
COLLABORATIVE HARDWARE-SOFTWARE

MANAGEMENT OF HYBRID MAIN MEMORY

by

Santiago Bock

B.S. in Computer Science, University of Los Andes, Bogotá, 2007

B.S. in Computer Engineering, University of Los Andes, Bogotá,

2007

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial

fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/154283166?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This dissertation was presented

by

Santiago Bock

It was defended on

November 3rd 2017

and approved by

Bruce R. Childers, Department of Computer Science

Rami Melhem, Department of Computer Science

Daniel Mossé, Department of Computer Science

Jun Yang, Department of Electrical and Computer Engineering

Dissertation Director: Bruce R. Childers, Department of Computer Science

ii



COLLABORATIVE HARDWARE-SOFTWARE MANAGEMENT OF

HYBRID MAIN MEMORY

Santiago Bock, PhD

University of Pittsburgh, 2017

DRAM has long been the preferred technology choice for main memory. With new challenges

of high energy and scalability of DRAM, emerging non-volatile memory technologies, such as

phase-change memory (PCM), are being considered. Typically, PCM is used in conjunction

with DRAM to form a hybrid main memory. Exposing both the PCM and DRAM to the

system software and managing it through the operating system (OS) is a viable architecture.

The advantage of this organization is that current systems are more easily adapted to sup-

port a partitioned DRAM/PCM address space with only small changes to their design. In

addition, this architecture is the easiest path forward to incorporate persistence in the main

memory hierarchy by reserving part of PCM for storage.

However, the performance of software-managed hybrid memory is not on par with hardware-

only approaches, such as the DRAM cache. This is caused by the large granularity at which

data is migrated (OS pages) and the low visibility that the OS has of the access patterns

of applications. This thesis proposes an experimental framework for studying software-

managed hybrid memory and uses it to understand the causes of its low performance. In

addition, this thesis proposes and evaluates several hardware-software co-designed mecha-

nisms to alleviate the performance impacts of managing hybrid memory in software. Lastly,

this thesis proposes a new migration policy specifically designed to take advantage of the

new hardware support. These contributions show that software-managed hybrid memory

with specialized hardware support for migration and monitoring is a viable architecture for

PCM-based hybrid main memory.

iii



TABLE OF CONTENTS

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Relevance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Elements of a Good Solution . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Approach Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Thesis Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.0 BACKGROUND AND RELATED WORK . . . . . . . . . . . . . . . . . 9

2.1 Phase Change Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Architectural Support for PCM . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Write Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Write Cancellation and Write Pausing . . . . . . . . . . . . . . . . . . 12

2.2.3 Wear Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Hybrid Main Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Hardware-Managed Hybrid Memory . . . . . . . . . . . . . . . . . . . 15

2.3.2 DRAM Caches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.3 Smart Memory Controllers . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.4 Software-Managed Hybrid Main Memory . . . . . . . . . . . . . . . . 17

3.0 SIMULATOR INFRASTRUCTURE . . . . . . . . . . . . . . . . . . . . . 19

3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Memory Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Memory Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4 HMMSim API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

iv



3.5 Trace Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6.1 Execution Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6.2 Memory Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.6.3 Trace Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.0 CHARACTERIZATION OF OVERHEAD . . . . . . . . . . . . . . . . . . 30

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Page Migration Latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Other Limiting Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4.1 Zero-Interference Migration . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2 Offline Migration Policy . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.3 Memory Latency Attribution Analysis . . . . . . . . . . . . . . . . . . 37

4.4.4 Factor Isolation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5 Page Migration Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.5.2 Memory Latency Attribution . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.3 Factor Isolation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5.4 Migration Policy Overhead . . . . . . . . . . . . . . . . . . . . . . . . 47

4.6 Design Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.0 CONCURRENT PAGE MIGRATION . . . . . . . . . . . . . . . . . . . . 50

5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.2 Page Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Concurrent Page Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Buffering Writes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.2 Page Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Hardware Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

v



5.3.1 Overview of Architecture and Changes . . . . . . . . . . . . . . . . . 56

5.3.2 Cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.3 Concurrent Page Migration . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4.2 Single-Programmed Benchmarks . . . . . . . . . . . . . . . . . . . . . 64

5.4.3 Stall Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.4.4 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.4.5 Sensitivity to Migration Cost . . . . . . . . . . . . . . . . . . . . . . . 68

5.4.6 Multi-Programmed Workloads . . . . . . . . . . . . . . . . . . . . . . 69

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.0 CONCURRENT MIGRATION OF MULTIPLE PAGES . . . . . . . . . 72

6.1 Concurrent Migration of Multiple Pages . . . . . . . . . . . . . . . . . . . . 72

6.1.1 Migration Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.2 Concurrent Migration . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1.2.1 Promotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1.2.2 Demotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.1.3 On-Demand Block Migration . . . . . . . . . . . . . . . . . . . . . . . 77

6.1.4 Access Redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.3 Average Memory Access Time . . . . . . . . . . . . . . . . . . . . . . 83

6.2.4 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.0 THRESHOLD MIGRATION POLICY . . . . . . . . . . . . . . . . . . . . 85

7.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Threshold Migration Policy . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2.1 Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

7.2.2 Data Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vi



7.2.3 Completion, Demotion and Rollback . . . . . . . . . . . . . . . . . . . 89

7.2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.3.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.4 Comparison to Ideal System . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.0 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

vii



LIST OF TABLES

1 Comparison of DRAM and PCM Parameters . . . . . . . . . . . . . . . . . . 10

2 Comparison of some existing memory simulators . . . . . . . . . . . . . . . . 21

3 Main API components and their methods currently provided by HMMSim . . 25

4 Memory components where application reads accumulate time . . . . . . . . 37

5 Variables used in the analytic model. X stands for either DRAM or PCM . . 39

6 List of variables and associated overhead . . . . . . . . . . . . . . . . . . . . 40

7 Architectural parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

8 Architectural parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

9 Architectural parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

10 Architectural parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

viii



LIST OF FIGURES

1 Average speedup over no-migration for different migration rates. . . . . . . . 3

2 Overview of the proposed system. . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Overview of Hybrid Main Memory Simulator . . . . . . . . . . . . . . . . . . 22

4 Splitting of traces for compression. . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Execution time of HMMSim for different configurations and simulated cores

counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6 Resident memory of HMMSim for different configurations and simulated cores

counts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

7 Normalized execution time of selected benchmarks without and with (baseline)

migration cost. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 MLAA for Offline. For each workload, first bar is Full-Interference and second

bar is Zero-Interference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

9 Potential L2 access latency reduction that can be obtained by eliminating 4

different factors that cause overhead. . . . . . . . . . . . . . . . . . . . . . . . 45

10 L2 access latency reduction from using the Offline migration policy relative to

Multi-Queue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

11 Overview of architecture changes for CPM. New components are shown in dark

gray. Changes to the system agent are shown in Figure 12. . . . . . . . . . . 57

12 The modified system agent, showing new components in gray. Gray arrows

represent messages from/to the cores, LLC cache slices and OS. . . . . . . . . 58

13 Cache organization with support for page pinning. . . . . . . . . . . . . . . . 60

14 Steps for hardware for CPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



15 Single-programmed: Speedup. . . . . . . . . . . . . . . . . . . . . . . . . . . 65

16 Single-programmed: Number of cycles waiting. First bar is baseline and second

bar is CPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

17 Single-programmed: Energy consumption. . . . . . . . . . . . . . . . . . . . . 67

18 Average speedup of CPM with single-programmed workloads for different mi-

grations costs in cycles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

19 Multi-programmed: Speedup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

20 Multi-programmed: Number of cycles waiting. . . . . . . . . . . . . . . . . . 71

21 Overview of software and hardware components for CMMP. . . . . . . . . . . 73

22 Speedup of CMMP, normalized to the baseline. . . . . . . . . . . . . . . . . . 81

23 Average memory access time of CMMP. . . . . . . . . . . . . . . . . . . . . . 82

24 Energy of CMMP, normalized to the baseline. . . . . . . . . . . . . . . . . . . 84

25 Possible state of pages that use OBM and PD. . . . . . . . . . . . . . . . . . 86

26 Speedup of Multi-Queue and TMP, normalized to No Migration. . . . . . . . 93

27 Speedup of TMP for different ART sizes, normalized to the baseline. . . . . . 94

28 Speedup of TMP for multi-core workloads, normalized to the baseline . . . . 95

29 Speedup of Multi-Queue and TMP for different ART sizes for multi-core work-

loads, normalized to No Migration. . . . . . . . . . . . . . . . . . . . . . . . . 96

30 Comparison of CMMP with Multi-Queue and TMP and two ART sizes against

state-of-the-art (Multi-Queue without CMMP) and ideal systems. . . . . . . . 97

x



LIST OF ALGORITHMS

1 Offline migration policy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2 Sequence of steps performed during conventional page migration . . . . . . . 52

3 Sequence of steps performed during concurrent page migration . . . . . . . . 55

4 PCM to DRAM migration (promotion) . . . . . . . . . . . . . . . . . . . . . 75

5 DRAM to PCM migration (demotion) . . . . . . . . . . . . . . . . . . . . . . 76

6 Access Redirection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

7 Algorithm for updating data structures in TMP when page monitoring infor-

mation is read from the PACT . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8 Process for updating the CCL list with information read from the ART . . . 89

9 Steps for selecting a page for completion . . . . . . . . . . . . . . . . . . . . . 90

10 Steps for selecting a page for demotion . . . . . . . . . . . . . . . . . . . . . . 90

11 Steps for selecting a page for rollback . . . . . . . . . . . . . . . . . . . . . . 90

xi



1.0 INTRODUCTION

A growing number of applications that run in today’s data centers have very large mem-

ory footprints, often exceeding tens of gigabytes [1, 2]. Due to recent advances in micro-

architecture and device manufacturing, modern servers have very high core counts (128 cores

or more), enabling the execution of multiple applications in the same machine. To cope with

the increasing demand in memory capacity, data centers use servers with huge amounts of

memory, often in the terabyte range [2].

Due to its relatively good performance and low cost, DRAM has been the prevailing

memory technology used in compute servers during the past 40 years. However, the scalabil-

ity of DRAM is expected to hit a wall in the near future [3]. This will not only increase the

cost of DRAM but also make it more vulnerable to soft errors. In addition, the large memory

size of current systems is making the high static power consumption of DRAM impractical,

especially since most of DRAM’s energy is spent by self-refresh operations while the memory

is idle [4].

To deal with these problems, researchers have proposed hybrid memory, which combines

a small amount of DRAM with a large amount of Phase Change Memory (PCM) [5, 6, 7, 8,

9, 10]. The properties of PCM (high density, slow reads and even slower writes, low static

power, low read power, and high write power), make it a good candidate for storing large

amounts of data that are not updated frequently. However, since most of the data resides in

PCM, the bandwidth and latency of hybrid memory systems is limited.

A viable architecture for combining DRAM and PCM is software-managed hybrid mem-

ory, where both DRAM and PCM are addressable by the CPU and managed by the operating

system (OS) [5, 10, 11, 12, 9]. Apart from exposing a larger physical address space to ap-

plications, software-managed hybrid memory allows greater flexibility to manage memory

1



resources because OS policies can be tailored to the needs of application workloads. Impor-

tantly, this architecture is the easiest path forward to incorporate persistence in the main

memory hierarchy by reserving part of PCM for storage [13, 14, 15].

Nevertheless, the performance of software-managed hybrid memory suffers from several

drawbacks, which must be addressed before it can be adopted [16, 17]. First, current com-

modity systems do not provide hardware to perform page migration efficiently without OS

involvement, resulting in frequent interrupts that degrade performance. Second, data is

managed at the granularity of pages, which can lead to excessive data movement that steals

bandwidth from applications, hurting performance. Third, the OS has low visibility of ap-

plication access patterns, particularly at the main memory level (below the caches). As a

result, the OS cannot react quickly to changes in application behavior, potentially causing

poor data migration decisions between DRAM and PCM.

The hypothesis of my thesis is that software-managed hybrid main memory can effec-

tively provide high performance with low hardware cost by using a carefully hardware-software

co-designed system that offloads performance-critical tasks to hardware and leaves complex

decision-making tasks in software.

1.1 RELEVANCE

In a hybrid memory system, the small DRAM space and the large PCM space are managed by

a migration policy, which decides whether and when data should be moved between memories.

In addition, a migration policy decides what data should be promoted to DRAM, and what

data should be demoted to PCM. Migration policies can be implemented in hardware or in

software. An example of a hardware migration policy is found in hardware DRAM caches [8,

6], in which blocks are moved to DRAM on demand. The accessed block is promoted, and

the least recently used block is demoted.

In software-managed hybrid memory, the OS initiates the migration of memory pages

between DRAM and PCM while applications continue to execute. Pages are not transferred

to DRAM on demand. Instead, accesses to pages residing in PCM are serviced directly from

2



Figure 1: Average speedup over no-migration for different migration rates.

PCM, without moving the page to DRAM. While applications execute, the OS keeps track

of memory access patterns and migrates pages in the background. An example of a software

migration policy is the Multi-Queue algorithm [9], which ranks pages according to access

count, and migrates pages between DRAM and PCM to keep the most frequently accessed

pages in DRAM.

Page migration allows the OS to move frequently used data to DRAM and keep less

frequently used (colder) data in PCM. This reduces access latency and dynamic power by

serving most requests from DRAM. If done correctly, page migration can have a signifi-

cant effect on performance: Figure 1 compares the state-of-the-art software-managed hybrid

memory [9] with an ideal system. The ideal system uses an oracle page migration policy

and assumes page migration does not interfere with regular application requests. The graph

shows average speedup of both the state-of-the-art and the ideal system relative to a system

that does no migration. The no-migration system allocates pages on first touch to DRAM

until the DRAM capacity is exhausted. At this point, subsequent pages are allocated to

PCM. The x-axis shows migration rate, which is the fraction of execution time during which

3



the OS migrates pages. At low rates, the state-of-the-art system performs close to the base-

line. At high rates, however, it does worse due to interference between application and

migration memory requests. An ideal memory system with no interference and a “good”

migration policy can achieve high performance, especially at high migration rates.

1.2 ELEMENTS OF A GOOD SOLUTION

A good solution for software-managed hybrid memory must satisfy a number of requirements.

The first requirement is that the time overhead of managing hybrid memory in software

should be low. If the overhead is too high, this approach will simply not be able to compete

with a hardware approach (DRAM cache) and will therefore not be adopted. Since managing

hybrid memory entirely in software is potentially time consuming, a good solution must

include some hardware support to accelerate certain operations. Therefore, the system

should use hardware for simple, performance-critical operations, and perform more complex

ones in software.

The second requirement is flexibility of choice in the migration policy. Each application

has a preferred policy that maximizes its performance, and the preferred policy for each

application is different. To maximize overall performance, each application should be able to

choose its own migration policy. This flexibility also enables the development of migration

policies specifically tailored to an application.

The third requirement is that the additional hardware support be as small as possible

while still allowing the system to perform well and be flexible enough to be able to use

most migration policies. Making only small, simple hardware changes means that hardware

manufacturers will be more likely to include them in future processors, increasing the chances

of adoption.

4



1.3 APPROACH OVERVIEW

In this research, I propose a memory management system for hybrid DRAM/PCM archi-

tectures. The proposed system uses hardware-software co-design to separate performance-

critical tasks from other tasks that can be implemented in software without high overhead.

By co-designing software and hardware, my approach provides a flexible substrate for the

OS to implement custom policies.

The proposed system manages memory at the software level with small hardware support

for some performance-critical operations. Data migration decisions between DRAM and

PCM are performed by the OS based on monitoring information collected by hardware. The

actual migration of pages is performed by hardware once the OS has selected the source and

destination.

Figure 2 shows an overview of the proposed system. The system has two main new

components. The Hybrid Memory Manager (HMM) is a software module that is part of

the OS. The Hybrid Agent (HA) is a hardware component that is part of the chip multi-

processor.

The HMM is the central component. It is in charge of coordinating all actions of the

system, including communication with other modules (software and hardware). The HMM

uses one or more migration policies. In general, each application has its own migration policy

tailored to its specific memory access patterns.

The migration policy relies on monitoring information. This information is stored in

the Monitoring Information (MI) component, and can be accessed directly from software.

However, the information is not collected by the OS. Instead, a hardware module, called

Memory Access Monitor (MAM), collects this information and passes it to the MI.

The other main new component of the system is the HA, which is composed of the

Migration Manager (MM), the Memory Redirector (MR), and MAM. The MR is in charge

of deciding where memory requests should be directed to (PCM or DRAM), based on their

physical address. The MR is aware of ongoing page migrations, and can redirect memory

requests of pages under migration to the correct location. The MR also notifies the MAM of

memory requests. The MAM updates its data structures with the new information, which

5



SW
HW

OS

Core 1 Core n. . .

Last Level Cache

Hybrid Agent (HA)

DRAM PCM

Migration 
Manager

(MM)

Memory
Redirector

(MR)

Hybrid
Memory
Manager
(HMM)

Migration 
Policy

Monitoring 
Information

(MI)

Memory 
Access 
Monitor
(MAM)

Figure 2: Overview of the proposed system.

is later stored in the MI for use by the migration policies.

When the HMM decides to migrate one or more pages, it communicates with the MM.

The MM is in charge of coordinating all hardware actions necessary for performing page

migrations, including copying pages between memories, updating page table and TLB entries

and flushing the caches. The MM also notifies the MR of page migrations, so that the MR

can update its data structures.

To characterize the performance bottlenecks of hybrid memory and evaluate the proposed

architecture, I developed a new simulation infrastructure specifically tailored for software-

managed hybrid memory. Although the infrastructure is capable of simulating a wide range

of systems, the focus of this thesis is on mobiles devices, such as smartphones and tablets.

These devices can benefit greatly from the low energy consumption of PCM-based hybrid

6



memory.

1.4 THESIS CONTRIBUTIONS

This thesis contributes new hardware mechanisms and software algorithms for enabling soft-

ware management of hybrid main memory. This approach offers an alternative to hardware-

only hybrid memory, such as DRAM caches. This thesis opens up new research opportunities

for developing migration policies, which can be tailored to the access patterns of applica-

tions. In addition, it provides an evaluation infrastructure that can be easily adapted to new

policies.

This thesis makes the following contributions:

• A simulation infrastructure to evaluate software-managed hybrid main memory is devel-

oped. This includes components to simulate migration policies, which model the software

side of the proposed system. Furthermore, the infrastructure includes a detailed model

of caches, memory devices (DRAM and PCM) and specialized hardware for hybrid mem-

ory [18].

• A characterization study to determine the most important factors that limit performance

in software-managed hybrid memory is presented. This study is the building block that

guides the development of the proposed mechanisms of this thesis [17].

• Two hardware mechanisms for supporting page migration in hardware to reduce OS

overhead are proposed. The first mechanism prevents applications from pausing when

they write to a page currently under migration. The second mechanism extends and

generalizes the first one to allow for multiple simultaneous migrations [16].

• A hardware-software co-designed mechanism to reduce the bandwidth consumption of

software-managed hybrid memory is proposed. This design corrects the main drawback of

multiple simultaneous migration (high migration bandwidth) by preventing unnecessary

movement of data [19].

• A hardware-software co-designed mechanism for monitoring memory access patterns is

proposed. This mechanism requires a small amount of hardware resources but provides

7



enough monitoring information to make good migration decisions. The design is flexible

enough to accommodate a wide range of migration policies [19].

• A new migration policy designed specifically to be used with the new migration and

collection mechanisms is proposed. This policy requires a small amount of processing

power in the OS but provides better page placement than the current state of the art.

1.5 THESIS ORGANIZATION

The rest of this thesis is organized as follows. Chapter 2 presents background and re-

lated work including PCM, architectural support for PCM and hybrid memory. Chapter 3

introduces the simulator infrastructure developed specifically to address the challenges of

evaluating hybrid memory. Chapter 4 presents the characterization study that guides the

development of the proposed mechanisms. Chapters 5 and 6 propose two mechanisms for

performing migration in hardware, including the proposed scheme for bandwidth reduction

and the access monitoring mechanism. Next, Chapter 7 presents the new migration policy.

Finally, a summary of this work and future research directions are presented in Chapter 8.

8



2.0 BACKGROUND AND RELATED WORK

2.1 PHASE CHANGE MEMORY

Phase Change memory (PCM) [20, 21] is a non-volatile memory technology that stores

information by changing the physical state or phase of chalcogenide material. PCM works

by applying electrical currents of different intensity and duration to a small volume of phase-

changing material. These varying currents melt the material and let it cool at different rates,

which determine its final phase. When the material cools quickly, ions do not have enough

time to form a lattice, and the material ends up in an amorphous phase. Conversely, when

the material cools slowly, ions form a crystalline structure.

The resistance of the phase-change material depends on its physical state. When the

material is in a crystalline phase, electrons can move more freely within the material because

they encounter less resistance from aligned atoms. Hence, the resistance of the material

is low. Conversely, when the material’s phase is amorphous, electrons move more slowly

because of the increased friction caused by randomly placed atoms. When amorphous, the

resistance of the material is high.

Changing the phase of chalcogenide material is a complex process that involves carefully

controlling the profile of the current that is applied to each cell. Due to this complex process

and to the slow cool-down period when changing the state to crystalline, writing to PCM is

orders of magnitude slower than writing to DRAM.

Because PCM stores information by changing the configuration of atoms inside the mate-

rial, the energy required to change the stored value is higher than in DRAM, which maintains

information by changing the amount of stored charge. This fact has two important conse-

quences. First, the state of PCM cells persist for longer periods of time. Since there is no

9



Table 1: Comparison of DRAM and PCM Parameters

DRAM PCM

Read Latency (ns) 13.7 60

Write Latency (ns) 12.5 150

Read Energy (pJ/bit) 1.17 2.47

Write Energy (pJ/bit) 0.39 16.82

Endurance (writes) 1015 108

need to periodically refresh the contents of memory, PCM requires very little energy when

idle, and can be used as non-volatile storage. Second, actually changing the state of the

material requires more energy than simply moving electric charge. Hence, writing to PCM

is more energy-consuming than writing to DRAM.

A major disadvantage of PCM is that its cells lose the ability to change their physical

state after they have been written a large number of times. This is caused by detachment of

the phase-change material from the electrodes that provide the programming current, and

it is generally irreversible. Hence, the endurance of PCM is limited to between 106 and 109

write cycles.

