Figure 6.4: Visualizations for the benchmarks tested. Bard, Corana, Devilliers-Glasser are not
shown due to high parameter dimensionality.

cee attempts a temperature swap after every attempted stretch-move whereas APT-MCMC

will make a user-specified number of “stretch-moves” before attempting a swap. Second, the
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Table 6.2: Simulation settings for benchmark tests.

Hyperparameter Setting

nchains 4

nensemble 100

nsteps 25

Burn-In Phase 1000

Swap Length 104*

*: Devilliers Glasser swap length set to 106

“burn-in” phase in emcee is performed by running the MCMC simulation and initializing

at the last location. Within APT-MCMC, this is handled by sampling from the parameter

priors for a user-specified number of times and then initializing at the locations of the best

samples. To ensure comparable testing, benchmark simulations were repeated with different

settings from that of Table 6.2. nsteps was set to 1 in APT-MCMC to attempt a temperature

swap after every single stretch-move. “Burn-in”, while not entirely similar between the two

algorithms, was set to 1 in both emcee and APT-MCMC, which effectively initializes the

MCMC simulation with a single sample from the prior. Simulation settings were set to four

temperatures, eight processor threads, an ensemble size of 100, and a total swap length of

1e4.

At the end of the tests, this swap length was determined to be sufficient for both al-

gorithms to reach convergence for each benchmark. All of the aforementioned benchmarks

were tested in triplicate for each algorithm. All tests were performed on the same machine

with the following specifications: 2x Intel Xeon E5-2670 v3, 256GB DDR4 memory, and

Ubuntu 14.04. APT-MCMC and emcee memory benchmarks were performed by requesting

the resident memory usage from the Linux kernel via the readproc command.

The hyperparameters required by APT-MCMC were tested to provide heuristic guide-

lines. Specifically, APT-MCMC introduces certain hyperparameters that the user must set:

nensemble, nchains, step size, and nsteps. Each hyperparameter was tested over a range of values
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and each value was tested with 100 replicate simulations. For comparability, the random

number generator for each replicate simulation was seeded from a predetermined value for

each replicate. All other hyperparameters were kept equal according to Table 6.2 (unless

otherwise noted). To quantify the effects of each hyperparameter, two statistics were used:

simulation parameter percent error (or deviation if optimum parameter is 0) and maximum

parameter autocorrelation.

The ensemble size parameter was tested as a function of problem dimensionality. The

Ackley benchmark was chosen for its dimensional scalability. A 5, 10, 20, and 30 dimensional

problem was tested and ensemble size was set at 1x, 2x, 5x, 10x, and 20x the number of

parameters for each problem. In order to prevent ensemble sizes from biasing the number

of simulation samples, swap length was adjusted each time to ensure that a total of 600,000

samples were taken per simulation. The step size parameter controls how far the MCMC

samplers traverse the parameter space with each iteration. It was tested against a parameter

fitting benchmark, the Bard function. The parameter dictating the number of moves per

swap attempt controls the swap attempt frequency. This adjusts how long the lower tem-

perature simulation is able to search a parameter location of interest before it potentially

jumps to another optimum. This technique can greatly aid in highly multimodal problems

and therefore the 10 dimension Ackley and the Griewank benchmarks were tested. The

number of temperatures may be beneficial in highly multimodal problems due to the higher

temperature ensemble’s ability to identify optima. It was tested against the 10 dimension

Ackley and the Bukin benchmarks.

A −−→
kAB

B −−→
kBC

C

2A −−→
kAD

D
(6.26)

APT-MCMC was tested against a sample ODE fitting problem using the classic Van

de Vusse reaction scheme (see Equation 6.26). It was assumed that this reaction takes

place within an isothermal continuously stirred tank reactor and the feed is pure A with

the following properties: F
V

= 4/7min−1 and CAI = 10 mol/L. The resulting ODE system

is presented in Equation 6.27. Unsteady startup data for this system was generated for
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states A(t), B(t), C(t), and D(t) at 0.5 minute increments from 0 to 10 minutes and subject

to a sampling noise of N (µ = 0, σ2 = 0.1). APT-MCMC fit the three kinetic parameters

kAB, kBC , kAD to concentration data of species. Simulation settings were set the those in

Table 6.2 with the exception of swap length set at 103. Each parameter was bounded within

[0, 10].

dCA(t)

dt
=
F

V
(CAI − CA(t))− kABCA(t)− kADCA(t)2

dCB(t)

dt
= −F

V
CB(t)− kBCCB(t) + kABCA(t)

dCC(t)

dt
= −F

V
CC(t) + kBCCB(t)

dCD(t)

dt
= −F

V
CD(t) +

1

2
kADCA(t)2

kAB = 0.833, kBC = 1.667, kAD = 0.167

(6.27)

APT-MCMC also tested a bioreactor system describing glucose to ethanol fermentation

by Saccharomyces cerevisiae in a batch tank reactor [127]. The equations describing this reac-

tor are shown in Equation 6.28. The goal was to fit six parameters: µmax, KS, kd, YS/C ,m, YP/C

against time-series data for each state, CC(t) (yeast concentration), CS(t) (glucose concentra-

tion), CP (T ) (ethanol concentration), at 0.5 hour increments up to 14 hours. Noise sampled

from N (µ = 0, σ2 = 2) was added to the data. The initial yeast, glucose, and product

concentrations were set to 1.0 g/dm3, 250 g/dm3, and 0.0 g/dm3. Each parameter prior was

set to a bounded uniform prior about [0, 20] to test APT-MCMC’s ability to recover the

parameters given a large uninformative prior.
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rg(t) = µmax

(
1− CP (t)

C∗P

)0.52
CC(t)CS(t)

KS + CS(t)

dCC(t)

dt
= rg − kdCC(t)

dCS(t)

dt
= −YS/Crg −mCS(t)

dCP (t)

dt
= YP/Crg

µmax = 0.33h−1, KS = 10.7g/dm3, kd = 0.01h−1,

YS/C = 12.5g/g,m = 0.03g/(g cells h), YP/C = 0.45g/g, C∗P = 93g/dm3

(6.28)
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6.2.2 Results

6.2.2.1 Benchmarks

Table 6.3: Overview of APT-MCMC Performance on several benchmark functions.

