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TOWARDS EFFICIENT HARDWARE ACCELERATION OF
DEEP NEURAL NETWORKS ON FPGA

Sicheng Li, PhD

University of Pittsburgh, 2017

Deep neural network (DNN) has achieved remarkable success in many applications because of its

powerful capability for data processing. Their performance in computer vision have matched and

in some areas even surpassed human capabilities. Deep neural networks can capture complex non-

linear features; however this ability comes at the cost of high computational and memory require-

ments. State-of-art networks require billions of arithmetic operations and millions of parameters.

The brute-force computing model of DNN often requires extremely large hardware resources, in-

troducing severe concerns on its scalability running on traditional von Neumann architecture. The

well-known memory wall, and latency brought by the long-range connectivity and communica-

tion of DNN severely constrain the computation efficiency of DNN. The acceleration techniques

of DNN, either software or hardware, often suffer from poor hardware execution efficiency of the

simplified model (software), or inevitable accuracy degradation and limited supportable algorithms

(hardware), respectively. In order to preserve the inference accuracy and make the hardware im-

plementation in a more efficient form, a close investigation to the hardware/software co-design

methodologies for DNNs is needed.

The proposed work first presents an FPGA-based implementation framework for Recurrent

Neural Network (RNN) acceleration. At architectural level, we improve the parallelism of RNN

training scheme and reduce the computing resource requirement for computation efficiency en-

hancement. The hardware implementation primarily targets at reducing data communication load.

Secondly, we propose a data locality-aware sparse matrix and vector multiplication (SpMV) kernel.

At software level, we reorganize a large sparse matrix into many modest-sized blocks by adopt-
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ing hypergraph-based partitioning and clustering. Available hardware constraints have been taken

into consideration for the memory allocation and data access regularization. Thirdly, we present

a holistic acceleration to sparse convolutional neural network (CNN). During network training,

the data locality is regularized to ease the hardware mapping. The distributed architecture enables

high computation parallelism and data reuse. The proposed research results in an hardware/soft-

ware co-design methodology for fast and accurate DNN acceleration, through the innovations in

algorithm optimization, hardware implementation, and the interactive design process across these

two domains.

v



TABLE OF CONTENTS

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Deep Neural Networks on FPGAs . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Dissertation Contribution and Outline . . . . . . . . . . . . . . . . . . . . . . . . 2

2.0 FPGA ACCELERATION TO RNN-BASED LANGUAGE MODEL . . . . . . . . . 6

2.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Language Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 RNN & RNN based Language Model . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 The RNN Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Analysis for Design Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Architecture Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Increase Parallelism between Hidden and Output Layers . . . . . . . . . . . 11

2.3.2 Computation Efficiency Enhancement . . . . . . . . . . . . . . . . . . . . . 13

2.4 Hardware Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 Data Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.3 Thread Management in Computation Engine . . . . . . . . . . . . . . . . . 17

2.4.4 Processing Element Design . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.5 Data Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Training Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.3 System Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

vi



2.5.4 Computation Engine Efficiency . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.0 THE RECONFIGURABLE SPMV KERNEL . . . . . . . . . . . . . . . . . . . . . 27

3.1 Preliminary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Sparse Matrix Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 The Existing SpMV Architectures . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Design Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 Sparse Matrix Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1 Workload Balance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.2 Hardware-aware Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.3 Strong Scaling vs. Weak Scaling . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.4 Hardware Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.4 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.1 Global Control Unit (GCU) . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.4.2 Processing Element (PE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.3 Thread Management Unit (TMU) . . . . . . . . . . . . . . . . . . . . . . . 39

3.4.4 Hardware Configuration Optimization . . . . . . . . . . . . . . . . . . . . . 41

3.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.5.2 System Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.5.3 The Impact of Data Preprocessing . . . . . . . . . . . . . . . . . . . . . . . 46

3.5.4 Comparison to Previous Designs . . . . . . . . . . . . . . . . . . . . . . . . 49

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.0 SPARSE CONVOLUTIONAL NEURAL NETWORKS ON FPGA . . . . . . . . . 51

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 CNN Acceleration and Difficulty . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Dense CNN Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Inefficient Acceleration of Sparse CNN . . . . . . . . . . . . . . . . . . . . 54

4.3 The Proposed Design Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.4 CNN Model Sparsification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

vii



4.4.1 Locality-aware Regularization . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4.2 Sparse Network Representation . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4.3 Kernel Compression and Distribution . . . . . . . . . . . . . . . . . . . . . 62

4.5 Hardware Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.1 The System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5.2 The PE Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.5.3 Zero Skipping for Computation Efficiency . . . . . . . . . . . . . . . . . . . 68

4.5.4 Data Reuse to Improve Effective Bandwidth . . . . . . . . . . . . . . . . . . 69

4.6 Hardware Specific Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.6.1 Design Trade-offs on Cross Layer Sparsity . . . . . . . . . . . . . . . . . . 70

4.6.2 Hardware Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.7 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7.2 Layer-by-Layer Performance . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.7.3 End-to-End System Integration . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.0 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.0 CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . 83

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

viii



LIST OF TABLES

1 RNN Computation Runtime Breakdown in GPU . . . . . . . . . . . . . . . . . . . 10

2 Memory Access Requirement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Resource Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4 Accuracy Evaluation on MSRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Configuration of Different Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Runtime (in Seconds) of RNNLMs with Different Network Size . . . . . . . . . . . 23

7 Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

8 Computation Engine Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

9 Resource Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10 Characteristics of Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

11 Configuration and System Performance of Different Platforms . . . . . . . . . . . . 44

12 System Properties for Previous Implementations and This Work . . . . . . . . . . . 48

13 The average weight sparsity and accuracy of three selected CNN models after reg-

ularization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

14 The average sparsity and replication rate of the input feature maps of Conv layers

in AlexNet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

15 Configuration of different platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 72

16 Resource utilization on FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

17 Performance evaluation on sparse Conv and FC Layers of AlexNet on ImageNet . . 74

18 Comparison to previous FPGA works . . . . . . . . . . . . . . . . . . . . . . . . . 77

ix



LIST OF FIGURES

1 (a) Feedforward neural network; (b) Recurrent neural network. . . . . . . . . . . . 7

2 Unfold RNN for training through BPTT algorithm. . . . . . . . . . . . . . . . . . . 9

3 The system speedup is saturated with the increment of CPU cores as the memory

accesses become the new bottleneck. . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 The data flow of a two-stage pipelined RNN structure [1]. The computation com-

plexity of white boxes in output layer is much bigger than that of gray boxes in

hidden layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Our proposed parallel architecture for RNNLM. . . . . . . . . . . . . . . . . . . . 13

6 The impact of the reduced data precision of Who in RNNLM on the reconstruction

quality of word sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

7 An overview of the RNNLM hardware implementation. . . . . . . . . . . . . . . . 15

8 The thread management unit in a computation engine. PEs are connected through a

crossbar to the shared memory structure. . . . . . . . . . . . . . . . . . . . . . . . 17

9 The multi-thread based processing element. . . . . . . . . . . . . . . . . . . . . . . 18

10 An example of compressed row storage (CSR). . . . . . . . . . . . . . . . . . . . . 28

11 The sparsity affects SpMV performance. . . . . . . . . . . . . . . . . . . . . . . . 29

12 Our proposed data locality-aware design framework for SpMV acceleration. . . . . 31

13 Applying the partitioning and clustering on a sparse matrix (lns 3937). . . . . . . 33

14 The performance penalty brought by inter-PE communications. . . . . . . . . . . . 36

15 The architecture for SpMV acceleration. . . . . . . . . . . . . . . . . . . . . . . . 38

16 Configuration header file is used to schedule inter-PE communication. . . . . . . . . 38

17 The internal structure of processing element design. . . . . . . . . . . . . . . . . . 40

x



18 Hardware constraint analysis by varying the size of input matrix/PE. . . . . . . . . 41

19 System performance on selected benchmarks. . . . . . . . . . . . . . . . . . . . . . 45

20 The analysis on the data preprocessing. . . . . . . . . . . . . . . . . . . . . . . . . 47

21 Our evaluation on AlexNet sparsity and speedup. Conv1 refers to convolutional

layer 1, and so forth. The baseline is profiled by GEMM of Caffe. The sparse

kernel weights are stored in compressed sparse row (CSR) format and accelerated

by cuSPARSE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

22 The impact of kernel matrix sparsity on convolution performance. . . . . . . . . . . 54

23 Our proposed SW/HW co-design framework for CNN sparsification & acceleration

on FPGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

24 Kernel weights are split into pre-defined groups. A compact kernel is obtained

through the locality-aware regularization. . . . . . . . . . . . . . . . . . . . . . . . 58

25 The locality-aware regularization first imposes sparsity on a pre-trained dense AlexNet,

fine-tuning is applied to retain accuracy. . . . . . . . . . . . . . . . . . . . . . . . . 59

26 An illustration of our proposed sparse network representation for sparse CNN ac-

celeration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

27 Locality-aware regularization on Conv layer. . . . . . . . . . . . . . . . . . . . . . 63

28 Our string-based compression balances computation and memory, showing a strong

scalability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

29 The system architecture overview of the FPGA-based sparse CNN accelerator. . . . 65

30 The address access pattern during matrix multiplication within one PE. . . . . . . . 66

31 The data reuse pattern of feature map. . . . . . . . . . . . . . . . . . . . . . . . . . 68

32 The trade-off between computation requirement (a) and model size (b) under dif-

ferent sparse regularization on Conv and FC layers of AlexNet. Conv 1 with low

sparsity is omitted in (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

33 The performance is evaluated by applying the proposed optimizations and compared

with the dense model. The sparse model is compressed first, then adds zero skipping

and data fetcher, respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

34 Accelerator performance on different network structures. The speedup ratio is eval-

uated by the runtime of sparse CNN on different platforms over its dense counterpart. 76

xi



35 Volta GV100 Tensor Core operation. . . . . . . . . . . . . . . . . . . . . . . . . . 80

36 The layout of DianNao [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

37 Block diagram of Googles Tensor Processing Unit [3]. . . . . . . . . . . . . . . . . 82

xii



1.0 INTRODUCTION

Following technology advances in high performance computation systems and fast growth of data

acquisition, machine learning, especially deep learning, made remarkable success in many research

areas and applications, such as image recognition [4], object detection [5], natural language pro-

cessing [6] and automatic speech recognition [7]. Such a success, to a great extent, is enabled

by developing large-scale deep neural networks (DNN) that learn from a huge volume of data.

For example, in Large Scale Visual Recognition Challenge 2012, Krizhevsky et al. beat out the

second-best team 10% in Imagenet classification accuracy by training a deep convolutional neural

network with 60 million parameters and 650,000 neurons on 1.2 million images. The deployment

of such a big model is both computation-intensive and memory-intensive. At software level, ex-

tending the depth of neural networks for accuracy optimization becomes a popular approach [8][9],

exacerbating the demand for computation resources and data storage of hardware platforms.

The research on hardware acceleration for neural network has been extensively studied on not

only the general-purpose platforms, e.g., graphic processing units (GPUs), but also domain-specific

hardware such as field-programmable gate arrays (FPGAs) and custom chip (e.g., TrueNorth)

[10][11][12][13][14]. High-end GPUs enable fast deep learning, thanks to their large through-

put and memory capacity. When training AlexNet with Berkeley’s deep learning framework Caffe

([10]) and Nvidia’s cuDNN ([15]), a Tesla K-40 GPU can process an image in just 4ms. While

GPUs are an excellent accelerator for deep learning in the cloud, mobile systems are much more

sensitive to energy consumption. In order to deploy deep learning algorithm in energy-constraint

mobile systems, various approaches have been offered to reduce the computational and memory

requirements of deep neural networks).
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1.1 DEEP NEURAL NETWORKS ON FPGAS

Field Programmable Gate Arrays (FPGAs) have shown massive speedup potential for a wide

range of applications. Their ability to support highly parallel designs, coupled with their re-

programmability have made them very attractive platforms. Custom pipelined datapaths allow the

FPGA to execute in parallel what could take thousands of operations in software. Programmabil-

ity, and ease of use deter many software developers from expanding into hardware development.

FPGAs are notorious for complex designs, long debug cycles, and difficult verification among

other things. However, some of these issues can be alleviated by advances in hardware design

tools. Major FPGA manufactures are actively developing High Level Synthesis (HLS) tools to

help software software developers utilize their boards. Besides, FPGAs now have easy access to

significantly larger memory spaces, which allows researchers to consider much larger real-world

problems. However, the larger memories come at a cost of higher latencies.

Various FPGA-based DNN accelerators ([16][17]) have proven that it is possible to use recon-

figurable hardware for end-to-end inference of large CNNs like AlexNet and VGG. An important

problem faced by designers of FPGA-based DNNs is to select the appropriate DNN model for a

specific problem to be implemented using optimal hardware resources. Moreover, the progress of

hardware development still falls far behind the upscaling of DNN models at software level. With

the high demand for computation resources, memory wall [14] that describing the disparity be-

tween fast on-chip data processing rate and slow off-chip memory and disk drive I/O demonstrates

more prominent adverse impact [18][19].

1.2 DISSERTATION CONTRIBUTION AND OUTLINE

To overcome the above challenges in neural network acceleration, both hardware and software

solutions are investigated. The software approaches, in contrast, mainly concentrate on reducing

the scale and connections of a DNN model while still keeping the state-of-the-art accuracy. The

hardware approaches attempt to build a specialized architecture for the customized network models

adapting to it.

2



Our proposed work can be decoupled as following two main research scopes: 1) FPGA accel-

eration of recurrent neural network based language model; 2) A data locality-aware design frame-

work for reconfigurable sparse matrix-vector multiplication kernel. 3) The software-hardware co-

design on sparse convolutional neural networks.

For research scope 1, we proposed an FPGA-based acceleration for recurrent neural networks,

which includes three major technical contributions:

• At architectural level, the framework extends the inherent parallelism of RNN and adopts a

mixed-precision scheme. The approach enhances the utilization of configurable logics and

improves computation efficiency.

• The hardware implementation integrates a groups of computation engines and a multi-thread

management unit. The structure successfully conceals the irregular memory access feature

in data back-propagation stage and reduces external memory accesses. Our framework is de-

signed in a scalable manner to benefit the future investigation for ever-larger networks.

We realized the RNNLM on Convey HC-2ex system. The design was trained with a dataset of

38M words. It consists of 1, 024 nodes in hidden layer. Our design performs better than traditional

class-based modest-size recurrent networks and obtains 46.2% in accuracy in Microsoft Research

Sentence Completion (MRSC) challenge. The experiments at different network sizes on average

achieve 14.1× speedup over the optimized CPU implementation and a comparable performance

with high-end GPU system, demonstrating a great system scalability.

For research scope 2, we developed an efficient SpMV computation kernel for sparse neural

networks. The main contributions of this work are:

• By analyzing the impact of the sparse structure of matrix and various hardware parameters

on system performance and accordingly propose a data locality-ware co-design framework for

iterative SpMV.