In summary, PCM is slower than DRAM, especially when writing. Dynamic energy

consumption is also higher than DRAM, also especially when writing. Static energy con-

sumption, on the other hand, is lower in PCM than DRAM. Table 1 shows a comparison of

PCM and DRAM, based on values from a recent paper [22].

2.2 ARCHITECTURAL SUPPORT FOR PCM

Due to its characteristics, PCM cannot be used as a direct DRAM replacement without

considerable performance, energy and lifetime penalties. Researchers have proposed several

10



mechanisms that provide architectural support for enabling PCM in main memory. The

following subsections describe some of these mechanisms. Hybrid main memory, the primary

mechanism for supporting PCM, is described in Section 2.3.

2.2.1 Write Reduction

One of the main drawbacks of PCM is that writes are costly in terms of performance, energy

consumption and lifetime. Therefore, reducing the number of writes that PCM devices

sustain has a direct impact on energy consumption and device lifetime. In addition, reducing

the amount of time the memory spends on slow write operations increases the average read

time due to higher availability of the device.

Lee et al. propose tracking dirty data in the processor caches at the granularity of a

word [22]. Upon a LLC write-back, only the dirty words within a cache line are actually

written to the PCM device. The main advantage of this technique is that no comparison

between new and old data is necessary to determine which bits can be safely ignored during

write-backs. However, this is done at the expense of additional on-chip area (3.1% for 4-byte

words and 64B-byte cache lines). This technique can improve memory lifetime by up to 8

times compared to keeping track of dirty data at cache line granularity.

Bock et al. propose a software technique for identifying dead blocks in the LLC or in a

DRAM cache using calls to the memory allocator [23]. A dead block contains data that will

not be read before it is written again. Hence, dead blocks can be discarded without affecting

the correctness of the program. When a dead block is evicted from the cache, its contents

are not written back to the next level of the memory hierarchy (the PCM). This technique

reduces the number of writes to PCM and reduces energy consumption.

Ferreira et al. propose a technique called Read-Write-Read (RWR) to determine exactly

which bytes of a write operation have been modified [6]. RWR works by reading the original

contents of PCM before issuing a write operation, and comparing the old and new versions

of the data. Only modified data is written to PCM. This technique can indeed reduce the

number of writes to PCM. However, this is done at the expense of one additional read before

every write. Lifetime savings depend on how much data is modified while it is in the cache

11



hierarchy. If data is heavily modified, the lifetime will be close to that of the baseline system.

Energy savings also depend on how much each write benefits from RWR. If the energy spent

in reading the data from PCM is not offset by writing fewer data, the net energy savings

will be negative.

A similar technique, called Data-Comparison Write (DCW), was proposed by Yang et

al. [24]. Like RWR, DCW also compares stored data with the new version of the data. The

main difference with RWR is that DCW operates at the device level. Hence, the granularity

of data comparison can be much smaller (DCW’s granularity is the bit). On average, DCW

can reduce the number of written bits by half, although the actual value depends on the

data being written.

Flip-and-Write builds upon DCW by adding an additional bit to each word of stored

data that keeps track of whether the word is stored inverted [25]. When writing new data,

the bit-by-bit comparison counts how many bits must be actually changed from their current

state. If more than half of the bits need to be changed, the data is stored inverted and the

new bit indicating this is set. Flip-and-write guarantees that at most half of the bits in each

write are actually changed.

2.2.2 Write Cancellation and Write Pausing

One of the disadvantages of PCM is its slow write latency, which can be between 2 and 4

times slower than the read latency, and 10 times slower than DRAM’s write latency. In

general, memory write latency is not exposed directly to an application’s execution time

because the completion of a write is not required by the CPU to continue execution (as is

the case for reads). Write buffers can store writes and delay them until the memory becomes

idle. Once a write request has been issued, however, subsequent read requests must wait for

the write to finish, exposing additional latency to the processor. With slow PCM writes,

this additional latency can have a considerable impact on performance.

To address this issue, Qureshi et al. propose two techniques that allow reads to preempt

ongoing writes, reducing the latency of reads as seen by the CPU [26]. Write cancellation

simply cancels ongoing writes, allowing reads to start executing earlier. Writes are only

12



canceled when they are less than 80% completed. The original write is scheduled to execute

later, when memory resources become available or when write buffer utilization exceeds a

predefined threshold.

The disadvantage of write cancellation is that canceled writes waste memory cycles be-

cause the write needs to be performed again, and previous work performed on the canceled

write is lost. This wastes memory bandwidth because the average write time increases. To

avoid this problem, the authors also propose write pausing, which allows the memory to

remember the progress of preempted writes so that they can be restarted closer to when

they were interrupted. This technique takes advantage of PCM’s iterative writing process,

in which the current state of the device is compared to the desired state [27]. After several

cycles of writing and comparing, the desired state is achieved and the process finishes. Write

pausing leverages this iterative process to reduce the time wasted due to restarts of writes.

2.2.3 Wear Leveling

Another important disadvantage of PCM is its low write endurance. Current PCM devices

can sustain between 105 and 109 write cycles [28, 29, 30]. When used in main memory, PCM

devices have a lifetime ranging from a few months to several years, depending on the write

rate and the memory access patterns of applications. Wear leveling can extend the lifetime

of PCM devices by uniformly distributing the writes across all memory locations within a

device. This prevents the memory from failing due to repeated writes to a few memory

locations, which can happen in a short period of time. Several wear leveling mechanisms

have been proposed to address the issue of limited write endurance in PCM.

Zhou et al. propose two wear leveling schemes that work at different data granulari-

ties [31]. Row shifting distributes the writes within a device row by shifting or rotating the

contents of the row by a specified amount in increments of one byte. The shifting amount

is stored together with the row so that the data can be correctly reconstructed when the

row is read. The second mechanism, called segment swapping, distributes writes across 1MB

segments by introducing an additional level of indirection that maps the address generated

by the core to the address actually used in the device. A table is used to keep this maping,

13



as well as metadata about the number of writes to each segment and the last time it was

swapped. The wear leveling algorithm periodically swaps hot and cold segments to ensure

that each segment has a similar number of writes.

Although wear leveling at the page or 1MB segment granularity does extend the lifetime

of PCM devices, the overhead of updating the mapping table on every write and of searching

through the table to find swapping candidates can be very high. To address this issue,

Ferreira et al. propose a similar mapping scheme that chooses the swapping candidates

randomly [32]. This avoids the overhead of updating the access counts and of searching the

hottest and coldest segments at the expense of reduced lifetime. However, for current devices

and applications, it is enough to guarantee several years of operation.

Start-gap wear leveling uses algebraic mapping between logical and physical address to

avoid the mapping table, which consumes area and energy, and adds latency to each memory

request [33].

2.3 HYBRID MAIN MEMORY

The problem of using PCM in main memory has been widely studied in recent years. Because

of its slow performance, high energy consumption and low endurance, PCM has not been

considered as a direct DRAM replacement. Instead, researchers have proposed using it

together with DRAM in a hybrid memory architecture, where a small DRAM is combined

with a large PCM.

There are traditionally two approaches for architecting a hybrid memory system. In

hardware-managed hybrid memory, PCM is invisible to software, and hardware is entirely

responsible for managing data and providing the correct data to applications. In software-

managed hybrid memory, the OS is aware of both DRAM and PCM memory spaces, and

it manages data by allocating memory pages and initiating their migration. A discussion of

these two approaches follows in the next sections. A third approach which combines both

hardware and software mechanisms, is the focus of my thesis.

14



2.3.1 Hardware-Managed Hybrid Memory

In hardware-managed hybrid memory, the OS has a homogeneous view of memory and is not

aware that the physical memory is composed of DRAM and PCM. Hardware decides where

a particular block of data is placed, and keeps track of where each block is using hardware

structures. When a memory access misses in the LLC, the hardware consults this hardware

structure to retrieve the physical address of the requested block, and forwards the request

to the appropriate location.

2.3.2 DRAM Caches

The simplest organization of a hardware hybrid memory is the DRAM cache [8, 6]. In this

architecture, hybrid memory is organized as a non-inclusive set-associative hardware cache

that is accessed after the LLC. Cached blocks are stored in DRAM, and the rest are in

PCM. A tag array keeps track of which blocks are currently in DRAM. Upon an access, the

tag array is first queried to determine whether the requested address is cached. If it is, the

address of the block is constructed based on the original address and on the number of the

way that hit in the cache, and the requested is forwarded to the correct DRAM address. If

it is not, the request is forwarded to the original address in PCM.

In hardware DRAM caches, the size of the block used in the cache has several important

consequences on performance and other design considerations. First, the tag array area

depends on the block size. If the block size is too small and the DRAM size too large, the

area required to store all tags can become impractically large. For example, a 1GB DRAM

cache requires a 96MB tag array when using 64-byte blocks [36]. Second, the block size has

a big impact on PCM bandwidth utilization. When using large blocks (for example, 4KB),

the amount of data that is transferred between DRAM and PCM while servicing requests

and writing dirty data back can saturate the available bandwidth of PCM. This causes the

memory system to slow down considerably, hurting performance. Third, exploiting spatial

locality is less effective when blocks are small, as less data is pre-fetched into DRAM on a

miss.

To deal with the area overhead of small blocks, researchers have proposed various meth-

15



ods. Sub-blocking uses large blocks but keeps individual present and dirty bits for each

sub-block [6]. Upon a miss, only the requested sub-block is brought into DRAM. Since

there are less blocks to keep track of, the required tag array area is smaller. However, sub-

blocking is not as efficient as using smaller blocks in terms of capacity management because

part of the DRAM space and the tag array capacity is wasted. Sub-blocking also reduces

bandwidth utilization because not all parts of a block are brought into DRAM.

Another technique to reduce the area overhead of small blocks is to keep tags in DRAM

instead of in the tag array. Upon a memory request, the DRAM is accessed twice: once to

read the tag array and once to get the actual data. Since accessing DRAM is considerably

slower than on-chip SRAM tag arrays, the latency overhead of this architecture is usually

too high to be practical. Compound scheduling partially solves this problem by co-locating

the tags and the corresponding data in the same DRAM row [36]. When accessing memory,

the tag for that particular set is retrieved from the DRAM row, and the row is left open.

Upon a hit, the data is read from the still-open row buffer.

Other techniques have been proposed to deal with the overhead of keeping tags in DRAM.

A miss map can be used in conjunction with compound scheduling to reduce the latency of

misses and bandwidth utilization [36]. An on-chip SRAM miss map keeps track of which

blocks may be in DRAM but does not keep perfect information, which reduces area require-

ments. The miss map does not know whether a block is definitely in DRAM, but does know

whether one is definitely not there. Therefore, miss maps can reduce the miss penalty and

bandwidth consumption of DRAM caches that keep tags in DRAM.

Another technique for reducing the latency overhead of DRAM tags is to use a direct-

mapped cache [37]. When using caches with large associativities, the number of blocks that

need to be read from DRAM to perform the tag checks is high. For example, 3 blocks need

to be read to check the tag array of a 29-way set-associative cache with 64-byte blocks [37].

Using a direct-mapped cache means fewer blocks need to be accessed and transferred. This

reduces the latency of both hits and misses at the expense of a higher miss rate. With large

cache sizes, which have low miss rates, the average access latency is reduced.

Finally, the footprint cache allocates data at the granularity of pages, but fetches only

the cache blocks that will actually be used by the CPU while the page is in the DRAM

16



cache [38]. To determine which blocks should be fetched, this scheme keeps track of blocks

while the page is in the cache. Upon eviction, this information is stored in a predetermined

location in memory. When the page is brought back to the cache again, only those blocks

that were previously touched are transferred to the cache.

2.3.3 Smart Memory Controllers

Ramos et al. describe a sophisticated memory controller that ranks pages based on the fre-

quency and recency of memory accesses using the Multi-Queue algorithm [9]. The hardware

is able to perform migrations based on this information without involving the OS. Hardware

structures keep track of which physical addresses have had their data moved to a new loca-

tion. When these hardware structures are full, the OS is notified of page migrations, and it

updates its own data structures accordingly.

Although the OS is aware of both DRAM and PCM address spaces, this scheme is still

categorized as a hardware hybrid memory because the memory controller performs all of the

operations required for migrating and ranking pages. The OS does not implement migration

policies or performs migrations. It is simply aware that the hardware can change the location

of data depending on memory access patterns.

2.3.4 Software-Managed Hybrid Main Memory

In software-managed hybrid memory, DRAM and PCM have non-overlapping physical ad-

dress ranges which are directly accessible from the CPU (via virtual-to-physical mappings).

The OS is aware of this separation and must choose which type of memory to assign to

each virtual page that it allocates. Hardware determines the type and location of a memory

request solely by its physical address and the address ranges of DRAM and PCM, without

consulting hardware structures.

The OS can change the type of a virtual page by migrating it to a new memory location.

To do this, the OS must pause the application (or execute until the virtual page is written

to, then pause), copy the physical page to the new location, flush the page out of all caches

and update the page table and TLB entries of the virtual page. This is generally a costly op-

17



eration, although its overhead can greatly be reduced by using specialized hardware support

for migration.

From the perspective of the OS, managing hybrid memory consists of deciding what data

should be in DRAM and what data in PCM. For most workloads, the available DRAM space

is not enough to hold all data. Therefore, some data must be kept in DRAM and some in

PCM. Ideally, the OS should try to keep the most frequently used data in DRAM. However,

this is not easily accomplished, for several reasons. First, the set of most frequently used

data changes over time as applications enter other phases of execution. Second, actually

determining the set of most frequently used pages is difficult because the OS cannot record

and keep track of every memory access. Third, page migration is costly in terms of latency

to copy the page and how it affects the latency of other memory requests. Therefore, the

OS can not blindly migrate pages constantly because this can affect other requests and can

waste precious memory bandwidth.

A migration policy is a set of rules or an algorithm that determines what pages are mi-

grated between DRAM and PCM and when they are migrated. A migration policy must

constantly determine when to migrate data, what data to move from DRAM to PCM (demo-

tion or eviction), and what data to move from PCM to DRAM (promotion). This is similar

to the decisions made by cache replacement policies or paging algorithms, which must decide

on what cache block or page to evict from the cache or from memory. A migration policy is

different in that, in addition to selecting an eviction candidate, it must also decide whether

to migrate a page at all and select a promotion candidate. In a cache replacement policy

or paging algorithm the decision of when to migrate is done tacitly (migrate when there is

a cache miss), as well as the decision of what to promote (promote the page that missed in

the cache).

A major advantage of software-managed hybrid memory is the flexibility in choosing a

migration policy. Since it is implemented in software, a new migration policy can be easily

deployed and tuned for a particular application. Researchers have proposed a number of

policies, each aimed at solving a particular problem of using PCM in main memory [10, 5].

18



3.0 SIMULATOR INFRASTRUCTURE

While researching new hardware mechanisms and migration policies for software-managed

hybrid memory, it is important to have the appropriate tool for the job. One of the main

challenges of researching software-managed hybrid memory is the need to model different

parts of a computer’s hardware and software hierarchy. For instance, a simulator must

be capable of modeling details about a computer’s processor, cache hierarchy and memory

system, and at the same time be able to simulate the migration policies that would run as

part of the OS in a real system. Another challenge is the trade-off between accuracy and

performance of the simulation. When prototyping new migration policies, it’s advantageous

to be able to run simulations and obtain results quickly. However, abstracting away too

many details in the simulator can lead to inaccurate results. Another challenge of simulating

software-manage hybrid memory is the tool’s ease of use. When researching new policies,

it’s important to be able to implement them easily without major changes to the simulator

or the simulated OS. In addition, it must be possible to implement different types of policies

without being limited to a particular family of policies.

To aid in the design and evaluation of new hardware mechanisms and migration poli-

cies for software-managed hybrid memory, I created HMMSim, a trace-driven simulator for

hardware-software co-design of hybrid main memory [18]. HMMSim is capable of simulating

DRAM and PCM in several hybrid memory organizations, including single-memory systems,

DRAM cache, and software-managed hybrid memory. HMMSim simulates the entire memory

hierarchy, including the load store units at the CPUs, caches and their queues, main memory

controllers, queues, banks and buses, as well as interactions caused by OS page management

in the hierarchy (e.g., flushing of pages from the caches after migration). HMMSim can

also emulate the behavior of the OS related to page migration as well as different migration

19



policies.

There are many memory simulators available, each with its own degree of accuracy,

performance, flexibility and ease of use. However, none of them is well suited for modeling

both hardware and software in a flexible and extensible way. Table 2 shows a comparison

of features of three of the most popular memory simulators. Both DRAMSim2 and USIMM

provide detailed DRAM models but do not support PCM. NVMain supports PCM and

hybrid memory. However, using it to simulate a software-managed system, including the

complete hierarchy and OS emulation, requires using and potentially modifying another

simulator such as gem5 [43]. One of the contributions of HMMSim is that it provides this

capability in a single tool that abstracts away the details of the OS, allowing for easy changes

to migration policies.

This chapter describes the architecture of HMMSim and details about some of the new

techniques used in the simulator. It describes the Application Programming Interface (API)

that HMMSim provides for extending functionality to model new mechanisms. Lastly, this

chapter reports figures about the performance of HMMSim and show that it is fast and

scalable.

The next section provides an overview of the HMMSim software architecture, and de-

scribes the design of the simulator and implementation choices.

3.1 OVERVIEW

Figure 3 shows the architecture of the simulator. Traces are gathered with Pin [47] and

stored in a high compression format. The configuration of the simulated system is read from

a file that specifies the value of each parameter. There are over 100 configurable parameters

in HMMSim, most of which can be easily set from processor and memory specifications. The

simulator includes several components that model the CPUs, caches, DRAM and PCM mem-

ory, OS memory management and migration policies. Each component can define statistics,

which are registered with a centralized gathering component that writes the value of each

statistic at the end of simulation. The discrete event simulation engine allows any object

20



Table 2: Comparison of some existing memory simulators

Feature
DRAMSim2 USIMM NVMain

[44] [45] [46]
HMMSim

DRAM Yes Yes Yes Yes

PCM No No Yes Yes

Hybrid
Memory

No No Yes Yes

Software-
Managed
Hybrid
memory

No No No Yes

Complete
Hierarchy

No No No Yes

OS Emula-
tion

No No No Yes

to schedule an event in the future and receive a callback when the simulation reaches the

specified cycle.

3.2 MEMORY HIERARCHY

The memory hierarchy is composed of three main components: CPUs, caches and memory.

The CPU reads entries from the trace reader and recreates the instructions executed during

trace collection. Each instruction consists of an instruction memory access and zero or more

data memory accesses. The CPU first sends the instruction memory access to the level 1

instruction cache (I-L1) and waits for a response. Once the instruction access comes back,

the CPU sends the data requests to the level 1 data cache (D-L1). The CPU tracks in-flight

instructions with a data structure similar to a reorder buffer (ROB) that only tracks memory

operations. The CPU retires instructions in order after all data reads have completed. Multi-

core systems are modeled by creating multiple CPU objects, each connected to its own trace

reader.

The simulator models the cache hierarchy by connecting several cache objects to form a

21



Trace
Reader

CPU

ROB

Memory
Manager

CacheL1

L2

Hybrid	Memory

DRAM PCM

Co
nf
ig
ur
at
io
n

St
at
ist
ics
	G
at
he
rin

g

Config
Results

Discrete	
Event	

Simulation	
Engine

Trace	
Generator

Workload	

Trace
Repository

Migration	
Policy

Figure 3: Overview of Hybrid Main Memory Simulator

multi-level cache that can be configured with any number of private or shared levels. Cache

objects receive requests from the CPUs or from previous levels in the hierarchy. On a cache

hit, the requested data is sent back to the previous level. On a miss, the cache forwards

the request to the next level (another cache level or memory). Each cache has a queue that

limits the number of requests being serviced at this or lower levels. If a queue is full, requests

from previous levels are stalled until a slot becomes available.

HMMSim simulates memory through a set of configurable objects that can model either

DRAM or PCM accessible through a DDR interface. The model includes multiple banks,

row buffers, per-bank or global queues, a bus and a scheduler, as well as support for different

address mappings and row buffer policies. HMMSim also provides a hybrid memory con-

troller that redirects requests to either DRAM or PCM based on physical address, migrates

pages and collects monitoring information.

The flow of simulation starts at the CPUs and proceeds down the hierarchy through the

caches and to memory. Each component of the hierarchy that receives a request must either

22



return a response to the previous level or forward the request to the next level. Components

model internal delays (such as tag access latency or bank operations) by scheduling events

with the simulation engine. When a request is satisfied, the response is sent to the CPU by

calling back each component in the hierarchy that forwarded the original request until the

response reaches the CPU.

3.3 MEMORY MANAGER

The purpose of the memory manager is to translate a virtual address (collected in the trace)

to a physical address that is used by the memory hierarchy. The memory manager follows an

allocation policy for assigning virtual pages to DRAM or PCM. HMMSim supports several

allocation policies, including round robin and random.

In software-managed hybrid memory, the memory manager must also perform page mi-

gration. The manager orchestrates all the necessary actions related to page migration, includ-

ing changing address translation maps, copying the data, flushing the caches and preventing

applications from accessing pages under migration. A migration policy that is invoked by

the memory manager decides whether to migrate pages and what pages to migrate. A policy

uses monitoring information retrieved from hardware to make migration decisions, as well as

other information available to the emulated OS, such as page type information and offline

access counts. HMMSim offers several migration policies, including Multi-Queue and Oracle,

and allows for easy creation of new policies.

3.4 HMMSIM API

HMMSim provides a C++ API to extend the functionality of the simulator. Table 3 lists the

main components, interfaces and the methods offered. The API has a method for scheduling

an event that triggers a callback after the specified amount of cycles. All objects that schedule

events have a reference to a singleton Engine object and must implement the IEventHandler

23



interface. I provide methods for registering and resetting statistics, and for creating counters

that trigger interrupts after they reach a threshold (e.g., for counting executed instructions).

Memory hierarchy components must implement the IMemory and/or the IMemoryCallback

interface so that they can be connected with other components. In addition, the caches

implement the IFlushable interface and objects that issue flush requests (such as caches

and the hybrid memory manager) must implement the IFlushCallback interface to be

notified when the flush completes. Lastly, HMMSim has an interface for different memory

managers (single memory, hybrid) and arbitrary migration policies.

3.5 TRACE COMPRESSION

Since HMMSim simulates memory accesses as they traverse the entire memory hierarchy,

traces must collect memory accesses before the caches. Storing traces of a few seconds of

native execution requires significant storage capacity, even when traces are compressed.

