
OPTIMAL ENERGY STORAGE STRATEGIES

IN MICROGRIDS

by

Arnab Bhattacharya

B. Tech, Indian Institute of Technology, Kharagpur, 2011

M. Tech, Indian Institute of Technology, Kharagpur, 2012

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by D-Scholarship@Pitt

https://core.ac.uk/display/154283084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Arnab Bhattacharya

It was defended on

October 9, 2017

and approved by

Dr. Jeffrey P. Kharoufeh, Professor, Department of Industrial Engineering

Dr. Daniel R. Jiang, Assistant Professor, Department of Industrial Engineering

Dr. Bo Zeng, Assistant Professor, Department of Industrial Engineering

Dr. Zhi-Hong Mao, Associate Professor, Department of Electrical and Computer

Engineering

Dissertation Director: Dr. Jeffrey P. Kharoufeh, Professor, Department of Industrial

Engineering

ii

OPTIMAL ENERGY STORAGE STRATEGIES IN MICROGRIDS

Arnab Bhattacharya, Ph.D.

University of Pittsburgh, 2017

Microgrids are small-scale distribution networks that provide a template for large-scale de-

ployment of renewable energy sources, such as wind and solar power, in close proximity to

demand. However, the inherent variability and intermittency of these sources can have a sig-

nificant impact on power generation and scheduling decisions. Distributed energy resources,

such as energy storage systems, can be used to decouple the times of energy consumption and

generation, thereby enabling microgrid operators to improve scheduling decisions and exploit

arbitrage opportunities in energy markets. The integration of renewable energy sources into

the nation’s power grid, by way of microgrids, holds great promise for sustainable energy

production and delivery; however, operators and consumers both lack effective strategies for

optimally using stored energy that is generated by renewable energy sources.

This dissertation presents a comprehensive stochastic optimization framework to pre-

scribe optimal strategies for effectively managing stored energy in microgrids, subject to the

inherent uncertainty of renewable resources, local demand and electricity prices. First, a

Markov decision process model is created to characterize and illustrate structural properties

of an optimal storage strategy and to assess the economic value of sharing stored energy

between heterogeneous, demand-side entities. Second, a multistage stochastic programming

(MSP) model is formulated and solved to determine the optimal storage, procurement, sell-

ing and energy flow decisions in a microgrid, subject to storage inefficiencies, distribution

line losses and line capacity constraints. Additionally, the well-known stochastic dual dy-

namic programming (SDDP) algorithm is customized and improved to drastically reduce

the computation time and significantly improve solution quality when approximately solving

iii

this MSP model. Finally, and more generally, a novel nonconvex regularization scheme is

developed to improve the computational performance of the SDDP algorithm for solving

high-dimensional MSP models. Specifically, it is shown that these nonconvex regularization

problems can be reformulated as mixed-integer programming problems with provable con-

vergence guarantees. The benefits of this regularization scheme are illustrated by way of

a computational study that reveals significant improvements in the convergence rate and

solution quality over the standard SDDP algorithm and other regularization schemes.

iv

TABLE OF CONTENTS

PREFACE . x

1.0 INTRODUCTION . 1

1.1 Background and Motivation . 1

1.2 Problem Statement and Research Objectives 4

1.3 Dissertation Outline and Contributions . 5

2.0 STRUCTURED STORAGE POLICIES FOR ENERGY

DISTRIBUTION NETWORKS . 7

2.1 Summary of Relevant Literature . 7

2.2 Markov Decision Process Model for a 2-bus Network 9

2.3 Structural Results . 15

2.3.1 Structural Properties of the Value Function 15

2.3.2 Behavior of the Optimal Policy . 19

2.3.3 Behavior of the Optimal Operational Cost 25

2.4 Extension to Multi-bus Networks . 30

2.5 Numerical Examples . 33

2.5.1 Data Description . 33

2.5.2 Solving the MDP Model . 36

2.5.3 Results and Discussion . 38

3.0 ENERGY STORAGE MANAGEMENT IN MICROGRIDS

VIA STOCHASTIC PROGRAMMING 42

3.1 Summary of Relevant Literature . 42

3.2 Model Description . 45

v

3.3 Multistage Stochastic Programming Model 47

3.4 Stochastic Dual Dynamic Programming (SDDP) Algorithm 51

3.5 Improving the Performance of SDDP . 55

3.5.1 Dynamic Cut Selection (DCS) Heuristic 55

3.5.2 Lower Bound Improvement via Jensen’s Inequality 56

3.6 Computational Results . 57

3.6.1 Microgrid Configuration . 58

3.6.2 Description of Experiments . 60

3.6.3 Results and Discussion . 62

4.0 NONCONVEX REGULARIZATION FOR THE SDDP ALGORITHM 76

4.1 Summary of Relevant Literature . 76

4.2 Multistage Stochastic Linear Programming 81

4.2.1 Sample Average Approximation (SAA) Model 81

4.2.2 SDDP Algorithm for the SAA Model 83

4.2.3 Quadratic Regularization for the SDDP Algorithm 85

4.3 Nonconvex Regularization for the SDDP Algorithm 86

4.3.1 Regularization via Folded Concave Penalty 86

4.3.2 Nonconvex Quadratic Programming Formulations 88

4.4 Mixed Integer Linear Programming Formulations 94

4.5 Convergence Analysis . 102

4.6 Computational Experiments . 114

4.6.1 The Multistage Capacity Expansion Problem 114

4.6.2 A Multistage Portfolio Optimization Problem 124

5.0 CONCLUSIONS AND FUTURE RESEARCH 128

BIBLIOGRAPHY . 131

vi

LIST OF TABLES

1 MLE estimates of the wind energy and price distribution parameters. 35

2 Summary of parameter values for the problem instances. 36

3 Parameter values for the problem instances. 61

4 Results using the standard SDDP algorithm. 63

5 Results using the SDDP+DCS algorithm. 65

6 Results using the SDDP+DCS+J algorithm. 66

7 Two-stage results using the SDDP+DCS+J algorithm. 72

8 Two-stage versus multistage SP upper bounds. 73

9 Results using SDDP+DCS+J for the two-bus microgrid. 74

10 Annual per-unit installation and operating costs (million euros per GW-h). . 116

11 Computational results of regSDDP and standard SDDP for N = 15. 119

12 Computational results of regSDDP and standard SDDP for N = 30. 120

13 Average computation time per iteration of regSDDP and standard SDDP (in seconds).123

14 Computational results of regSDDP and quadSDDP for N = 20. 126

vii

LIST OF FIGURES

1 A microgrid with distributed generation and energy storage. 2

2 Graphical depiction of a 2-bus distribution network. 10

3 The pooled, coupled and decentralized storage configurations. 28

4 Depiction of networks with the loop and the mesh configurations. 31

5 Average price and wind generation levels in the year 2012. 35

6 Average value functions in stages 1 and 17. 39

7 Optimal storage decisions in stage 17. 40

8 Comparison of the optimal operational costs in PS, CS, and DS networks. . . 40

9 Depiction of a scenario tree with three stages and six scenarios. 53

10 Average price and wind-generation levels for the year 2012. 58

11 A 4-bus, grid-connected microgrid. 59

12 Gap percentage for different values of |Ωt| when S = 250. 67

13 Average computation time for different values of |Ωt|. 67

14 Box plots of the lower bounds obtained via SDDP and its two variants. . . . 68

15 Expected cumulative costs over the planning horizon. 69

16 Average battery level and average price for each hour. 70

17 A two-bus, grid-connected microgrid. 73

18 Computation time for different values of |Ωt| when S = 250. 74

19 Magnitudes and penalization rates of the FCP, L1, and L2 functions. 88

20 Evolution of regSDDP bounds for two SAA instances (T = 100, N = 15). . . 118

21 Average bounds and 95% confidence intervals for 30 instances (T = 100, N = 15). . 118

22 Distribution of the lower bounds of regSDDP and standard SDDP for N = 15. . . 121

viii

23 Reduction in the number of iterations to solve a SAA instance (T = 150, N = 15). 122

24 Lower bounds of regSDDP and standard SDDP at the end of the 100th iteration. . 122

25 Fraction of SAA instances (N = 15) that were solved within 100 iterations. . 123

26 Fraction of SAA instances solved within (a) 75 and (b) 150 iterations, respectively. 127

27 Lower bounds of regSDDP and quadSDDP procedures after 100 iterations. . . 127

ix

PREFACE

I am indebted to so many individuals who have positively influenced my intellectual, pro-

fessional, and personal growth during my time at Pitt. First, and foremost, I would like to

sincerely thank Dr. Jeff Kharoufeh for being an exceptional advisor during the past four

and a half years. Dr. Kharoufeh’s attention to detail is unparalleled, and his commitment

to academic excellence and integrity is infectious. I am indebted to him for providing me

with an exciting research topic very early in my Ph.D. studies and for inspiring me to pursue

excellence, even during the most challenging phases of graduate student life. I am especially

grateful for his commitment to my professional development by providing funding for my

research, tirelessly honing my writing skills, providing opportunities for me to participate in

professional conferences, and motivating me to apply for prestigious awards. A special token

of appreciation is due to his wonderful family, who always made me feel welcomed at their

home for delicious Thanksgiving and Christmas dinners.

Dr. Bo Zeng has effectively served as a second advisor to me. Dr. Zeng’s technical

suggestions and insightful feedback significantly improved the methodological contributions

of my dissertation. He always provided answers to my challenging optimization questions,

which made my life so much easier. Dr. Zeng is a wonderful role model for maintaining work-

life balance in academia and was kind enough to offer me wide-ranging advice to survive the

grind of graduate school. Special thanks are also due to Dr. Daniel Jiang for his invaluable

suggestions that improved many of the technical results in Chapters 2 and 4, and to Dr. Zhi-

Hong Mao, of the Department of Electrical and Computer Engineering, for his constructive

comments on several realistic aspects of the microgrid problem. This research would not

have been possible without the support of three seed grants from the Mascaro Center of

Sustainable Innovation at the University of Pittsburgh.

x

I am also grateful to the outstanding trio of David Abdul-Malak, Juan Borrero, and

Ruichen Sun for being my best pals in the department. I will always remember our enlight-

ening discussions over lunch about research and every other topic imaginable; thanks for

your excellent insights and constructive suggestions. I thoroughly enjoyed my collaboration

with Ashley Anhalt on a number of challenging healthcare and energy problems. Moham-

mad Hossein, Moataz Abdulhafez, Shadi Sanoubar, Ibrahim El Sharr, and Tarik Bilgic were

also wonderful departmental colleagues. Outside of Pitt IE, I would like to thank Manaal

Faruqui, Piyush Panigrahi, Amit Behera, and Gaurav Agarwal for their well wishes and

support amidst the vagaries of life as a doctoral student.

Finally, I am eternally grateful to my parents, Leena and Kallol, and my younger brother,

Aritra, for their unwavering love, support, and trust in me. I am forever indebted to my

parents for teaching me the importance of hard work and dedication since I was a child, and

for helping me achieve my dreams at the expense of their own. I know that my family, more

than anyone else, is happy to see me earn a Ph.D.

xi

1.0 INTRODUCTION

1.1 BACKGROUND AND MOTIVATION

Global population growth and the proliferation of electronic household appliances and devices

are driving unprecedented demand for electricity in the United States (U.S.) and abroad.

Despite energy efficiency improvements and targeted efforts to reduce residential energy

consumption, the U.S. Energy Information Administration (EIA) estimates a 24% increase

in U.S. residential electricity demand by 2040 and a 13% price increase over the same period

[1]. Aging infrastructure, the risk of blackouts, security concerns, and an aversion to carbon-

based fuel sources have placed the nation’s electric power grid under enormous pressure

to produce reliable, efficient, and sustainable energy. But the demand for energy has far

outpaced investment in critical infrastructure, resulting in dire consequences. For instance,

the infamous Northeast blackout of August 14, 2003 affected roughly 50 million people and

cost an estimated 6 billion dollars [46]. Moreover, capacity constraints and significant power

losses over transmission lines (15 to 20 percent) have contributed to systemic inefficiencies

and excessive operational costs in the distribution network [2, 144].

These concerns, and others, have spawned immense national interest in so-called smart

grid initiatives that promote wholesale modernization of the nation’s electric power grid. In

fact, the U.S. Congress passed the landmark Energy Independence and Security Act of 2007

[142], advocating the establishment of a grid that will usher in a new era of technological

sophistication and efficiency. Central to the grid paradigm is the integration of renewable

energy sources (RES), such as wind and solar power, in close proximity to consumers. The

integration of RES is now mandated by the U.S. government [142, 159], and the penetration

of renewables in the overall energy production portfolio is forecasted to reach at least 22%

1

by 2030 [34]. However, before these ambitious goals can be realized, several technological

and operational challenges related to integration must be overcome.

Microgrids have emerged as a potential solution to integrating renewables locally using

distributed generation (DG) and energy storage systems (ESS). A microgrid is a small-scale

version of a centralized power grid that generates, distributes, and regulates electricity flow to

local consumers using distributed generation [27, 65, 91, 96]. Microgrids aim to integrate grid

equipment, metering technologies, devices, and software to improve local power distribution.

Moreover, they provide a template for future large-scale deployment of RES using DG and

energy storage located near consumer demand [8, 91, 108, 144]. Indeed, it is estimated that

total microgrid generation capacity in North America will expand to 5.9 Gigawatts (GW), or

roughly 64% of global capacity, by the year 2020 [9]. Figure 1 depicts the main components

of a microgrid connected to the main grid.

Figure 1: A microgrid with distributed generation and energy storage.

Typically, a consumer in a microgrid has access to local RES that are used to satisfy his

demand requirements. Any additional demand requirements are met by procuring electricity

at real-time prices from the main grid. However, sophisticated bidirectional technologies in

2

microgrids will engender a new class of consumers, called the prosumers, who can actively

procure, as well as, sell electricity to real-time or day-ahead energy markets to minimize their

overall electricity costs [60, 61]. Further, such bidirectional technologies will allow prosumers

to dynamically adjust their demand in response to time-varying, real-time electricity prices,

and thereby, improve the overall utilization of RES in a microgrid. Moreover, prosumers

with higher demand requirements will have on-site wind and/or solar installations to offset

costs due to distribution losses in a microgrid. This will create a network of self-sustaining

prosumers that will be primarily powered by renewable sources in a microgrid.

However, deeper penetration of renewables in the overall energy portfolio poses a new set

of challenges. Renewable energy sources are intermittent due to inherent variability in the

source itself, and because future supplies are difficult to predict. Moreover, because renew-

able sources, such as wind and power, are not dispatchable, i.e., their power output cannot

be directly controlled by operators within a microgrid, their volatility can dramatically af-

fect production scheduling decisions [105]. Further, DG sources in microgrids have limited

generating capacity, typically in the range 10-1000 kilowatts (kW), making them susceptible

to potential inefficiencies like real-time power shortages and power reliability issues. Due to

the intermittent and variable nature of renewable energy sources, distributed energy storage

systems, such as batteries and flywheels, can be used to shift local energy consumption from

high demand to low demand periods [141, 165]. Although the main grid is more reliable

and predictable, distributed storage offers a substantially less expensive alternative, espe-

cially during peak demand periods when prices are also typically high. The deregulation of

energy markets and the advent of bidirectional communication technologies in microgrids

[108, 144, 145] now allows consumers to exploit time-of-use and dynamic pricing rates in the

electricity markets by storing energy during off-peak periods for use during peak demand

periods [48, 80, 154]. This temporal shifting of demand has the potential to reduce con-

sumer electricity costs and curtail the dependence on polluting ancillary generating units

(e.g., diesel generators) in a microgrid [82]. While the integration of RES into microgrids

holds great promise for sustainable energy creation and delivery, there is a critical need to

devise optimal strategies for demand-side entities using energy storage.

3

Battery systems have emerged as one of the leading distributed storage technologies

because of their long shelf lives, low maintenance costs, and high energy-density values

[75, 108, 148]. However, major technological and economical barriers in batteries pose a

major challenge to their integration in microgrids. A key drawback is that batteries are

highly inefficient – nearly 20 to 40 percent of the total energy is lost during one complete

charge-discharge cycle of a battery [47, 48]. Moreover, battery electrolytes have high in-

ternal resistances that cause continuous dissipation of the stored electrical energy as heat

[48, 148]. The per-unit cost of battery capacity is typically high, which makes them eco-

nomically unattractive for large storage installations [79, 103]. Additionally, each battery

type has its own set of constraints related to their charging and discharging regimes. For

example, nickel-cadmium batteries have to be completely discharged before charging, while

lead-acid batteries should never be fully discharged [113]. The aforementioned budgetary

and technological constraints of a battery make it significantly hard to derive an optimal

storage policy for a demand-side entity in a microgrid.

1.2 PROBLEM STATEMENT AND RESEARCH OBJECTIVES

This dissertation addresses the problems related to reducing the total electricity costs of

consumers in a microgrid with access to distributed storage and renewable energy sources.

The aim is to develop a comprehensive stochastic optimization framework to prescribe op-

timal strategies for effectively managing stored energy in microgrids under uncertainty of

renewable generation, local demand, and electricity prices. The primary research objectives

are as follows:

1. To formulate and solve multistage stochastic optimization models that prescribe optimal

storage, procurement, and selling strategies in a microgrid under randomly evolving

renewable supply, demand, and prices;

2. To characterize structural properties of the optimal storage strategy in a microgrid, and

assess the economic value of sharing stored energy under storage capacity and power flow

restrictions;

4

3. To develop scalable approaches to solve large-scale, high-dimensional multistage stochas-

tic optimization models arising in energy via mathematical programming techniques.

1.3 DISSERTATION OUTLINE AND CONTRIBUTIONS

Chapter 2 presents the problem of dynamically controlling a 2-bus energy distribution net-

work with energy storage capabilities. A microgrid operator seeks to dynamically adjust

the amount of energy to charge to, or discharge from, energy storage devices in response to

randomly-evolving renewable supply, demand and prices. The objective is to minimize the

expected total discounted costs incurred within the network over a finite planning horizon.

Formulated is a Markov decision process model that prescribes the optimal amount of energy

to charge or discharge, and transmit between the two buses during each stage of the planning

horizon. Established are the multimodularity of the value function, and the monotonicity of

the optimal policy in the storage levels. It is also shown that the optimal operational cost

is convex and monotone in the storage capacities. Furthermore, we establish bounds on the

optimal cost by analyzing comparable single-storage systems with pooled and decentralized

storage configurations, respectively. These results extend to more general multi-bus network

topologies. Numerical examples illustrate the main results and highlight the significance of

interacting demand-side entities.

Chapter 3 introduces a multistage stochastic programming model whose objective is to

minimize the expected total energy costs incurred within a microgrid over a finite planning

horizon. The model prescribes the amount of energy to procure, store and discharge in

each decision stage of the horizon. However, for even a moderate number of stages, the

model is computationally intractable; therefore, we customize the stochastic dual dynamic

programming (SDDP) algorithm to obtain high-quality approximate solutions. Computa-

tion times and optimization gaps are significantly reduced by implementing a dynamic cut

selection procedure and a lower bound improvement scheme within the SDDP framework.

An extensive computational study reveals significant cost savings as compared to myopic

and non-storage policies, as well as policies obtained using a two-stage SP model.

5

Chapter 4 considers a novel regularization scheme to improve the computational perfor-

mance of the stochastic dual dynamic programming (SDDP) algorithm for solving multistage

stochastic linear programs. Specifically, we employed a class of nonconvex regularization

functions, called the folded-concave penalty, to enhance the quality of outer approximations

obtained via SDDP. A mixed-integer linear programming (MILP) strategy is used to solve

the nonconvex regularization problem to global optimality. The proposed regularization

scheme is numerically stable and facilitates the use of state-of-the-art optimization MILP

solvers within the SDDP framework. We establish provable convergence guarantees of our

regularized SDDP algorithm under mild regularity conditions. Furthermore, we empirically

demonstrate the potential benefits of our regularization scheme for two large-scale stochas-

tic optimization problems that arise in energy and finance. Our results reveal significant

improvements in the convergence rate and solution quality of SDDP, especially for high-

dimensional problems.

6

2.0 STRUCTURED STORAGE POLICIES FOR ENERGY

DISTRIBUTION NETWORKS

This chapter considers the problem of dynamically controlling a 2-bus energy distribution

network with energy storage capabilities. A microgrid operator seeks to dynamically adjust

the amount of energy to charge to, or discharge from, energy storage devices in response to

randomly-evolving demand, renewable supply and prices. The objective is to minimize the

expected total discounted costs incurred within the network over a finite planning horizon.

Formulated is a Markov decision process (MDP) model that prescribes the optimal amount

of energy to charge or discharge, and transmit between the two buses during each stage of

the planning horizon. Established are the multimodularity of the value function, and the

monotonicity of the optimal policy in the energy storage levels. It is also shown that the

optimal operational cost is convex and monotone in the storage capacities. Furthermore,

bounds on the optimal cost are established by analyzing comparable single-storage systems

with pooled and decentralized storage configurations, respectively. These results extend to

more general multi-bus network topologies. Numerical examples illustrate the main results

and highlight the significance of interacting demand-side entities.

2.1 SUMMARY OF RELEVANT LITERATURE

Energy storage, as a means by which to integrate renewable sources in the power grid,

has spawned significant interest in the energy systems modeling literature. The storage

problem bears some resemblance to classical inventory and asset management problems (cf.

[43, 171]), except that the operator is faced with multiple sources of uncertainty, storage and

7

line inefficiencies, as well as network energy balance constraints. Most of the relevant work

in this area focuses on devising an optimal storage policy for a single consumer (or supplier)

with access to renewable energy and finite-capacity storage. A linear programming approach

was employed to solve the consumer’s storage problem under deterministic price, demand and

renewable supply levels in [3, 74]. Bar-Noy et al. [13, 14] developed efficient online algorithms

to reduce a consumer’s peak demand costs by optimally procuring and storing energy when

demand is uncertain. More recently, MDP models have been used extensively to analyze

the single consumer problem under exogenous uncertainty. Using an infinite-horizon MDP

model, Van de Ven et al. [153] proved the existence of an optimal dual-threshold storage

policy for a consumer with uncertain demands, subject to deterministic time-of-use electricity

prices. Harsha and Dahleh [64] derived a similar dual-threshold optimal storage policy for a

finite-horizon problem under uncertain prices, demand and renewable supply. Furthermore,

they analytically characterize a consumer’s optimal storage capacity for the case when prices

are fixed. Similar single-storage MDP models have been employed for a supplier’s storage

management problem, which involves optimizing the bidding strategies of renewable suppliers

that participate in day-ahead or real-time energy markets to maximize profits by deploying

energy storage (cf. [22, 26, 57, 84, 85, 86, 107, 131, 167]). However, single-storage models do

not account for network constraints and interactions between different network entities with

storage, rendering them unrealistic for our setting. Alternatively, stochastic programming

(SP) models have been devised to solve network storage problems with continuous actions

and high-dimensional state spaces. Some representative examples of such models include

[17, 57, 92, 110, 160]. Although SP models allow for the incorporation of network constraints,

the number of possible scenarios in these models can be prohibitively large. Additionally,

solutions to SP models can be difficult to interpret, as they provide little insight into the

structure of the optimal policy.

The model presented here is distinguished from existing single-storage models in that it

considers the perspective of multiple demand-side entities, each with energy storage capa-

bilities, in a distribution network. Specifically, we first examine a 2-bus network model in

which decisions are made under randomly-evolving demand, renewable supply and real-time

electricity prices. This model captures the salient features of distributed energy storage

8

operations by considering the impact of renewable generation, storage inefficiencies, supply-

demand imbalances, distribution energy losses, and constrained power-line capacities on the

optimal storage decisions. We focus first on the 2-bus system in light of the fact that network

reduction methods can be used to analyze more complicated multi-bus networks as equiva-

lent 2-bus networks for power system planning and operational problems [115, 124, 158]. A

unique feature of our model is the fact that the buses can transmit energy to one another –

a feature that is shown to significantly impact the optimal decisions and operational costs.

Our main results can be summarized as follows. First, we establish the monotonicity and

convexity of our MDP model’s value function in the storage levels for each fixed exogenous

state. Next, we prove that the value function is multimodular in the storage levels, the

optimal policy is monotone and the optimal storage decisions in each stage exhibit bounded

sensitivities. We also establish bounds that compare the cost of the 2-bus network to those

of two comparable systems with pooled and decentralized storage configurations, respec-

tively, and the main results are extended to more general multi-bus network topologies. To

illustrate the structural properties, we present numerical examples that use real renewable

generation and pricing data obtained from open sources. These examples help quantify the

benefits of using the network model in lieu of simpler, single-storage models that fail to

account for interactions between demand-side entities in a distribution network.

The remainder of the chapter is organized as follows. The next section describes the

2-bus distribution network and introduces notation and nomenclature of the mathematical

model. In Section 2.3, we present the main results, which include structural properties of

the value function, optimal policy and the optimal operational cost. Section 2.5 provides

numerical examples that illustrate the main structural results and highlight the importance

of interactions between network entities.

2.2 MARKOV DECISION PROCESS MODEL FOR A 2-BUS NETWORK

Consider a 2-bus network connected to the main grid through a reference bus (or feeder) as

depicted in Figure 2. The feeder is not connected to any distributed energy storage system

9

or renewable energy sources; however, the other two buses (the load buses) are connected

to finite-capacity storage systems and renewable generators that satisfy the demand realized

at these buses. Any unmet demand can be satisfied by procuring energy from the grid

and/or by receiving energy transmitted from the other bus. Similarly, any surplus energy

generated at a load bus can be sold to the main grid and/or transmitted to the other load

bus. However, energy flow between the buses is constrained by the capacity of the power

line (hereafter the line) connecting them, as well as supply-demand balance constraints at

each bus. Additionally, storage capacity limitations restrict the amount of energy that can

be charged to, or discharged from, the storage devices. We assume that a central network

operator (or controller) is responsible for all energy flow and storage decisions within the

distribution network.

Figure 2: Graphical depiction of a 2-bus distribution network.

The distribution network incurs three types of costs: (i) the explicit cost of procuring

energy from, or selling energy to, the grid at real-time prices; (ii) the implicit cost of lost

energy due to line losses stemming from resistive overheating [6]; and (iii) costs associated

with storage inefficiencies. While transmitting energy between the load buses helps to offset

the cost of procuring energy from the grid, only a limited amount of energy can be trans-

mitted due to a line capacity constraint between the buses. Moreover, transmitting stored

energy to another bus is a lost opportunity to procure and store surplus energy from the

grid for future use when prices are high. Therefore, an obvious tradeoff exists between the

amount of energy to buy or sell, and the amount that is transmitted between the load buses.

The operator’s objective is to minimize the expected total discounted costs incurred over

a finite planning horizon by making a sequence of operational decisions. For each stage of

the planning horizon, the operator must decide the amount of energy to: (i) buy from, or

10

sell to, the main grid; (ii) charge to, or discharge from, the energy storage devices; and (iii)

transmit between the two load buses. These decisions are made under randomly-varying

demand, renewable generation and real-time prices.

We formulate the operator’s sequential decision problem using a finite-horizon Markov

decision process (MDP) model. Specifically, consider a planning horizon of length Υ and

partition the time interval [0,Υ) so that

[0,Υ) =
N⋃
t=1

[εt−1, εt),

where N is the number of time intervals (or stages) and εt is the tth decision epoch with

ε0 ≡ 0 and εN ≡ Υ. The discrete time horizon is denoted by T = {1, 2, . . . , N}, where t ∈ T

is the index of the tth stage, namely the interval [εt−1, εt). It is assumed that no decisions

are made at stage N . For future use, let T ′ ≡ T \ {N}. Let C = {0, 1, 2} be the set of buses

in the network, where bus 0 is the feeder, and bus i ∈ C ′ ≡ {1, 2} denotes the ith load bus.

The set of all lines in the network is denoted by A = {(i, j) : i, j ∈ C}, where (i, j) is the

line connecting bus i to bus j.

The physical parameters of the network are described as follows. Let αi (αi <∞) denote

the capacity of the storage device located at bus i ∈ C ′. The parameters ρic and ρid denote

the charging and discharging efficiencies of the storage device at bus i, where ρic, ρ
i
d ∈ (0, 1].

The round-trip efficiency of the storage device at bus i is defined as ρi ≡ ρicρ
i
d. The quantities

τ ic and τ id denote the maximum charging and discharging rates of the storage device at bus i,

respectively. Gather the parameters αi, τ
i
c and τ id in the vectors α, τ c and τ d, respectively.

Let β be the capacity of the line connecting the load buses. Finally, let ν denote the per-unit

cost of line losses, while ϕ is the per-unit cost of charging energy to, or discharging energy

from, the storage devices.

The model contains several sources of uncertainty that we now describe in detail. All

random variables are defined on a common and complete probability space (Ω,A ,P) with

natural filtration {At : t ∈ T }, i.e., At contains the information available up to stage t.

Any random quantity with subscript t is assumed to be At-measurable. Let Di
t denote

the random net demand (demand minus renewable supply) at bus i ∈ C ′ with countable

support Dit ⊂ R, and let Pt be the random real-time price at the start of stage t with

11

countable support Pt ⊂ R+. Let W t = (Pt, D
1
t , D

2
t) denote the exogenous information

available at the start of stage t, and let Wt ≡ Pt × D1
t × D2

t be the support of W t. A

realization of W t is denoted by wt ≡ (pt, d
1
t , d

2
t), where pt, d

1
t and d2

t are realizations of

Pt, D
1
t and D2

t , respectively. This information is exogenous in the sense that the evolution

of W t is independent of the operator’s decisions over the planning horizon. The set of all

sample paths of W = {W t : t ∈ T} is denoted by W ≡ W1 × · · · ×WN , and it is assumed

that W possesses the Markov property, i.e., for any t ∈ T ,

P(W t = wt|W t−1, . . . ,W 1; At−1) = P(W t = wt|W t−1; At−1), wt ∈ Wt.

At the start of stage t, let the (random) storage level at bus i be denoted by Y i
t , define

Y t = (Y 1
t , Y

2
t) and let Y ≡ [0, α1] × [0, α2] be the set of all possible storage levels. Note

that Y is time-invariant, as the storage capacities α1 and α2 are fixed a priori. In contrast

to the exogenous variables, the endogenous component Y t is influenced by the operator’s

actions up to stage t − 1. The random state of the process at the start of stage t is a

vector St = (W t,Y t) whose state space is St ≡ Wt × Y . A realization of St is denoted by

st = (wt,yt) for wt ∈ Wt and yt ∈ Y , and we assume that the initial state, S1, is known

with certainty.

The decision process evolves as follows. At the start of each stage, the operator observes

the exogenous state and the current storage levels at the load buses. Then, the operator

makes the operational decisions to procure or sell, to charge or discharge, and whether to

transmit energy between the load buses. The operator makes no decisions in the final stage

and incurs a terminal cost. It is noted that all of the decisions are made simultaneously

because, unlike other commodities, energy cannot be backlogged and needs to be consumed

immediately. Let xt(st) be the decision vector at the start of stage t when state st is realized;

henceforth, the dependence of xt on st is suppressed for notational brevity. The decision

vector assumes the form xt = (ut, qt), where the vector ut contains the charge/discharge

decisions at each bus, and qt is the amount of energy to transmit between the buses. Note

that the buy/sell decisions are not explicitly included in the decision vector, as these decisions

are auxiliary to the charge/discharge decisions. These quantities are further elucidated in

what follows, along with the feasibility set of xt.

12

Let ut = (uit : i ∈ C ′) be the vector of charging/discharging decisions at stage t described

as follows. For each stage t: (i) if uit > 0, then uit units of energy are charged to the storage

device at bus i; (ii) if uit < 0, then −uit units of energy are discharged from the storage device

at bus i; and (iii) if uit = 0, then energy is neither charged to, nor discharged from, the storage

device at bus i. The charging/discharging decisions are constrained by the storage capacities

and the charging/discharging rates of the storage devices. That is,

−min{yt, τ d} ≤ ut ≤ min{α− yt, τ c}, t ∈ T ′, (2.1)

where all inequalities involving vectors are understood to hold component-wise.

The energy flow between the buses at stage t, namely qt, is described as follows: if qt > 0,

then qt units of energy flow from bus 1 to bus 2; if qt < 0, then −qt units of energy flow from

bus 2 to bus 1; and if qt = 0, then no energy flows between the two buses. These variables

are constrained by the line capacity via

−β ≤ qt ≤ β, t ∈ T ′. (2.2)

Similarly, let g1
t and g2

t be the energy flow in the lines connecting the feeder to buses 1 and 2

(the feeder lines), respectively. Here, if g1
t , g

2
t > 0, then energy flows from the feeder to the

load buses, and if g1
t , g

2
t < 0, energy flows from the buses to the feeder. If these quantities

are zero, then no energy is bought from, or sold to, the grid. For each t ∈ T ′ and i ∈ C ′,

define the variables θit as follows:

θit =

1/ρic, uit ≥ 0,

ρid, uit < 0.

Then the supply-demand balance equations at the load buses are

g1
t = d1

t + θ1
t u

1
t + qt, t ∈ T ′, (2.3)

g2
t = d2

t + θ2
t u

2
t − qt, t ∈ T ′. (2.4)

As noted earlier, g1
t and g2

t are auxiliary variables that depend on (ut, qt) and represent the

buying/selling decisions. Because the feeder lines serve as the main connection between the

distribution system and the main grid, they typically possess sufficient, reliable capacity

13

and incur only minor line losses. Therefore, we assume that energy flows in the feeder lines

are not restricted by line capacities and do not incur line losses. Next, define the stage t

feasibility set (or action space) by Xt(yt), which is characterized by the linear constraints

(2.1) and (3.11); note that Xt(yt) is a bounded polyhedron. A feasible policy is a vector

π = (xt : t ∈ T ′) ∈ Π, where Π denotes the set of all feasible Markov deterministic (MD)

policies.

Following the actions taken by the operator in the current stage, the process next tran-

sitions randomly to another state in the next stage. The endogenous storage levels evolve as

a deterministic function of the current storage levels and the charge/discharge decisions via

yt+1 = yt + ut, t ∈ T ′, (2.5)

while the exogenous variables evolve according to the non-stationary, conditional probability

distribution Pt(wt+1|wt). The transition probabilities of the induced Markov chain are

Pπt (st+1|st) = ψ(yt+1 − yt − ut)Pt(wt+1|wt), t ∈ T ′, (st, st+1) ∈ St × St+1, (2.6)

where ψ(a) is the Kronecker-delta function, i.e., for a ∈ Rn, ψ(a) = 1 when a = 0, and

ψ(a) = 0 otherwise.

Next, we describe the objective function which is the cost to be minimized. The one-step

cost incurred in stage t is

ct(st,xt) = pt(g
1
t + g2

t) + ϕ(|u1
t |+ |u2

t |) + νξ(ut, qt), t ∈ T ′, (2.7)

and cN(sN) = 0 without loss of generality. The first term on the right-hand side (r.h.s.)

of (2.7) is the total cost of procuring or selling energy, the second term is the total cost of

charging or discharging energy, and the third term is the cost of resistive line losses, where ξ,

the resistive line-loss function, is non-negative, separable and convex in (ut, qt) (cf. [17, 143]).

It is assumed that |ct(st,xt)| < ∞. For an a priori storage configuration α, the operator

seeks an optimal policy π∗ ∈ Π that minimizes the expected total discounted costs over the

planning horizon as follows:

zα = min
π∈Π

Eπs

(∑
t∈T ′

δt−1ct(st,xt)

∣∣∣∣S1 = s;α

)
, (2.8)

14

where δ ∈ (0, 1] is a discount factor. Henceforth, zα is called the optimal operational cost.

Bellman’s optimality equations are then

Vt(st) = min
xt∈Xt(yt)

ct(st,xt) + δE(Vt+1(st+1)|st,xt), t ∈ T ′, (2.9)

with VN(sN) = 0.

2.3 STRUCTURAL RESULTS

In this section, we examine important structural properties of the value function, Vt, the

optimal policy π∗ and the optimal cost zα. First, we examine properties of Vt that depend

on the endogenous storage levels yt. In what follows, a fixed exogenous state is denoted by

w̄t.

2.3.1 Structural Properties of the Value Function

Proposition 2.1 asserts that, for a fixed exogenous state, the expected future cost at each

stage is jointly convex in the storage levels. Stated more clearly, the marginal cost of using

storage increases with increasing storage levels.

Proposition 2.1. For each t ∈ T , Vt(w̄t,yt) is convex in yt ∈ Y.

Proof. The result is proved using backward induction on Vt(wt,yt) for a fixed wt. By

assumption, VN(sN) = 0 for all sN ∈ SN , so the result clearly holds at stage N . For

the induction hypothesis, suppose Vt+1(wt+1,yt+1) is convex in yt+1, given a fixed wt+1,

for t + 1 < N . Note that the expectation in (2.9) is taken with respect to (w.r.t.) the

conditional probability distribution Pt(wt+1|w̄t). Moreover, yt+1 is a linear, deterministic

function of yt and ut by (2.5). Therefore, the expectation in (2.9) can be expressed around

the post-decision state sxt = (w̄t,yt + ut) (see [120] for additional details), so that

Vt(w̄t,yt) = min
xt∈Xt(yt)

ct(w̄t,xt) + V x
t (w̄t,yt + ut), (2.10)

15

where V x
t (w̄t,yt +ut) ≡ δE(Vt+1(st+1|sxt)) is called the post-decision value function. As the

expectation operator preserves convexity, and compositions of convex and affine functions

are also convex (see Proposition 2.1.3 (b) of [140]), V x
t (w̄t,yt+ut) is convex in (yt,ut). Note

that an optimal solution to (2.10) exists because Xt(yt) is a bounded polyhedron. Moreover,

ct(w̄t,xt) is piecewise-convex in xt. As the sum of two convex functions is convex, the

objective function of (2.10) is jointly convex in (yt,xt). As convexity is preserved under

partial minimization (see Section 3.2.5 in [25]), we conclude that Vt(w̄t,yt) is convex in

yt.

Intuitively, Proposition 2.1 implies that the flexibility to store surplus generation de-

creases with an increase in the current storage level. Consequently, the operator must either

sell the excess energy, possibly at a lower price, or transmit a portion of it to the other

bus, possibly incurring line-loss costs. Note that, if the functional form of Vt is known for a

fixed w̄t, the optimality equations (2.9) can be solved efficiently using convex optimization

algorithms. Unfortunately, characterizing the expectation in (2.9) is nontrivial due to the

multidimensional nature of St and Xt(yt). The next result, Proposition 2.2, asserts that the

expected future cost at each stage is monotone decreasing in the storage levels.

Proposition 2.2. For each t ∈ T , Vt(w̄t,yt) is monotone decreasing in yt ∈ Y.