• We integrate conventional sparse matrix compression formats with a locality-aware clustering

technique. A sparse matrix will be reorganized into sub-blocks, each of which has regularized

memory accesses. At hardware level, we develop a scalable architecture made of high-parallel

processing elements (PEs) that enable simultaneous MACs and customized data path for inter-

PE communications.

3



The experiments based on the University of Florida sparse matrix collection shows dramatic im-

provement in computational efficiency. Our FPGA-based implementation has a comparable run-

time as GPU and achieves 2.3× reduction than CPU, with substantial saving in power consump-

tion, say, 8.9× and 8.3× better than the implementations on CPU and GPU, respectively.

To enable the CNN sparsification and acceleration on FPGA, for both convolutional and fully

connected layers within CNNs, we propose a co-design framework by combining innovations in

software and hardware domains. More specific, the main contributions of this work include:

• We profile the impact of sparse network structures and hardware parameters on overall system

performance and demonstrate that the software/hardware co-design is necessary to accelerate

sparse CNNs.

• At software level, we focus on the data locality enhancement during model sparsification.

Alone with a low-cost compression scheme, kernel weights are partitioned into sub-blocks with

regularized data layout. At hardware level, a scalable architecture composed of processing

elements (PEs) that simultaneously execute compressed kernel weights is developed. Zero-

skipping and extensive data reuse scheme are applied to improve the operation efficiency of

sparse feature map.

• As the sparse regularization affects the connections over layers, we introduce a sparsi

cation strategy which can adapt the design optimization according to the available hardware

resource.

We evaluate the proposed design framework through three representative CNNs on two Xilinx

FPGA platforms - ZC706 and VC707 boards. Our design can significantly improve the computa-

tion efficiency and effiective memory bandwidth, achieving an average 67.9% of the peak perfor-

mance. This result is 1.8× and 4.7× higher than that of the implementations on high-end CPUs

and GPUs, respectively. Very importantly, our design effectively reduces the classification time

2.6×, compared to state-of-the-art FPGA implementation.

The outline of this dissertation is organized as follows: Chapter 1 presents the overall picture

of this dissertation, including the research motivations, research scopes and the research contri-

butions; The details and applications of our acceleration framework for recurrent neural networks

are illustrated in Chapter 2. Then, the sparse matrix-vector computation kernel will be presented

4



in Chapter 3. Chapter 4 demonstrates the benefits of our proposed software-hardware co-design

framework, and its evaluation result on sparse convolutional neural networks. Chapter 6 finally

summarizes the research work and presents the potential future research directions, as well as our

insights for efficient acceleration of deep neural networks on FPGA.
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2.0 FPGA ACCELERATION TO RNN-BASED LANGUAGE MODEL

In this chapter, we will present the details of our hardware acceleration framework for recurrent

neural network-based language model. The structure of this chapter is organized as the follows:

Section 2.1 introduces the language model and RNN algorithm; Section 2.2 presents our analytical

approach for accelerator design optimization; Section 2.3 and 2.4 explain our proposed architecture

and the corresponding hardware implementation, respectively; Experimental results and analysis

are shown in Section 2.5.

2.1 PRELIMINARY

2.1.1 Language Models

Rather than checking linguistic semantics, modern language models based on statistical analy-

sis assign a probability to a sequence of words by means of a probability distribution. Ideally,

a meaningful word sequence expect to have a larger probability than an incorrect one, such as

P (I saw a dog) > P (Eye saw a dog).

Among developed language models, n-gram model is the most commonly used. In an n-gram

model, the probability of observing the ith word wi in the context history of the preceding i − 1

words can be approximated by the probability of observing it in the shortened context history of

the preceding n−1 words. For example, in a 2-gram (also called as bigram) model, the probability

of “I saw a dog” can be approximated as:

P (I saw a dog) =P (I|−)× P (saw|I)× P (a|saw)

× P (dog|a)× P (−|dog)
. (2.1)
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A conditional probability, e.g., P (a|saw) in Eq. (2.1), can be obtained through statistical anal-

ysis based on training data. The number of conditional probabilities required in n-gram increases

exponentially as n grows: for a vocabulary with a size of V , an n-gram model need store V n

parameters. Moreover, the space of training data becomes highly sparse as n increases. In other

words, a lot of meaningful word sequences will be missed in the training data set and hence sta-

tistical analysis cannot provide the corresponding conditional probabilities. Previous experiments

showed that the performance of n-gram language models with a larger n (n > 5) is less effec-

tive [20]. N-gram model can realize only the short-term perspective of a sequence, which is clearly

insufficient to capture semantics of sentences [21].

2.1.2 RNN & RNN based Language Model

Figure 1 illustrates the structure of a standard recurrent neural network (RNN). Unlike feedforward

neural networks where all the layers are connected in a uniform direction, a RNN creates additional

recurrent connections to internal states (hidden layer) to exhibit historical information. At time t,

the relationship of input ~x(t), the temporary state of hidden layer ~h(t), and output ~y(t) can be

described as

~h(t) = f
(
Wih~x(t) +Whh

~h(t− 1) +~bh

)
, and (2.2)

~y(t) = g
(
Who

~h(t) +~bo

)
. (2.3)

Hidden

O
u

tp
u

t

In
p

u
t

Hidden

O
u

tp
u

t

In
p

u
t

Figure 1: (a) Feedforward neural network; (b) Recurrent neural network.
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Where, Wih is the weight matrix connecting the input and hidden layers, Who is the one between

the hidden and output layers. Whh denotes the recurrent weight matrix between the hidden states

at two consecutive time steps, e.g., ~h(t − 1) and ~h(t). ~bh and ~bo are the biases of the hidden and

output layers, respectively. f(z) and g(z) denote the activation functions at the hidden and output

layers, respectively.

The input/output layer of RNN-based language model (RNNLM) corresponds to the full or

compressed vocabulary. So each node represents one or a set of words. In calculating the prob-

ability of a sentence, the words will be input in sequence. For instance, ~x(t) denotes the word at

time t. And output ~y(t) represents the probability distribution of the next word, based on ~x(t) and

the historical information stored as the previous state of network ~h(t− 1).

RNNLM uses internal states at hidden layer to store the historical information, which is not

constrained by the length of input history. Compared with n-gram models, RNNLM is able to

realize a long-term perspective of the sequence. Note that the hidden layer usually has much

less nodes than the input/output layer and its size shall reflect the amount of training data: the

more training data are collected, the larger hidden layer is required. Moreover, the aforementioned

sparsity of the training data in n-gram language model is not an issue in RNNLM, indicating that

RNNLM has a stronger learning ability [22].

2.1.3 The RNN Training

When training a network of RNNLM, all data from training corpus are presented sequentially. In

this work, we used back-propagation through time (BPTT) algorithm. As illustrated in Figure 2,

the approach truncates the infinite recursion of a RNN and expands it to a finite feed-forward

structure, which then can be trained by following the regular routine of feed-forward networks.

For a given input data, the actual output of network shall first be calculated. Then the weights

of each matrix will be updated through back-propagating the deviations between the actual and

desired outputs layer by layer. The update of weight wji between node i of the current layer and

node j of the next layer at time t can be expressed as wji ← wji + η ·
T∑
t=1

δj(t) · xi(t),where xi(t)

is the input of node i; η is the learning rate; δj(t) is the error back-propagated from node j; and T

is the BPTT step for RNN training.
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Figure 2: Unfold RNN for training through BPTT algorithm.

At the output layer, we adopted softmax activation function g(z) = ez∑
ke

zk
as the cross-entropy

loss function. The error derivative of node p δp(t) can be obtained simply from RNN’s actual

output op(t) and the desired one tp(t):

δp(t) = tp(t)− op(t). (2.4)

Sigmoid function f(z) = 1
1+e−z is utilized at the hidden layer. The error derivative of node k

δk(t) is calculated by

δk(t) = f ′(x)|f(x)=hk(t) · δBPTT(t). (2.5)

Where, hk(t) is the state of node k in hidden layer at time t. δBPTTis the accumulation of the errors

back-propagated through time, that is,

δBPTT(t) =
∑

o∈output

wokδo(t) +
∑

h∈hidden

whkδh(t+ 1). (2.6)

Here, δo(t) denotes the error of output layer at time t, while δh(t + 1) is the error of hidden layer

back-propagated from the following time step t + 1. wok and whk are the transposed weights of

Who in Eq. (3) and Whh in Eq. (4), respectively.
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2.2 ANALYSIS FOR DESIGN OPTIMIZATION

We first analyze the utilization of computation and communication resources in RNNLM as these

are two principal constraints in system performance optimization.

Computation resource utilization. To analyze the computation cost, we implemented RNNLM

on a CUBLAS-based NVIDIA GPU and profiled the runtime of every major function. The result

in Table 1 shows that the matrix-vector multiplication consumes most of computation resource.

The activation functions, as the second contributor, consume more than 20% of runtime. So we

mainly focus on enhancing the computation efficiency of these two functions.

Memory accesses. During training, the matrix-vector multiplication in the back-propagation

phase requires the transposed form of weight matrices as shown in Eq. (8). Such a data access

exhibits irregular behavior, making the further performance improvement very difficult. To explore

this effect experimentally, we mapped RNNLM on a multi-core server with Intel’s Math Kernel

Library (MKL). Figure 3 shows the normalized system performance. As more cores are utilized,

the major constrain changes from computation resource to memory bandwidth. Accordingly, the

speedup becomes slower and eventually saturated when the memory bandwidth is completed con-

sumed.

Scalability. A scalable implementation must well balance the use of computation units and

memory bandwidth. As the configurable logic elements on FPGA grow fast, the implementation

shall be able to integrate additional resources. Our approach is to partition a design into multiple

identical groups and migrate the optimized development of a group to bigger and ore devices for

applications in larger scale.

Table 1: RNN Computation Runtime Breakdown in GPU

Matrix-vector Activation Sum of Vector
Delta Others

Multi. Functions Vector Elem. Scaling

71.0% 21.4% 2.3% 1.9% 1.0% 2.4%

10



0.5

1.5

2.5

3.5

0 4 8 12 16 20 24

Sp
ee

d-
up

 R
at

io
 

Number of Cores  

Actual
Ideal

Figure 3: The system speedup is saturated with the increment of CPU cores as the memory accesses

become the new bottleneck.

2.3 ARCHITECTURE OPTIMIZATION

This section describes the optimization details at the architectural level. We propose a parallel

architecture to improve the execution speed between the hidden and output layers. Moreover, the

computation efficiency is enhanced by trading off data and function precision.

2.3.1 Increase Parallelism between Hidden and Output Layers

Previously, Li et al. proposed a pipeline architecture to improve the parallelism of RNN [1]. As

illustrated in Figure 4, it partitions the feed-forward phase into two stages: the data flow from input

to hidden layer represented by gray boxes and the computation from hidden to output layer denoted

in white boxes. Furthermore, it unfolds RNN along time domain by tracing B previous time steps

(usually 2 ∼ 10) and pipelines these calculations.

However, our analysis reveals that the two stages have extremely unbalanced throughputs.

Assume a RNN with V nodes in the input and output layers and H nodes in the hidden layer. The

input layer activates only one node at a time, so Wih~x(t) in Eq. (3) can be realized by extracting

the row of Wih corresponding to the activated node, that is, copying a row of Wih to the destination

vector. Thus, the computation complexity of ~h(t) is mainly determined by Whh
~h(t− 1), which is

O(H×H). The calculation of ~y(t) has a computation complexity ofO(H×V ) becauseWho
~h(t) is

11



{Whh·h(t-1) +bh +Wih·x(t-1)} sigmoid {Who·h(t) +bo }softmax

y(t)

Computation Complexity

h(t-1)

h(t)

Hidden Layer Output Layer

see Eq. (3) see Eq. (4)

h(t)

Hidden Layer
~ (H × H) 

~ (H × V) 
h(t+1)

Figure 4: The data flow of a two-stage pipelined RNN structure [1]. The computation complexity

of white boxes in output layer is much bigger than that of gray boxes in hidden layer.

dominant. Usually V is related to the vocabulary and can easily reach up to a size of 10K ∼ 200K

while H can maintain at a much smaller scale like 0.1K ∼ 1K. Thus, the execution time of the

second stage is much longer than that of the first one. Such a pipelined structure [1] is not optimal

for the entire workload.

Our effort is dedicated in further improving the execution of the second stage. As illustrated

in Figure 5, we duplicate more processing elements of the output layer. More specific, our pro-

posed architecture conducts the calculation of the hidden layer in serial while parallelizing the

computation of the output layer. For example, assume B is 4. At time step t − 3, the result of the

hidden layer goes to Output Layer I. While Output Layer I is in operation at t−2, the hidden layer

will submit more data to the next available output layer processing element, e.g., Output Layer II.

As such, the speed-up ratio of the proposed design over the two-stage pipelined structure can be

approximated by

Speed-up =
(tV + tH) + tV × (B − 1)

tH ×B + tV
, (2.7)

where tV and tH are the latencies of the output layer and the hidden layer, respectively. For

instance, assume V= 10K, H= 0.1K, and B= 4, the execution of our architecture is about 3.86×

faster than the design of [1].

12



Output Layer II Output Layer I

Output Layer III Output Layer IV

x(t-3), x(t-2), x(t-1), x(t)

h(t-2) h(t-3)

h(t)h(t-1)

y(t-2) y(t-3)

y(t)y(t-1)

Hidden Layer

Figure 5: Our proposed parallel architecture for RNNLM.

For the proposed design,B shall be carefully selected based upon application’s scale. From the

one hand, a bigger B indicates more time steps processed in one iteration and therefore requires

more resources. From the other hand, the higher B is, the faster execution can be obtained. More-

over, by introducing more time steps, more historic information are sustained for better system

accuracy too.

2.3.2 Computation Efficiency Enhancement

Through appropriately trading off data and function precision of RNNLM, we can greatly improve

its computation efficiency without degrading the training accuracy.

Fixed-point data conversion. The floating-point data are adopted in the original RNNLM al-

gorithm and the corresponding hardware implementation, which demand significant computation

resources and on-chip data space. The fixed-point operation is more efficient in FPGA implementa-

tion but the errors caused by precision truncation could accumulate iteratively. Fortunately, neural

networks exhibit self-recovery characteristics, which refers to the tolerance to noise in decision

making.

Mixed-precision data format. As the computation of output layer is more critical, lowering the

data precision of Who, if possible, would be the most effective option. We analyze RNNLM using

the Fixed-Point MATLAB Toolbox and evaluate the quality of different data format by examining

the perplexity (PPL) of word sequences [22]. Figure 6 shows that when Who has 16 or more bits
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Figure 6: The impact of the reduced data precision ofWho in RNNLM on the reconstruction quality

of word sequences.

and keep the other training parameters as well as the states of hidden and output layers in original

64 bits, a fixed-point implementation can achieve the same reconstruction quality as a floating-

point design. In other words, this scheme improves the runtime performance while maintaining

the system accuracy to the maximum extent.