To solve this problem, I created a special trace format that splits the contents of the

original traces into various sub-traces and compresses them individually. This results in a

higher compression ratio because entries within each sub-trace are similar. Figure 4 shows

the trace compression format. Each entry in the original trace is encoded in binary (to

achieve higher compression) and contains the type, address size and timestamp (sequence

number) of the memory access. The trace is first split into 3 sub-traces according to the

entry type. Note that the entry type no longer needs to be stored: it is implicit in the

name of each sub-trace. Each sub-trace is further divided into 3 sub-traces, each containing

either the address, size or timestamp. The timestamp is delta encoded (the value is the

difference between this and the previous entry) to reduce the number of possible values to

store, increasing the compression ratio.

HMMSim has several command line tools for manipulating traces. A text converter can

be used to output the trace in text format for analysis. The converter can also be used to

convert a trace stored in another format into HMMSim’s own format. In addition, there are

tools for analyzing the contents of the trace directly, without converting to text first. These

24



Table 3: Main API components and their methods currently provided by HMMSim

API Component API Component De-
scription

API Meth-
ods

Notes

Engine Discrete event simulation
engine

addEvent Add event

IEventHandler Callback for Engine event process Process event

ITraceReader Interface for trace readers readEntry Read next entry in trace

StatContainer Statistics container
insert Register statistic
reset Reset value of statistics
print Print all statistics

Counter
Counter that triggers
interrupts when threshold
is reached

setHandler Sets interrupt handler
add Adds a value to the counter
reset Resets the counter

IInterruptHandler Callback for counter inter-
rupt

process Called when interrupt hap-
pens

IMemory Interface for components
that receive memory re-
quests (e.g., caches and
memory)

access Issue memory request

IMemoryCallback
Interface for components
that issue memory
requests (e.g., CPU and
caches)

accessDone Called when memory re-
quest completes

unstall Called when component is
no longer stalling

IFlushable Interface for caches that
are flushable

flush Issue cache flush request

IFlushCallback Callback for flush requests flushDone Called when cache flush
completes

IMemoryManager
Interface for memory
managers (single, hybrid)

access Translate virtual to physi-
cal address

allocate Allocate physical page to
virtual address

IMigrationPolicy
Interface for migration
policies

allocate Decide where to allocate
page

migrate Decide what page to mi-
grate

monitor Called when memory is ac-
cessed

include counting number of accesses of each type, and counting the number of unique caches

blocks or pages accessed.

25



Instruc(on	
  
Address	
   Size	
   Timestamp	
  (TS)	
  
400	
   3	
   0	
  

Type	
  

Data	
  Read	
   800	
   4	
   0	
  
Instruc(on	
   403	
   4	
   1	
  
Data	
  Write	
   880	
   2	
   1	
  
Instruc(on	
   407	
   3	
   2	
  
Instruc(on	
   410	
   4	
   3	
  
Data	
  Read	
   2000	
   4	
   3	
  

400	
   3	
   0	
   800	
   4	
   0	
  
403	
   4	
   1	
  

880	
   2	
   1	
  

407	
   3	
   2	
  
410	
   4	
   3	
  

2000	
   4	
   3	
  

Instructions Data Reads Data Writes 

400	
  
403	
  
407	
  
410	
  

3	
  
4	
  
3	
  
4	
  

0	
  
1	
  
1	
  
1	
  

Addr Size ΔTS 800	
   4	
   0	
  

Addr Size ΔTS 
880	
   2	
   1	
  

Addr Size ΔTS 

2000	
   4	
   3	
  

File	
  	
   File	
  	
   File	
  	
  

Compression 

File	
  	
   File	
  	
   File	
  	
  

File	
  	
   File	
  	
   File	
  	
  

Figure 4: Splitting of traces for compression.

3.6 PERFORMANCE

This sections evaluates the performance and resource requirements of HMMSim. For all

experiments, I ran HMMSim on a lightly loaded machine with a 2.8 GHz Intel Xeon processor,

25MB of LLC and 128GB of main memory. I measure execution time as reported by the

time utility (wall clock time) and memory resident size as reported by top. I use million of

instructions per second (MIPS) as our figure of merit for simulation performance.

I simulate three memory configurations: DRAM-only, PCM-only and software-managed

hybrid memory. Each configuration runs one SPEC CPU2006 benchmark at a time. Each

benchmark is run for one billion instructions. I report the average over all benchmarks

26



0	
  

1000	
  

2000	
  

3000	
  

4000	
  

DRAM	
   PCM	
   Hybrid	
  

Ex
ec
u8

on
	
  T
im

e	
  
(s
)	
  

1	
  Core	
  

2	
  Cores	
  

4	
  Cores	
  

8	
  Cores	
  

Figure 5: Execution time of HMMSim for different configurations and simulated cores counts.

because the variation among different workloads is small. I simulate systems with four core

counts to show that execution time scales linearly with the number of simulated events.

3.6.1 Execution Time

Figure 5 shows the average execution time of HMMSim for 1, 2, 4 and 8 simulated cores. As

expected, each doubling of the cores results in twice as many instructions being simulated.

The execution time, however, increases by a little over 2 times. This is due to an increase

in the LLC miss rate of the simulated system, which results in more events being simulated.

However, the effect is small: on average there is less than 6% slowdown in MIPS for each

doubling of the cores.

In general, the performance of HMMSim lies between 2.1 and 2.6 MIPS. This is approx-

imately the same performance as a full system simulator, such as Simics, running a fast

functional model without caches and memory. I believe this is an adequate speed for testing

and experimenting with new ideas without having to spend considerable resources modifying

complex tools.

27



3.6.2 Memory Usage

Figure 6 shows the resident memory size of HMMSim for different simulated core counts. For

a DRAM-only system, memory usage varies from 38MB to 57MB as core count increases;

for PCM-only, memory usage is between 262MB and 282MB, and for hybrid it varies from

262MB to 443MB.

Memory usage does not change after initialization and remains stable during the entire

execution. The amount of memory used is linearly correlated with core count. This increase

is due to some objects within the simulator being replicated when more cores are simulated,

such as private caches, CPUs and traces readers. The difference in resident memory size

between the three memory configurations is due to the particular organization of DRAM

and PCM that is being simulated. PCM is configured to have more banks of smaller size

than DRAM, requiring more memory. The hybrid configuration has the highest resident size

because it contains both types of memory and needs other data structures to manage page

migration.

The memory usage of HMMSim is relatively low and scales well with core count. The

memory requirements are well within the capacity of current servers. HMMSim can simu-

late memory organizations with large number of components (PCM has 128 banks in this

example).

3.6.3 Trace Compression

To show that the storage requirements of HMMSim can be handled by current infrastructure

using typical storage capacity, I measured the size of SPEC CPU2006 memory traces stored in

our high compression trace format. Each trace contains 1 billion instructions and a variable

number of data accesses which depend on the characteristics of the workload. Typically,

for each instruction there are between 0.2 and 0.7 data accesses. Traces are collected after

a 5 billion instructions of the benchmark’s execution have completed to avoid tracing the

warm-up phase.

Trace sizes vary from 385MB to 1.45GB, with an average of 838MB. The difference in

sizes is due to variation in data accesses per instruction and compression ratio of individual

28



0	
  

100	
  

200	
  

300	
  

400	
  

500	
  

DRAM	
   PCM	
   Hybrid	
  

Re
sid

en
t	
  M

em
or
y	
  
(M

B)
	
  

1	
  Core	
  

2	
  Cores	
  

4	
  Cores	
  

8	
  Cores	
  

Figure 6: Resident memory of HMMSim for different configurations and simulated cores

counts.

sub-traces. In the worst case, storing traces containing 200 billion instructions, which is

more that enough to evaluate the performance of current benchmark suites, would take at

most 300GB. The overall compression ratios of the traces are between 21 and 74, with an

average of 41. Storing 200 billion instructions without compression would take at least 5TB

of storage.

3.7 SUMMARY

This chapter presented HMMSim, a trace-driven simulator for software-hardware co-design

of hybrid main memory. HMMSim models the entire hybrid memory system, including the

processor, caches, DRAM and PCM, and migration policies that run in the OS. HMMSim

provides an easy-to-use API for extending its functionality. HMMSim uses a novel trace

compression scheme that significantly reduces the amount of storage required for traces.

29



4.0 CHARACTERIZATION OF OVERHEAD

As shown in Figure 1 in Chapter 1, there is great potential for achieving high performance

in software-managed hybrid main memory by reducing interference and using good migra-

tion policies. However, before setting out to design hardware for reducing interference or

new migration policies, it’s imperative to first analyze and understand why current systems

experience high overhead due to page migration [17].

4.1 OVERVIEW

Current commodity memory systems do not provide hardware support for page migration.

In these systems, page migration is performed in software by the OS, which can have a

detrimental impact on performance due the long duration of migrations. This long duration

is caused by the slow write performance of PCM, which results in application pauses dur-

ing page migration. Section 4.2 analyzes the potential impact of reducing the duration of

migrations.

In addition to the impact of pauses due to long migrations, interference in the memory

system due to data migration between DRAM and PCM affects the performance of software-

managed hybrid memory. In Sections 4.3 to 4.5, I present analysis and simulation techniques

to investigate the nature of this performance gap and understand how to make software-

manage hybrid memory perform better. I characterize the overhead of page migration and

study the delays that applications experience in the memory hierarchy. I identify the factors

that cause the highest overhead.

30



4.2 PAGE MIGRATION LATENCY

To quantify the cost of pausing during page migration, I conducted experiments to measure

the potential performance improvement that eliminating migration latency can bring. The

cost of migration clearly depends on many parameters, including size of the DRAM and

page migration policy; these results are illustrative of the problem. I measure the execution

time of several SPEC CPU2006 benchmarks, as a proxy for general-purpose applications in

smartphones and tablets. I compare total execution time when the latency of copying a page

is zero and compare it to the total execution time when copy latency realistically accounts

for memory subsystem parameters, which I briefly describe next.

To mask as much write latency as practical, I provision the memory system with sig-

nificant parallelism. I use an 8-bank memory with 4 KB pages and 64-byte cache blocks.

PCM reads take 125 cycles and PCM writes take 1K cycles, which is equivalent to Qureshi

et al. [26] for a 64-byte cache block. With this organization, a DRAM to PCM migration

takes 8K cycles with a page striped across 8 banks (there are 8 writes per memory bank for

each migration). I use the Multi-Queue page migration selection policy [9].

Figure 7 shows normalized execution time (application execution time of the zero cost

case divided by execution time of the realistic case). The figure shows that normalized

execution time varies from 0.68 (bzip2-4) to 0.93 (gobmk-2) with a weighted average of 0.75

(i.e., 25% reduction in execution time). The benchmarks with smaller normalized execution

times are the ones that are most harmed by migration cost. This latency is largely due to

pausing during page copying (DMA transfer) from DRAM to PCM, which is expensive due

to long PCM write time. Further, when migrations happen frequently, the writes to PCM

may overwhelm the available buffers in the memory system, causing a bottleneck that stalls

an application. Many benchmarks suffer from this latency, such as bzip2-6 (0.68 normalized

execution time), leslie3d (0.72) and lbm (0.74). In general, these results demonstrate that

migration latency, as seen by the application, in a hybrid memory may be significant, and

there is a large opportunity to recoup the performance loss, if in practice, migration can be

done inexpensively.

In my view, any software-managed hybrid memory system that aims to perform suffi-

31



Figure 7: Normalized execution time of selected benchmarks without and with (baseline) migra-

tion cost.

ciently well must include a mechanisms for hiding pauses caused by long migrations. There-

fore, for the remainder of the analysis presented in this chapter, I assume a baseline system

that can perform migration without pausing application execution. A mechanism for doing

this is presented in Chapter 5.

4.3 OTHER LIMITING FACTORS

As shown in Figure 1, migration can have a negative impact on performance. This hap-

pens because page migration is performed concurrently with regular application requests.

The latency experienced by regular accesses changes due to interactions between application

and migration memory traffic. For example, memory resource contention caused by migrat-

ing pages can harm (increase) the access latency of regular requests, increasing application

32



execution time. Through analysis, I identify performance-limiting factors in hybrid memory.

Migration Policy. In software-managed hybrid memory, the OS decides which pages

to put in DRAM or PCM. However, the OS has coarse-grain information about application

memory accesses. Further, due to computational limits and time constraints, the OS may be

unable to fully analyze available data. Thus, the OS does not always make the best decisions

for page migration. The difference between a realistic policy and an “ideal” one is migration

policy overhead.

Cache Flush. A migrated page needs to be flushed from the L1 and L2 caches due

to the changed physical address. The flush from L1, and especially L2, can result in an

increased cache miss rate for application requests. In general, flushing pages from L2 has a

much higher impact on average access time because cache blocks from a page are much more

likely to stay longer in L2 than in L1.

Bank Contention. When application requests arrive at either the DRAM or PCM

memory controller, they are forwarded to the appropriate bank based on their physical

address. If the bank is busy, the requests are queued. The time a request spends in the

queue depends on many factors, including queue occupancy, whether the request has higher

priority than other requests, and whether the request is for an open row. When migrating

a page that is mapped to a bank, a large number of requests will be issued to that bank.

Application requests to the same bank wait longer in the queue, increasing overhead. Even if

application requests have higher priority than migration requests, application requests must

wait for ongoing migration requests to finish.

Bus Contention. Even when a bank is ready to serve requests, an incoming request

may still be queued. This happens because the shared bus may be busy with requests from

other banks. Migration requests, therefore, delay regular applications requests.

Row Buffer Interference. Most applications access memory in regular patterns, which

hardware designers exploit to increase performance. For example, a physical page may be

mapped to the same row of a bank so that the memory system can exploit the locality of

reference of the application by keeping the bank row open. When migration is enabled,

migration requests to or from banks with high application access locality interfere with open

row buffers, increasing the row buffer miss rate seen by application requests. This in turn

33



causes extra delays to serve application requests because the row must be unnecessarily

reopened multiple times.

4.4 ANALYSIS

To design hardware mechanisms and migration policies for hybrid memory that perform close

to an ideal system, I must first determine how much each of the factors presented in Sec-

tion 4.3 contributes to the overhead of page migration. In general, attributing performance

slowdown to a particular factor is difficult because of the way they interact. For example,

flushing the cache affects the cache miss rate (which directly impacts access latency), but it

also affects bus and bank contention through increased memory traffic (which indirectly im-

pacts access latency). To perform this detailed study of page migration overhead, I propose

techniques to analyze memory access latency and determine the importance of the limiting

factors.

The techniques use HMMSim, the simulator presented in Chapter 3, to collect detailed

statistics about memory requests as they travel through the memory hierarchy. I present two

simulation techniques to approximate the behavior of an ideal system: a zero-interference

migration hardware configuration and an offline migration policy. I also present two new

techniques for analyzing the memory behavior of applications. The first technique does

memory latency attribution analysis that determines the average number of cycles memory

requests spend in each component of the memory hierarchy. By comparing the memory la-

tency attribution of different hardware configurations, memory performance bottlenecks can

be identified. The second technique does factor isolation analysis of applications executed

with different hardware configurations. It uses an analytic model and the statistics collected

during simulation.

34



4.4.1 Zero-Interference Migration

To analyze the limiting factors of page migration, I consider a hypothetical system, zero-

interference migration, that is not affected by the memory traffic and other costs associated

with migration. This technique enables comparing the performance of current systems to an

ideal system that does page migration without interfering with regular memory traffic. The

ideal system still abides by the migration policy. In this hypothetical system, migration still

has the same latency as the realistic full-interference case: migration is not instantaneous.

However, accesses to DRAM and PCM from migration do not interfere with regular appli-

cation requests. In addition, other side-effects, such as flushing the caches, are modified for

zero-interference.

Zero-interference migration requires changes to two parts of the system. The first part is

the hybrid-memory controller. In a full-interference system, migrations are done by reading

the cache blocks of a page from the source memory and writing them to the destination

memory. If regular application requests arrive at the memory controller while a page is

migrating, the requests may be delayed. In zero-interference migration, memory accesses

due to page migration are not modeled in the memories. Instead, each migration takes a

fixed amount of time. To estimate page migration latency for the zero-interference model,

I assume the memory is idle and calculate the time it takes to read all blocks from the

source memory (including bank access and bus transfer) and write them into the destination

memory queues. If the queues have enough capacity to store all requests, then the write

time to the destination memory is not exposed in the migration time.

The second modification is to the cache. Because the state of the cache is changed by

migration (flushing), future accesses to migrated pages might not hit in the cache, hurting

performance. To avoid exposing this cost in zero-interference migration, I remap addresses

in the cache. Instead of flushing a page, the mechanism inserts an entry into a remap table

that tells the cache to look into the old cache location whenever an access for the new address

arrives. The remapping entry is removed when all cache blocks from the page are eventually

evicted. This scheme allows keeping the state of the cache in terms of which cache accesses

hit or miss as if there had been no page flushes, while allowing migration to change physical

35



Algorithm 1 Offline migration policy

offlineMigrate(current, intervals, threshold, size, counts[ ][ ], pageType[ ])

1 // Get sums of access for each for the following intervals
2 sums[1..size]← 0
3 for p← 1 to size
4 for i← current to current + interval
5 sums[p]← sums[p] + counts[i][p]
6 // Find least accessed DRAM page
7 minSum←∞
8 for p← 1 to size
9 if pageType[p] == DRAM and sums[p] < minSum

10 minSum← sums[p]
11 min← p
12 // Find most accessed NVM page
13 maxSum← 0
14 for p← 1 to size
15 if pageType[p] == PCM and sums[p] > maxSum
16 maxSum← sums[p]
17 max← p
18 if maxSum−minSum > threshold× intervals
19 swapPages(min, max)

addresses.

4.4.2 Offline Migration Policy

To understand the effects of migration and isolate its impact on performance, I use an offline

migration policy (an oracle) that uses future memory access counts to estimate the relative

importance of pages. It migrates only pages that will benefit performance in the future.

Although this policy is not optimal, it is a good approximation of an optimal one.

The offline migration policy works as follows. Time is divided into intervals, and access

counts for each page during each interval are kept. These access counts are generated by

analyzing the trace. The access counts can be gathered prior to the caches or after the L2

cache. The data available to the policy is the following: number of reads, number of writes,

number of unique blocks that were read, number of unique blocks that were written, and

number of unique blocks that were accessed (read or written).

36



Table 4: Memory components where application reads accumulate time

Name Name

Translation Pause DRAM/PCM Close

CPU Stall DRAM/PCM Open

L1/L2 Access DRAM/PCM Access

L1/L2 Stall DRAM/PCM Bus Queue

DRAM/PCM Bank Queue DRAM/PCM Bus

Algorithm 1 shows how the offline migration policy makes migration decisions. The policy

first examines the next few intervals (the number of intervals is an algorithm parameter),

and counts the number of accesses to each page (lines 2 to 5). The policy then compares

the future access counts of the least accessed page in DRAM (lines 7 to 11) with the most

accessed page in PCM (lines 13 to 17). If the number of accesses to the slow page is greater

than the fast page by a threshold (an algorithm parameter), the pages are swapped (lines 18

to 19). Otherwise, no pages are migrated for the remainder of the interval. Once a page

has been migrated, the next most accessed slow page and the next least accessed fast page

are considered.

4.4.3 Memory Latency Attribution Analysis

Memory Latency Attribution Analysis (MLAA) determines the average number of cycles

that read requests from the CPU spend in different memory structures. Requests that miss

in both the L1 and L2 caches spend a number of cycles accessing the tag arrays (equal to the

access latency of the caches), plus other cycles in the memory queues, possibly opening the

row buffer, reading the data from the row buffer and transferring it on the bus. Requests

that hit in a cache do not spend any cycles in lower levels of the hierarchy. MLAA captures

the relative importance of each component of the memory hierarchy in the total latency

experienced by requests from the CPU. This enables comparing different configurations to

determine how the access latency changes with design parameters.

Table 4 lists all the memory components where memory requests accumulate time. Trans-

37



lation pause is the time that the CPU must be paused because the physical address of the

requested virtual address is being changed at the memory manager as a result of migration.

L1/L2 access is the time spent accessing the tag array in the cache level. CPU, L1 and L2

stall are due to a full queue in the next lower level. Bank and bus queue time are due to the

corresponding bank or the bus being busy, respectively. Close time is the latency a request

waits for a closed bank to become available, and open time is the time it takes to open a

requested row. Access time is how long it takes to transfer the data at the row buffer to the

bus, and bus time is the bus transfer time.

4.4.4 Factor Isolation Analysis

To estimate the effect that independent components of the memory hierarchy have on perfor-

mance, I introduce Factor Isolation Analysis (FIA) that estimates the potential performance

improvement of removing the overhead of a specific limiting factor. FIA uses an analytic

model that calculates the average L2 memory access latency based on parameters and other

data collected during simulation.

Table 5 describes the variables used in the model, and whether they are calculated by

the model, parameters of the simulated architecture or values measured from simulation.

The following formulas show how the average L2 access latency is calculated (X stands for

either DRAM or PCM):

ARPCM = 1− ARDRAM

ALL2 = LL2 +MRL2 × ALMem

ALMem = ARDRAM × ALDRAM + ARPCM × ALPCM

ALX = ALXBank + ALXBus

ALXBank = LXAccess + ALXBankQ

+ MRXOpen × (LXClose + LXOpen)

+ MRXClose × LXOpen

38



Table 5: Variables used in the analytic model. X stands for either DRAM or PCM

Variable Description Type

ARPCM PCM access rate Calculated

ALL2 Average L2 access latency Calculated

ALMem Average memory access latency Calculated

ALX Avg. X access latency Calculated

ALXBank Avg. X bank access latency Calculated

ALXBus Avg. X bus access latency Calculated

LL2Tag L2 tag access latency Parameter

LXClose X bank close latency Parameter

LXOpen X bank open latency Parameter

LXAccess X bank access latency Parameter

LXBus X bus transfers latency Parameter

MRL2 L2 miss rate Measured

ARDRAM DRAM access rate Measured

MRXOpen X row buffer open miss rate Measured

MRXClose X row buffer close miss rate Measured

ALXBankQ Avg. X bank queue latency Measured

ALXBusQ Avg. X bus queue latency Measured

ALXBus = LXBus + ALXBusQ

The formula contains two types of row buffer miss rate. The close miss rate is due to

accesses to the bank that miss in the row buffer because the row buffer is closed. These

only pay the row open penalty. The open miss rate is due to accesses that miss in the row

because the row buffer is open in a different row. These pay both the row close and row

open penalties.