Proof. The proposition is proved via backward induction on Vt(wt,yt) for a fixedwt. Clearly,

the result holds at stage N . For the induction hypothesis, suppose Vt+1(wt+1,yt+1) is mono-

tone decreasing in yt+1 for t+1 < N for a fixed wt+1. As the expectation operator preserves

monotonicity, the function V x
t (w̄t,yt + ut) in (2.10) is decreasing in yt and ut. Next, con-

sider two states sat = (w̄t,y
a
t) and sbt = (w̄t,y

b
t), such that 0 ≤ yat < ybt ≤ α. We seek to

show that Vt(w̄t,y
a
t) ≥ Vt(w̄t,y

b
t). To this end, let xat = (uat , q

a
t) and xbt = (ubt , q

b
t) be the

optimal solutions of (2.10) for states sat and sbt , respectively. Then,

Vt(w̄t,y
a
t) = ct(w̄t,u

a
t , q

a
t) + V x

t (w̄t,y
a
t + uat),

Vt(w̄t,y
b
t) = ct(w̄t,u

b
t , q

b
t) + V x

t (w̄t,y
b
t + ubt).

Consider the following two cases:

16

Case 1: Suppose xat ∈ Xt(ybt). As xat is feasible for problem (2.10) in state sbt , the optimal

value Vt(w̄t,y
b
t) is at most equal to the objective value at xat , i.e.,

ct(w̄t,u
a
t , q

a
t) + V x

t (w̄t,y
b
t + uat) ≥ Vt(w̄t,y

b
t). (2.11)

As yat < y
b
t , the following inequality holds by the induction hypothesis on V x

t :

V x
t (w̄t,y

a
t + uat) ≥ V x

t (w̄t,y
b
t + uat). (2.12)

Adding ct(w̄t,u
a
t , q

a
t) to both sides of (2.12) and combining it with (2.11) yields

ct(w̄t,u
a
t , q

a
t) + V x

t (w̄t,y
a
t + uat) ≥ ct(w̄t,u

a
t , q

a
t) + V x

t (w̄t,y
b
t + uat) ≥ Vt(w̄t,y

b
t), (2.13)

where the left-most expression in (2.13) equals Vt(w̄t,y
a
t) by definition. Hence, Vt(w̄t,y

a
t) ≥

Vt(w̄t,y
b
t).

Case 2: Suppose xat 6∈ Xt(ybt). A sufficient condition for xat 6∈ Xt(ybt) is uat ∈ (α −

ybt ,min{τ c,α − yat }]. Construct a feasible solution x̄bt = (ūbt , q̄
b
t) ∈ Xt(ybt) such that ūbt =

α− ybt < uat and q̄bt = qat . For such a case,

Vt(w̄t,y
a
t) = ct(w̄t,u

a
t , q

a
t) + V x

t (w̄t,y
a
t + uat) ≥ ct(w̄t, ū

b
t , q̄

b
t) + V x

t (w̄t,y
a
t + uat)

≥ ct(w̄t, ū
b
t , q̄

b
t) + V x

t (w̄t,α)

≥ ct(w̄t,u
b
t , q

b
t) + V x

t (w̄t,y
b
t + ubt)

= Vt(w̄t,y
b
t).

The first inequality holds because ct(w̄t,u
a
t , q

a
t) ≥ ct(w̄t, ū

b
t , q̄

b
t) for uat > ūbt and qat = q̄bt .

The second inequality holds by the induction hypothesis on V x
t . The third inequality holds

because (ūbt , q̄
b
t) is a feasible, but not necessarily optimal, solution to problem (2.10) for state

sbt . Hence, we conclude that Vt(w̄t,y
a
t) ≥ Vt(w̄t,y

b
t), and the proof is complete.

17

Proposition 2.2 suggests that stored energy tends to reduce the expected operational

costs. When the storage levels are high, a larger fraction of the demand is satisfied by using

stored energy, thereby reducing the overall operational cost. Moreover, higher storage levels

allow the operator to satisfy demand and sell any excess energy back to the grid. This is

especially useful during the peak-price, peak-demand periods.

Next, we present a result for the special case in which the load buses have similar oper-

ational characteristics. The load buses are called homogenous if: (i) α1 = α2, and (ii) the

(conditional) joint cumulative distribution function (c.d.f.) of the net demands at each stage

is symmetric, i.e., for t ∈ T , k ∈ {t, . . . , N} and any a1, a2 ∈ R,

Pk(D1
k+1 ≤ a1, D

2
k+1 ≤ a2|Dk; Ak) = Pk(D1

k+1 ≤ a2, D
2
k+1 ≤ a1|Dk; Ak). (2.14)

Condition (2.14) is indicative of a joint distribution function in R2 that is symmetric along

the line a1 = a2. Proposition 2.3 asserts that, for a pair of homogenous buses, allocating

the total stored energy equally between the two buses minimizes the expected future cost

at each stage. For ease of exposition, let YΘ
t ≡ {yt ∈ Y : y1

t + y2
t = Θ} denote the set of

feasible storage-level allocations at stage t when the total stored energy in the network is

Θ ∈ [0, α1 + α2].

Proposition 2.3. For each t ∈ T and a fixed Θ,

Vt(w̄t,yt) ≥ Vt(w̄t,Θ/2), ∀yt ∈ YΘ
t .

Proof. The result obviously holds at stage N . For t ∈ T ′, consider two feasible storage-level

vectors yat and ybt , such that yat ,y
b
t ∈ YΘ

t . By definition, (yat + ybt)/2 = (Θ/2,Θ/2) ≡ Θ/2.

For a pair of homogenous buses that satisfy the conditions α1 = α2 and (2.14), it follows

directly that Vt is symmetric w.r.t. yt for a fixed w̄t, i.e., Vt(w̄t,y
a
t) = Vt(w̄t,y

b
t). Using

Jensen’s inequality for the convex function Vt at the points yt = yat and yt = ybt , we obtain

Vt(w̄t,y
a
t) =

1

2

(
Vt(w̄t,y

a
t) + Vt(w̄t,y

b
t)
)
≥ Vt(w̄t, (y

a
t + ybt)/2) = Vt(w̄t,Θ/2,Θ/2).

As yat (or ybt) is any feasible element in YΘ
t , we conclude that Vt(w̄t,yt) ≥ Vt(w̄t,Θ/2,Θ/2)

for all yt ∈ YΘ
t .

18

2.3.2 Behavior of the Optimal Policy

Here we examine structural properties of the optimal policy π∗. For a fixed w̄t, the optimality

equations (2.9) are a collection of parameterized optimization problems in which the objective

function and the constraints depend on the storage levels yt. For such a class of problems,

monotone comparative statics [150] can be used to characterize the monotone behavior of

optimal decisions with respect to the state variables. Moreover, monotone comparative

statics are useful for problems in which the value function is non-differentiable [106] and are

closely linked to the concept of substitutability. Two variables are called economic substitutes

if an increase in one variable increases the marginal cost of the other variable [140]. The

property of multimodularity [5, 63, 112] is known to imply substitutability, and is inherently

related to the concepts of supermodularity and increasing differences that arise frequently

in lattice theory [150]. In what follows, we show that, for a fixed w̄t, Vt is multimodular in

yt, and the optimal decisions x∗t are not only monotone, but also economic substitutes of yt.

We first review some needed elements of lattice theory.

Consider A ⊂ Rn with the standard component-wise order ≤; that is, for any a, a′ ∈ A,

a ≤ a′ if and only if ai ≤ a′i for each i = 1, . . . , n. Any subset of Rn is a partially-ordered

set (or poset) by definition (see Section 2.2 of [150]). A special poset, namely a lattice, is a

group-algebraic structure as next defined.

Definition 2.1. A poset (A,≤) is called a lattice if and only if for any a, a′ ∈ A,

a ∨ a′ ≡ (sup{a1, a
′
1}, . . . , sup{an, a′n}) ∈ A,

a ∧ a′ ≡ (inf{a1, a
′
1}, . . . , inf{an, a′n}) ∈ A.

In words, a lattice is a poset whose nonempty, finite subsets possess a supremum and an

infimum. Given a lattice (A,≤), any S ⊆ A is called a sublattice of A if S is itself a lattice.

Note that Rn is a lattice by definition. Next, we review important properties of functions

defined on lattices.

Definition 2.2. A mapping f : A→ R is supermodular on A if for any a, a′ ∈ A,

f(a) + f(a′) ≤ f(a ∨ a′) + f(a ∧ a′).

The function f is said to be submodular on A if −f is supermodular on A.

19

Supermodular functions exhibit the more intuitive increasing differences property (see

Theorem 2.2.2 in [140]). Given two posets (M,≤) and (N,≤), a mapping f : M × N → R

has increasing differences if for any n, n′ ∈ N with n ≤ n′, f(m,n′)−f(m,n) is increasing in

m ∈ M . Clearly, increasing differences, and therefore supermodularity, imply substitutabil-

ity. However, supermodularity is not preserved under minimization [97, 140]. By contrast,

multimodularity, which is next defined, is preserved under minimization [97, 170].

Definition 2.3. Let A = {(v, b) ∈ Rn+1 : (v1 − b, v2 − v1, . . . , vn − vn−1) ∈ U ⊆ Rn, b ∈ R}

be a lattice characterized by the posets (U,≤) and (R,≤). A mapping f : U → R is said to

be multimodular on U if Ψ(v, b) ≡ f(v1 − b, v2 − v1, . . . , vn − vn−1) is submodular on A.

To establish the multimodularity of Vt, we first recast the sets Y , Xt(yt) and U ≡

Y × ∪yt∈YXt(yt) as lattices by employing the following change of variables: y1
t = v1 − b,

y2
t = v2 − v1, u1

t = r1 − v1, u2
t = r2 − v2, and qt = r3 − r2, where (v, b) ≡ (v1, v2, b) and

r ≡ (r1, r2, r3). Redefining the sets Y , U and Xt(yt), respectively, we obtain

V ≡
{

(v, b) ∈ R3 : v1 − b ∈ [0, α1], v2 − v1 ∈ [0, α2]
}
, (2.15)

L ≡
{

(v, b, r) ∈ R6 : (v, b) ∈ V , (r1 − v1, r2 − v2, r3 − r2) ∈ Xt(v1 − b, v2 − v1)
}
, (2.16)

L(v, b) ≡
{
r ∈ R3 : (r1 − v1, r2 − v2, r3 − r2) ∈ Xt(v1 − b, v2 − v1)

}
. (2.17)

The set U is the set of all feasible state-action pairs in stage t for a fixed w̄t, and for any

(v, b) ∈ V , L(v, b) is called a section of L at (v, b) (see page 16 in [150]). Henceforth, we

assume that τ c, τ d > α to simplify the analysis. Proposition 2.4 asserts that the posets V ,

L and L(v, b) are lattices.

Proposition 2.4. The sets V, L and L(v, b) are lattices.

Proof. We first consider the set L that is characterized by the following constraints:

0 ≤ r1 − b ≤ α1, (2.18a)

0 ≤ r2 − v1 ≤ α2, (2.18b)

−β ≤ r3 − r2 ≤ β, (2.18c)

0 ≤ v1 − b ≤ α1, (2.18d)

0 ≤ v2 − v1 ≤ α2. (2.18e)

20

Define a ≡ (v, b, r) ∈ L. It is noted that each constraint in L has exactly two variables

with the coefficients +1 and −1, while the remaining coefficients are equal to zero. Thus,

each constraint in L defines an affine half-space of the form Ai,j = {a ∈ R6 : ai−aj ≤ h, ak =

0, i 6= j, k 6= i, j}. We show that each such Ai,j is a lattice. Consider two points a, a′ ∈ Ai,j.

For the cases a ≤ a′ and a′ ≤ a, it is easy to verify that a∨a′ ∈ Ai,j and a∧a′ ∈ Ai,j. Next,

consider the case when ai ≥ a′i, a
′
j ≥ aj, and ak = a′k = 0 for all k 6= i, j. Then, the ith

and jth components of a ∧ a′ and a ∨ a′ are (a′i, aj) and (ai, a
′
j), respectively. As a ∈ Ai,j,

ai ≤ aj + h. But a′i ≤ ai, and therefore, a′i ≤ aj + h ⇒ a′i − aj ≤ h, which implies that

a ∧ a′ ∈ Ai,j. Similarly, ai ≤ h + aj ≤ h + a′j ⇒ ai − a′j ≤ h as a′ ∈ Ai,j and a′j ≥ aj, and

therefore, a ∨ a′ ∈ Ai,j. Similar arguments are valid when ai ≤ a′i, a
′
j ≤ aj and ak = a′k = 0

for all k 6= i, j; therefore, Ai,j is a lattice. As a finite intersection of lattices is also a lattice

(see Lemma 2.2.2 of [150]), L is a lattice. Following similar lines of reasoning, we can show

that V , defined by constraints (2.18d)–(2.18e), is also a lattice. For a fixed (v, b) ∈ V , L(v, b)

is defined by the constraints (2.18a)–(2.18c). Because L(v, b) is a section of L at (v, b), it is

also a lattice by Lemma 2.2.3 of [150].

Next, we present our main result, Theorem 2.1, which asserts the multimodularity of

Vt, and the monotonicity of x∗t , with respect to yt. With a slight abuse of notation, let

∆if(w̄t, a) denote both the forward and backward finite differences of a function f(w̄t, a)

with respect to dimension i of a. Specifically, for some ε > 0, the forward difference of f is

∆if(w̄t, a) = f(w̄t, a + εei)− f(w̄t, a),

and the backward difference is f(w̄t, a) − f(w̄t, a − εei), where ei is the ith unit vector.

Similarly, let ∆i,jf(w̄t, a) be the second-order finite difference of f(w̄t, a), with respect to

dimensions i and j of a, defined by

∆i,jf(w̄t, a) = ∆j (∆if(w̄t, a)) .

Theorem 2.1. For each t ∈ T and a fixed exogenous state w̄t,

(i) Vt(w̄t,yt) is multimodular in yt ∈ Y;

21

(ii) Vt(w̄t,yt) has increasing differences and is component-wise convex in yt ∈ Y. That is,

∆1,1Vt(w̄t,yt) ≥ ∆1,2Vt(w̄t,yt) ≥ 0,

∆2,2Vt(w̄t,yt) ≥ ∆2,1Vt(w̄t,yt) ≥ 0;

(iii) x∗t = (u∗t , q
∗
t) is monotone decreasing in yt ∈ Y. Furthermore, if qt is fixed, then

−1 ≤ ∆1 u
1∗
t (w̄t,yt) ≤ ∆2 u

1∗
t (w̄t,yt) ≤ 0,

−1 ≤ ∆2 u
2∗
t (w̄t,yt) ≤ ∆1 u

2∗
t (w̄t,yt) ≤ 0.

Proof. To prove part (i), we use backward induction on Vt(w̄t,yt). The result clearly holds

for stage N . For the induction hypothesis, suppose Vt+1(wt+1,yt+1) is multimodular in

yt+1 ∈ Y for any wt+1 ∈ Wt+1. We seek to show that Vt(w̄t,yt) is multimodular in yt ∈ Y .

This is equivalent to showing that the function

Ψ(w̄t,v, b) = Vt(w̄t, v1 − b, v2 − v1),

= min
ut,qt

{
ct(w̄t,ut, qt) + δE(Vt+1(W t+1, v1 − b+ u1

t , v2 − v1 + u2
t))
}
,

= min
r
{ct(w̄t, r1 − v1, r2 − v2, r3 − r2) + δE (Vt+1(W t+1, r1 − b, r2 − v1))} ,

(2.19)

is submodular in (v, b) ∈ V , such that (r1−v1, r2−v2, r3−r2) ∈ Xt(v1−b, v2−v1) and r ∈ R3.

First, we establish that the objective function of (2.19) is submodular in (v, b, r) ∈ L, where

L is defined in (2.16). The post-decision value function V x
t (w̄t,yt+1) is

V x
t (w̄t,yt+1) =

∑
wt+1∈Wt+1

δPπ∗(wt+1|w̄t)Vt+1(wt+1,yt+1).

As δPπ∗(wt+1|w̄t) ≥ 0, and a non-negative affine combination of multimodular functions is

multimodular by Lemma 2 (i) of [97], V x
t is multimodular in yt+1. Note that yt+1 = yt+ut =

(u1
t + y1

t , y
2
t + u2

t). Using Lemma 2 (vii) in [97], we conclude that V x
t is multimodular in

(u1
t , y

1
t , y

2
t , u

2
t), or equivalently that V x

t is submodular in (v, b, r). The one-step cost in (2.19)

is

ct(w̄t, r1 − v1, r2 − v2, r3 − r2) = k + θ1
t (r1 − v1)+θ2

t (r2 − v2) + ϕ(|r1 − v1|+ |r2 − v2|)

+ νξ(r1 − v1, r2 − v2, r3 − r2), (2.20)

22

where k is a constant that depends on w̄t. As the absolute value function and ξ are convex, by

Theorem 2.2.6 (b) of [140], we have that the terms |r1−v1|, |r2−v2| and ξ(r1−v1, r2−v2, r3−r2)

in (2.20) are submodular in (v, b, r). Moreover, the linear terms in (2.20) are submodular

in (v, b, r) by Lemma 2.2.3 in [140]. As the sum of two submodular functions is submodular

by Lemma 2.6.1 in [150], the objective function of (2.19) is also submodular in (v, b, r) ∈ L.

It is noted that problem (2.19) involves minimizing a submodular function in (v, b, r) along

a section L(v, b) of L at some (v, b) ∈ V . Also, Ψ(w̄t,v, b) > −∞ because L(v, b) is a

polyhedron. Then, using Theorem 2.7.6 in [150], we establish that Ψ(w̄t,v, b) is submodular

in (v, b) ∈ V . Therefore, Vt(w̄t,yt) is multimodular in yt ∈ Y .

To prove Theorem 2.1 (ii), the dependence of Vt and Ψ on w̄t is suppressed to simplify

notation. Let ε > 0 and note that

∆2,3Ψ(v, b) = Ψ(v1, v2 + ε, b+ ε)−Ψ(v1, v2 + ε, b)−Ψ(v1, v2, b+ ε) + Ψ(v1, v2, b),

= Vt(y
1
t − ε, y2

t + ε)− Vt(y1
t , y

2
t + ε)− Vt(y1

t − ε, y2
t) + Vt(y

1
t , y

2
t),

= −∆1,2Vt(yt), (2.21)

where the last equality stems from successive forward and backward finite difference opera-

tions on Vt w.r.t. y2
t and y1

t , respectively. As submodularity implies decreasing differences

by Theorem 2.2.2 in [140], we have ∆2,3Ψ(v, b) ≤ 0 ⇒ ∆1,2Vt(yt) ≥ 0 by equation (2.21).

Next, we show that ∆2,2Vt(yt) ≥ ∆1,2Vt(yt). By definition,

∆1,3Ψ(v, b) = Ψ(v1 + ε, v2, b+ ε)−Ψ(v1 + ε, v2, b)−Ψ(v1, v2, b+ ε) + Ψ(v1, v2, b),

= Vt(y
1
t , y

2
t − ε)− Vt(y1

t + ε, y2
t − ε)− Vt(y1

t − ε, y2
t) + Vt(y

1
t , y

2
t). (2.22)

Similarly, successive forward and backward finite difference operations on Vt yield

∆1,2Vt(yt) = Vt(y
1
t + ε, y2

t)− Vt(y1
t + ε, y2

t − ε)− Vt(y1
t , y

2
t) + Vt(y

1
t , y

2
t − ε), (2.23)

∆1,1Vt(yt) = Vt(y
1
t + ε, y2

t)− 2Vt(y
1
t , y

2
t) + Vt(y

1
t − ε, y2

t). (2.24)

Subtracting (2.24) from (2.23), we see that ∆1,2Vt(yt)−∆1,1Vt(yt) = ∆1,3Ψ(v, b) by (2.22).

But ∆1,3Ψ(v, b) ≤ 0, as Ψ is a submodular function. Therefore,

0 ≤ ∆1,2Vt(yt) ≤ ∆1,1Vt(yt). (2.25)

23

Likewise, it can be shown that 0 ≤ ∆2,1Vt(yt) ≤ ∆2,2Vt(yt). Therefore, Vt has increasing

differences and component-wise convexity.

To prove Theorem 2.1 (iii), we note that L is a sublattice of V × R3, both of which are

lattices. Hence, for any (v, b) ∈ V , the section L(v, b) is also a sublattice by Lemma 2.2.3

(a) of [150]. Let v denote the strong set order defined for subsets of a lattice, where for any

A′, A′′ ⊆ A, A′ v A′′ ⇒ a′∧a′′ ∈ A′ and a′∨a′′ ∈ A′′ for all a′ ∈ A′ and a′′ ∈ A′′ (see Section

2.4 of [150]). As L(v, b) is a sublattice, it is also an increasing set function in (v, b) ∈ V with

respect to v by Theorem 2.4.5(a) of [150]. It is easy to verify that L(v, b) is nonempty for

any (v, b) ∈ V . Therefore, we conclude that x∗t is monotone decreasing in yt ∈ Y by using

Theorem 2.8.2 in [150]. Next, we derive the bounds on ∆1u
1∗
t and ∆2u

1∗
t (their dependence

on (w̄t,yt) is suppressed for simplicity). Let Jt(u
1
t , y

1
t , y

2
t , u

2
t) be the objective function of

(2.9) for a fixed qt ∈ [−β, β]. By definition,

Vt(y
1
t , y

2
t) = min

u1t ,u
2
t

{
Jt(u

1
t , y

1
t , y

2
t , u

2
t) : 0 ≤ u1

t + y1
t ≤ α1, 0 ≤ u2

t + y2
t ≤ α2

}
.

Next, Jt is minimized sequentially with respect to u2
t and u1

t , respectively. Minimizing Jt

over the set of feasible u2
t values, and using arguments similar to those in the proof of part

(i), we obtain

J̃t(u
1
t , y

1
t , y

2
t) = min

u2t

{
Jt(u

1
t , y

1
t , y

2
t , u

2
t) : 0 ≤ u1

t + y1
t ≤ α1, 0 ≤ u2

t + y2
t ≤ α2

}
,

which is multimodular in (u1
t , y

1
t , y

2
t). Next, minimizing J̃t over the set of feasible u1

t values

gives

Vt(y
1
t , y

2
t) = min

u1t

{
J̃t(u

1
t , y

1
t , y

2
t) : 0 ≤ u1

t + y1
t ≤ α1

}
,

which is multimodular in (y1
t , y

2
t). Applying Corollary 1 (ii) of [97], we obtain −1 ≤ ∆1u

1∗
t ≤

∆2u
1∗
t ≤ 0. Similar bounds on ∆1u

2∗
t and ∆2u

2∗
t are obtained by minimizing Jt over u1

t ,

followed by u2
t , and applying Theorem 1 (ii) of [97].

24

The multimodularity asserted in Theorem 2.1 (i) directly implies result (ii), which is

often called the diagonal-dominance property (cf. [112, 172]) in the inventory literature.

Multimodular value functions imply that the storage levels at the load buses are economic

substitutes of each other. Theorem 2.1 (ii) implies result (iii). The monotonicity result in

part (iii) asserts that, when the storage levels are high, it is more profitable to discharge

and sell excess energy to the grid, rather than procuring energy and storing it. However,

more insightful is the fact that the optimal storage decisions exhibit bounded sensitivities,

as seen in the two inequalities of part (iii). That is, for each bus, using the optimal policy,

a unit increase in the amount of stored energy yields less than a unit decrease in optimal

charge/discharge decision. Furthermore, this marginal decrease is more sensitive to a local

increase in the storage level, as opposed to an increase in the storage level at the other

bus. The bounded sensitivities property shows that it need not be optimal to fully charge,

or fully discharge, the storage devices at each stage, even when τ c, τ d > α. That is, the

optimal storage policy is not necessarily of the so-called “bang-bang” type, which is optimal

in single-storage models that assume batteries with fast-charging capabilities (cf. [64, 131]).

Thus, the bounded sensitivities property is indicative of a stable operating regime for the

network and highlights the economic benefit of sharing stored energy under line capacity

constraints.

2.3.3 Behavior of the Optimal Operational Cost

Here, we examine the behavior of the optimal operational cost zα. This examination is

motivated by the operator’s desire to determine the appropriate storage capacity at each

bus prior to making any operational decisions. This determination is further warranted

by the significant costs associated with storage investment in distribution networks. The

operator’s storage allocation problem is formulated as follows:

min
α

κ
∑
i∈C′

αi + zα, (2.26a)

s.t. 0 ≤ α ≤ ᾱ, (2.26b)

25

where κ is the per-unit cost of storage capacity, and ᾱ is a budget vector of the maximum

storage capacity allowed at each bus. Proposition 2.5 asserts that the optimal operational

cost is convex and monotone decreasing in the storage capacities.

Proposition 2.5. The optimal operational cost zα is convex and monotone decreasing in α.

Proof. Consider three storage capacity vectors α1,α2 and α3, such that α1 < α2 < α3 and

α2 = ηα1 + (1 − η)α3, where η ∈ [0, 1]. We seek to show that zα2 ≤ ηzα1 + (1 − η)zα3 .

Consider a state st = (wt,yt) ∈ St. Let xk∗t = (uk∗t , q
k∗
t) be the optimal solution vector

of (2.8) for α = αk, where k ∈ {1, 2, 3}. Construct a policy π̃ = (x̃t : t ∈ T ′), such that

ũt = ηu1∗
t + (1− η)u3∗

t and q̃t = ηq1∗
t + (1− η)q3∗

t . Multiply both sides of the constraints in

Xt(yt;α1) by η and those in Xt(yt;α3) by (1− η), and add the corresponding constraints to

obtain the inequalities

−min{τ d,yt} ≤ ηu1∗
t + (1− η)u3∗

t ≤ min{τ c,α2 − yt},

−β ≤ ηq1∗
t + (1− η)q3∗

t ≤ β,

which shows that π̃ is a feasible, but not necessarily optimal, policy of (2.8) for α = α2.

Furthermore, it can be verified that

ct(st, x̃t) = ηct(st,x
1∗
t) + (1− η)ct(st,x

3∗
t), t ∈ T ′. (2.27)

Summing the one-step costs in (2.27) and taking the expectation of this sum gives

zα2 ≤ Eπ̃

(∑
t∈T ′

ct(st, x̃t)

)
= ηzα1 + (1− η)zα3 ,

which completes the proof of convexity.

Next, to show monotonicity, consider two storage capacity vectors α1 and α2, such that

α2 = α1 + Γ where Γ > 0. Let w = (wt : t ∈ T) be a realization of the exogenous process,

and π1 and π2 denote the optimal policies of (2.8) for α = α1 and α = α2, respectively. Let

zα1(w) and zα2(w) be the total costs incurred by along the trajectory w using π1 and π2,

respectively. Without loss of generality, suppose y1 = 0 for both policies. Let s1
t = (wt,y

1
t)

be the state of the process at stage t under π1. Then, π1 is a feasible policy of (2.8) when

26

α = α2, as u1
t ≤ α1 − y1

t ⇒ u1
t ≤ α1 + Γ − y1

t = α2 − y1
t as Γ > 0 and q1

t ∈ [−β, β];

therefore, zα1(w) ≥ zα2(w). As w is any feasible realization in W , we can conclude that

zα1 =
∑
w∈W

zα1(w)P(W = w) ≥
∑
w∈W

zα2(w)P(W = w) = zα2 ,

which completes the proof.

It is seen that additional storage capacity leads to lower costs, but with decreasing

marginal benefit.

Next, we compare the operational cost of the 2-bus network to those of two comparable

networks having distinct storage configurations. The 2-bus network has a coupled storage

(CS) configuration, in which the two buses can transmit stored energy between them. By

contrast, energy cannot be transmitted between the buses in a decentralized storage (DS)

setting; thus, there is no interaction between the buses, and the operational cost is the sum

of the operational costs incurred at each of the buses. Finally, a pooled storage (PS) config-

uration consists of a centralized storage facility that satisfies the collective energy demand

in the network. Figure 3 depicts these three networks and their storage configurations. It is

assumed that the total storage capacity in each network is equal to α1 +α2. Additionally, it

is assumed that both the charging and the discharging efficiencies in each network are equal

to ρ for a fixed ρ ∈ (0, 1].

Theorem 2.2 asserts that the network with pooled storage has the lowest operational

cost, followed by the one with coupled storage, which in turn is less than the cost in the

decentralized storage network. For ease of exposition, let zP , zC and zD denote the optimal

operational costs of the PS, CS and DS network configurations, respectively. The next result

shows how these costs compare to one another.

Theorem 2.2. The optimal operational costs of PS, CS and DS configurations are ordered

such that zP ≤ zC ≤ zD.

Proof. As qt = 0 ∈ [−β, β] at each stage t ∈ T ′ in the DS network, it is clear that any

optimal policy for the DS network is a feasible, but not necessarily optimal, policy for the

CS network; therefore, we have zC ≤ zD. Next, we show that zP ≤ zC . Assume that the

27

Figure 3: The pooled, coupled and decentralized storage configurations.

initial storage levels in the CS and PS networks are zero without loss of generality. Let

u∗t = (u1∗
t , u

2∗
t) be the optimal charge/discharge decisions in the CS network at stage t.

Construct a storage policy for the PS network, denoted by π̈ = (üt : t ∈ T ′), such that

üt = u1∗
t + u2∗

t for each t ∈ T ′. Let ÿt be the associated storage level realized at stage t

under policy π̈, where ÿt+1 = ÿt + üt. Then, starting from ÿt = 0, it is easy to verify that

0 ≤ ÿt + üt ≤ α1 + α2 for each t ∈ T ′, which implies that π̈ is a feasible policy for the PS

network. Next, define the variables (θ̈t : t ∈ T ′), such that

θ̈t =

1/ρ, üt ≥ 0,

ρ, üt < 0.

Consider a realization w = (wt : t ∈ T) of the exogenous process W . The one-step cost

incurred at stage t in the PS network, when the state (wt, ÿt) is realized, is

c̈t(wt, üt) = pt(d
1
t + d2

t + θ̈tüt) + ϕ|üt|,

while the corresponding one-step cost in the CS network for state (wt,y
∗
t) is

ct(wt,u
∗
t , q
∗
t) = pt(d

1
t + d2

t + θ1
t u

1∗
t + θ2

t u
2∗
t) + ϕ(|u1∗

t |+ |u2∗
t |) + νξ(u∗t , q

∗
t).

28

Define ät ≡ θ̈tüt and at ≡ θ1
t u

1∗
t +θ2

t u
2∗
t . Next, compare the terms c̈t(wt, üt) and ct(wt,u

∗
t , q
∗
t).

To this end, consider the following six cases involving u1∗
t , u2∗

t and üt ≡ u1∗
t + u2∗

t :

Case 1 : u1∗
t ≥ 0, u2∗

t ≥ 0 and u1∗
t + u2∗

t ≥ 0. Then θ1
t = θ2

t = θ̈t = 1/ρ, and at = ät =

(u1∗
t + u2∗

t)/ρ.

Case 2 : u1∗
t ≥ 0, u2∗

t < 0 and u1∗
t + u2∗

t ≥ 0. Then θ1
t = θ̈t = 1/ρ, θ2

t = ρ, and

at = u1∗
t /ρ+ ρu2∗

t ≥ (u1∗
t + u2∗

t)/ρ = ät.

Case 3 : u1∗
t < 0, u2∗

t ≥ 0 and u1∗
t + u2∗

t ≥ 0. Then θ1
t = ρ, θ2

t = θ̈t = 1/ρ, and

at = ρu1∗
t + u2∗

t /ρ ≥ (u1∗
t + u2∗

t)/ρ = ät.

Case 4 : u1∗
t < 0, u2∗

t < 0 and u1∗
t + u2∗

t < 0. Then θ1
t = θ2

t = θ̈t = ρ, and at = ät =

ρ(u1∗
t + u2∗

t).

Case 5 : u1∗
t < 0, u2∗

t ≥ 0 and u1∗
t + u2∗

t < 0. Then θ1
t = θ̈t = ρ, θ2

t = 1/ρ, and

at = ρu1∗
t + u2∗

t /ρ ≥ ρ(u1∗
t + u2∗

t) = ät.

Case 6 : u1∗
t ≥ 0, u2∗

t < 0 and u1∗
t + u2∗

t < 0. Then θ1
t = 1/ρ, θ2

t = θ̈t = ρ, and

at = u1∗
t /ρ+ ρu2∗

t ≥ ρ(u1∗
t + u2∗

t) = ät.

Clearly, at ≥ ät ⇒ θ1
t u

1∗
t + θ2

t u
2∗
t ≥ θ̈tüt in all of the above cases. Also, |üt| = |u1∗

t +

u2∗
t | ≤ |u1∗

t | + |u2∗
t | by the triangle inequality, and νξ(u∗t , q

∗
t) ≥ 0 by definition. Therefore,

ct(wt,u
∗
t , q
∗
t) ≥ c̈t(wt, üt) for each t ∈ T ′. Adding the one-step costs over the decision stages

and taking expectation of these sums, we obtain

Eπ̈

(∑
t∈T ′

c̈t(wt, üt)

)
≤ Eπ∗

(∑
t∈T ′

ct(wt,u
∗
t , q
∗
t)

)
= zC . (2.28)

However, the l.h.s. of (2.28) is greater than or equal to zP because π̈ is a feasible, but not

necessarily optimal, policy for the PS network. This concludes the proof.

To the authors’ knowledge, Theorem 2.2 is the first result to establish theoretical bounds

on the optimal operational cost (zC) incurred in a 2-bus distribution network with storage;

however, the upper and lower bounds of zC (zD and zP , respectively) need not be tight

in general. Specifically, these bounds are the optimal costs of simplified, single-storage

models that do not account for energy flow constraints in a 2-bus network. It is well-known

that optimal storage policies for single-storage models exhibit a dual-threshold structure

29

(cf. [64, 84, 132, 153, 160]), allowing such models to be solved efficiently using specialized

backward induction algorithms (see Section 4.7.6 in [122]). It is instructive that the quantity

zC−zP represents the cost savings achieved by pooling stored energy in a centralized facility,

while the quantity zD − zC can be interpreted as the opportunity cost of prohibiting the

transmission of stored energy between the buses. Consequently, the ratio (zD − zP)/zD can

be viewed as the marginal benefit of centralizing the storage operations of two decentralized

storage systems.

2.4 EXTENSION TO MULTI-BUS NETWORKS

In this section, we extend the results of Theorems 2.1 and 2.2 to networks with more than two

buses. Specifically, we consider loop and mesh network configurations, which are common for

distribution networks [28]. Figure 4 depicts these two configurations, which differ primarily

in the number of line connections between the buses. The mesh configuration is a fully-

connected network topology in which each pair of buses is connected by a line. By contrast,

a loop network is a simply connected network.

Let G denote the total number of load buses in the network, and let C ′ ≡ {1, . . . , G}

denote the set of such buses. The set of lines in the loop and the mesh networks are denoted

by AL and AM , respectively. For both networks, let q̄it be the energy flow in the feeder line

connected to bus i, and let qt(i, j) denote the energy flow in line (i, j), where qt(i, j) ≥ 0

if energy flows from bus i to bus j, and qt(i, j) < 0 otherwise. For notational convenience,

denote qt(G,G + 1) ≡ qt(G, 1). For each t ∈ T ′ and i ∈ C ′, the supply-demand balance

constraints in these two multi-bus networks are

(Loop) q̄it = dit + θitu
i
t + qt(i, i+ 1)− qt(i− 1, i),

(Mesh) q̄it = dit + θitu
i
t +

∑
(i,j)∈AM :j>i

qt(i, j)−
∑

(j,i)∈AM :j<i

qt(j, i).

Let qLt = (qt(i, j) : (i, j) ∈ AL) and qMt = (qt(i, j) : (i, j) ∈ AM) be the vector of energy

flows between the load buses in the loop and the mesh networks, respectively. Then, one-step

30

(a) Loop network. (b) Mesh network.

Figure 4: Depiction of networks with the loop and the mesh configurations.

costs incurred at stage t in the two multi-bus networks are

(Loop) cLt (st,xt) = pt
∑
i∈C′

(dit + θitu
i
t) + ϕ

∑
i∈C′
|uit|+ νξ(ut, q

L
t),

(Mesh) cMt (st,xt) = pt
∑
i∈C′

(dit + θitu
i
t) + ϕ

∑
i∈C′
|uit|+ νξ(ut, q

M
t).

The functions cLt and cMt are of the same form as that of ct in (2.7). Moreover, the

storage level and line capacity constraints in the multi-bus networks mirror those in the

2-bus network; hence, the lattice structure of the feasibility sets is conserved, despite the

fact that the number of constraints is significantly higher for the multi-bus configurations.

This leads us to the next result in Theorem 2.3 that holds for both the multi-bus networks

and is stated without proof.

Theorem 2.3. For each t ∈ T ,

(i) Vt(w̄t,yt) is multimodular in yt ∈ Y.

(ii) x∗t is monotone decreasing in yt ∈ Y.

31

The next result, Theorem 2.4, establishes a sequence of bounds involving the optimal

costs of the pooled (zP), decentralized (zD), loop (zL) and mesh (zM) networks.

Theorem 2.4. The optimal operational costs are ordered such that zP ≤ zM ≤ zL ≤ zD.

Proof. Note that, for the DS network, qt(i, j) = 0 for all (i, j) ∈ AL; therefore, it is clear that

any optimal policy for the DS network is a feasible, but not necessarily optimal, policy for

the loop network. Therefore, zL ≤ zD. Similarly, qt(i, j) = 0 for all (i, j) ∈ AM \ AL in the

loop network. Using a similar feasibility-optimality argument for the optimal costs of the

loop and mesh networks, we conclude that zM ≤ zL. Next, we show that zP ≤ zM . Assume

that the initial storage levels in the mesh and PS networks are zero without loss of generality.

Let u∗t = (ui∗t : i ∈ C ′) be the optimal charge/discharge decisions in the mesh network at

stage t. Construct a storage policy for the PS network, denoted by π̈ = (üt : t ∈ T ′),

such that üt =
∑

i∈C′ u
i∗
t for each t ∈ T ′. Let ÿt be the storage level realized at stage t

under policy π̈, where ÿt+1 = ÿt + üt. Then, starting from ÿt = 0, it is easy to verify that

0 ≤ ÿt + üt ≤
∑

i∈C′ αi, which implies that π̈ is a feasible policy for the PS network. Next,

define the variables (θ̈t : t ∈ T ′), such that

θ̈t =

1/ρ, üt ≥ 0,

ρ, üt < 0.