Approximation of activation functions. Our preliminary investigation in Table 1 reveals that

the activation functions are the second contributor in runtime. This is because the complex oper-

ations in sigmoid and softmax functions, such as exponentiation and division (Section 2.1.3), are

very expensive in hardware implementation. Instead of precisely mapping these costly operations

to FPGA, we adopt the piecewise linear approximation of onlinear function (PLAN) [23] and sim-

plify the activation functions with the minimal number of additions and shifts. Our evaluation

shows that on average, the error between our approximation and the real sigmoid calculation is

only 0.59%, which doesn’t affect much on the convergence properties in RNNLM training.

2.4 HARDWARE IMPLEMENTATION DETAILS

The hardware implementation in FPGA will be presented in this section. We map the proposed

architecture to computation engines (CEs), each of which is divided into a few processing elements

(PEs). Moreover, the memory efficiency is improved through data allocation and reuse.

14



2.4.1 System Overview
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Figure 7: An overview of the RNNLM hardware implementation.

Figure 7 presents an overview of our hardware implementation on the Convey HC-2ex com-

puter system. The CPU on the host side is used for accelerator startup and weight initialization.

There are 16 DIMMs and 1024 banks in the off-chip memory. Thus the chance of bank conflicts

is low even the parallel accesses are random. The global control unit receives commands and

configuration parameters from the host through application engine hub (AEH).

We map the proposed parallel architecture of RNNLM into two types of computation engines

(CEs): CE-H for the hidden layer and CE-O for the output layer. According to Figure 5, one CE-H
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and multiple CE-O are required. The two types of CEs are customized for high efficiency, with

the only difference in the design of activation function. The system configuration, e.g., the number

and scale of CEs, is upon users’ decision. Moreover, each CE is segmented into several identical

processing elements (PEs). Since the major of RNNLM execution is performed through these PEs,

the proposed implementation can easily be migrated to a future device by instantiating more PEs.

The matrix-vector multiplication not only consumes the most runtime but also demands a lot

of data exchange as shown in Table 2. The situation in the feed-forward phase can be partially

alleviated by data streaming and datapath customization. However, the multiplication operations

of transposed matrices in the back-propagation phase exhibit very poor data locality, leading to

nontrivial impact on memory requests. The long memory latencies potentially could defeat the

gains from parallel executions. In addition, Table 2 implies that the data accesses in RNNLM

have very diverse characteristics, each of which shall be considered specifically in memory access

optimizations. These details will be presented in the following subsections.

2.4.2 Data Allocation

From the one hand, the RNNLM implementation is associated with an extremely large data set,

including a training data set (e.g., 38M words in our test) as well as the weight parameters (e.g.,

40Mb for a vocabulary of 10K words and the hidden layer of 1K nodes). From the other hand, only

a small amount of index data are required to control the RNNLM training process: at a time step,

Table 2: Memory Access Requirement

Dataset Operation Total # Size (byte)

Training data read only 38M 152M

Wih, Who read & write V×H (10K× 1K) 40M

Whh read & write H×H (1K× 1K) 4M

bo, ~y(t) read & write V (10K) 40K

bh, ~h(t) read & write H (1K) 4K
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only one input node will be activated and only one output node will be monitored. Therefore, we

propose to store the training data in the host main memory and feed them into the FPGAs during

each training process.

Though FPGA in the Convey HC-2ex system (Xilinx Virtex6 LX760) has a large on-chip block

RAM (about 26MB), not all the space is available for users. Part of it is utilized for interfacing

with memory and other supporting functions. Therefore, we keep the intermediate data which are

frequently access and update in the training process, such as all the parameters (Wih, Whh, Who,

bh, and bo) and all the states of hidden and output layers, in the off-chip memory instead of on-chip

memory. Only a subset of data is streamed into the limited on-chip memory at runtime for the best

utilization and system performance.

2.4.3 Thread Management in Computation Engine

How to increase the effective memory bandwidth is critical in CE design. Previously, Ly and Chow

proposed to remove the transpose of a matrix by saving all the data in on-chip block RAMs [24].

At a time, only one element per row/column of the matrix is read out through a carefully designed

addressing scheme. As such, a column or row of the matrix is obtained from one memory thread.
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Figure 9: The multi-thread based processing element.

However, the approach requires that the weight matrix fits on-chip memory and the number of

block RAMs for the weight matrix equals to the number of neurons in different layers. It is not

applicable to our RNNLM in a much larger scale.

There are 16 channels in the system. To improve the memory efficiency, we introduce a hard-

ware supported multi-threading architecture named as thread management unit (TMU). Figure 8

illustrates its utilization in CEs. To process all the elements of a matrix row through a single

memory channel, TMU generates a thread for each matrix row and the associated start and end

conditions. All the ready threads are maintained by TMU. Once a channel finishes a row, it can

switch to another ready tread, which usually has been prefetched from memory so the memory la-

tency is masked. Each PE holds a busy flag high to prevent additional threads from being assigned.

When all the PEs are busy, TMU backloads threads for later assignment.

TMU supports the data communication among a large number of PEs and improves the execu-

tion parallelism. Note that there is only one TMU in a CE. Increasing the number of PEs does not

introduce more hardware overhead.
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Algorithm 1 Data flow from input layer to hidden layer
1: for t = 0; t < BPTT ; t++ do

2: if t != 0 then

3: mvmulti (Whh, hidden(t− 1), hidden(t));

4: vdadd (hidden(t), bh, h(t));

5: vdadd (hidden(t), ~wkih, hidden(t));

6: else

7: vddadd ( ~wkih, bh, hidden(t));

8: end if

9: sigmoid (hidden(t), hidden(t));

10: end for

2.4.4 Processing Element Design

The computation task within a CE is performed through processing elements (PEs). These PEs

operate independently, each of which takes charge of a subset of the entire task. For example,

when realizing a matrix-vector multiplication, each PE is assigned with a thread that computes a

new vector value based on a row of the weight matrix. Data transition can operate in the burst

mode: based on the start and end addresses, a thread fetches all the requested data in a row from

the off-chip memory, as shown in Figure 9.

CE controls the memory requests of the weight matrix and vector arrays. The Convey system

supports the in-order return of all memory requests, so the reordering of memory accesses can

be done through TMU assisted by the crossbar interface from FPGAs to memory modules. Data

returned from memory can be buffered in Matrix and Vector FIFOs, using the corresponding thread

id as the row index. When a new thread is assigned to a PE, it raises a busy flag and requests the

weight and vector data from memory based on the start and end addresses. Once all the memory

requests for the thread are issued, the flag is reset, indicating that the PE is ready for another thread

even through the data of the prior thread is still in processing. As such, the memory access load

can be dynamically balanced across all PEs.
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2.4.5 Data Reuse

Off-chip memory accesses take long time. For example, the memory latency on our Convey plat-

form is 125 cycles at 150MHz. To speed up the execution of RNNLM, we can reduce off-chip

memory accesses through data reuse.

Algorithm 1 presents the data flow from input to hidden layer, during which the state of hidden

layer is frequently accessed. Similar data access pattern has also been observed in the calculation

of output layer. We propose reuse buffers for matrix and bias vector respectively named as Wi Reg.

and Bias Reg. as shown in Figure 9. First, a row of weight matrix are fed into an array of multipliers

that are organized in fine-grain pipeline and optimized for performance. While data goes into the

accumulator and completes the matrix multiplication, the weight and bias are buffered registers.

After data summation is completed, PE enables its activation function, e.g., sigmoid in CE-H or

softmax in CE-O, to obtain the state of hidden/output layer.

2.5 EXPERIMENTAL RESULTS

In this section, we present the experimental results of the RNNLM implementation and evalu-

ate the proposed framework in terms of training accuracy, system performance, and efficiency of

computation engine design.

2.5.1 Experiment Setup

We implemented the RNNLM on the Convey HC-2ex platform [25]. We described the design in

System C code, which then was converted to Verilog RTL using Convey Hybrid Threading HLS

tool ver. 1.01. The RTL is connected to memory interfaces and the interface control is provided

by Convey PDK. Xilinx ISE 11.5 is used to obtain the final bitstream. Table 3 summarizes the

resource utilization of our implementation on one FPGA chip. The chip operates at 150MHz after

placement and routing.
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2.5.2 Training Accuracy

Microsoft Research Sentence Completion (MRSC) is used to validate our FPGA based RNNLM.

The challenge consists of fill-in-the-blank questions [26]. The experiment calculates the score

(probability) of a sentence filled with each given option and takes the option that leads to the

highest score as the final answer of the model.

A set of the 19th and early 20th Century novels were used in training. The dataset has 38M

words and the vocabulary of the training data is about 60K. In the implementation, we merge the

low-frequency words and map the remaining 10, 583 words to the output layer. For better accuracy,

we set the hidden layer size to 1, 024 and BPTT to B= 4.

Table 13 compares the training accuracy of various language models. Our FPGA-based imple-

mentation effectively realizes long-term perspective of the sentence and beats the n-gram model.

RNNME that integrates RNN with maximum entropy model [27] is able to further improve the

training accuracy to 49.3%. Though vLBL+NCE5 [28] obtains the best training effect, it has

far more computation cost than our RNNLM because vLBL+NCE5 used a much larger dataset

(47M), integrated a data pre-processing technique called noise-contrastive estimation (NCE), and

analyzed a group of words at the same time.

2.5.3 System Performance

We evaluated the performance of the proposed design by comparing it with implementations on

different platforms. The configuration details are summarized in Table 5. A simplified training set

of 50K words was selected because the training accuracy is not the major focus. The vocabulary

size of the dataset is 10, 583.

Table 3: Resource Utilization

LUTs FFs Slice DSP BRAM

Consumed 176,355 284,691 42395 416 280

Utilization 37% 30% 35% 48% 39%
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Table 4: Accuracy Evaluation on MSRC

Method Accuracy

Human 91%

vLBL+NCE5 [28] 60.8%

RNNME-300 [27] 49.3%

RNNLM (this work) 46.2%

RNN-100 with 100 classes [22] 40%

Smoothed 3-gram [26] 36%

Random 20%

To conduct a fair comparison, we adopted the well-tuned CPU and GPU-based design from [1].

Furthermore, we tested different network sizes by adjusting the BPTT depth and the hidden layer

size. The results are shown in Table 6. Here, CPU-Single represents the single-thread CPU im-

plementation; CPU-MKL is multi-thread CPU version with Intel Math Kernel Library (MKL);

GPU denotes the GPU implementation based on CUBLAS; and FPGA is our proposed FPGA

implementation.

Compared to CPU-single, the performance gain of CPU-MKL is mainly from the use of MKL,

which speeds up the matrix-vector multiplication. However, general-purpose processor has to

Table 5: Configuration of Different Platforms

Platform Cores Clock
Memory

Bandwidth

NVIDIA GeForce GTX580 512 772 MHz 192.4 GB/s

Intel R© Xeon R© CPU E5-2630 @ 2.30 GHz 12 2.3GHz 42.6 GB/s

Convey HC-2ex - 150 MHz 19.2 GB/s
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follow the hierarchical memory structure so the space for hardware-level optimization is limited.

Our FPGA design customizes the architecture and datapath specific to RNNLM’s feature. On

average, it obtains 14.1× and 4× speedups over CPU-single and CPU-MKL, respectively.

At relative small network scales, our FPGA implementation operates faster GPU because of

GPU’s divergence issue. Besides, GPU spends significant runtime on complicated activation func-

tions, while the approximation in FPGA requires only a small number of additions and shifts.

However, as the hidden layer and BPTT increase, the limited memory bandwidth of the Convey

system constrains the speedup of FPGA. The GPU implementation, on the contrary, is less affected

because GTX580 offers 10× memory bandwidth. This is why GPU performs better than FPGA at

large scale networks. By augmenting additional memory bandwidth to system, the performance of

FPGA shall be greatly improved.

Table 6 also demonstrates the effectiveness of our proposed parallel architecture. Let’s take

the example of 1, 024 nodes in hidden layer. As BPTT increases from 2 to 4, implying the doubled

timesteps within an iteration, the FPGA runtime increases merely 17.6%. This is because the CEs

operate in a parallel format when calculating the output layer results at different time steps. When

increasing BPTT from 4 to 8, the runtime doubles because only four CEs were implemented.

Besides performance, the power efficiency is also an important metric. Currently, we do not

have a setup to measure the actual power. So the maximum power rating is adopted as a proxy.

Table 7 shows the power consumption comparison when implementing a modest size network

with 512 nodes in hidden layer and BPTT depth of 4. Across the three platforms, our FPGA

implementation achieves the best energy efficiency.

Table 7: Power Consumption

Multi-core CPU GeForce GPU FPGA

Run time (s) 2566.80 110.01 160.72

Power-TDP (W) 95 244 25

Energy (J) 243846 (60.69×) 26842 (6.68×) 4018 (1×)
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Table 8: Computation Engine Efficiency

Platform
Cores

Clock
Peak Feed-

BPTT
Average

# GOPS forward Efficiency

Single-core CPU 1 2.3 GHz 2.3 1.03 0.83 40.43%

Multi-core CPU 6*2 2.3 GHz 27.6 3.6 2.6 11.23%

FPGA-Hidden 8 150 MHz 2.4 1.68 1.11 58.10%

FPGA-Output 8*4 150 MHz 9.6 5.2 3.5 45.52%

2.5.4 Computation Engine Efficiency

The memory access optimization is reflected by the design of CEs. As a CE is partitioned into

multiple individual PEs and each PE executes a subset of the entire workload, the peak performance

can be calculated by [29]

Throughput = PE · Freq ·Width · Channel. (2.8)

Where, PE is the number of PEs in each layer; Width represents the bit width of weight coefficients;

Freq is the system frequency in MHz; and Channel denotes the number of memory channels.

Table 8 compares the computation energy efficiency of FPGA and CPU implementations,

measured in giga operations per second (GOPS). The actual sustained performance of the feed-

forward and BPTT phases are calculated by the total number of operations divided by the execution

time. Note that a PE is capable of two or more fixed-point operation per cycle.

Though CPU runs at a much faster frequency, our FPGA design obtained higher sustained

performance. By masking long memory latency through multi-thread management technique and

reduce external memory accesses by reusing data extensively, the computation engine exhibits a

significant efficiency that is greater than 45%.
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2.6 CONCLUSION

In this work, we proposed a FPGA acceleration framework for RNNLM. The system performance

is optimized by improving and balancing the computation and communication. We first analyzed

the operation condition of RNNLM and presented a parallel architecture to enhance the compu-

tation efficiency. The hardware implementation maps neural network structure with a group of

computation engines. Moreover, a multi-tread technique and a data reuse scheme are proposed to

reduce external memory accesses. The proposed design was developed on the Convey system for

performance and scalability evaluation. The framework shall be easily extended to large system

and other neural network applications, which will be the focus of our research.
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3.0 THE RECONFIGURABLE SPMV KERNEL

Sparse matrix-vector multiplication (SpMV) plays a paramount role in many scientific computing

and engineering applications. It is the most critical component of sparse linear system solvers

widely used in economic modeling, machine learning and information retrieval, etc. [30][31][32].

In these solvers, SpMV can be performed hundreds or even thousands of times on the same matrix.