FIA determines the factors that cause the highest overhead due to page migration. Using

this analysis, I can determine how much speedup can be obtained if the effects of a selected

factor could be ignored. For example, if there is high contention at the PCM bus due to

page migration, I can estimate the speedup of a system that does not have contention at the

bus. This is a powerful technique because it allows focusing on the system components that

cause the largest performance drop (bottlenecks).

FIA isolates the effects of individual characteristics of a configuration (such as bank

queue time) and estimates the performance of another configuration as if it had the single

39



Table 6: List of variables and associated overhead

Variable Overhead

MRL2 L2 Cache flushing

MRXOpen, MRXClose Row buffer interference

ALXBankQ Bank contention

ALXBusQ Bus contention

characteristic of the original configuration. In particular, I are comparing full-interference

(including the impact of migration) with zero-interference migration.

FIA uses the analytic model to calculate two values for average L2 access latency with

different parameter sets. In the first one, all measured variables (see Table 5) come from full-

interference simulation. In the second set, all measured variables come from full-interference

simulation, except one, which comes from zero-interference simulation. With this technique,

the speedup from eliminating an individual factor’s overhead can be determined. Table 6

lists the variables I consider for analysis with a description of the overhead that they capture.

For row buffer interference, both the open and close miss rates are changed in the formula

at the same time, yielding only one affected factor.

4.5 PAGE MIGRATION OVERHEAD

In this section, I describe results from my analysis to understand the nature of overhead in

software-managed hybrid memory systems using the techniques described above, and present

my main findings. The focus is single-programmed workloads running on low-end systems,

such as those found in mobile devices.

40



4.5.1 Methodology

I use a subset of the SPEC CPU2006 benchmark suite1 for evaluation. I treat each input

of a benchmark with multiple data sets as a separate workload, which yields a total of 52

different benchmark/input combinations. In the figures, a number after a benchmark name

is the input for the benchmark (e.g., bzip2-2 is the 2nd reference input for bzip2). I present

results for 35 of the 52 combinations. The working sets of the remaining workloads fit in on-

chip caches, causing negligible migration overhead. I simulate each benchmark for 1 billion

instructions.

Table 7 shows the main architectural parameters. DRAM and PCM access times are

from Qureshi et al. [26] and energy values from Lee et al. [22]. PCM latencies are adjusted

to account for a small 64-byte cache block. For PCM, tRP is 0 for clean row buffers (due to

non-volatility) and 150ns for each dirty block in the buffer (to account for power constraints

in the PCM chip). Since the working set varies considerably across benchmarks, I limit the

available DRAM space to 25% of the total footprint of each workload, similar to past work on

migration [16]. This choice allows evaluating performance of the benchmarks independent of

the DRAM size. Hence, benchmarks that differ noticeably in working set size are comparable.

By limiting DRAM space in the memory manager instead of through DRAM parameters such

as bank size and count, I avoid configurations that differ too much from realistic systems

(for example, too few or small banks).

I use two migration policies: Multi-Queue (MQ) and Offline. MQ [9] is the state-of-

the-art approach for hybrid memory, and it has been shown to work well in practice. I

use the same parameters as the original MQ study. I experimented with other parameters

for MQ but found that the values in the original study work best for all benchmarks. In

particular, I found that other values either do not improve performance (too few migrations)

or hurt performance due to high interference. Offline is the oracle policy from Section 4.4.2.

I use this to determine how much potential exists beyond MQ: a gap between MQ and

Offline reflects lost performance opportunity that a better future policy might achieve. For

Offline, I chose the parameters of the algorithm empirically. The interval length is 100,000

1I excluded dealII, wrf and xalancbmk due to limitations in my simulation environment

41



Table 7: Architectural parameters

Parameter Value

4GHz chip 1 4-issue wide, out-of-order core,
multiprocessor 128-entry reorder buffer

L1 I/D private 64KB per core, 4-way, LRU,
cache 3 cycle hit, 16-entry queue

L2 unified 2MB, 16-way, LRU
shared cache 32 cycle hit, 32-entry queue

4GB DRAM 64 banks, 32-entry queue per bank,
@ 1000MHz tCAS-tRCD-tRP : 12-12-12 (ns)

4GB PCM 64 banks, 8-entry queue per bank,
@ 400MHz tCAS-tRCD-tRP : 12-55-150 (ns)

PCM/DRAM bus 64-bit single-channel

instructions, and the number of intervals to look into the future is 50. I rank pages by the

number of unique blocks accessed, and use a threshold of 2 accesses per interval.

I consider two interference regimes: full-interference and zero-interference. Full-Interference

is a realistic memory configured as described above. It accounts for latencies, contention

and bottlenecks. Zero-Interference is the scheme from Section 4.4.1. By comparing both

regimes, I can find bottlenecks to guide future memory subsystem development.

In addition to MLAA, I report the result of two studies for identifying limiting factors

in software-managed hybrid memory. The first study uses FIA to understand the hardware

overhead of individual components of the memory hierarchy. For this study, I fix the policy

to Offline. The second study compares MQ and Offline using Zero-Interference migration to

isolate the effectiveness of the migration policy.

4.5.2 Memory Latency Attribution

The MLAA graphs for the 35 workloads (plus average) are shown in Figure 8. Each workload

has two bars. The first bar corresponds to Full-Interference, while the second one to Zero-

Interference. Each bar shows normalized number of cycles per read request spent at different

components of the memory. The bars are normalized to the total number of cycles per request

42



0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

400.perlb-1 401.bzip2-1 401.bzip2-4 401.bzip2-5 401.bzip2-6 403.gcc-2 403.gcc-3 403.gcc-4 403.gcc-5 403.gcc-6 403.gcc-7 403.gcc-8

L1 Access L2 Access DRAM Queue DRAM Access DRAM Bus PCM Queue PCM Open PCM Access PCM Bus Queue PCM Bus Other

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

403.gcc-9 410.bwaves 416.gamess-3 429.mcf 433.milc 434.zeusmp 436.cactADM 437.leslie3d 445.gobmk-1 445.gobmk-3 450.soplex-1 450.soplex-2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

454.calculix 456.hmmer-1 456.hmmer-2 459.GsFDTD 462.libquant 464.h264rf-2 465.tonto 470.lbm 473.astar-1 473.astar-2 482.sphinx Average

Figure 8: MLAA for Offline. For each workload, first bar is Full-Interference and second bar is

Zero-Interference.

of Full-Interference. To avoid a cluttered graph, I aggregated into the “Other’ category the

cycle counts of 8 components that have an average normalized number of cycles of less than

2%. They include: translation pause, CPU, L1 and L2 stall, DRAM and PCM close, DRAM

open and DRAM bus queue.

On average (bottom right bars), the number of cycles can be reduced by 24% when

going from Full-Interference to Zero-Interference. This reduction comes mostly from three

43



sources: PCM bus queue (10%), PCM open (6%) and PCM bank queue (4%). In Full-

Interference, the PCM bus queue becomes saturated with migration requests, which delays

regular requests. The same holds (to a lesser degree) for PCM bank queue because there are

several banks to distribute request but only one bus. The reduction in PCM open time is

due to a lower row buffer miss rate. When migration requests are serviced by banks, open

row buffers that may service future application requests must be closed. This increases the

time spent opening row buffers. These results suggest that, on average, most of the overhead

of page migration is caused by interference of migration requests with application request

rather than migration latency itself.

Other components of the memory do not have, individually, a significant reduction on

cycle count even though they contribute considerably to the total cycle count. In particular,

the L1 access time is the same for both interference regimes because migration does not

change how often the L1 tag is accessed. Flushing the L1 after migration does change the

L2 access count, but to a very small degree due to the small size of the L1. The DRAM

components of memory also exhibit little change in cycle count. This is because DRAM

is faster and therefore has more idle time, allowing migration requests to proceed with less

interference.

The behavior of individual benchmarks varies widely. Some benchmarks benefit little

(cycle count reduction of less than 2%) from Zero-Interference migration. 454.calculix and

456.hmmer-1 are dominated by L1 and L2 access cycles, so changes in other components of

the system have no effect. Cycle counts for 401.bzip2-5 are more evenly distributed across

the hierarchy, but do not change. In 403.gcc-7, cycles counts for PCM open decrease by

the same amount that PCM bus queue cycles increase, resulting in similar performance. In

this case, a decrease in row buffer miss rates (less cycles opening rows) causes a reduction in

service time that is shifted to the queue.

Other benchmarks benefit considerably, often more than 40%. Again, there are dif-

ferent reasons: 437.leslie3d (53% reduction) benefits from PCM bank queue and PCM

open; 450.soplex-2 (37%) and 470.lbm (45%) benefit from PCM open and PCM bus queue;

459.GemsFDTD benefits from PCM bank queue, PCM open and PCM bus queue; and

462.libquantum (51%) benefits from PCM bus.

44



7
1

%
 

-9
%

 

-1
0
%

 

6
8

%
 

-9
%

 

6
3

%
 

-6
%

 

-5%

0%

5%

10%

15%

L2 Miss Rate

-5%

0%

5%

10%

15%

PCM Row Buffer Miss Rate

1
6

%
 

-5%

0%

5%

10%

15%

PCM Bank Queue

2
2

%
 

1
7

%
 

1
9

%
 

2
0

%
 

2
2

%
 

2
5

%
 

2
5

%
 

3
3

%
 

3
4

%
 

1
9

%
 

2
9

%
 

-5%

0%

5%

10%

15%

PCM Bus Queue

Figure 9: Potential L2 access latency reduction that can be obtained by eliminating 4 different

factors that cause overhead.

Although MLAA identifies where requests spend most of their time and how much each

component contributes to the total latency, they do not determine the cause of the latency.

For example, a low cycle count for PCM bank queue time in Zero-Interference means the

banks are less busy because migration requests do not use PCM resources. However, a low

45



count for PCM open time can be caused by increased L2 miss rate, DRAM access rate or

PCM row buffer miss rate. Using only latency attribution, I cannot determine the underlying

cause of the delay. To solve this problem, I use FIA to isolate the effects of individual factors

that increase application memory access latency.

4.5.3 Factor Isolation Analysis

The results of FIA are shown in Figure 9. Each graph shows the reduction in L2 access

latency obtained by eliminating the overhead caused by one particular factor (see Table 6).

I omit graphs for the DRAM factors, as their reductions are less than 1% on average.

On average, eliminating the overhead of the PCM bus queue has a potential reduction of

11%; the highest among all factors. Next are L2 miss rate (6% average reduction), PCM bank

queue (4%) and PCM row buffer miss rate (2%). Again, PCM bus queue and PCM bank

queue have a high reduction potential because they are busy under Full-Interference. The

reduction from the L2 miss rate factor is due to flushing the cache under Full-Interference.

Likewise, the PCM row buffer miss rate is reduced because migration request are not com-

peting with regular requests for open row buffers.

The relative importance of factors varies across workloads. For example, in 416.gamess-

3, L2 miss rate (71%) is more important than PCM bus queue (25%) and PCM bank queue

(7%). This benchmark has a very high L2 hit rate, and flushing pages from the L2 causes

too many additional misses.

A negative reduction means that the measured variable (see Table 5) has a larger value

with Zero-Interference than with Full-Interference. Although this is counterintuitive, it

happens because the flow of requests to components of the hierarchy varies under Zero-

Interference, and some structures might get more requests than with Full-Interference. For

example, the L2 miss rate is generally reduced because no flushing takes place under Zero-

Interference. However, sometimes flushing evicts dead data that remains a long time in the

cache, which frees space for more useful data.

The results of FIA match those of the MLAA. DRAM factors are found to be unimportant

from both analyses. On average, the factor with the highest reduction (PCM bus queue)

46



6
0

%
 

5
5

%
 

-1
6

%
 

0%

10%

20%

30%

40%

50%

Figure 10: L2 access latency reduction from using the Offline migration policy relative to Multi-

Queue.

matches the component with the highest decrease on cycle count. The next highest factor

(L2 miss rate) does not have a corresponding component because L2 misses cause additional

cycles in several components of the hierarchy.

The results of MLAA and FIA also match for all individual workloads. For example,

in 416.gamess-3 the high reduction of L2 miss rate causes a cycle count decrease in all

components except the L1 and L2 tags. Another example is 403.gcc-7, with a reduction of

5% due to PCM row buffer (lower cycle count due to PCM open in the MLAA graphs), and

an increase of 3% due to PCM bus queue (higher cycle count due to PCM bus queue).

Although MLAA and FIA identify bottlenecks in the memory hierarchy, they do not

provide information about the effectiveness of the migration policy. To study this, I study

migration policy overhead by comparing Offline and MQ.

4.5.4 Migration Policy Overhead

The results of the study of migration policy overhead are shown in Figure 10. The graph

shows the reduction in L2 access latency that Offline has relative to MQ under Zero-

Interference. The reduction is quite dramatic (27% on average), suggesting a large potential.

The large reduction is due to the ability of Offline to move data to DRAM before it is used.

47



In addition, Offline is able to compare the access counts of pages to determine the actual ben-

efit (number of accesses) of swapping two pages. In workloads that have low reductions, such

as the streaming benchmark 462-libquantum, Offline is unable to benefit from low memory

access latency because the migrated pages are only accessed a few times while in DRAM and

the system cannot migrate data quick enough to continuously service requests from DRAM.

This causes most accesses to go to PCM, which does not have enough bandwidth to serve

requests quickly, hurting performance. This effect does not happen with MQ because fewer

pages reach the access count threshold that triggers their migration.

4.6 DESIGN IMPLICATIONS

In this section, I discuss the main implications of my findings in the design of software-

managed hybrid memory.

The results of Section 4.5.4 about migration policy overhead show that an ideal policy

has a large potential for improving performance relative to state-of-the-art policies. Thus,

researchers should focus on finding better policies, as there is ample room for improvement.

There are several aspects of migration policies that need to be included in future sys-

tems. First, the migration policy needs to be aware of the cost of migration in the underlying

hardware, as well as the benefits of moving a page to faster memory compared to leaving

it in PCM. My own offline policy does a limited cost-benefit analysis with oracle informa-

tion. However, online policies, which do not have future access counts, must have a more

complete cost and benefit model if they want to be as effective as offline policies. Second,

a good migration policy must be effective even if the hardware does not provide complete

information about memory access patterns. To achieve this, I must determine how to collect

and filter access pattern information at the OS level efficiently, while still providing accurate

information for migration policies.

Although my techniques provide a detailed analysis of the hardware overhead of page

migration, they do not provide a similar level of detail for the migration policy overhead.

For instance, I do not know if the large gap between ideal and state-of-the-art policies is

48



due to the ranking algorithm of the policy, the inability of the policy to estimate the cost

of migration, or the reduced access pattern information or something else. An analysis of

the factors that cause overhead, similar to my FIA but for migration policies, is essential for

understanding migration and designing future policies.

In Section 4.5.3 I also showed that hardware overhead is considerable and varies widely

in importance across workloads. Some of the causes of overhead can be easily fixed. For

example, the factor with the highest L2 access latency reduction is the PCM bus queue.

Its overhead can be eliminated with faster, wider or simply more buses. Eliminating the

overhead of the L2 miss rate requires a more complex solution than simply adding hardware.

The overhead of the PCM bank queue is also more difficult to tackle. Simply adding more

banks or splitting banks might not solve the problem if interference still occurs. In addition,

many banks might increase the cost of the system significantly. Lastly, the PCM row buffer

miss rate overhead also requires more complex solutions.

4.7 SUMMARY

This chapter presented new analysis and simulation techniques to aid in the development

of new policies and hardware mechanisms for low-cost migration. The chapter identifies

factors that limit performance in hybrid main memory, and rank their relative importance.

Using the new techniques, it is shown that the highest L2 access latency reduction potential

comes from developing better migration policies (27% average), followed by eliminating the

overhead of the PCM bus queue (11%), L2 miss rate (6%), PCM bank queue (4%) and PCM

row buffer miss rate (2%).

49



5.0 CONCURRENT PAGE MIGRATION

As shown in Chapter 4, there is considerable potential for software-managed hybrid mem-

ory. Any hybrid memory system that uses PCM must be able to hide the long latency of

PCM writes. In software-managed hybrid memory, this is especially important, because

page migration can amplify the negative impact of long writes by forcing pauses during

page migration, as shown in Section 4.2. This chapter proposes basic hardware support for

performing page migration without pausing a program’s execution.

5.1 OVERVIEW

5.1.1 Memory Management

Like any main memory, in a hybrid main memory system, the OS assigns physical memory

pages to programs based on their needs, available memory capacity and system load. It

must also decide the type of memory (PCM or DRAM) and how to allocate each type

among applications. These decisions are made using memory access behavior, virtual page

type, application type (e.g,. real time vs. general purpose) and/or quality of service (QoS)

requirements. For instance, if a virtual page is frequently written, the OS assigns a DRAM

page to it, as this assignment reduces the number of writes to PCM and the associated

performance, energy and endurance impact [5, 9]. Similarly, the OS can decide to leave

certain pages in PCM, such as code and read-only pages, because the pages are rarely or

never written and allocating them to PCM will save DRAM space for more important pages

(e.g., most frequently written). The OS can also decide to allocate all or some pages based

50



on time criticality (i.e., for a real-time task), or other QoS metrics, to increase predictability

of memory access latency and/or application responsiveness.

Most applications exhibit varying memory behavior over distinct phases of execution,

causing write frequency of individual virtual pages to change over time. Pages that were once

frequently written (e.g., during initialization) can become rarely written in later execution

phases, or vice versa. To prevent rarely written pages from taking up too much DRAM

space, the OS may change an initial assignment of virtual to physical pages during execution

and demote a page from DRAM to PCM. Conversely, promotion exploits the high speed and

low energy of DRAM writes by moving pages from PCM to DRAM.

5.1.2 Page Migration

The promotion and demotion of pages between DRAM and PCM requires copying pages from

one type of memory to the other. This procedure is termed page migration; it is controlled

by the OS. The actual data transfer is done by a DMA engine (similar to other partitioned

memory sub-systems) to offload copying in the background of application execution. As long

as the application does not write to a page under migration, its execution continues normally,

as reads to a migrating page can be serviced from the old copy of the page. However, if the

application writes to the migrating page, it must be paused until the migration finishes

before proceeding with the write. This pause is necessary for correctness, because the write

has to be done after the old version of the data has been copied to its new memory location

by the DMA transfer.

Due to long PCM write latency, pausing the application causes performance overhead,

possibly rendering the use of migration impractical. The question is then, for a hybrid

memory, how much does the migration actually hurt application performance relative to the

gain of coalescing writes in DRAM? The answer to this question is related to how often

pages are migrated, whether an application writes to a migrating page, and how long the

application is paused after a write. The answer motivates this work and shows why hardware

support for migration is needed. I first explain how migration normally works with DMA,

and I then examine the performance impact.

51



Algorithm 2 Sequence of steps performed during conventional page migration

pauseMigrate(app, virtPage, dstPage)

1 app.pause() // Pause the application that currently maps the migrating page
2 pageTable.setReadOnly(virtPage) // Mark page as read-only (update PTE and TLB)
3 tlb.setReadOnly(virtPage)
4 cache.flush(virtPage) // Flush the page from the caches
5 srcPage ← pageTable.getPhysPage(virtPage)
6 dma.copy(srcPage, dstPage) // Program DMA to copy the frame to the new location
7 app.resume() // Resume application, but trap to OS to pause on writes

// to the migrating page
8 while (dma.isCopying())
9 NULL // Wait until DMA completes

10 app.pause()
11 pageTable.setPhysPage(virtPage, dstPage) // Update PTE and TLB entry, restoring

// write permissions
12 tlb.setPage(virtPage, dstPage)
13 app.resume()

Algorithm 2 shows the process traditionally used in commodity memory systems to

migrate pages between DRAM and PCM. To start a migration, the application is temporarily

paused (line 1) to mark the virtual page, selected for migration, as read-only in the page table

and TLB (lines 2 and 3). This action ensures that a write to the page will be intercepted.

The page is flushed from the caches because the page physical address, used to access the

cache, will be different after migration (line 4). The cache flush must be done prior to the

start of migration. Otherwise, dirty blocks belonging to the migrating page could be written

back to the old location during migration, potentially losing updated data. After flushing the

cache, the DMA transfer is programmed (lines 5 and 6) and the application is resumed. The

program may continue reading from the original physical page, as long as it does not write

to it. If the page is written, an interrupt is triggered (through a page write access violation)

and the application is paused until the migration is done. At the end of migration, the

page table entry (PTE) of the migrated virtual page and the corresponding TLB entry are

updated to reflect the new physical location of the page (lines 10 to 13). The application is

also briefly paused during this period for atomicity to update the PTE and TLB.

In the algorithm, two pauses in the program’s execution are used by the OS to atomically

52



update the PTE and TLB (lines 1 and 10). These pauses are similar to the ones that are

normally done by the OS to update paging structures. The TLB update may also generate

shoot-downs to other cores for shared pages. These pauses are not the overhead that I

address. In fact, atomic updates to paging structures also occur with my approach. I

address the longer pause induced by the application writing to a page that is being copied

by the DMA engine.

5.2 CONCURRENT PAGE MIGRATION

Concurrent page migration (CPM) is a novel scheme designed to overcome the cost of migra-

tion latency in hybrid memories. The technique permits an application to continue execution

during a page migration when it writes to an actively migrated page. The main challenge

solved with CPM is to guarantee that neither reading nor writing to a migrating page will

cause the application to pause, while at the same time ensuring that updates are not cor-

rupted or lost.

5.2.1 Buffering Writes

The idea behind CPM is to continue servicing read requests to the migrating page that miss

in the LLC from the old physical location. This ensures correctness because the page has not

been modified since the migration started, and thus, both pages contain the latest version

of the data. To maintain consistency, as usual, if the application writes to a page under

migration the typical race condition applies: (a) if the writes are sent to the old page, the

part of the page that is being written could already have been copied to its new location

and updates are ignored; (b) if writes are sent to the new page, it is possible that the part

of the page that is being written has not been copied to its new location and updates are

overwritten.

In CMP, the writes are buffered (a copy of the data) and only flushed to a page’s new

location once the DMA transfer for the migration has finished. During migration, all reads

53



that follow a write to the same part of the page are serviced from the buffer instead of the

original location. The key insight for efficiency in my scheme is that the buffer to hold the

dirty data already exists: the last-level cache (LLC).