Next, we show that
∑

i∈C′ θ
i
tu
i∗
t ≥ θ̈tüt by using a simple induction argument. For k ∈ C ′\{1},

define ũkt ≡
∑k

i=1 u
i∗
t , and let θ̃kt = 1/ρ if ũkt ≥ 0, and θ̃kt = ρ otherwise. From the proof

of Theorem 2.2, we know that
∑k

i=1 θ
i
tu
i∗
t ≥ θ̃kt ũ

k
t for k = 2. For the induction hypothesis,

suppose
∑k

i=1 θ
i
tu
i∗
t ≥ θ̃kt ũ

k
t for some k > 2. Adding the term θk+1

t u
(k+1)∗
t to both sides, we

obtain
∑k+1

i=1 θ
i
tu
i∗
t ≥ θ̃kt ũ

k
t + θk+1

t u
(k+1)∗
t . Define at ≡ θ̃kt ũ

k
t + θk+1

t u
(k+1)∗
t and ãt = θ̃k+1

t ũk+1
t .

Next, we compare the terms at and ãt for the following six cases involving the terms ũkt , ũ
k+1
t

and u
(k+1)∗
t :

Case 1 : ũkt ≥ 0, u
(k+1)∗
t ≥ 0 and ũk+1

t ≥ 0. Then θ̃kt = θ̃k+1
t = θ

(k+1)∗
t = 1/ρ, and

at = ãt = ũk+1
t /ρ.

Case 2 : ũkt ≥ 0, u
(k+1)∗
t < 0, and ũk+1

t ≥ 0. Then θ̃kt = θ̃k+1
t = 1/ρ, θ

(k+1)∗
t = ρ and

at = ũkt /ρ+ ρu
(k+1)∗
t ≥ ũk+1

t /ρ = ãt.

32

Case 3 : ũkt < 0, u
(k+1)∗
t ≥ 0, and ũk+1

t ≥ 0. Then θ̃kt = ρ, θ
(k+1)∗
t = θ̃k+1

t = 1/ρ and

at = ρũkt + u
(k+1)∗
t /ρ ≥ ũk+1

t /ρ = ãt.

Case 4 : ũkt < 0, u
(k+1)∗
t < 0, and ũk+1

t < 0. Then θ̃kt = θ
(k+1)∗
t = θ̃k+1

t = ρ and

at = ãt = ρũk+1
t .

Case 5 : ũkt < 0, u
(k+1)∗
t ≥ 0, and ũk+1

t < 0. Then θ̃kt = θ̃k+1
t = ρ, θ

(k+1)∗
t = 1/ρ and

at = ρũkt + u
(k+1)∗
t /ρ ≥ ρũk+1

t = ãt.

Case 6 : ũkt ≥ 0, u
(k+1)∗
t < 0, and ũk+1

t < 0. Then θ̃kt = 1/ρ, θ
(k+1)∗
t = θ̃k+1

t = ρ and

at = ũkt /ρ+ ρu
(k+1)∗
t ≥ ρũk+1

t = ãt.

Clearly, at ≥ ãt ⇒ θ̃kt ũ
k
t + θk+1

t u
(k+1)∗
t ≥ θ̃k+1

t ũk+1
t . Finally, by the induction hypothesis,

we obtain
∑k+1

i=1 θ
i
tu
i∗
t ≥ θ̃k+1

t ũk+1
t , which proves that our induction hypothesis is true. For

k = M , this is equivalent to
∑

i∈C′ θ
i
tu
i∗
t ≥ θ̈tüt. The rest of the proof is similar to that of

Theorem 2.2, from which we conclude that zD ≤ zM .

2.5 NUMERICAL EXAMPLES

In this section, we present numerical examples to illustrate the structural properties of the

value function (Vt), the optimal policy (π∗) and the optimal operational cost (zα) for a

2-bus network using real renewable generation and pricing data. Before presenting these

examples, the source data, solution methodology and computational study are described in

greater detail.

2.5.1 Data Description

Hourly wind speed and real-time electricity pricing data for calendar year 2012 were obtained

from the NREL (National Renewable Energy Laboratory; http://www.nrel.gov) and PJM

(Pennsylvania-Jersey-Maryland Interconnection; http://www.pjm.com), respectively. Let vt

and Pt be the wind speed and price in hour t ∈ {1, . . . , 24}, respectively. Due to seasonality

effects, we partitioned both data sets into 24 segments, each one hour in duration, and fit

33

separate probability density functions to each segment. The hourly prices were fit using

truncated normal (TN) distributions of the form Pt ∼ TN(p̂t, σ̂
2
t), where p̂t and σ̂2

t are the

(estimated) mean and variance of the price level in hour t, respectively. As was done in

[29, 133], we fit the hourly wind speeds using Weibull distributions, i.e., vt ∼Weibull (ˆ̀
t, n̂t),

where ˆ̀
t and n̂t are the (estimated) shape and scale parameters, respectively. Each of

the distribution parameters were estimated from the real data using maximum likelihood

estimation (MLE), and the values are presented in Table 1. Next, we determined the wind

generation levels at the two buses. Let Ri
t denote the wind generation in hour t at bus i. It

was assumed that the Evance R9000 wind turbine models is installed at both buses. The

turbine at bus 1 has a power rating of R̄1 = 50 kW, while the turbine at bus 2 has a power

rating of R̄2 = 25 kW. Both turbines have a cut-in speed of vc = 3 meter per second (m/s),

a cut-off speed of vf = 60 m/s, and a rated wind speed of v̄ = 12 m/s. The following

deterministic model (see page 547 of [102]) was used to compute the hourly wind generation

level at each bus i:

Ri
t =

R̄i
(
v̄−vt
v̄−vc

)
, vc ≤ vt ≤ v̄,

R̄i, v̄ ≤ vt ≤ vf ,

0, otherwise.

For the analysis that follows, Pt, R
1
t , and R2

t are assumed to be mutually independent

random variables. Figure 5 depicts the average hourly wind generation at bus 1 and price

levels (and associated 95% confidence intervals) for a 24-hour period. In this figure, hour 1 is

midnight to 0100, hour 2 is 0100–0200, hour 3 is 0200–0300, and so forth. Examining Figure

5(a) closely, it is seen that the evening hours (hours 17 to 21) are the peak-price periods,

while the off-peak price periods span the late night and early morning hours (hours 1 to 7).

The variability in the hourly prices exhibits a similar trend. By contrast, as seen in Figure

5(b), wind power output is highest during the late night and early morning hours and is

lowest in the afternoon (hours 12 to 16).

Next, we impose assumptions about the wind generation levels at the two buses. Let

R1
t , R2

t and Pt denote the (bounded) supports of R1
t , R

2
t and Pt, respectively. The lower

and upper limits of these sets correspond to their respective minimum and maximum values

observed during 2012. In order to numerically compute the optimal policy, we assume finite

34

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
20

25

30

35

40

45

50

55

60

Hour of day

P
ric

e
(

$
pe

r
M

W
h)

Average price
Upper bound 95% c.i.
Lower bound 95% c.i.

(a) Real-time hourly electricity prices.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
35

40

45

50

55

60

65

Hour of day

W
in

d
po

w
er

 o
ut

pu
t (

kW
)

Average power output
Upper bound 95% c.i.
Lower bound 95% c.i.

(b) Hourly wind generation levels at bus 1.

Figure 5: Average price and wind generation levels in the year 2012.

Table 1: MLE estimates of the wind energy and price distribution parameters.

t 1 2 3 4 5 6 7 8 9 10 11 12
ˆ̀
t 4.51 4.49 4.41 4.36 4.33 4.29 4.22 4.08 3.81 3.61 3.56 3.59
n̂t 2.09 2.08 2.06 2.02 1.99 1.96 1.89 1.79 1.59 1.46 1.43 1.43
p̂t 27.26 25.65 23.48 23.39 23.75 25.65 28.47 32.46 33.67 36.82 34.95 37.64
σ̂2
t 6.50 9.45 10.42 12.91 14.56 15.18 15.43 18.21 19.36 21.59 20.07 24.31

t 13 14 15 16 17 18 19 20 21 22 23 24
ˆ̀
t 3.62 3.71 3.78 3.85 3.87 3.83 3.78 3.86 4.07 4.31 4.46 4.52
n̂t 1.43 1.44 1.67 1.49 1.50 1.52 1.55 1.59 1.72 1.87 1.98 2.03
p̂t 38.54 39.94 40.67 41.52 44.85 46.64 50.33 52.78 51.08 38.85 34.71 28.25
σ̂2
t 25.74 26.25 28.53 28.21 29.03 30.33 32.74 36.59 31.28 26.65 18.19 14.09

supports for the exogenous variables. Theorem 6.10.11 of [122] provides an error bound for

finite-state approximations to countable-state MDP models. These supports were therefore

discretized as follows: R1
t = R2

t = {0, 1, . . . , 9}, and Pt = {5n : n = 0, 1, . . . , 12}. Let φt,

ϑ1
t and ϑ2

t be the probability density functions of Pt, R
1
t and R2

t , respectively. For ease of

computation, we fix the hourly demand levels at their mean values (obtained from PJM

demand data). Therefore, the (random) exogenous state W t consists of the price and wind

generation levels only, i.e., W t = (Pt, R
1
t , R

2
t), so thatWt = Pt×R1

t ×R2
t . Let gt be the joint

35

probability mass function of W t. Then, due to the independence assumption, the exogenous

process transitions from state wt−1 ∈ Wt−1 to another state wt = (p, r1, r2) ∈ Wt with

probability

Pt−1(wt|wt−1) = gt(wt) =
φt(p)∑

p̃∈Pt

φt(p̃)
× ϑ1

t (r1)∑
r̃1∈R1

t

ϑ1
t (r̃1)

× ϑ2
t (r2)∑

r̃2∈R2
t

ϑ2
t (r̃2)

. (2.29)

For the problem instances that follow, we used the parameter values listed in Table 2. It

was assumed that both buses have identical energy storage parameters αi, ρ
i
c, ρ

i
d, τ

i
c and τ id.

Moreover, the storage devices were assumed to have a shelf-life exceeding one year.

Table 2: Summary of parameter values for the problem instances.

Parameters Parameter descriptions Value(s)
(α1, α2) Storage capacities at buses 1 and 2 (in kW-h) (10,10)
(τ ic , τ

i
d) Storage charging and discharging rates at buses 1 and 2 (in kW) (4,4)

(ρic, ρ
i
d) Storage charging and discharging efficiencies at buses 1 and 2 (0.90,0.85)

β Line capacity (in kW-h) 3.5
ϕ Per-unit cost of charging or discharging energy ($ per kW-h) 10
ν Per-unit cost of line losses ($ per kW-h) 20

The parameter ϕ can be viewed as the implicit cost of degradation per unit of energy charged

or discharged from the battery and can be determined using a life-cycle cost analysis that

accounts for several factors affecting battery performance, such as temperature, state-of-

charge profile, and depth-of-discharge limits (see [11, 71, 72] below). Similarly, the quantity

ν can be estimated by using a life-cycle cost model (e.g., Equation (6) of [169]), which uses

the resistance per unit length of the power lines, per unit electricity prices, and the maximum

allowable current in the power lines.

2.5.2 Solving the MDP Model

For the computational experiments, we considered a 24-hour (or 25-stage) planning horizon,

i.e., T = {1, . . . , 25}, in January 2012. It is assumed that the decisions are made at the

start of each hour (or stage). Moreover, the state space in each stage was assumed to be

time invariant, i.e., St = S for all t ∈ T . We discretized the storage levels, Y 1
t and Y 2

t , to

have support Y = {0, 1, . . . , 10} × {0, 1, . . . , 10}. Hence, there are 13× 102 × 112 = 157, 300

36

possible states in each stage. We employ the linear programming (LP) approach devised

in [16] to solve the non-stationary, finite-horizon model (2.8) and begin by introducing its

primal LP formulation. For notational convenience, denote Xt(s) simply as Xt. Let (λt(s) :

t ∈ T ′, s ∈ S) be the vector of primal LP variables, and (γt(s) : t ∈ T ′, s ∈ S) be the vector

of cost coefficients such that γt(s) ∈ (0,∞) for each t ∈ T ′ and s ∈ S. The primal LP

formulation is

max
∑
t∈T ′

∑
s∈S

γt(s)λt(s) (2.30a)

s.t. λt(s) ≤ ct(s,x) + δ
∑
s′∈S

Pt(s′|s,x)λt+1(s′), ∀t ∈ T ′, s ∈ S, x ∈ Xt, (2.30b)

λt(s) ∈ R. (2.30c)

Let (λ∗t (s) : t ∈ T ′, s ∈ S) be the vector of optimal solutions of (2.30). As γt(s) > 0, it must

be the case that the constraints (2.30b) hold with equality at optimality, i.e.,

λ∗t (s) = ct(s,x) + δ
∑
s′∈S

Pt(s′|s,x)λ∗t+1(s′), ∀t ∈ T ′, s ∈ S, x ∈ Xt,

which implies that λ∗t (s) = Vt(s) by Bellman’s optimality principle. Thus, we can recover

the value functions of (2.8) by solving model (2.30). Note if we choose γ1(s) = Pr(S1 = s),

such that
∑
s∈S γ1(s) = 1, we can express the optimal value of (2.8) according to

zα =
∑
s∈S

γ1(s)λ∗1(s) =
∑
s∈S

γ1(s)V1(s).

Unfortunately, the number of constraints in formulation (2.30) is prohibitively large for the

problem instances considered in our numerical examples; hence, we solve the dual of (2.30),

which has significantly fewer constraints. Let (µt(s,x) : t ∈ T ′, s ∈ S, x ∈ Xt) be the vector

37

of dual variables associated with constraints (2.30b). Define T ′′ ≡ {1, . . . , N −2}. Then, the

dual LP formulation of (2.8) is

min
∑
t∈T ′

∑
s∈S

∑
x∈Xt

ct(s,x)µt(s,x) (2.31a)

s.t.
∑
x∈X1

µ1(s,x) = γ1(s), ∀s ∈ S, (2.31b)

∑
x∈Xt

µt+1(s,x)− δ
∑
s′∈S

∑
x∈Xt

Pt(s|s′,x)µt(s
′,x) = γt+1(s), ∀t ∈ T ′′, s ∈ S, (2.31c)

µt(s,x) ≥ 0, ∀t ∈ T ′, s ∈ S, x ∈ Xt.

(2.31d)

It can be shown that the optimal dual solutions of (2.31) has a one-to-one correspondence

with the optimal policy of (2.8). That is, for each s ∈ St, µ∗t (s,x) > 0 when x = x∗t , and

µ∗t (s,x) = 0 otherwise (see the discussion in [16]). Therefore, the optimal policy π∗ can be

directly recovered from the optimal solutions of model (2.31).

Model (2.31) was coded in Python 2.7 and solved using Gurobi 6.5. The discount factor

δ was set to 0.99. All problem instances were executed on a Windows-based 64-bit, 4th

generation, Intel R© CoreTM i7, 64 GB, 2.9 GHz Windows machine.

2.5.3 Results and Discussion

First, we illustrate the behavior of the value functions with respect to the storage levels. For

a given storage level vector yt, the average value function, denoted by V̄t(yt), is

V̄t(yt) =
∑
wt∈Wt

P(W t = wt)Vt(wt,yt), yt ∈ Y .

Figure 6 depicts the average value functions at stages 1 and 17 as functions of the storage lev-

els. Clearly, V̄t(yt) is monotone decreasing and convex in yt. This implies that the expected

future cost decreases with increasing storage levels but with decreasing marginal benefit.

Similar trends were observed at all other stages in the planning horizon. Interestingly, the

surface plot in Figure 6(b) has a steeper slope than the one in Figure 6(a), particularly at

lower storage levels. This is because stage 17 marks the onset of the peak-price periods –

characterized by high price variability – in which procurement costs rise rapidly when stored

38

energy is in short supply. Note that the average value of the function V̄1(y1) over its domain

Y represents the daily, optimal operational cost of using a storage system with total capac-

ity ᾱ = α1 + α2. Then, the marginal benefit (or marginal value) of using storage can be

defined as the difference between the operational costs at capacities 0 and ᾱ. For instance,

the marginal benefit of using storage was equal to $26.75 for the problem instance used here

(ᾱ = 20 kW-h).

0

Storage level at bus 1 (in kW-h)

2
4

6
8

1010Storage level at bus 2 (in kW-h)
8

6
4

2

5.0

1

-0.5

0

0.5

1.5

2.0

2.5

3.5

4.0

4.5

3.0

0

V
al

ue
 fu

nc
tio

n
(in

 $
)

(a) Stage 1 average value function V̄1(y1).

0

Storage level at bus 1 (in kW-h)

2
4

6
8

1010Storage level at bus 2 (in kW-h)
8

6
4

2

3.0

3.5

4.5

5.0

1.5

-0.5

0

4.0

2.0

0.5

2.5

1.0

0

V
al

ue
 fu

nc
tio

n
(in

 $
)

(b) Stage 17 average value function V̄17(y17).

Figure 6: Average value functions in stages 1 and 17.

Next, to illustrate the main results of Theorem 2.1, Figure 7 depicts the optimal charge or

discharge decisions in stage t = 17 as functions of the storage levels for a fixed exogenous state

w17 = (30, 4.5, 4.5). We note that the optimal storage decisions are monotone decreasing

in the storage levels. Moreover, the optimal storage decision at each bus exhibits greater

sensitivity to a marginal change in the storage level at that bus, as opposed to the storage

level at the other bus. To illustrate this point, when y2 is fixed at 10 kW-h, and y1 increases

from 0 to 10 kW-h, the optimal charge/discharge decision (u1∗
t) decreases from +2.97 kW-h

to -3.03 kW-h as (i.e., ∆1u
1∗
t = −0.6). On the other hand, when y1 is fixed at 10 kW-h,

and y2 increases from 0 to 10 kW-h, u1∗
t decreases from −2.95 kW-h to −3.32 kW-h (i.e.,

∆2u
1∗
t = −0.037). Similar trends were observed in u2∗

t , and more generally, for all of the

storage decisions at each stage t ∈ T ′.

39

0

Storage level at bus 2 (in kW-h)

2
4

6
8

1010Storage level at bus 1 (in kW-h)
8

6
4

2

1

4

2

3

0

-1

-3

-4

-2

0

O
pt

im
al

 s
to

ra
ge

 d
ec

is
io

n
at

 b
us

 2
 (

in
 k

W
-h

)

(a) Optimal storage decisions at bus 1 (u1∗t).

0

Storage level at bus 2 (in kW-h)

2
4

6
8

100Storage level at bus 1 (in kW-h)
2

4
6

8

3

2

1

-1

-2

-3

-4

4

0

10

O
pt

im
al

 s
to

ra
ge

 d
ec

is
io

n
at

 b
us

 2
 (

in
 k

W
-h

)

(b) Optimal storage decisions at bus 2 (u2∗t).

Figure 7: Optimal storage decisions in stage 17.

Storage capacity at bus 1 (in kW-h)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

O
pt

im
al

 o
pe

ra
tio

na
l c

os
t (

in
 d

ol
la

rs
)

0

5

10

15

20

25

30

Pooled storage

2-bus storage

Decentralized storage

Figure 8: Comparison of the optimal operational costs in PS, CS, and DS networks.

Finally, we compared the operational costs of the pooled storage (PS), 2-bus storage

(CS), and decentralized storage (DS) networks for different storage capacities. For the sake

of comparison, we fixed α2 = 10 kW-h and varied α1 from 1 to 15 kW-h in intervals of

40

1 kW-h. Figure 8 depicts the relative magnitudes of the optimal operational costs of the

three network configurations as functions α1, illustrating Theorem 2.2. As the optimal

policies of single-storage models exhibit a dual-threshold structure [64, 153], the pooled and

the decentralized storage models were solved using the monotone value iteration algorithm

(see [122]). It is evident from Figure 8 that, for all three networks, the operational cost

decreases with increasing storage capacity but with decreasing marginal benefit. Moreover,

the differences between the operational costs of each decreases rapidly as the storage capacity

at bus 1 increases. This behavior stems from the increased flexibility of using stored energy

to satisfy demand locally at each bus without having to transmit much energy between them.

Although Theorem 2.2 establishes the relative magnitudes of these operational costs, it is

clear from Figure 8 that the bounds are not tight, especially at low storage capacities. This

is indicative of non-negligible line-loss costs in energy networks with capacitated lines and

storage systems. Hence, optimal policies derived from single-storage models are not suitable

for distribution networks, as they do not adequately capture interactions between distinct

storage devices in a networked environment.

41

3.0 ENERGY STORAGE MANAGEMENT IN MICROGRIDS

VIA STOCHASTIC PROGRAMMING

In this chapter, a multistage stochastic programming (SP) model is formulated whose ob-

jective is to minimize the expected total energy costs incurred within a microgrid under

randomly evolving renewable supply, demand, and pricing information. The model pre-

scribes the amount of energy to procure, store, and discharge in each decision stage of

a finite planning horizon. However, for even a moderate number of stages, the model is

computationally intractable; therefore, the stochastic dual dynamic programming (SDDP)

algorithm is customized to obtain high-quality approximate solutions. Computation times

and optimization gaps are significantly reduced by implementing a dynamic cut selection pro-

cedure and a lower bound improvement scheme within the SDDP framework. An extensive

computational study reveals significant cost savings as compared to myopic and non-storage

policies, as well as policies obtained using a two-stage SP model.

3.1 SUMMARY OF RELEVANT LITERATURE

The literature related to optimal demand-side energy storage strategies is relatively small

but is developing rapidly. Most prevalent are models that devise optimal demand-response

schemes for consumers with elastic loads [10, 59]. However, such schemes have exhibited only

a minor shift in consumer demand to match prices [98]. More recently, residential storage

has emerged as a key facilitator of demand response on the consumer side [44, 157]. Ear-

lier formulations of the demand-side storage management problem have employed a linear

programming approach to minimize finite-horizon electricity costs assuming a priori knowl-

42

edge of prices [3, 74]. Van de Ven et al. [153] examined a demand response problem under

real-time pricing uncertainty using a finite-horizon Markov decision process (MDP) model.

Proved was the existence of a dual-threshold, cost-minimizing optimal storage policy for a

residential consumer with finite energy storage capacity. Hill et al. [69] developed simple

threshold policies for grid-scale energy storage to mitigate negative impacts of solar energy

integration while improving the overall real-time frequency response and voltage control ca-

pabilities of the grid. Koutsopoulos et al. [86] analyzed an optimal storage control problem

under price and supply uncertainty. Using an infinite-horizon MDP model, they derived an

optimal threshold policy for the online problem and proved its asymptotic optimality (as

the storage capacity approaches infinity). However, none of these MDP models account for

simultaneous uncertainty in demand, supply, and pricing, and they use relatively few scenar-

ios to keep the problem dimension low. Furthermore, they are single-consumer models that

do not consider network constraints and interactions between different microgrid entities.

Consequently, stochastic programming (SP) has emerged as a viable alternative to MDP

models for problems with continuous actions and high-dimensional state spaces (cf. [21] for

additional details). Lee et al. [92] formulated a two-stage linear SP model to minimize invest-

ment and ancillary-generation costs in a power network with high penetration of renewable

sources and energy storage. They employed the well-known L-shaped algorithm [21] to solve

the model in a day-ahead setting; however, a relatively small number of scenarios (≈ 100)

were considered. Ji et al. [78] proposed a two-stage stochastic, mixed-integer, quadratic pro-

gramming (SMIQP) model to jointly optimize the day-ahead operations of renewable sources

and storage systems in a microgrid, also using a small number of scenarios. Xi et al. [160]

addressed the problem of co-optimizing the real-time scheduling of storage usage for multiple

applications, such as energy arbitrage and regulation services, while accounting for price and

renewable uncertainty. They proposed a two-stage, stochastic mixed-integer programming

(SMIP) model to obtain piecewise-linear value function approximations for a MDP model

with continuous states and actions. Other representative two-stage SP models for similar

problems can be found in references [53, 110, 146, 168]. Generally speaking, most realistic

SP models are NP-hard; however, their prevalence in the energy literature stems from the

fact that several decomposition algorithms are available to solve such models efficiently [4].

43

By comparison, the literature is relatively sparse for multistage SP models that allow for

recourse decisions at multiple stages of decision making. A key feature of multistage models

is that they yield solutions that are non-anticipative, i.e., decisions made in any stage depend

only on the information available up to that stage. By contrast, decisions from two-stage

models are anticipative and may result in suboptimal strategies. However, multistage SP

models are significantly harder to solve, and are intractable for even a moderate number of

stages [20].

The main contributions of this chapter can be summarized as follows. First, a novel, mul-

tistage SP model is considered to obtain viable procurement and storage operation strategies

in a grid-connected microgrid. In this model, the initial (or first-stage) decisions are the

storage capacities of local energy storage systems (e.g., batteries), subject to a budget con-

straint. During each subsequent stage of the planning horizon, multiple recourse decisions are

made, including the total active and reactive power procured from the grid, the active power

charged to, or discharged from, local storage systems, and the active and reactive power

flowing in the lines based on a rigorous power flow model. The objective is to minimize

the expected total energy costs incurred within the microgrid over a finite planning hori-

zon, subject to storage capacity, line capacity, and other physical constraints. The model is

distinguished from existing two-stage SP models in that non-anticipative procurement and

storage decisions must be made in the face of multiple sources of uncertainty: renewable

supply, demand, and prices are all modeled as random variables. Second, to overcome the

computational challenges associated with multistage SP models, we customize the stochastic

dual dynamic programming (SDDP) algorithm [136] to obtain high-quality solutions for a

24-hour planning horizon. The algorithm is enhanced by implementing a dynamic cut selec-

tion (DCS) heuristic [40] to significantly reduce the SDDP computation time. Moreover, the

SDDP algorithm is remarkably improved by employing a novel, yet pragmatic, lower bound

enhancement procedure using Jensen’s inequality. This refinement drastically reduces com-

putation time and significantly improves solution quality, and it facilitates the use of a large

number of potential scenarios. The computational study demonstrates that very tight so-

lution bounds are attainable within a reasonable amount of time. The results also suggest

the scalability of our customized SDDP algorithm to problems of larger scale. Finally, the

44

computational results reveal significant economic advantages as compared to myopic and

non-storage policies, as well as policies obtained using a two-stage SP model.

3.2 MODEL DESCRIPTION

This section describes the multistage SP formulation to prescribe viable energy procurement

and storage strategies for microgrid entities over a finite planning horizon. As in [6, 139,

163], consider a grid-connected microgrid with a radial topology – a tree-like network of

interconnected buses and power lines emanating from a reference bus (the feeder), which

is connected to the main grid. The feeder is often connected to a distribution substation

and delivers power procured from the main grid to other microgrid buses. Some or all of

those buses have access to distributed storage systems. The operators use both distributed

generation (e.g., wind and/or solar) and electricity procured from the main grid to satisfy the

net demand and power flow constraints in each stage of the planning horizon. Surplus energy

can be stored in finite-capacity storage systems for future use. The decision makers, who

make procurement and storage decisions at the start of each stage, have access to real-time

pricing information from an electricity spot market. However, the amount of energy that

can be stored or made available for current or future stages is constrained by the capacity

of the storage systems and power lines. Moreover, these decisions are subject to renewable

supply, demand, and pricing uncertainty. The objective is to minimize the expected total

energy costs incurred within the microgrid over the finite planning horizon.

Consider a planning horizon of length Υ, and partition the time interval [0,Υ) so that

[0,Υ) =
N⋃
t=1

[εt−1, εt),

where N is the number of time intervals (or stages) and εt is the tth decision epoch with

ε0 ≡ 0 and εN ≡ Υ. Therefore, the discrete time horizon is denoted by T = {1, . . . , N}, where

t ∈ T is the index of the tth stage, namely [εt−1, εt). Let δt ≡ (εt− εt−1) denote the duration

of the tth stage. Let C = {0, 1, . . . , K} be the finite set of buses in the microgrid, where bus 0

denotes the feeder connected to the main grid, and bus i ∈ C \{0} denotes the ith microgrid

45

bus. It is assumed that the feeder is not connected to any load, renewable generator or

storage device, and has a fixed voltage level. For notational convenience, define T ′ ≡ T \{1}

and C ′ ≡ C \ {0}. The set of all lines in the microgrid is denoted by A = {(i, k) : i, k ∈ C},

where (i, k) ∈ A is a power line connecting bus i to bus k.

Next, the physical parameters of the microgrid are described. Let α be the maximum

storage capacity of the microgrid, and βa(i, k) and βr(i, k) be the active and reactive power ca-

pacities (also known as nameplate capacities) of line (i, k). Let ϕ(i, k) denote the impedance

of line (i, k) such that

ϕ(i, k) = λ(i, k) + jϑ(i, k), (i, k) ∈ A,

where λ(i, k) and ϑ(i, k) denote the resistance and reactance of line (i, k), respectively, and

j =
√
−1 is the unit imaginary number. Let ν denote the average per-unit cost of power

lost due to resistive heating in any line (i, k) ∈ A. The quantity ηi denotes the average cost

per unit energy charged to, or discharged from, the battery at bus i, while κi is the per-unit

cost of battery capacity at bus i. The parameters ρic and ρid represent the charging and

discharging efficiencies of the battery at bus i, respectively. The round-trip efficiency of the

battery at bus i is defined as ρi ≡ ρicρ
i
d – a value that usually lies in the interval [0.7, 0.9]. The

quantities τ ic and τ id denote the maximum charging and discharging rates of the battery at

bus i, respectively. Let γimin and γimax be the minimum and maximum proportions of battery

capacity that can store energy, where γimin, γ
i
max ∈ (0, 1). It is assumed that the batteries

cannot self-discharge, i.e., energy is not dissipated when the batteries are not in use.

The uncertain variables in the model are described next. All random variables are defined

on a common and complete probability space (Ω,A ,P). Let dit denote the net-demand

(demand minus renewable supply) realized per unit-time at bus i at the start of stage t, such

that

dit = rit + jwit, (i, t) ∈ C × T ′,

where rit and wit denote the active and reactive power components of dit, respectively. Collect

the net demand realizations in the vector dt ≡ ((rit, w
i
t) : i ∈ C ′). Let pt denote the real-

time price realized at the start of stage t. Then for each t ∈ T ′, the bounded vector

ωt ≡ (dt, pt) ∈ Ωt denotes the stage t realization of the random vector ω̃t. Assume |Ωt| <∞

46

for all t ∈ T ′. It is noted that Ωt ⊆ RM , where M ≤ 2K − 1. Henceforth, we refer to a

scenario ω ∈ Ω ≡ Ω2 × · · · × ΩN as a realization (or sample path) of the stochastic process

{ω̃t : t ∈ T ′}.

In the following subsection, the decision variables and constraints of the model are de-

fined, and a multistage SP model is formulated using the DistFlow equations for radial

networks.

3.3 MULTISTAGE STOCHASTIC PROGRAMMING MODEL

Let xi1 be the stage 1 battery capacity decision at bus i that incurs a cost κi x
i
1. The

capacity decisions are made before any of the random variables are realized. Collect the

stage 1 decisions in the vector x1 ≡ (xi1 : i ∈ C ′). Let c1 ≡ (κi : i ∈ C ′) denote the cost

vector in stage 1 so that the total cost in this stage is

c′1x1 =
∑
i∈C′

κi x
i
1. (3.1)

However, the capacity decisions are constrained by the maximum storage capacity of the

microgrid as follows:

0 ≤
∑
i∈C′

xi1 ≤ α. (3.2)

Unique to this model is the fact that, starting from stage 2 and moving forward in time,

microgrid operators make recourse decisions at the start of each stage. The stage t recourse

decisions, when ωt is realized, are collected in the vector xt(ωt). Henceforth, for notational

convenience, xt(ωt) is simply written as xt. For each i ∈ C ′ and (i, k) ∈ A, the decision

vector for stage t ∈ T ′ is defined as xt ≡ (yit,m
i
t, n

i
t, v

i
t, qt(i, k), st(i, k), at, bt), whose elements

are as follows:

• yit: energy storage level at bus i at the start of stage t;

• mi
t: active power charged into the battery at bus i;

• nit: active power discharged from the battery at bus i;

• vit: voltage level at bus i

47

• qt(i, k): active power flow in line (i, k);

• st(i, k): reactive power flow in line (i, k);

• at: active power procured from main grid at the feeder;

• bt: reactive power procured from main grid at the feeder.

For each bus i ∈ C ′, the battery levels in successive stages are coupled via

yit+1 = yit + δt(ρ
i
cm

i
t − nit/ρid), t ∈ T ′. (3.3)

An interpretation of (3.3) is that the energy stored in a battery equals the stored energy at

the start of the current stage, minus (plus) the amount of energy discharged from (charged

to) the battery in the current stage, scaled by the discharging (charging) efficiency parameter.

Note that the power quantities mi
t and nit are multiplied by the factor δt to convert them

into units of energy. It is assumed that the batteries are capable of charging or discharging

active power only and not reactive power (cf. [6, 54, 162]). Because demand, renewable

supply and prices exhibit diurnal seasonality [152, 161], storage operations are optimized

over a planning horizon that covers at least one complete cycle of the seasonal variables.

Therefore, the terminal storage levels of the batteries are set to their initial levels [12, 76].

Specifically, for all i ∈ C ′,

yi1 = yiN . (3.4)

The energy that is charged to, or discharged from, the storage device is constrained by the

current storage level, as well as the charging and discharging rates of the battery. Therefore,

for each i ∈ C ′,

0 ≤ mi
t ≤ min{τ ic , δ−1

t (xi1 − yit)/ρic}, t ∈ T ′, (3.5)

0 ≤ nit ≤ min{τ id, δ−1
t ρidy

i
t}, t ∈ T ′. (3.6)

As battery life can be reduced due to excessive charging or discharging, for each i ∈ C ′,

battery levels in each stage are limited by the following state-of-charge (SOC) constraints:

γimin x
i
1 ≤ yit ≤ γimax x

i
1, t ∈ T ′. (3.7)

48

Next, described are the constraints related to power flow in the lines. In contrast to

transmission systems, where power flows are characterized using DC optimal power flow

approximations, the DistFlow model is often adopted for distribution networks to calculate

the complex power flow and voltage profiles. Several recent papers have justified using the

DistFlow equations for microgrids [6, 31, 147, 156, 163]. Because power flow is directional,

assume that qt(i, k) ≥ 0 when active power flows from bus i to bus k, and qt(i, k) < 0 if it

flows from bus k to i; similar notation is adopted for the reactive component st(i, k). For

a given bus i ∈ C ′, let Λi and Θi denote the parent bus and the adjoining children buses

connected to bus i, respectively. The fixed voltage level at the feeder is denoted by v0. Then

for each i ∈ C ′ and t ∈ T ′, the DistFlow equations are

qt(Λi, i) = rit +mi
t − nit +

∑
k∈Θi

qt(i, k), (3.8a)

st(Λi, i) = wit +
∑
k∈Θi

st(i, k), (3.8b)

vit = vΛi
t −

λ(Λi, i)qt(Λi, i) + ϑ(Λi, i)st(Λi, i)

v0

. (3.8c)

The left-hand side of (3.8a) represents the active power that flows into a bus from its parent,

while the right-hand side is the net active power that flows out of the bus to its children,

after accounting for the local active demand and battery power flows. Equation (3.8b) can

be similarly interpreted for reactive power flows. Equation (3.8c) is used to compute the

voltage level of bus i.

Power procured from the main grid is delivered to the microgrid via the feeder (bus 0).

The DistFlow equations at the feeder are

at =
∑
k∈Θ0

qt(0, k), t ∈ T ′, (3.9a)

bt =
∑
k∈Θ0

st(0, k), t ∈ T ′, (3.9b)

where at + jbt is the net power injected into the microgrid via the feeder at stage t. To avoid

reverse power flows at the feeder that can negatively affect operation of voltage regulators

and protective devices [6, 155], the following non-negativity constraints are imposed:

at ≥ 0, t ∈ T ′. (3.10)

49

For any line (i, k) ∈ A, the active and reactive power flows are constrained by the

nameplate capacities via

|qt(i, k)| ≤ βa(i, k), t ∈ T ′, (3.11)

|st(i, k)| ≤ βr(i, k), t ∈ T ′, (3.12)

ensuring that power lines are not damaged due to resistive overheating [6, 50]. Additionally,

distribution networks typically require the nominal voltage level at each bus to be maintained

within a tolerance band [139, 163]. Therefore, the voltage level at each bus i ∈ C ′ is

constrained by the inequality

vimin ≤ vit ≤ vimax, t ∈ T ′, (3.13)

where vimin and vimax denote the minimum and maximum voltage levels allowed at bus i,

respectively.

It is noted that the decisions made at a current stage depend on the decisions made up

to the previous stage via the temporal linking constraints (3.3). Thereby, the set of feasible

decisions xt in each stage t ∈ T ′ is denoted by Xt(xt−1, ωt), and this set is defined by the

constraints (3.3) – (3.13) for each (ω, t) ∈ Ω× T ′.

Finally, the objective function, which is to be minimized, is described. Let ct denote the

cost vector in stage t ∈ T ′ so that the total cost incurred in this stage is

c′txt = ptatδt +
∑
i∈C′

ηi(m
i
t + nit)δt +

∑
(i,k)∈A

ν`t(i, k)δt, (3.14)

where `t(i, k) is the resistive power loss in line (i, k). The first term on the right-hand side

of (3.14) is the total grid procurement cost, the second term is the total battery charge-

discharge cost, and the third term represents the total cost incurred due to power-line losses

in stage t. Each term on the right-hand side of (3.14) is multiplied by δt to convert power

units to energy units. The battery cost rate ηi is assumed to be equal for both charging and

discharging; however, this assumption can be relaxed. Using the DistFlow equations, the

resistive power loss in line (i, k) ∈ A can be closely represented by the quadratic function

(see [143, 162])

`t(i, k) = λ(i, k)

(
qt(i, k)2 + st(i, k)2

v2
0

)
, t ∈ T ′, (3.15)

50

so the per-unit cost incurred due to power losses in line (i, k) at stage t is equal to ν`t(i, k).

Note that, because `t(i, k) is quadratic and convex, it can be readily approximated using

piecewise-linear functions (cf. [166] in the context of the unit-commitment problem). How-

ever, note that the bilinear term ptat makes the cost function nonconvex in (ωt, xt). To make

c′txt convex in (xt, ωt), we use the McCormick approximation [104] to replace the bilinear

term by its convex envelope. Similar convex approximations were used by [30, 119] in the

context of the hydrothermal operation planning problem. The multistage SP model can now

be formulated and represented in the nested form

z = min
x1

c′1x1 + Eω̃2

[
min
x2

c′2x2 + Eω̃3|ω̃2

[
min
x3

c′3x3 + · · ·+ Eω̃N |ω̃N−1

[
min
xN

c′NxN

]
. . .

]]
s.t. xt ∈ Xt(xt−1, ωt), ∀(ω, t) ∈ Ω× T ′, (3.16a)

0 ≤
∑
i∈C′

xi1 ≤ α, (3.16b)

where Eω̃i|ω̃j
denotes the expectation taken with respect to the conditional probability mea-

sure P(ω̃i|ω̃j). Note that the nested structure of model (4.2) is a direct consequence of the

multiple recourse opportunities available to the decision maker as information is progres-

sively revealed over the planning horizon. This distinguishes model (4.2) from two-stage SP

models that allow only a singular recourse opportunity under uncertainty [89, 110]. Unfor-

tunately, model (4.2) is computationally intractable, even when the number of stages N is

moderate (see [20, 136, 138] for additional details). However, in Section 3.4, we describe

how the stochastic dual dynamic programming (SDDP) algorithm can be used to obtain

high-quality, approximate solutions to model (4.2).