For example, the well-known Google’s PageRank eigenvector problem is dominated by SpMV,

where the size of the matrix is of the order of billions [33]. Using the power method for PageRank

could take days to converge. As problem scale increases and therefore matrix size grows up, the

runtime of SpMV is likely to dominate these applications.

3.1 PRELIMINARY

3.1.1 Sparse Matrix Preprocessing

SpMV is a mathematical kernel in the form of y = Ax. A is a fixed sparse matrix which iteratively

multiplies with different x. The SpMV implementations in CPUs and GPUs usually are constrained

by limited memory bandwidth to supply the required data and therefore cannot fully utilize the

computational resources [34]. Thus the preprocessing of sparse matrix becomes very crucial.

Compression is the most common solution among sparse matrix preprocessing techniques.

Many compression formats are computationally effective but they are usually restricted to highly

structured matrices, such as diagonal and banded matrices [35]. The compressed row storage

(CRS), instead, can effectively improve the data efficiency of generic sparse matrices. As illus-

trated in Figure 10, CRS utilizes three arrays to store individual nonzero elements (value), to keep
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col_ind:

row_start:

Compressed Row Storage (CRS)Sparse Matrix

Figure 10: An example of compressed row storage (CSR).

the column index of those nonzeros (col ind), and to index where each individual row start in

the previous two arrays (row start), respectively. value and col ind each requires nnz memory

space, where nnz denotes the number of non-zeros of matrix A. row start requires only m words

of space. As a result, CRS reduces the memory requirement from O(m × n) to O(2nnz + m),

where nnz could be two to three orders less than m× n.

3.1.2 The Existing SpMV Architectures

The significance of SpMV kernel inspired many optimizations on general computing platforms.

Specialized software libraries for sparse linear algebra problems, such as MKL for CPUs [36],

and cuSPARSE for GPUs [37], provide standardized programming interface with subroutines op-

timized for the target platform.

However, even with the use of CRS or its variants [38], SpMV obtains only limited computa-

tional efficiency on CPUs and GPUs, mainly for two reasons. First, SpMV is memory bounded

and thus exhibits a low flop/byte ratio. The implementations of SpMV typically demonstrate a

much larger computational capability than the available memory bandwidth, leading to a low uti-

lization of computation resources. Second, the indirect memory references of vector x introduces

uncertainty to the memory accesses. Such an irregular data pattern can increase the cache misses

and thus degrade the overall performance. GPUs tend to hide the latency overhead by interleaving

dozens of threads on a single core. The approach works well for computation-bounded algorithms,

but do not benefit much to SpMV kernel that is constrained by memory bandwidth.
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Leveraging the flexible design fabric of FPGAs for SpMV acceleration has also been stud-

ied [39][40][41]. The efficient attempt is to parallelize multiplication operations by replicating

vectors in BRAM for every multiplier and streaming in the large amount of matrix entries from ex-

ternal memory. The approach limits the usage of BRAM for other common purpose, e.g., external

transfer buffers. So it works only for the applications with small vectors. The use of the on-chip

BRAM will increase rapidly for applications with large vectors, limiting the parallelism scale of

implementation. The situation will get even worse considering the exponential growth of SpMV

problem sizes.

3.2 DESIGN FRAMEWORK

The memory efficiency is maximized when data from main memory is stored contiguously. Ev-

ery data set is used repeatedly in a short period of time and evicted afterwards without further

reference. However, the operation of SpMV demonstrates an opposite situation – irregular data

accesses throughout memory, leading to inefficient execution. Figure 22 shows our preliminary
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analysis on CRS-based SpMV implementation on Intel Xeon E5-2630 by varying the matrix size

and sparsity. As the matrix sparsity decreases from 10% to 0.01%, the system performance drops

rapidly because the shipping of the matrix and vector data become a bottleneck. It motivated us to

analyze the performance modeling and explore new design platforms.

We started with an estimation on the lower-bound execution time needed by SpMV algorithm

on an ideal architecture, assuming it has unbounded amount of hardware resources. Initially, the

matrix A and the input data vector x are saved in external memory. The output data vector y = Ax

will be shipped out of FPGA after completing the computation. Element yi of y is obtained through

yi =
n∑
j=0

aijxj (0 ≤ i ≤ m). (3.1)

Assume nnz nonzero elements in A. For efficiency, most of SpMV algorithms and storage for-

mats only operate on nonzero elements. A set of floating-point operations including one addition

and one multiplication are required for each nonzero element. So the computation time required

by a SpMV algorithm Tcomp = 2nnz/F , where F denotes the number of operation sets that can

be completed in a second. Row pointers are used in storage formats, the column indies of A will

also be moved into FPGAs’ local memories. If np pointers are needed, the total I/O requirement

nIO ∝ nnz + np +m + n. Assume that the memory bandwidth is B. The total memory I/O time

TI/O = nIO/B. Moreover, we consider the time used to preload data into FPGAs (Tinit), which

includes the hardware initialization and matrix preprocessing. Due to the random sparse structure

of the input matrices, Toverhead is used to represent the latency brought by the irregular data access

pattern. The total execution time of a SpMV problem hence becomes

T = max(Tcomp, TIO) + Tinit + Toverhead. (3.2)

The goal of our design is to accelerate iterative SpMVs that have large matrices with millions

of elements and vectors as large as tens of thousands of elements. Our design choices are guided

by two principles to reduce T : (a) enabling high parallelism to increase F while keeping hardware

complexity low, and (b) eliminating the latency overheads by improving the data-locality of the

input matrix.

Figure 23 illustrates the framework structure. It clusters a large sparse matrix into modest-sized

blocks with enhanced data-locality. Each block will be mapped to one computation component,
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Figure 12: Our proposed data locality-aware design framework for SpMV acceleration.

namely, processing element (PE), so it can visit the same region of the input/output vectors for

extensive data reuse. The large amount of configurable logic blocks on FPGA allows many PEs

that can be configured according to the requirement and pattern of the given sparse matrix. The

framework realizes a close coordination across software and hardware layers through the following

features:

(1) Given a large-scale sparse matrix, the hypergraph-based partitioning is used to balance work-

load for all PEs;

(2) The partitioned matrix is clustered to separated block-diagonal (SBD) form. This step opti-

mizes memory accesses by taking the hardware configuration into consideration;
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(3) An explicit data distribution strategy maps these matrix blocks to hardware representation;
(4) The parallel execution on PEs and the inter-PE communication through customized datapath

design promise the effectiveness of the SpMV kernel.

We tend to provide a general design framework that apply to different SpMV without requir-

ing special hardware initialization or input data preparation. The design adopts a simple interface

that needs only the start signal and matrix/vector addresses. The host CPUs are not required to

participate in the SpMV computation. Besides, we discussed various hardware optimization ap-

proaches and their impact on computation accelerations. Examples include the configuration of

PEs to enhance parallelism and the optimization of the matrix mapping to reduce I/O operations.

3.3 SPARSE MATRIX CLUSTERING

On the one hand, the parallelism of SpMV kernel relies on the preprocessing procedure which

partitions and clusters a large sparse matrix into multiple memory friendly sub-matrix enhanced

data-locality. On the other hand, the implementation efficiency is determined by the task and

data distribution on hardware. Thus, we propose to include crucial hardware constraints, i.e., the

number and computation capability of PEs, into the software optimization.

3.3.1 Workload Balance

As we shall describe in Section 4.5, the computation of SpMV kernel will be distributed into

parallel PEs. The matrix partitioning aims at finding a map πA : {aij ∈ A} → {0, . . . , p − 1},

which assigns each nonzero element of A to a PE. If πA(aij) = s, then aij is said to be local to

PE s (0 ≤ s < p). When a PE accesses elements that are not local to it, inter-PE data movement

occurs. Our goal is to minimize this communication while keeping the number of local elements

balanced across all PEs.

The most common partitioning is to evenly divide m rows of the entire matrix to p PEs, say,

each PE owns ∼ m/p consecutive rows. It is simple but could result in great load imbalance. For

example, 130× difference in nonzero distribution across PEs have been observed in our experi-

ments. This disparity can cause some PEs to run out of memory, or to be much slower than other
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PEs, since the SpMV computation is in fact dominated by the number of nonzero elements (nnz),

or, the matrix sparsity. Ideally, the most effective optimization of workload balancing is to assign

each PE with the same amount of nonzeros (nnz/p).

A more preferred partitioning is to model the sparsity structure of matrix A by a hypergraph

H = (V ,N ) [42]. Let a vertex υj ∈ V correspond to the jth column of A. The net (or hyperedge)

nj ∈ N is a subset of V that contains exactly those vertices υj for each nonzero aij (aij ∈ ni).

As such, partitioning a matrix A into p parts becomes to divide V into subsets V0, · · · ,Vp−1. The

connectivity λi of a net nj ∈ N then is defined as | {Vj | Vj ∩ ni 6= 0} |; λi equals the number of

parts ni spans. The communication volume incurred during SpMV is
∑

i:ni∈N (λi − 1), which is

the (λ−1)-matric [34]. The partitioning starts with a complete V , and each iteration splits a V into

two parts. After n − 1 iterations, a final partition of V0, · · · ,Vp−1 is generated which minimizes

the communication volume and satisfies the load constraint of nnz(Vi) ≤ (1 + ε)nnz

P
, where ε is a

predefined unbalance factor. Figure 13(a) gives a 3937 × 3937 matrix with a sparsity of 0.163%.

The hypergraph-based partitioning can divide it into four parts denoted in different colors shown

in Figure 13(b).

Original matrix Only partitioning Partitioning + Clustering

Pure block

Separator

(a) (b) (c)

Figure 13: Applying the partitioning and clustering on a sparse matrix (lns 3937).
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3.3.2 Hardware-aware Clustering

While partitioning breaks up the large amount of nonzeros for parallel computing, the data locality

structure inherent with the original sparse matrix has not been fully explored. Considering that

each element of the sparse matrix is used only once, repeated accesses can be made only for

vector data. The key of improving memory efficiency then is to allocate the matrix elements in

contiguous chunk of memory and keep the associated vector components in on-chip memory as

long as needed. Here, we apply row and column permutations to form p smaller local matrices

A(s) (s = 0, · · · , p − 1) with higher data density. As such, each PE only needs to load a single

local matrix and a small section of the input vector for calculation, i.e., y(s) = A(s)x(s).

The clustering problem can be solved by recursive bisection. During each iteration that splits a

subset of V into two parts, Vleft and Vright, the hypergraph nets can be divided into three categories:

N+, N− and Nc which respectively contain nonzeroes from only Vleft, only Vright, and both Vleft
and Vright. Having defined these categories, we can reorder the rows of the matrix as follows: all

the rows in N+ are permuted towards the top of the matrix, whereas those in N− are permuted to

the bottom. The remaining rows are left in the middle. This creates two row-wise boundaries in the

matrix, i.e., dividing lines between blocks of rows. Altogether, the boundaries split the permuted

matrix into three blocks: the large upper-left and lower-right blocks are denoted as pure blocks,

while the block in the middle is referred as a separator. Applying the bisection scheme recursively

can obtain p partitions, corresponding to p pure blocks and p−1 separators and cluster the matrix

to separated block diagonal (SBD) form.

To improve the efficiency in regularizing the matrix sparsity structure, we integrated the matrix

clustering with a lightweight one-dimensional partitioning. Optimal hypergraph-based partitioning

is known to be computational intensive. Our adopted partitioner instead maps nonzero elements

only according to its row index. Comparing with its alternatives such as two-dimensional [43] and

fine-grained [44] partitioning, it processes the matrix with running time linear to the matrix size.

Furthermore, this combinational solution splits the output vector y in contiguous blocks. Each PE

thus accesses a unique block of y and avoids concurrent writes on the output vector, reducing the

data hazards and complexity in hardware design. Figure 13(c) gives the clustering results of the

given example when p = 4.
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Algorithm 2 Partitioning & hardware-aware clustering
Input: Recursive function call:SBD Gen(A, p, ε)

p = number of PEs, which take consideration of computation efficiency;

ε = allowed load imbalance, ε > 0.

Output: Matrix A translated in SBD form.

1: if p > 1 then

2: (Ar0, A
r
1) : = hypergragh partition(A, ε);

3: (A0, A1) : = clustering (Ar0,A
r
1);

4: maxnz : = nnz(A)
p

(1+ε);

5: ε0 : = maxnz
nnz(A0)

·p
2
-1; SBD Gen(A0, p/2, ε0);

6: ε1 : = maxnz
nnz(A1)

·p
2
-1; SBD Gen(A1, p/2, ε1);

7: end if

3.3.3 Strong Scaling vs. Weak Scaling

After matrix clustering, each PE performs local computations for one sub-matrix A(s) and all PEs

can operate in parallel. The major performance penalty then comes from the computation on

separators which may require multiple subsets of input vector, causing inter-PE communications.

The examples in Figure 14 show the impact of the separator computation and induced data

transition. The two benchmarks are selected from the University of Florida sparse matrix collection

and the performance are evaluated on an Intel Xeon E5-2630 with Matlab Parallel Toolbox [35].

Memplus shows a strong scaling case, that is, the runtime decreases as more cores are deployed.

In contrast, for stanford, distributing the matrix into more PEs results in a large number of

communications induced by separators. As the number of PEs increases, the computation costs

become relatively small while the communication time starts dominating the system performance.

Deploying more PEs makes the SpMV execution slightly slower, demonstrating a typical weak

scaling. The observation inspired us to develop a customized datapath within PE for inter-PE

communications, which shall be introduced in Section 3.4.2.
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Figure 14: The performance penalty brought by inter-PE communications.

3.3.4 Hardware Constraints

Ideally, SpMV reaches its ultimate performance when the number of PEs p → ∞ with a memory

hierarchy that is able to feed data at any time with no latency. Although a large p is preferred

theoretically, there is an optimal range of p in FPGA implementation, which is mainly determined

by the available computation resource and the memory efficiency.

The number of MACs. As exclusive compute elements in PEs, MACs are implemented us-

ing dedicated DSP blocks or reconfigurable logic. Assume rmac units of resource are needed to

construct a single MAC and R units in total are available, the number of MACs is limited by R
rmac

.

The effective BRAM space to store vector for data reuse. Although FPGAs usually provide a

large BRAM capacity (e.g., 26Mb in Xilinx Virtex6 LX760 used in this work), not all of them is

available for user applications. Excluding the portion for interfacing to memory and other support

functions, αM can be used for buffering the vector data. Since a sparse matrix is clustered into

many sub-matrices with a vector size of msub, p cannot exceed αM
msub·DW

, where DW represents the

data width.

The memory channels to off-chip DRAM (Nchannel). An input sub-matrix is initially stored in

off-chip memory. The nonzero elements and indices are streamed into a PE by deploying a specific

number of memory channels, e.g., 2 in our design as explained in Section 3.4.3. This limitation

will constrain p as Nchannel

2
.
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The smallest data block. As p increases, less workload will be distributed to each PE. Note

that the initialization cost of very small matrices negatively affects system performance, we define

a minimal number of nonzeros in a sub-matrix as nzinital. So the selection of p should not be larger

than nnz

nzinitial
.