The scheme works as follows. When a page migration is started, all its blocks are marked

as ineligible for eviction, a process I call pinning. On cache block replacement, a block that is

not part of a pinned page is selected for eviction. Because application writes to memory only

come from LLC write-backs, pinning a page guarantees that application writes to the pinned

page are not done during the migration. Once migration finishes, the page is unpinned and

the contents of its dirty blocks are flushed from the cache, redirecting the write-backs to the

new page location.

As an alternative to CPM, adding deep buffers to the memory system might hide the

long latency of DRAM to PCM migrations. However, the additional energy cost of write

buffers make this solution unsuitable for mobile systems, especially since these are associative

structures that have to be accessed on every memory request to ensure correctness. The

proposed scheme also hides long migrations, but uses existing structures and incurs little

overhead.

5.2.2 Page Migration

Algorithm 3 gives the steps for CPM taking into account the asymmetry of memory

technology (mainly slow writes in PCM). If a page is migrated to PCM, it is flushed from

the cache prior to the start of migration (lines 2 to 3). This step causes only one write to

PCM because the dirty data in the LLC is flushed to DRAM before migrating it to PCM.

If the cache is not flushed, the block will be written twice to PCM: once when it is copied

from DRAM and again when flushed from the cache.

Although an application is not paused during migration, program execution must still be

suspended briefly at the end of migration to guarantee that the cache flush and the update

of the PTE and TLB occur atomically as seen by the executing program (lines 8 to 12).

Allowing the program to execute instructions that access the migrated page between these

two operations could lead to data corruption. For example, if the TLB is updated with the

54



Algorithm 3 Sequence of steps performed during concurrent page migration

concurrentMigrate(app, virtPage, dstPage)

1 cache.pin(virtPage) // Pin the page to the cache
2 if (dstPage.isPCM())
3 cache.flush(virtPage) // Flush the page from the caches
4 srcPage ← pageTable.getPhysPage(virtPage)
5 dma.copy(srcPage, dstPage) // Program DMA to copy frame to new location
6 while (dma.isCopying())
7 NULL // Wait until DMA unit finishes copying the frame
8 app.pause()
9 pageTable.setPhysPage(virtPage, dstPage) // Update PTE

10 tlb.setPage(virtPage, dstPage) // Update TLB
11 cache.flushRedirect(virtPage, dstPage) // Flush page from cache, redirect write-backs

// to the new location
12 app.resume()
13 cache.unpin(virtPage)

new location of the page but the cache has not been flushed yet, reading from the page could

return a stale (old) data value (which is in the new memory location) instead of the most

recent one (which is in the cache but with the old physical address). Reversing the order

of these operations does not solve the problem, because flushing redirects write-backs to the

new memory location, but the TLB still points to the old location.

Pinning and unpinning a page do not have to occur atomically with respect to the cache

flush or TLB update. If the page is pinned prior to the start of the flush or copying of the

page, the application can continue to execute (line 1). Similarly, the page must be unpinned

after the flush and TLB update (line 13). Since the old physical page is free after migration

and it is not present in cache (it was flushed), keeping it pinned a little longer does not

affect correctness or performance, as long as the page is unpinned before it is returned to

the OS for reuse. The (optional) cache flush of the page before migration does not need to

occur atomically to program execution because this flush is not required for correctness but

only to reduce the number of writes to PCM. If a cache block that has already been flushed

is written (regardless of whether the rest of the cache blocks in that page were flushed), it

would simply remain in the cache (the page is pinned) until it is flushed after migration.

55



5.3 HARDWARE SUPPORT

Implementing CPM requires small hardware modifications in three parts of the system.

First, cores need a mechanism to temporarily pause program execution when a write is done

to a given page, so that a cache flush and update of the page table and TLB entry occur

atomically after a migration. The TLB in each core is also modified to support updates

of individual entries initiated by hardware. Second, the LLC must be modified to support

pinning pages while a migration is under way. Finally, the memory interface must be changed

to accommodate a hardware entity that controls the process of migration (by instructing the

cores and caches to perform certain tasks) and handles the exchange of information between

the hardware and the OS (by accepting requests for migration). The DMA unit that does the

actual copying is not modified. I start this section with an overview of the new architecture

and then explain the required changes. In addition, I show how migration works and how

the hardware structures are used.

5.3.1 Overview of Architecture and Changes

Figure 11 shows an overview of the hardware changes. The structure in the figure is based

on current chip multiprocessors that feature separate cores and a banked LLC [48]. The LLC

is composed of four physical slices; each core sees a single, large shared LLC, corresponding

to all slices. Cache requests are forwarded to the appropriate cache slice, according to their

physical address, transparent to the executing program. LLC misses are handled by the

system agent (using Intel’s terminology), which is a separate structure that accesses main

memory and performs other tasks.

Each core is modified to include a Pause on Access (POA) register, which is used to

briefly pause execution at the end of migration to guarantee that updates to the TLB and

PTE and cache flushes occur atomically. The TLB logic is modified to support the update

of individual entries upon reception of a message. Each LLC slice is modified to contain a

Pinning register (PIN), which holds a valid bit and the address of the physical page that

is currently pinned to the cache. The use of the PIN and POA registers is explained in

56



Figure 11: Overview of architecture changes for CPM. New components are shown in dark gray.

Changes to the system agent are shown in Figure 12.

Sections 5.3.2 and 5.3.3, respectively.

Most of the hardware changes are made to the system agent. The modified system

agent is shown in Figure 12, with old components shown in white (controllers, DMA unit

and migration buffer) and the new ones in gray (migration manager with migration queue).

The main new component is the migration manager (MM), which coordinates the sequence

of actions done by different components during page migration. The MM contains a data

structure called the migration queue (MQ) to hold pages to be migrated. This queue is

updated by the OS with several migration requests, once the OS has decided what pages

to promote to DRAM and demote to PCM. The queue is programmed in batch to avoid

involving the OS in every page migration. Once updated, the hardware does the migrations

in the queue until there are no more entries.

Figure 12 also shows some of the messages sent and received by the system agent as

57



Figure 12: The modified system agent, showing new components in gray. Gray arrows represent

messages from/to the cores, LLC cache slices and OS.

part of migration and conventional operation (read and write memory requests). During

page migration, the MM sends messages to pause cores, update TLBs, pin pages in the LLC

and flush pages from the LLC. The MM receives acknowledgments from the cores and cache

slices to signal the completion of requests. The migration process is explained in more detail

in Section 5.3.3.

5.3.2 Cache

The new capability that the cache must provide is the ability to pin cache blocks that belong

to a page being migrated by the DMA unit. My mechanism for pinning is based on a new PIN

register, which holds the physical page address of the pinned page (see PPN in Figure 11).

When the cache receives a message to pin a page, it stores the page number in this register

and sets the valid bit (v) to indicate the register holds a pinned page. All blocks belonging to

the pinned page are not candidates for eviction between page pinning (set v) and unpinning

(clear v). Only one page can be pinned simultaneously.

This mechanism is designed to avoid latency impact on normal cache operation; only

58



the eviction process is modified. Read and write hits to the cache do not involve additional

delay because PIN is not consulted during hits, and the tag and data array are unmodified.

Pinning a page does affect the eviction procedure, but eviction can be performed in parallel

with the memory access that brings new data into the cache. It involves only a few additional

comparisons. Therefore, cache eviction with pinning does not add extra latency to a cache

fill into the LLC.

Figure 13 shows the architecture of a 4-way set-associative cache and the way it is

modified for pinning. Traditionally, addresses are divided in three parts for a cache access.

The offset is used to identify what part of the cache block is being requested, while the index

is used to select the correct set in the tag array. The tag is used to identify which way holds

the correct block, if any. An address can also be divided into its page number and its page

offset. Since my mechanism pins the whole page (as opposed to a single block), I keep the

page number in PIN. In a typical cache configuration, the number of bits required for the

page offset is greater than the number of bits for the cache offset (a page is usually larger

than a cache block) and smaller than the number of bits for the cache offset and the cache

index (cache size divided by associativity is usually much bigger than page size). Thus, only

some of the bits are part of the page number. I term these bits high index bits (HIB), and

the remaining index bits low index bits (LIB). As shown at the bottom of Figure 13, the page

number is formed from the cache tag bits and the HIB, while the page offset is composed of

the LIB and the cache offset.

When a cache block needs to be evicted, the HIB of the requested address and of the

pinned page are compared. If their values are equal and the PIN register’s valid bit is set,

then this means one block in the cache set is potentially pinned. To determine if a block

is actually pinned, the tag of the pinned page is compared with the tags from each way. If

one of the tags match, the matching block belongs to the pinned page and should not be

evicted. Note that it is unnecessary to access the tag array again because the tags for the

set are already available from the original access that missed in the cache.

The result of the HIB and tag comparisons and the LRU bits for the set are fed into

the LRU logic, which selects the way to evict. Assuming an LRU stack algorithm, the logic

checks whether the LRU block is pinned, as determined by the tag comparisons. If it is, the

59



Figure 13: Cache organization with support for page pinning.

eviction algorithm simply chooses the second LRU block instead of the first one.

There are two observations to note about pinning. First, pinning affects only one cache

block in a set because only one page is pinned at a time and each block of a page is mapped

to a different set1. Therefore, there are always other blocks in a set that may be evicted to

hold newly requested data. Second, PIN serves to avoid eviction of pinned blocks from the

LLC. The caches “above” the LLC (e.g., L1 and L2) behave normally since holding blocks

in the LLC does not influence their operation. The coherence protocol for these caches is

similarly unaffected and needs no change for CPM.

1With the usual cache indexing function.

60



Figure 14: Steps for hardware for CPM.

5.3.3 Concurrent Page Migration

CPM is initiated when the OS writes to the migration queue after determining what pages

to migrate. To start a migration, the MM reads and removes the first entry in the migration

queue. A migration is characterized by a 5-tuple of process ID, virtual page number, source

physical page number, destination physical page number and the address of the PTE in

memory. Figure 14 gives an overview of CPM.

The first step pins the source physical page to the cache. To do this, the MM sends one

message over the control portion of the interconnect to all cache slices with the physical page

number of the page to be pinned (step 1.a). The caches write the page number into the PIN

registers and set the PIN valid bits. If the destination page is a PCM address, the MM tells

the caches to flush the source physical page (step 1.b).

In the second step, the MM programs the DMA unit to transfer the physical page to its

new location. The DMA unit uses the migration buffer to temporarily hold data read from

one memory before it is written to the other memory. When the copying finishes, the DMA

unit signals the MM that the migration finished.

The third step atomically updates the PTE and TLB and flushes the page from the

cache. To do this, the MM sends a message to all cores with the process ID and virtual

61



address of the page that is being migrated (step 3.a). The contents of this message are

written to a core’s Pause on Access (POA) register and its valid bit is set. On every access,

POA is compared to the requested address. Because the register holds a virtual address, the

comparison is done simultaneously with address translation to hide the comparison latency.

Once POA is set, if an executing program with the same process ID accesses the virtual

address in the POA register, the core executing the program is stalled until the POA register

is cleared. This action guarantees the PTE and TLB update and cache flush occur atomically.

The application is allowed to execute as long as it only accesses other pages, since pinning

prevents evictions of the migrating page caused by cache misses from other pages. After

receiving acknowledgments from all cores that they updated their POA, the MM sends

a message to all cores with the process ID, virtual page, PTE address and destination

physical page of the migrating page (step 3.b). All cores that are executing the process

under migration must update the entry, if present, in their TLB and invalidate the PTE

from their private L1 caches. The PTE invalidation prevents the page table walker from

reading a stale L1 value during TLB misses. The MM also writes the destination physical

address into the page table by accessing the PTE directly in the corresponding L2 cache

slice. In parallel with the update of the page table and TLB, the MM instructs the cache

slices to flush the source physical address of the migrating page (step 3.b). Finally, the MM

requests all cores to clear their POA valid bits and, concurrently, instructs the cache slices

to unpin the page by clearing their PIN valid bits (step 3.c).

5.4 EVALUATION

This section examines how CPM improves performance and energy of single and multi-

programmed workloads in a chip multiprocessor.

62



Table 8: Architectural parameters

Parameter Value

2GHz Chip multiprocessor Four single-issue, in-order cores

L1 I/D private cache 32KB per core, 4-way, 1 cycle hit

L2 unified shared cache 1MB, 16-way, 16 cycle hit, LRU

32MB DRAM memory 50 cycle access

4GB PCM memory 125 cycle read, 1000 cycle write

PCM/DRAM energy ratios 2.1 (reads) and 43.1 (writes)

PCM/DRAM request queues Separate 16-entry request queues

PCM/DRAM bus 32-bit single-channel at 800MHz

5.4.1 Methodology

To evaluate CPM, I first used Pin [47] to generate a trace of memory references. The trace

includes the address of all application loads and stores, as well as the address of every

instruction executed. The trace is next input to an in-house cycle-accurate simulator that

models the cache hierarchy and memory system. The simulator faithfully accounts for latency

and power of all low-level protocols and actions performed by the PCM and DRAM devices,

buses, read/write queues, and device parallelism (banks/ranks).

Table 8 shows the main architectural parameters, which are derived from current mobile

devices (i.e., smartphones and tablets) [48]. I assume four single-issue in-order cores to allow

a larger portion of each benchmark to be evaluated. DRAM and PCM access times are from

Qureshi et al. [26] and energy values from Lee et al. [22]. PCM latencies are adjusted to

account for a smaller 64-byte cache block, buffering in the PCM device, and an 8-bank PCM

organization. For single-programmed workloads, I assume that each process has one fourth

of the shared resources (i.e., each process has a 256KB slice of the 1MB cache, 8MB of the

32MB DRAM, and 4 of the 16 request queue entries). For multi-programmed workloads, I

fully model contention for all shared resources, including all request queues.

For the experimental study, I use SPEC CPU20062. While these benchmarks were orig-

inally intended for desktop and server systems, they exhibit a wide range of architecture

2I could not compile dealII and tonto due to limitations in the simulation environment.

63



and memory behavior expected for mobile computers. In particular, prior research identi-

fied similarities in memory behavior between SPEC CPU2006 and interactive smartphone

applications [49]. In addition, SPEC CPU2006 has a mix of behavior reflecting different

kinds of application characteristics [50]. In comparison, older benchmarks, like MiBench

and MediaBench, do not put much pressure on the memory sub-system and are not repre-

sentative of current systems. I treat each input of any benchmark that has multiple data

sets as a separate workload, which yields a total of 53 different input/program combina-

tions. In the figures, a number after a benchmark name is the input used for the benchmark

(e.g., bzip2-2 is the 2nd reference input for bzip2 ). I simulate each benchmark for 1 billion

instructions. I present results for 13 of the 53 combinations, since the working set of the

remaining workloads is small enough to fit in DRAM, thereby avoiding migrations. I also

run a multi-core configuration of the selected benchmarks, where four instances of the same

benchmark program are run on a separate core in the simulated 4-core chip multiprocessor.

In the experiments, I use the Multi-Queue page migration selection policy, a well-known

algorithm that has been shown to perform well in hybrid memory architectures [9]. The

parameters of the Multi-Queue policy are the same as in the original paper, except for Life-

Time (250µs) and FilterThreshold (0.25µs), which were changed to reflect the architectural

parameters of a mobile system. The baseline (PAUSE) consists of an OS-only system with-

out CPM that migrates pages by pausing the application on writes to migrating pages. I

model the behavior of CPM and all its latencies, including all costs associated with pausing

the application during atomic operations, flushing the caches, buffering and contention for

buffer space, and updating the TLBs on multiple cores.

5.4.2 Single-Programmed Benchmarks

Figure 15 shows execution time normalized to OS-only without CPM for 13 of the single-

programmed workloads. The figure also shows the maximum potential speedup (NO COST),

which is calculated by assuming a migration cost of 0 cycles. As the figure shows, CPM

always has a performance gain, with speedup ranging from 1.05 (gobmk-2 ) to 1.22 (sjeng)

and an average of 1.16. This gain happens because applications can continue to execute (i.e.,

64



Figure 15: Single-programmed: Speedup.

write) during long latency DRAM to PCM migrations. Some benchmarks have an especially

large improvement, such as bzip2-1, sjeng and libquantum. These results are explained by

two factors. First, these applications have frequent migrations. For example, in libquantum,

stalls due to migration in the baseline account for approximately 28% of total execution

time. These stalls are avoided with CPM. Second, the baseline requires that the migrated

page is flushed from the cache prior to a migration to DRAM. Assuming that the page is

frequently written, it is likely that most of its cache blocks are dirty, causing more blocks

to be flushed. CPM does not require this flush before migration, which reduces pressure on

the PCM write buffer and application stall time.

5.4.3 Stall Behavior

To gain insight into the gains of CPM, I further examined the source of program stalls for

single-programmed workloads. Figure 16 shows the number of cycles that each application

65



Figure 16: Single-programmed: Number of cycles waiting. First bar is baseline and second bar is

CPM.

stalls waiting for (a) migrations to finish (labeled Migration in the graph), and (b) read

operations to the cache hierarchy and memory system (labeled Penalty). The first bar in

each set corresponds to the baseline, and the second to CPM.

A taller bar means an application stalls longer, and the large proportion of migration

stalls suggests that applications pause frequently due to ongoing migrations. CPM improves

performance because it reduces the cycles waiting for migrations. For example, in libquantum,

the number of cycles spent waiting for migrations is reduced from 1.1 billion to 98.8 million.

In some cases, such as libquantum and all bzip2 inputs, the memory penalty increases slightly

under CPM. This is because page migrations occupy a fraction of the memory bandwidth

to PCM, which delays application memory accesses that happen concurrently under CPM.

However, the increased penalty is not large enough to offset the reduction in stall cycles due

to migrations. For example, the cache hierarchy penalty of bzip2-6 increases from 4.2 billion

cycles in the baseline to 4.8 billion cycles with CPM (14% increase), while the time waiting

66



Figure 17: Single-programmed: Energy consumption.

for migrations is reduced from 1.8 billion cycles to less than 100 million cycles.

5.4.4 Energy

Figure 17 shows memory energy for the single-programmed workloads. The values in the

graph are normalized to the baseline’s memory energy: a smaller number (< 1.0) is a larger

improvement over the baseline. The memory energy includes the dynamic energy for DRAM

and PCM accesses, but it is conservative in that it does not consider savings in program

execution time. Energy for each type of access (read or write) and memory (DRAM or

PCM) is calculated by multiplying the number of accesses of that type to that type of

memory by the energy per access for that access and memory type (see Table 8). Total

energy is the sum of all four access type/memory type combinations.

As the graph shows, the normalized energy for CPM varies from 0.70 (in libquantum)

to 0.8 (in leslie3d), with an average of 0.75. This large reduction happens because CPM

67



allows the migration policy to have a more up-to-date view of application memory access

patterns, which leads to better migration decisions. For example, in libquantum, the fraction

of memory accesses that are serviced by DRAM increases from 50.7% in the baseline to

58.4% for CPM. In general, migration policies that rely on recency information to make

migration decisions can greatly benefit from CPM because it allows applications to continue

gathering access information during migrations, which prevents pauses from interfering with

the migration algorithm. Multi-Queue is particularly susceptible to long pauses because

pages become eviction candidates when they are not accessed during a pre-defined interval

of time.

5.4.5 Sensitivity to Migration Cost

I artificially varied the cost of migration to analyze the behavior of my scheme with different

hardware configurations. Figure 18 shows the average speedup of all 13 single-programmed

workloads for different migrations latencies. The range of latencies effectively accounts for

different amounts of memory ranks and banks (parallelism) and write buffering: the lowest

cost corresponds to significant parallelism and buffering, while the highest cost corresponds

to minimal parallelism and buffering. The X-axis shows the number of cycles required to

migrate a page from DRAM to PCM. The migration cost from PCM to DRAM is one half

the migration cost to PCM.

The average speedup is lowest at both ends of the range, and highest toward the center.

For the lowest and highest migration costs (1,000 cycles and 64,000 cycles), the average

speedup is 18% and 2%, respectively. The highest average speedup is 35% for a migration

cost of 4K cycles. In general, a low migration cost has a small gain for CPM because

applications are paused for short periods of time. In addition, when migrations are fast, the

probability of the application writing to a page under migration is low. These two factors

reduce the amount of time that CPM can save by allowing writes to proceed while migrations

are under way.

For values larger than 4,000 cycles, speedup decreases because long migrations prevent

the system from reacting quickly to changes in access behavior, which extends the period

68



Figure 18: Average speedup of CPM with single-programmed workloads for different migrations

costs in cycles.

of time in which pages are assigned to memory resources in a sub-optimal way. Since CPM

allows writes to continue, more memory accesses will be performed under the sub-optimal

assignment, reducing performance.

The difference between the average speedup in Figures 15 and 18 is due to the actual

cost of migration not being exactly 8K cycles. In my simulations, migration cost is 8,750

cycles on average due to contention in the memories and buses from regular accesses.

From these results, I conclude that CPM will help even when the system has significant

memory parallelism, but the approach is best suited for typical mobile systems that fall in

the middle range of effective migration latency.

5.4.6 Multi-Programmed Workloads

Figure 19 shows the speedup of multi-programmed workloads normalized to OS-only without

CPM. The speedup ranges from 1.00 (milc) to 1.13 (bzip2-1 ), with an average of 1.08. CPM

is still effective for multi-programmed workloads, although the gains are generally smaller

69



Figure 19: Multi-programmed: Speedup.

than for their single-programmed counterparts. This is because CPM only migrates one page

at a time. During a given migration, only one of the four applications running may pause

due to a write to a page under migration.

Figure 20 shows the stall time behavior of multi-programmed workloads. The difference

in stall cycles between single and multi-programmed applications shows the impact of doing

only one migration at a time. On average, multi-programmed workloads spend only 9% of

stall cycles waiting for migrations in the baseline, while single-programmed workloads spend

27%. For milc, CPM does not improve performance for multi-programmed workloads at all

because the number of stall cycles due to migrations in the baseline is only 5% of all stall

cycles. In addition, the Multi-Queue migration policy is less effective under CPM, resulting

in a higher average memory access time that is not offset by the reduction in migration stall

time.

As these results show, CPM is also effective for multi-programmed workloads, achieving

70



Figure 20: Multi-programmed: Number of cycles waiting.

8% average speedup with only one migration at a time. With more DMAs, memory channels

and additional support for multiple concurrent migrations and smarter migration policies,

an even better improvement in performance is possible, as shown in Chapters 6 and 7.

5.5 SUMMARY

This chapter introduced simple hardware support to mitigate the cost of page migration.