Benchmark τ PSRF Param 1 Param 2 Param 3 Param 4 Param 5

Ackley 1.16 1.00 5.58∗10−3 (0) -1.53 ∗10−2 (0) 9.78 ∗10−1 (0)
Adjiman 1.85 1.03 2.00 (2) 9.60∗10−2 (0.106)
Alpine 2.34 1.00 6.80∗10−2 (0) 0.143 (0) 3.19∗10−2 (0) 1.52∗10−2 (0) 2.67∗10−2 (0)
Bard 1.85 1.20 8.11∗10−2 (8.24∗10−2) 1.09 (1.13) 2.38 (2.34)
Beale 1.95 1.06 3.00 (3) 0.500 (0.5)
Bird 4.05 1.02 -1.58 (-1.58) -3.13 (-3.13)
Bohachevsky 1.18 1.00 1.86∗10−3 (0) 1.33∗10−3 (0)
Booth 1.85 1.02 1.00 (1) 3.00 (3)
Bukin 1.85 1.05 -10.56 (-10) 0.753(1)
Corana 1.93 1.00 3.86 ∗10−2 (0) 8.42∗10−3 (0) 3.29∗10−2 (0) 4.76∗10−2 (0)
Damavandi 1.85 1.00 2.00 (2) 2.00 (2)
Devilliers 1.95 1.18 53.9 (53.81) 1.27 (1.27) 2.95 (3.01) 65.0 (2.13) .507 (.507)
Eggholder 1.85 1.35 512 (512) 404 (404.23)
Griewank 1.10 1.00 -4.05∗10−2 (0) 3.58∗10−2 (0)

Benchmark functions are provided in Appendix B. For each benchmark, the integrated autocorrelation
time(τ), potential scale reduction factor (PSRF), the best parameter set, and the true optimum in parenthesis
are reported. Each simulation was performed using the hyperparameters in Table 6.2.

Table 6.3 shows the maximum likelihood parameter for each benchmark function. The

swap length of simulations were arbitrarily chosen to be 10,000; however, the low values of

the autocorrelation and PSRF statistics in Table 6.3 support that simulations converged over

this run length. APT-MCMC returned accurate parameter estimates for most benchmarks.

For example, the Damavandi benchmark contains a very large local minimum well near

(7, 7)(Figure 6.4i), but APT-MCMC was able to locate the global minimum at (2, 2). The

Bukin benchmark (Figure 6.4h) contains a sharp ridge with multiple minima and APT-

MCMC was able to get close to this point.

The notable exception is with the DeVilliers-Glasser function, represented in equation

6.29. This benchmark is a sum of squares parameter fitting problem and, despite not being

previously reported, appears to contain multiple global minima. The highly multimodal

histogram (see Appendix B) for parameter x4 and the bimodality of x1 suggest that this

problem has multiple solutions. The hyperbolic tangent is an odd function and its sym-
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metricity explains the bimodal distribution at x1 ±54. The cyclical nature of sin(x) explains

the multimodal nature of x4.

24∑
i=1

[
x1x

ti
2 tanh[x3ti + sin(x4ti)] cos(tie

x5)− yi
]

ti = 0.1(i− 1)

yi = (53.81)(1.27ti) tanh[3.012ti + sin(2.13ti)] cos(tie
0.507)

xi ∈ [−500, 500] i = 1, 2, ..., 5

(6.29)

The head-to-head comparison tests between APT-MCMC and emcee is summarized in

Table 6.4. For each benchmark tested, APT-MCMC was many times faster than the Python

counterpart. This speed came at the cost of using 14% more memory during simulations. The

reported times for APT-MCMC do not include generation time (time required for Python

to generate C++ code) nor do they include C++ compilation time, but the inclusion of

those times (roughly an extra 5-7 seconds) will not significantly change Table 6.4. These

results are expected due to Python overhead as an interpreted language. While useful for

prototyping, the slower execution speed is less desirable MCMC simulations. As a result,

APT-MCMC may lack some of the flexibility of emcee but succeeds in being the faster tool

at runtime. Lastly, the symmetric mean absolute percentage error was computed for each

benchmark simulation instead of percentage error to deal with division by zero issues. The

error calculations demonstrate that APT-MCMC is able to achieve similar a computational

performance with emcee.

6.2.2.2 Hyperparameters

The nensemble hyperparameter dictates how many simultaneous samplers exist for each

temperature ensemble. These samplers utilize each other‘s locations to generate search di-

rections for the next state. Test results for nensemble are shown in Figure 6.5. Autocorrelation

increases with problem dimensionality due to the increasing amounts of local minima that

are introduced. Parameter error was unaffected by ensemble size. In general, the higher

the ensemble sizes (as a function of problem dimensionality) resulted in lower integrated
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Table 6.4: Comparison of computing resources used by APT-MCMC and Python package emcee.

emcee APT-MCMC

Benchmark Time (s) Memory (MiB) Error Time (s) Memory (MiB) Error

Ackley 118 189 9.63 ∗ 10−01 2 193 9.63 ∗ 10−01

Adjiman 125 159 9.73 ∗ 10−03 2 194 9.50 ∗ 10−03

Alpine 110 251 9.63 ∗ 10−01 3 255 9.63 ∗ 10−01

Bard 118 190 7.05 ∗ 10−01 2 193 1.86 ∗ 10−02

Beale 128 160 2.58 ∗ 10−04 2 193 5.34 ∗ 10−04

Bird 124 157 1.14 ∗ 10−05 2 193 6.67 ∗ 10−01

Bohach 116 158 9.63 ∗ 10−01 2 193 9.63 ∗ 10−01

Booth 116 158 2.06 ∗ 10−04 2 193 1.98 ∗ 10−04

Bukin 115 158 4.89 ∗ 10−01 2 193 1.01 ∗ 10−01

Corana 118 220 9.63 ∗ 10−01 3 255 9.63 ∗ 10−01

Damavandi 116 157 5.35 ∗ 10−01 2 193 2.86 ∗ 10−04

deVilliersGlasser 187 252 8.90 ∗ 10−01 9 255 2.88 ∗ 10−01

Eggholder 114 157 6.48 ∗ 10−06 2 193 1.40 ∗ 10−04

Griewank 116 158 9.63 ∗ 10−01 2 193 9.63 ∗ 10−01

Average 123 180 5.32 ∗ 10−01 2 206 4.21 ∗ 10−01

Results shown are averaged from n = 3 test simulations. Memory was the physical resident memory in
mebibytes, as reported by the Linux kernel. Each benchmark function simulation was set according to the
hyperparameters in Table 6.2 with the exception of nsteps = 1 (for comparability between APT-MCMC
and emcee). Burn-in for both algorithms were set to 1 iteration. APT-MCMC was faster and used less
memory for each case. The error columns represent the calculated symmetric mean absolute percentage
error averaged over all parameters and across replicates.

autocorrelation values. Larger ensemble sizes reduced autocorrelation while utilizing the

same amount of computational resources (simulation times were similar among each prob-

lem dimensionality). The reduced autocorrelation is because larger ensembles offer more

varied and robust search directions. For smaller problems such as the 5 parameter case,

there were no distinguishable effects due to the ease of convergence. For large problems,

preference should be given towards increasing ensemble size rather than swap length. As

a reference, the source code behind emcee enforces the minimum ensemble size at 2x the

problem parameter dimensionality [117].