These hardware constraints shall be taken during the matrix partitioning and clustering process

by considering a reasonable number of PEs limited by

p =
⌊
min(

R

rmax
,

αM

msub ·DW
,
Nchannel

2
,

nnz
nzinitial

)
⌋
. (3.3)

3.4 HARDWARE IMPLEMENTATION

Figure 15 presents the architecture of our hardware implementation on a Convey HC-2ex computer

system [25]. The CPU on the host side clusters matrices and generates configuration header files

to initialize the SpMV kernel on FPGAs. The global control unit (GCU) receives the header files,

maps local matrices to processing elements (PEs), and manages the communications in between.

A thread management unit (TMU) controls the operation of PEs.

Our design requires only one copy of input vector in on-chip BRAM while storing the large ma-

trix on off-chip DRAM. In order to mitigate the communication overhead brought by separators,

we realize a customized one-way datapath to transit intermediate result of separators between

PEs. PEs are the main computation power, each of which consists of an optimized CRS-based

SpMV kernel. The number of PEs is mainly determined by FPGA resources. Thus the proposed

architecture can be mitigated into larger designs by instantiating more PEs.

3.4.1 Global Control Unit (GCU)

The GCU is used to map the clustered matrix into the FPGA architecture. More specifically, it

maps A(s) to each PE and produces corresponding memory configuration. Figure 16 illustrates an

example matrix which is clustered in SDB form and mapping to four PEs. The configuration header

file of PE #1 is shown in the table. GCU will assign the data blocks from the same resource to one

single PE. For a pure block, the computation can be completed locally within the PE. A separator,
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instead, need to be propagated through multiple PEs while the communications only occur between

adjacent PEs. So a customized one-way datapath is designed to transfer intermediate results of

separator computation. The datapath is implemented by a low-latency FIFO structure within PE,

as depicted in Figure 17.

After configuration, each PE performs the matrix operations in two steps. First, it reads a seg-

ment of input vector which is referenced by the pure block # and copies it into an on-chip BRAM.

Afterwards, the local SpMV multiplications will be conducted. For the pure block, the output will

be directly written into the output buffer, while the result of a separator will be delivered to its

adjacent PE until it reaches the destination PE.

3.4.2 Processing Element (PE)

The core of the PE design is a double-precision streaming multiply-accumulator (MAC). To exploit

the full computational throughput, we tend to enhance the pipelining of the dot-product accumu-

lations. The accumulation depends on the result from its previous MAC operations, we deploy

multiple parallel multipliers with an adder tree structure to interleave the independent dot products

on a single floating-point MAC pipeline, as depicted in Figure 17.

With the matrix clustering, a local sub-matrix corresponds to only a portion of an input vector.

A set of dual-port, high-bandwidth on-chip BRAMs are implemented in PE as a vector bank, to

store and supply these vector elements. The data from the vector bank will be paired with its

counterpart in the local matrix. Finally, a multiplier pulls the pair out of their respective FIFOs,

conducts the multiplication, and feeds the result into the adder tree. The adder tree is responsible

for the accumulation of both local pure block and the intermediate result of separator. When

the multiplication and accumulation completes, the results of pure block or separator will be

respectively placed in the output buffer or sent to the destination PE.

3.4.3 Thread Management Unit (TMU)

The memory efficiency of streaming large matrices from off-chip memory is also critical for sys-

tem performance improvement. The Convey HC-2ex system adopted in the work has four Xilinx

Virtex-6 FPGAs connected to eight DRAM chips via a full crossbar that supports memory request

39



Row
Request

Addr.

Busy

 Output

Data 
Scheduler

Adder
Tree

Th
re

ad
 M

an
ag

e
m

en
t 

U
n

it
 

++
+ ...

++
+

+

×
 

Value FIFO

Vector
Bank

Separator
Buffer

O
n

e-
w

a
y

C
o

m
m

u
n

ic
a

ti
o

n
D

a
ta

p
a

th

Processing Element 
(PEi)

Start

End

Column  FIFO

PEi-1

PEi+1

...

Figure 17: The internal structure of processing element design.

reordering [25]. Each memory controller provides two access ports, each of which can read/write

eight bytes per cycle at 150MHz. Each FPGA has 16 memory channels, delivering a peak band-

width of 19.2GB/s. We process the matrix data from off-chip memory through parallel channels

to maximize the bandwidth utilization. The local matrices with the same resource can leverage the

same channel.

We design TMU, a multi-threading architecture, to feed the clustered matrix to different PEs

in parallel. For each row of A(s), TMU creates a thread and the associated start and end conditions.

All the ready threads are maintained in TMU. Each PE buffers the received data in the value and

column FIFOs for MACs. Once a channel exhausts a row, it switches to a new ready thread, the

data of which usually has been prefetched from memory. A PE in operation holds a busy flag high

to prevent additional threads from being assigned. When all the PEs are busy, TMU backloads

40



0

1

2

3

4

5

1 2 3 4 5

8 PEs 16 PEs

24 PEs 32 PEs

0

20

40

60

80

100

0 20 40 60 80 100

8 PEs

16 PEs

24 PEs

32 PEs

100%

80%

60%

40%

20%

0%

M
em

o
ry

 e
ff

ic
ie

n
cy

P
er

fo
rm

a
n

ce
 (

G
F

L
O

s)

900  1600     2500     3600      4900 0       1000      2000      3000  4000    5000

Number of non-zerosNumber of non-zeros

(b)(a)

Figure 18: Hardware constraint analysis by varying the size of input matrix/PE.

threads for later assignment. TMU supports the data communication among a large number of

PEs and improves the executable parallelism. Note that every FPGA requires only one TMU so its

overhead is minimal.

3.4.4 Hardware Configuration Optimization

TMU can effectively mask the memory latency and assist the parallel operation of PEs, but the ini-

tialization stage is dominated by memory requests until TMU buffers sufficient ready threads. The

initialization cost can be alleviated over the execution of large matrices while negatively affects the

system performance for small matrices. Considering the scenario, utilizing a fixed configuration

and occupying all the PEs could be a waste in some applications. The optimal selection of PEs is

a trade-off of throughput and hardware resources, which in turn will guide the matrix clustering in

the preprocessing procedure.

We analyze this hardware constraint by investigating the impact of PEs’ parallelism on system

performance and memory efficiency. The tests are conducted by distributing a single dense matrix

block stored in CRS format to every PE. Particularly, dense matrices are chosen here to eliminate

the irregular data access during execution and obtain a more accurate initialization cost estimation.

The tests utilize all the four FPGAs on Convey HC-2ex with 8 PEs implemented on each FPGA

chip. As seen from Figure 18, if the number of non-zero (nzsub) assigned on a single PE is less
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Table 9: Resource Utilization

LUTs FFs Slice DSP BRAM

Consumed 331,173 284,691 42395 440 249

Utilization 42% 30% 35% 51% 32%

than nzinit = 2, 500, deploying more PEs does not lead to better operation speed due to the low

memory efficiency brought by the initialization overhead. Therefore the optimal selection of PEs

can be calculated by nnz/nzinit when the input matrix is known.

3.5 EVALUATION

In this section, we present the experimental results of the SpMV implementation and evaluate the

proposed framework in terms of system performance, computation efficiency and power consump-

tion.

3.5.1 Experimental Setup

We implemented the proposed design framework on Convey HC-2ex platform [25]. The SpMV

kernel is described in SystemC fashion, which is converted to Verilog RTL using Convey Hybrid

Threading HLS tool ver. 1.01. The RTL is connected to memory interfaces and the interface

control is provided by Convey PDK. Xilinx ISE 11.5 is used to obtain the final bitstream. The chip

operates at 150MHz after placement and routing. Table 16 summarizes the resource utilization of

our implementation on one FPGA chip. The design consumes only one third of BRAMs benefiting

from the matrix clustering and the vector reuse.

Ten benchmarks are selected for direct comparisons with the results reported in [45][46]. We

include four more benchmarks to evaluate our approach on large-scale SpMV. The selected matri-

ces cover a wide spectrum of non-zero distribution from 2,000 to more than 6 million. Irregularity
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Table 10: Characteristics of Benchmarks

Sparse Rows Non-zero
Sparsity

PEs

Matrix m nnz p

lns 3937 3,937 25,407 0.163% 8

raefsky1 3,242 293,409 2.791% 8

psmigr 2 3,140 540,022 5.477% 16

dw8192 8,192 41,746 0.062% 16

t2d q9 9,801 87,025 0.091% 32

epb1 14,734 95,053 0.006% 32

torso2 115,967 1,033,473 0.008% 32

memplus 17,758 99,147 0.031% 32

s3dkt3m2 90,449 4,427,725 0.054% 32

stanford 281,903 2,312,497 0.003% 32

rma10 46,835 2,329,092 0.106% 32

consph 83,334 6,010,480 0.086% 32

cant 62,451 4,007,383 0.103% 32

qcd5 4 49,152 1,916,928 0.079% 32
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Table 11: Configuration and System Performance of Different Platforms

Platform Opti. Cores Clock
Memory Power Peak Sustained Computation

Bandwidth (TDP) GFLOP GFLOP Efficiency

NVIDIA GeForce GTX Titan X cuSPARSE 3072 1075 MHz 336.5 GB/s 250 W 206.6 6.7 3.2%

Intel Xeon E5-2630 MKL 12 2.3 GHz 42.6 GB/s 95 W 110.4 2.4 2.1%

Convey HC-2ex - 32 150 MHz 19.2 GB/s 25 W 9.6 5.6 58.3%

within a matrix varies from a few non-zero to hundreds of non-zero elements per row. Configura-

tion to hardware is generated for each matrix prior computation. Table 10 details these benchmarks

and they are all publicly available from the University of Florida Sparse Matrix Collection [47].

3.5.2 System Performance

The system performance is measured in double precision giga operations per second (GFLOPs).

For our FPGA implementation, each PE is capable of two floating-point operations per cycle. With

maximal 32 PEs running at 150MHz, the peak computation performance is 9.6 GFLOPs.

We report the sustained performance as the ratio of 2nnz over the entire runtime and the com-

putation efficiency is calculated by the ratio of the sustained performance over the peak perfor-

mance. Across all the benchmarks, our FPGA-based SpMV kernel achieves an average sustained

performance of 5.6 GFLOPs, corresponding to a computation efficiency of 58.3%.

To demonstrate the effectiveness of the proposed design, we compare it to well-tuned SpMV

implementations on CPU and GPU. The CPU measurements are carried out on an Intel Xeon

E5-2630 running a multi-threaded SpMV implementation from Intel’s MKL library. The GPU

implementation is preformed on a high-end Nvidia GTX Titan X running the latest version of

cuSPARSE. The configuration details are summarized in Table 15. Our design aims at accelerating

iterative SpMV, so we repeated the execution of each sparse matrix with 100 random vectors to

obtain the average performance. The runtime are measured without including the data transferring

time between host and co-processor memories because our FPGA-based platform and GPU adopt

different shared memory structures.

Figure 19 shows the detailed performance results across the experimental set. Small matrices

perform poorly on GPU because of the initialization overhead and insufficient amount of workload
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to keep the GPU busy. These matrices obtain better performance on CPU because less parallelism

is needed for the efficient execution on CPU. As the scale of matrices increases, the overhead

dominated in the former category is alleviated over the long SpMV execution time and thus the

performance improves.

Our FPGA design achieves 2.3× speedup over CPU implementation and a comparable per-

formance as GPU implementation, not even mentioning that CPU/GPU runs at a much faster fre-

quency and has a larger memory bandwidth. According to the performance model of Equation (2),

the system performance is restricted by max(T comp, TIO). Though the sole computation time de-

crease as p increases, the limited memory bandwidth of the Convey system could constrains the

speedup of matrices in very large size. The GPU implementation is less affected because GTX

Titan offers much larger memory bandwidth (17.5×). Toverhead, the latency overhead brought by

the irregular data access pattern, is another limiting factor. Compared to the FPGA platform, GPU

potentially can obtain 21.5× peak performance for the large amount of processing core. However,

it allocates less cache space to each core, leading to rather high penalties in efficiency when cache

misses happen. By augmenting additional memory bandwidth to the FPGA-based platform, the

system performance of FPGA shall be further improved.

Besides performance, power efficiency is another important metric which is measured by

sustained performance per thermal design power (TDP). Across the three different platforms,

our FPGA implementation achieves the best power efficiency, which is 8.9×/8.3× higher than

CPU/GPU.

3.5.3 The Impact of Data Preprocessing

We analyze the impact of the data preprocessing on overall system performance. Figure 20(a,b)

reports the performance of two benchmarks memplus and stanford, respectively represent-

ing the strong and weak scaling matrices (refer Section 3.3.3), under different implementations.

Here, the performance is measured by the ratio of operation number and runtime (in GFLOPs) to

complete the data preprocessing followed by one hundred SpMV executions with random input

vectors.

As expected, the CPU implementation without clustering exhibits the worst performance for

the irregular data access patterns greatly reduce the cache efficiency. Deploying clustering can
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Figure 20: The analysis on the data preprocessing.

regularize the sparsity structure of the input matrix, increasing the cache hit rate and therefore

improving the performance. The comparison of the CPU and FPGA implementations demonstrates

the efficiency of our proposed design framework. After clustering, the major performance penalty

comes from the inter-PE communications. The parallel structure of PEs and the customized one-

way datapath on FPGA mitigate the overhead brought by separators Even stanford that exhibits

a weak scaling obtains performance gain as more PEs are deployed.

Due to the slow execution of hypergraph-based partitioning, the data preprocessing takes

longer time than one SpMV computation, even a lightweight partitioner is adopted in our de-

sign. We compare the average performance across the experimental set and shows the results in

Figure 20(c). To investigate the overhead of data preprocessing, the performance is measured when

executing the data preprocessing with varying the number of SpMV executions. The random data

distribution (without preprocessing) exhibits a constant performance. While the clustering-based

distribution loses some of its advantage over the random distribution at the very beginning, the fast

computation will quickly amortize the additional cost in 2 ∼ 3 SpMV executions. For many ap-

plications like eigensolver or machine learning that typically need thousands of SpMV operations,

the proposed design frame have a great advantage.
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3.5.4 Comparison to Previous Designs

We compare our design with a few existing SpMV FPGA architectures and summarize the results

in Table 12. These works can be categorized into three approaches. The first one targeted at

improving the effective memory bandwidth by encoding sparse matrix [48][49]. The compressed

variable-length bit vector (CVBV) format [49] is applied, which obtained 1.14 ∼ 1.40× higher

compression ratio than CRS. However, these techniques aggravate hardware complexity and have

marginal improvements in computation efficiency.

The second approach is to parallelize several PEs with a reduction circuit or adder tree [50].

The partial products of output vector are added and the resulting sum is then fed into a customized

accumulator that handles the potential data hazards. A drawback of this approach is that it requires

zero padding to achieve a minimum row size. Furthermore, it is sensitive to the matrix sparsity

structure and performs poorly for extremely sparse matrices (< 0.1% density). In contrast, our

design is able to handle matrix densities below 0.01% and maintains a high computation efficiency.