3.4 STOCHASTIC DUAL DYNAMIC PROGRAMMING (SDDP)

ALGORITHM

SDDP is a well-known decomposition procedure that can be used to solve multistage, stochas-

tic programs with a large number of stages [117, 136]. The SDDP algorithm builds piecewise-

linear outer approximations of the cost-to-go functions at each stage by randomly sampling

51

from a finite set of scenarios. The algorithm iteratively updates the lower and upper bounds

of the optimal value z of model (4.2) using a two-step procedure – a forward pass and a back-

ward pass – and assumes stage-wise independence of the random variables. The algorithm

terminates once the bounds satisfy a prescribed convergence criterion.

To customize the SDDP algorithm, model (4.2) is first reformulated as an N -stage

stochastic dynamic program. The first-stage (or stage 1) problem is defined as

z = min
x1

c′1x1 + E[V2(x1, ω̃2)] (3.17)

s.t. 0 ≤
∑
i∈C′

xi1 ≤ α,

where V2(x1, ω2) is the total future cost incurred under decision x1 and realization ω2 ∈ Ω2.

For t ∈ T ′, the stage t problem is defined as

Vt(xt−1, ωt) = min
xt

c′txt + E[Vt+1(xt, ω̃t+1)] (3.18)

s.t. Ftxt = ht(ωt)−Gtxt−1.

In formulation (3.18), matrices Ft and Gt, and the vector ht(ωt), are obtained by reformu-

lating constraints (3.3) – (3.13) as equality constraints. Let πt(ωt) denote the optimal dual

vector associated with (3.18). In dynamic programming parlance, Vt(xt−1, ωt) is the stage

t cost-to-go (or value) function. Without loss of generality, assume E[VN+1(xN , ω̃N+1)] = 0

in the stage N problem; however, any continuous, convex function can be assumed for

E[VN+1(xN , ω̃N+1)].

To implement the SDDP algorithm, the scenarios of model (4.2) are stored as a finite

scenario tree with N stages. A scenario tree originates at a root node that stores the first-

stage decision x1 and progressively branches to other child nodes that are defined by the

number of possible stage t realizations |Ωt| in stage t ∈ T ′. The nodes in stage N are

called the leaf nodes. The total number of leaf nodes equals the number of scenarios of

(4.2). Figure 9 depicts a scenario tree with three stages and six scenarios. Because the

number of scenarios, |Ω2 × · · · × ΩN |, grows exponentially with N , problem (4.2) must be

solved approximately to accommodate a planning horizon of 24 (or more) decision stages.

To solve (4.2) approximately, a finite number of scenarios are sampled from the scenario tree

52

Figure 9: Depiction of a scenario tree with three stages and six scenarios.

to develop a piecewise-linear outer approximation of E[Vt+1(xt, ω̃t+1)] in (3.18) for each stage

t problem. The approximate stage t cost-to-go function is denoted by V̂t(xt−1, ωt). The outer

approximations are developed by generating Bender’s cuts

θt+1 ≥ h̄t+1,k − π̄′t+1,kGt+1xt, k ∈ K. (3.19)

In (3.19), the set K is the index set for all Bender’s cuts added to each stage t problem (3.18).

Here, column vector π̄t+1,k ≡ E[πt+1(ω̃t+1)] defines the gradient and h̄t+1,k is the intercept

term for cut k ∈ K, where h̄t+1,k ≡ E[V̂t+1(xkt , ω̃t+1)]+ π̄′t+1,kGt+1x
k
t , and xkt is a feasible stage

t solution. Thus, the approximate stage t problem has the form

V̂t(xt−1, ωt) = min
xt

c′txt + θt+1 (3.20)

s.t. Ftxt = ht(ωt)−Gtxt−1,

θt+1 ≥ h̄t+1,k − π̄′t+1,kGt+1xt, k ∈ K,

while the approximate stage 1 problem is

ẑ = min
x1

c′1x1 + θ2 (3.21)

s.t.
∑
i∈C′

xi1 ≤ α,

θ2 ≥ h̄2,k − π̄′2,kG2x1, k ∈ K,

x1 ≥ 0.

53

Let x̂(ω) ≡ (x̂t(ω))t∈T be an approximate policy obtained by solving problems (3.20) and

(3.21) for scenario ω ∈ Ω2×· · ·×ΩN . In the forward pass of the SDDP algorithm, S distinct

scenarios are sampled uniformly from the scenario tree using the well-known Monte-Carlo

method (see [40, 136, 138]). Subsequently, the stage t problems are solved approximately

for each of the sampled scenarios, starting from the first stage and moving forward to the

final stage. At the completion of the forward pass, an upper bound to z is calculated,

and a convergence criterion is tested. If the criterion is satisfied, the algorithm terminates;

otherwise, the current optimal policy is amended by adding |Ωt| Bender’s cuts to each of

the stage t problems associated with the sampled scenarios, starting from the last stage and

working backwards to the first stage. Figure 9 depicts the forward and backward passes

of the SDDP algorithm for a given scenario tree. Let ΩS ⊂ Ω be a finite set of S distinct

scenarios ω sampled from Ω. The steps of the algorithm are summarized as follows:

1. Sampling

Sample S distinct scenarios ω from Ω to form ΩS.

2. Forward Pass

2a) For t = 1, solve (3.21) and save x̂1 and ẑ;

2b) For t = 2, . . . , N and ω ∈ ΩS, solve (3.20) and store x̂t(ω) and V̂t(x̂t−1(ω), ωt), where

ωt is the (t− 1)th component of ω.

3. Convergence Test (at the 95% confidence level)

3a) Compute an upper bound of z by

zu = c′1x̂1 + (1/S)
∑
ω∈ΩS

N∑
t=2

c′tx̂t(ω),

and assign lower bound z` := ẑ by solving (3.21);

3b) Terminate the algorithm if (see [136])

zu +
(

1.96 σ̂u/
√
S
)
− z` ≤ ε,

where ε is a prescribed accuracy level, and σ̂u is the sample standard deviation of

the observations {zω : ω ∈ ΩS} with

zω = c′1x̂1 +
N∑
t=2

c′tx̂t(ω);

Else go to Step 4.

54

4. Backward Pass

4a) For t = 2, . . . , N , ω ∈ ΩS, and for each ωt ∈ Ωt, solve (3.20) using x̂t−1(ω), and

save π̂t(ωt) and V̂t(x̂t−1(ω), ωt); Generate a Bender’s cut (3.19) and add it to all

subproblems at stage t− 1;

4b) Go to step 1.

3.5 IMPROVING THE PERFORMANCE OF SDDP

The standard SDDP algorithm of Section 3.4 involves visiting S scenarios in the forward

pass, and then a backward pass is performed to build |Ωt| cuts for each stage t problem.

This procedure yields an increasing number of Bender’s cuts for each stage t problem, not all

of which are active at each iteration of the algorithm. To reduce the computational burden of

solving problems (3.20) and (3.21), a more sensible approach is to select cuts for the current

iteration from a collection of cuts that have been generated in prior iterations. While there

exist several classes of cut selection procedures in the stochastic programming literature (cf.

[21, 138]), an effective dynamic cut selection (DCS) procedure due to de Matos et al. [40]

was implemented to reduce the computation time of the standard SDDP algorithm.

3.5.1 Dynamic Cut Selection (DCS) Heuristic

In the DCS procedure, cuts are added iteratively rather than adding all cuts at once. At

each iteration of the SDDP algorithm, a sequence of values Qk ≡ (h̄t+1,k − π̄′t+1,kGt+1x̂t) are

computed for all k ∈ K (the index set of all cuts generated in prior iterations) and x̂t is

the current optimal solution at stage t. If the cut k∗ = argmaxk{Qk} has not been added

to (3.20) yet, then k∗ is added to (3.20) and re-solved. Moreover, at each stage t ∈ T ′, the

cuts that were generated for the stage t problems, associated with the scenarios visited in

prior iterations, can be accessed to determine the set of active cuts for the stage t problems

in the current iteration. Consequently, a broad set of cuts are retained that are likely to be

important to all the subproblems at a given stage. Note that at the start of a new iteration,

55

cuts of all the stage problems are cleared. However, the cuts are not discarded because one

cannot ensure that a currently inactive cut will remain inactive for other scenarios visited at

a later iteration. Thus, the algorithm has access to all the cuts generated in earlier iterations,

and only adds the active cuts to the stage t problems during the forward and backward passes

of the current iteration. The steps of the algorithm are summarized as follows:

1. Remove cuts

Remove the cuts from all stage t problems (3.20) and the stage 1 problem (3.21).

2. Sampling

Sample S distinct scenarios ω from Ω to form ΩS.

3. Forward Pass

3a) For t = 1, solve (3.21) and save x̂1 and ẑ;

3b) For t = 2, . . . , N and ω ∈ ΩS, solve (3.20) and store x̂t(ω) and V̂t(x̂t−1(ω), ωt), where

ωt is the (t− 1)th component of ω; if k∗ = argmaxk{h̄t+1,k − π̄′t+1,kGt+1x̂t(ω)} is not

in (3.20), then add cut k∗ and re-solve (3.20).

4. Convergence Test

Identical to Step 3 of the standard SDDP algorithm.

5. Backward Pass

5a) For t = 2, . . . , N ,ω ∈ ΩS, and for each ωt ∈ Ωt, solve (3.20) using x̂t−1(ω), and save

π̂t(ωt) and V̂t(x̂t−1(ω), ωt); If k∗ = argmaxk{h̄t+1,k− π̄′t+1,kGt+1x̂t(ω)} is not in (3.20),

then add cut k∗ and re-solve (3.20); Generate a Bender’s cut (3.19) and add it to all

subproblems at stage t− 1;

5b) Go to step 1.

3.5.2 Lower Bound Improvement via Jensen’s Inequality

The DCS heuristic reduces the number of cuts that are added at each stage; however, it

cannot guarantee the strength of these cuts. The standard SDDP algorithm exhibits slow

convergence because the lower bounds obtained from the approximate stage t problems –

which do not exploit strong valid inequalities – are relatively weak (cf. [15, 149]). To address

this shortcoming, we propose a lower bound improvement scheme that makes use of Jensen’s

56

inequality (see [125], p. 188). The idea is to generate a set of strong valid inequalities during

the backward pass of the SDDP algorithm. First, the elements of an artificial scenario,

ω̄ ≡ (ω̄2, . . . , ω̄N), are obtained by

ω̄t =
∑
ωt∈Ωt

ωt/|Ωt|, t ∈ T ′.

We call ω̄ the average scenario and note that it may not necessarily belong to Ω. Next,

during a backward pass of the SDDP algorithm, a valid inequality of the form

θt+1 ≥ Vt+1(xt, ω̄t+1), t ∈ T, (3.22)

is added to each approximate stage t problem. The right-hand side of inequality (3.22) is

evaluated by setting xt = x̂t, where x̂t is the current optimal solution at stage t. Because

ω̄ is computed a priori, and x̂t is known for each t ∈ T ′ from the forward pass, adding

cut (3.22) does not impose any additional computational burden. Note that, for a given

feasible solution xt, the inequality θt+1 ≥ E[Vt+1(xt, ω̃t+1)] holds because problem (3.20) is

a relaxation of problem (3.18). Furthermore, we have that E[Vt+1(xt, ω̃t+1)] ≥ Vt+1(xt, ω̄t+1)

by Jensen’s inequality. Therefore, the cuts (3.22) are valid inequalities for the approximate

stage t problems. The computational results of Section 3.6 reveal that the addition of these

valid inequalities significantly improves solution quality and drastically reduces computation

time, as compared to the standard SDDP algorithm.

3.6 COMPUTATIONAL RESULTS

This section presents computational results illustrating procurement and storage policies

obtained by solving problem (4.2) approximately using standard SDDP, its DCS variant

(SDDP+DCS), and the lower bound improvement scheme integrated within SDDP+DCS

(SDDP+DCS+J), as described in Sections 3.4, 3.5.1 and 3.5.2, respectively. First, detailed

descriptions of the source data, microgrid configuration and computational study are pro-

vided.

57

Hourly demand and real-time electricity pricing data were obtained from PJM Intercon-

nection (http://pjm.com/), while hourly wind speed data were obtained from the National

Renewable Energy Laboratory (http://nrel.gov/) for the years 2012 and 2013. Wind speeds

were converted to active wind-power outputs for a small-scale wind turbine by applying

equation (13) of [29]. Moreover, reactive wind-power outputs were obtained from the PQ

characteristic curve of a small wind turbine; for more details, see [36]. As price and wind lev-

els are highly seasonal, the original data were partitioned into two disjoint sets, each spanning

one year. As an aid to data visualization, for each data set, 95% confidence intervals (c.i.)

were constructed for hourly demand, wind-generation and price levels by fitting truncated

normal distributions whose parameters were estimated via maximum likelihood estimation

(MLE). Figure 10 depicts the average electricity prices and wind-generation levels over a

24-hour period for the year 2012. Note that midnight is 0000 so that hour 1 corresponds to

0000 to 0100, hour 2 is 0100 to 0200, and so forth.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
20

25

30

35

40

45

50

55

60

Hour of day

P
ric

e
(

$
pe

r
M

W
h)

Average price
Upper bound 95% c.i.
Lower bound 95% c.i.

(a) Real-time hourly electricity prices.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
35

40

45

50

55

60

65

Hour of day

W
in

d
po

w
er

 o
ut

pu
t (

kW
)

Average power output
Upper bound 95% c.i.
Lower bound 95% c.i.

(b) Hourly wind-generation levels.

Figure 10: Average price and wind-generation levels for the year 2012.

3.6.1 Microgrid Configuration

We consider a 4-bus microgrid configuration as depicted in Figure 11. The 4-bus system is

powered by the main grid and a small-scale wind turbine that is connected to a single local

storage device located at bus 3, which implies that xi1 = 0 for all i ∈ C ′ \ {3}. In what

58

follows, let r̄it and w̄it denote the sample means of the active power (r̃it) and reactive power

(w̃it) components of net demand, respectively, in stage t ∈ T ′ at bus i ∈ C ′. Denote the

associated sample variances by r̂it and ŵit, respectively. The net demand components at bus

i ∈ C ′ are assumed to follow truncated normal distributions, i.e.,

r̃it ∼ TN(r̄it, r̂
i
t), t ∈ T ′, (3.23)

w̃it ∼ TN(w̄it, ŵ
i
t), t ∈ T ′. (3.24)

Figure 11: A 4-bus, grid-connected microgrid.

For each stage t, the (finite) supports of the random variables r̃it and w̃it were determined

using the maximum and minimum levels of net demand obtained from the PJM demand

and NREL wind data. The loads connected to buses 1 and 2 are assumed to be homogenous

with identical active power distributions, i.e.,

r̃1
t
d
= r̃2

t , t ∈ T ′.

Moreover, both loads are assumed to have high power factors (the ratio of active to apparent

power) and, therefore, consume negligible reactive power. Thus,

w̃1
t = 0 and w̃2

t = 0, t ∈ T ′.

The wind turbine connected to bus 3, on the other hand, generates both active and reactive

power in each stage t.

59

The microgrid operators are assumed to be price-takers with no demand-response ca-

pabilities. However, simple demand-response schemes can be integrated into the model

without imposing additional computational burden. Microgrid operators have access to the

main grid at all times and can procure electricity at spot prices that also follow truncated

normal distributions of the form

p̃t ∼ TN(p̄t, p̂t), t ∈ T ′, (3.25)

where p̄t and p̂t are the sample mean and variance of the price at stage t, respectively.

The power lines are all assumed to have identical line capacities (βa, βr), resistance (λ)

and reactance (ϑ) values. A deep-cycle, lead-acid battery with a shelf-life of over 24 hours is

used as the storage device at bus 3. The battery parameters (κ, η, ρc, ρd, τc, τd, γmin, γmax) are

selected based on information provided in [93]. It is assumed that the battery is charged up to

its maximum SOC level at the start of the planning horizon, i.e., y1 = γmaxx1, and therefore,

the terminal battery level is yN = y1 = γmaxx1 by (3.4). The voltage limits (vmin, vmax) at

each bus were set to ±5% of the feeder voltage v0 (see [6, 139]). Table 3 summarizes the

parameter values used in the computational experiments.

3.6.2 Description of Experiments

For the computational experiments, a 24-hour planning horizon in the year 2012 was consid-

ered, i.e., T = {1, . . . , 25}, where hour 1 is stage 2, hour 2 is stage 3 and so forth; hence, δt = 1

for each t. The standard SDDP, SDDP+DCS and SDDP+DCS+J algorithms were coded in

Python 2.7 and solved using the Gurobi 6.5 solver. The piecewise-linear approximation to

(3.15) was created using the default settings of Gurobi, and the dual-simplex method was

selected as the default linear programming (LP) solver. The algorithms were implemented

on a 64-bit, 4th generation Intel R© CoreTM i7, 64 GB, 2.9 GHz Windows machine.

We considered different combinations of the number of sampled scenarios (S) in the

forward pass, and the number of stage t realizations (|Ωt|) for the backward pass, holding

|Ωt| constant for all t ∈ T ′. The parameter S was varied from 50 to 250 in increments of 50,

while |Ωt| was varied from 5 to 20 in increments of 5. For each t ∈ T ′, a set of |Ωt| samples

60

Table 3: Parameter values for the problem instances.

Parameter Parameter description Value

α Maximum battery capacity (kWh) 60.00

κ Per-unit cost of battery capacity ($/kWh) 50.00

η Per-unit cost of charging/discharging ($/kWh) 2.00

τc Charging rate of the battery (kW) 25.00

τd Discharging rate of the battery (kW) 25.00

ρc Charging efficiency of the battery 0.95

ρd Discharging efficiency of the battery 0.90

γmin Minimum battery SOC fraction 0.10

γmax Maximum battery SOC fraction 0.90

βa Line capacity for active power (kW) 60.00

βr Line capacity for reactive power (kVAR) 60.00

λ Line resistance (Ohm) 0.009

ϑ Line reactance (Ohm) 0.009

v0 Fixed voltage level at the feeder (kV) 10.00

vmin Minimum bus voltage level (kV) 9.50

vmax Maximum bus voltage level (kV) 10.50

were first generated to construct a scenario tree before running any of the three procedures.

To generate the samples ωt ≡ (rit, w
i
t, pt : i ∈ C ′) at each stage t, a multivariate truncated

normal distribution was used in which each marginal distribution is also truncated normal.

The sampling procedure was further simplified by assuming that the random variables at

each stage are all mutually independent, i.e., for each t ∈ T ′

Ft(ωt) = Pt(pt)
3∏
i=1

Ri
t(r

i
t)W i

t(w
i
t), ∀ωt ∈ Ωt,

where Ft is the joint probability density function (p.d.f.), and Pt, Ri
t, and W i

t are the stage

t marginal p.d.f.s of price (3.25), active power (3.23) and reactive power (3.24) components

61

of net demand at bus i, respectively. Alternative sampling procedures can be used, such as

those described in [87]; however, we chose this sampling procedure to satisfy the stage-wise

independence criterion of the SDDP algorithm. For comparison purposes, the same |Ωt|

samples were used to generate scenario trees for all three procedures.

Once a scenario tree is generated, S distinct forward-pass scenarios ω ≡ (ωt : t ∈ T ′)

are uniformly sampled from the scenario tree in each iteration of the three procedures.

It is worth noting that empirical forecast distributions, based on forward bootstrapping

techniques [116], can also be used to sample scenarios; however, our main purpose here

is to illustrate the usefulness of the SP model and its solutions. The quality of solutions

obtained using standard SDDP, SDDP+DCS, and SDDP +DCS+J algorithms was assessed

by computing the approximate gap percentage

Gap (%) =
zu − z`
z`

× 100. (3.26)

All three procedures were terminated if either the SDDP convergence criterion was satisfied

(with ε = 10−5), or 500 iterations were completed, whichever occurred first.

3.6.3 Results and Discussion

The computational results for the standard SDDP procedure are provided in Table 4. It

is noted that for a fixed number of scenarios S, the gap percentage decreases sharply as

|Ωt| increases; however, as one might expect, the computation times increase. Specifically,

if additional state information is used at each stage to develop Bender’s cuts, better value-

function approximations are obtained; however, a far greater number of stage t problems

must be solved. Similarly, for a fixed value of |Ωt|, the gap percentages decrease, and the

computation time increases (but only moderately) as S increases. This trend stems from

the fact that the lower bounds progressively improve, albeit slowly, as more scenarios are

sampled, but a larger number of stage t problems must be solved in each iteration. However,

the reported gap percentages indicate that the bounds are not tight. For example, when

S = 250 and |Ωt| = 20, solving the model for over 6.7 hours reduced the gap to only 6.96%.

Table 5 summarizes the results when using the standard SDDP algorithm supplemented

with DCS. The table reveals that both solution quality and computation time improved,

62

Table 4: Results using the standard SDDP algorithm.

S |Ωt| z` zu Gap % Time (mins)

50

5 62.46 78.03 24.93 48.76

10 66.28 77.64 17.14 64.85

15 68.89 77.21 12.08 98.33

20 69.8 77.02 10.34 132.65

100

5 63.42 77.97 22.94 61.28

10 67.24 77.28 14.93 92.37

15 69.72 77.15 10.66 131.54

20 70.23 77.01 9.65 189.95

150

5 64.45 77.56 20.34 73.89

10 67.93 77.15 13.57 129.76

15 69.96 76.97 10.03 186.21

20 70.82 76.58 8.13 238.86

200

5 64.98 77.39 18.96 84.21

10 68.02 76.93 13.10 148.49

15 70.37 76.62 8.88 235.72

20 70.95 76.51 7.84 325.39

250

5 65.35 77.12 18.01 97.65

10 68.63 76.75 11.83 171.26

15 70.92 76.58 7.98 272.74

20 71.43 76.21 6.96 403.64

relative to the results for standard SDDP. For instance, when S = 250 and |Ωt| = 20,

SDDP+DCS reduces the gap percentage by a factor of over 2.3 (from 6.96% to 3%). Ad-

ditionally, the computation time is reduced by a factor of nearly 1.3 (from 403.64 min to

311.37 min). However, the gap percentages for SDDP+DCS are still high in absolute terms,

63

which points to a slow rate of convergence of the lower bounds z`. In fact, for both the SDDP

and SDDP+DCS procedures, the lower bounds converged rapidly in the first few iterations,

and converged very slowly thereafter. For example, when S = 250 and |Ωt| = 20, the SDDP

+DCS lower bound improved from −∞ to 71.43 (final value of standard SDDP lower bound)

in the first 60 iterations, and increased to only 73.98 in the next 440 iterations. This slow

convergence may be attributed to weak Bender’s cuts that are generated in the backward

pass. Such weak cuts often lead to relaxations of the stage t problems that are not tight –

a common trend in Bender’s decomposition-based algorithms [149]. The numerical results

indicate that DCS alone may not significantly improve computation time and the quality of

solutions obtained by the SDDP algorithm.

To improve the convergence rate of the lower bounds, and further reduce the computation

time, valid inequalities of the form (3.22) were added to each stage t problem in the backward

pass (see Section 3.5.2). Table 6 summarizes the results for the SDDP+DCS+J procedure.

The table reveals a dramatic improvement in solution quality as well as computation time.

For instance, when S = 250 and |Ωt| = 20, SDDP+DCS+J reduces the gap percentage

by factors of 21.75 and 9.36, respectively, as compared to standard SDDP (from 6.96% to

0.32%) and SDDP+DCS (from 3% to 0.32%). These results are highly significant in that a

realistic scenario tree with 25 stages yields very high quality solutions (gap of 0.32%) within

a reasonable amount of time (206.73 minutes). Figures 12 and 13 illustrate the gap and

computation time reductions achieved by using SDDP+DCS+J for different values of |Ωt|.

Moreover, the numerical experiments suggest a significant improvement in the conver-

gence rate of SDDP+DCS+J. For example, when S = 250 and |Ωt| = 20, the SDDP+DCS+J

lower bound attained the final value of the SDDP+DCS lower bound (z` = 73.98) in only

20 iterations. Furthermore, the lower bounds increased by only 5 × 10−4 in the final 300

iterations of SDDP+DCS+J, indicating convergence of the lower bounds. It is noteworthy

that a mere 2.7% improvement (73.98 to 75.99) in the lower bound of SDDP+DCS+J, over

that of the SDDP+DCS, caused the gap percentage to drop by nearly 2.7% (3% to 0.32%).

The comparisons are even more stark between the standard SDDP and SDDP+DCS+J. A

mere 6.38% (71.43 to 75.99) increase in z` reduced the gap from 6.96% to 0.32%.

64

Table 5: Results using the SDDP+DCS algorithm.

S |Ωt| z` zu Gap % Time (mins)

50

5 64.03 78.05 21.89 33.67

10 68.25 77.61 13.71 49.29

15 70.04 77.18 10.19 66.27

20 71.26 77.01 8.08 87.25

100

5 65.57 77.93 18.85 48.58

10 69.72 77.34 10.93 73.46

15 71.23 77.16 8.30 101.28

20 72.61 76.92 5.97 148.65

150

5 67.03 77.39 15.46 60.09

10 70.04 77.19 10.04 102.25

15 72.27 76.89 6.43 156.43

20 73.06 76.45 4.61 195.23

200

5 68.17 77.41 13.55 73.21

10 70.92 76.90 8.43 112.28

15 72.89 76.69 5.21 179.38

20 73.21 76.42 4.45 235.29

250

5 68.87 77.41 11.83 86.46

10 71.11 76.98 7.68 147.76

15 73.57 76.81 3.96 202.41

20 73.98 76.15 3.00 311.37

Figure 14 depicts box plots of the lower bounds obtained for the SDDP, SDDP+DCS, and

SDDP+DCS+J algorithms. It is noted that the lower bounds obtained by SDDP+DCS+J

are not only stronger, but also less variable, as compared to the those of standard SDDP and

SDDP+DCS. This is because the Jensen’s inequality-based Bender’s cuts lead to stronger

65

Table 6: Results using the SDDP+DCS+J algorithm.

S |Ωt| z` zu Gap % Time (mins)

50

5 70.12 77.98 11.21 16.65

10 72.93 77.46 6.24 24.28

15 74.17 77.19 4.07 36.69

20 75.03 76.97 2.23 49.63

100

5 71.47 77.81 8.87 25.97

10 73.54 77.34 5.13 37.80

15 74.97 77.15 2.91 54.32

20 75.45 76.82 1.84 71.21

150

5 72.12 77.72 7.77 38.57

10 74.32 77.29 4.56 68.43

15 75.59 76.83 1.64 101.36

20 75.67 76.29 0.89 150.26

200

5 72.96 77.43 6.13 50.45

10 75.01 77.16 2.95 83.53

15 75.71 76.86 1.52 121.62

20 75.98 76.28 0.45 179.97

250

5 73.21 77.41 6.03 64.36

10 75.06 77.01 2.83 98.14

15 75.89 76.85 1.34 141.42

20 75.99 76.19 0.32 206.73

relaxations and, therefore, tighter lower bounds. That is, as the number of iterations in-

creases, the relaxations become progressively stronger as a large number of high-quality

Bender’s cuts are added. Furthermore, the computation time decreases because DCS retains

only the strong, active cuts from prior iterations. Consequently, the lower bounds converge

66

|Ω
t
|

5 10 15 20

G
ap

 p
er

ce
nt

ag
e

(%
)

0

2

4

6

8

10

12

14

16

18

20

SDDP
SDDP+DCS
SDDP+DCS+J

Figure 12: Gap percentage for different values of |Ωt| when S = 250.

|Ω
t
|

5 10 15 20

A
ve

ra
ge

 c
om

ut
at

io
n

tim
e

(in
 m

in
ut

es
)

0

50

100

150

200

250

300

SDDP
SDDP+DCS
SDDP+DCS+J

Figure 13: Average computation time for different values of |Ωt|.

rapidly, and the computation time decreases significantly using SDDP+DCS+J. By contrast,

the variability of lower bounds obtained by standard SDDP and SDDP+DCS are of the same

order because the DCS heuristic does not generate stronger cuts; it simply reduces the num-

ber of cuts that are retained from prior iterations during the current iteration. Figure 14

confirms our conjecture that SDDP+DCS+J generates much tighter lower bounds.

67

SDDP SDDP+DCS SDDP+DCS+J

Lo
w

er
 b

ou
nd

60

65

70

75

80

Figure 14: Box plots of the lower bounds obtained via SDDP and its two variants.

Next, we compared the approximate solutions of SDDP+DCS+J to solutions obtained

using a myopic, price-based threshold (MPT) policy that ignores the future impact of current

storage and power-flow decisions. The MPT policy maximizes the charging or discharging

quantities at each stage, subject to the feasibility constraints (3.3)–(3.13), depending on

whether the price realized at that stage is below or above a fixed price threshold, respectively.

That is, for a given scenario ω ∈ Ω, the MPT policy, denoted by xφ(ω) ≡ (xφt (ω))t∈T ′ , was

obtained by solving a sequence of stage t problems

xφt (ω) = argmax
∑
i∈C′

mi
tI[pt<p̄] + nitI[pt≥p̄]

s.t. Ftxt = ht(ωt)−Gtx
φ
t−1(ω),

where xφt−1(ω) is the MPT decision vector at stage t − 1, p̄ is a known price threshold and

IA denotes the indicator function of event A. In these experiments, the threshold p̄ was set

to the sample mean of the prices in the PJM pricing data. Specifically,

p̄ =
1

24

25∑
t=2

p̄t ≈ $35.79/MWh.

68

The one-step cost at stage t using the MPT policy is denoted by c′tx
φ
t (ω) and is calculated

via (3.14). Then, the total cost over the horizon for scenario ω is

zφ(ω) = c′1x
φ
1 +

∑
t∈T ′

c′tx
φ
t (ω).

Let zφ denote the average MPT policy cost of S distinct forward-pass scenarios used in

SDDP+DCS+J.The expected cumulative costs incurred over the planning horizon were com-

pared using SDDP+DCS+J, the MPT policy, and the corresponding model when no energy

storage is available (for the case S = 250 and |Ωt| = 20). The expected cumulative cost

at hour t is the sum of accumulated costs up to that hour, so the expected cost at hour

24 is the expected total cost incurred over the planning horizon. In the absence of storage

capacity, we set x1 = 0; therefore, there are no charging or discharging decisions in each of

the subsequent stages. Denote the cost of the no-storage policy by zN . Figure 15 reveals that

the SDDP+DCS+J policy significantly reduces cumulative costs in each stage. Specifically,

the total horizon costs are reduced by 25.65% (from 102.47 to 76.19) as compared to the

MPT policy, and by 48.68% (from 143.67 to 76.19) as compared to the policy that does not

use energy storage.

Hour of day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

E
xp

ec
te

d
cu

m
ul

at
iv

e
co

st
s

0

25

50

75

100

125

150
SDDP+DCS+J (z

u
)

MPT (z
φ
)

No storage (z
N

)

Figure 15: Expected cumulative costs over the planning horizon.

69

Figure 16 depicts the average battery levels for the SDDP+DCS+J and MPT policies

and the average electricity price in each hour of the day. The battery can be charged up to

its maximum SOC level (γmaxx1) at the start of the planning horizon. The data revealed

that hours 1 to 10, on average, had low price and high wind-generation levels. Therefore,

the battery retains most of its initial charge during hours 1 to 10 under the SDDP+DCS+J

policy. The MPT policy does not discharge energy (on average) during hours 1 to 10 because

the prices (on average) are less than the price threshold p̄ in these periods. As prices increase

and wind generation decreases in subsequent periods, energy is discharged from the battery

to satisfy the demand under both of these policies. Not surprisingly, the battery is discharged

to its minimum SOC level (γminx1) during the peak-price periods (hours 18 to 21) in both

cases.

Hour of day
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

B
at

te
ry

 le
ve

l (
in

 k
W

h)

6

12

18

24

30

36

42

48

54

SDDP+DCS+J

MPT

0 5 10 15 20 25

E
le

ct
ric

ity
 p

ric
e

(in
 $

 p
er

 M
W

h)

20

25

30

35

40

45

50

55

60

Average price

Figure 16: Average battery level and average price for each hour.

Although the initiation of discharging is earlier in SDDP+DCS+J (hour 6) compared

to the MPT policy (hour 11), the MPT battery levels fall dramatically once discharge is

initiated in hour 11. This is because the MPT policy maximizes the energy discharged from

the battery between hours 11 to 21, when prices, on average, are greater than the threshold

level p̄. It is noted that for the MPT policy, the battery level reaches the minimum SOC

70

level as early as hour 18, thereby forcing procurement of electricity during hours 18 to 21

when the (average) prices are highest. This behavior is reflected in Figure 15 by the steep

slope of the cumulative-cost curve of the MPT policy between hours 18 to 21. Thus, the

MPT policy effectively diminishes the advantage of using stored energy – namely to reduce

peak-period costs. By contrast, the policy obtained via SDDP+DCS+J is intelligent in that

it prescribes the use of stored energy during peak-price periods, thereby reducing the overall

expected costs over the horizon. Figure 16 highlights the benefits of time-shifting energy

consumption via storage in a microgrid. Although the two policies exhibit similar behavior

over time, the SDDP+DCS+J policy accounts for the future impact of current decisions,

yielding better operational decisions that lead to significant cost savings.

Next, we compared the solutions of the multistage SP model to those obtained by solving

an associated two-stage SP model in which the non-anticipativity condition is relaxed. The

two-stage model allows for only a single recourse opportunity in stage 2. The stage 2 recourse

decisions for a realized scenario ω ∈ Ω are collected in the vector x(ω) ≡ (xt(ω) : t ∈ T ′).

For notational convenience, we drop the dependence of x on ω and simply write x. Let

c ≡ (ct : t ∈ T ′) be the corresponding second-stage cost vector (also a function of ω). The

stage 1 problem is

ž = min
x1

c′1x1 + E[V (x1, ω)] (3.27a)

s.t. 0 ≤
∑
i∈C′

xi1 ≤ α, (3.27b)

and the stage 2 problem is

V (x1, ω) = min
x

c′x (3.28a)

s.t. Fx = h(ω)−Gx1. (3.28b)

The matrices F and G and vector h(ω) were obtained by reformulating constraints (3.3) –

(3.13) together for all stages t ∈ T ′. The SDDP+DCS+J algorithm was used to solve model

(3.27) approximately. The lower and upper bounds of the optimal value ž are denoted by ž`

and žu, respectively. Table 7 summarizes the results of the two-stage SP model.

71

Table 7: Two-stage results using the SDDP+DCS+J algorithm.

S |Ω| ž` žu Gap % Time (mins)

50
104 80.02 82.86 3.55 7.57

3× 104 80.93 82.54 1.99 20.26

100
104 80.21 82.69 3.09 15.48

3× 104 81.61 82.43 1.00 46.23

150
104 80.52 82.48 2.45 24.86

3× 104 81.88 82.37 0.59 73.39

200
104 80.73 82.38 2.04 37.12

3× 104 81.96 82.37 0.50 101.72

250
104 81.01 82.36 1.67 56.75

3× 104 82.13 82.36 0.28 148.27

Similar to the results of the multistage model, the gap percentage for the two-stage model

decreases as both S and |Ω| increase, while the computation time increases. Of far greater

interest, however, is the comparison between the solution bounds of the multistage and two-

stage models. Let ž∗u and z∗u denote the best upper bound obtained for the two-stage and

multistage models, respectively, for a particular number of forward-pass scenarios S. We

compared these upper bounds for each S ∈ {50, 100, 150, 200, 250} using

∆S(%) =
ž∗u − z∗u
ž∗u

× 100,

where ∆S denotes the cost savings over the planning horizon (as a percentage) when multiple

recourse opportunities are available. Table 8 provides strong evidence that substantial cost

savings are achieved by using the multistage SP model.

Finally, to examine scalability issues associated with our solution procedure, we solved

a simplified two-bus system and compared its results with the 4-bus system. As depicted

in Figure 17, the two-bus system is configured by aggregating the loads of the 4-bus system

72

Table 8: Two-stage versus multistage SP upper bounds.

S ž∗u z∗u ∆S(%)

100 82.54 76.97 6.75

200 82.43 76.82 6.81

300 82.37 76.29 7.38

400 82.37 76.28 7.39

500 82.36 76.19 7.49

into a single bus that is connected to the wind turbine and a single storage device. The

aggregated net demand components in the two-bus system are assumed to follow truncated

normal distributions

r̃t ∼ TN(r̄t, r̂t), t ∈ T ′,

w̃t ∼ TN(w̄t, ŵt), t ∈ T ′,

where the corresponding means and variances are as follows:

r̄t =
∑
i∈C′

r̄it; r̂t =
∑
i∈C′

r̂it;

w̄t =
∑
i∈C′

w̄it; ŵt =
∑
i∈C′

ŵit.

Figure 17: A two-bus, grid-connected microgrid.

73

Table 9: Results using SDDP+DCS+J for the two-bus microgrid.

|Ωt| z` zu Gap % Time (mins)

5 54.62 56.15 2.90 17.36

10 55.06 55.54 0.87 35.32

15 55.32 55.52 0.36 58.54

20 55.41 55.51 0.18 84.75

The price distributions are identical to those of the 4-bus system, and the two-bus system

has a single line constraint. The model parameters for the two-bus system were set to the

values given in Table 3. The model was solved using the SDDP+DCS+J procedure. Table

9 summarizes the results for the case S = 250, as it provides the best gap percentages.

|Ω
t
|

5 10 15 20

C
om

pu
ta

tio
n

tim
e

(in
 m

in
ut

es
)

0

50

100

150

200

250

2-bus
4-bus

Figure 18: Computation time for different values of |Ωt| when S = 250.

It is noted that gaps below 1% were obtained for all values of |Ωt| ≥ 10. Moreover, the

computation times are strikingly smaller. For example, a 25-stage scenario-tree with |Ωt| =

20 was solved in less than 1.5 hours with a gap of only 0.18%. Figure 18 compares the

74

computation time between the two systems for different values of |Ωt|. The results are

intuitive due to dimensionality reduction of the two-bus system. However, it is interesting

to note that the computation time does not appear to scale exponentially with problem

size. This provides affirmative evidence of the scalability of the SDDP+DCS+J algorithm

to problems with multiple scales.

75

4.0 NONCONVEX REGULARIZATION FOR THE SDDP ALGORITHM

This chapter introduces a novel regularization scheme to improve the computational per-

formance of the stochastic dual dynamic programming (SDDP) algorithm. Specifically, a

class of nonconvex regularization functions, called the folded-concave penalty, is employed

in the forward pass of SDDP to enhance the quality of outer approximations. The non-

convex forward-pass problems are solved using a mixed-integer linear programming (MILP)

strategy. Established are almost sure convergence guarantees of the proposed regularization

scheme under some mild regularity conditions. The potential benefits of the regularization

scheme are demonstrated by way of two large-scale stochastic programming models arising

in energy and finance. The results reveal significant improvements in the convergence rate

and solution quality of SDDP, especially for high-dimensional problems.