Concurrent page migration (CPM) is proposed to pin the contents of pages under migration

in the last-level cache, which avoids the need to stall an application. It is demonstrated that

pinning reduces page migration overhead: The performance of single-programmed applica-

tions is increased by 17% (average) with CPM and the performance of multi-programmed

workloads is increased by 8% (average).

71



6.0 CONCURRENT MIGRATION OF MULTIPLE PAGES

CPM, presented in Chapter 5, allows applications to continue executing ever after writing

to migrating pages. However, in CPM, only one page can be under migration at a given

time. A single migration can become a bottleneck in multi-core systems, where several

independent applications may require migration at the same time. Although CPM can

be augmented to support multiple migrations, the number of concurrently pinned pages is

ultimately constrained by the structure of the cache: if more pages are pinned than there are

ways in a cache set (typically 16), the eviction algorithm will not be able to find an eviction

candidate, and the application will have to be paused. In addition, cache performance

might be impacted before this limit is reached because the cache eviction algorithm will

be forced to make non-optimal eviction decisions. This chapter proposes hardware support

to overcome this limitation. My technique enables multiple simultaneous migrations, while

allowing applications to continue execution during migration, even during writes.

6.1 CONCURRENT MIGRATION OF MULTIPLE PAGES

Concurrent Migration of Multiple Pages (CMMP) is a hardware-software co-designed scheme

that provides software-managed hybrid memory the ability to migrate multiple pages at the

same time. CMMP allows writes to migrating pages by keeping track of which blocks of a

page have already been copied to the destination. On an access to a block, the state of the

block is consulted and the access is redirected to the appropriate location. CMMP inherently

supports multiple concurrent migrations by tracking the block states of multiple pages.

CMMP has four parts: Concurrent Migration (CM), Access Redirection (AR), On-

72



Last	
  Level	
  Cache	
  

Hybrid	
  Memory	
  
Controller	
  

DRAM	
   PCM	
  

0000110011110010 

000000 

1

valid dest addr block state bitmap 

0000000000000000 000000 0

1100011111110011 0F08C0 1

... 

Access Redirection Table (ART) 

Page	
  Migra3on	
  

migration actions access counts 

cache accesses 

memory 
access 

promote 

demote 

So3ware	
  

Hardware	
  

Figure Key 

0A0080 FF0080 

F800A0 

source addr 

ranks 

Migration 
Policy 

ART 
000000 

count 

000000 

67890 

... 

Page Access Count Table (PACT) 

12345 AE0060 

EE0000 

 addr 

PACT 

migration decisions 

Figure 21: Overview of software and hardware components for CMMP.

demand Block Migration (OBM) and Partial Demotion (PD). CM and AR provide the

ability to concurrently migrate multiple pages while allowing applications to continue ex-

ecuting during migration. OBM allows migrations to transfer blocks as they are accessed

by the application, minimizing memory system interference. PD allows partially migrated

pages to be selected for migration back to PCM, also reducing interference.

Figure 21 shows the design of CMMP. Access counts are collected by hardware, using

the Page Access Count Table (PACT). The contents of PACT are periodically read by the

OS and passed to the Migration Policy. The migration policy, which is implemented in

software as part of the OS, ranks pages according to access counts. The policy decides what

pages to promote from PCM to DRAM and what pages to demote from DRAM to PCM.

Page migration is performed by the Hybrid Memory Controller, which copies pages between

memories and redirects memory accesses using the Access Redirection Table (ART) to keep

track of the state of migrating pages.

73



6.1.1 Migration Policy

The migration policy is run periodically to generate a list of candidate pages for migration.

To make promotion and demotion decisions, the migration policy categorizes memory pages

based on access count and recency.

For CMMP, we use the threshold queue of Multi-Queue as the criterion to categorize

hot and cold pages. Hot pages that are in PCM are candidates for promotion, and cold

pages that are in DRAM are candidates for demotion. Once a page becomes a promotion

candidate, it is migrated concurrently with other pages. Demotion copies cold data back

to PCM to keep enough free DRAM space for performing promotion of hot PCM pages.

Demotion candidates are migrated one at a time starting from the lowest ranked page until

there are no more candidates, or more than FreeThreshold DRAM capacity is available

(FreeThreshold is a parameter). We note that CMMP is not limited to Multi-Queue. In

fact, any algorithm that can rank pages and categorize them based on coldness/hotness can

be used with CMMP.

To support Multi-Queue and similar migration policies, CMMP maintains post-LLC

access count information. To gather page counts, PACT tracks accesses to a subset of pages.

The table is indexed by physical page number; each entry in the table stores how many times

the page has been accessed. The table is accessed on LLC misses and writebacks outside of

the critical path of delivering cache hits to the processor. When accessed, if a page is not

found in PACT, a new entry is allocated and the count set to 1. A count of zero is used to

identify an invalid entry. When the table becomes full, the entry with the lowest count is

evicted. Periodically, the OS reads the contents of PACT and resets the table. The gathered

information is used by the migration policy.

6.1.2 Concurrent Migration

CMMP uses ART, a special data structure to enable concurrent migration. ART has one

entry for each ongoing migration. ART entries are inserted by the OS in response to deci-

sions from the migration policy. After inserting a new entry, the hybrid memory controller

copies the page from source to destination, relying on ART to track the state of each block.

74



Algorithm 4 PCM to DRAM migration (promotion)

promote(pcmPage)

1 if (¬ART .LookUp(pcm page))
2 entry ← ART .insert(pcmPage)
3 entry .valid ← 1
4 entry .dest ← dramFreeList .getPage()
5 entry .ClearStateAll()

For PCM to DRAM migrations (promotion), blocks are not transferred immediately to the

destination but copied on-demand as they are accessed (OBM, see Section 6.1.3). As a

results it is possible that some pages are only partially copied to DRAM at a given point of

time. For DRAM to PCM migrations (demotion), blocks are copied immediately. OBM is

not used for page demotion because pages are cold, and thus, unlikely to have blocks copied

as they are accessed.

ART is a hardware table indexed by physical address of the source page. Each entry

contains a valid bit, destination page number and block state bitmap, which has the location

of the most current version of each block in a page (0 means the block is in source location

and 1 means the block has been copied to the destination). The page addresses are 36 bits

(256TB physical address space) and the bitmap is 64 bits (4KB page and 64B blocks) for a

total of 136 bits per entry.

Next, we describe how promotion and demotion operate, using ART.

6.1.2.1 Promotion Algorithm 4 shows the steps for PCM to DRAM migration. This

algorithm is run for every PCM page that becomes hot (i.e., crosses the threshold queue)

during periodic execution of the migration policy, as long as there are free DRAM pages and

free ART entries. If the page is not currently being migrated (no allocated entry in ART),

then a new entry in the table is allocated (lines 2 to 3). A free DRAM page is obtained from

the free list (line 4) and the block state of all blocks is set to not copied (line 5). Note that

the page is not copied immediately; instead, CMMP relies on OBM to copy the blocks as

they are accessed by the application (see Section 6.1.3).

75



Algorithm 5 DRAM to PCM migration (demotion)

Demote(dramPage, pcmPage)

1 // Insert new entry
2 entry ← ART .insert(dramPage)
3 entry .valid ← 1
4 entry .dest ← pcmPage
5 // Lookup old PCM to DRAM migration
6 oldEntry ← ART .LookUp(pcmPage)
7 if (oldEntry .valid)
8 // Old entry exists: copy state and remove old entry
9 entry .state← Complement(oldEntry .state)

10 oldEntry .valid ← 0
11 else
12 // No old entry: entire page was copied to DRAM
13 entry .ClearStateAll()
14 // Issue copy of blocks in DRAM to PCM
15 for (b ← 0; b ≤MaxBlocks; b ← b + 1)
16 if (entry .GetState(b) == 1)
17 Copy(BlockAddr(dramPage, b),BlockAddr(pcmPage, b))

6.1.2.2 Demotion Figure 5 shows the algorithm for DRAM to PCM migration. This

algorithm is invoked after the migration policy has determined the next page to demote.

DRAM pages that were previously allocated to PCM can reuse their original PCM page.

This allows writes of clean blocks to proceed at read speed using write minimization [25].

The algorithm receives as the second parameter either the original PCM page or a free PCM

page.

Due to OBM, it is possible that pages are not fully migrated to DRAM when scheduled for

demotion back to PCM. CMMP provides support for Partial Demotion (PD), which copies

back to PCM only those blocks that have been migrated to DRAM. PD uses the block

state information in ART to identify the blocks to copy. After allocating and initializing an

entry in ART, the algorithm checks whether the original page (PCM) is still being promoted

(Algorithm 5, lines 6 to 7). If so, the block state is bitwise complemented and copied to the

new ART entry and the old one is removed (lines 9 to 10). The bitwise complement of the

state guarantees that blocks that were not copied to DRAM as part of promotion are not

copied back to PCM (lines 15 to 17), reducing memory bandwidth.

76



6.1.3 On-Demand Block Migration

Page migration is usually done at the granularity of pages: a whole page is allocated and

copied from source to destination. This effectively prefetches a page into DRAM, which can

improve performance if most of the page is accessed (spatial locality). However, copying a

whole page can have a detrimental impact on performance due to significant interference

with regular application requests [18].

To reduce migration bandwidth, we introduce On-demand Block Migration (OBM) for

CMMP to copy blocks as they are accessed. OBM reduces pressure on the memory system

in two ways: 1) only blocks that are requested are copied, and 2) bursts of traffic injected

by copying the whole page are avoided and spread over more time, effectively giving higher

priority to application requests.

OBM uses the block state bitmap in ART to determine the location of the most current

copy of a block. On a read access, if the block has not been copied, it is read from the

source memory, delivered to the LLC and written to the destination memory. If the block

has already been copied, it is read from the destination memory and delivered to the LLC.

On a write access, the block is written directly to the destination memory regardless of the

block state (the latest version is in the LLC).

6.1.4 Access Redirection

To allow LLC misses and writebacks to pages under migration to be redirected to their

correct location, we incorporate Access Redirection (AR) in CMMP. With AR, migration is

transparent and applications can continue executing without pausing, even during writes to

migrating pages. AR works after the LLC, inherently supporting multiple cores. Blocks are

cached as usual and there are no changes to the caches.

Algorithm 6 shows the steps for AR, which uses ART to determine the current location of

blocks. For every LLC miss or writeback, ART is checked to see if the page is currently being

migrated. If not, the access is redirected to the corresponding memory based on the physical

address of the request (lines 4 to 7). Otherwise, another action is performed depending on

the source page of the request, the type (read vs. write) and the state of the block (copied

77



Algorithm 6 Access Redirection

AccessRedirect(addr , read , data)

1 page ← PageNum(addr)
2 entry ← ART .LookUp(page)
3 if (¬entry .valid)
4 if PCMlowpage ≤ page ≤ PCMhighpage

5 return pcm.access(addr , read , data)
6 else
7 return dram.access(addr , read , data)
8 else
9 block ← BlockNum(addr)

10 if PCMlowpage ≤ page ≤ PCMhighpage

11 dramAddr ← Address(entry .dest , block)
12 if (read)
13 if entry .getState(block)
14 return dram.access(dramAddr ,true)
15 else
16 entry .setState(block)
17 d ← pcm.access(addr ,true)
18 return dram.access(dramAddr , false, d)
19 else
20 entry .setState(block)
21 return dram.access(dramAddr , false, data)
22 else
23 pcmAddr ← Address(entry .dest , block)
24 if (read)
25 if entry .getState(block)
26 return pcm.access(pcmAddr ,true)
27 else
28 return dram.access(addr ,true)
29 else
30 entry .setState(block)
31 return pcm.access(pcmAddr , false, data)

or not copied). Writes are always redirected to the destination (lines 21 and 31). Reads are

redirected only when the block has already been copied to the destination (lines 14 and 26).

Otherwise, the source location is accessed (lines 17 and 28). OBM happens when reading a

block from PCM that has not yet been copied. It reads the block from PCM, sets the state

of the block to copied, writes it to DRAM and delivers it to the LLC (lines 16 to 18).

78



Table 9: Architectural parameters

Parameter Value

4GHz chip 4 4-issue wide, out-of-order cores,
multiprocessor 128-entry reorder buffer

L1 I/D private 64KB per core, 4-way, LRU,
cache 3 cycle hit, 16-entry queue

L2 unified 8MB, 16-way, LRU
shared cache 32 cycle hit, 32-entry queue

128MB DRAM memory 64 banks, 32-entry queue per bank,
@ 1000MHz tCAS-tRCD-tRP : 12-12-12 (ns)

Array energy (pJ/bit): 1.17 (reads), 0.39 (writes)
Buffer energy (pJ/bit): 0.93 (reads), 1.02 (writes)

4GB PCM memory 128 banks, 8-entry queue per bank,
@ 400MHz tCAS-tRCD-tRP : 12-55-150 (ns)

Array energy (pJ/bit): 2.47 (reads), 16.82 (writes)
Buffer energy (pJ/bit): 0.93 (reads), 1.02 (writes)

PCM/DRAM bus 64-bit single-channel

6.2 EXPERIMENTAL RESULTS

6.2.1 Methodology

For our experimental evaluation, we use HMMSim, a hybrid main memory simulator [18].

The main architectural parameters are shown in Table 9. We model a multi-core system

with private L1 caches and a shared L2 cache. DRAM and PCM latencies and energy values

are from Lee et al. [22]. For PCM, tRP is 0 for clean row buffers (due to non-volatility) and

150ns for each dirty block in the buffer (to account for power constraints in the PCM chip).

CMMP has several parameters, which we chose empirically through experimentation.

FreeThreshold is the maximum fraction of free DRAM space available for page promotion.

We saw little variation in performance and energy for this parameter, and set it to 1% of

DRAM capacity for all experiments. We set the period of reading the PACT to 1ms, a

typical OS interrupt period. We chose a size of 8k entries for the PACT, which is enough

to hold the counts of most pages during a 1ms interval. Performance is highly sensitive to

the size of ART. Thus, we chose a size of 32k entries, enough to fit all migrations to DRAM.

79



Both tables have an associativity of 32. We used CACTI 5.3 to estimate the energy of PACT

and ART to be 0.01nJ and 0.06nJ per access, respectively. Access latency is 0.6ns for PACT

and 1.3ns for ART. Since PACT and ART are only accessed on LLC misses and writebacks,

the additional energy of accessing them is very low compared to DRAM and PCM energy

(less than 1% on average). Similarly, the latency of accessing PACT and ART is negligible

compared to the average memory access latency (77ns on average). We note that the energy

and performance effects of accessing PACT and ART are included in all our results.

For workloads, we use a subset of SPEC CPU2006 benchmarks run in rate mode as a

multi-programmed workload. We treat each input of the same benchmark as a separate

workload (in the figures, a number after the benchmark name is the input for the bench-

mark). Each workload is run for 1 billion instructions per core after a warm-up phase of

5 billion instructions. Each experiment consists of 4 copies of the same workload run in

parallel on our simulated 4-core system. To fully stress migration, we consider only multi-

programmed workloads with working set sizes greater than the available DRAM memory

(128MB). Programs with a low LLC miss rate (lower than 2 MPKI) are not reported be-

cause they put very little pressure on the memory system. Their results are the same as the

baseline because they do not benefit from migration.

For our experiments, we assume a baseline system running CPM [16]. We compare it

against three systems that incrementally implement each of the techniques of CMMP: 1)

CM migrates multiple pages concurrently by copying them as fast as possible. CM uses

access redirection to avoid pauses. 2) CM+OBM incorporates CM but copies pages on-

demand as they are used by the application. 3) CM+OBM+PD incorporates CM+OBM

and also allows for partial demotion of pages that have not been fully migrated to DRAM.

All systems, including the baseline, use the Multi-Queue migration policy with the original

parameters [9].

6.2.2 Performance

Figure 22 shows the speedup of each of the techniques of CMMP against the baseline system

for all benchmarks. On average, CM alone performs around 19% worse than the baseline,

80



0	
  
0.2	
  
0.4	
  
0.6	
  
0.8	
  
1	
  

1.2	
  
1.4	
  
1.6	
  
1.8	
  
2	
  

40
3.g
cc-­‐
6	
  

40
3.g
cc-­‐
7	
  

42
9.m

cf	
  

43
6.c
ac
tus
AD
M	
  

43
7.l
esl
ie3
d	
  

45
0.s
op
lex
-­‐1	
  

46
2.l
ibq
ua
ntu
m	
  

47
3.a
sta
r-­‐1
	
  

47
3.a
sta
r-­‐2
	
  

Av
era
ge
	
  

Sp
ee
du

p	
  

CM	
  
CM+OBM	
  
CM+OBM+PD	
  

Figure 22: Speedup of CMMP, normalized to the baseline.

with four workloads having a slowdown of more than 10% (403.gcc-6, 403.gcc-7, 450.soplex-

1 and 462.libquantum). In these workloads, CM migrates too many pages at the same

time without controlling the interference caused by migration, which slows down regular

application requests. Two workloads have speedups with CM: 473-astar-1 (8% speedup)

and 473.astar-2 (12%) can increase their share of DRAM requests (from 14% to 26%) with

fewer page migrations, reducing interference. For other workloads, additional migrations do

not appreciably change the fraction of regular requests serviced from DRAM (52% vs. 49%),

resulting in no speedups.

When CM and OBM are enabled, performance increases to 28% on average. The bulk of

this performance improvement comes from 5 workloads that have more than 25% speedup

(436.cactusADM, 437.leslie3d, 450.soplex-1, 473-astar-1 and 473.astar-2 ). In these bench-

marks, the fraction of DRAM requests stays relatively constant. However, the average service

time of regular requests to PCM is reduced considerably (from 190ns to 70ns) due to mi-

gration of blocks on demand over a large period of time. For the remaining workloads,

the reduction in average PCM access time is also significant (140ns to 61ns). However, the

81



0	
  
20	
  
40	
  
60	
  
80	
  
100	
  
120	
  
140	
  
160	
  
180	
  
200	
  

40
3.g
cc-­‐
6	
  

40
3.g
cc-­‐
7	
  

42
9.m

cf	
  

43
6.c
ac
tus
AD
M	
  

43
7.l
esl
ie3
d	
  

45
0.s
op
lex
-­‐1	
  

46
2.l
ibq
ua
ntu
m	
  

47
3.a
sta
r-­‐1
	
  

47
3.a
sta
r-­‐2
	
  

Av
era
ge
	
  Av

er
ag
e	
  
M
em

or
y	
  
Ac

ce
ss
	
  T
im

e	
  
(n
s)
	
  

CPM	
  
CM+OBM+PD	
  

Figure 23: Average memory access time of CMMP.

average DRAM access time increases considerably (from 39ns to 96ns) because CM+OBM

does not reduce DRAM bandwidth used by migration. Thus, the speedups are low for these

workloads.

Performance is further improved to 35% on average when using PD. Benchmarks with

low speedups under OBM benefit little from PD because they suffer mostly from DRAM

contention, which PD does not help alleviate. For workloads that do benefit, performance

improves because demotions take less time and some writes to PCM can be elided, further

reducing contention (average PCM access time is reduced from 70ns to 66ns). In addition,

PD releases cold DRAM pages earlier that can be used as destination for hot PCM pages,

allowing it to react more quickly to changes in application behavior (fraction of DRAM reads

is increased from 18% to 26%).

82



6.2.3 Average Memory Access Time

To gain insight into the performance of CMMP, we examined the average access time of

requests that reach the hybrid memory. Figure 23 shows the average memory access time

of requests as seen by the LLC for both the baseline and CMMP. The average access time

includes both DRAM and PCM components. The graph includes requests made by the

application and writebacks caused by evictions during regular cache operation as well as

by cache flushes due to migration. Migration traffic is not included to highlight how the

workload is affected by migration.

CMMP reduces the average memory access time of almost all workloads (on average,

from 144 to 77ns). As expected, the reduction is small for benchmarks that have little or

no speedup (see Figure 22). The exception is 403.gcc-7, which has a reduction in average

access time of 64% but only a 5% speedup. This discrepancy is due to a very high LLC

miss rate caused by flushes due to migration, which reduces the average cache access time as

seen by the CPU. The only workload that keeps its access time constant is 429.mcf, which

has the lowest speedup. For this benchmark, additional page migrations do not increase

the fraction of DRAM accesses or increase contention at the memories, resulting in similar

performance to the baseline. For all other workloads, the reduction is considerable (in some

cases exceeding 50%) and is accompanied by large performance gains.

6.2.4 Energy

Figure 24 shows dynamic energy consumption of DRAM and PCM memories for CMMP

normalized to the baseline. On average, energy consumption is reduced by 26%. Migration

of hot pages to DRAM steers requests away from PCM, which receives 60% less accesses

on average. Although DRAM requests and energy increase considerably (both by 3.3x on

average), the largest proportion of access come from PCM, resulting in an overall reduction

in energy.

83



0	
  

0.2	
  

0.4	
  

0.6	
  

0.8	
  

1	
  

1.2	
  

40
3.g
cc-­‐
6	
  

40
3.g
cc-­‐
7	
  

42
9.m

cf	
  

43
6.c
ac
tus
AD
M	
  

43
7.l
esl
ie3
d	
  

45
0.s
op
lex
-­‐1	
  

46
2.l
ibq
ua
ntu
m	
  

47
3.a
sta
r-­‐1
	
  

47
3.a
sta
r-­‐2
	
  

Av
era
ge
	
  

N
or
m
al
iz
ed

	
  E
ne

rg
y	
  

Figure 24: Energy of CMMP, normalized to the baseline.

6.3 SUMMARY

This chapter proposes a mechanism for efficient concurrent migration of multiple pages in

software-managed hybrid memory. The mechanism reduces contention at the memory system

caused by migration and provides a simple and elegant interface for communicating access

counts to software. CMMP reduces migration bandwidth by copying blocks on demand as

they are accessed by applications and by eliding the transfer of untouched blocks during

migrations to PCM. An evaluation of the proposed mechanisms using multi-programmed

benchmarks of different memory access characteristics show that it can improve performance

by 14% on average, while reducing energy consumption by 29%.

84



7.0 THRESHOLD MIGRATION POLICY

The characterization of overhead presented in Chapter 4 showed that software-managed

hybrid main memory has great potential for achieving high performance. The study showed

two possible ways of achieving this. The first one consists of improving the efficiency of page

migration, and was studied in Chapters 5 and 6. The second one consists of improving the

choice of pages to migrate, and is studied in this chapter.