The nchains hyperparameter in a simulation helps the system explore highly modal pa-

rameter spaces by running many tempered simulations simultaneously. Samplers in high-

temperature ensembles can locate alternative energetically favorable regions (potential lo-
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Figure 6.5: 100 repeated simulations were used to test the effects of the nensemble hyperparameter
by using the dimension-scalable Ackley benchmark function. The value of nensemble was set as a
function of the dimensionality of the Ackley function and denoted by #x nPar (multiplier x # of
parameters). Mean ± SEM of best parameter error and integrated autocorrelation shown. Raw
parameter error is reported because the optimum parameters are located at 0. Problems benefit
from larger ensemble sizes, but this comes at the cost of increased computation time.

cations of local minima) with higher probabilities and pass this information to the lower

temperature samplers for minima identification. Figure 6.6a shows the results of the Bukin

benchmark. There were diminishing decreases of autocorrelation at a higher number of

chains, which indicate that this benchmark function had local minima that were relatively

easy to escape from. In contrast, Figure 6.6b shows the results for the 10-dimension Ackley

benchmark and demonstrates a linear relationship between autocorrelation and the number

of chains. The 10-dimension Ackley benchmark contains more local minima than the Bukin

benchmark and benefits more from the additional chains. nchains cannot be set lower than

2 because parameter swapping would not be possible with a single temperature Markov
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(a) 2-dimension Bukin benchmark function (b) 10-dimension Ackley benchmark function

Figure 6.6: 100 repeated simulations were used to test the effects of the nchains hyperparameter by
using benchmark functions Bukin and Ackley. Mean ± SEM of integrated autocorrelation shown
and parameter error shown. Additional temperature ensembles decreased simulation autocorrela-
tion, although there were diminishing returns after 4. A higher number of temperatures results
in improved parameter mixing and simulation efficiency. There was no significant effect on the
accuracy of the maximum likelihood parameter vector.

Chain. Increasing nchains increases the magnitude of the temperature sequence and higher

magnitudes benefit from the aforementioned favorable region exchange. This information

exchange leads to a faster exploration of the parameter space and therefore lower autocorre-

lation values. While the number of tempered chains increases computational cost, they can

in parallel and scale well via OpenMP. As a result, this hyperparameter can be set to equal

the number of CPU threads available on the machine running the simulation. APT-MCMC

is able to utilize up to the number of detected CPU threads (logical cores) on the machine it

runs on. OpenMP synchronization locks in the APT-MCMC OpenMP code ensure that all

chain movements are completed prior to a swap attempt. Setting nchains to a value that ex-

ceeds the number of CPU threads will greatly increase simulation time because some threads

have to calculate multiple tempered chains while others are forced to idle. Computational

resources are better spent on longer simulations with an nchains equivalent to the number of

cores. It is recommended to set nchains to as many available CPU cores as possible because

simulation efficiency improves and parallelization offsets any computational trade-offs.
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(a) 2-dimension Griewank benchmark function (b) 10-dimension Ackley benchmark function

Figure 6.7: 100 repeated simulations were used to test the effects of the nsteps hyperparameter by
using benchmark functions. Mean ± SEM of best parameter error and integrated autocorrelation
shown and parameter error shown. Increasing the steps per swap decreased maximum autocorre-
lation but increased the simulation time. Parameter error decreased only in the Griewank case.

The nsteps hyperparameter describe how much a sampler ensemble explores a local region

of the parameter space before it is potentially swapped to a different parameter location.

The effect of this hyperparameter is shown in Figure 6.7a for the Griewank benchmark. Both

autocorrelation and parameter error decreases with increasing nsteps. In contrast, simulation

time increased. Figure 6.7b shows the results for the 10-dimension Ackley function, which

demonstrate similar trends. Larger nsteps allow for the ensemble of samplers to explore a

region of interest for longer before they are potentially transferred to a different region. Very

small values may prevent the samplers from exploring optima sufficiently. As nsteps became

larger, autocorrelation was unaffected, but simulation time increased. For both benchmark

functions, there were diminishing returns in autocorrelation decreases compared to the in-

creases in simulation time. Values within 20-30 offered trade-offs between autocorrelation,

simulation time, and parameter accuracy.

The step size hyperparameter determines how far a proposed parameter can move in

accordance with the stretch-move scheme. Small step sizes prevent proper parameter space

exploration. High step sizes allow potential movements farther away from the rest of the en-
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Figure 6.8: 100 repeated simulations were used to test the effects of the step size hyperparameter by
using the 2-dimension Bard benchmark function. Mean ± SEM of best parameter percent error and
integrated autocorrelation shown. The minimum autocorrelation was achieved at a clear optimum
at 2.5-3. There was no effect on the accuracy of the maximum likelihood parameter vector.

semble samplers. Figure 6.8 shows the results for the Bard benchmark. The suggested value

for this hyperparameter is between 2-3 where there is a clear minimum in autocorrelation.

As a reference, Goodman and Weare suggested a value of 2 for this hyperparameter [122].

6.2.2.3 Van de Vusse Reaction Scheme

Figure 6.9 illustrates the Bayesian posterior results from an ODE parameter fitting prob-

lem involving the Van de Vusse reaction scheme. Parameter histograms are shown along with

a fitted kernel density estimation. The peaks of each parameter’s probability density corre-

spond with the true parameters used to generate the data for the Van de Vusse reactions.

Furthermore, the best parameter vector from the simulation (associated with the highest

likelihood) demonstrated 1%-3% difference from the true parameter vector. The fit from the

best parameter set is shown in Figure 6.10.
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Figure 6.9: Parameter histogram from simulation to fit 3 parameters to Van de Vusse reaction
data. The vertical line in each subplot represents the true parameter values used to generate the
data. The smooth line in each subplot is a kernel density estimation of the histogram.

Figure 6.10: Data and best parameter fit for the Van de Vusse reaction scheme system. Simulated
state data (with noise) are shown as dots in either graph. Concentration trajectories from the best
parameter fit are shown as lines for each state.
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Figure 6.11: Parameter histogram from simulation to fit 6 parameters in a batch bioreactor. The
vertical line in each subplot represents the true parameter values used to generate the data. The
smooth line in each subplot is a kernel density estimation of the histogram.

Figure 6.12: Data and best parameter fit for the bioreactor system. Simulated state data (with
noise) are shown as dots in either graph. Concentration trajectories from the best parameter fit
are shown as lines for each state.
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6.2.2.4 Bioreactor

Figure 6.11 illustrates the Bayesian posterior results from the ODE fitting of a bioreac-

tor. Histogram peaks for most of the parameters matched the true values. The histogram

peaks for the YS/C and YP/C were under-predicted. This was likely due to the difficulty the

algorithm had in fitting KS, a Michaelis-Menten half-max concentration term, as indicated

by the high variance within the KS distribution. As a result, the biomass growth term, rg,

differed from the true growth rate and the two yield parameters were used to compensate.

Michaelis-Menten half-maximum constants are difficult to fit without carefully characterized

reaction rate data that are often experimentally challenging to collect. If such data were

available, the parameter estimates would be significantly improved based on the tightening

of the bounds on the KS parameter. Regardless, this example highlights a major benefit of

APT-MCMC. Compared with traditional nonlinear least squares fitting algorithms such as

the trust region reflective or Levenburg-Marquardt, APT-MCMC does not require a good

set of initial conditions to achieve a promising model fit; instead, the use of broad parameter

bounds is sufficient to estimate parameter values and distributions, which is especially useful

when some parameters may prove difficult to identify from the available data. The fit from

the best parameter set is shown in Figure 6.12.