4.1 SUMMARY OF RELEVANT LITERATURE

Multistage stochastic linear programming is a popular modeling framework for decision-

making problems that allow multiple recourse opportunities under uncertainty. The un-

derlying uncertainty is usually modeled as a general stochastic process. Such models find

applications in a wide variety of domains, including energy ([17, 39]), finance ([23, 37]),

supply-chain management ([67]) and transportation ([51, 121]). Except in rare cases, a mul-

tistage stochastic linear program (MSLP) is computationally intractable when the stochastic

process has an uncountable number of realizations. Solution approaches for such problems

are based on approximating the stochastic process by another process with finitely many

realizations that can be represented using a scenario tree. One such approach is the sample-

76

average approximation (SAA) procedure, which involves sampling a finite number of realiza-

tions and approximating the true value functions by sample-average functions. The resulting

SAA instance is then solved using a deterministic optimization procedure (see [20, 126]), and

the procedure is repeated until a termination criterion is satisfied.

However, the SAA approach is computationally intractable for high-dimensional prob-

lems. [135] showed that the number of scenarios required to obtain high-quality solutions

grows exponentially with the number of decision stages, which results in prohibitively large

scenario trees. The computational burden can be somewhat reduced by constructing smaller

yet representative scenario trees using probability metrics (see [45, 66]). However, sampling-

based decomposition (SBD) procedures provide the main route to solving large-scale SAA

instances (see [33, 70, 118]).

The most popular among the SBD algorithms is the stochastic dual dynamic program-

ming (SDDP) procedure of [117]. Specifically, the SDDP procedure constructs piecewise-

linear outer approximations of the sample-average functions by iteratively sampling a finite

number of scenarios from the scenario tree. Each iteration begins with a forward pass that

generates a sequence of feasible decisions, called trial solutions, and computes a statistical

upper bound of the optimal value of a SAA instance (henceforth, called the optimal SAA

value). Each iteration ends with a backward pass that uses the trial solutions to update the

outer approximations and produces a valid lower bound of the optimal SAA value. The algo-

rithm terminates once the upper and lower bounds satisfy a prescribed convergence criterion.

The essential role of sampling is to reduce the number of scenarios traversed in each iteration,

which makes the SDDP procedure computationally appealing. It is well-known that SDDP

is a finitely-convergent algorithm with provable performance guarantees (see [100, 118]).

Moreover, when the stochastic process is stage-wise independent, SDDP promotes sharing

of cuts among different nodes in a scenario tree, which is known to significantly speed up

the algorithm (see [40, 77]).

However, the convergence rate of SDDP can be extremely slow for high-dimensional

problems. This is because SDDP is based on the cutting-plane procedure of [83], whose

worst-case complexity grows exponentially with the dimension of the problem (see page

160 in [114]). It is well-known that bundle methods have better convergence rates than

77

cutting-plane procedures for convex optimization problems (see [81, 94]). Specifically, the

bundle methods use a quadratic regularization scheme that stabilizes the generated solutions

around a set of stability centers. By definition, a stability center is the best candidate solution

known at the start of an iteration. Variants of this quadratic regularization method has been

successfully applied to two-stage stochastic programs (see [68, 128, 130]). However, similar

extensions for multistage stochastic programs are significantly harder due to the complexity

of choosing stability centers at each node of a scenario tree (see [129]). Consequently, the

literature on regularization methods for multistage models is relatively sparse.

Sen and Zhou [134] developed one of the first quadratic regularization schemes for multi-

stage stochastic programming. Their algorithm begins with a forward pass where a collection

of convex quadratic programs are solved to obtain the trial solutions. The backward pass is

similar to that of SDDP. At the end of each iteration, the stability center at each node is

updated. Clearly, such an updating strategy is impractical for large scenario trees. A more

scalable quadratic regularization scheme was developed by [7], which facilitates the sharing

of stability centers among different nodes. The authors showed that any random sequence

of trial solutions generated by their algorithm converges almost surely to the optimal de-

cisions. Interestingly, their convergence results hold for any choice of stability centers. A

similar regularization strategy was implemented in [62] to solve a select class of portfolio-

optimization problems. Recently, the authors of [151] devised a general convex regularization

scheme based on the level-bundle methods (see [95]) that subsumes the method of [7]. The

proposed method has attractive convergence properties and provides considerable flexibility

in selecting regularization functions and stability centers of choice.

It is noted that the aforementioned regularization schemes were employed in the forward

pass of SDDP. Essentially, regularization is used to steer current trial solutions towards good

stability centers by penalizing the deviation between them, which is usually measured using a

quadratic penalty function. Good stability centers refer to trial solutions that generated high-

quality cutting planes in previous iterations. However, initial stability centers are usually

poor due to the weak approximations at the start of the algorithm. Current regularization

schemes ([7, 62]) aggressively penalize deviations in the initial iterations, which shrinks the

trial solutions towards poor stability centers (exploitation). However, the weight of the

78

penalty term is progressively reduced in subsequent iterations, which allows trial solutions

to be far from good stability centers induced by stronger approximations (exploration). That

is, regularization is enforced when it is least needed and dismissed when it would be most

beneficial.

In this chapter, a new SDDP regularization scheme is introduced, which addresses the

adverse effect of exploration versus exploitation in existing regularization approaches. Specif-

ically, the proposed regularization scheme is based on a class of nonconvex penalty functions

called folded-concave penalty, which have been widely used for high-dimensional statistical

learning problems (see [49, 101, 164]). The key idea behind nonconvex regularization is the

use of a bounded, concave penalty function that does not over-penalize large deviations, but

penalizes small deviations more aggressively than the quadratic function. This promotes ini-

tial exploration of trial solutions away from poor stability centers and subsequent exploitation

around good stability centers. We prove that our regularized SDDP algorithm has almost

sure convergence properties and establish theoretical guarantees of the algorithm’s asymp-

totic performance. We empirically demonstrate the potential benefits of our regularization

scheme for two large-scale multistage stochastic optimization problems in energy and finance.

We found that our regularized algorithm significantly outperformed the standard SDDP and

the quadratic regularization-based SDDP procedures in terms of solution quality and con-

vergence rate of the lower bounds. Interestingly, the benefits of nonconvex regularization

were more pronounced for higher dimensional problem instances. Next, we summarize the

main contributions of this chapter.

1. We develop a novel, nonconvex regularization scheme that is employed in the forward

pass of SDDP. We consider two well-known folded concave penalty (FCP) functions – the

smoothly clipped absolute deviation of [49] and the minimax concave penalty of [164] –

to generate high-quality trial solutions. We establish the connection between nonconvex

regularization and quadratic programming by deriving a nonconvex quadratic program-

ming formulation for the FCP regularization problem. This facilitates the analysis of the

FCP regularization scheme via mathematical programming techniques.

2. For each of the FCP functions, we derive an equivalent mixed-integer linear programming

(MILP) model for the regularization problem. Specifically, we reformulate the nonconvex

79

quadratic program as a linear program with complementarity constraints and show that

is equivalent to a mixed-integer linear program with big-M constraints. Furthermore,

we show that the optimal solutions of the obtained MILP models are bounded and fi-

nite, which indicates that our regularization scheme is numerically stable. The proposed

MILP strategy has two key advantages. First, it admits the use of branch-and-bound al-

gorithms to determine global optimal solutions of the nonconvex regularization problem

in a finite number of steps. Second, it facilitates the use of state-of-the-art MILP solvers

within the SDDP framework. With the recent advances in MILP algorithms and com-

puter architectures, such a scheme provides obvious computational benefits in solving

large-scale problem instances. Our numerical experiments suggest that if the number of

forward-pass scenarios are kept low, then the overall MILP computation times remain

within reasonable time limits.

3. We show that our regularized SDDP algorithm has almost sure convergence properties

under some mild regularity conditions for the sample-average functions and the feasibility

sets. Specifically, we prove that the sequences of outer approximations and trial solutions

converge almost surely to sample-average function and an optimal solution, respectively.

Furthermore, we show that the sequence of lower bounds converges almost surely to

the optimal SAA value. It is noted that our convergence results hold for any choice of

stability centers and do not require the stage-wise independence assumption or the cut-

sharing feature of SDDP, which make our results more general. However, the results rely

on the assumption that the scenarios are sampled independently in the forward pass.

The remainder of the chapter is organized as follows. The next section provides a brief

introduction to multistage stochastic linear programming models and the main steps of

the standard SDDP and the SDDP with quadratic regularization algorithms. Section 4.3

introduces the proposed nonconvex regularization scheme for the SDDP algorithm. The

equivalent MILP formulations for the nonconvex regularization problem are presented in

Section 4.4. Section 4.5 presents the convergence analysis of the SDDP algorithm with

nonconvex regularization. Finally, Section 4.6 provides computational results for two large-

scale problems that illustrate the benefits of nonconvex regularization.

80

4.2 MULTISTAGE STOCHASTIC LINEAR PROGRAMMING

Here, we provide a brief description of multistage stochastic linear programming (MSLP)

models where the underlying uncertainty has an uncountable number of realizations. First,

we discuss the sample average approximation (SAA) scheme of solving such computationally

intractable MSLP models.

4.2.1 Sample Average Approximation (SAA) Model

Consider a finite planning horizon T = {1, 2, . . . , T}, where T ∈ N is the number of decision

stages and t ∈ T is the index of stage t. For future use, we also define T̂ ≡ T \ {1} and

Ť = T \ {T}. It is assumed that there is no uncertainty in the first stage, i.e., uncertainty is

realized only from stage 2 onwards. Let (Ω,A , {At}t∈T ,P) be a complete, filtered probability

space with natural filtration {At : t ∈ T }, i.e., At contains the information available up

to stage t. The uncertainty in stage t ∈ T̂ is described by a measurable mapping ξt :

(Ω,A) → (Ξt,B(Ξt)), where Ξt ⊆ Rm is the m-dimensional support set of ξt, and B(Ξt) is

the Borel σ-algebra on Ξt. For ω ∈ Ω, a realization of ξt is denoted by ξ̃t ≡ ξt(ω). The

uncertainty evolves as a discrete-time, continuous-state stochastic process ξ = {ξt : t ∈ T̂ }

with support Ξ ≡ Ξ2 × · · · × ΞT . A scenario (or sample path) of ξ is a vector of the form

ξ(ω) = (ξt(ω) : t ∈ T̂), which will be denoted by ξ̃ for notational brevity.

Let x1 be the vector of first-stage decisions whose feasible region is the n1-dimensional,

convex polytope

X1 = {x1 ∈ Rn1 : A1x1 = b1},

where A1 ∈ Rk1×n1 and b ∈ Rk1 are deterministic, and let ξht = {ξi : i ∈ T̂ , i ≤ t} be the

history process up to stage t with support Ξh
t ≡ Ξ2×· · ·×Ξt. A feasible decision rule at stage

t, denoted by xt ≡ xt(ξ
h
t), is an At-measurable function whose range is the nt-dimensional,

convex polytope

Xt(xt−1, ξt) = {xt ∈ Rnt : Atxt = bt −Btxt−1} ,

where At ∈ Rkt×nt , Bt ∈ Rkt×nt−1 and bt ∈ Rkt might all depend on ξt. The vector of cost

coefficients at stage t is denoted by ct ≡ ct(ξt) ∈ Rnt , and we assume |c′txt| < ∞ for each

81

t ∈ T . A policy, π = {xt : t ∈ T }, is a set of feasible decision rules, and an optimal policy

π∗ is one that solves the following nested formulation of a general MSLP:

z∗ = min
x1∈X1

{
c′1x1 + Eξ2

(
min

x2∈X2(x1,ξ2)
c′2x2 + Eξ3|ξh2

(
min

x3∈X3(x2,ξ3)
c′3x3 + . . .

EξT |ξhT−1

(
min

xT∈XT (xT−1,ξT)
c′TxT

)
· · ·
))}

, (4.1)

where Eξt|ξht−1
is the conditional expectation taken with respect to the probability distribution

of ξt, given ξht−1. Henceforth, we assume that ξ is stage-wise independent, i.e., ξt ⊥⊥ ξht−1 for

all t ∈ T̂ . We invoke this assumption only to simplify notation; it has no bearing on the

main results. Bellman’s optimality equations associated with problem (4.1) are

z∗ = min {c′1x1 + V2(x1) : A1x1 = b1, x1 ∈ Rn1} , t = 1, (4.2a)

Vt(xt−1, ξ̃t) = min {c′txt + Vt+1(xt) : Atxt = bt −Btxt−1, xt ∈ Rnt} , t ∈ T̂ , ξ̃t ∈ Ξt, (4.2b)

where Vt(xt−1) ≡ E(Vt(xt−1, ξt)) is the value function at stage t, and VT+1(xT) = 0 by

definition. Suppose Jt ⊂ Ξt be a random (i.i.d) sample of realizations of ξt, where N ≡

|Jt| < ∞, and let J ≡ J2 × · · · × JT be a random sample comprising of NT−1 scenarios.

Then the SAA of (4.2) consists of the following problems:

ẑ` = min
{
c′1x1 + V̂2(x1) : A1x1 = b1, x1 ∈ Rn1

}
, t = 1, (4.3a)

V̂t(xt−1, ξ̃t) = min
{
c′txt + V̂t+1(xt) : Atxt = bt −Btxt−1, xt ∈ Rnt

}
, t ∈ T̂ , ξ̃t ∈ Jt,

(4.3b)

where V̂t(xt−1) is the sample-average estimate of Vt(xt−1) given by

V̂t(xt−1) =
1

N

∑
ξ̃t∈Jt

V̂t(xt−1, ξ̃t), t ∈ T̂ . (4.4)

It is well known that ẑ` is a downward-biased estimator of z∗, i.e., E(ẑ`) ≤ z∗, and is,

therefore, a valid statistical lower bound of z∗. Henceforth, we refer to ẑ` as the SAA lower

bound of z∗. Usually, the scenarios in J are stored as a scenario tree and (4.3) is solved

using a scenario-tree formulation of (4.1). In the parlance of scenario trees, (4.3a) and (4.3b)

are the nodal problems at stage 1 and stage t, respectively.

82

It has been shown (see [135]) that, under some mild regularity conditions, ẑ` is a consis-

tent estimator of z∗, i.e., E(ẑ`)→ z∗ as N →∞. However, the size of a scenario tree grows

exponentially in the number of stages T , rendering the SAA model intractable for even for

small sample sizes. Next, we discuss how the stochastic dual dynamic programming (SDDP)

algorithm can be used to solve large-scale SAA models.

4.2.2 SDDP Algorithm for the SAA Model

The SDDP algorithm uses a sampling-based decomposition strategy to generate a sequence

of lower and upper bounds of the SAA optimal value ẑ`. The algorithm begins with an

initial approximation of V̂t(xt−1) for each t ∈ T̂ . Let k ∈ N denote the iteration index and

V̂k−1
t (xt−1) be the current approximation of V̂t(xt−1) at the start of iteration k. Each iteration

of the algorithm consists of a forward pass and a backward pass, which are described next.

The forward pass generates a statistical upper bound of ẑ` in the following manner. Let

J k ⊆ J be a set of M scenario tree samples with M � |J |. Starting at stage 1 and moving

forward to stage T , the following nodal problem is solved for each t ∈ T and ξ̃ ∈ J k:

x̂kt (ξ̃
h
t) ∈ argmin

{
c′txt + V̂k−1

t+1 (xt) : Atxt = bt −Btx̂
k
t−1(ξ̃ht−1), xt ∈ Rnt

}
, (4.5)

where x̂kt (ξ̃
h
t) is a trial solution. Let x̂kt = (x̂kt (ξ̃

h
t) : ξ̃ ∈ J k) be the vector of all trial solutions

at stage t, and note that π̂k ≡ {x̂kt : t ∈ T } represents a partially-characterized policy

induced by the current approximations. Henceforth, we refer to π̂k as the induced policy at

iteration k. The total cost incurred under π̂k for scenario ξ̃ is ẑk(ξ̃) ≡
∑

t∈T c
′
tx̂
k
t (ξ̃

h
t). The

forward pass terminates on computing the sample-average estimate

ẑku =
1

M

∑
ξ̃∈J k

ẑk(ξ̃). (4.6)

Note that ẑku is a statistical upper bound of ẑ` as ẑ` ≤ E(ẑku). For M > 1, a more conservative

upper bound of ẑ` is the term (ẑku + t̂δ/2,M σ̂k/
√
M), where δ ∈ (0, 1] is a given significance

level, t̂δ/2,M is the (1 − δ/2)% quantile of a t-distribution with M degrees of freedom, and

σ̂2
k is the unbiased sample variance of ẑku, i.e.,

σ̂2
k =

1

M − 1

∑
ξ̃∈J k

(
ẑk(ξ̃)− ẑku

)2

. (4.7)

83

Next, we describe the backward pass of the SDDP algorithm. The current approximations

are improved by generating new Benders’ cuts in the backward pass starting at stage T and

moving backward in time to stage 1. A Benders’ cut at stage t is constructed using a trial

solution from stage t− 1 and the optimal dual solutions of the stage t nodal problems. For

notational convenience, denote x̂kt (ξ̃
h
t) simply as x̂kt . At stage t = T , the following nodal

problem is solved for each ξ̃T ∈ JT :

V̄ k
T (x̂kT−1, ξ̃T) = min

{
c′TxT : ATxT = bT −BT x̂

k
T−1, xT ∈ RnT

}
, ξ̃T ∈ JT . (4.8)

The optimal dual vector of (4.8) is used to construct a Benders’ cut of the form

`kT (xT−1) = α̂T,k + β̂′T,k(xT−1 − x̂kT−1) (4.9)

satisfying V̂T (xT−1) ≥ `kT (xT−1), where α̂T,k = E(V̄ k
T (x̂kT−1, ξT)) and β̂T,k ∈ ∂V̂T (x̂kT−1). Note

that V̂T (x̂kT−1) = E(V̄ k
T (x̂kT−1, ξT)) as V̂T+1(xT) = 0. Next, the current approximation is

updated via

V̂kT (xT−1) = max
{
V̂k−1
T (xT−1), `kT (xT−1)

}
. (4.10)

Similarly, at an intermediate stage t ∈ {T − 1, T − 2, . . . , 2}, the following nodal problem is

solved for each ξ̃t ∈ Jt:

V̄ k
t (x̂kt−1, ξ̃t) = min

{
c′txt + V̂kt+1(xt) : Atxt = bt −Btx̂

k
t−1, xt ∈ Rnt

}
. (4.11)

A Benders’ cut at stage t is of the form

`kt (xt−1) = α̂t,k + β̂′t,k(xt−1 − x̂kt−1), (4.12)

where α̂t,k = E(V̄ k
t (x̂kt−1, ξt)) and β̂t,k ∈ ∂E(V̄t(x̂

k
t−1, ξt)). the stage t approximation is updated

via

V̂kt (xt−1) = max
{
V̂k−1
t (xt−1), `kt (xt−1)

}
. (4.13)

Finally, the backward pass terminates on solving the stage 1 nodal problem,

ẑk` = min
{
c′1x1 + V̂k2 (x1) : A1x1 = b1, x1 ∈ Rn1

}
. (4.14)

84

Because problem (4.14) is a relaxation of (4.3a), it follows immediately that ẑk` ≤ ẑ`

almost surely (a.s.). That is, ẑk` is a valid lower bound of ẑ`. The algorithm is terminated

when the following convergence criterion is satisfied:

∣∣ẑku + t̂δ/2,M σ̂k/
√
M − ẑk`

∣∣ ≤ ε, (4.15)

where ε > 0 is a specified level of accuracy.

4.2.3 Quadratic Regularization for the SDDP Algorithm

The lower bounds generated by the SDDP algorithm converge slowly, in part, because many

of the initial cuts are of poor quality. The convergence rate can be improved if good trial

solutions can be explored initially to generate stronger cuts. Subsequent iterations can then

be used to exploit these higher-quality trial solutions to stabilize the lower bounds. The

quadratic regularization scheme of [7] is motivated by this tradeoff between exploration and

exploitation of trial solutions. For each t ∈ Ť = T \{T}, they proposed solving the forward-

pass problem

x̂kt ∈ argmin
{
c′txt + V̂k−1

t+1 (xt) + λk(xt − x̌t)′Qt(xt − x̌t) : Atxt = bt −Btx̂
k
t−1, xt ∈ Rnt

}
,

(4.16)

where Qt is a positive semi-definite scaling matrix, λk is a nonnegative penalty parameter

satisfying limk→∞ λk = 0, and x̌t is a known stability center. The quadratic term in (4.16)

represents the scaled Euclidean (L2) distance between xt and x̌t. [7] demonstrated significant

improvement in the convergence rate when x̌t = x̂k−1
t and λk = λ0ρ

k, where λ0 > 0 and

ρ ∈ (0, 1).

The quadratic regularization scheme of (4.16) has some disadvantages. Specifically, when

the stability centers are initially poor (due to weak approximations), a high value of λk

shrinks x̂kt towards x̌t, inhibiting exploration of good trial solutions. Furthermore, as λk ↓ 0,

the contribution of the quadratic term in (4.16) is reduced, inhibiting exploitation of good

trial solutions. That is, regularization is enforced when it is least needed and dismissed when

it would be most beneficial. In the next section, we propose and analyze a new regularization

scheme that overcomes this limitation of quadratic regularization.

85

4.3 NONCONVEX REGULARIZATION FOR THE SDDP ALGORITHM

Here, we introduce a novel regularization scheme for SDDP that is based on folded concave

penalty (FCP) functions. Specifically, we consider two common FCP functions – the minimax

concave penalty (MCP) and smoothly clipped absolute deviation (SCAD) – and show that,

in either case, the regularized forward-pass problem is equivalent to a quadratic program. In

what follows, λk is denoted simply as λ for notational brevity, ∇f is the first-order derivative

of a real-valued function f : R→ R, and IA(x) is the indicator function on an interval A ⊆ R.

4.3.1 Regularization via Folded Concave Penalty

Let fλ : R+ → R+ be a general penalty function with λ > 0. The MCP and the SCAD

functions, denoted by fMλ and fSλ , respectively, are defined as follows:

(MCP) : fMλ (u) = λ

∫ u

0

max
{

1− v

aλ
, 0
}
dv, u ∈ R+, a > 1, λ > 0,

(4.17)

(SCAD) : fSλ (u) = λ

∫ u

0

(
I[0,λ](v) +

(aλ− v)+

λ(a− 1)
I(λ,∞)(v)

)
dv, u ∈ R+, a > 2, λ > 0,

(4.18)

where a is the shape parameter. Let xt,i and x̌t,i denote the ith components of xt and x̌t,

respectively. Without loss of generality, assume that the scaling matrix Qt = I (the identity

matrix). For each t ∈ Ť , we propose solving the regularized forward-pass problem,

x̂kt ∈ argmin
{
c′txt + V̂k−1

t+1 (xt) + Fλ(xt, x̌t) : Atxt = bt −Btx̂
k
t−1, xt ∈ Rnt

}
, (4.19)

where

Fλ(xt, x̌t) =
nt∑
i=1

fλ(|xt,i − x̌t,i|), (4.20)

with fλ = fMλ or fλ = fSλ . Henceforth, we refer to (4.19) as the FCP regularization problem

and Fλ as the regularization function. Note that Fλ penalizes the absolute deviations between

the components of xt and x̌t. This regularization scheme benefits from these properties of

the FCP functions:

86

(P1) fλ is increasing, Lipschitz continuous, and concave on R+ with

fλ(0) = 0; fλ(aλ) <∞; fλ(u) ≤ fλ(aλ), ∀u ∈ [0, aλ); fλ(u) = fλ(aλ), ∀u ∈ [aλ,∞);

(P2) ∇fλ is decreasing and locally Lipschitz continuous on R+ with

0 < ∇fλ(u) ≤ λ, ∀u ∈ (0, aλ); ∇fλ(u) = 0, ∀u ∈ (aλ,∞);

(P3) For any u ∈ R+,

fλ1(u) ≤ fλ2(u), for λ1 < λ2 and a fixed;

fλ(u; a1) ≤ fλ(u; a2), for a1 < a2 and λ fixed.

It is clear from (P1) that fMλ and fSλ are bounded functions. It follows immediately from

(P1) that for all |xt,i − x̌t,i| ≥ aλ, fλ(|xt,i − x̌t,i|) = fλ(aλ). That is, large deviations are

not excessively penalized by the FCP functions; hence, they promote exploration of trial

solutions, particularly at the start of the algorithm. Furthermore, fλ(|xt,i − x̌t,i|) ↓ 0 as

λ ↓ 0 by (P1) and (P4), which promotes exploitation as the weight of the penalty term is

reduced. The left-hand graph in Figure 19 depicts the contrasting behaviors of the FCP and

quadratic functions. It is instructive to examine the properties of the penalization rate ∇fλ,

due to its importance in the KKT conditions for (4.19). It is clear from (P3) that ∇fλ = 0

for all |xt,i − x̌t,i| ≥ aλ, and ∇fλ ↑ λ as |xt,i − x̌t,i| ↓ 0. In fact, FCP functions penalize

small deviations (close to zero) at a higher rate than the quadratic function, which aids in

exploitation in later iterations. Interestingly, for a fixed λ, the penalization rates of the FCP

functions are bounded by those of the L1 penalty functions. The right-hand graph in Figure

19 depicts the penalization rates of different penalty functions.

87

� � � � � � � � 	
���������

�

�

��

��

��

��
��

��
���

��
��

��
��
��

��
�
��
L1
L2

� � � � � � � � 	
���������

�

�

�

�

�

�

�

�
��
��
��
��
��

��
�
��
��
�

��
�
��
L1
L2

Figure 19: Magnitudes and penalization rates of the FCP, L1, and L2 functions.

4.3.2 Nonconvex Quadratic Programming Formulations

In this section, we derive equivalent quadratic programming (QP) formulations of (4.19) for

each of the FCP functions. First, we introduce some notation. Let 1 be a column vector

of ones whose dimension is inferred from the context. For each t ∈ {2, . . . , T}, collect the

elements α̂t,k and β̂t,k in the vector α̂t and the matrix β̂t, respectively. Then, the collection

of Benders’ cuts at stage t+ 1 can be represented in the vector form θt+11 ≥ α̂t+1 + β̂′t+1xt.

Unless otherwise noted, proofs of the results that follow are provided in the electronic

companion. The following lemma provides closed-form expressions of the FCP functions.

Lemma 4.1. For any u ∈ R+,

(i) fMλ (u) = min

{
v2

2a
− uv

a
: v ∈ [0, aλ]

}
+ λu =

(
uλ− u2

2a

)
I[0,aλ](u) +

(
aλ2

2

)
I(aλ∞)(u).

(ii) fSλ (u) = min

{
(u− aλ)v +

(
a− 1

2

)
v2 : v ∈ [0, λ]

}
+ λ2

(
a+ 1

2

)
,

= uλI[0,λ](u) +

(
2auλ− λ2 − u2

2(a− 1)

)
I(λ,aλ](u) + λ2

(
a+ 1

2

)
I(aλ,∞)(u).

Proof. Proof. The proof mirrors that of Proposition 2.3 in [101] and is omitted here.

88

Next, we show that Fλ can be expressed using the optimal value of a general quadratic

program whose decision variables are independent of xt and x̌t.

Proposition 4.1. The regularization function Fλ can be expressed as follows:

(i) If fλ = fMλ , then for any xt, x̌t ∈ Rnt,

Fλ(xt, x̌t) = min

{
y′tyt
2a
− y′t|xt − x̌t|

a
: yt ∈ [0, aλ1]

}
+ λ1′|xt − x̌t|; (4.21)

(ii) If fλ = fSλ , then for any xt, x̌t ∈ Rnt,

Fλ(xt, x̌t) = min

{(
a− 1

2

)
y′tyt + y′t|xt − x̌t| − aλ1′yt : yt ∈ [0, λ1]

}
+ λ2

(
a+ 1

2

)
nt.

(4.22)

Proof. To prove part (i), we define a vector yt ≡ (yt,i : i = 1, . . . , nt) ∈ Rnt whose each

component satisfies the inequality 0 ≤ yt,i ≤ aλ. Let [0, aλ1] ≡ {yt ∈ Rnt : 0 ≤ yt,i ≤

aλ, i = 1, . . . , nt}. Using part (i) of Lemma 4.1, we express Fλ(xt, x̌t) as

Fλ(xt, x̌t) =
nt∑
i=1

(
min

{
y2
t,i

2a
− yt,i|xt,i − x̌t,i|

a
: yt,i ∈ [0, aλ]

}
+ λ|xt,i − x̌t,i|

)
. (4.23)

It is noted that there are no constraints in (4.23) that link the components yt,i. Moreover,

yt is not constrained by xt and x̌t. Therefore, the min and the sum operators in (4.23) can

be interchanged as follows:

Fλ(xt, x̌t) = min

{
nt∑
i=1

(
y2
t,i

2a
− yt,i|xt,i − x̌t,i|

a

)
: yt,i ∈ [0, aλ], i = 1, . . . , nt

}
+ λ

nt∑
i=1

|xt,i − x̌t,i|,

= min

{
y′tyt
2a
− y′t|xt − x̌t|

a
: yt ∈ [0, aλ1]

}
+ λ1′|xt − x̌t|,

where the expression following the second equality is the vector notation of the first. This

completes the proof of part (i). To prove part (ii), redefine yt such that 0 ≤ yt,i ≤ λ for

89

i = 1, . . . , nt, and let [0, λ1] ≡ {yt ∈ Rnt : 0 ≤ yt,i ≤ λ, i = 1, . . . , nt}. Using part (ii) of

Lemma 4.1, the regularization function can be expressed as

Fλ(xt, x̌t) =
nt∑
i=1

(
min

{
(|xt,i − x̌t,i| − aλ)yt,i +

(
a− 1

2

)
y2
t,i : yt,i ∈ [0, λ]

}
+ λ2

(
a+ 1

2

))
,

= min

{
nt∑
i=1

(
(|xt,i − x̌t,i| − aλ)yt,i +

(
a− 1

2

)
y2
t,i

)
: yt ∈ [0, λ1]

}
+ λ2

(
a+ 1

2

)
nt,

= min

{(
a− 1

2

)
y′tyt + y′t|xt − x̌t| − aλ1′yt : yt ∈ [0, λ1]

}
+ λ2

(
a+ 1

2

)
nt,

where the sum and min operators were interchanged using the exact arguments used in part

(i). This completes the proof.

Proposition 4.1 allows us to formulate the FCP regularization problem as a quadratic

program. Distinct formulations that use the MCP and SCAD functions are given in Propo-

sitions 4.2 and 4.3, respectively.

Proposition 4.2. Suppose fλ = fMλ . For each t ∈ Ť , the FCP regularization problem (4.19)

is equivalent to the following quadratic program:

min c′txt + θt+1 +
y′tyt
2a
− y′tht

a
+ λ1′ht (4.24a)

s.t. Atxt = bt −Btx̂t−1, (4.24b)

θt+11 ≥ α̂t+1 + β̂′t+1xt, (4.24c)

ht ≥ xt − x̌t, (4.24d)

ht ≥ x̌t − xt, (4.24e)

yt ≤ aλ1, (4.24f)

yt ≥ 0, (4.24g)

xt, yt, ht ∈ Rnt , θt+1 ∈ R. (4.24h)

Proof. Define ht ≡ |xt− x̌t|. Using the expression in part (i) of Proposition 4.1 for Fλ(xt, x̌t)

in (4.19), we obtain

c′txt + θt+1 + min

{
y′tyt
2a
− y′tht

a
: yt ∈ [0, aλ1]

}
+ λ1′ht,

= min

{
c′txt + θt+1 +

y′tyt
2a
− y′tht

a
+ λ1′ht : yt ∈ [0, aλ1]

}
,

90

where the equality holds because yt is not constrained by xt, ht and θt+1. Let Xt denote

the feasibility set of (4.19). Then, (4.19) can be expressed as the following minimization

problem:

min

{
min

{
c′txt + θt+1 +

y′tyt
2a
− y′tht

a
+ λ1′ht : yt ∈ [0, aλ1]

}
: (xt, θt+1) ∈ Xt, ht = |xt − x̌t|

}
,

= min

{
c′txt + θt+1 +

y′tyt
2a
− y′tht

a
+ λ1′ht : yt ∈ [0, aλ1], (xt, θt+1) ∈ Xt, ht = |xt − x̌t|

}
.

(4.25)

It is noted that the nonconvex constraint ht = |xt − x̌t| in (4.25) can be replaced by an

equivalent system of linear inequalities {ht ≥ xt−x̌t, ht ≥ x̌t−xt}, and the proof is complete.

Proposition 4.3. Suppose fλ = fSλ . For each t ∈ Ť , the FCP regularization problem (4.19)

is equivalent to the following quadratic program:

min c′txt + θt+1 +

(
a− 1

2

)
y′tyt + y′tht − aλ1′yt (4.26a)

s.t. Atxt = bt −Btx̂t−1, (4.26b)

θt+11 ≥ α̂t+1 + β̂′t+1xt, (4.26c)

ht ≥ xt − x̌t, (4.26d)

ht ≥ x̌t − xt, (4.26e)

yt ≤ λ1, (4.26f)

yt ≥ 0, (4.26g)

xt, yt, ht ∈ Rnt , θt+1 ∈ R. (4.26h)

Proof. We use the expression in part (ii) of Proposition 4.1 for Fλ(xt, x̌t) in (4.19). The

remainder of the proof is similar to that of Proposition 4.2 and is omitted here.

The following result asserts that formulations (4.24) and (4.26) are nonsmooth, noncon-

vex quadratic programs.

Proposition 4.4. The quadratic programs (4.24) and (4.26) are nonconvex. Furthermore,

for each x̌t, the regularization function Fλ(xt, x̌t) is nonsmooth in xt.

91

Proof. First, we show that model (4.24) is nonconvex. The result is proved using a contra-

diction argument. In what follows, denote an identity matrix of dimension n×n by In×n and

a zero matrix (of any dimension) by 0. Let Πt(θt+1, xt, yt, ht) denote the objective function of

(4.24). Suppose that (4.24) is a convex problem. From the second-order necessary condition

for convexity, it immediately follows that the Hessian matrix of Πt, denoted by H, is positive

semi-definite (PSD), i.e.,

H =

0 0 0 0

0 0 0 0

0 0 H1 H2

0 0 H2 0

 � 0,

where H1 and H2 are invertible matrices with the following definitions:

H1 ≡
∂2Πt

∂y2
t

=

(
1

a

)
Int×nt ; H2 ≡

∂2Πt

∂yt∂ht
= −

(
1

a

)
Int×nt .

As any symmetric sub-matrix of a PSD matrix is also PSD, we have

B ≡

H1 H2

H2 0

 � 0.

Further, by Schur’s complementarity condition, it follows that B � 0 only if

−H ′2H−1
1 H2 � 0. (4.27)

Substituting the values of H1 and H2 in (4.27), we obtain

−
(
−1

a

)
I ′nt×nt

((
1

a

)
Int×nt

)−1(
−1

a

)
Int×nt � 0 =⇒ −

(
1

a

)
Int×nt � 0, (4.28)

which implies that a < 0. This contradicts the fact that a > 1 in the definition of fMλ in

(4.17). Therefore, (4.24) is not convex. Similarly, for model (4.26), it can be shown that the

corresponding Schur’s complementarity condition

−
(

1

a− 1

)
Int×nt � 0

cannot hold as a > 2 in the definition of fSλ in (4.18), and the proof is complete.

92

Next, we show that Fλ(xt, x̌t) is nonsmooth in xt for a given x̌t. We show that Fλ is not

differentiable at the point xt = x̌t. First, we consider the case fλ = fMλ . Fix a component

i ∈ {1, . . . , nt} of xt, and let gλ(xt,i) ≡ fλ(|xt,i − x̌t,i|). Using part (i) of Lemma 4.1, we

express gλ(xt,i) as

gλ(xt,i) =

(
λ(xt,i − x̌t,i)− (xt,i−x̌t,i)2

2a

)
I[0,aλ](xt,i − x̌t,i) +

(
aλ2

2

)
I(aλ∞)(xt,i − x̌t,i), xt,i ≥ x̌t,i(

λ(x̌t,i − xt,i)− (xt,i−x̌t,i)2
2a

)
I[0,aλ](x̌t,i − xt,i) +

(
aλ2

2

)
I(aλ∞)(x̌t,i − xt,i), xt,i ≤ x̌t,i

.

Next, we show that gλ(xt,i) is not differentiable at xt,i = x̌t,i. The left-hand derivative of gλ

at xt,i = x̌t,i is

∇g−λ (x̌t,i) ≡ lim
xt,i→x̌−t,i

{
gλ(xt,i)− gλ(x̌t,i)

xt,i − x̌t,i

}
= lim

xt,i→x̌−t,i

{
−λ− xt,i − x̌t,i

a

}
= −λ,

while the corresponding right-hand derivative is

∇g+
λ (x̌t,i) ≡ lim

xt,i→x̌+t,i

{
gλ(xt,i)− gλ(x̌t,i)

xt,i − x̌t,i

}
= lim

xt,i→x̌+t,i

{
λ− xt,i − x̌t,i

a

}
= λ.

As ∇g−λ (x̌t,i) 6= ∇g+
λ (x̌t,i), it follows that gλ(xt,i) is not differentiable at xt,i = x̌t,i. It can be

shown that identical values of ∇g−λ (x̌t,i) and ∇g+
λ (x̌t,i) are obtained for the case fλ = fSλ .

Thus, gλ(xt,i) is a non-smooth function. As the sum of non-smooth functions is non-smooth,

we conclude that Fλ(xt, x̌t) is a non-smooth function and the proof is complete.

Nonconvexity stems from the fact that Fλ(xt, x̌t) is concave in xt for a given x̌t. [18]

recently showed that such nonsmooth, nonconvex quadratic programming (NSNC-QP) prob-

lems are NP-hard. Although sequential QP methods can be used to solve NSNC-QP prob-

lems (see [19] and [58]), they do not guarantee global optimal solutions and can be computa-

tionally slow ([111, 35]). In Section 4.4, we show that globally optimal solutions to problems

(4.24) and (4.26) are attainable via mixed-integer linear programming (MILP).

93

4.4 MIXED INTEGER LINEAR PROGRAMMING FORMULATIONS

Our aim here is to establish that problem (4.19) admits equivalent MILP formulations that

can be solved to global optimality within finitely many iterations. These formulations are

inspired by the work of [55], who showed that a general quadratic program can be expressed

as an equivalent linear program with complementarity constraints.