This chapter proposes a new migration policy, called Threshold Migration Policy (TMP),

that builds upon hardware mechanisms proposed in Chapter 6: OBM and PD. TMP was

designed specifically to make better use of these mechanisms than existing policies. In

particular, TMP includes an algorithm for making decisions about pages that are currently

under on-demand migration. In contrast, existing policies simply treat these pages as regular

DRAM or PCM pages and use their promotion or demotion algorithms to manage them.

7.1 OVERVIEW

To reason about policies that use OBM and PD, I consider pages to be in one of three

possible states, shown in Figure 25. Since OBM transfers pages as they are accessed by

the application, pages can be partly in DRAM and partly in PCM for long periods of time

(Migrating state). The figure also shows the transitions between the states. A page in state

PCM is changed to Migrating when the application accesses one of its blocks, which results

in the start of migration. Pages in state Migrating can be selected to either complete their

migration to DRAM or rollback their migration to go back to PCM. Pages in DRAM can

be demoted to PCM. The goal of a policy is to select pages to go through the complete,

85



DRAM PCMMigrating

complete start

demote

roll back

Figure 25: Possible state of pages that use OBM and PD.

rollback and demote transitions. Only one page can be selected for each transition at a time.

The policy does not select pages for the start transition. Instead, pages go through the start

transition when the application accesses them while in PCM, triggering a migration.

The main idea behind TMP is to count the number of accesses to each page and partition

the pages into two sets based on their access counts. The first set has N pages, where N is

the number of pages that fit in DRAM. This set contains the pages with the highest access

counts. The second set contains all remaining pages. Note that pages in the first set do not

necessarily reside in DRAM, and pages in the second set do not necessarily reside in PCM.

The sets are used by TMP to identify pages that are good candidates for promotion (pages

in the first set that are not in DRAM) and demotion (pages in the second set that are in

DRAM).

More specifically, TMP selects pages in the first set that are not in DRAM as candidates

for completion. Among those candidates, the page with the highest block transfer rate

(measured as the number of blocks migrated divided by the time since the start of migration)

is selected for completion. Similarly, TMP selects pages in the second set that are not in

PCM as candidates for demotion, and the least recently used page among the candidates is

demoted. Lastly, the rollback page is selected as the least recently used page that is not in

86



the first set.

7.2 THRESHOLD MIGRATION POLICY

This section describes the TMP in detail. First, I describe the monitoring information that

the algorithm requires and how it is collected by the hardware. Next, I describe the data

structures used by the OS to keep this information for easy access by the algorithms. Last,

I describe the completion, demotion and rollback algorithms.

7.2.1 Monitoring

TMP uses data about how applications access memory and about the progress of migration

to inform its decisions. This data is collected by hardware using the mechanisms presented

in Chapter 6. The data used by the migration policy can be classified into two categories.

The first category is the number of accesses to each page, which is kept by hardware in

the PACT table (see Section 6.1). The second type of data is the progress information

about the ongoing migrations. This data is kept by hardware in the ART table, which holds

information about the status of each block in the page. These tables are read periodically

by the OS to update its own data structures.

7.2.2 Data Structures

TMP uses five different data structures to keep track of the monitoring data read from the

ART and PACT tables: an LRU list of all pages in DRAM that are candidates for demotion,

called the Demotion Candidate List (DCL); an LRU list of all pages under migration that are

candidates for rollback, called the Rollback Candidate List (RCL); a list, ordered by rate of

progress (decreasing), of all pages under migration that are candidates for completion, called

the Completion Candidate List (CCL); an binary tree of all page ordered by their access

counts (decreasing), called the Access Count Tree (ACT); and a hash table of all pages with

pointers to the nodes of the preceding lists and tree, called the Page Hash Table (PHT).

87



The ACT is used to separate pages into two sets. The High Access Count (HAC) set

contains the pages with the highest access counts. It has exactly N pages, where N is the

number of DRAM pages. The Low Access Count (LAC) set contains all remaining pages.

The ACT keeps track of these sets by using a pointer (High Access Count Pointer, or HACP)

to the Nth node in the tree. Pages that come before this pointer are in HAC and pages after

it are in LAC. When the access count of a page is updated, the pointer is updated accordingly

to maintain the invariant that it points to the Nth node.

The PHT is used to gain quick access to the nodes of a page in the DCL, RCL, CCL and

ACT without having to traverse those data structures. For instance, when processing an

entry from PACT, the page is looked up int the PHT to get the pointer to the page’s node

in the DCL. The node can then be removed from the list and inserted in the front, keeping

the LRU invariant. For the case of the ACT, the PHT also keeps a flag indicating whether

the page in the HAC or LAC sets.

Algorithm 7 shows the steps for updating the lists and tree structures when page moni-

toring information is read from the PACT. First, the page is looked up in the PHT. Second,

the page’s entries in the DCL and RCL lists, if present, are moved to the front. Third, the

page’s node in the ACT tree is removed and inserted in the new location (based on the new

access count of the page). If the page’s new count crosses into the HAC, the HACP pointer

is updated to point to the previous node in the tree to keep the number of pages in the HAC

constant. The algorithm takes care of the special case when the page’s node to be updated

is the one pointed to by the HACP.

To update the CCL (Algorithm 8), TMP reads the contents of the ART and creates a list

of all pages currently under migration to DRAM and the number of blocks that have been

migrated for each page. The number of migrated blocks is computed by counting the number

of ones in the block state bitmap, where a one indicates that a block has been migrated.

The CCL is obtained by ordering this list by decreasing number of blocks migrated.

88



Algorithm 7 Algorithm for updating data structures in TMP when page monitoring infor-

mation is read from the PACT

update(page, count)

1 entry ← PHT .lookup(page)
2 if entry .DCL pointer 6= nil
3 DCL.erase(entry .DCL pointer)
4 entry .DCL pointer ← DCL.insert(page)
5 if entry .RCL pointer 6= nil
6 RCL.erase(entry .RCL pointer)
7 entry .RCL pointer ← RCL.insert(page)
8 entry .count ← entry .count + count
9 if entry .isHAC

10 if entry .ACT pointer == HACP
11 HACP ← ACT .prev(HACP)
12 ACT .erase(entry .ACT pointer)
13 entry .ACT pointer ← ACT .insert(entry .count , page)
14 else
15 ACT .erase(entry .ACT pointer)
16 entry .ACT pointer ← ACT .insert(entry .count , page)
17 if newCount > HACP .count
18 HACP ← ACT .prev(HACP)
19 entry .isHAC ← true

Algorithm 8 Process for updating the CCL list with information read from the ART

updateCCL()

1 CCL.clear()
2 for each entry ∈ ART
3 if entry .valid and isDRAM(entry .dest)
4 CCL.add(entry .page,popcount(entry .blockState))
5 CCL.sortByCountDesc()

7.2.3 Completion, Demotion and Rollback

Algorithms 9, 10 and 11 show the steps for selecting pages for completion, demotion and

rollback, respectively. In all three cases, the algorithm simply selects the page at the front

of the list and removes it. For demotion and rollback, the algorithm must also find the

corresponding entry in the PHT so that it can update the pointers to 0, indicating that the

entry in no longer in the list. For completion, this last step is not necessary because there is

89



Algorithm 9 Steps for selecting a page for completion

complete()

1 entry ← CCL.popFront()
2 return entry .page

Algorithm 10 Steps for selecting a page for demotion

demote()

1 entry ← DCL.popFront()
2 old ← PHT .lookup(entry .page)
3 old .DCL pointer ← nil
4 return entry .page

Algorithm 11 Steps for selecting a page for rollback

rollback()

1 entry ← RCL.popFront()
2 old ← PHT .lookup(entry .page)
3 old .RCL pointer ← nil
4 return entry .page

no pointer from the PHT.

For the case of completion, the page at the front of the CCL is the one with the most

progress (least number of blocks remaining to finish migration). This means that the al-

gorithm prioritizes completing migrations that are closest to finishing by themselves. This

frees resources (ART entries and DRAM pages) that can then be used for migrating other

pages.

For the case of demotion, the algorithm chooses from among all DRAM pages the least

recently used one, which approximates the page that is less likely to be used next. This

results in a likely long interval until the demoted page is needed again, which frees up time

for the transfer of other pages.

For the case of rollback, the least recently used page among all pages that are currently

under migration to DRAM is selected. This idea behind this selection is that the page that

has not be accessed the longest since the start of migration is the most likely to not finish

90



migrating the remaining blocks. By rolling back its migration, an ART entry can be freed

to be used by another page that migrates faster.

The idea behind demoting the least recently used page is that the algorithm chooses a

page with a low probability of being used again in the near future

7.2.4 Analysis

In this subsection, I briefly discuss the complexity of updating and consulting data structures

in TMP. Throughout this discussion, p is the number of pages in the system, n is the number

of entries in the PACT table and m is the number of entries in the ART table. Since p is

very large, it’s critical that the algorithms have constant complexity with respect to p. In

contrast, n and m are relatively small. Therefore, the algorithms can tolerate a higher

complexity with respect to these values.

After reading monitoring information from the PACT, the DCL, RCL and ACT are

updated. Updating the LRU lists (DCL and RCL) takes O(n) time, since it requires moving

each page’s node to the front of the list. Updating the ACT takes O(n log p) time. For each

page in the table, a node is removed from the tree and inserted in a new location. Erasing

takes constant time, since a pointer to the node is given. Inserting takes log p time, since

the tree is ordered and binary search can be used. Note that finding the node in the middle

of the list or the tree takes constant time with respect to p, since a hash table (PHT) is used.

7.3 EVALUATION

7.3.1 Methodology

For the experimental evaluation of TMP, I used HMMSim, the simulation infrastructure

presented in Chapter 3. The main architectural parameters are the same used for the evalu-

ation of CMMP in Chapter 6, except the size of the ART. The parameters are shown again

in Table 10. Both the baseline (Multi-Queue)and TMP use CMMP, presented in Chapter 6.

TMP has several parameters, which were chosen empirically through experimentation.

91



Table 10: Architectural parameters

Parameter Value

4GHz chip 4 4-issue wide, out-of-order cores,
multiprocessor 128-entry reorder buffer

L1 I/D private 64KB per core, 4-way, LRU,
cache 3 cycle hit, 16-entry queue

L2 unified 8MB, 16-way, LRU
shared cache 32 cycle hit, 32-entry queue

128MB DRAM memory 64 banks, 32-entry queue per bank,
@ 1000MHz tCAS-tRCD-tRP : 12-12-12 (ns)

Array energy (pJ/bit): 1.17 (reads), 0.39 (writes)
Buffer energy (pJ/bit): 0.93 (reads), 1.02 (writes)

4GB PCM memory 128 banks, 8-entry queue per bank,
@ 400MHz tCAS-tRCD-tRP : 12-55-150 (ns)

Array energy (pJ/bit): 2.47 (reads), 16.82 (writes)
Buffer energy (pJ/bit): 0.93 (reads), 1.02 (writes)

PCM/DRAM bus 64-bit single-channel

ART 128 entries, 8-way,
0.4ns, 0.004nJ per access

PACT 8k entries, 32-way
0.6ns, 0.06nJ per access

AgingPeriod is the length of the period in either clock cycles or number of accesses used

for determining whether old accesses should be discarded. NumAgingPeriods is the number

of aging periods that an access remains part of the threshold calculation. The product of

AgingPeriod and NumAgingPeriods determines the number of cycles or accesses that an

access is retained for the threshold calculation. AgingType is the unit used for counting and

can be either clock cycles or number of accesses. The default values used in the experiments

are the following. AgingPeriod : 100 million; NumAgingPeriods : 10; AgingType: number of

accesses.

For workloads, I use a subset of SPEC CPU2006 benchmarks run in rate mode as a

multi-programmed workload. I treat each input of the same benchmark as a separate work-

load (in the figures, a number after the benchmark name is the input for the benchmark).

Each workload is run for 1 billion instructions per core after a warm-up phase of 5 billion

instructions. Each experiment consists of 4 copies of the same workload run in parallel on

92



0.8

1

1.2

1.4

1.6

1.8

2

40
0.
pe

rlb
en

ch
-1

40
0.
pe

rlb
en

ch
-2

40
0.
pe

rlb
en

ch
-3

40
1.
bz
ip
2-
1

40
1.
bz
ip
2-
2

40
1.
bz
ip
2-
3

40
1.
bz
ip
2-
4

40
1.
bz
ip
2-
5

40
1.
bz
ip
2-
6

40
3.
gc
c-
1 

40
3.
gc
c-
2 

40
3.
gc
c-
3 

40
3.
gc
c-
4 

40
3.
gc
c-
5 

40
3.
gc
c-
6 

40
3.
gc
c-
7 

40
3.
gc
c-
8 

40
3.
gc
c-
9 

41
0.
bw

av
es

42
9.
m
cf

43
3.
m
ilc

43
4.
ze
us
m
p

43
6.
ca
ct
us
AD

M
43

7.
le
sl
ie
3d

44
4.
na
m
d

45
0.
so
pl
ex
-1
 

45
0.
so
pl
ex
-2
 

45
4.
ca
lc
ul
ix

45
6.
hm

m
er
-1
 

45
8.
sj
en

g
45

9.
G
em

sF
D
TD

46
2.
lib
qu

an
tu
m

46
4.
h2

64
re
f-
3 

46
5.
to
nt
o

47
0.
lb
m

47
1.
om

ne
tp
p

47
3.
as
ta
r-
1 

47
3.
as
ta
r-
2 

48
2.
sp
hi
nx

Av
er
ag
e

Sp
ee
du
p

Figure 26: Speedup of Multi-Queue and TMP, normalized to No Migration.

the simulated 4-core system. To fully stress migration, I consider only multi-programmed

workloads with working set sizes greater than the available DRAM memory (128MB). I also

consider single-programmed workloads, where a single copy of a benchmarks is run on a

single core, and the available DRAM is set to one quarter of available DRAM (32MB).

For the experiments, a baseline system running CMMP with the Multi-Queue migration

policy is assumed.

7.3.2 Performance

Figure 26 shows the speedup of TMP relative to Multi-Queue for all benchmarks. On average,

TMP performs 15% better than the baseline, with four benchmarks having a speedup of

more than 40%. There are two main reasons for TMP’s improved behavior over to Multi-

Queue. First, when using CMMP, Multi-Queue does not have a mechanism for completing

migrations. As a result, some migrations spend a long time in the ART, which prevents

other migrations from taking place. In contrast, TMP either completes or rollbacks slow

93



1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

16 32 64 128 256 512 1k 2k 4k 8k

Sp
ee
du
p	
ov
er
	N
o	
M
ig
ra
tio
n

ART	Size

MQ TMP

Figure 27: Speedup of TMP for different ART sizes, normalized to the baseline.

migrations. Although Multi-Queue does have mechanism for rolling back migrations (a page

under migration can be selected for eviction from DRAM, resulting in a rollback), TMP

is better at selecting pages to free space in the ART because it has two available options

(complete and rollback).

The second reason is related to how the policies determine whether a page belongs in

DRAM vs PCM. In Multi-Queue, a fixed threshold is used (pages above queue 5 are in

DRAM, and 32 accesses are needed to get to queue 5). In TMP, the threshold moves

depending on the number of accesses that the memory has seen, allowing the policy to

determine the most heavily used pages. Coupled with an aging mechanism, the policy can

adapt better to the access patterns of applications, resulting in better performance.

Figure 27 shows the average speedup of Multi-Queue and TMP relative to No Migration

for different sizes of the ART. The performance of TMP relative to No Migration is high

for all ART sizes (at least 25% speedup). This is not the case for Multi-Queue, which

has low speedups when the ART is small. With large ART sizes, both Multi-Queue and

TMP perform well. This behavior is consistent with the explanation given in the previous

paragraph: when Multi-Queue has enough space in the ART for other migrations, it performs

94



0.00

0.50

1.00

1.50

2.00

2.50

40
0.
pe

rlb
en

ch
-1

40
0.
pe

rlb
en

ch
-2

40
0.
pe

rlb
en

ch
-3

40
1.
bz
ip
2-
1

40
1.
bz
ip
2-
2

40
1.
bz
ip
2-
3

40
1.
bz
ip
2-
4

40
1.
bz
ip
2-
5

40
1.
bz
ip
2-
6

40
3.
gc
c-
1 

40
3.
gc
c-
2 

40
3.
gc
c-
3 

40
3.
gc
c-
4 

40
3.
gc
c-
5 

40
3.
gc
c-
6 

40
3.
gc
c-
7 

40
3.
gc
c-
8 

40
3.
gc
c-
9 

41
0.
bw

av
es

42
9.
m
cf

43
3.
m
ilc

43
4.
ze
us
m
p

43
6.
ca
ct
us
AD

M
43

7.
le
sl
ie
3d

44
4.
na
m
d

45
0.
so
pl
ex
-1
 

45
0.
so
pl
ex
-2
 

45
4.
ca
lc
ul
ix

45
6.
hm

m
er
-1
 

45
8.
sj
en

g
45

9.
G
em

sF
D
TD

46
2.
lib
qu

an
tu
m

46
4.
h2

64
re
f-
3 

46
5.
to
nt
o

47
0.
lb
m

47
1.
om

ne
tp
p

47
3.
as
ta
r-
1 

47
3.
as
ta
r-
2 

48
2.
sp
hi
nx

Av
er
ag
e

Sp
ee
du
p

Figure 28: Speedup of TMP for multi-core workloads, normalized to the baseline

well. TMP with a 16-entry ART can achieve the same performance of Multi-Queue with an

ART of 4k entries.

Figure 28 shows the speedup of TMP for multi-programmed workloads. The average

speedup is 18% across all benchmarks, with some benchmarks having a speedup of more

than 50%. The performance of individual benchmarks closely follows the results of the

single-programmed case: in most cases, the multi-core speedup is within 3% of the speedup

seen in the single-core case.

Figure 29 shows the average multi-programmed speedup for different sizes of the ART

for Multi-Queue and TMP. TMP again performs well relative to No Migration (more than

25% speedup), especially for large ART sizes (more than 40% for ART sizes of 4k and

greater). Multi-Queue also does well with large ART sizes, but struggles with small ones.

In general, both Multi-Queue and TMP benefit from large ART sizes more with multi-

programmed workloads than with single-programmed workloads. This is because there are

more opportunities to select pages for migration than can benefit performance, and a large

95



1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

16 32 64 128 256 512 1k 2k 4k 8k 16k 32k

Sp
ee
du
p	
ov
er
	N
o	
M
ig
ra
tio
n

ART	Size

MQ TMP

Figure 29: Speedup of Multi-Queue and TMP for different ART sizes for multi-core work-

loads, normalized to No Migration.

ART size takes advantage of this. However, with small ART sizes, Multi-Queue performs

poorly relative to TMP. This is because when memory bandwidth is almost fully utilized

and the ART size is small, TMP can select a better page to migrate.

7.4 COMPARISON TO IDEAL SYSTEM

Figure 1 in Chapter 1 showed a comparison of the state-of-the-art and ideal systems for

several migration rates. In this last section, I revisit these results and compare them against

the new mechanisms presented in this thesis. Figure 30 shows the speedup relative to No

Migration of 6 systems: the state-of-the-art from Figure 1 (Multi-Queue without CMMP),

CMMP with Multi-Queue and ART sizes of 128 and 2k entries, CMMP with TMP and

ART sizes of 128 and 2k entries, and the ideal system from Figure 1 (Zero-Interference

migration with Offline migration policy). This comparison does not show the speedups for

migration rates lower than 100%, as did the previous figure. The reason is that limiting

96



0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

MQ CMMP	+	MQ
128

CMMP	+	MQ
2k

CMMP	+	TMP
128

CMMP	+	TMP
2k

Ideal

Sp
ee
du
p	
ov
er
	N
o	
M
ig
ra
tio
n

Figure 30: Comparison of CMMP with Multi-Queue and TMP and two ART sizes against

state-of-the-art (Multi-Queue without CMMP) and ideal systems.

the migration rate is not compatible with OBM, since blocks are migrated on demand as a

result of application requests and the rate is set by how fast the application accesses blocks.

Limiting the rate at which migrations are started does not slow down migrations, because a

migration will simply be triggered later and adopt the migration rate that is natural to the

application.

CMMP alone (without a better migration policy) can improve performance significantly

(between 7% and 18% depending on the ART size) relative to No Migration (the state-of-

the-art does worse than No Migration at 100% migration rate because of high interference

in the memory system). CMMP achieves this by using memory bandwidth more efficiently:

it allows policies to identify good migration candidates before paying the cost of a full

migration, and it coalesces application accesses to memory with migration traffic.

CMMP with a better migration policy (TMP is designed specifically for CMMP) can

improve performance even more (between 25% and 31% depending on the ART size) relative

to No Migration. TMP’s algorithm for selecting pages to migrate adapts better to application

behavior. In particular, CMMP has a moving threshold to identify hot and cold pages that

changes as pages are accessed (Multi-Queue’s threshold is fixed at 32 accesses). Compared

to Multi-Queue, TMP makes better use of ART entries, a limited resource in CMMP. TMP

97



with 128 entries performs better than Multi-Queue with 16 times as many entries (2k). TMP

achieves this by taking advantage of CMMP’s support for completion and rollback of ongoing

migrations, which frees resources for other migrations (Multi-Queue does not do this).

The best non-ideal system (CMMP with TMP and a 2k-entry ART) can achieve 58%

of the potential improvement of an ideal system. CMMP cannot match the performance

of a memory system with no interference due to migration. In addition, a real policy like

TMP cannot anticipate changes in application behavior as the Offline policy does. For these

two reasons, CMMP and TMP cannot achieve all of the potential improvement of the ideal

system. However, it does come close.

7.5 SUMMARY

This chapter introduced TMP, a new migration policy specifically designed to take advantage

of hardware mechanisms presented in Chapter 6. TMP keeps track of the most frequently

used pages, and easily adapts to changes in application behavior. TMP relies on CMMP’s

PACT table to keep an accurate count of page accesses and uses it to update internal OS

data structures with low complexity. TMP also uses progress information about migrations

from CMMP’s ART table to decide whether to rollback or complete a page’s transfer, which

can free resources. An evaluation of the proposed policy shows that TMP performs 15%

better than Multi-Queue for single-programmed workloads and 18% for multi-programmed

workloads.

98



8.0 CONCLUSIONS

This thesis proposes hardware support for enabling page migration in software-managed hy-

brid main memory systems. First, I built a simulation framework for studying and evaluating

hybrid main memory. This framework allows users to test new hardware mechanisms and

migration policies for managing hybrid memory. In addition, the framework provides various

tools for characterizing the behavior of programs running on hybrid memory systems. Based

on the results of characterization studies using this framework, I proposed mechanisms sev-

eral mechanisms for enabling efficient page migration in hybrid main memory. The following

conclusions can be drawn from the qualitative analysis and the experimental results.