6.2.2.5 Limitations

One current limitation is associated with the Python auto-generation package. It assumes

uniform priors on all parameters and a sum of squared error likelihood function. However,

the C++ code can be easily modified to overcome these limitations. Should the user require

additional features for advanced fitting procedures, the user can auto-generate the files with

Python and then modify the appropriate C++ functions to their needs. Any problem that

can be posed as a maximum likelihood can be programmed into APT-MCMC, but C++

programming of Usermodel.cpp is required.

Another limitation is the lack of a termination criterion, which is inherent to MCMC

techniques. While APT-MCMC seeks to alleviate this issue by calculating the autocorrela-

tion and PSRF values, MCMC statistics are necessary but not sufficient tests of convergence.

142



Practically, the user should set the simulation to a very long swap length. While the sim-

ulation proceeds, the user should analyze the partial APT-MCMC results as they become

available and make a stopping decision based on the statistical tests and in determining if

the distributions of the parameter posterior histograms are still changing. MCMC simula-

tions may also get stuck in a meta-stable convergence state (which is not testable either),

but a popular solution is to run multiple MCMC simulations from distinct initial conditions

[115]. The second simulation can be run with tighter bounds on each parameter based on the

posteriors from the first simulation and one can verify if simulations converge in the same

parameter location.

6.2.3 Summary

APT-MCMC is presented as a fast MCMC platform tailored for use in solving parameter-

fitting problems. User-convenience was prioritized during the creation of APT-MCMC. Tra-

ditionally, MCMC packages are provided in either easy-to-prototype, but slow, or difficult-

to-learn, but fast, languages. The Python auto-generation package serves to provide users

with an easy way to prototype and set up simulations while retaining the speed associated

with a compiled and static language (C++). Additionally, MCMC hyperparameters are

provided based on tests using common optimization benchmarks. APT-MCMC is ready for

use and exists as an open source project on GitLab.
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7.0 SUMMARY AND FUTURE WORK

The focus of this dissertation was the identification of sepsis endotypes. To achieve this, a

variety of mathematical models from were developed to provide insight into the time course

and the mechanisms of the syndrome. Hierarchical clustering revealed the existence of several

distinct clusters primarily described by the level of cytokinemia (high, medium, low) and clin-

ical features pertaining to the sequential organ failure assessment score. Membership within

these clusters was confounded by the issue of variable pre-hospital time: sepsis patients arrive

in the clinic at variable times along their inflammatory trajectory. In response, a systems

analysis approach was developed to simultaneously model each subject (along with their

pre-hospital times) and cluster the responses. This method revealed five sepsis endotypes

with distinct behaviors of the pro- and anti-inflammatory response to infection. Endotypes

are the different manifestations of disease due to mechanistic differences between patients.

These five endotypes were explored with applied statistics, machine learning techniques, and

ODE mathematical models. Applied statistics revealed that the traditional “baseline” ap-

proach (defined by when the subject arrives in the clinic) cannot segregate patients with

different endotypes. Machine learning techniques, trained on six hours of temporal clini-

cal features, also demonstrated difficulty in segregating endotypes. A mathematical ODE

model revealed that macrophage cell death and cytokine degradation may contribute to the

underlying pathomechanistic differences between endotypes.

In conjunction with the endotyping work, other mathematical models were explored

to tackle other clinical challenges in sepsis: specifically, unknown pre-hospital time and

unknown systemic damage for a septic subject. Knowledge of these two features can improve

clinical decision-making, as well as improve the aforementioned mechanistic model. First, a

nearest-neighbor model was constructed. Three sets of animal data and one set of human
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trauma data demonstrated the feasibility of applying a clinical tool to estimate pre-hospital

time. Second, an ensemble of regularized logistic regression models that were trained on

baboon sepsis data yielded an exploratory approach to quantify the systemic inflammatory

damage suffered during sepsis as a function of time.

Finally, to support this body of work, two mathematical tools were created. In exploring

age-related immune pathway differences between old and young mice, a tool was created that

automatically parses a list of potential immune pathways, formulates a mixed integer linear

programming problem, and solves it via Pyomo and CPLEX. APT-MCMC was born out of

the need for a faster MCMC ODE parameter-fitting algorithm during the development and

calibration of the aforementioned mathematical ODE model of sepsis.

7.1 CONTRIBUTIONS

7.1.1 Endotype Identification and Prediction in the Clinic

The hierarchical heatmap clustering approach in Chapter 2 revealed that cytokinemia and

organ dysfunction biomarkers in the ProCESS data contribute to differing 14-day all-cause

mortality and multiple organ failure rates. Heatmaps provided a way to aggregate and

visualize all of the factors a clinician takes into account when developing treatment plans

for septic subjects. The distinctive patterns among clusters paved the way towards a novel

clustering approach that (i) accounted for individual patient pre-hospital times, (ii) modeled

patients using a mathematical model of the inflammatory response, (iii) recovered patient

cluster dynamics from censored trajectories (Chapter 3). The result was five endotypes, each

with their own characteristic master inflammatory-responses model.

The endotypes encompassed a variety of responses: overwhelming inflammation in en-

dotype 1, sustained anti-inflammation in endotype 2, immunosuppression in endotype 3,

sustained inflammation in endotype 4, and immunodeficiency in endotype 5 (refer to sum-

mary Table 3.2). The difference in response behaviors of these endotypes suggests that

certain immuno-modulatory therapies may be inappropriate for certain endotypes (for ex-
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ample, anti-inflammatory therapy is not suitable for an immunosuppressed subject). This

insight may explain why many sepsis clinical trials fail to demonstrate positive mortality

benefits. While some groups of subjects may have benefited from a certain therapy, others

may have been adversely affected.

7.1.2 Mechanistic Ordinary Differential Equation Model of Sepsis

The proposed ODE model in Chapter 4 is among the first models of sepsis to be calibrated

on human sepsis data. The model captures many of the complex interactions between white

blood cells (neutrophils and monocytes), cytokines, and pathogens. The model, combined

with the estimated pre-hospital times from Chapter 3, demonstrated an ability to fit many

of the ProCESS patients well. White blood cell recruitment drew from marginal sources first

during the first days of infection. After 4-5 days, immature white blood cell recruitment from

the bone marrow occurred to replenish depleting marginal reserves. TNF was able to trigger

monocyte recruitment into the tissue. Resident macrophages and the recruited monocytes

(now macrophages) were able to sustain production of cytokines to emulate the cytokine

storm. The model demonstrated an ability to capture the fast changes (both rise and fall

within 6 hours) of both cytokines and white blood cell data. A population-level analysis

of parameters revealed that macrophage death dynamics were important contributors to

endotype-specific behavior. Furthermore, within some endotypes, cytokines seemed to have

prolonged lifespans in the blood. Macrophage death dynamics and cytokine lifespans may

begin to explain the causes of cytokinemia and may provide suitable pharmaceutical targets

for future sepsis therapy.