Let dt ≡ bt − Btx̂t−1, and denote the current number of Benders’ cuts at stage t by C.

Next, we define πt ∈ Rkt , µt ∈ RC , ν1
t , ν

2
t ∈ Rnt , and δ1

t , δ
2
t ∈ Rnt as the dual vectors as-

sociated with constraints (4.24b), (4.24c), (4.24d)–(4.24e), and (4.24f)–(4.24g), respectively;

similar notation is adopted for the dual vectors linked to (4.26b)–(4.26g). A complemen-

tarity constraint involving two vectors u, v ∈ Rn is denoted by u ⊥ v and is defined as

u ⊥ v ≡ {u ≥ 0, v ≥ 0, uivi = 0, ∀i = 1, . . . , n}. Our first result reveals that model (4.24)

is equivalent to a linear program with complementarity constraints (LPCC). Likewise, an

LPCC model can be derived for model (4.26).

Proposition 4.5. Suppose fλ = fMλ . For each t ∈ Ť , the QP (4.24) is equivalent to the

LPCC,

min c′txt + θt+1 − aλ1′δ1
t − π′tdt + µ′tα̂t+1 + (ν2

t − ν1
t)′x̌t + λ1′ht (4.29a)

s.t. constraints (4.24b)− (4.24g), (4.29b)

A′tπt + β̂t+1µt + ν1
t − ν2

t + ct = 0, (4.29c)

yt − ht + aδ1
t − aδ2

t = 0, (4.29d)

yt + aν1
t + aν2

t = aλ1, (4.29e)

1′µt = 1, (4.29f)

δ1
t ⊥ (aλ1− yt); δ2

t ⊥ yt, (4.29g)

ν1
t ⊥ (x̌t − xt + ht); ν

2
t ⊥ (xt − x̌t + ht), (4.29h)

µt ⊥ (θt+11− α̂t+1 − β̂′t+1xt), (4.29i)

xt, yt, ht ∈ Rnt , θt+1 ∈ R, (4.29j)

πt ∈ Rkt , δ1
t , δ

2
t , ν

1
t , ν

2
t ∈ Rnt

+ , µt ∈ RC
+. (4.29k)

94

Proof. The result is proved using the KKT optimality conditions. Let wt ≡ (xt, yt, ht, θt+1)

and st ≡ (πt, µt, ν
1
t , ν

2
t , δ

1
t , δ

2
t). The Lagrangian of (4.24) is

L(wt, st) = c′txt + θt+1 +
y′tyt
2a
− y′tht

a
+ λ1′ht + (Atxt − dt)′πt + (α̂t+1 + β̂′t+1xt − θt+11)′µt

+ (xt − x̌t − ht)′ν1
t + (x̌t − xt − ht)′ν2

t + (yt − aλ1)′δ1
t − y′tδ2

t .

The linear independence constraint qualification conditions are satisfied by (4.24) because

the constraints (4.24b)–(4.24g) are affine functions of wt and At is a full rank matrix under

the relatively complete recourse assumption for (4.1). A local optimal solution of (4.24)

satisfies the following first-order KKT conditions:

(i) KKT first-order stationarity conditions.

∂L/∂xt = 0 −→ ct + A′tπt + β̂t+1µt + ν1
t − ν2

t = 0, (4.30a)

∂L/∂yt = 0 −→ yt
a
− ht

a
+ δ1

t − δ2
t = 0, (4.30b)

∂L/∂ht = 0 −→ − yt
a

+ λ1− ν1
t − ν2

t = 0, (4.30c)

∂L/∂θt+1 = 0 −→ 1′µt = 1. (4.30d)

(ii) KKT complementary slackness conditions (for inequality constraints).

µt ⊥
(
θt+11− α̂t+1 − β̂′t+1xt

)
, (4.31a)

δ1
t ⊥ (aλ1− yt), (4.31b)

δ2
t ⊥ yt, (4.31c)

ν1
t ⊥ (x̌t − xt + ht), (4.31d)

ν2
t ⊥ (xt − x̌t + ht). (4.31e)

(iii) KKT primal and dual feasibility conditions.

constraints (4.24b)− (4.24g), (4.32a)

µt ∈ RC
+, δ

1
t , δ

2
t , ν

1
t , ν

2
t ∈ Rnt

+ , πt ∈ Rkt . (4.32b)

95

It is noted that adding constraints (4.30a)–(4.32b) to the feasibility set of (4.24) results in an

equivalent QP model because the KKT conditions are necessary for local optimality. Next,

we show that the objective function of this equivalent QP model can be linearized. Let Πt

denote the objective function (4.24a). Then,

Πt = c′txt + θt+1 +
y′tyt
2a
− y′tht

a
+ λ1′ht,

= c′txt + θt+1 +
y′t
2

(
yt
a
− ht

a

)
+

(
λ1′ − y′t

a

)
ht
2

+
λ1′ht

2
,

= c′txt + θt+1 +
y′t(δ

2
t − δ1

t)

2
+

(ν1
t + ν2

t)′ht
2

+
λ1′ht

2
, (4.33)

where the third and fourth terms in (4.33) are obtained via (4.30b) and (4.30c), respectively.

Next, we simplify the quadratic terms y′t(δ
2
t − δ1

t) and (ν1
t + ν2

t)′ht in (4.33). Adding (4.31b)

to (4.31c) and using the fact that u ⊥ v =⇒ u′v = 0, we obtain

y′t(δ
2
t − δ1

t) = −aλ1′δ1
t .

Similarly, on adding (4.31d) to (4.31e), we have

(ν1
t + ν2

t)′ht = (ν1
t − ν2

t)′xt + (ν2
t − ν1

t)′x̌t.

Substituting the values of y′t(δ
2
t − δ1

t) and (ν1
t + ν2

t)′ht in (4.33), we obtain

Πt = c′txt + θt+1 −
aλ1′δ1

t

2
+

(ν1
t − ν2

t)′xt
2

+
(ν2
t − ν1

t)′x̌t
2

+
λ1′ht

2
. (4.34)

Next, we linearize the quadratic term (ν1
t − ν2

t)′xt in (4.34) as follows:

(ν1
t − ν2

t)′xt =
(
−ct − A′tπt − β̂t+1µt

)′
xt, (using (4.30a))

= −c′txt − π′tdt − µ′tβ̂′t+1xt, (using Atxt = dt)

= −c′txt − π′tdt + µ′tα̂t+1 − µ′tθt+11, (using (4.31a))

= −c′txt − π′tdt + µ′tα̂t+1 − θt+1. (using (4.30d))

Substituting the value of (ν1
t − ν2

t)′xt in (4.34) and after some algebra, we obtain

Πt = 0.5
(
c′txt + θt+1 − aλ1′δ1

t − π′tdt + µ′tα̂t+1 + (ν2
t − ν1

t)′x̌t + λ1′ht
)
. (4.35)

We drop the constant 0.5 in (4.35) as it bears no effect on the optimal solutions of (4.24),

and the proof is complete.

96

Proposition 4.6. Suppose fλ = fSλ . For each t ∈ Ť , the QP (4.26) is equivalent to the

LPCC,

min c′txt + θt+1 − λ1′(δ1
t + ayt)− π′tdt + µ′tα̂t+1 + (ν2

t − ν1
t)′x̌t (4.36a)

s.t. constraints (4.26b)− (4.26g), (4.36b)

A′tπt + β̂t+1µt + ν1
t − ν2

t + ct = 0, (4.36c)

(a− 1)yt + ht − aλ1 + δ1
t − δ2

t = 0, (4.36d)

yt − ν1
t − ν2

t = 0, (4.36e)

1′µt = 1, (4.36f)

δ1
t ⊥ (λ1− yt); δ2

t ⊥ yt, (4.36g)

ν1
t ⊥ (x̌t − xt + ht); ν

2
t ⊥ (xt − x̌t + ht), (4.36h)

µt ⊥ (θt+11− α̂t+1 − β̂′t+1xt), (4.36i)

xt, yt, ht ∈ Rnt , θt+1 ∈ R, (4.36j)

πt ∈ Rkt , δ1
t , δ

2
t , ν

1
t , ν

2
t ∈ Rnt

+ , µt ∈ RC
+. (4.36k)

Next, we show that the complementarity constraints in (4.29) and (4.36) can be equiva-

lently represented using a system of linear inequality constraints (using the so-called big-Λ

method).

Proposition 4.7. For each t ∈ Ť and some Λt ∈ (0,∞),

(i) the complementarity constraints (4.29g)–(4.29i) are equivalent to

aλ1− yt ≤ Λtq
1
t ; δ1

t ≤ Λt(1− q1
t), (4.37a)

yt ≤ Λtq
2
t ; δ2

t ≤ Λt(1− q2
t), (4.37b)

x̌t − xt + ht ≤ Λtv
1
t ; ν1

t ≤ Λt(1− v1
t), (4.37c)

xt − x̌t + ht ≤ Λtv
2
t ; ν2

t ≤ Λt(1− v2
t), (4.37d)

θt+11− α̂t+1 − β̂′t+1xt ≤ Λtut; µt ≤ Λt(1− ut), (4.37e)

q1
t , q

2
t , v

1
t , v

2
t ∈ {0, 1}nt , ut ∈ {0, 1}C . (4.37f)

97

(ii) the complementarity constraints (4.36g)–(4.36i) are equivalent to

λ1− yt ≤ Λtq
1
t ; δ1

t ≤ Λt(1− q1
t), (4.38a)

(4.37b)− (4.37f). (4.38b)

It immediately follows from Proposition 4.7 that the LPCC models (4.29) and (4.36) can

be formulated as MILP problems that can be solved using branch-and-bound (BAB) methods

that ensure global optimality (see [73]). These MILP formulations are amenable to solution

by commercial solvers (e.g., Gurobi or CPLEX) that implement highly scalable variants of

the standard BAB (see [123]), thereby obviating the need for specialized algorithms to solve

(4.19). Next, we formally present the equivalent MILP formulations in Theorems 4.1 and

4.2.

Theorem 4.1. Suppose fλ = fMλ . For each t ∈ Ť , a global optimal solution of problem

(4.19) can be obtained with finitely many iterations by solving the equivalent MILP model,

min c′txt + θt+1 − aλ1′δ1
t − π′tdt + µ′tα̂t+1 + (ν2

t − ν1
t)′x̌t + λ1′ht (4.39a)

s.t. (4.29b)− (4.29f), (4.39b)

(4.37a)− (4.37f). (4.39c)

Formulation (4.39) follows directly from Proposition 4.5 and part (i) of Proposition 4.7.

The global optimal solution of the MILP model is attainable via branch-and-bound ([109]).

Theorem 4.2. Suppose fλ = fSλ . For each t ∈ Ť , a global optimal solution of problem

(4.19) can be obtained with finitely many iterations by solving the equivalent MILP model,

min c′txt + θt+1 − λ1′(δ1
t + ayt)− π′tdt + µ′tα̂t+1 + (ν2

t − ν1
t)′x̌t (4.40a)

s.t. (4.36b)− (4.36f), (4.40b)

(4.38a)− (4.38b). (4.40c)

98

Formulation (4.40) follows directly from Proposition 4.6 and part (ii) of Proposition 4.7.

Likewise, a global optimal solution of the MILP model can be obtained using the branch-

and-bound method.

Note that, if the KKT dual multipliers of (4.29) and (4.36) are unbounded, then the

corresponding MILP models (4.39) and (4.40) can be numerically unstable ([32]). To ad-

dress this issue, we first examine the NCNS-QP model (4.24) and the LPCC model (4.29)

associated with the MCP function. Let wt ≡ (xt, yt, ht, θt+1) and st ≡ (δ1
t , δ

2
t , ν

1
t , ν

2
t , µt) be

the vector of primal and dual variables in (4.29), respectively, and let w∗t and s∗t be the

global optimal vectors. Further, let Wt and Πt(wt) be the feasibility set and the objective

function of (4.24), respectively. Note that w∗t is bounded because Wt is compact; however,

as strong duality does not hold for (4.24), s∗t may not necessarily be bounded. Nonetheless,

for compact Wt, it can be shown that the first-order partial derivatives of Πt are bounded

on Wt, i.e., there exists some Ψt ∈ R+ such that for all wt ∈ Wt,

max
{
‖∇xtΠt(wt)‖1, ‖∇ytΠt(wt)‖1, ‖∇htΠt(wt)‖1, ‖∇θt+1Πt(wt)‖1

}
≤ Ψt, (4.41)

where the L1 norm ‖·‖1 is chosen without loss of generality. In what follows, we choose a

value of Ψt that is no less than the maximum number of unique Benders’ cuts that can be

generated at stage t (which is finite by Lemma 1 in [118]). Our next result reveals that the

optimal dual vector cannot be arbitrarily large under the condition given in (4.41).

Proposition 4.8. For each t ∈ Ť , the components in s∗t satisfy the inequalities

max{‖ν1∗
t ‖1, ‖ν2∗

t ‖1, ‖δ1∗
t ‖1, ‖δ2∗

t ‖1, ‖µ∗t‖1} ≤ Ψt; ‖A′tπ∗t ‖1 ≤ (3 + Γt)Ψt, (4.42)

where Γt ∈ [0,∞) depends on β̂t+1.

Proof. The vectors w∗t and s∗t satisfy the KKT conditions for (4.24). We rewrite the KKT

stationarity conditions in terms of the partial derivatives in (4.41) as follows:

∇xtΠt(wt) + A′tπt + β̂t+1µt + ν1
t − ν2

t = 0, (4.43a)

∇ytΠt(wt) + δ1
t − δ2

t = 0, (4.43b)

∇htΠt(wt)− ν1
t − ν2

t = 0, (4.43c)

∇θt+1Πt(wt)− 1 = 0 =⇒ 1′µt = 1. (4.43d)

99

From (4.43c), we have ‖ν1
t + ν2

t ‖1 = ‖∇htΠt(wt)‖1 ≤ Ψt, where the inequality holds by

(4.41). But ν1
t , ν

2
t ≥ 0 in (4.29), and therefore, max{‖ν1

t ‖1, ‖ν2
t ‖1} ≤ ‖ν1

t +ν2
t ‖1 by definition.

Combining the two results, we have max{‖ν1
t ‖1, ‖ν2

t ‖1} ≤ Ψt.

Next, we prove that max{‖δ1
t ‖1, ‖δ2

t ‖1} ≤ Ψt. To show this, we first prove that 〈δ1
t , δ

2
t 〉 =

0, where 〈·, ·〉 denotes the inner product operator. Consider the following cases for yt:

Case 1. If yt = aλ1, then δ2
t = 0 by (4.31c), and therefore, 〈δ1

t , δ
2
t 〉 = 0.

Case 2. If yt = 0, then δ1
t = 0 by (4.31b), and therefore, 〈δ1

t , δ
2
t 〉 = 0.

Case 3. If yt ∈ (0, aλ1), then δ1
t , δ

2
t = 0 by (4.31b) and (4.31c), and therefore, 〈δ1

t , δ
2
t 〉 = 0.

Using 〈δ1
t , δ

2
t 〉 = 0 and the fact that δ1

t , δ
2
t ≥ 0 in (4.24), it immediately follows that δ1

t,iδ
2
t,i = 0

for i = 1, . . . , nt. Next, consider the following cases for δ1
t,i and δ2

t,i:

Case 1. If δ1
t,i > δ2

t,i = 0, then δ1
t,i − δ2

t,i = max{δ1
t,i, δ

2
t,i}.

Case 2. If δ2
t,i > δ1

t,i = 0, then δ1
t,i − δ2

t,i = −max{δ1
t,i, δ

2
t,i}.

Case 3. If δ2
t,i = δ1

t,i = 0, then δ1
t,i − δ2

t,i = max{δ1
t,i, δ

2
t,i} = 0.

Therefore, max{δ1
t,i, δ

2
t,i} = |δ1

t,i − δ2
t,i| for i = 1, . . . , nt, and it immediately follows that

‖δ1
t − δ2

t ‖1 =
nt∑
i=1

|δ1
t,i − δ2

t,i| =
nt∑
i=1

max{δ1
t,i, δ

2
t,i}. (4.44)

It is noted that the inequalities max{δ1
t,i, δ

2
t,i} ≥ δ1

t,i and max{δ1
t,i, δ

2
t,i} ≥ δ2

t,i hold by definition

of max{·}. It immediately follows from (4.44) that

‖δ1
t − δ2

t ‖1 ≥
nt∑
i=1

δ1
t,i = ‖δ1

t ‖1, (4.45a)

‖δ1
t − δ2

t ‖1 ≥
nt∑
i=1

δ2
t,i = ‖δ2

t ‖1, (4.45b)

where the equalities hold because δ1
t,i, δ

2
t,i ≥ 0. Together the constraints in (4.45) imply that

‖δ1
t − δ2

t ‖1 ≥ max{‖δ1
t ‖1, ‖δ2

t ‖1}. On the other hand,

‖δ1
t − δ2

t ‖1 = ‖∇ytΠt(wt)‖1 ≤ Ψt,

100

where the equality holds by (4.43b) and the inequality follows from (4.41). Therefore,

max{‖δ1
t ‖1, ‖δ2

t ‖1} ≤ Ψt. Next, using (4.43d), it is easy to show that 0 ≤ µjt ≤ 1 for

j = 1, . . . , C, where C ≡ |Ct+1|. Thus, we have

‖µt‖1 =
C∑
j=1

µjt ≤ C ≤ Ψt,

where the second inequality follows from our definition of Ψt. Finally, we show that ‖A′tπt‖1

is bounded. Consider equation (4.43a). Then,

‖A′tπt‖1 = ‖ν2
t − ν1

t − β̂t+1µt −∇xtΠt(wt)‖1,

≤ ‖ν2
t ‖1 + ‖ν1

t ‖1 + ‖β̂′t+1µt‖1 + ‖∇xtΠt(wt)‖1,

= 3Ψt + ‖β̂′t+1µt‖1, (4.46)

where the inequality follows from the triangle inequality, and the equality holds because

ν1
t , ν

2
t and ∇xtΠt(wt) are bounded by Ψt. Now, consider the term ‖β̂′t+1µt‖1. Using the

sub-multiplicative property of matrix norms and the fact that ‖µt‖1 ≤ Ψt, we have

‖β̂′t+1µt‖1 ≤ ‖β̂′t+1‖1‖µt‖1 ≤ ‖β̂′t+1‖1Ψt.

Let β̂′t+1,j denote the jth nt-dimensional column vector of the matrix β̂′t+1, where j =

1, . . . , C. By part (b) of Proposition 6.3.1 in [90], we have

‖β̂′t+1‖1 = max
j∈{1,...,C}

‖β̂′t+1,j‖1,

which is a finite value that depends on the elements in β̂′t+1. Define Γt ≡ ‖β̂′t+1‖1 and

substitute it in (4.46) to obtain ‖A′tπt‖1 ≤ Ψt(3 + Γt), and the proof is complete.

An identical result can be shown for NCNS-QP model (4.26) and the LPCC model (4.36)

associated with the SCAD function. Finally, we provide the steps of our regularized SDDP

algorithm, called regSDDP, as follows:

1) Initialization.

Set k = 1 and V̂0
t = −∞ for all t ∈ T̂ . Initialize the values of M, ε, δ.

2) Forward Pass.

101

2a) Sample M distinct SAA scenarios from J to form J k;

2b) For each ξ̃ ∈ J k and t = 1, . . . , T − 1, solve the regularization problem (4.19) to

obtain x̂kt (ξ̃);

2c) If t = T , then solve the traditional forward-pass problem (4.5) to obtain x̂kT (ξ̃);

2d) Compute the sample-average estimate of the total costs, ẑku, via (4.6), and the sample

standard deviation of ẑku via (4.7);

3) Backward Pass.

3a) For each ξ̃ ∈ J k and t = T, . . . , 2, solve problem (4.11) using x̂kt−1(ξ̃), generate

a cut `kt (xt−1) via (4.12), and update the current approximation as V̂kt (xt−1) ←

max{V̂k−1
t (xt−1), `kt (xt−1)};

3b) For t = 1, solve the root-node problem (4.14) and obtain the lower bound ẑk` ; set

k ← k + 1 and go to Step 2.

4) Convergence Test.

Terminate the algorithm if
∣∣ẑku + t̂δ/2,M σ̂k/

√
M − ẑk`

∣∣ ≤ ε; else, go to Step 2.

4.5 CONVERGENCE ANALYSIS

Here, we show that the lower bounds generated by the regSDDP algorithm converge almost

surely to the SAA lower bound. We first introduce some notation pertaining to the scenario-

tree formulation of (4.3). Let T be a scenario tree with T stages. The set of all nodes in

T is denoted by N , while the set of all nodes at stage t ∈ T is denoted by Nt. The root

node at stage 1 is denoted by r. For t ∈ T̂ , each node n ∈ Nt represents a realization of

ξt. Let ζn and Θn denote the parent and the set of children, respectively, of node n ∈ N .

The leaf nodes at stage T have no children, and the root node has no parent. The transition

probability from node n to node m ∈ Θn is denoted by pmn , and for each n ∈ N \ NT , the

collection {pmn : m ∈ Θn} satisfies ∑
m∈Θn

pmn = 1.

102

Next, let ξk(ω) ∈ J k denote a scenario sampled in the forward pass at iteration k. Define

the following event for each ξ̃ ∈ J and k ∈ N:

∆(k, ξ̃) =
{
ω ∈ Ω : ξk(ω) = ξ̃

}
. (4.47)

Sampling a scenario corresponds to selecting a unique sequence of T nodes, one from each

stage t. For each n ∈ Nt and k ∈ N, define the (random) indicator variable

bkn =

1, if node n is selected in iteration k,

0, otherwise,

(4.48)

and let bk ≡ (bkn : n ∈ N). The process S = {bk : k ∈ N} describing the evolution of the

nodes selected in each iteration is adapted to the natural filtration, F = {Fk : k ∈ N}, where

Fk = σ(b1, . . . , bk) is the σ-field generated in the first k iterations. For n ∈ Nt, let V̂t+1(xn)

and V̂kt+1(xn) be the scenario-tree analogs of V̂t+1(xt) and V̂kt (xt), respectively. Finally, let

x̂kn be a trial solution at node n in iteration k, i.e.,

x̂kn ∈ argmin{ct(xn, ξ̃n) + V̂k−1
t+1 (xn) + Fλk(xn, x̌

k
n) : xn ∈ Xt(x̂kζn , ξ̃n)},

where Xt(x̂kζn , ξ̃n) = {xn ∈ Rnt : Anxn + Bnx̂
k
ζn

= bn}. Before establishing our convergence

results, we first state a few important assumptions regarding the sampling process.

Assumption 4.1. The forward-pass scenarios at each step are sampled independently.

Assumption 4.2. For each ξ̃ ∈ J and k ∈ N, P(∆(k, ξ̃)) > 0.

Assumption 4.3. For each n ∈ N and k ∈ N, bkn is independent of Fk−1.

Under Assumptions 4.1 and 4.2, it immediately follows from the Borel zero-one law that

P
(

lim sup
k→∞

∆(k, ξ̃)

)
= 1, ∀ξ̃ ∈ J . (4.49)

Condition (4.49) is called the forward-pass sampling (FPS) property, which ensures that each

node in the tree is selected infinitely often almost surely. Assumption 4.3 implies that prior

information has no bearing on current node selections. If Assumption 4.3 is not imposed,

then it is possible that the outer approximations are updated only at a select set of nodes.

103

Note that under the Assumptions 4.1–4.3, if the algorithm converges for the case M = 1,

then it also converges for M > 1 because the number of possible cuts in each stage is finite

(see Lemma 1 in [118]); therefore, any sequence of scenarios will produce the same collection

of cuts in the limit. Hence, in what follows, we assume that M = 1. Next, we discuss the

assumption on the sequence of penalty parameters {λk : k ∈ N}.

Assumption 4.4. As k →∞, λk → 0.

Assumption 4.4 ensures that the effect of regularization diminishes after a sufficiently large

number of iterations and does not require that {λk : k ∈ N} be a monotone decreasing

sequence. A sufficient condition for this assumption to hold is

lim
k→∞

λk+1

λk
< 1

(see Theorems 3.23 and 3.34 in [127]), which is satisfied by any sequence with a decreasing

tail. Hence, one can choose a locally increasing (but tail decreasing) sequence that promotes

exploration in the initial iterations.

Assumption 4.5. The feasibility sets in (4.3) are nonempty, convex, and compact.

Assumption 4.6. For each n ∈ Nt−1, V̂t(xn) is convex, finite and Lipschitz continuous in

xn.

Recall that the feasibility sets were assumed to be convex polytopes in Section 4.2, and

the relatively complete recourse property of (4.1) ensures that these sets are nonempty.

Assumption 4.6 immediately follows from Lemma 3.1 in [56], as the one-step costs are lin-

ear and finite. Our final assumption states that if a node is not selected, then the outer

approximation at that node remains unchanged (often referred to as the null updates).

Assumption 4.7. For each n ∈ Nt−1 and k ∈ N, if bkn = 0, then V̂kt (xn) = V̂k−1
t (xn).

Assumption 4.7 does not imply that x̂kn = x̂k−1
n when bkn = 0. Note that a trial solution

at a node, whether it is selected or not, can be determined only when the parent of that

node is selected. Therefore, the sequence of trial solutions, {x̂kn}, is defined only for k ∈

Kn ≡
{
k ∈ N : bkζn = 1

}
. The set of iterations where node n is also selected is denoted by

Υn =
{
k ∈ N : bkn = 1

}
. It is obvious that Υn ⊂ Kn = Υζn . As the root node is always

104

selected in the forward pass, we set Kr = Υr = N. From the FPS property, it immediately

follows that Kn and Υn are countably infinite sets.

Theorem 4.3 asserts that the sequence of outer approximations at each node converges

almost surely (a.s.) to the SAA value function in the neighborhood of the trial points

generated by the regSDDP algorithm.

Theorem 4.3. For each t ∈ T̂ , n ∈ Nt−1, and k ∈ Kn,

lim
k→∞
V̂t(x̂kn)− V̂kt (x̂kn) = 0 (a.s.). (4.50)

Proof. For each t ∈ T̂ , let C (t) denote the condition in (4.50). We use backward induction

on t to show that C (t) holds for all t ∈ T̂ . First, consider the case t = T . Choose any node

n ∈ NT−1. As V̂kT is a lower bound of V̂T , we have V̂T (x̂kn) ≥ V̂kT (x̂kn) for all k ∈ Kn. However,

V̂kT (x̂kn) ≥ V̂T (x̂kn) as

V̂kT (x̂kn) ≥
∑
m∈Θn

pmV̄
k
T (x̂kn, ξ̃m)) =

∑
m∈Θn

pmV̂T (x̂kn, ξ̃m)) = V̂T (x̂kn),

where the first inequality follows from (4.9) and (4.10), the first equality holds because

V̂T+1(xm) = 0 for all m ∈ Θn, and the second equality follows from definition. Therefore,

V̂T (x̂kn) = V̂kT (x̂kn). As the choice of n was arbitrary, we conclude that C (T) is true.

For the inductive step, suppose C (t + 1) is true, where (t + 1) ∈ Ť (recall that Ť ≡

T \{T}). Consider a node n ∈ Nt−1. Define Υn ≡ {k ∈ N : bkn = 1}, and note that |Υn| =∞

by the FPS property (4.49). Next, we consider two mutually exclusive cases for k ∈ Kn and

show that C (t) holds for each case separately.

Case 1. Suppose k ∈ Kn∩Υn, i.e., both n and ζn are selected at step k. Note that Υn ⊆ Kn
as n can be selected only if ζn is selected (the opposite statement is not true). Therefore,

k ∈ Kn ∩ Υn =⇒ k ∈ Υn. Let k′ ∈ Υn, where k′ < k, be the last iteration before k when

n was selected. For ease of exposition, denote the objective functions of the nodal problems

(4.3b), (4.19), and (4.11) at m ∈ Θn by

Qt(xm, ξ̃m) = ct(xm, ξ̃m) + V̂t+1(xm), (4.51)

Jkt (xm, ξ̃m) = ct(xm, ξ̃m) + V̂k′t+1(xm) + Fλk(xm, x̌
k
m), (4.52)

Qk
t (xm, ξ̃m) = ct(xm, ξ̃m) + V̂kt+1(xm), (4.53)

105

respectively, where xm ∈ Xt(x̂kn, ξ̃m), and x̌km is a given stability center. It is noted that,

under Assumption 4.7, V̂k′t+1(xm) is the current approximation of V̂t+1(xm) at the start of

iteration k. For notational brevity, denote the transition probability pmn simply as pm. Then,

we use (4.12) and (4.13) to obtain

V̂kt (x̂kn) ≥
∑
m∈Θn

pmV̄
k
t (x̂kn, ξ̃m). (4.54)

Consider a set of feasible points {x̄m}m∈Θn such that

Qk′

t (x̄m, ξ̃m) = V̄ k′

t (x̂kn, ξ̃m) ≡ min
{
Qk′

t (xm, ξ̃m) : xm ∈ Xt(x̂kn, ξ̃m)
}
.

Note that x̄m exists by the relatively complete recourse property of (4.1). It is noted that

x̂km ∈ argmin
{
Jkt (xm, ξ̃m) : xm ∈ Xt(x̂kn, ξ̃m)

}
. (4.55)

Next, consider the following sequence of constraints:

V̂t(x̂kn)− V̂kt (x̂kn) ≤
∑
m∈Θn

pm

(
V̂t(x̂

k
n, ξ̃m)− V̄ k

t (x̂kn, ξ̃m)
)
,

≤
∑
m∈Θn

pm

(
V̂t(x̂

k
n, ξ̃m)− V̄ k′

t (x̂kn, ξ̃m)
)
,

=
∑
m∈Θn

pm

(
V̂t(x̂

k
n, ξ̃m)−Qk′

t (x̂km, ξ̃m)
)

+
∑
m∈Θn

pm

(
Qk′

t (x̂km, ξ̃m)−Qk′

t (x̄m, ξ̃m)
)
. (4.56)

The first inequality is true by (4.54). The second inequality follows from the fact that

V̄ k′
t (x̂kn, ξ̃m) ≤ V̄ k

t (x̂kn, ξ̃m), as problem (4.11) at iteration k′ is a relaxation of the correspond-

ing problem at iteration k. The first equality holds by definition of Qk′
t (x̄m, ξ̃m), and the

second equality is obtained by adding and subtracting the term Qk′
t (x̂km, ξ̃m). Next, consider

the first summation term in (4.56). Note that

V̂t(x̂
k
n, ξ̃m)−Qk′

t (x̂km, ξ̃m) = V̂t(x̂
k
n, ξ̃m)−Qt(x̂

k
m, ξ̃m) + V̂t+1(x̂km)− V̂k′t+1(x̂km), (4.57)

where the equality follows from (4.51) and (4.53). However,

V̂t(x̂
k
n, ξ̃m) ≡ min

{
Qt(xm, ξ̃m) : xm ∈ Xt(x̂kn, ξ̃m)

}
≤ Qt(x̂

k
m, ξ̃m), (4.58)

106

where the inequality holds because x̂km is a feasible, but not necessarily an optimal, solution

of the problem in (4.58). Combining (4.57) and (4.58), we obtain

V̂t(x̂
k
n, ξ̃m)−Qk′

t (x̂km, ξ̃m) ≤ V̂t+1(x̂km)− V̂k′t+1(x̂km), ∀m ∈ Θn. (4.59)

Next, consider the second summation term in (4.56). Add and subtract the terms Jkt (x̂km, ξ̃m)

and Jkt (x̄m, ξ̃m) to each term in the summation to obtain

Qk′

t (x̂km, ξ̃m)−Qk′

t (x̄m, ξ̃m) = Qk′

t (x̂km, ξ̃m)− Jkt (x̂km, ξ̃m) + Jkt (x̂km, ξ̃m)− Jkt (x̄m, ξ̃m)

+ Jkt (x̄m, ξ̃m)−Qk′

t (x̄m, ξ̃m),

≤ Qk′

t (x̂km, ξ̃m)− Jkt (x̂km, ξ̃m) + Jkt (x̄m, ξ̃m)−Qk′

t (x̄m, ξ̃m), (4.60)

where the inequality holds because Jkt (x̂km, ξ̃m) ≤ Jkt (x̄m, ξ̃m) as x̄m is a feasible solution of

the problem in (4.55). Next, observe that for any xm ∈ Xt(x̂kn, ξ̃m),

Jkt (xm, ξ̃m)−Qk′

t (xm, ξ̃m) = Fλk(xm, x̌
k
m) =

nt∑
i=1

fλk(|xm,i − x̌km,i|), (4.61)

where the first equality follows from (4.52) and (4.53), and the second equality is true from

definition of Fλk in (4.20). Combining (4.60) and (4.61), we obtain

Qk′

t (x̂km, ξ̃m)−Qk′

t (x̄m, ξ̃m) ≤
nt∑
i=1

fλk(| x̄m,i − x̌km,i|)−
nt∑
i=1

fλk(| x̂m,i − x̌km,i|),

≤
nt∑
i=1

fλk(| x̄m,i − x̌km,i|),

≤ ntfλk(aλk), (4.62)

where the second inequality is true as fλk(| x̂m,i − x̌km,i|) ≥ 0, and the third inequality holds

by Property (P3) in Section 4.3.1. Combining (4.59) and (4.62), we express (4.56) as

V̂t(x̂kn)− V̂kt (x̂kn) ≤
∑
m∈Θn

pm

(
V̂t+1(x̂km)− V̂k′t+1(x̂km)

)
+
∑
m∈Θn

pmntfλk(aλk),

=
∑
m∈Θn

pm

(
V̂t+1(x̂km)− V̂k′t+1(x̂km)

)
+ ntfλk(aλk), (4.63)

107

where the equality holds because
∑

m∈Θn
pm = 1. However, V̂t(x̂kn) ≥ V̂kt (x̂kn) as V̂kt is a lower

bound of V̂t for all k ∈ Υn. Therefore,

0 ≤ V̂t(x̂kn)− V̂kt (x̂kn) ≤
∑
m∈Θn

pm

(
V̂t+1(x̂km)− V̂k′t+1(x̂km)

)
+ ntfλk(aλk). (4.64)

As C (t+ 1) was assumed to be true, it immediately follows that for k ∈ Υn,

lim
k→∞

{
V̂t+1(x̂km)− V̂kt+1(x̂km)

}
a.s.
= 0, ∀m ∈ Θn. (4.65)

However, under Assumptions 4.5 and 4.6, we know from Lemma A.1. in [56] that (4.65)

holds if and only if the following condition holds:

lim
k→∞

{
V̂t+1(x̂km)− V̂k′t+1(x̂km)

}
a.s.
= 0, ∀m ∈ Θn. (4.66)

Note that

lim
k→∞

fλk(aλk) = 0, (4.67)

by Property (P1) in Section 4.3.1 and Assumption 4.4. Taking the limit k → ∞, where

k ∈ Υn, on both sides of (4.64) and using the results in (4.66) and (4.67), it immediately

follows from the Sandwich Theorem that

lim
k→∞

{
V̂t(x̂kn)− V̂kt (x̂kn)

}
a.s.
= 0. (4.68)

As the choice of n was arbitrary, we conclude that C (t) holds for all n ∈ Nt−1.

Case 2. Suppose k ∈ Kn ∩ Υc
n, i.e., ζn is selected, but n is not selected, at step k. It is

noted that Kn ∩ Υc
n = Kn \ Υn as Υn ⊆ Kn. Suppose C (t) is false. Then, there exists

ε > 0 such that there is an infinite number of iterations k ∈ Kn where V̂t(x̂kn)− V̂kt (x̂kn) ≥ ε.

Let k′ ∈ Kn, where k′ denotes the last iteration before k when ζn was selected. Note that

V̂kt (x̂kn) ≥ V̂k′t (x̂kn) by the monotonicity of the outer approximations. Then, the set

Kεn =
{
k ∈ Kn : V̂t(x̂kn)− V̂k′t (x̂kn) ≥ ε

}
has an infinite number of elements. Define Sn ≡ {bkn : k ∈ Kn} (recall that bkn = 1 if

k ∈ Υn, and bkn = 0 otherwise). From Assumption 4.3, we know that bkn ⊥⊥ Fk′ for any

k, k′ ∈ Kn. It is noted that x̂kn and V̂k′t (x̂kn) are measurable w.r.t. Fk′ under Assumption

108

4.7. Next, consider the process Wn = {wkn : k ∈ Kn}, where wkn = 1 if k ∈ Kεn, and

wkn = 0 otherwise. It immediately follows from the definition of Kεn that wkn is measurable

w.r.t Fk′ , and is therefore, independent of bkn, i.e., wkn ⊥⊥ bkn. Consider the derived process

Sεn = {bkn : wkn = 1, k ∈ Kn} = {bkn : k ∈ Kεn}. From Lemma A.3. in [56], we know

that the elements in Sεn are i.i.d. and have the same distribution as b1
n. Observe that

E(b1
n) = P(b1

n = 1) > 0 by Assumption 4.2. Therefore, from the Strong Law of Large

Numbers, it immediately follows that

lim
L→∞

1

L

L∑
i=1

bkin = E(b1
n) > 0, (4.69)

where bkin is the ith element in Sεn. However, note that Kεn ∩Υn is finite as

lim
k→∞
V̂t(x̂kn)− V̂k′t (x̂kn) = 0

holds (for k ∈ Υn) by Lemma A.1. in [56] and (4.68). Therefore, Sεn must have a finite

number of elements that are equal to 1, the rest all being equal to 0. Thus,

lim
L→∞

1

L

L∑
i=1

bkin = 0, (4.70)

which contradicts the result in (4.69). Therefore, C (t) holds, and the proof is complete.

Theorem 4.3 does not establish pointwise convergence of the outer approximations for all

feasible decisions at a node, but rather implies convergence only for the trial points generated

by the algorithm. Our next result follows directly from Theorem 4.3 and shows that the

sequence of lower bounds converges to the SAA optimal value ẑ` almost surely.

Theorem 4.4. The limit of the sequence
{
ẑk`
}
k∈N is ẑ`, i.e., limk→∞ ẑ

k
` = ẑ` (a.s.).

Proof. It is noted that the root node r is always selected in the forward pass, i.e, Υr = N.

Consequently, the lower bound ẑk` is updated at each k ∈ N. For ease of exposition, let

Q1(xr) = c1(xr) + V̂2(xr), (4.71)

Jk1 (xr) = c1(xr) + V̂k−1
2 (xr) + Fλk(xr, x̌

k
r), (4.72)

Qk
1(xr) = c1(xr) + V̂k2 (xr), (4.73)

109

where xr ∈ X1 (recall that X1 is the feasibility set at stage 1). Using the relationships in

(4.72) and (4.73) for iteration k, we obtain the following equality:

Jk1 (xr) +Qk−1
1 (xr) = Fλk(xr, x̌

k
r), xr ∈ X1. (4.74)

Define ẑk−1
` ≡ Qk−1

1 (x̄r), where x̄r ∈ argmin
{
Qk−1

1 (xr) : xr ∈ X1

}
. As zk` is a valid lower

bound of ẑ`, we have ẑ` ≥ ẑk` . Moreover, ẑk` ≥ ẑk−1
` by the monotone property of outer

approximations. Then, the following sequence of constraints hold:

0 ≤ ẑ`− ẑk` ≤ ẑ`− ẑk−1
` = ẑ`−Qk−1

1 (x̄r) =
(
ẑ` −Qk−1

1 (x̂kr)
)

+
(
Qk−1

1 (x̂kr)−Qk−1
1 (x̄r)

)
, (4.75)

where the second equality follows from the addition and subtraction of the term Qk−1
1 (x̂kr).