• Current commodity hardware for main memory does not allow for efficient migration

of pages by the OS. As a result, applications must be paused during page migration,

considerably hurting performance. I propose concurrent page migration (CPM) to pin

the contents of pages under migration in the last-level cache, which avoids the need to

stall an application.

• Although support for page migration improves performance, allowing only one concurrent

migration is detrimental to performance because the memory system can not react quickly

enough to an application’s changing behavior. However, multiple concurrent migrations

can saturate the memory with migration requests, which can also impact performance.

Based on these observations, I performed a characterization study of the overhead of

migration of multiple pages and identified the factors that limit performance in hybrid

main memory.

• Based on the results of this study, I propose a novel mechanism for efficient concurrent

migration of multiple pages (CMMP) in software-managed hybrid memory. This mecha-

99



nism reduces contention at the memory system caused by migration and provides a simple

and elegant interface for communicating access counts to software. CMMP reduces mi-

gration bandwidth by copying blocks on demand as they are accessed by applications

and by eliding the transfer of untouched blocks during migrations to PCM.

• I also propose a new migration policy specifically tailored for CMMP. The new policy

relies on access counts collected by CMMP to continually determine the best set of pages

to place in DRAM. The new policy also relies on CMMP’s ability to complete and roll

back migrations to free up resources for use by other pages. The new policy outperforms

the current state-of-the-art migration policy by a large margin.

100



BIBLIOGRAPHY

[1] M. Ferdman, A. Adileh, O. Kocberber, S. Volos, M. Alisafaee, D. Jevdjic, C. Kaynak,
A. D. Popescu, A. Ailamaki, and B. Falsafi, “Clearing the clouds: a study of emerging
scale-out workloads on modern hardware,” in Proceedings of the seventeenth interna-
tional conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS ’12, (New York, NY, USA), pp. 37–48, ACM, 2012.

[2] A. Basu, J. Gandhi, J. Chang, M. D. Hill, and M. M. Swift, “Efficient virtual memory
for big memory servers,” in Proceedings of the 40th Annual International Symposium on
Computer Architecture, ISCA ’13, (New York, NY, USA), pp. 237–248, ACM, 2013.

[3] “Process integration, devices and structures,” in Int’l. Technology Roadmap for Semi-
conductors, 2012.

[4] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian, A. Davis, and
N. P. Jouppi, “Rethinking DRAM design and organization for energy-constrained multi-
cores,” in Proceedings of the 37th Annual International Symposium on Computer Archi-
tecture, ISCA ’10, (New York, NY, USA), pp. 175–186, ACM, 2010.

[5] G. Dhiman, R. Ayoub, and T. Rosing, “PDRAM: a hybrid PRAM and DRAM main
memory system,” in Proceedings of the 46th Annual Design Automation Conference,
DAC ’09, pp. 664–669, 2009.

[6] A. P. Ferreira, B. Childers, R. Melhem, D. Moss and, and M. Yousif, “Using PCM in
next-generation embedded space applications,” in Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2010 16th IEEE, pp. 153–162, April 2010.

[7] T. Liu, Y. Zhao, C. J. Xue, and M. Li, “Power-aware variable partitioning for DSPs with
hybrid PRAM and DRAM main memory,” in Proceedings of the 48th Annual Design
Automation Conference, DAC ’11, pp. 405–410, 2011.

[8] M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance main mem-
ory system using phase-change memory technology,” in Proceedings of the 36th Annual
International Symposium on Computer Architecture, ISCA ’09, (New York, NY, USA),
pp. 24–33, ACM, 2009.

101



[9] L. Ramos, E. Gorvatov, and R. Bianchini, “Page placement in hybrid memory systems,”
in Proceedings of the International Conference on Supercomputing, ICS ’11, (New York,
NY, USA), pp. 85–95, ACM, 2011.

[10] W. Zhang and T. Li, “Exploring phase change memory and 3D die-stacking for
power/thermal friendly, fast and durable memory architectures,” in Proceedings of the
2009 18th International Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’09, (Washington, DC, USA), pp. 101–112, IEEE Computer Society,
2009.

[11] M. R. Meswani, S. Blagodurov, D. Roberts, J. Slice, M. Ignatowski, and G. H. Loh, “Het-
erogeneous memory architectures: A hw/sw approach for mixing die-stacked and off-
package memories,” in High Performance Computer Architecture (HPCA), 2015 IEEE
21st International Symposium on, pp. 126–136, Feb 2015.

[12] J. C. Mogul, E. Argollo, M. Shah, and P. Faraboschi, “Operating system support for
NVM+DRAM hybrid main memory,” in Proceedings of the 12th Conference on Hot
Topics in Operating Systems, HotOS’09, pp. 14–14, 2009.

[13] J. Condit, E. B. Nightingale, C. Frost, E. Ipek, B. Lee, D. Burger, and D. Coetzee,
“Better I/O through byte-addressable, persistent memory,” in Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP ’09, (New York, NY,
USA), pp. 133–146, ACM, 2009.

[14] H. Volos, A. J. Tack, and M. M. Swift, “Mnemosyne: Lightweight persistent memory,”
in Proceedings of the Sixteenth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS XVI, (New York, NY, USA),
pp. 91–104, ACM, 2011.

[15] J. Coburn, A. M. Caulfield, A. Akel, L. M. Grupp, R. K. Gupta, R. Jhala, and S. Swan-
son, “Nv-heaps: Making persistent objects fast and safe with next-generation, non-
volatile memories,” in Proceedings of the Sixteenth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems, ASPLOS XVI,
(New York, NY, USA), pp. 105–118, ACM, 2011.

[16] S. Bock, B. R. Childers, R. Melhem, and D. Mosse, “Concurrent page migration for
mobile systems with OS-managed hybrid memory,” in Proceedings of the ACM Inter-
national Conference on Computing Frontiers, CF ’14, 2014.

[17] S. Bock, B. R. Childers, R. Melhem, and D. Mosse, “Characterizing the overhead of
software-managed hybrid main memory,” in Proceedings of the IEEE International Sym-
posium on Modelling, Analysis and Simulation of Computer and Telecommunication
Systems, MASCOTS ’15, 2015.

[18] S. Bock, B. R. Childers, R. Melhem, and D. Mosse, “Hmmsim: A simulator for hardware-
software co-design of hybrid main memory,” in Non-Volatile Memory Systems and Ap-
plications Symposium (NVMSA), 2015 IEEE, NVMSA ’15, 2015.

102



[19] S. Bock, B. R. Childers, R. Melhem, and D. Mosse, “Concurrent migration of multiple
pages in software-managed hybrid main memory,” in 2016 IEEE 34th International
Conference on Computer Design (ICCD), ICCD, 2016.

[20] S. Raoux, G. Burr, M. Breitwisch, C. Rettner, Y. Chen, R. Shelby, M. Salinga, D. Krebs,
S.-H. Chen, H. L. Lung, and C. Lam, “Phase-change random access memory: A scalable
technology,” IBM Journal of Research and Development, vol. 52, no. 4.5, pp. 465–479,
2008.

[21] G. Burr, M. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson,
B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy,
“Phase change memory technology,” Journal of Vacuum Science Technology B: Micro-
electronics and Nanometer Structures, vol. 28, no. 2, pp. 223–262, 2010.

[22] B. C. Lee, E. Ipek, O. Mutlu, and D. Burger, “Architecting phase change memory as a
scalable dram alternative,” in Proceedings of the 36th Annual International Symposium
on Computer Architecture, ISCA ’09, (New York, NY, USA), pp. 2–13, ACM, 2009.

[23] S. Bock, B. Childers, R. Melhem, D. Mosse, and Y. Zhang, “Analyzing the impact of
useless write-backs on the endurance and energy consumption of pcm main memory,”
in Performance Analysis of Systems and Software (ISPASS), 2011 IEEE International
Symposium on, pp. 56–65, April 2011.

[24] B.-D. Yang, J.-E. Lee, J.-S. Kim, J. Cho, S.-Y. Lee, and B.-G. Yu, “A low power phase-
change random access memory using a data-comparison write scheme,” in Circuits and
Systems, 2007. ISCAS 2007. IEEE International Symposium on, pp. 3014–3017, 2007.

[25] S. Cho and H. Lee, “Flip-n-write: A simple deterministic technique to improve pram
write performance, energy and endurance,” in Microarchitecture, 2009. MICRO-42.
42nd Annual IEEE/ACM International Symposium on, pp. 347–357, Dec 2009.

[26] M. Qureshi, M. Franceschini, and L. Lastras-Montano, “Improving read performance of
phase change memories via write cancellation and write pausing,” in High Performance
Computer Architecture (HPCA), 2010 IEEE 16th International Symposium on, pp. 1–
11, Jan 2010.

[27] T. Nirschl, J. Philipp, T. Happ, G. Burr, B. Rajendran, M.-H. Lee, A. Schrott, M. Yang,
M. Breitwisch, C. Chen, E. Joseph, M. Lamorey, R. Cheek, S.-H. Chen, S. Zaidi,
S. Raoux, Y. Chen, Y. Zhu, R. Bergmann, H. L. Lung, and C. Lam, “Write strate-
gies for 2 and 4-bit multi-level phase-change memory,” in Electron Devices Meeting,
2007. IEDM 2007. IEEE International, pp. 461–464, 2007.

[28] S. Ahn, Y. Song, C. Jeong, J. Shin, Y. Fai, Y. Hwang, S. Lee, K. Ryoo, S. Lee, J.-H.
Park, H. Horii, Y. Ha, J. Yi, B. Kuh, G. Koh, G. Jeong, H. Jeong, K. Kim, and B.-I. Ryu,
“Highly manufacturable high density phase change memory of 64mb and beyond,” in
Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, pp. 907–
910, 2004.

103



[29] F. Bedeschi, R. Fackenthal, C. Resta, E. Donze, M. Jagasivamani, E. Buda F. Pel-
lizzer, D. Chow, A. Cabrini, G. Calvi, R. Faravelli, A. Fantini, G. Torelli, D. Mills,
R. Gastaldi, and G. Casagrande, “A multi-level-cell bipolar-selected phase-change mem-
ory,” in Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers.
IEEE International, pp. 428–625, 2008.

[30] K.-J. Lee, B.-H. Cho, W.-Y. Cho, S. Kang, B.-G. Choi, H.-R. Oh, C.-S. Lee, H.-J. Kim,
J. min Park, Q. Wang, M.-H. Park, Y.-H. Ro, J.-Y. Choi, K.-S. Kim, Y.-R. Kim, I.-C.
Shin, K. won Lim, H.-K. Cho, C.-H. Choi, W. ryul Chung, D.-E. Kim, K.-S. Yu, G.-T.
Jeong, H.-S. Jeong, C.-K. Kwak, C.-H. Kim, and K. Kim, “A 90nm 1.8v 512mb diode-
switch pram with 266mb/s read throughput,” in Solid-State Circuits Conference, 2007.
ISSCC 2007. Digest of Technical Papers. IEEE International, pp. 472–616, Feb 2007.

[31] P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient main memory
using phase change memory technology,” in Proceedings of the 36th Annual International
Symposium on Computer Architecture, ISCA ’09, (New York, NY, USA), pp. 14–23,
ACM, 2009.

[32] A. P. Ferreira, M. Zhou, S. Bock, B. Childers, R. Melhem, and D. Mossé, “Increasing
pcm main memory lifetime,” in Proceedings of the Conference on Design, Automation
and Test in Europe, DATE ’10, (3001 Leuven, Belgium, Belgium), pp. 914–919, Euro-
pean Design and Automation Association, 2010.

[33] M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and B. Abali,
“Enhancing lifetime and security of pcm-based main memory with start-gap wear lev-
eling,” in Proceedings of the 42nd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO 42, (New York, NY, USA), pp. 14–23, ACM, 2009.

[34] J. Dong, L. Zhang, Y. Han, Y. Wang, and X. Li, “Wear rate leveling: Lifetime enhance-
ment of pram with endurance variation,” in Design Automation Conference (DAC),
2011 48th ACM/EDAC/IEEE, pp. 972–977, 2011.

[35] A. Ferreira, S. Bock, B. Childers, R. Melhem, and D. Moss, “Impact of process variation
on endurance algorithms for wear-prone memories,” in Design, Automation Test in
Europe Conference Exhibition (DATE), 2011, pp. 1–6, March 2011.

[36] G. H. Loh and M. D. Hill, “Efficiently enabling conventional block sizes for very large die-
stacked dram caches,” in Proceedings of the 44th Annual IEEE/ACM International Sym-
posium on Microarchitecture, MICRO-44, (New York, NY, USA), pp. 454–464, ACM,
2011.

[37] M. K. Qureshi and G. H. Loh, “Fundamental latency trade-off in architecting dram
caches: Outperforming impractical sram-tags with a simple and practical design,” in
Proceedings of the 2012 45th Annual IEEE/ACM International Symposium on Microar-
chitecture, MICRO-45, (Washington, DC, USA), pp. 235–246, IEEE Computer Society,
2012.

104



[38] D. Jevdjic, S. Volos, and B. Falsafi, “Die-stacked dram caches for servers: hit ratio,
latency, or bandwidth? have it all with footprint cache,” in Proceedings of the 40th
Annual International Symposium on Computer Architecture, ISCA ’13, (New York, NY,
USA), pp. 404–415, ACM, 2013.

[39] S. Bansal and D. S. Modha, “Car: Clock with adaptive replacement,” in Proceedings
of the 3rd USENIX Conference on File and Storage Technologies, FAST ’04, (Berkeley,
CA, USA), pp. 187–200, USENIX Association, 2004.

[40] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis, “Power aware page allocation,” in Pro-
ceedings of the ninth international conference on Architectural support for programming
languages and operating systems, ASPLOS IX, (New York, NY, USA), pp. 105–116,
ACM, 2000.

[41] M. M. Tikir and J. K. Hollingsworth, “Using hardware counters to automatically im-
prove memory performance,” in Proceedings of the 2004 ACM/IEEE conference on Su-
percomputing, SC ’04, (Washington, DC, USA), pp. 46–, IEEE Computer Society, 2004.

[42] M. M. Tikir and J. K. Hollingsworth, “Hardware monitors for dynamic page migration,”
J. Parallel Distrib. Comput., vol. 68, pp. 1186–1200, Sept. 2008.

[43] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness,
D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39,
pp. 1–7, Aug. 2011.

[44] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “Dramsim2: A cycle accurate memory
system simulator,” Computer Architecture Letters, vol. 10, pp. 16 –19, jan.-june 2011.

[45] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. H. Pugsley, A. N. Udipi, A. Shafiee,
K. Sudan, M. Awasthi, and Z. Chishti, “Usimm: the utah simulated memory module a
simulation infrastructure for the jwac memory scheduling championship,” 2012.

[46] M. Poremba, T. Zhang, and Y. Xie, “Nvmain 2.0: Architectural simulator to model
(non-)volatile memory systems,” Computer Architecture Letters, vol. PP, no. 99, pp. 1–
1, 2015.

[47] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood, “Pin: Building customized program analysis tools with dynamic in-
strumentation,” in Proceedings of the 2005 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’05, (New York, NY, USA), pp. 190–200,
ACM, 2005.

[48] NVidia, “Variable smp (4-plus-1TM) - a multi-core cpu architecture for low power and
high performance,” white paper, NVidia, 2011.

105



[49] A. Gutierrez, R. Dreslinski, T. Wenisch, T. Mudge, A. Saidi, C. Emmons, and N. Paver,
“Full-system analysis and characterization of interactive smartphone applications,” in
Workload Characterization (IISWC), 2011 IEEE International Symposium on, pp. 81–
90, Nov 2011.

[50] K. Hoste and L. Eeckhout, “Characterizing the unique and diverse behaviors in existing
and emerging general-purpose and domain-specific benchmark suites,” in Performance
Analysis of Systems and software, 2008. ISPASS 2008. IEEE International Symposium
on, pp. 157–168, April 2008.

106


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Comparison of DRAM and PCM Parameters
	2. Comparison of some existing memory simulators
	3. Main API components and their methods currently provided by HMMSim
	4. Memory components where application reads accumulate time
	5. Variables used in the analytic model. X stands for either DRAM or PCM
	6. List of variables and associated overhead
	7. Architectural parameters
	8. Architectural parameters
	9. Architectural parameters
	10. Architectural parameters

	LIST OF FIGURES
	1. Average speedup over no-migration for different migration rates.
	2. Overview of the proposed system.
	3. Overview of Hybrid Main Memory Simulator
	4. Splitting of traces for compression.
	5. Execution time of HMMSim for different configurations and simulated cores counts.
	6. Resident memory of HMMSim for different configurations and simulated cores counts.
	7. Normalized execution time of selected benchmarks without and with (baseline) migration cost.
	8. MLAA for Offline. For each workload, first bar is Full-Interference and second bar is Zero-Interference.
	9. Potential L2 access latency reduction that can be obtained by eliminating 4 different factors that cause overhead.
	10. L2 access latency reduction from using the Offline migration policy relative to Multi-Queue.
	11. Overview of architecture changes for CPM. New components are shown in dark gray. Changes to the system agent are shown in Figure 12.
	12. The modified system agent, showing new components in gray. Gray arrows represent messages from/to the cores, LLC cache slices and OS.
	13. Cache organization with support for page pinning.
	14. Steps for hardware for CPM.
	15. Single-programmed: Speedup.
	16. Single-programmed: Number of cycles waiting. First bar is baseline and second bar is CPM.
	17. Single-programmed: Energy consumption.
	18. Average speedup of CPM with single-programmed workloads for different migrations costs in cycles.
	19. Multi-programmed: Speedup.
	20. Multi-programmed: Number of cycles waiting.
	21. Overview of software and hardware components for CMMP.
	22. Speedup of CMMP, normalized to the baseline.
	23. Average memory access time of CMMP.
	24. Energy of CMMP, normalized to the baseline.
	25. Possible state of pages that use OBM and PD.
	26. Speedup of Multi-Queue and TMP, normalized to No Migration.
	27. Speedup of TMP for different ART sizes, normalized to the baseline.
	28. Speedup of TMP for multi-core workloads, normalized to the baseline
	29. Speedup of Multi-Queue and TMP for different ART sizes for multi-core workloads, normalized to No Migration.
	30. Comparison of CMMP with Multi-Queue and TMP and two ART sizes against state-of-the-art (Multi-Queue without CMMP) and ideal systems.

	LIST OF ALGORITHMS
	1. Offline migration policy
	2. Sequence of steps performed during conventional page migration
	3. Sequence of steps performed during concurrent page migration
	4. PCM to DRAM migration (promotion)
	5. DRAM to PCM migration (demotion)
	6. Access Redirection
	7. Algorithm for updating data structures in TMP when page monitoring information is read from the PACT
	8. Process for updating the CCL list with information read from the ART
	9. Steps for selecting a page for completion
	10. Steps for selecting a page for demotion
	11. Steps for selecting a page for rollback

	1.0 INTRODUCTION
	1.1 Relevance
	1.2 Elements of a Good Solution
	1.3 Approach Overview
	1.4 Thesis Contributions
	1.5 Thesis Organization

	2.0 BACKGROUND AND RELATED WORK
	2.1 Phase Change Memory
	2.2 Architectural Support for PCM
	2.2.1 Write Reduction
	2.2.2 Write Cancellation and Write Pausing
	2.2.3 Wear Leveling

	2.3 Hybrid Main Memory
	2.3.1 Hardware-Managed Hybrid Memory
	2.3.2 DRAM Caches
	2.3.3 Smart Memory Controllers
	2.3.4 Software-Managed Hybrid Main Memory


	3.0 SIMULATOR INFRASTRUCTURE
	3.1 Overview
	3.2 Memory Hierarchy
	3.3 Memory Manager
	3.4 HMMSim API
	3.5 Trace Compression
	3.6 Performance
	3.6.1 Execution Time
	3.6.2 Memory Usage
	3.6.3 Trace Compression

	3.7 Summary

	4.0 CHARACTERIZATION OF OVERHEAD
	4.1 Overview
	4.2 Page Migration Latency
	4.3 Other Limiting Factors
	4.4 Analysis
	4.4.1 Zero-Interference Migration
	4.4.2 Offline Migration Policy
	4.4.3 Memory Latency Attribution Analysis
	4.4.4 Factor Isolation Analysis

	4.5 Page Migration Overhead
	4.5.1 Methodology
	4.5.2 Memory Latency Attribution
	4.5.3 Factor Isolation Analysis
	4.5.4 Migration Policy Overhead

	4.6 Design Implications
	4.7 Summary

	5.0 CONCURRENT PAGE MIGRATION
	5.1 Overview
	5.1.1 Memory Management
	5.1.2 Page Migration

	5.2 Concurrent Page Migration
	5.2.1 Buffering Writes
	5.2.2 Page Migration

	5.3 Hardware Support
	5.3.1 Overview of Architecture and Changes
	5.3.2 Cache
	5.3.3 Concurrent Page Migration

	5.4 Evaluation
	5.4.1 Methodology
	5.4.2 Single-Programmed Benchmarks
	5.4.3 Stall Behavior
	5.4.4 Energy
	5.4.5 Sensitivity to Migration Cost
	5.4.6 Multi-Programmed Workloads

	5.5 Summary

	6.0 CONCURRENT MIGRATION OF MULTIPLE PAGES
	6.1 Concurrent Migration of Multiple Pages
	6.1.1 Migration Policy
	6.1.2 Concurrent Migration
	6.1.2.1 Promotion
	6.1.2.2 Demotion

	6.1.3 On-Demand Block Migration
	6.1.4 Access Redirection

	6.2 Experimental Results
	6.2.1 Methodology
	6.2.2 Performance
	6.2.3 Average Memory Access Time
	6.2.4 Energy

	6.3 Summary

	7.0 THRESHOLD MIGRATION POLICY
	7.1 Overview
	7.2 Threshold Migration Policy
	7.2.1 Monitoring
	7.2.2 Data Structures
	7.2.3 Completion, Demotion and Rollback
	7.2.4 Analysis

	7.3 Evaluation
	7.3.1 Methodology
	7.3.2 Performance

	7.4 Comparison to Ideal System
	7.5 Summary

	8.0 CONCLUSIONS
	BIBLIOGRAPHY