Replicating input vectors to eliminate unnecessary computational stalls is another common ap-

proach [45][46], which usually requires very high usage of BRAM. Nagar et al. [46] implemented

their design also on a Convey platform with Vertex-5 FPGA boards. As aforementioned that SpMV

kernel is memory bounded and the computational resource is not the major constraint of system

performance. However, their average computation efficiency is only 25.1%. One reason is that the

proposed cache architecture performs poorly on large irregular matrix. For example, the perfor-

mance on their largest benchmark torso2 drops significantly. Our design, in contrast, is able to

analyze the sparsity structure of each matrix, distributes workload according to optimized parallel

PEs, and therefore maintains a higher GFLOPs on large matrices. Overall, our design achieves an

average computation efficiency of 58.3%, 2.3× speed-up over the implementation of [46].

3.6 CONCLUSIONS

In this work, we propose a data locality-aware design framework for FPGA-based SpMV accelera-

tion by maximizing the utilization of available memory bandwidths and computing resources. We
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first cluster a large matrix into memory-friendly blocks to enable efficient data reuse of the same

regions of both the input and output vectors. Then an explicit mapping strategy is applied to dis-

tribute the matrix blocks onto parallel PEs, maximizing the number of simultaneous multiplication-

accumulation computations. Experiments on Convey system shows that our technique achieves an

average computation efficiency of 58.3%, which outperforms the optimized CPU and GPU coun-

terparts 18.2× and 27.8×, respectively.
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4.0 SPARSE CONVOLUTIONAL NEURAL NETWORKS ON FPGA

Deep convolutional neural networks (CNNs) that have a large number of parameters have broken

many performance records in image recognition and object detection applications. Recent studies

show that network sparsification can effectively reduce the model size while retaining accuracy,

which further extends the potential of CNNs. However, sparsification techniques at the algorithm

level often generate irregular network connections, resulting in low hardware implementation ef-

ficacy and marginal speedup. Many prior FPGA practices that achieved great success in dense

CNNs are not applicable to sparse models. The work presented in this paper leverages algorithm-

level sparsification techniques to relax certain constraints on the underlying hardware, leading to

a software/hardware co-design framework that achieves significant improvement in computational

performance and energy efficiency.

4.1 INTRODUCTION

Following the technology advances in high-performance computing systems and the fast growth

of data acquisition applications, machine learning achieved remarkable commercial success [51].

Particularly, convolutional neural networks (CNNs) that originate from the working mechanism of

receptive fields in visual cortex [52] broke many records in image recognition and object detection

problems [53]. The success of CNNs, to a great extent, is enabled by the fast scaling-up of network

that learns from a huge volume of data. The deployment of deep CNN models are both memory-

intensive and computation-intensive, facing severe challenges on efficient implementation.

In recent years, sparsification techniques that prune redundant connections of deep neural net-

works (DNNs) while still maintaining accuracy emerge as a promising solution to decrease the
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model size and therefore reduce the computation requirement. The approach is usually realized

at the software level: kernel weights are sparsified and then compressed to minimize the memory

footprint of CNN invocation and the use of computation units [54][55]. However, randomly remov-

ing network connections results in data misalignment so the memory accesses of the compressed

network exhibit poor locality. The increased cache misses and latency overheads could greatly

degrade the overall system performance. For example, previous sparse CNN implementations on

general-purpose computation platforms reach only 0.1∼10% of system peak performance [56],

even applying designated software libraries, e.g., MKL library for CPUs [36] and cuSPARSE li-

brary for GPUs [37]. Han et al. [57] proposed the EIE architecture for compressed networks that

reduces the parameters of fully-connected (FC) layers. As the latest CNN models adopt fewer FC

layers (e.g., only 0.4% arithmetic operations of VGG-16 from FC layers [58]), the acceleration of

convolutional (Conv) layers that involves fewer parameters but more extensive computation time

and hardware utilization becomes a critical concern.
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Figure 21: Our evaluation on AlexNet sparsity and speedup. Conv1 refers to convolutional layer

1, and so forth. The baseline is profiled by GEMM of Caffe. The sparse kernel weights are stored

in compressed sparse row (CSR) format and accelerated by cuSPARSE.

Field programmable gate array (FPGA), as an instance of domain-specific hardware, emerged

as a promising alternative for DNN accelerations [59]. In addition to the high energy efficiency,

its reconfigurability enables the customization of hardware function and organization, adapting to

various resource and data usage requirements. Prior FPGA explorations have comprehensively

studied dense CNN models [60][61][62]. However, these optimization techniques cannot be di-
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rectly applied to sparse models as the reconfigurable capabilities of FPGAs cannot be fully lever-

aged to maximize the overall system throughput, especially for Conv layers, due to the following

two difficulties: 1) Poor data locality inherited from compressed kernel weights. The irregular data

access pattern destroys the data streaming, complexing the resource allocation and optimization.

Our experiment shows that the execution of sparse CNNs greatly offsets from the theoretical ex-

pectation and sometimes incurs performance degradation. 2) Lacking of attention on the sparsity

of feature maps. Prior network compression methods mainly focus on kernel weights, but sel-

dom seek solutions for intermediate feature maps. We observed that as the weight compression

ratio increases, the uncompressed feature map further increases the requirement of memory and

computation resources.

4.2 CNN ACCELERATION AND DIFFICULTY

4.2.1 Dense CNN Acceleration

A CNN model involves intensive convolution operations between pre-trained kernel weights and

feature maps, thus takes most of the computation time on CNN inference. Early CNN accelerator

designs optimize computation engines and explore different parallelism opportunities, such as the

data-level parallelism within feature maps and convolution kernels [63], the “inter-output” and

“intra-output” parallelism [64]. These techniques reduce the total communication traffic but ignore

the data reuse patterns. So it is hard to generalize these methods to diverse networks and layer

types. Another popular approach is the memory-centric accelerators that exploit the data access

pattern of convolutional kernels [60]. These designs adopt a large on-chip memory and rely on

continuous data streaming between memory and computation units for high throughput, which

could be ruined by model compression. Quantization that decreases the degree of redundancy of

model weights has been investigated to reduce storage requirement. As an extreme case, binary

neural networks (BNNs) constrain some or all the arithmetic to single-bit values [65][66]. So

the convolution operations that require the highest computation cost can be executed by bitwise

operation kernels. However, BNNs have not demonstrated state-of-the-art recognition accuracies

on large scale ImgeNet dataset.
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4.2.2 Inefficient Acceleration of Sparse CNN

Imposing sparsity through network pruning [57] or regularization [56] can inhibit the knowledge

from big and cumbersome networks meanwhile effectively shrinking network scale, reducing com-

putational cost and alleviating bandwidth pressure. Minerva [67] developed by Reagen et al. ex-

ploits zero valued neurons on MLP for memory compression and power reduction, but not for

computation speed-up. Han et al. [57] showed that with minimal or even no loss in accuracy, a

large portion of weights can be pruned: the number of parameters of AlexNet or VGG-16 reduces

9× or 13×, respectively.

It is worthwhile to mention that this technique reduces only the parameters of FC layers, re-

sulting in 3 ∼ 4× layer-wise speedup for FC layers. No practical speedup on Conv layers was

obtained, even though convolution operations consume more than 90% of total computation time.

As latest CNN models adopt even fewer FC layers and therefore less arithmetic operations [58],

the efficient acceleration of convolutional layers becomes more important and shall be considered

in CNN accelerator design.

We note that convolution with sparse kernel does not necessarily improve the performance

on general-purpose computation platforms, due to the lack of dedicated hardware support. For

example, we tested the practical speedup of an AlexNet by adopting the widely used L1-norm
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regularization [54] and controlling the accuracy loss within 2% from the original dense model.

Figure 21 shows the performance gains of sparse Conv layers over the dense counterparts on mul-

tiple GPU platforms. The layer-wise speedups are all ¡1.5×, even applying state-of-the-art sparse

library cuSPARSE [37]. Moreover, performance degradation is observed for some layers with high

sparsity1.

4.3 THE PROPOSED DESIGN FRAMEWORK

When data from main memory is stored contiguously, the memory efficiency is maximized as every

dataset is used repeatedly in a short period of time and evicted afterwards without further refer-

ence. Implementing sparse CNN model faces with the opposite situation of irregular data accesses

throughout memory, causing execution inefficacy. Figure 22 shows our evaluation on compressed

sparse row (CSR) [68] based sparse convolution implemented within Caffe framework [58], by

varying the kernel matrix size and sparsity. As the kernel sparsity increases from 90% to 99.99%,

the performance measured by GFLOPS drops rapidly as the data movement of the compressed

kernel matrix and feature maps emerges as the major performance bottleneck.

To improve the data-locality of sparse kernel weights, we first analyze the performance mod-

eling of FPGA-based platform. The estimation starts with the lower-bound execution time of a

sparse Conv layer on an ideal architecture that has unbounded amount of hardware resources. Ini-

tially, the kernel weights (W ) and the input feature map (iF ) are stored in an external memory.

The output feature map (oF ) will be shipped out of FPGA after completing the computation. Note

that the following analysis on Conv layers also applies to FC layers as an input feature map of FC

layer is a simplified feature vector.

Assume nzW and nziF are the numbers of nonzero elements in the kernel weight and input

feature map, respectively. Most algorithms and storage formats only operate on nonzero elements

for high efficiency. A set of floating-point/fixed-point operations including one addition and one

multiplication are required for each nonzero element. The computation time required by a sparse

convolution Tcomp = 2 · nzW · nziF/P , where P denotes the number of operation sets that can

1Sparsity is denoted as the number of zero elements divided by the total number of elements.
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be completed in one second. In order to keep track of each nonzero element, indices are required

in compressed storage formats and needed to moved into FPGA’s local memories at runtime. Let

nindex represent the generated indices in total, then the I/O requirement nIO ∝ nzW+nziF+nindex.

The total memory I/O time TIO = nIO/B, where B is the available memory bandwidth. We

consider the time used to configure FPGA and perload network topology information as Tinit. Most

importantly, due to the random sparse structure of the input data, Toverhead is used to represent the

latency brought by the irregular data access pattern. The total execution time is:

T = Toverhead +max(Tcomp, TIO) + Tinit. (4.1)

The reduction of T in this work is therefore guided by three principles: (a) eliminating the latency

overheads by improving the data-locality of sparse kernel weights, (b) increasing P to enable high

parallelism while keeping hardware complexity low, and (c) maximizing the effective memory

bandwidth through network compressing with minimal index overheads.

Unlike prior acceleration frameworks that use hand-optimized templates to generate acceler-

ator implementation for pre-trained dense CNN [69][70], the object of this work is to establish a

sparse CNN design framework that can be adapted to various FPGA-based platforms. As Conv and

FC layers respectively dominate the computation requirement and model size, we impose sparsity

to both types of layers to optimize CNN model. The hardware constrains including the available

computation resource and memory bandwidth are used to guide the sparsification at the training

process, and therefore a close coordination across the software and hardware domains is realized.

Figure 23 illustrates the proposed design framework with the following features: (1) Given

a dense CNN model, the locality-aware regularization selectively removes kernel weights in a

hardware-friendly manner; (2) New sparse model is generated by taking consideration of hard-

ware constraints and the kernel weights are compressed with minimal indexing overhead; (3) An

explicit partitioning and distribution strategy is used to map the compressed kernel weights to

hardware representation; (4) The parallel execution on processing elements (PEs) and memory

sub-system promise the effectiveness of the sparse CNN acceleration. The details of the frame-

work, including the model sparsification at the software level, the hardware architecture, and the

optimization strategy shall be described respectively in Sections 4.4, 4.5, and 4.6.
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W(:,c,h,h)   Shape-wise Sparisty

W(n,:,:,:)   Filiter-wise Spasity

...

Figure 24: Kernel weights are split into pre-defined groups. A compact kernel is obtained through

the locality-aware regularization.

4.4 CNN MODEL SPARSIFICATION

This section explains how to generate a sparse CNN model under our framework, through three key

techniques—locality-aware regularization, sparse network representation, and kernel compression

and distribution. Our work considers both Conv and FC layers. The description here focuses on

Conv layers only as the sparsification of FC layers has been extensively studied.

4.4.1 Locality-aware Regularization

Considering that when all the non-zero parameters are gathered and placed within a compact space,

the latency overhead during memory access can be greatly mitigated. Inspired by the fact that

redundant connections exist across filters and within each filter [55][56][71], we adopt the group

lasso regularization to prune weights of dense CNN model by groups. In this way, the data-locality

is determined by the way of splitting groups. As illustrated in Figure 24, filter-wise and shape-wise

sparsification that respectively remove a full 3-D kernel and the weights at the same location of

each kernel are formulated.

Assume the kernel weights of each convolutional layer is formed as W(n,c,h,h), which is a

bank of N filters across C input channels. The size of each feature is H . By applying sparsity

regularization, the training optimization target is defined as:
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Figure 25: The locality-aware regularization first imposes sparsity on a pre-trained dense AlexNet,

fine-tuning is applied to retain accuracy.
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E(W ) = ED + λg ·Rg(W(n,c,h,h)), (4.2)

where ED denotes the data loss, Rg(·) is the group lasso that zeros out the weights in specific

groups. λg is the regularization constraint. Suppose W(n,:,:,:) is the nth filter and W(:,c,h,h) are

the weights located in the 2-D filter across the cth channel. Applying group lasso to W(n,:,:,:) and

W(:,c,h,h) leads to filter-wise and shape-wise sparsification, respectively. The regularizer in Eq. (4.2)

becomes λg FC ·Rg(W(n,:,:,:)) + λg Conv ·Rg(W(:,c,h,h)).

Figure 25 shows the effectiveness of locality-aware regularization when applying AlexNet on

ImageNet [72]. The AlexNet is first trained by following Eq. (4.2); the groups with all zeros are

removed once the training is converged; at the end, the network is fine-tuned to regain the accuracy.

Table 13 summarizes the average filter-wise and shape-wide sparsity of three representative CNN

models. The results show that the locality-aware regularization is able to realize both shape-wise

and filter-wise sparsification. For AlexNet, the average shape-wise sparsity of all Conv layers is

25.3% without sacrificing accuracy. By sacrificing less than 2% accuracy loss, the shape-wise and

filter-wise sparsity increases to 41.9% and 19.4%, respectively.

4.4.2 Sparse Network Representation

The convolution of feature maps and kernel weights involves intensive 3-D multiply and accumu-

late (MAC) operations. Traditional method that represents a Conv layer with a stack of 2-D images

Table 13: The average weight sparsity and accuracy of three selected CNN models after regular-

ization.