However, the term within the first bracket in (4.75) can be constrained as follows:

ẑ` −Qk−1
1 (x̂kr) = ẑ` − c1(x̂kr) + V̂k−1

2 (x̂kr),

= ẑ` −Q1(x̂kr) + V̂2(x̂kr)− V̂k−1
2 (x̂kr),

≤ V̂2(x̂kr)− V̂k−1
2 (x̂kr), (4.76)

where the first and second equalities follow from (4.73) and (4.71), respectively, and the

inequality holds because ẑ` ≤ Q1(x̂kr) as x̂kr is a feasible, but not necessarily an optimal,

solution of the SAA root-node problem (4.3a). Next, consider the following sequence of

relationships concerning the term within the second bracket in (4.75):

Qk−1
1 (x̂kr)−Qk−1

1 (x̄r) = Qk−1
1 (x̂kr)− Jk1 (x̂kr) + Jk1 (x̂kr)− Jk1 (x̄r) + Jk1 (x̄r)−Qk−1

1 (x̄r),

≤ Qk−1
1 (x̂kr)− Jk1 (x̂kr) + Jk1 (x̄r)−Qk−1

1 (x̄r),

= Fλk(x̄r, x̌
k
r)− Fλk(x̂r, x̌

k
r),

≤ Fλk(x̄r, x̌
k
r),

≤ n1fλk(aλk). (4.77)

The first equality follows from the addition and subtraction of the terms Jk1 (x̂kr) and Jk1 (x̄r).

The first inequality is true because Jk1 (x̂kr) ≤ Jk1 (x̄r) as x̄r is a feasible solution of the problem

min{Jk1 (xr) : xr ∈ X1} whose optimal solution is x̂kr by definition. The second equality is

true by (4.74). The second inequality holds because Fλk(x̂r, x̌
k
r) ≥ 0. The final inequality

110

follows from Property (P3) in Section 4.3.1. Combining (4.76) and (4.77), we can express

(4.75) as follows:

0 ≤ ẑ` − ẑk` ≤ V̂2(x̂kr)− V̂k−1
2 (x̂kr) + n1fλk(aλk). (4.78)

From Proposition 4.3 and Lemma A.1. in [56], we know that

lim
k→∞

{
V̂2(x̂kr)− V̂k−1

2 (x̂kr)
}

a.s.
= 0. (4.79)

Moreover, under Assumption 4.4, it follows from Property (P1) in Section 4.3.1 that

lim
k→∞

fλk(aλk) = 0. (4.80)

Taking the limit k →∞ on both sides of (4.78) and using (4.79) and (4.80), we obtain the

desired result by the Sandwich Theorem, and the proof is complete.

Taken together, Theorems 4.3 and 4.4 guarantee almost sure convergence of the optimal

values of the nodal problems at each stage. However, the quality of the solutions generated

at each node cannot be inferred from these results. However, Theorem 4.5 establishes the

asymptotic optimality of the trial solutions produced by regSDDP. Specifically, any sequence

of trial solutions at a node converges to an optimal decision at that node almost surely. In

what follows, let x∗n be the optimal decision rule at node n ∈ N .

Lemma 4.2. For t ∈ T̂ , n ∈ Nt−1, and k′, k ∈ Kn such that k′ < k,

lim
k→∞

V̂t(x̂
k
ζn , ξ̃n)−Qk′

t (x̂kn, ξ̃n) = 0, (a.s.). (4.81)

Proof. Define u ≡ ζn. Using the same arguments that were used to derive (4.59), we obtain

the following inequality:

V̂t(x̂
k
u, ξ̃n)−Qk′

t (x̂kn, ξ̃n) ≤ V̂t+1(x̂kn)− V̂k′t+1(x̂kn). (4.82)

111

As V̂kt+1(xn) ≤ Vt+1(xn) for all k ∈ Kn, it is straightforward to show that V̂t(x̂
k
u, ξ̃n) ≥

V̄ k
t (x̂ku, ξ̃n). Consider a feasible solution x̄n ∈ Xt(x̂ku, ξ̃n) such that V̄ k′

t (x̂ku, ξ̃n) = Qk′
t (x̄n, ξ̃n).

Then, we can obtain the following sequence of constraints:

0 ≤ V̂t(x̂
k
u, ξ̃n)− V̄ k

t (x̂ku, ξ̃n),

≤ V̂t(x̂
k
u, ξ̃n)− V̄ k′

t (x̂ku, ξ̃n),

= V̂t(x̂
k
u, ξ̃n)−Qk′

t (x̄n, ξ̃n),

= V̂t(x̂
k
u, ξ̃n)−Qk′

t (x̂kn, ξ̃n) +Qk′

t (x̂kn, ξ̃n)−Qk′

t (x̄n, ξ̃n),

≤ V̂t(x̂
k
u, ξ̃n)−Qk′

t (x̂kn, ξ̃n) + ntfλk(aλk), (4.83)

where the second inequality holds due to the monotonicity of V̄ k
t , and the last inequality

follows from similar arguments that were used to show (4.62). Combining (4.82) with (4.83),

we obtain

−ntfλk(aλk) ≤ V̂t(x̂
k
u, ξ̃n)−Qk′

t (x̂kn, ξ̃n) ≤ V̂t+1(x̂kn)− V̂k′t+1(x̂kn). (4.84)

Take the limit k →∞ in (4.84). Then, using Theorem 4.3 and the fact that limk→∞ fλk(aλk) =

0, it immediately follows from the Sandwich theorem that

lim
k→∞

V̂t(x̂
k
ζn , ξ̃n)−Qk′

t (x̂kn, ξ̃n)
a.s.
= 0,

and the proof is complete.

Theorem 4.5. For each n ∈ N , let x̂n be a limit point of {x̂kn}k∈Kn. Then, x̂n = x∗n (a.s.).

Proof. Consider a node n ∈ Nt, where t ∈ T̂ , and let u ≡ ζn denote the parent of

n. Observe that Kn = Υu by definition (and therefore, Kn = Υu ⊂ Ku). Moreover,

it is noted that the sequence {(x̂ku, x̂kn)}k∈Kn belongs to the closed, convex set Xt(u, n) =

{(xu, xn) ∈ Rnt−1 × Rnt : Anxn +Bnxu = bn}. Therefore, {(x̂ku, x̂kn)}k∈Kn must converge to a

limit point in Xt(u, n) (see Theorem 3.2 (d) in [127]), i.e., lim
k→∞

x̂ku = x̂u and lim
k→∞

x̂kn = x̂n, for

112

k ∈ Kn and (x̂u, x̂n) ∈ Xt(u, n). Next, we consider the following sequence of equalities that

hold for k ∈ Kn:

V̂t(x̂u, ξ̃n) = lim
k→∞

V̂t(x̂
k
u, ξ̃n),

= lim
k→∞

Qk′

t (x̂kn, ξ̃n),

= lim
k→∞
{ct(x̂kn, ξ̃n) + V̂k′t+1(x̂kn)},

= ct(x̂n, ξ̃n) + lim
k→∞
V̂k′t+1(x̂kn),

= ct(x̂n, ξ̃n) + lim
k→∞
V̂t+1(x̂kn),

= ct(x̂n, ξ̃n) + V̂t+1(x̂n). (4.85)

The first equality follows from the continuity of V̂t(xu, ξ̃m) with respect to xu. The second

equality is obtained via part (i) of Lemma 4.2. The third equality follows from the definition

of Qk′
t (x̂kn, ξ̃n). The fourth equality holds by the absolute continuity of ct(xn, ξ̃n). The fifth

equality follows from Theorem 4.3. Finally, the sixth equality holds because V̂t+1(xn) is a

continuous function. From the definition of V̂t(x̂u, ξm), it immediately follows from (4.85)

that x̂n minimizes the objective function (4.3b), and the proof is complete.

It is important to note that the stage-wise independence assumption is not required for

our convergence results. However, this assumption facilitates the sharing of cuts among the

nodes at each stage t ∈ T̂ , resulting in an improved outer approximation Q̂kt satisfying the

inequality

V̂kt (x̂kn) ≤ Q̂kt (x̂kn) ≤ V̂t(x̂kn), ∀n ∈ Nt−1, k ∈ Kn. (4.86)

However, it follows immediately from Theorem 4.3 that

lim
k→∞
V̂t(x̂kn)− Q̂kt (x̂kn) = 0 (a.s.),

i.e., the addition of extra Benders’ cuts does not impact the convergence properties of the

algorithm.

113

4.6 COMPUTATIONAL EXPERIMENTS

Here, we present computational results illustrating the benefits of regSDDP as compared

to the standard SDDP and SDDP with quadratic regularization (quadSDDP) procedures.

Specifically, we present two sets of empirical results for large-scale SAA instances of the multi-

stage capacity expansion (MCE) and the multistage portfolio optimization (MPO) problems.

First, we introduce the MCE problem and provide detailed descriptions of the source

data, experimental setup, and computational study. For the MCE problem, we compare the

performances of regSDDP and standard SDDP only.

4.6.1 The Multistage Capacity Expansion Problem

We consider a variant of the MCE problem described in [24], in which the objective is

to determine an optimal operational strategy for conventional power generators (e.g., coal,

gas, nuclear etc.) in a distribution network with high renewable penetration. Let I be the

number of different types of conventional generators in the network. Define I ≡ {1, . . . , I}.

The uncertainty in stage t ∈ T̂ is ξt = (ξdt , ξ
w
t), where ξdt and ξwt denote the growth rates

of demand and renewable generation at stage t, respectively. The net demand (demand

minus renewable generation) at stage t is dt = max
{
d1ξ

d
t − ηw1ξ

w
t , 0
}

, where d1 and w1 are

the (deterministic) initial demand and renewable generation levels in stage 1, and η is the

renewable generation efficiency. It is assumed that no decisions are made in stage 1, while

operational decisions are made from stage 2 onwards, which are described next. Let xnt,i be

the new capacity installed for generator type i in stage t, which incurs a per-unit installation

cost cnt,i. Let xrt,i be the capacity curtailed for generator type i in stage t at a per-unit

curtailment cost crt,i. The total installed capacity of generator type i in stage t is xht,i, which

incurs a per-unit holding cost cht,i. The operating level of generator type i in stage t is xgt,i,

and let cgt,i be the per-unit operating cost. The amount of unsatisfied demand in stage t is

denoted by xst , and let cst be the per-unit shortage cost. Furthermore, let Un
t,i, U

r
t,i and Uh

t,i

denote the maximum values of xnt,i, x
r
t,i and xht,i, respectively. Then, the MCE problem can

be formulated as the following MSLP:

114

min E

∑
t∈T̂

cstx
s
t +
∑
t∈T̂

∑
i∈I

(
cnt,ix

n
t,i + crt,ix

r
t,i + cht,ix

h
t,i + cgt,ix

g
t,i

) (4.87a)

s.t. xht,i − xht−1,i − xnt,i + xrt,i = 0, ∀t ∈ T̂ , i ∈ I, (4.87b)

xst +
∑
i∈I

xgt,i ≥ dt, ∀t ∈ T̂ , (4.87c)

0 ≤ xgt,i ≤ xht,i, ∀t ∈ T̂ , i ∈ I, (4.87d)

0 ≤ xnt,i ≤ Un
t,i, ∀t ∈ T̂ , i ∈ I, (4.87e)

0 ≤ xrt,i ≤ U r
t,i, ∀t ∈ T̂ , i ∈ I, (4.87f)

0 ≤ xht,i ≤ Uh
t,i, ∀t ∈ T̂ , i ∈ I, (4.87g)

0 ≤ xst ≤ dt, ∀t ∈ T̂ , (4.87h)

where, without loss of generality, we assume that xh0,i = 0 for all i ∈ I . The constraints

(4.87b) describe the evolution of the total capacity of each generator type, while (4.87c)

represent the supply-demand balance constraints that account for demand shortages, if any.

The constraints (4.87d) – (4.87h) bound the operational decisions in each stage. We assume

U r
t,i ≥ Uh

t−1,i for all t ∈ T̂ so that (4.87) has the relatively complete recourse property (see

the discussion in [24]).

Data Description. We used the annual demand and wind-generation data of a German

distribution network described in [38]. All energy quantities are reported in gigawatt-hours

(GW-h). From the data, we set η = 0.52, d1 = 4.88×105 GW-h, and w1 = 3.71×105 GW-h.

We considered three types of conventional generators, the coal-fired power plant, combined

cycle-gas turbine and open cycle-gas turbine, whose per-unit installation and operating costs

(in million euros per GW-h) are summarized in Table 10. We assumed that there were no

holding or curtailment costs, i.e., crt,i = cht,i = 0 for all i ∈ I. Using a discount factor of 10%,

we set cnt,i = 0.9t × `i, cgt,i = 0.9t × gi and cst = 0.9t × 2000. The upper bounds Un
t,i, U

r
t,i, U

h
t,i

were all set to 105 GW-h.

Description of Experiments. We considered SAA instances of (4.87) where each

stage represents a year. We assume ξ = {ξt : t ∈ T̂ } is stage-wise independent, and ξdt

and ξwt are mutually independent log-normal random variables, i.e., log(ξdt) ∼ N (µd, σ
2
d(t))

115

Table 10: Annual per-unit installation and operating costs (million euros per GW-h).

Index (i) Generation system Installation cost (`i) Operating cost (gi)

1 Coal-fired power plant 1229.28 133.95

2 Combined cycle-gas turbine 569.50 188.29

3 Open cycle-gas turbine 289.35 290.27

and log(ξwt) ∼ N (µw, σ
2
w(t)), where µd = 0.20, µw = 0.15, σd(t) = 0.10 + 0.010t, and

σw(t) = 0.25 + 0.025t. For the computational experiments, we varied the number of stages

T from 50 to 250 in increments of 10, i.e., T ∈ {50, 60, . . . , 250}. For each value of T , we

generated 30 T -stage scenario trees where each non-leaf node had N ∈ {15, 30} children;

thus, each scenario tree had NT−1 scenarios. To construct a scenario tree, we randomly

sampled N realizations of ξt for each t ∈ T̂ using the Latin hypercube sampling (LHS)

method of [41]. We prefer the LHS method over standard Monte-Carlo sampling because it

generates more representative scenario trees, thereby reducing the bias and the variance of

the SAA lower bound ẑ` (see [99, 52]).

Each SAA instance was solved using the standard SDDP and regSDDP procedures. For

both procedures, only one forward-pass scenario was sampled at each step, i.e., M ≡ |J k| = 1

for all k ∈ N. This kept the overall computation times within reasonable limits for both

procedures. We observed that the performance of both algorithms – in terms of lower-bound

quality and convergence rate – was consistently better for M = 1 compared to M > 1,

with the exception of a few instances with T > 200 in which the results were marginally

better for M ∈ {2, 3}. Similar benefits for the case M = 1 were also observed by [138, 173]

and [151]. The maximum number of iterations for both procedures was set to kmax = 500.

We used a more conservative termination criterion than (4.15) that is based on the rate of

improvement of the lower bounds (see [136] for the disadvantages of using the criterion in

(4.15)). Specifically, for ε = 10−4, both procedures were terminated at an iteration

k∗ = min

{
kmax, argmin

{
k ∈ N :

ẑk` − ẑk−15
`

ẑk`
× 100 ≤ ε

}}
, (4.88)

116

where the inequality in (4.88) represents an upper bound on the percentage improvement in

the lower bounds over a rolling window of 15 iterations (a similar criterion was used by [137]).

We used the SCAD penalty function for regSDDP in our experiments. We chose a previous

trial point as the current stability center at each stage, i.e., x̌t = x̂k−1
t (ξ̃ht) for each t ∈ T̂ . We

chose the penalty parameter at each step according to λk = λ0ρ
k, where λ0 = (2 log(max{nt :

t ∈ T̂ }))0.5 = 1.47 was set a priori using the universal threshold rule of [42]. We implemented

a grid search over the sets A = {2.0, 2.1, 2.2, . . . , 10.0} and P = {0.7, 0.72, . . . , 1.0} to tune

the parameters a and ρ, respectively. For each (a, ρ) ∈ A×P , we ran the regSDDP algorithm

for 100 iterations on 30 T -stage SAA instances, where T ∈ {50, 60, . . . , 100}. The best lower

bounds (on average) at the end of 100 iterations were obtained for a = 4.2 and ρ = 0.86; we

used these parameter values for regSDDP in the rest of the experiments.

Both procedures were coded in Python 2.7. The nodal problems were solved using the

Gurobi 7.0 solver. The MILP tolerance level for regSDDP was set to 10−3. The algorithms

were implemented on two 64-bit, 6th generation Intel R© CoreTM i7, 128 GB, 3.2 GHz Windows

machines.

Results and Discussion. We first demonstrate the efficacy of the regSDDP algorithm

in solving large SAA instances. Figure 20 illustrates the evolution of the upper and lower

bounds generated by regSDDP for two distinct SAA instances with T = 100 and N =

15. For both problem instances, the lower bounds stabilized after 25 iterations. Note the

rapid increase of the lower bounds in the initial iterations (exploration phase). Once a

sufficient number of good-quality cuts is generated, the lower bounds improve slowly during

the exploitation phase. Moreover, note that the first few upper bounds are loose due to the

poor induced policies generated initially. Furthermore, these upper bounds exhibit greater

variability as the algorithm searches for better trial solutions during exploration. However,

as the outer approximations improve and exploitation becomes more dominant, the upper

bounds exhibit less variability. Similar trends of the regSDDP bounds were observed for

other SAA instances. For the second problem instance, note that the upper bound is less

than the lower bound at certain iterations. However, this does not imply that the problem

instance has been solved because ẑku is a statistical, and not a valid, upper bound of ẑ`, and

the term (ẑku − ẑk`) is an upward-biased estimator of the true optimality gap (ẑ` − ẑk`).

117

� � �� �� �� ��

��������

�

��

��

��

��

��

��

��

��
�

	
	
��
��

��
��

�����������
�����������

(a) Instance 1.

� � �� �� �� ��

��������

��

��

��

��

��

��

��

��
�

	
	
��
��

��
��

�����������
�����������

(b) Instance 2.

Figure 20: Evolution of regSDDP bounds for two SAA instances (T = 100, N = 15).

Figure 21 illustrates the evolution of the average values and the associated 95% confidence

intervals (shaded regions) of the regSDDP bounds for the 30 SAA instances with 100 stages.

�
 �� �
 �� �

� ��� ���

�

��

��

��

	�

�

��

��

��
��

�
�

��
��

!�
��

�"������!�������!��������
��������
�"��������#�����!��������
��������

Figure 21: Average bounds and 95% confidence intervals for 30 instances (T = 100, N = 15).

118

On average, regSDDP took approximately 27 minutes and 25 iterations to solve the SAA

instances. Note that the variance in the lower bounds diminishes rapidly after 25 iterations.

Thus, the average value of the lower bound at the 25th iteration (or beyond) provides a

high-quality estimate of the true optimal value z∗ of model (4.87).

Next, we compare the performance of standard SDDP and regSDDP for SAA instances of

different sizes. The computational results for the cases N = 15 and N = 30 are summarized

in Tables 11 and 12, respectively. The results are expressed in the form u±v (w), where u, v

and w denote the average value, standard deviation and range, respectively, of the values

observed for each row-column combination. Tables 11 and 12 reveal that, for all values of

T , regSDDP produced superior lower bounds (on average), with less variability, compared

to the lower bounds obtained via standard SDDP.

Table 11: Computational results of regSDDP and standard SDDP for N = 15.

Stages
Lower bound Number of iterations Solution time (mins)
SDDP regSDDP SDDP regSDDP SDDP regSDDP

50
14.87± 0.42 14.88± 0.33 44± 2 16± 1 11.23± 3.59 9.50± 4.53

(0.73) (0.57) (3) (2) (6.71) (8.48)

75
19.38± 0.84 19.62± 0.57 63± 4 19± 2 19.95± 5.71 15.01± 6.21

(1.45) (0.98) (6) (3) (10.67) (11.62)

100
25.46± 1.44 25.92± 0.91 92± 5 27± 2 42.93± 8.01 27.45± 7.23

(2.43) (1.58) (8) (3) (14.97) (13.53)

125
33.07± 2.04 33.87± 1.47 124± 7 38± 3 82.67± 11.72 55.12± 12.21

(3.51) (2.53) (12) (6) (21.91) (22.84)

150
42.97± 2.73 43.24± 1.79 161± 9 51± 5 152.95± 15.62 96.07± 17.05

(4.74) (3.06) (15) (9) (29.24) (31.89)

175
50.33± 3.52 52.24± 2.30 197± 11 65± 8 233.12± 19.11 153.84± 22.97

(6.12) (3.99) (18) (13) (35.75) (42.97)

200
61.06± 4.46 63.78± 3.22 243± 13 83± 10 360.45± 23.65 242.08± 29.15

(7.73) (5.57) (22) (17) (44.25) (54.55)

225
72.08± 5.15 74.82± 3.74 285± 15 107± 12 523.50± 28.72 383.47± 35.97

(8.92) (6.48) (26) (21) (53.72) (67.19)

250
84.21± 5.89 87.69± 4.14 322± 17 136± 16 745.97± 34.51 589.33± 44.79

(10.21) (7.17) (30) (27) (65.55) (83.79)

Figure 22 illustrates the higher quality of the regSDDP lower bounds for the case N = 15

(the dashed lines in Figure 22 indicate the first, second and third quartiles). Here, we make

two important observations. First, note that the improvement in the lower bounds is more

pronounced for larger SAA instances. For example, when N = 15, the average lower bound

119

Table 12: Computational results of regSDDP and standard SDDP for N = 30.

Stages
Lower bound Number of iterations Solution time (mins)
SDDP regSDDP SDDP regSDDP SDDP regSDDP

50
15.05± 0.46 15.64± 0.33 66± 3 24± 1 28.05± 4.98 24.48± 5.37

(0.79) (0.56) (4) (2) (8.96) (9.76)

75
19.88± 0.82 20.85± 0.50 94± 4 29± 2 50.87± 7.25 36.98± 7.24

(1.42) (0.83) (7) (3) (13.07) (13.14)

100
27.03± 1.37 28.97± 0.89 138± 6 40± 3 109.48± 9.81 69.13± 9.58

(2.38) (1.49) (9) (4) (17.70) (17.41)

125
35.68± 1.94 37.96± 1.59 186± 8 55± 4 210.80± 14.33 135.58± 14.78

(3.35) (2.75) (14) (7) (25.84) (26.85)

150
44.43± 2.73 48.01± 1.94 242± 10 74± 6 390.83± 18.59 236.92± 20.73

(4.72) (3.36) (17) (11) (33.52) (37.65)

175
54.69± 3.71 59.76± 2.43 296± 11 95± 9 595.45± 22.29 382.22± 27.58

(6.42) (4.21) (20) (16) (40.17) (50.11)

200
66.71± 4.60 72.25± 3.40 365± 14 120± 11 920.41± 27.57 595.00± 33.04

(7.96) (5.89) (25) (19) (49.71) (60.02)

225
79.82± 5.12 86.17± 3.83 427± 18 155± 14 1342.92± 32.85 944.21± 39.88

(8.87) (6.64) (29) (23) (59.22) (72.45)

250
90.91± 5.733 95.87± 4.31 484± 21 198± 16 1906.15± 38.86 1458.6± 47.90

(9.93) (7.47) (33) (28) (70.05) (87.04)

improved by 4.17% for the case T = 250, compared to 0.067% for T = 50. Second, note

that the lower-bound distributions are slightly left-skewed. The skewness can be removed

by solving a larger number (> 30) of SAA instances for each T ; however, this will increase

the computational overhead without necessarily improving the quality of the lower bounds.

Tables 11 and 12 also reveal that regSDDP required fewer iterations (on average) to

solve an SAA instance, compared to the standard SDDP; i.e., the convergence rate of the

SDDP algorithm improved when regularization was employed. This improvement is more

pronounced for larger problem instances. For example, Figure 23 depicts the improved

convergence rate for a particular SAA instance with 150 stages. For this SAA instance,

regSDDP took 45 iterations to reach a lower-bound level ẑ45
` = 47.53 before terminating.

In comparison, standard SDDP required 173 iterations to reach the same value. That is,

standard SDDP required over 384.44% more iterations to attain the same solution quality. To

further illustrate the improved convergence rate of regSDDP, we analyzed the lower bounds

obtained from both procedures after a sufficient number of iterations, without enforcing the

120

�� ��� ��� ��� ���
����������������

��

��

��

��

���

�
�
��
��
��

��
�

���		�
		�

Figure 22: Distribution of the lower bounds of regSDDP and standard SDDP for N = 15.

termination criterion in (4.88). Figure 24 depicts a box plot of the lower bounds obtained

at the end of the 100th iteration. Note that, for all values of T , the regSDDP lower bounds

have higher average values and less variability compared to the lower bounds of standard

SDDP. Again, the improvement is more pronounced at higher values of T due to the slow

convergence rate of standard SDDP for larger problem instances.

In fact, we observed that a large fraction of the SAA instances were solved within 100

iterations of regSDDP, a trend that is illustrated in Figure 25. By contrast, far fewer instances

were solved within 100 iterations of the standard SDDP. For example, when T = 200,

regSDDP solved around 59% of the problem instances within 100 iterations, while SDDP

could not solve a single such instance. Only for T = 250 was regSDDP unable to solve any

SAA instance within 100 iterations.

Table 13 reports the average time per iteration (ATI) for both procedures. We expected

the higher ATI values for regSDDP as MILP models, of increasing complexity, are solved

in the forward pass. However, it is instructive to note that the overall solution times for

121

� �� �� 	� �� ��� ��� ��� �	� ���
�������������

�

��

��

��

��

��

��
�
��
��
��

��
�

������ �����
�

�����
��

Figure 23: Reduction in the number of iterations to solve a SAA instance (T = 150, N = 15).

�� ��� ��� ��� ���
����������������

��

��

��

��

�
�
��
��
��

��
�

���		�
		�

Figure 24: Lower bounds of regSDDP and standard SDDP at the end of the 100th iteration.

122

� �� ��� ��� ��� ���
����������������

���

���

���

���

���

���

��
��
���
��
��
��
		

���
��
��

��
��
��
��
��

�

����

Figure 25: Fraction of SAA instances (N = 15) that were solved within 100 iterations.

regSDDP are smaller as compared to the standard SDDP, as revealed in Tables 11 and 12.

For example, regSDDP required approximately 7.5 hours less (on average) than the standard

SDDP to solve a SAA instance with 250 stages. This reduction in computation time stems

from the fewer number of iterations required by regSDDP.

Table 13: Average computation time per iteration of regSDDP and standard SDDP (in seconds).

Stages
N = 10 N = 30

SDDP regSDDP SDDP regSDDP

50 15.21 33.84 25.52 61.33

75 19.04 42.31 32.30 76.51

100 28.27 57.35 47.60 103.74

125 40.22 81.76 68.64 147.90

150 57.01 113.22 96.91 192.25

175 71.50 139.48 120.66 241.42

200 89.22 174.67 151.32 298.65

225 111.26 208.21 188.88 365.91

250 139.48 256.73 236.35 459.27

123

4.6.2 A Multistage Portfolio Optimization Problem

Next, we compare the performances of the regSDDP and the quadSDDP procedures for a

variant of the multistage portfolio optimization (MPO) problem described in [88]. Considered

is a risk-neutral investor who seeks to optimally allocate capital among a portfolio of risky

assets with uncertain rates of returns. The objective is to maximize the expected total return

on investments over a finite trading horizon. Suppose there are m assets in the investor’s

portfolio comprising the set M = {1, . . . ,m}, where the first m − 1 assets are risky (e.g.,

stocks) and the mth asset is risk-free (e.g., cash reserve); defineM′ ≡M\{m} to represent

the set of risky assets. The uncertainty in stage t is ξt = (ξit : i ∈M′), where ξit is the rate of

return on the ith risky asset at stage t. It is assumed that the rate of return on the non-risky

asset, denoted by ξmt , is known with certainty. Let xht,i be the volume of asset i ∈ M that

the investor holds at the end of stage t. The investor can either buy more or sell off a portion

of a risky asset at each stage; let xbt,i and xst,i denote the volumes of asset i bought and sold,

respectively, at the start of stage t. Each trading decision incurs a transaction cost that is

proportional to the trading volume; let cbi and csi be the per-unit transaction costs of buying

and selling asset i, respectively. Furthermore, only a limited volume of assets can be traded

at each stage; let U i
b and U i

s be the upper bounds on xbt,i and xst,i, respectively. Without loss

of generality, assume that xh1,i = 0 for all i ∈M′. The initial amount of the non-risky asset,

xh1,m, is known with certainty. Then, the risk-neutral MPO problem can be formulated as

the following MSLP:

max E

(∑
i∈M

ξiTx
h
T,i

)
(4.89a)

s.t. xht,i = ξit−1x
h
t−1,i − xst,i + xbt,i, ∀t ∈ T̂ , i ∈M′, (4.89b)

xht,m = ξmt−1x
h
t−1,m +

∑
i∈M′

(1− csi)xst,i −
∑
i∈M′

(1 + cbi)x
b
t,i, ∀t ∈ T̂ , (4.89c)

xst,i ≤ ξit−1x
h
t−1,i, ∀t ∈ T̂ , i ∈M′, (4.89d)

0 ≤ xbt,i ≤ U i
b , ∀t ∈ T̂ , i ∈M′, (4.89e)

0 ≤ xst,i ≤ U i
s, ∀t ∈ T̂ , i ∈M′, (4.89f)

xht,i ≥ 0, ∀t ∈ T̂ , i ∈M. (4.89g)

124

Constraints (4.89b) define the volumes of risky assets held at each stage after accounting for

the intrastage trading decisions. Constraints (4.89c) describe the evolution of the non-risky

asset volumes. Constraints (4.89d) prevents selling a volume of risky asset that exceeds the

asset’s current holding position. Constraints (4.89e)–(4.89f) are the bounding constraints

that represent the limited liquidity of the risky assets. Constraints (4.89g) prevent any short

sale of the risky assets.

Data Description. We considered SAA instances of (4.89) where each stage represents

5 working days (equivalent to a calender week). We considered all 102 stocks from the S&P

100 index to define our portfolio of risky assets. Historical pricing data of each stock were

obtained from Yahoo Finance (https://finance.yahoo.com) for 4250 working days between

January 1, 2000 and August 23, 2017. Let p(i, j) be the closing price of stock i on day j,

and

Ri =

{
p(i, j + 5)

p(i, j)
: j = 1, . . . , 4245

}
the set of historical weekly returns of stock i. For each i ∈ M′, we set Ri as the support

of ξit for all t ∈ T̂ . The elements in Ri were assumed to be uniformly distributed. The

investor was assumed to have 1000 units of cash at the start of the investment horizon, i.e.,

xh1,m = 1000.

Description of Experiments. For the computational experiments, we varied the num-

ber of stages T from 20 to 60 in increments of 10. For each value of T , we again generated

30 T -stage scenario trees using the Latin hypercube sampling (LHS) method. Each non-leaf

node in our scenario trees had N = 20 children. We used the SCAD penalty function for

the regSDDP procedure. For both procedures, we chose a previous trial point as our current

stability center and chose the penalty parameter at each step according to λk = 2.28×0.85k.

To tune the parameter a, we ran 100 iterations of regSDDP for each a ∈ {2.0, 2.2, . . . , 10.0}

on the 30 SAA instances for T = 20; the best lower bounds were obtained for a = 4.8. We

used the quadratic programming (QP) and MILP solvers in Gurobi 7.0 for our experiments.

The tolerance level for the QP solver was set to 10−4. For the MILP solver, we used a step

function to progressively reduce the tolerance levels. Specifically, we set the MILP toler-

ance level to 10−1 for the first 20 iterations, 10−2 for iterations 21 to 40, and 10−4 for all

subsequent iterations up to kmax = 500. Finally, we set the parameter ε to 10−2 in (4.88).

125

Results and Discussion. The computational results for both procedures are sum-

marized in Table 14. Note that both procedures produced lower bounds of similar quality

for lower values of T .However, regSDDP produced higher lower bounds (on average) than

quadSDDP for larger values of T . Moreover, note that regSDDP required fewer iterations

(on average) than quadSDDP, indicating an improved convergence rate for regSDDP. Sim-

ilar to the results for the MCE problem, the improvement in the convergence rate is more

pronounced for larger problem instances. For example, when T = 60, regSDDP required

about 38% fewer iterations (on average) than quadSDDP.

Table 14: Computational results of regSDDP and quadSDDP for N = 20.

Stages
Lower bound Number of iterations Solution time (mins)

quadSDDP regSDDP quadSDDP regSDDP quadSDDP regSDDP

20
1046.36± 9.42 1046.53± 8.98 62± 4 36± 3 38.23± 3.12 42.71± 3.48

(16.25) (17.49) (7) (5) (4.71) (5.05)

30
1068.94± 13.24 1069.12± 13.88 79± 7 48± 5 69.78± 4.36 78.26± 5.55

(26.37) (25.18) (11) (9) (7.64) (8.72)

40
1086.38± 19.88 1087.05± 20.17 105± 10 69± 6 136.53± 5.91 164.39± 6.82

(37.17) (35.92) (18) (13) (9.66) (13.55)

50
1102.79± 24.29 1104.18± 25.68 149± 13 106± 9 293.03± 8.35 328.44± 9.17

(47.49) (56.31) (24) (17) (12.37) (14.49)

60
1114.17± 34.39 1116.31± 35.25 203± 17 147± 12 527.25± 10.39 594.47± 12.41

(59.73) (62.34) (32) (20) (15.02) (17.84)

Figure 26 depicts the fraction of SAA instances solved by both procedures within 75 and

150 iterations, respectively. For example, when T = 50, regSDDP solved around 63% of the

problem instances within 75 iterations as compared to none by quadSDDP; the corresponding

values were 100% for regSDDP and only 41% for quadSDDP when the number of iterations

was increased to 150. In fact, we observed that regSDDP produced better lower bounds (on

average) than quadSDDP when both procedures were terminated after a fixed number of

iterations (< k∗). This trend is illustrated in Figure 27, which depicts a box plot of the lower

bounds obtained after 100th iterations of both procedures.

126

�� �� �� �� ��
 ��������������

���

���

���

���

��	

���

��
��
���
��
��
��

���
��
��

��
��
��
�!
��

� ������
�������

(a) Solved within 75 iterations.

�� �� �� �� ��
 ��������������

���

���

���

���

��	

���

��
��
���
��
��
��

���
��
��

��
��
��
�!
��

� ������
�������

(b) Solved within 150 iterations.

Figure 26: Fraction of SAA instances solved within (a) 75 and (b) 150 iterations, respectively.

�� �� �� �� ��
����������������

����

����

����

����

����

����

����

����

�
�
��
��
��

��
�

���		�
����		�

Figure 27: Lower bounds of regSDDP and quadSDDP procedures after 100 iterations.

127

5.0 CONCLUSIONS AND FUTURE RESEARCH

In Chapter 2, we examined optimal energy storage and flow strategies in a 2-bus distribution

network with storage devices and line losses. The network operator’s objective is to minimize

the total expected discounted costs incurred over a finite planning horizon by optimally

selecting the amount of energy to charge to, or discharge from, the storage devices, the

amount of energy to buy from, or sell to, the grid and the amount of energy to transmit

between the buses. By way of a finite-horizon, discounted cost MDP model, we established

the monotonicity of the optimal policy with respect to the storage levels. Moreover, we

proved the multimodularity of the value function in the storage levels, and that the optimal

storage decisions at each stage exhibit bounded sensitivities. Significantly, we also established

bounds that compare the cost of the 2-bus network to the costs of two comparable networks

with pooled and decentralized storage configurations, respectively. The results of the 2-bus

network were extended to more general multi-bus network topologies. The usefulness of

the main results was illustrated by way of a numerical example using real pricing and wind

generation data. Our results highlighted the benefits of using the network model over that

of single-storage models that do not account for interactions in a distribution network.

While the model and main structural results are useful, they can be improved in a few

important ways. First, it is important to note that the structural results were established

without accounting for reactive power flow and voltage level constraints in distribution net-

works. It will be necessary to examine more rigorous power-flow models (cf. [17, 163]) and

extend our results to more realistic distribution networks. Second, it will be instructive to

examine models that consider multiple value-adding uses of storage (e.g., arbitrage, ancil-

lary support, or backup energy). Third, it will be instructive to develop easily computable,

tighter bounds for the optimal cost, similar to those established in Theorem 2.2.

128

In Chapter 3, we proposed a multistage stochastic programming model to obtain viable

energy procurement and storage strategies for grid-connected microgrids. The model in-

cludes three sources of uncertainty: demand, renewable generation, and real-time electricity

prices. This framework enables microgrid operators to determine the appropriate amount of

electricity to procure from the main grid and the amount to charge to, or discharge from,

local storage devices, to satisfy demand and power flow requirements during each stage of

a finite planning horizon. Our extensive computational study on a realistic 4-bus microgrid

revealed that the multistage stochastic programming model achieves significant cost reduc-

tions as compared to myopic and non-storage policies, as well as policies obtained using a

two-stage SP formulation. Moreover, our customized SDDP algorithm is able to address the

computational challenges associated with the multistage structure of the problem. Our cus-

tomization, which uses dynamic cut selection and a novel lower bound improvement strategy,

drastically outperforms the standard SDDP algorithm and also demonstrates its scalability

to potentially much larger problem instances. It is also conjectured that our improved so-

lution method can be extended to address the computational issues of multistage electric

generation expansion and hydropower scheduling problems.

While the multistage stochastic programming model is very useful for prescribing solu-

tions that reduce total electricity costs, it can be improved in several important ways. First,

it will be instructive to model the case in which the microgrid operators have the flexibility

to sell excess energy back to the main grid and exploit arbitrage opportunities in electricity

markets. This feature is likely to alter the microgrid’s procurement and storage strategies

significantly. Second, the stage-wise independence assumption of the uncertain variables may

be restrictive. For example, price and wind generation levels may exhibit autocorrelation

over time; therefore, it will be instructive in future work to explore solution approaches that

relax the stage-wise independence assumption. Third, more sophisticated sampling proce-

dures, such as importance sampling, and other variance reduction techniques, can be used

to identify a set of scenarios that balances the exploration-exploitation tradeoff in the SDDP

algorithm (see [87] for additional details). Finally, extending the the SDDP algorithms to

handle problems of higher dimensionality is an important area of future work.