7.1.3 Quantifying Pre-hospital Time and Systemic Damage

Chapter 5 describes two mathematical models to tackle other challenges that clinicians face

with sepsis patients. A statistical model, based on nearest-neighbors, was introduced to

address the issue of variable, unknown pre-hospital times in septic subjects. This approach

was developed independently from the transfer function model in Chapter 3 to serve as a

stand-alone method that precluded the need for serial cytokine measurements over a 72 hour
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period. One-nearest-neighbors achieved high accuracy in estimating pre-hospital times in

one baboon model of sepsis and two porcine models of sepsis. The measurement burden was

demonstrably low: using temporal vital signs and a single, blood-based, point measurement

was sufficient to achieve an accuracy between 70−95%, depending on the length of temporal

data. Furthermore, this method worked well on human trauma data. Ambulatory and

emergency room measurements of vital signs and organ-health biomarkers yielded up to

82% accuracy in estimating the original time of trauma. The translatability of this method,

low measurement burden and temporal density requirements, and high accuracy properties of

the nearest-neighbors approach indicate a promising way to provide clinicians with valuable

pre-hospital/infection onset information about their sepsis patients.

The second statistical model related the risks of early mortality with important clinical

features using an unbiased, feature selection algorithm. Time-varying odds ratios of mortality

were calculated using ensembles of elastic-net logistic regression models. Elastic-net offered

improved feature selection over traditional methods (ridge or lasso) and identified several key

clinical features, such as lactate, glucose, hemoglobin, and platelet count, that contribute

towards early sepsis deaths with varying odds ratios. Systemic organ damage, as a function

of time, were calculated from odds ratios and revealed clear mortality separation within

the first 12 hours of infection. Nonsurviving subjects demonstrated increasing-only damage

trajectories, indicating that large amounts of early sepsis-induced organ damage may lead

to a mortality bifurcation. Surviving subjects demonstrated one or more organ systems that

were able to recover, indicating that early organ support may be a key factor in shifting

sepsis patients towards better outcomes. Although the method required measurements of

high temporal density, it was designed using a set of easy-to-measure biomarkers to reduce

the overall measurement burden and is ready for translation with a suitable human dataset.

7.1.4 Efficient MCMC Sampling Software for Parameter-Fitting

Chapter 6 introduced APT-MCMC, a software that can perform MCMC sampling faster

than its Python counterpart without sacrificing user-friendliness. APT-MCMC was tailored

for parameter-fitting problems and integrated MCMC techniques that improved the search
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process. Parameter landscapes for inverse problems, especially for complex models such

as the one introduced in Chapter 4, are highly multi-modal and anisotropic. APT-MCMC

solved benchmark functions with a variety of properties: basins, valleys, non-differentiability,

and multiple global optima. APT-MCMC addresses these issues by design and offers the

usability of Python to automate the task of designing simulations in C++. The utility

of APT-MCMC extends beyond fast and effective simulations: convergence statistics are

automatically provided at the end of simulations and visualization software is provided in

the Python package to aid in the post-hoc analysis of posterior distributions. APT-MCMC

is open-source to benefit the community and can be an important utility in a modeler’s

toolbox.

7.2 FUTURE WORK

7.2.1 Predicting Organ Failure

The endophenotypes identified within heatmaps can be improved by adding clinical outcomes

to the heatmap; a breakdown of organ failures for each main organ system (liver, coagulation,

respiratory, nervous, renal, and cardiovascular) will provide correlations between the health

states of specific organ systems and baseline clinical features such as lactate or cytokinemia.

Such visualizations may reveal facets in the ProCESS data that can be used to develop

statistical models to identify patients at risk of certain organ failures. A potential clinical

tool that can be derived from this work is a hazards model. Gray’s hazard model has been

demonstrated to effectively model the time-varying covariates of sepsis mortality [62, 128].

Another application of this model is to use patient comorbidities and time-varying clinical

features to reveal the contributing factors to sepsis-related organ failure.

7.2.2 Early Endotype Classifier

The next step in the mixture-model endotype work is to transition to impulse-response

transfer function models that decay to zero, which is a better biological representation of
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the inflammatory response. Preliminary work, described in Chapter 3.3.1, demonstrated

that this step is a difficult one since the mixture-models collapsed into one single cluster.

Additional exploration is warranted to refine this approach. If this step is successful, the

machine learning classification tool should be updated to reflect the new endotypes. Finally,

the ProCESS data should be further evaluated for new endotype-predictors to improve the

accuracy of this classification tool.

7.2.3 Improving Neutrophil Dynamics with Damage

The mechanistic ODE model lacked several key neutrophil dynamics that were ignored due

to the ProCESS data granularity. Once a suitable damage model has been developed (see

Chapter 5.2), a damage state can be added to the model and fitted against the calculated

time-varying damage values. Neutrophils would be the main contributor to this state. Bio-

logically, neutrophils are misdirected during the cytokine storm phase of sepsis and recruited

into healthy organs, where they cause damage to healthy tissue [9, 91]. This dynamic may

be characterized by:

fNrecruitment = Vn8Nc
IL8T

Kn8 + IL8T
(7.1)

dNT

dt
= ...+

(
IL8B

Kdirected + IL8B

)
fNrecruitment (7.2)

dNmisdirected

dt
=

(
1− IL8B

Kdirected + IL8B

)
fNrecruitment − µntNmisdirected (7.3)

(7.4)

where fNrecruitment represents the total IL-8 directed neutrophil recruitment into tissue. A

percentage of these neutrophils, dictated by a Michaelis-Menten kinetic, are appropriately re-

cruited into the site of infected tissue (Equation (7.2)) and the rest are misdirected (Equation

(7.3)). Furthermore, the current ODE model uses neutrophil apoptosis to drive the anti-

inflammatory state but does not model neutrophil necrosis, which also increases damage. A
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proposed formulation is:

fdeath = µntNT

(
1− TNFT

Ktn + TNFT

)
(7.5)

dIL10T
dt

= ...+
Macro

Km10 +Macro
fdeath (7.6)

dDamage

dt
= ...+ (1− Macro

Km10 +Macro
)fdeath (7.7)

where Equation (7.5) represents fdeath, the death rate of Tissue compartment neutrophils.

fdeath may be split into anti-inflammatory apoptosis (given the presence of nearby macrophages,

Equation (7.6)) or damage-inducing necrosis (Equation (7.7)). Finally, the proposed damage

compartment may be structured as follows:

dDamage

dt
= VDN (Nmisdirect + µntNmisdirected) + (1− Macro

Km10 +Macro
)fdeath − µdDamage

(7.8)

where a systemic damage state is increased by the presence of misdirected neutrophils (dam-

aging healthy tissue), the eventual necrosis of misdirected neutrophils, and the necrosis of

properly directed neutrophils (term from Equation (7.7)). Damage heals itself at a rate µd,

which is an optimistic scenario given the notion of cascading systemic failures. This damage

state would then be used to increase the production of pro-inflammatory cytokines TNF,

IL-6 and IL-8.