Model Layers Dataset
Shape Filter Top-1 Accuracy

Spasity Sparsity Accuracy Loss

ConvNet 4 Cifar-10 27.3% 21.7% 82.1% 0%

AlexNet 8 ImageNet 25.3% 5.4% 56.8% 0%

AlexNet 8 ImageNet 41.9% 19.4% 54.9% 1.9%

VGG-16 16 ImageNet 68.5% 3.5% 65.5% 2.8%
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is not efficient for sparse CNN due to the aforementioned irregular data pattern. In this work, we

propose to address the problem by reorganizing the input data and mapping the 3-D convolutions

to matrix multiplication operations. Both of the kernel weights and feature maps can be represent

as 2-D matrices with the following advantages:

1) Data-locality is well preserved when accessing sparse kernel weights. Figure 26 illustrates the

adopted network representation. 3D filter W(n,:,:,:) is reorganized to a row in the kernel matrix

where each column is a collection of weights W(:,c,u,v). The filter-wise and shape-wise sparsity

can directly map to the zero rows and columns.
2) The matrix representation provides a uniformed data layout and thus can be easily adopted to

different Conv layers with various input feature/kernel sizes or sliding strides. Each output

feature then corresponds to a column in the new kernel matrix which can be directly used for

normalization or pooling. However, such a representation comes with data replication as shown

in Figure 26. We develop a data reuse scheme to address the issue (see Section 4.5.4).
3) By adopting the proposed network representation, a matrix multiplication-based accelerator can

handle the operation on both Conv layers and FC layers. Compared with traditional architec-

tures, less computation resources are required to process FC layers.

4.4.3 Kernel Compression and Distribution

Kernel compression. Compression is widely used for sparse matrix storage. For example, by

keeping the relevant matrix information with additional indices to trace non-zero elements, CSR

[68] can reduce the memory requirement of a kernel matrix with nr rows and nc columns from

O(nr × nc) to O(2nnz + nr), where nnz = (1 − sparsity) × nr × nc denotes the number of

non-zeros. CSR is effective for highly sparse matrices. However, for a kernel matrix with low

sparsity, such as Conv1 and Conv2, the storage requirement of CSR-based compression is similar

to the uncompressed version. Even worse, the CSR-based matrix multiplication incurs much higher

hardware complexity.

Instead, we propose to apply a low-cost compression scheme to kernel matrices obtained from

the locality-aware regularization. As shown in Figure 26, a binary string is used to indicate the

status of the rows/columns, i.e., “0” represents an all-zero row/column while “1” denotes one with

dense data. Figure 27 visualizes the data layout of Conv3 layer in AlexNet. The compressed kernel
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matrix in Figure 27(c) is generated from Figure 27(b) that applies the locality-aware regularization.

Utilizing the random pruning by L1-norm regularization [54], however, produces an irregular data

layout as shown in Figure 27(a), which requires heavy indexing for compression.

We compare the execution performance of our approach and the CSR-based compression on

matrices obtained by applying the locality-aware regularization on AlexNet. Figure 28 shows the

performance variance when increasing the number of cores deployed in Intel Xeon E5-2630 CPU.

Our compression scheme shows a strong scaling feature—the performance measured by GFLOPS

increases linearly till the memory bandwidth gets saturated. The performance of our compression

is approximately 1.25× over that of the CSR-based implementation.

Matrix blocking and distribution. We partition the compressed kernel matrix into sub-blocks

to enable parallel matrix multiplication. Each sub-block, with a size of Sc × Sc, is processed

independently by a PE regardless of the size of the original kernel matrix (see Section 4.5). As

illustrated in Figure 26, the matrix multiplication is accomplished by repeatedly sliding a Sc × Sc
window column-wise in the compressed kernel matrix and row-wise in the input feature matrix,

resulting in Sc × Sc elements in the output feature matrix.
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Figure 28: Our string-based compression balances computation and memory, showing a strong

scalability.
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When the dimension of an original input matrix is not a multiple of Sc, zero padding is needed

for the matrices of convolution layers. Suppose that there are Sp PEs instantiated in the system and

each PE performs Sc parallel MAC operations. Increasing the size of sub-blocks helps improve

throughput as it fetches a larger number of inputs to the local memory and performs computations

without waiting for external data. However, the execution time could be prolonged if the zero-

padding is excessive. An appropriate combination of Sc and Sp to maximize the overall system

throughput needs to take the hardware constraints into the consideration. The related discussion

shall be presented in Section 4.6.2.

4.5 HARDWARE IMPLEMENTATION

4.5.1 The System Architecture
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Figure 29: The system architecture overview of the FPGA-based sparse CNN accelerator.

Figure 29 gives an overview of the proposed system architecture designed to implement sparse

CNNs effectively. The design is deployed on a single FPGA and uses DRAM as external stor-

age. A systolic array of uniformed PEs are the main computation power of the accelerator. The
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global control unit initialize the accelerator and distribute kernel weights and feature maps to PEs

at runtime. The data from/to the external memory is handled by a multi-port DMA streaming en-

gine. The optimal number of PEs is determined by the available hardware resource and memory

bandwidth of the FPGA board.

Each PE takes a subset of the overall computation by following the distribution strategy ex-

plained in Section 4.4.3. The PE controller sets up registers according to the received configuration

instructions, then enables Data Fetcher to load vector arrays of an input feature map into Feature

Map Bank at runtime. When streaming a sub-block of the compressed kernel matrix, Weight Buffer

insures the continuity of DMA service. The PE integrates ReLU activation and Pooling function.

4.5.2 The PE Optimization

To obtain the full computational throughput, we propose three techniques to enhance the pipeline

structure of PE and minimize the latency overhead.

Removing the carried dependency. As shown in Algorithm ??, a matrix multiplication is

usually implemented with 3 nested loops. The inner-most loop Product performs MAC operation

where each iteration takes 2 clock cycles. When pipelining the nested loops, Vivado HLS auto-

matically applies the loop flattening – collapsing the nested loops, removing the loop transitions

and mapping arrays w, iFM and oFM into block RAMs (BRAMs). Loop Product cannot achieve

1-cycle pipeline interval due to the carried dependency—a dependency between an operation in

0 1 2

0 1 2 0 1 2 0 1 2

0 1 20 1 2 0 1 20 1 2 0 1 20 1 2 0 1 20 1 2 0 1 20 1 2 0 1 20 1 2 0 1 20 1 2 0 1 20 1 2 0 1 20 1 2

00 01 0200 01 02 00 01 0200 01 02 00 01 0200 01 02 10 11 1210 11 12 10 11 1210 11 12 10 11 1210 11 12 20 21 2220 21 22 20 21 2220 21 22 20 21 2220 21 22

00 10 2000 10 20 01 11 2101 11 21 02 12 2202 12 22 00 10 2000 10 20 01 11 2101 11 21 02 12 2202 12 22 00 10 2000 10 20 01 11 2101 11 21 02 12 2202 12 22

00 00 0000 00 00 01 01 0101 01 01 02 02 0202 02 02 10 10 1010 10 10 11 11 1111 11 11 12 12 1212 12 12 20 20 2020 20 20 21 21 2121 21 21 22 22 2222 22 22

Row i
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Product k

w(k, j)

iFM(i, k)

oFM(i, j)

Figure 30: The address access pattern during matrix multiplication within one PE.
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one iteration of a loop and another operation in the following iteration of the same loop. During

pipelined MACs, the write to BRAM port for oFM in the first iteration is still on-going when the

second iteration tends to apply another address for a read operation. Since the two requests are

located to different addresses, they cannot be applied to a BRAM simultaneously. In this loop, we

use a temporary variable (tmp) for the accumulation. The BRAM port is only be written when the

final result is computed and therefore the carried dependency in loop Product is removed.

Improve data parallelism. We unroll inter-loop Col so that Sc rows of a column from w can

be processed at a time. A dual-port BRAM provides up to two ports. So accessing w or iFM

through a single BRAM cannot read all values in one clock cycle due to the lack of sufficient ports.

As the loop index for loop Product is k, both matrices should be partitioned along their respective

dimensions. More specifically, w is on column-wise because its access patterns is w(k, j) while

iFM is along row-wise. Partitioning a matrix creates Sc arrays, meaning Sc BRAM ports for the

unrolled loop Col.

A data streaming interface. To enable a streaming interface, data must be accessed in a

sequential order. Figure 30 illustrates the I/O access pattern of the matrix multiplication in our

design, assuming Sc = 3. The addresses to read w and iFM and write to oFM change as variables

i, j and k iterate. In our design, only those ports in dark color will be accessed by following the

illustrated sequence. The streaming data are cached internally to avoid repeated reading and the

computation result of oFM is streamed out in a continuous pace.

Table 14: The average sparsity and replication rate of the input feature maps of Conv layers in

AlexNet.

Layer Conv1 Conv2 Conv3 Conv4 Conv5

Sparsity 0% 18.9% 25.1% 35.3% 32.4%

Replication Rate 7.2× 6.1× 2.1× 9.0× 9.0×

67



4.5.3 Zero Skipping for Computation Efficiency

The matrix representation of convolution operations facilitates not only the static sparsity of kernel

weights, but also the dynamic sparsity of input feature maps. Table 14 shows the sparsity of

the input feature maps propagated along Conv layers in AlexNet. Since the sparsity structure

varies with different images, the result is averaged over 50,000 validating images from ImageNet.

Without applying any sparsification technique, the feature maps already demonstrate sparsity and

it increases with the depth of layers. This is because the kernel in the first layer are essentially the

detectors of edges and lines obtained from a dense image in real-world scenes. As networks going

deeper, the concepts represented by feature maps become more abstract—from edges and lines, to

shapes and object parts that demonstrate higher sparsity.

The dynamic sparsity of feature maps inspires the thought of skipping the computation of

those non-zeros in w associated with zero elements from iFM . Albericio et al. proposed to index

each non-zero with an offset for this purpose [73]. Similar to the compression of kernel weights,

augmenting indices increase the on-chip storage requirement. We proposed a dynamic hardware

approach which actively skips over zero parameters in the array of iFM , by adding a conditional

statement in line 10 of Algorithm. As w is streamed in and iFM is loaded into Feature Map Bank

in a PE, the matrix multiplier selectively pulls the pair out of their respective BRAMs and conducts

multiplication. During synthesis, we found this conditional statement only incur an initial latency

of 4 ∼ 5 clock cycles, which can be amortized by the data streaming.
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Figure 31: The data reuse pattern of feature map.
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4.5.4 Data Reuse to Improve Effective Bandwidth

Converting 3-D convolution down to 2-D matrix multiplication (see Section 4.4.2) is effective

for sparse CNN accelerations. The data reorganizing process will not incur replication of kernel

weights and is able to keep the number of computation the same as traditional convolution. How-

ever, additional storage for feature maps increases the number of off-chip memory accesses. In

Table 14, our exploration on AlexNet shows that the unfolding of a feature map introduces 2 ∼ 9×

additional data.

We analyze the data access pattern of iFM . Figure 31 depicts an example when the kernel

size is 3 and the stride equals to 1. As the filter kernel slides and performs the inner-products over

a feature map, row i + 1 of iFM is formed by shifting row i forward and updating three nearest

elements. Data Fetcher is designed to load elements of iFM according to the data access pattern.

This is a logic unit that implements the mapping process. The input is the location of elements

in iFM updated by Feature Map Bank. The output is the corresponding address in the external

memory. All the parameters to compute the address are set by Gloable Control Unit, including

the kernel/feature size, channel number and the address of the first feature map. The addresses

are generated as a stream after a latency of 24 clock cycles. Thus, iFM is reorganized on chip,

off-chip memory only stores the data in the form of original input feature maps.

As the computation unit is driven by the operands streaming from Feature Map Bank and

Weight Buffer, Data Fetcher is placed between Feather Map Bank and the system bus. We use

the double buffering technique to overlap the fetching and computing. When Data Fetcher loads

a block from one feature map, the next prefetch is being loaded into the other pre-prefetch buffer.

As the computation unit is accessing one block of Feature Map Bank, Data Fetcher continues its

loading to the other pre-fetching buffer.

4.6 HARDWARE SPECIFIC OPTIMIZATION

This section discusses the design trade-offs when mapping sparse CNNs to specific FPGAs. The

proposed optimization techniques take consideration of the hardware constrains and sparsity struc-

ture of each layer.
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Figure 32: The trade-off between computation requirement (a) and model size (b) under different

sparse regularization on Conv and FC layers of AlexNet. Conv 1 with low sparsity is omitted in

(b).

4.6.1 Design Trade-offs on Cross Layer Sparsity

As Conv and FC layers respectively dominate the computation and model size, controlling the

sparsity of these two types of layers is critical in performing trade-offs between classification speed

and storage requirement. When targeting similar accuracy loss from sparse models, we find that

applying the same regularization constraints across all the layers usually leads to a higher sparsity

on FC layers but lower sparsity on Conv layers. In other words, the convolution computation is the

main bottleneck. A small increase in parameter number of FC layers helps speedup Conv layers

and optimize the speed/size of sparse CNN implementations. This trade-off can be obtained by

applying different regularization constraints to Conv (λg Conv) and FC (λg FC) layers in Eq. (4.2).

Figure 32 shows how the balancing affects the trade-off between speedup (a) and model size (b)

on AlexNet. In the experiment, we control the balance by setting λg Conv and λg FC respectively.

The proposed optimization is determined by θ = λg Conv/λg FC . For instance, θ > 1 indicates
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stronger regularization on Conv layers than FC layers. The trained sparse model will be suitable

for the performance-oriented FPGA implementation. Setting θ < 1 leads to a sparse model for the

storage-limited implementation.

4.6.2 Hardware Constraints

Ideally, the computation of a sparse CNN reaches its ultimate performance when the number of

PEs Sp →∞with a memory hierarchy that is able to feed data at any time without delay. Although

a large Sp is preferred theoretically, there is an optimal range of Sp, which is mainly determined

by the available on-chip computation resource and memory bandwidth.

The number of MACs. As exclusive compute elements in performing matrix multiplication,

MACs are mainly implemented using dedicated DSP blocks. Assume rmac units of resource are

needed to construct a single MAC and Sc MACs for the inner parallelism of a PE, the number of

PE is limited by R
rmac·Sc

if R DSPs are available on chip.

The effective BRAM space. Although FPGAs provide a certain amount of BRAM (e.g.,

19.1Mb in Xilinx Zynq XC7Z045 used in this work), not all of them are available for user appli-

cations. Excluding the portion for interfacing to memory and other support functions, α ·M can

be used for implementing Weight Buffer and Feature Map Bank. Since the compressed network is

partitioned into many sub-matrices with a block size of msub, Sp cannot exceed αM
msub·DW

, where

DW denotes the data width.

The memory bandwidth to off-chip DRAM. Both of kernel weights and feature maps are

initially stored in off-chip memory and streamed into PEs during computation. The achievable

Tcomp should not be less than TIO, otherwise implementing more PEs will incur low computation

effiency. According to the performance analysis in Section 4.3, Sp should be set within Ncomp·B
Sc·NIO

.

These constraints from hardware platform shall be taken into consideration during the matrix

partitioning. A reasonable number of PEs therefore is determined by

Sp =
⌊
min(

R

rmac · Sc
,

αM

msub ·DW
,
Ncomp ·B
Sc ·NIO

)
⌋
. (4.3)
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4.7 EVALUATION

In this section, we present the experimental results of the proposed design framework for CNN

sparsification and acceleration. A layer-by-layer evaluation is set to validate the performance

speedup. We also compare our design to the well-tuned CPU/GPU implementations and state-

of-the-art FPGA-based CNN accelerators.