129

In Chapter 4, we presented a new nonconvex regularization scheme to enhance the qual-

ity of outer approximations obtained via the SDDP algorithm. The proposed regularization

scheme uses two well-known folded-concave penalty functions to regularize trial solutions

generated in the forward pass of SDDP. We proved that the nonconvex regularization prob-

lem admits equivalent mixed-integer linear programming (MILP) formulations, which facil-

itates the use of state-of-the-art MILP solvers within the SDDP framework. Furthermore,

we established provable convergence guarantees of this regularized SDDP algorithm, called

regSDDP, under mild regularity conditions. The computational benefits of our regularization

scheme were illustrated by way of a comprehensive numerical study for two large-scale mul-

tistage stochastic linear programming models. This study revealed significant improvement

in solution quality and convergence rate for regSDDP over those of the standard SDDP and

SDDP with quadratic regularization, especially for high-dimensional problem instances.

130

BIBLIOGRAPHY

[1] U. E. I. Adminstration. Annual energy outlook 2013. Technical report, U.S. Depart-
ment of Energy, 2013.

[2] I. E. Agency. Distributed generation in liberalised electricity markets. Technical report,
Organisation for Economic Co-operation and Development (OECD), 2002.

[3] K. Ahlert and C. van Dinther. Sensitivity analysis of the economic benefits from
electricity storage at the end consumer level. In Proceedings of the IEEE PowerTech
Conference, pages 1–8, 2009.

[4] S. Ahmed. Two-stage stochastic integer programming: A brief introduction. In
J. Cochran, L. Cox, P. Keskinocak, J. Kharoufeh, and J. Smith, editors, Wiley Ency-
clopedia of Operations Research and Management Science. John Wiley & Sons, Inc.,
2011.

[5] E. Altman, B. Gaujal, and A. Hordijk. Multimodularity, convexity, and optimization
properties. Mathematics of Operations Research, 25(2):324–347, 2000.

[6] O. Ardakanian, S. Keshav, and C. Rosenberg. Integration of Renewable Generation
and Elastic Loads into Distribution Grids. Springer, Cham, 2016.

[7] T. Asamov and W. Powell. Regularized decomposition of high-dimensional multi-
stage stochastic programs with Markov uncertainty. 2015. Appeared in arXiv, URL:
https://arxiv.org/abs/1505.02227v3.

[8] P. Asmus. Microgrids, virtual power plants and our distributed energy future. The
Electricity Journal, 23(10):72–82, 2010.

[9] P. Asmus, A. Lauderbaugh, and M. Lawrence. Market data: Microgrids: Forecasts for
commercial/industrial, community/utility, campus/institutional, military, and remote
microgrids: 2013-2020. Technical report, Navigant Research, 2013.

[10] I. Atzeni, L. G. Ordón̋ez, G. Scutari, D. P. Palomar, and J. R. Fonollosa. Day-ahead
bidding strategies for demand-side expected cost minimization. In IEEE International
Conference on Smart Grid Communications (SmartGridComm), pages 91–96, 2012.

131

[11] M. Badawy, F. Cingoz, and Y. Sozer. Battery storage sizing for a grid tied PV system
based on operating cost minimization. In IEEE Energy Conversion Congress and
Exposition (ECCE), pages 1–7, 2016.

[12] S. Bahramirad, W. Reder, and A. Khodaei. Reliability-constrained optimal sizing of
energy storage system in a microgrid. IEEE Transactions on Smart Grid, 3(4):2056–
2062, 2012.

[13] A. Bar-Noy, Y. Feng, M. Johnson, and O. Liu. When to reap and when to sow –
lowering peak usage with realistic batteries. In Lecture Notes in Computer Science,
volume 5038, pages 194–207. Springer, Berlin, 2008.

[14] A. Bar-Noy, M. Johnson, and O. Liu. Peak shaving through resource buffering. In
Approximation and Online Algorithms, volume 5426, pages 147–159. Springer, Berlin,
2009.

[15] S. Batun, B. Denton, T. Huschka, and A. Schaefer. Operating room pooling and parallel
surgery processing under uncertainty. INFORMS Journal on Computing, 23(2):220–
237, 2011.

[16] A. Bhattacharya and J. Kharoufeh. Linear programming formulations for non-
stationary, finite-horizon Markov decision process models. Operations Research Letters,
45(6):570–574, 2017.

[17] A. Bhattacharya, J. Kharoufeh, and B. Zeng. Managing energy storage in microgrids:
A multistage stochastic programming approach. To appear in IEEE Transactions on
Smart Grid, 2016. DOI: 10.1109/TSG.2016.2618621.

[18] W. Bian and X. Chen. Optimality and complexity for constrained optimization prob-
lems with nonconvex regularization. To appear in Mathematics of Operations Research,
2017. DOI: 10.1287/moor.2016.0837.

[19] W. Bian, X. Chen, and Y. Ye. Complexity analysis of interior point algorithms for non-
Lipschitz and nonconvex minimization. Mathematical Programming, 149(1):301–327,
2015.

[20] J. Birge. Decomposition and partitioning methods for multistage stochastic linear
programss. Operations Research, 33(5):989–1007, 1985.

[21] J. Birge and F. Louveaux. Introduction to Stochastic Programming, Second Edition.
Springer, New York, 2011.

[22] E. Bitar, R. Rajagopal, P. Khargonekar, and K. Poolla. The role of co-located storage
for wind power producers in conventional electricity markets. In Proceedings of the
American Control Conference, pages 3886–3891, 2011.

132

[23] J. Blomvall and A. Shapiro. Solving multistage asset investment problems by the
sample average approximation method. Mathematical Programming, 108(2):571–595,
2006.

[24] M. Bodur and J. Luedtke. Two-stage linear decision rules for multi-stage stochastic
programming. Appeared in arXiv, URL: https://arxiv.org/abs/1701.04102v1, 2017.

[25] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
Cambridge, 2004.

[26] C. Brunetto and G. Tina. Optimal hydrogen storage sizing for wind power plants in
day ahead electricity market. IET Renewable Power Generation, 1(4):220–226, 2007.

[27] R. Bühler. Integration of renewable energy sources using microgrids, virtual power
plants and the energy hub approach. Technical report, Swiss Federal Institute of
Technology (ETH) Zurich, Zurich, Switzerland, 2010.

[28] J. Casazza and F. Delea. Understanding Electric Power Systems: An Overview of the
Technology, the Marketplace, and Government Regulation, 2nd Edition. John Wiley &
Sons, Inc., Hoboken, NJ, 2010.

[29] A. Celik. Energy output estimation for small-scale wind power generators using weibull-
representative wind data. Journal of Wind Engineering and Industrial Aerodynamics,
91(5):693–707, 2003.

[30] S. Cerisola, J. Latorre, and A. Ramos. Stochastic dual dynamic programming ap-
plied to nonconvex hydrothermal models. European Journal of Operational Research,
218(3):687–697, 2012.

[31] C. Chen, J. Wang, F. Qiu, and D. Zhao. Resilient distribution system by microgrids
formation after natural disasters. IEEE Transactions on Smart Grid, 7(2):958–966,
2016.

[32] J. Chen and S. Burer. Globally solving nonconvex quadratic programming problems via
completely positive programming. Mathematical Programming Computation, 4(1):33–
52, 2012.

[33] Z. Chen and W. Powell. Convergent cutting-plane and partial-sampling algorithm for
multistage stochastic linear programs with recourse. Journal of Optimization Theory
and Applications, 102(3):497–524, 1999.

[34] J. Conti, P. Holtberg, J. Beamon, A. Schaal, G. Sweetnam, and A. Kydes. Annual
Energy Outlook 2009: With Projections to 2030. Technical report, U.S. Energy Infor-
mation Administration, 2009.

[35] F. Curtis, T. Mitchell, and M. Overton. A BFGS-SQP method for nonsmooth, noncon-
vex, constrained optimization and its evaluation using relative minimization profiles.
Optimization Methods and Software, 32(1):148–181, 2017.

133

[36] A. Cutis and V. Gevorgian. Wind turbine generator system power quality test report
for the Gaia wind 11-kW wind turbine. Technical report, National Renewable Energy
Laboratory, 2011.

[37] G. Dantzig and G. Infanger. Multi-stage stochastic linear programs for portfolio opti-
mization. Annals of Operations Research, 45(1):59–76, 1993.

[38] G. de Maere d’Aertrycke, A. Shapiro, and Y. Smeers. Risk exposure and Lagrange
multipliers of nonanticipativity constraints in multistage stochastic problems. Mathe-
matical Methods of Operaations Research, 77(3):393–405, 2013.

[39] V. de Matos, D. Morton, and E. Finardi. Assessing policy quality in a multistage
stochastic program for long-term hydrothermal scheduling. Annals of Operations Re-
search, 253(2):713–731, 2017.

[40] V. de Matos, A. Philpott, and E. Finardi. Improving the performance of stochastic dual
dynamic programming. Journal of Computational and Applied Mathematics, 290:196–
208, 2015.

[41] T. H. de Mello, V. de Matos, and E. Finardi. Sampling strategies and stopping criteria
for stochastic dual dynamic programming: A case study in long-term hydrothermal
scheduling. Energy Systems, 2(1):1–31, 2011.

[42] D. Donoho and I. Johnstone. Ideal spatial adaptation by wavelet shrinkage. Biometrika,
81(3):425–455, 1994.

[43] S. E. Dreyfus. An analytic solution of the warehouse problem. Management Science,
4(1):99–104, 1957.

[44] B. Dunn, H. Kamath, and J. Tarascon. Electrical energy storage for the grid: A battery
of choices. Science, 334(6058):928–935, 2011.

[45] J. Dupačová, N. Gröwe-Kuska, and W. Römisch. Scenario reduction in stochastic
programming. Mathematical Programming, 95(3):493–511, 2003.

[46] J. Eto. Final report on the August 14, 2003 blackout in the United States and Canada:
Causes and recommendations. Technical report, Washington, D.C., 2004.

[47] J. Eyer and G. Corey. Energy storage for the electricity grid: Benefits and market
potential assessment guide. Technical report, Sandia National Laboratories, 2010.

[48] J. Eyer, J. Iannucci, and G. Corey. Energy storage benefits and market analysis hand-
book, a study for the DOE energy storage systems program. Technical report, Sandia
National Labratories, 2004.

[49] J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle
properties. Journal of the American Statistical Association, 96(456):1348–1360, 2001.

134

[50] W. E. Featheringill. Power transformer loading. IEEE Transactions on Industry Ap-
plications, IA-19(1):21–27, 1983.

[51] L. Frantzeskakis and W. Powell. A successive linear approximation procedure for
stochastic, dynamic vehicle allocation problems. Transportation Science, 24(1):40–57,
1990.

[52] M. Freimer, J. Linderoth, and D. Thomas. The impact of sampling methods on bias and
variance in stochastic linear programs. Computational Optimization and Applications,
51(1):51–75, 2012.

[53] J. Garćıa-González, R. de la Muela, L. Santos, and A. González. Stochastic joint
optimization of wind generation and pumped-storage units in an electricity market.
IEEE Transactions on Power Systems, 23(2):460–468, 2008.

[54] Y. Ghiassi-Farrokhfal, F. Kazhamiaka, C. Rosenberg, and S. Keshav. Optimal design
of solar PV farms with storage. IEEE Transactions on Sustainable Energy, 6(4):1586–
1593, 2015.

[55] F. Giannessi and E. Tomasin. Nonconvex quadratic programs, linear complementarity
problems, and integer linear programs. In 5th Conference on Optimization Techniques
Part I, Lecture Notes in Computer Science, pages 437–449, Berlin, 1973. Springer.

[56] P. Girardeau, V. Leclere, and A. Philpott. On the convergence of decomposition meth-
ods for multistage stochastic convex programs. Mathematics of Operations Research,
40(1):130–145, 2015.

[57] J. Gonzalez, R. de la Muela, L. M. Santos, and A. González. Stochastic joint opti-
mization of wind generation and pumped-storage units in an electricity market. IEEE
Transactions on Power Systems, 23(2):460–468, 2008.

[58] N. Gould and D. Robinson. A second derivative SQP method: Global convergence.
SIAM Journal of Optimization, 20(4):2023–2048, 2010.

[59] C. Gouveia, J. Moreira, C. L. Moreira, and J. A. P. Lopes. Coordinating storage and
demand response for microgrid emergency operation. IEEE Transactions on Smart
Grid, 4(4):1898–1908, 2013.

[60] S. Grijalva, M. Costley, and N. Ainsworth. Prosumer-based control architecture for
the future electricity grid. In IEEE International Conference on Control Applications
(CCA), pages 43–48, 2011.

[61] S. Grijalva and M. Tariq. Prosumer-based smart grid architecture enables a flat, sus-
tainable electricity industry. In IEEE Innovative smart grid technologies (ISGT), pages
1–6, 2011.

135

[62] V. Guigues, M. Lejeune, and W. Tekaya. Regularized decomposition methods for
deterministic and stochastic convex optimization and application to portfolio selec-
tion with direct transaction and market impact costs. Appeared in arXiv, URL:
https://arxiv.org/abs/1701.03941v1, 2017.

[63] B. Hajek. Extremal splittings of point processes. Mathematics of Operations Research,
10(4):543–556, 1985.

[64] P. Harsha and M. Dahleh. Optimal management and sizing of energy storage under
dynamic pricing for the efficient integration of renewable energy. IEEE Transactions
on Power Systems, 30(3):1164–1181, 2015.

[65] N. Hatziargyriou, H. Asano, R. Iravani, and C. Marnay. Microgrids. IEEE Power and
Energy Magazine, 5(4):78–94, 2007.

[66] H. Heitsch and W. Römisch. Scenario tree reduction for multistage stochastic programs.
Computational Management Science, 6(2):117–133, 2009.

[67] Y. Herer, M. Tzur, and Yücesan. The multilocation transshipment problem. IIE
Transactions, 38(3):185–200, 2006.

[68] J. Higle and S. Sen. Stochastic decomposition: Ain algorithm for two-stage linear
programs with recourse. Mathematics of Operations Research, 16(3):650–669, 1991.

[69] C. Hill, M. Such, D. Chen, J. Gonzalez, and W. Grady. Battery energy storage for
enabling integration of distributed solar power generation. IEEE Transactions on
Smart Grid, 3(2):850–857, 2012.

[70] M. Hindsberger. ReSa: A method for solving multistage stochastic linear programs.
Journal of Applied Operational Research, 6(1):2–15, 2014.

[71] A. Hoke, A. Brissette, S. Chandler, A. Pratt, and D. Maksimović. Look-ahead economic
dispatch of microgrids with energy storage, using linear programming. In 1st IEEE
Conference on Technologies for Sustainability (SusTech), pages 154–161, 2013.

[72] A. Hoke, A. Brissette, K. Smith, A. Pratt, and D. Maksimović. Accounting for lithium-
ion battery degradation in electric vehicle charging optimization. IEEE Journal of
Emerging and Selected Topics in Power Electronics, 2(3):691–700, 2014.

[73] R. Horst and H. Tuy. Global optimization: Deterministic Approaches. Springer, Berlin,
1996.

[74] W. Hu, Z. Chen, and B. Bak-Jensen. Optimal operation strategy of battery energy
storage system to real-time electricity price in Denmark. In Proceedings of the IEEE
Power and Energy Society General Meeting, pages 1–7, 2010.

136

[75] S. Huang, J. Xiao, J. Pekny, G. Reklaitis, and A. Liu. Quantifying system level benefits
from distributed solar and energy storage. Journal of Energy Engineering, 138(2):33–
42, 2011.

[76] Y. Huang, W. Hu, Y. Min, W. Zhang, W. Luo, Z. Wang, and W. Ge. Risk-constrained
coordinative dispatching for battery energy storage systems of wind farms. In IEEE
PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), pages 1–6,
2013.

[77] G. Infanger and D. Morton. Cut sharing for multistage stochastic linear programs with
interstage dependency. Mathematical Programming, 75(2):241–256, 1996.

[78] Y. Ji, J. Wang, S. Yan, W. Gao, and H. Li. Optimal microgrid energy management
integrating intermittent renewable energy and stochastic load. In IEEE Advanced In-
formation Technology, Electronic and Automation Control Conference (IAEAC), pages
334–338, 2015.

[79] A. Joseph and M. Shahidehpour. Battery storage systems in electric power systems.
In IEEE Power Engineering Society General Meeting, pages 8–16, 2006.

[80] J. Kaldellis and D. Zafirakis. Optimum energy storage techniques for the improve-
ment of renewable energy sources-based electricity generation and economic efficiency.
Energy, 32(12):2295–2305, 2007.

[81] A. Kaplan and R. Tichatschke. Proximal point methods and non-convex optimization.
Journal of Global Optimization, 13(4):389–406, 1998.

[82] S. Kaplan. Power plants: Characteristics and costs. Technical Report RL34746, Con-
gressional Research Service, 2008.

[83] J. Kelley. The cutting-plane method for solving convex programs. Journal of the
Society for Industrial and Applied Mathematics, 8(4):703–712, 1960.

[84] J. Kim and W. Powell. Optimal energy commitments with storage and intermittent
supply. Operations Research, 59(6):1347–1360, 2011.

[85] M. Korpass, A. Holen, and R. Hildrum. Operation and sizing of energy storage for
wind power plants in a market system. International Journal of Electrical Power and
Energy Systems, 25(8):599–606, 2003.

[86] I. Koutsopoulos, V. Hatzi, and L. Tassiulas. Optimal energy storage control policies
for the smart power grid. In IEEE International Conference on Smart Grid Commu-
nications, pages 475–480, 2011.

[87] V. Kozmik. On variance reduction of mean-CVar Monte Carlo estimators. Computa-
tional Management Science, 12(2):221–242, 2014.

137

[88] P. Krokhmal, S. Uryasev, and J. Palmquist. Portfolio optimization with conditional
value-at-risk objective and constraints. Journal of Risk, 4(2):43–68, 2002.

[89] L. Kuznia, B. Zeng, G. Centeno, and Z. Miao. Stochastic optimization for power system
configuration with renewable energy in remote areas. Annals of Operations Research,
210(1):411–432, 2013.

[90] K. Lange. Vector and Matrix Norms, pages 77–91. Springer, New York, NY, 2010.

[91] R. Lasseter. Microgrids and distributed generation. Journal of Energy Engineering,
133(3):144–149, 2007.

[92] D. Lee, J. Kim, and R. Baldick. Stochastic optimal control of the storage system to
limit ramp rates of wind power output. IEEE Transactions on Smart Grid, 4(4):2256–
2265, 2013.

[93] Y. Lee and A. Sidford. Path finding methods for linear programming: Solving linear
programs in Õ(

√
rank) iterations and faster algorithms for maximum flow. In Proceed-

ings of the 2014 IEEE 55th Annual Symposium on Foundations of Computer Science,
pages 424–433, 2014.

[94] C. Lemaréchal. An extension of davidon methods to non-differentiable problems.
In M. Balinski and P. Wolfe, editors, Nondifferentiable Optimization, pages 95–109.
Springer, Berlin, 1975.

[95] C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle methods.
Mathematical Programming, 69(1):111–147, 1995.

[96] M. Lemmon, G. Venkataramanan, and P. Chapman. Using microgrids as a path to-
wards smart grids. In NSF Workshop on Cyber-Physical Energy Systems, Baltimore,
MD, 2009.

[97] Q. Li and P. Yu. Multimodularity and its applications in three stochastic dynamic
inventory problems. Manufacturing and Service Operations Management, 16(3):455–
463, 2014.

[98] M. Lijesen. The real-time price elasticity of electricity. Energy Economics, 29(2):249–
258, 2007.

[99] J. Linderoth, A. Shapiro, and S. Wright. The empirical behavior of sampling methods
for stochastic programming. Annals of Operations Research, 142(1):215–241, 2006.

[100] K. Linowsky and A. Philpott. On the convergence of sampling-based decomposition
algorithms for multistage stochastic programs. Journal of Optimization Theory and
Applications, 125(2):349–366, 2005.

[101] H. Liu, T. Yao, and R. Li. Global solutions to folded concave penalized nonconvex
learning. Annals of Statistics, 44(2):629–659, 2016.

138

[102] L. Lu. Stand-alone wind power and hybrid solar-wind power. In Handbook of Clean
Energy Systems, volume 1, chapter 30. John Wiley & Sons, Inc., Hoboken, NJ, 2015.

[103] V. Marano, S. Onori, Y. Guezennec, G. Rizzoni, and N. Madella. Lithium-ion bat-
teries life estimation for plug-in hybrid electric vehicles. In IEEE Vehicle Power and
Propulsion Conference (VPCC), pages 536–543, 2009.

[104] G. McCormick. Computability of global solutions to factorable nonconvex programs:
Part I – convex underestimating problems. Mathematical Programming, 10(1):147–175,
1976.

[105] S. Meyn, M. Negrete-Pincetic, G. Wang, A. Kowli, and E. Shafieepoorfard. The value
of volatile resources in electricity markets. In Proceedings of the 49th IEEE Conference
on Decision and Control (CDC), pages 1029–1036. IEEE, 2010.

[106] P. Milgrom and C. Shannon. Monotone comparative statics. Econometrica, 62(1):157–
180, 1994.

[107] P. Mokrian and M. Stephen. A stochastic programming framework for the valuation
of electricity storage. In Proceedings of the 26th USAEE/IAEE North American Con-
ference, pages 24–27. IAEE, 2006.

[108] J. Momoh. Smart Grid: Fundamentals of Design and Analysis. John Wiley & Sons,
Inc., Hoboken, NJ, 2012.

[109] R. Moore. Global optimization to prescribed accuracy. Computers and Mathematics
with Applicationsn, 21(6):25–39, 1991.

[110] B. Moradzadeh and K. Tomsovic. Two-stage residential energy management consid-
ering network operational constraints. IEEE Transactions on Smart Grid, 4(4):2339–
2346, 2013.

[111] J. Morales, J. Nocedal, and Y. Wu. A sequential quadratic programming algorithm
with an additional equality constrained phase. IMA Journal of Numerical Analysis,
32(2):553–579, 2012.

[112] K. Murota. Note on multimodularity and L-convexity. Mathematics of Operations
Research, 30(3):658–661, 2005.

[113] R. Nelson. Power requirements for batteries in hybrid electric vehicles. Journal of
Power Sources, 91(1):2–26, 2000.

[114] Y. Nesterov. Nonsmooth optimization. In Introductory Lectures on Convex Optimiza-
tion. Springer, Boston, MA, 2004.

[115] H. Oh. Aggregation of buses for a network reduction. IEEE Transactions on Power
Systems, 27(2):705–712, 2012.

139

[116] L. Pan and D. Politis. Bootstrap prediction intervals for linear, nonlinear and non-
parametric autoregressions. Journal of Statistical Planning and Inference, 42(1):27–62,
2014.

[117] M. Pereira and L. Pinto. Multi-stage stochastic optimization applied to energy plan-
ning. Mathematical Programming, 52(1):359–375, 1991.

[118] A. Philpott and Z. Guan. On the convergence of stochastic dual dynamic programming
and related methods. Operations Research Letters, 36(4):450–455, 2008.

[119] A. Philpott, F. Wahid, and F. Bonnans. MIDAS: A mixed integer dynamic approxima-
tion scheme. 2016. Appeared in Optimization Online, URL: http://www.optimization-
online.org/DB FILE/2016/05/5431.pdf.

[120] W. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality,
2nd Edition. John Wiley & Sons, Inc., Hoboken, NJ, 2011.

[121] W. Powell and H. Topaloglu. Stochastic programming in transportation and logistics.
In Handbooks in Operations Research and Management Science, volume 10, pages 555–
635. Elsevier Science B.V., Amsterdam, 2003.

[122] M. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., Hoboken, NJ, 2009.

[123] T. Ralphs, Y. Shinano, T. Berthold, and T. Koch. Parallel solvers for mixed-integer
linear optimization. In Y. Hamadi and L. Sais, editors, Handbook of Parallel Constraint
Reasoning, chapter 14. Springer International, 2017.

[124] S. Rao and D. Tylavsky. Nonlinear network reduction for distribution networks using
the holomorphic embedding method. In North American Power Symposium (NAPS),
pages 1–6, 2016.

[125] S. Resnick. A Probability Path. Birkhäuser, Boston, MA, 2005.

[126] R. Rockafellar and R. Wets. Scenarios and policy aggregation in optimization under
uncertainty. Mathematics of Operations Research, 16(1):119–147, 1991.

[127] W. Rudin. Principles of Mathematical Analysis. International Series in Pure and
Applied Mathematics. McGraw-Hill, New York, NY, 1964.

[128] A. Ruszczyński. A regularized decomposition method for minimizing a sum of polyhe-
dral functions. Mathematical Programming, 35(3):309–333, 1986.

[129] A. Ruszczyński. Decomposition methods. In A. Ruszczyński and A. Shapiro, editors,
Handbooks in Operations Research and Management Science, pages 144–211. Elsevier
Science B.V., Amsterdam, 2003.

140

[130] A. Ruszczyński and A. Świȩtanowski. Accelerating the regularized decomposition
method for two stage stochastic linear problems. European Journal of Operational
Research, 101(2):328–342, 1997.

[131] N. Secomandi. Optimal commodity trading with a capacitated storage asset. Manage-
ment Science, 56(3):449–467, 2010.

[132] N. Secomandi. Merchant commodity storage practice revisited. Operations Research.,
63(5):1131–1143, 2015.

[133] J. Seguro and T. Lambert. Modern estimation of the parameters of the weibull wind
speed distribution for wind energy analysis. Journal of Wind Engineering and Indus-
trial Aerodynamics, 85(1):75–84, 2000.

[134] S. Sen and Z. Zhou. Multistage stochastic decomposition: A bridge between stochastic
programming and approximate dynamic programming. SIAM Journal on Optimiza-
tion, 24(1):127–153, 2014.

[135] A. Shapiro. Inference of statistical bounds for multistage stochastic programming
problems. Mathematical Methods of Operations Research, 58(1):57–68, 2003.

[136] A. Shapiro. Analysis of stochastic dual dynamic programming method. European
Journal of Operational Research, 209(1):63–72, 2011.

[137] A. Shapiro, W. Tekaya, J. da Costa, and M. Soares. Report for technical cooperation
between Georgia Institute of Technology and Operador Nacional do Sistema Elétrico.
Technical report, 2011.

[138] A. Shapiro, W. Tekaya, J. da Costa, and M. Soares. Risk neutral and risk averse
stochastic dual dynamic programming method. European Journal of Operational Re-
search, 224(2):375–391, 2013.

[139] W. Shi, X. Xie, C. Chu, and R. Gadh. Distributed optimal energy management in
microgrids. IEEE Transactions on Smart Grid, 6(3):1137–1146, 2015.

[140] D. Simchi-Levi, X. Chen, and J. Bramel. Convexity and Supermodularity, pages 15–44.
Springer, New York, NY, 2014.

[141] R. Sioshansi, P. Denholm, T. Jenkin, and J. Weiss. Estimating the value of electricity
storage in PJM: Arbitrage and some welfare effects. Energy Economics, 31(2):269–277,
2009.

[142] F. Sissine. Energy Independence and Security Act of 2007: A Summary of Major
Provisions. Technical report, Defense Technical Information Center (DTIC), 2007.

[143] P. Sŭlc, S. Backhaus, and M. Chertkov. Optimal distributed control of reactive power
via the alternating direction method of multipliers. IEEE Transactions on Energy
Conversion, 29(4):968–977, 2014.

141

[144] S. Suryanarayanan, F. David, J. Mitra, and Y. Li. Achieving the smart grid through
customer-driven microgrids supported by energy storage. In Proceedings of the IEEE
International Conference on Industrial Technology (ICIT), pages 884–890, 2010.

[145] S. Suryanarayanan and J. Mitra. Enabling technologies for the customer-driven micro-
grid. In Proceedings of the IEEE Power and Energy Society General Meeting (PES),
pages 1–3, 2009.

[146] S. Talari, M. Yazdaninejad, and M. Haghifam. Stochastic-based scheduling of the
microgrid operation including wind turbines, photovoltaic cells, energy storages and
responsive loads. IET Generation, Transmission Distribution, 9(12):1498–1509, 2015.

[147] S. Tan, J. Xu, and S. Panda. Optimization of distribution network incorporating
distributed generators: An integrated approach. IEEE Transactions on Power Systems,
28(3):2421–2432, 2013.

[148] X. Tan, Q. Li, and H. Wang. Advances and trends of energy storage technology in
microgrid. Electrical Power and Energy Systems, 44(1):179–191, 2013.

[149] L. Tang, W. Jiang, and G. Saharidis. An improved Benders decomposition algorithm
for the logistics facility location problem with capacity expansions. Annals of Opera-
tions Research, 210(1):165–190, 2012.

[150] D. M. Topkis. Supermodularity and Complemantarity. Princeton University Press,
Princeton, NJ, 1998.

[151] W. van Ackooij, W. de Oliviera, and Y. Song. On regularization with
normal solutions in decomposition methods for multistage stochastic program-
ming. Appeared in Optimization Online, URL: http://www.optimization-
online.org/DB FILE/2017/01/5806.pdf, 2017.

[152] P. Van de Ven, N. Hegde, L. Massoulie, and T. Salondis. Optimal control of residential
energy storage under price fluctuations. In Proceedings of the First International Con-
ference on Smart Grids, Green Communications and IT Energy-Aware Technologies,
pages 159–162, 2011.

[153] P. Van de Ven, N. Hegde, L. Massoulie, and T. Salondis. Optimal control of end-user
energy storage. IEEE Transactions on Smart Grid, 4(2):789–797, 2013.

[154] N. Wade, P. Taylor, P. Lang, and P. Jones. Evaluating the benefits of an electrical
energy storage system in a future smart grid. Energy Policy, 38(11):7180–7188, 2010.

[155] R. Walling, R. Saint, R. Dugan, J. Burke, and L. Kojovic. Summary of distributed
resources impact on power delivery systems. IEEE Transactions on Power Delivery,
23(3):1636–1644, 2008.

142

[156] Z. Wang, B. Chen, J. Wang, J. Kim, and M. Begovic. Robust optimization based
optimal dg placement in microgrids. IEEE Transactions on Smart Grid, 5(5):2173–
2182, 2014.

[157] Z. Wang and M. Lemmon. Stability analysis of weak rural electrification microgrids
with droop-controlled rotational and electronic distributed generators. In Proceedings
of the IEEE Power Energy Society General Meeting, pages 1–5, 2015.

[158] J. Ward. Equivalent circuits for power-flow studies. Transactions of the American
Institute of Electrical Engineers, 68(1):373–382, 1949.

[159] R. Wiser and G. Barbose. Renewable portfolio standards in the United States: A
status report with data through 2007. Technical report, Lawrence Berkeley National
Laboratory, 2008.

[160] X. Xi, R. Sioshansi, and V. Marano. A stochastic dynamic programming model for
co-optimization of distributed energy storage. Energy Systems, 5(3):475–505, 2014.

[161] P. Yang and A. Nehorai. Joint optimization of hybrid energy storage and generation
capacity with renewable energy. IEEE Transactions on Smart Grid, 5(4):1566–1574,
2014.

[162] H. Yeh and S. Doan. Battery placement on performance of VAR controls. In IEEE
Green Energy and Systems Conference, pages 1–6, 2013.

[163] W. Yuan, J. Wang, F. Qiu, C. Chen, C. Kang, and B. Zeng. Robust optimization-based
resilient distribution network planning against natural disasters. IEEE Transactions
on Smart Grid, PP(99):1–10, 2016.

[164] C. Zhang. Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2):894–942, 2010.

[165] Y. Zhang, N. Gatsis, and G. B. Giannakis. Robust energy management for microgrids
with high-penetration renewables. IEEE Transactions on Sustainable Energy, 4(4):944–
953, 2013.

[166] Q. Zheng, J. Wang, and A. Liu. Stochastic optimization for unit commitment – A
review. IEEE Transactions on Power Systems, 30(4):1913–1924, 2015.

[167] Y. Zhou, A. Scheller-Wolf, N. Secomandi, and S. Smith. Managing wind-based elec-
tricity generation in the presence of storage and transmission capacity. 2014. Appeared
in SSRN, URL: https://ssrn.com/abstract=1962414.

[168] Z. Zhou, J. Zhang, P. Liu, Z. Li, M. C. Georgiadis, and E. N. Pistikopoulos. A two-stage
stochastic programming model for the optimal design of distributed energy systems.
Applied Energy, 103:135–144, 2013.

143

[169] Z. Zhu, S. Lu, B. Gao, T. Yi, and B. Chen. Life cycle cost analysis of three types of
power lines in 10 kV distribution network. Inventions, 1(4):71–80, 2016.

[170] W. Zhuang and M. Li. Monotone optimal control for a class of Markov decision pro-
cesses. European Journal of Operations Research, 217(2):342–350, 2012.

[171] P. H. Zipkin. Foundations of Inventory Management. McGraw-Hill, Boston, MA, 2000.

[172] P. H. Zipkin. On the structure of lost-sales inventory models. Operations Research,
56(4):937–944, 2008.

[173] J. Zou, S. Ahmed, and X. Sun. Stochastic dual dynamic integer program-
ming. 2016. Appeared in Optimization Online, URL: http://www.optimization-
online.org/DB FILE/2016/05/5436.pdf.

144

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. MLE estimates of the wind energy and price distribution parameters.
	2. Summary of parameter values for the problem instances.
	3. Parameter values for the problem instances.
	4. Results using the standard SDDP algorithm.
	5. Results using the SDDP+DCS algorithm.
	6. Results using the SDDP+DCS+J algorithm.
	7. Two-stage results using the SDDP+DCS+J algorithm.
	8. Two-stage versus multistage SP upper bounds.
	9. Results using SDDP+DCS+J for the two-bus microgrid.
	10. Annual per-unit installation and operating costs (million euros per GW-h).
	11. Computational results of regSDDP and standard SDDP for N=15.
	12. Computational results of regSDDP and standard SDDP for N=30.
	13. Average computation time per iteration of regSDDP and standard SDDP (in seconds).
	14. Computational results of regSDDP and quadSDDP for N=20.

	LIST OF FIGURES
	1. A microgrid with distributed generation and energy storage.
	2. Graphical depiction of a 2-bus distribution network.
	3. The pooled, coupled and decentralized storage configurations.
	4. Depiction of networks with the loop and the mesh configurations.
	(a). Loop network.
	(b). Mesh network.
	5. Average price and wind generation levels in the year 2012.
	(a). Real-time hourly electricity prices.
	(b). Hourly wind generation levels at bus 1.
	6. Average value functions in stages 1 and 17.
	(a). Stage 1 average value function 1(bold0mu mumu yyyyyy1).
	(b). Stage 17 average value function 17(bold0mu mumu yyyyyy17).
	7. Optimal storage decisions in stage 17.
	(a). Optimal storage decisions at bus 1 (ut1*).
	(b). Optimal storage decisions at bus 2 (ut2*).
	8. Comparison of the optimal operational costs in PS, CS, and DS networks.
	9. Depiction of a scenario tree with three stages and six scenarios.
	10. Average price and wind-generation levels for the year 2012.
	(a). Real-time hourly electricity prices.
	(b). Hourly wind-generation levels.
	11. A 4-bus, grid-connected microgrid.
	12. Gap percentage for different values of |t| when S=250.
	13. Average computation time for different values of |t|.
	14. Box plots of the lower bounds obtained via SDDP and its two variants.
	15. Expected cumulative costs over the planning horizon.
	16. Average battery level and average price for each hour.
	17. A two-bus, grid-connected microgrid.
	18. Computation time for different values of |t| when S=250.
	19. Magnitudes and penalization rates of the FCP, L1, and L2 functions.
	20. Evolution of regSDDP bounds for two SAA instances (T=100,N=15).
	(a). Instance 1.
	(b). Instance 2.
	21. Average bounds and 95% confidence intervals for 30 instances (T=100,N=15).
	22. Distribution of the lower bounds of regSDDP and standard SDDP for N=15.
	23. Reduction in the number of iterations to solve a SAA instance (T=150,N=15).
	24. Lower bounds of regSDDP and standard SDDP at the end of the 100th iteration.
	25. Fraction of SAA instances (N=15) that were solved within 100 iterations.
	26. Fraction of SAA instances solved within (a) 75 and (b) 150 iterations, respectively.
	(a). Solved within 75 iterations.
	(b). Solved within 150 iterations.
	27. Lower bounds of regSDDP and quadSDDP procedures after 100 iterations.

	PREFACE
	1.0 INTRODUCTION
	1.1 Background and Motivation
	1.2 Problem Statement and Research Objectives
	1.3 Dissertation Outline and Contributions

	2.0 STRUCTURED STORAGE POLICIES FOR ENERGY DISTRIBUTION NETWORKS
	2.1 Summary of Relevant Literature
	2.2 Markov Decision Process Model for a 2-bus Network
	2.3 Structural Results
	2.3.1 Structural Properties of the Value Function
	2.3.2 Behavior of the Optimal Policy
	2.3.3 Behavior of the Optimal Operational Cost

	2.4 Extension to Multi-bus Networks
	2.5 Numerical Examples
	2.5.1 Data Description
	2.5.2 Solving the MDP Model
	2.5.3 Results and Discussion

	3.0 ENERGY STORAGE MANAGEMENT IN MICROGRIDS VIA STOCHASTIC PROGRAMMING
	3.1 Summary of Relevant Literature
	3.2 Model Description
	3.3 Multistage Stochastic Programming Model
	3.4 Stochastic Dual Dynamic Programming (SDDP) Algorithm
	3.5 Improving the Performance of SDDP
	3.5.1 Dynamic Cut Selection (DCS) Heuristic
	3.5.2 Lower Bound Improvement via Jensen's Inequality

	3.6 Computational Results
	3.6.1 Microgrid Configuration
	3.6.2 Description of Experiments
	3.6.3 Results and Discussion

	4.0 NONCONVEX REGULARIZATION FOR THE SDDP ALGORITHM
	4.1 Summary of Relevant Literature
	4.2 Multistage Stochastic Linear Programming
	4.2.1 Sample Average Approximation (SAA) Model
	4.2.2 SDDP Algorithm for the SAA Model
	4.2.3 Quadratic Regularization for the SDDP Algorithm

	4.3 Nonconvex Regularization for the SDDP Algorithm
	4.3.1 Regularization via Folded Concave Penalty
	4.3.2 Nonconvex Quadratic Programming Formulations

	4.4 Mixed Integer Linear Programming Formulations
	4.5 Convergence Analysis
	4.6 Computational Experiments
	4.6.1 The Multistage Capacity Expansion Problem
	4.6.2 A Multistage Portfolio Optimization Problem

	5.0 CONCLUSIONS AND FUTURE RESEARCH
	BIBLIOGRAPHY