7.2.4 Estimator of Pre-hospital Time

Pre-hospital estimation accuracy can be further via a deeper exploration of the human

trauma GLUE grant data. After demonstrating the translatability of the nearest-neighbor

approach on human data, the next step would be to test the algorithm on nosocomial (in-

hospital infection) sepsis data. If the technique is successful, it can be applied in the clinic

almost immediately.
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7.2.5 Optimization of Therapy and Damage

The addition of damage to the mechanistic ODE model enables personalized treatment

optimization. Thang Ho’s dissertation described a numerical optimization-based approach to

formulate chemotherapy treatments that minimize cancerous tumor growth without reaching

dangerously low levels of white blood cells [129]. A reduced ODE model highlighting damage,

neutrophil, and pathogen interactions would be a suitable candidate for an optimization

approach. Supposing a subject has been monitored sufficiently to parameterize the ODE

model, the following problem may be posed:

minimize
x

∑
t

fpathogen(x, θ, t) + fIL6(x, θ, tend) (7.9)

subject to
dfi(x, θ, t)

dt
= RHSi(x, θ, t), i = Model States, ∀t ∈ [tbegin, tend] (7.10)

fdamage(x, θ, t) ≤ 10 ,∀t ∈ [tbegin, tend] (7.11)

where x represents a combination of immunomodulatory drugs and/or antibiotics, θ repre-

sents the ODE model parameters, fi(x, θ, t) represents the model states, and fdamage(x, θ, t)

is constrained to never go above 10, which was a damage threshold discovered in Chapter

5.2 that set subjects on a non-surviving trajectory. Neutrophils and antibiotics both have

deleterious effects on the body and the effect is quantified into fdamage(x, θ, t). The goal

of this optimization is to enable the elimination of pathogen without allowing the inflam-

matory collateral damage to exceed a threshold. Finally, the second term in the objective

function penalizes nonzero values of the inflammatory mediator IL-6 to prevent a sustained

inflammatory state at the end of the simulation.

Within the ProCESS data, the majority of subjects did not survive the year after sepsis.

This may be attributed to complications downstream of sepsis, which indicate that even

after patients survive the initial onset of sepsis (survive the first 14 days), they are still in

danger. Optimized personalized treatment has the potential to reduce mortality rates in

sepsis in both the short and long term.
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7.2.6 Updates to APT-MCMC

APT-MCMC will be semi-actively maintained. Major bugs will be addressed, but active

development will cease for the time being. APT-MCMC will be open-source to encourage

community forks for the purposes of code peer-review and feature additions.

A short-term feature is planned to modify the Python package of APT-MCMC to facil-

itate the easy use of non-uniform priors. In its current form, the Python package assumes

bounded uniform distributions. Many priors are currently supported, but require the user to

make the appropriate changes in C++ code. The selection of priors can affect the posterior

distributions and may be dependent on the type of data used (such as population-level versus

individual data or the density of data available) [130].

A long-term feature upgrade is eventually planned to explore the option of using Hamiltonian-

MCMC techniques [115]. Intuitively, a Hamiltonian sampler views a parameter landscape

as a ball on a hill and may “accelerate” down a hill towards the bottom. Mathematically,

the sampler calculates a Jacobian at its current location and moves toward the optimal

objective function direction with momentum. This type of movement may or may not be

accomplished with an affine ensemble of samplers. Jacobian calculations are computationally

expensive and Broyden’s method may be occasionally used to alleviate the computational

requirements. Such a sampling technique involves directed search rather than random walks

and can greatly reduce the autocorrelation and improve simulation efficiency.

7.3 IMPROVING SEPSIS CLINICAL OUTCOMES WITH

MATHEMATICAL MODELS

The disconnect between animal and human sepsis clinical trials may be attributed to three

aspects. First, the level of variability within humans is great while animal clinical trials are

controlled to remove variability. Second, therapy timing is currently impossible for humans

while in animals, therapies are tested at exact times relative to the onset of sepsis. Third,
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experimental controls for animal trials ensure consistent levels of sepsis-related damage while

there is currently no way to assess this level of damage in humans.

The work presented in this dissertation uses a variety of mathematical models to address

all three of these aspects. While the applicability of these models to the clinic is in the

nascent stages, such models may improve the translatability of sepsis research from animal

models to clinical trials.

The long-term extension of this dissertation is to generate a single, bedside tool that takes

a series of clinical measurements and cytokines over a small time frame and provides the

clinician with a subject’s endotype, pre-hospital time/how long they have been septic for, and

current level of systemic damage. Armed with this panel of information, a clinician can design

and tailor a treatment unique to this subject. Furthermore, access to this information will

enable new types of sepsis therapies such an endotype-specific treatments, timing-dependent

therapies, and providing early organ support. The existence of such a decision support

system rejects the status quo of a “one-size-fits-all” approach to sepsis and may usher in a

new paradigm of personalized medicine and improved clinical outcomes in sepsis.
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APPENDIX A

DETAILED RESULTS FOR NEAREST-NEIGHBOR PRE-HOSPITAL TIME

ESTIMATION TOOL

This section contains additional results from the analysis involved with the nearest-neighbor-

based estimation tool for subject pre-hospital times.
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Table A1: Time-of-infection estimation accuracy over varying right censor values (temporal dura-
tions) for all biomarkers tested.

Baboon Accuracy Pig Peritonitis Accuracy Pig LPS Accuracy

Biomarker R 1 R 2 R 3 R 4 Mean R 1 R 2 R 3 Mean R 1 R 2 R 3 Mean

WBC 51.8% 67.0% 83.0% 93.1% 73.7% 60.7% 58.6% 76.8% 65.4% 46.5% 64.4% 73.4% 61.4%

HR 42.1% 58.2% 74.6% 84.8% 65.0% 64.6% 83.8% 87.0% 78.5% 47.2% 61.0% 69.1% 59.1%

HCO3A 48.5% 56.2% 67.8% 75.3% 62.0% - - - - - - - -

SVR 32.7% 59.3% 72.0% 79.7% 60.9% 50.0% 57.4% 63.0% 56.8% 50.7% 63.6% 66.0% 60.1%

HB 34.8% 58.2% 70.8% 79.2% 60.8% 53.6% 67.1% 83.9% 68.2% 52.8% 73.7% 84.0% 70.2%

CO 33.6% 54.5% 68.9% 84.8% 60.5% 46.3% 51.5% 64.8% 54.2% 45.8% 55.1% 63.8% 54.9%

CI 32.1% 51.9% 72.0% 84.4% 60.1% - - - - - - - -

CcO2 33.9% 55.9% 70.8% 79.7% 60.1% - - - - - - - -

ABEA 44.8% 51.5% 65.9% 74.5% 59.2% 59.8% 73.5% 77.8% 70.4% 50.4% 63.9% 69.6% 61.3%

MAP 33.0% 50.8% 65.9% 82.7% 58.1% 43.9% 50.0% 61.1% 51.7% 53.5% 65.3% 77.7% 65.5%

PVR 38.5% 52.5% 66.7% 74.5% 58.0% - - - - - - - -

PaO2 45.2% 49.5% 63.6% 70.6% 57.2% 53.7% 51.5% 64.8% 56.6% 47.2% 49.2% 61.7% 52.7%