4.7.1 Experimental Setup

Benchmarks. To demonstrate the generalization of the proposed design framework, we implement

ConvNet [74] on Cifar10 [75], AlexNet [58] and VGG-16 [76] on ImageNet classification [74].

The CNN models are trained under the performance-oriented optimization goal by setting θ = 10.

Rather than conventional 32-bit floating-point format, 16-bit fixed-point format is used to represent

weight data, the effectiveness of which has been validated by previous study [61].

Table 15: Configuration of different platforms

Platform
NVIDIA Intel Xeon Xilinx Xilinx

Tesla K40c E5-2630 v3 ZC706 VC707

Technology 28nm 22nm 28nm 28nm

Optimizations cuSPARSE MKL HLS HLS

# of Cores 2880 8 24×16 24×32

Mem. Bandwidth 288GB/s 59GB/s 4.2GB/s 12.8GB/s

Feq. (Hz) 745M 2.4G 150M 150M

Power (W) 235 85 8.9 13.5

Peak Perf. (GOPS) 4290 307.2 115.2 230.4

Pratical GOPS 536.1 68.7 71.2 131.2

FPGA setup. The CNN accelerator is designed with Vivado HLS 2016.4. This tool initializes

the implementation with C language and then exports the RTL as an IP core. Fast C/RTL co-

simulation is used for design space exploration and performance estimation. After the placement
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and routing with Vivado 2016.4, the chip operates at 150 MHz. Table 16 summarizes the resource

utilization of our implementation on Xilinx ZC706 (Zynq XC7Z045 w/ 900 DSPs) and VC707

(Virtex 485T w/ 2800 DSPs).

CPU/GPU setup. The software implementation runs with Caffe framework [74]. To adapt to

sparse CNNs, the evaluation is optimized with the off-the-shelf libraries, i.e., MKL/cuSPARSE on

CPU/GPU, respectively. The configuration details are summarized in Table 15.

Table 16: Resource utilization on FPGA

FF LUT DSP48E BRAM

ZC706 116,902 (26%) 68,446 (83%) 774 (86%) 498 (91%)

VC707 289,940 (47%) 104,274(34%) 1572 (56%) 795 (75%)

4.7.2 Layer-by-Layer Performance

Accelerating Conv layers is the key to an efficient sparse CNN implementation. So we first evaluate

the performance of Conv1∼Conv5 in the representative AlexNet and report the results in Table 17.

The sparse kernel is compressed according to shape-wise and filter-wise sparsity. Based on the

performance and resource utilization model in Section 4.6.2, we implement 16 and 32 PEs on the

two FPGA platforms, respectively. Each PE executes 24 16-bit fixed-point MAC operations per

cycle. The practical GOPS performance denotes the ratio of the total sparse operations over the

entire runtime. The computation efficiency represents the ratio of the practical performance over

the peak performance.

Across all the sparse Conv layers, our accelerator achieves an average performance of 148.7

GOPS with a computation efficiency of 64.5% on VC707. Slight performance decline on Conv3

and Conv4 is observed. This is because these two layers have higher sparsity and the compressed

kernel matrix is too small to be distributed into multiple PEs. Averagely, compared to the well-

tuned CPU and GPU implementations, our FPGA implementation on VC707 improves computa-

tion efficiency 1.8× and 4.7×, respectively.

We also quantitatively analyze the performance gains of the proposed optimizations and report

the results in Figure 33. The kernel compression leads to the most significant speedup—an average
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Figure 33: The performance is evaluated by applying the proposed optimizations and compared

with the dense model. The sparse model is compressed first, then adds zero skipping and data

fetcher, respectively.

2.7× over the dense model. After considering the dynamic sparsity of feature maps, the zero

skipping technique improves the speedup to 3.4×. When the data replication rate of feature map

is high, such as Conv1 and Conv5, the performance bottleneck shift from computation to memory

bandwidth. Data Fetcher helps to relieve the bandwidth pressure.

4.7.3 End-to-End System Integration

Table 15 presents the overall performance of sparse CNNs on various platforms. The through-

put on our FPGA design is compared with Caffe running on CPU and GPU. The results show

that the CPU implementation is inferior in both performance (68.7 GOPS) and energy efficiency

(0.81 GOPS/W). Averagely, our accelerator design on VC707 achieves 1.9× speedup on the sparse

model compared with the CPU implementation. Among all the platforms, the GPU implementa-

tion provides the best performance for its high clock frequency and large memory bandwidth. Our

design provides the highest energy efficiency of 9.7 GOPS/W, 12.1× and 5.1× over CPU and GPU

implementations, respectively.

To validate the effectiveness and scalability of our design framework, we test three CNNs

models—ConvNet, AlexNet and VGG-16, the layer numbers of which increase from 4 to 16. The

detailed layer-by-layer analysis in Figure 34 shows that the CNN models optimized by our design

framework can always deliver performance gain over its dense counterpart. Our design framework
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Table 18: Comparison to previous FPGA works

FPGA-15 FPGA-16 This FPGA-16 ICCAD-16 This

[60] [62] Work [61] [70] Work

Model AlexNet VGG-16

FPGA Virtex7 Stratix V Zynq Zynq Virtex7 Virtex7

Chip 485T GSD8 XC7Z045 XC7Z045 690T 485T

Precision 32 float 16 fix 16 fix 16 fix 16 fix 16 fix

Top-1 Acc. - 55.41% 54.84% 64.64% - 64.82%

CNN Size 1.33 1.45 0.48 30.94 30.94 6.03

ms/Image 21.7 20.1 6.7 224.6 65.1 45.9

Practical
61.6 72.4

71.2
136.9 354

131.2

GOPS (215.1§) (673.1§)

§The projected GOPS to the corresponding dense model.

preforms better on deeper networks (e.g., VGG-16) because small models tend to preserver more

weights to maintain recognition accuracy. Compared to CPU/GPU implementations, our FPGA

design obtains much higher speedups, benefiting from the proposed hardware innovation.

Table 18 compares our design with prior FPGA-based CNN accelerators for AlexNet and

VGG-16. Our design takes advantages of the sparse structure of CNN models and achieves 2.6×

speedup in classification runtime over [62] on AlexNet. Compared to [70], our implementation of

VGG-16 runs 1.9× faster at a practical performance of 131.2 GOPS, which corresponds to 673.1

GOPS of a dense model.

4.8 CONCLUSIONS

In this work, we present an FPGA-based design framework for CNN sparsification and accelera-

tion. The optimization is realized across the software-hardware boundary: first, the CNN model
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is sparsfied by taking consideration of the data-locality and then compressed to save the memory

footprint. The hardware architecture is organized to well handle the compressed data format from

the software level. The cross-layer optimization strategy is proposed to adapt the framework to dif-

ferent FPGA platforms. Working directly on the sparse model makes our design achieve efficient

acceleration with minimal power dissipation.
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5.0 RELATED WORK

Hardware accelerators with high parallelism and scalability are critical for deploying deep learning

models with large data sets. As aforementioned in previous chapter, the basic operations of a DNN

can be generally divided into two types: training and inferencing, which program the weights of

the NN and perform the functions of the DNN, respectively.

GPU is the most popular computing platform for DNN applications. On GPU platforms, com-

putations of connected layers are mapped to matrix operations; General Matrix-Matrix multiplica-

tion (GEMM) is serving as the core of DNN training and inferencing, in which are large matrices

of input data and weights are multiplied. GPU processes data in SIMT (single-instruction multiple-

threads) fashion by using centralized control of a large number of paralleled ALUs. The ALUs,

however, fetch data from memory hierarchy but do not directly communicate with each other [77].

Very recently, the latest NVIDIA Volta GV100 architecture is equipped with Tensor Cores for deep

learning matrix arithmetic. Each Tensor Core performs 64 floating point mixed-precision opera-

tions per clock (FP16 input multiply with full-precision product and FP32 accumulate, as shown in

Figure 35) and 8 Tensor Cores in a streaming multiprocessor perform a total of 1024 floating point

operations per clock. The introduction of Tensor Cores in Tesla V100 GPU boosts the performance

of GEMM by more than 9× compared to the previous Pascal-based GP100 GPU.

A common practice nowadays to speed up the DNN training on a single node GPU is using

mini-batch stochastic gradient technique [78], which is known to be difficult to parallelize over

multiple nodes. Hence, asynchronous stochastic gradient descent learning is proposed for large-

scale GPU clusters [79], where multiple replicas of the gradients on different subsets of the training

data are processed in parallel. Although each replica computes the gradients using the parameters

that may not be immediately updated, such a scheme demonstrates a good tolerance to the errors

generated in the asynchronous computations [80].
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Figure 35: Volta GV100 Tensor Core operation.

Further improvements of computation and power efficiencies of DNN applications require the

use of specialized circuits like ASIC (application-specific integrated circuit) accelerators [81] by

paying the price of high non-recurring engineering cost, long design period, and less design flexi-

bility. Most of such implementations focus on accelerating the operations of matrices and vectors:

CNAPS [82] was designed in SIMD fashion with an array of 16 × 8 multipliers for matrix multi-

plications. Synapse-1 system [83] used systolic multiply-accumulators (MACs) with custom hard-

ware to perform activation functions. The recent DianNao series focuses on optimizing memory

access pattern in DNN applications and minimizing memory accesses to both on-chip memory and

external DRAM with architectural support [84]: The original DianNao [2] implements an array of

64 16-bit integer MACs to map large DNN for computation acceleration (see Figure 36). How-

ever, due to the limited on-chip memory capacity, DRAM traffic of accessing weight parameters

dominates the system energy consumption. DaDianNao [85] and ShiDianNao [86] eliminate the

DRAM access by storing all weights on-chip on either eDRAM or SRAM.

Googles datacenters recently deployed Tensor Processing Unit (TPU) that accelerates the in-

ference of neural networks [3]. The kernel of the TPU is a 65,536 8-bit MAC matrix multiply

unit that provides a peak throughput of 92 TOPS and 28 MB software-managed on-chip memory.

Figure 37 shows the block diagram of the TPU. Because the data access to memory consumes

much more power than arithmetic units, the matrix unit uses systolic execution to save energy by

reducing reads and writes of the Unified Buffer.

Enforcing sparsity through network pruning or regularization can extract the knowledge from
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Figure 36: The layout of DianNao [2].

big and cumbersome networks meanwhile effectively shrinking the density and/or scale of the net-

works, reducing computational cost, and alleviating bandwidth limit. The EIE architecture [57]

performs inference on compressed network model and accelerates the resulting sparse matrix-

vector multiplication by weight sharing. With only 600mW power consumption, EIE can achieve

102 GOPS processing power on a compressed network that is equivalent to 3 TOPS/s on an un-

compressed network. It translates to 24000× and 3400× energy efficiency of CPU and GPU,

respectively [87].

A good balance between the high efficiency of ASICs and the generality of general-purpose

microprocessors is programmable logic [88]. FPGA (field programmable gate array), for example,

is a good candidate for DNN acceleration with necessary tailoring.

FPGA-based DNN accelerators exploit the computational concurrency with strong adaptability

to the changes of weights and network topologies. Using the popular CNN model as an example, its

FPGA-based accelerators can be categorized into two groups: the first group [63][89][64] focuses

on optimizing computing engines. An early design uses systolic architecture to realize filtering

convolution and has been used in some embedded systems for automotive robots. Two later de-

signs explore the parallelism within feature maps and convolution kernel [63][89]. The latter one
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Figure 37: Block diagram of Googles Tensor Processing Unit [3].

[64] also leverages inter-output and intra-output parallelism with high bandwidth and dynamical

configurations to improve the performance. The second group focuses on data communication

limit and choose to maximize date reuse and minimize bandwidth requirement. Some designs

need considerably long time (e.g., tens seconds) to prepare the FPGA for the computation of the

next layer while other designs [60] only take less than a microsecond to configure a few registers.

Computation cost and memory bandwidth consumption need to be balanced in practical FPGA

implementations.
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6.0 CONCLUSION AND FUTURE WORK

When addressing the hardware needs of deep neural networks, FPGAs provide an attractive alter-

native to GPUs and GPPs. In particular, the ability to exploit pipeline parallelism and achieve an

efficient rate of power consumption give FPGAs a unique advantage over conventional hardware

accelerators for common deep learning practices. As well, design tools have matured to a point

where integrating FPGAs into popular deep learning frameworks is now possible. In this disser-

tation, we also demonstrate, by applying the proposed software-hardware co-design, FPGAs can

effectively accommodate the trends of deep neural networks and provide architectural freedom for

exploration and research.

The future of deep learning on FPGAs, and in general, is largely dependant on scalability.

For these techniques to succeed on the problems of tomorrow, they must scale to accommodate

data sizes and architectures that continue to grow and the deployment on hardware with different

configurations. Another avenue for improving DNN efficiency is to use more compact data types.

Many researchers have shown [61][90] that it is possible to represent data in much less than 32-

bits, demonstrating the use of 8-4 bits (depending on the network) leads to only a small reduction

in accuracy compared to full precision. Data types which are more compact than 32-bit single

precision floating point are becoming the new norm. As an evidence of this, the latest GPUs are

providing native support for FP16 and Int8 data types. Moreover, popular DNN frameworks, such

as TensorFlow, provide support for such data types as well. Interestingly, very recently, research on

binarized neural networks (BNNs) [91][92] investigates the use of 1-bit data types, by constraining

values to +1 or -1. The most efficient variant of BNNs proposes using 1-bit for both neurons as well

as weights. The brilliance of doing this is that not only is the storage size and bandwidth demand

dramatically lower (32× smaller than FP32), but the computation of 1-bit multiply-accumulate can

be done without multiplications or additions. BNNs have comparable accuracies to state-of-the-art
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full precision networks for small datasets (e.g., CIFAR10). However, the BNN accuracy on larger

datasets (e.g. ImageNet) has not yet been realized. Nevertheless, BNN research is very active

and rapidly advancing. Ternary neural networks (TNNs) [93] are another class of network that

proposes extremely low bit-width. TNNs constrained weight values to 0, +1, or -1, which can be

represented in 2 bits. Recently [94], TNNs have been shown to provide comparable accuracy on

ImageNet, within 1% of full-precision ResNet-152, which is the latest ILSVRC winner. However,

such TNNs still rely on FP32 neuron values. Thus, the multiply-accumulate computations are done

between FP32 neurons and 2-bit weights.

The other trend is in optimizations using mathematical transforms. In particular, Winograd

transformation [95] has been shown to be amenable to small DNN filters (e.g., 3 × 3) that are

common in state-of-the-art DNNs. Fast Fourier Transforms (FFTs) have also been shown to be

amenable for larger filters (5 × 5 and above), which are still used in some DNNs. FPGAs have

been known to be an efficient platform for FFTs [96], and one could expect that they would be

well-suited for Winograd transformations as well. These transforms are often computable in a

streaming data fashion and involve an arbitrary set of mathematical operators. And, there are many

possible transformation parameters that lead to different compositions of mathematical operators.

Such computation properties (arbitrary composition of operations on streaming data) are likely to

be amenable to FPGAs.
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