RBC 29.7% 49.8% 67.4% 78.8% 56.4% 52.4% 74.3% 87.5% 71.4% 54.2% 73.7% 83.0% 70.3%

CAO2 30.9% 51.2% 64.0% 77.1% 55.8% 51.2% 50.0% 57.4% 52.9% 47.9% 56.8% 57.4% 54.0%

PLT 50.9% 49.2% 56.1% 60.6% 54.2% 61.9% 70.0% 82.1% 71.3% 41.5% 50.0% 61.7% 51.1%

aPO2 40.3% 49.5% 56.4% 62.8% 52.3% - - - - - - - -

HCT 28.8% 45.5% 62.9% 70.1% 51.8% 53.6% 72.9% 91.1% 72.5% 50.0% 65.3% 81.9% 65.7%

PWP 34.5% 53.2% 54.2% 63.6% 51.4% 45.1% 64.7% 81.5% 63.8% 38.0% 46.6% 66.0% 50.2%

RAP 28.8% 46.5% 58.7% 70.6% 51.1% 43.9% 63.2% 70.4% 59.2% 41.5% 51.7% 64.9% 52.7%

PaCO2 39.4% 52.2% 51.5% 61.0% 51.0% 51.2% 50.0% 57.4% 52.9% 47.9% 56.8% 57.4% 54.0%

TEMP 32.7% 49.8% 56.1% 62.8% 50.3% 54.9% 67.6% 83.3% 68.6% 59.9% 66.1% 79.8% 68.6%

O2DEL 31.8% 41.4% 54.5% 73.6% 50.3% - - - - - - - -

SATAO2 34.5% 45.8% 53.8% 62.8% 49.2% 62.2% 58.8% 70.4% 63.8% 55.6% 55.9% 73.4% 61.7%

MPAP 37.0% 43.8% 48.9% 58.0% 46.9% 59.8% 52.9% 61.1% 57.9% 47.2% 57.6% 85.1% 63.3%

RR 29.1% 35.4% 45.5% 59.3% 42.3% 50.0% 73.5% 77.8% 67.1% 36.6% 44.1% 53.2% 44.6%

HOROW 28.2% 38.0% 47.3% 54.1% 41.9% 52.4% 61.7% 72.2% 62.1% - - - -

QUOTIENT 28.2% 36.0% 43.6% 53.7% 40.4% - - - - - - - -

PHA 27.9% 38.7% 44.3% 48.1% 39.7% 42.7% 57.4% 75.9% 58.7% 55.6% 65.3% 76.6% 65.8%

AADO2 27.6% 32.3% 45.1% 51.5% 39.1% - - - - - - - -

Mean Null 26.6% 29.0% 32.3% 36.7% 31.2% 38.1% 44.7% 55.0% 45.9% 42.7% 49.1% 57.7% 49.8%

Results were generated with available biomarkers from the baboon data and then sorted by mean accuracy.
All tested biomarkers are shown in addition to the null hypothesis. The null hypothesis, tested with
randomized biomarkers, performed worse than all of the tested biomarkers. This method was repeated on
the two porcine data sets for validation. Only 3 right censor durations were tested due to the sampling rate
and duration limitations of those experiments.
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Table A2: Prediction accuracy of longitudinal vital signs with a single blood biomarker on porcine
peritonitis experiment.

Accuracy

Right Censor Vitals Point No Point W/ Point Time Series

HR HGB 83.6% 84.9% 80.8%

HR pH 83.6% 82.2% 82.2%

HR PLT 83.6% 80.8% 78.1%

Temp HR HGB 87.7% 86.3% 82.2%

SATAO2 HR HGB 80.8% 86.3% 84.9%

2 SATAO2 HR PHA 80.8% 83.6% 83.6%

Temp SATAO2 HR HGB 84.9% 86.3% 87.7%

Temp SATAO2 HR PHA 84.9% 83.6% 83.6%

Temp SATAO2 HR PLT 84.9% 82.2% 82.2%

Temp MAP SATAO2 HR SBE 72.6% 79.5% 78.1%

Temp MAP SATAO2 HR HGB 72.6% 79.5% 75.3%

Temp MAP SATAO2 HR PaO2 72.6% 76.7% 78.1%

HR HGB 89.7% 93.1% 89.7%

HR PHA 89.7% 89.7% 89.7%

Temp HGB 89.7% 86.2% 89.7%

Temp HR HGB 89.7% 91.4% 91.4%

SATAO2 HR HGB 89.7% 91.4% 89.7%

3 SATAO2 HR PHA 89.7% 91.4% 89.7%

Temp SATAO2 HR PLT 87.9% 91.4% 86.2%

Temp SATAO2 HR PHA 87.9% 89.7% 87.9%

Temp MAP HR HGB 82.8% 87.9% 87.9%

Temp MAP SATAO2 HR HGB 82.8% 86.2% 86.2%

Temp MAP SATAO2 HR WBC 82.8% 82.8% 86.2%

Temp MAP SATAO2 HR SBE 82.8% 82.8% 82.8%

The combinatorial vitals+1 biomarker search was repeated for pig peritonitis experiment. This search
analyzed combinations of vitals in time-series and a single point measurement of a blood-derived biomarker.
The top results of this search are shown.
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Table A3: Prediction accuracy of longitudinal vital signs with a single blood biomarker on porcine
LPS experiment.

Accuracy

Combined Groups (n=22) 1 µg/kg/h Dose Group 10 µg/kg/h Dose Group

Right Censor Vitals Point No Point W/ Point Time Series No Point W/ Point Time Series No Point W/ Point Time Series

Temp PaO2 66.1% 74.6% 63.6% 78.3% 78.3% 70.0% 64.6% 62.5% 54.2%

Temp PHA 66.1% 73.7% 72.9% 78.3% 76.7% 80.0% 64.6% 62.5% 66.7%

Temp HGB 66.1% 71.2% 74.6% 78.3% 71.7% 83.3% 64.6% 52.1% 60.4%

Temp SATAO2 PHA 74.6% 77.1% 79.7% 88.3% 88.3% 90.0% 62.5% 66.7% 66.7%

Temp HR PHA 76.3% 76.3% 77.1% 71.7% 70.0% 70.0% 58.3% 62.5% 56.3%

2 MAP SATAO2 PHA 71.2% 76.3% 75.4% 81.7% 81.7% 81.7% 66.7% 64.6% 64.6%

Temp MAP SATAO2 WBC 75.4% 78.0% 78.8% 83.3% 81.7% 78.3% 62.5% 62.5% 85.4%

Temp MAP SATAO2 PHA 75.4% 78.0% 78.8% 83.3% 83.3% 83.3% 62.5% 62.5% 62.5%

Temp MAP HR WBC 69.5% 76.3% 75.4% 80.0% 71.7% 71.7% 58.3% 60.4% 70.8%

Temp MAP SATAO2 HR WBC 72.9% 77.1% 77.1% 86.7% 75.0% 73.3% 56.3% 66.7% 72.9%

Temp MAP SATAO2 HR PLT 72.9% 77.1% 72.9% 86.7% 71.7% 75.0% 56.3% 68.8% 70.8%

Temp MAP SATAO2 HR PaO2 72.9% 75.4% 68.6% 86.7% 83.3% 76.7% 56.3% 58.3% 56.3%

MAP PaO2 77.7% 84.0% 73.4% 93.8% 89.6% 95.8% 68.4% 76.3% 73.7%

Temp PHA 79.8% 83.0% 80.9% 85.4% 89.6% 91.7% 63.2% 73.7% 73.7%

MAP WBC 77.7% 81.9% 85.1% 93.8% 93.8% 91.7% 68.4% 71.1% 89.5%

Temp SATAO2 PHA 87.2% 87.2% 86.2% 91.7% 91.7% 91.7% 78.9% 78.9% 76.3%

Temp MAP WBC 73.4% 86.2% 85.1% 93.8% 91.7% 89.6% 65.8% 71.1% 89.5%

3 MAP SATAO2 WBC 84.0% 85.1% 83.0% 93.8% 87.5% 91.7% 71.1% 78.9% 89.5%

Temp SATAO2 HR HGB 78.7% 85.1% 84.0% 72.9% 75.0% 85.4% 73.7% 81.6% 71.1%

Temp MAP SATAO2 WBC 81.9% 84.0% 84.0% 95.8% 89.6% 89.6% 71.1% 76.3% 86.8%

MAP SATAO2 HR WBC 76.6% 84.0% 84.0% 91.7% 83.3% 81.3% 73.7% 78.9% 84.2%

Temp MAP SATAO2 HR WBC 80.9% 85.1% 85.1% 93.8% 83.3% 79.2% 71.1% 78.9% 81.6%

Temp MAP SATAO2 HR HGB 80.9% 81.9% 84.0% 93.8% 93.8% 95.8% 71.1% 73.7% 68.4%

Temp MAP SATAO2 HR PHA 80.9% 80.9% 80.9% 93.8% 93.8% 93.8% 71.1% 71.1% 71.1%

The combinatorial vitals+1 search was repeated for pig LPS. This search analyzed combinations of vitals
in time-series and a single point measurement of a blood-derived biomarker. The top results of this search
are shown. Comparable results for each of the LPS dosing groups are shown because ANOVA revealed
significant differences

157



APPENDIX B

DETAILED BENCHMARK FUNCTIONS USED TO VALIDATE

APT-MCMC

This section lists the benchmark functions used as well as the APT-MCMC distributions for

their parameters. Functions were taken from Jamil, et al [126].

B.0.1 Ackley

fackley(x) = −20e−0.02
√∑D

i=1 x
2
i /D − e

∑D
i=1 cos(2πxi)/D + 20 + e
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B.0.2 Adjiman

fadjiman(x) = cos(x1) sin(x2)−
x1

x22 + 1

160



B.0.3 Alpine

falpine(x) =
D∑
i=1

∣∣xi sin(xi) + 0.1xi
∣∣

161



B.0.4 Bard

fbard(x) =
1∑
i=1

5

[
yi − x1 − ui
vix2 + wix3

]2
yi = [0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35, 0.39, 0.37, 0.58, 0.73, 0.96, 1.34, 2.10, 4.39]

ui = i

vi = 16− i

wi = min(ui, vi)
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B.0.5 Beale

fbeale(x) = (1.5− x1 + x1x2)
2 + (2.25− x1 + x1x

2
2)

2 + (2.625− x1 + x1 + x32)
2
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B.0.6 Bird

fbird(x) = sin(x1)e
(1−cos(x2))2 + cos(x2)e

(1−sin(x1))2 + (x1 − x2)2
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B.0.7 Bohachevsky

fbohachevsky(x) = x21 + 2x22 − 0.3 cos(3πx1 + 4πx2) + 0.3
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B.0.8 Booth

fbooth(x) = (x1 + 2x2 − 7)2 + (2x1 + x2 − 5)2
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B.0.9 Bukin

fbukin(x) = 100
√
||x2 = 0.01x21||+ 0.01||x1 + 10||
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B.0.10 Corana

fcorana(x) =


∑4

i=1 0.15(zi − 0.5sign(zi))
2 , |xi − zi| < 0.05

dix
2
i , otherwise

zi = 0.2b
∣∣ xi
0.2

∣∣+ 0.49999csign(xi)

di = [1, 1000, 10, 100]
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B.0.11 Damavandi

fdamavandi(x) =

[
1−

∣∣∣∣sin[π(x1 − 2)] sin[π(x2 − 2)]

π2(x1 − 2)(x2 − 2)

∣∣∣∣5][2 + (x1 − 7)2 + 2(x2 − 7)2
]
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B.0.12 Devilliers-Glasser

fdevilliers(x) =
1∑
i=1

6
{
x1x

ti
2 tanh [x3ti + sin(x4ti)] cos(tie

x5 − yi)
}2

ti = 0.1(i− 1)

yi = 53.811.27ti tanh [3.012ti + sin(2.13ti)] cos(tie
0.507)
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B.0.13 Eggholder

feggholder(x) =
m−1∑
i=1

[
− (xi+1 + 47) sin

√
|xi+1 + xi/2 + 47| − xi sin

√
|xi − (xi+1 + 47)|

]
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B.0.14 Griewank

fgriewank(x) =
n∑
i=1

x2i
4000

−
n∏
i=1

cos

(
xi√
i

+ 1

)
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horst, Thomas D Rea, André Scherag, Gordon Rubenfeld, Jeremy M Kahn, Manu
Shankar-Hari, Mervyn Singer, Clifford S Deutschman, Gabriel J Escobar, and Derek C
Angus. Assessment of Clinical Criteria for Sepsis: For the Third International
Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315(8):762–74,

173

http://www.ncbi.nlm.nih.gov/pubmed/23353941
http://www.ncbi.nlm.nih.gov/pubmed/11445675
http://www.ncbi.nlm.nih.gov/pubmed/15321710
http://www.ncbi.nlm.nih.gov/pubmed/15321710
http://www.ncbi.nlm.nih.gov/pubmed/16584750


feb 2016. ISSN 1538-3598. doi: 10.1001/jama.2016.0288. URL http://dx.doi.org/

10.1001/jama.2016.0288http://www.ncbi.nlm.nih.gov/pubmed/26903335http:

//www.pubmedcentral.nih.gov/articlerender.fcgi?artid=PMC5433435.

[7] Mervyn Singer, Clifford S Deutschman, Christopher Warren Seymour, Manu Shankar-
Hari, Djillali Annane, Michael Bauer, Rinaldo Bellomo, Gordon R Bernard, Jean-
Daniel Chiche, Craig M Coopersmith, Richard S Hotchkiss, Mitchell M Levy, John C
Marshall, Greg S Martin, Steven M Opal, Gordon D Rubenfeld, Tom van der Poll, Jean-
louis Vincent, and Derek C Angus. The Third International Consensus Definitions for
Sepsis and Septic Shock (Sepsis-3). Jama, 315(8):801–10, 2016. ISSN 1538-3598. doi:
10.1001/jama.2016.0287. URL http://www.ncbi.nlm.nih.gov/pubmed/26903338.

[8] Mitchell P Fink. Animal models of sepsis. Virulence, 5(1):143–53, jan 2014.
ISSN 2150-5608. doi: 10.4161/viru.26083. URL http://www.pubmedcentral.

nih.gov/articlerender.fcgi?artid=3916368{&}tool=pmcentrez{&}rendertype=

abstract.
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