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With recent advances in data technology, large amounts of data of various kinds and from

various sources are being generated and collected every second. The increase in the amounts

of collected data is often accompanied by increase in the complexity of data types and objects

we are able to store. The next challenge is the development of machine learning methods

for their analyses. This thesis contributes to the effort by focusing on the analysis of one

such data type, complex input-output data objects with high-dimensional multivariate binary

output spaces, and two data-analytic problems: Multi-Label Classification and Conditional

Outlier Detection.

First, we study the Multi-label Classification (MLC) problem that concerns classification

of data instances into multiple binary output (class or response) variables that reflect differ-

ent views, functions, or components describing the data. We present three MLC frameworks

that effectively learn and predict the best output configuration for complex input-output

data objects. Our experimental evaluation on a range of datasets shows that our solutions

outperform several state-of-the-art MLC methods and produce more reliable posterior prob-

ability estimates.

Second, we investigate the Conditional Outlier Detection (COD) problem, where our goal

is to identify unusual patterns observed in the multi-dimensional binary output space given

their input context. We made two important contributions to the definition and solutions

of COD. First, by observing a gap in between the development of unconditional and con-

iv



ditional outlier detection approaches, we propose a ratio of outlier scores (ROS) that uses

a pair of unconditional scores to calculate the conditional scores. Second, we show that by

applying the chain decomposition of the probabilistic model, the probabilistic multivariate

COD score decomposes to a set of probabilistic univariate COD scores. This decomposition

can be subsequently generalized and extended to a broad spectrum of multivariate COD

scores, including the new ROS score and its variants, leading to a new multivariate condi-

tional outlier scoring framework. Through experiments on synthetic and real-world datasets

with simulated outliers, we provide empirical results that support the validity of our COD

methods.
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1.0 INTRODUCTION

With recent advances in data acquisition and storage technologies, vast amounts of data

of various kinds and from various sources are being generated and collected every second.

The increase in the amounts of collected data is often accompanied by the increase in the

complexity of data types and objects we are able to store: univariate time series data are

being replaced with multivariate time series, low-dimensional data objects are becoming

high-dimensional, input-output data pairs for classification tasks include multiple (not just

one) class labels, etc. All these prompt the development of new data analytic and machine

learning solutions that are scalable to these new types of data and capable of overcoming

the new complexity challenges.

This thesis focuses on the development of analytic methods for one such data type:

complex input-output data objects with high-dimensional multivariate binary output spaces.

The input-output data objects are typically used for classification and annotation purposes

and a large number of data analytic and modeling algorithms have been developed over many

years to solve them. However, the majority of them assume that data instances are linked to

simple (univariate) class variable. Much less research and solutions are available when data

objects are associated with multiple class variables. Examples of real-world problems when

data objects come with multiple class variables are:

• Document topic classification: In text classification, a document can cover multiple

predefined topics [Kazawa et al., 2005, Zhang and Zhou, 2006]. For example, a news ar-

ticle may belong to politics and economics. As in the image/video classification example,

these topics can be represented by a set (vector) of mutually non-exclusive indicators.

• Semantic image/video analysis: In image (or video) analysis and classification, an
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Figure 1.1: Data objects with multiple output variables.

image (or video) can be annotated with multiple tags [Boutell et al., 2004, Qi et al.,

2007a]. For example, an image can be tagged with bird, cloud, and sky. Typically, such

annotations are defined by an indicator vector, where each element represents a keyword.

• Music emotion recognition: In detecting emotions from music, each time-varying

music feature sequence is labeled with combinations of different emotions such as happy,

sad, angry, calm, and so on [Trohidis et al., 2011, Kim et al., 2010]. Given a predefined

set of emotions, the labels can be coded as a binary vector where each element represents

an emotion class.

• Gene functional annotation: In gene functional analysis, a single gene may be as-

sociated with several functionalities, which can be represented as a vector of functional

class variables [Clare and King, 2001, Zhang and Zhou, 2006].

• Medication prescriptions in electronic health records (EHR): In hospitals, a

patient may receive multiple medications in a prescription. Such records of medication

orders can be expressed in a vector where the elements denote whether individual medi-

cations are ordered or not [Hauskrecht et al., 2007, Hauskrecht et al., 2010, Hauskrecht
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et al., 2013, Hauskrecht et al., 2016].

The main goal of the thesis is to develop computational methods that find data ob-

jects with abnormal (unusual) input and output associations in the above described data

collections. There are two fundamental questions that arise in addressing this goal:

Question 1 - Representation or definition of normality: For given input-output data

objects, how should one obtain the representation or definition of normal (usual) data?

Question 2 - Measures of abnormality: Given a representation/definition of normal

data, how should one measure and identify the abnormality of individual data object?

To answer the questions, we hypothesize that we can adopt machine learning approaches

to build statistical models representing the input-output patterns of the population and, in

turn, that we can utilize the resulting representation to analyze data objects for abnormalities

by assessing normalcy or deviation from expected patterns. Accordingly, our data analytic

and algorithm development work in this thesis will focus on the following two problems that

are defined on data with multivariate binary output:

1. Multi-Label Classification which is pertinent to the question of how to learn and

predict the best output (response) from complex input-output data. We study existing

solutions to the multi-label classification problem and investigate ways to acquire more

accurate and efficient data representations.

2. Conditional Outlier Detection which is concerned with how to identify unusual out-

put patterns in multivariate conditional data. To our knowledge, no precedent work has

focused on this specific research problem. We conduct an exploratory study to formalize a

definition of conditional outlier detection and propose effective solutions to the problem.

Below we briefly introduce the two problems and our solutions.

1.1 MULTI-LABEL CLASSIFICATION

In the traditional supervised learning scenarios, each data instance (represented by an input

vector) is assumed to be associated with a single class label (output). Accordingly, the
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process of learning from data to predict class labels can be described as seeking unidirectional

dependence relations from input to output. When it comes to data with high-dimensional

multivariate output, however, the same approach may not properly address the task because

of the following properties of the data: (1) each output variable is not only dependent on

input, but also dependent on other output variables – e.g., in the semantic image analysis

example above, knowing that an image is tagged with bird may increase the possibility of the

image being tagged with sky – and (2) the number of all possible output combinations grows

exponentially to the output dimensionality – e.g., in the document classification example,

if the number of all topics is d, the number of all possible topic combinations is 2d. These

properties apparently make the classification task larger and harder. More specifically, to

learn a classifier, one has to capture the dependences in both input-output and output-

output relations. To predict the best output, one has to evaluate exponentially many label

configurations. Consequently, to effectively perform classification on data with multivariate

output, more sophisticated yet efficient supervised learning methods are required.

The problem of classification on data with multiple binary class variables, which reflect

different views, functions, or components describing the data, is often referred to in the

literature as Multi-label Classfication (MLC) [Tsoumakas et al., 2010, Zhang and Zhou,

2013]. The goal of MLC is to learn a function from data that assigns to each data instance,

represented by a continuous feature vector (input), a binary vector of class labels (output).

Early MLC methods [Clare and King, 2001, Boutell et al., 2004] assumed that all class

variables are conditionally independent of each other, and learned individual classification

functions to predict each output dimension separately. Obviously, this does not suffice to

address the MLC problem, because the methods ignore all dependences among different

class variables. Realizing the deficiency of the early solutions, a number of approaches have

been developed and proposed to better model the relations among class variables. These

include the methods using two levels of classifiers [Godbole and Sarawagi, 2004, Cheng

and Hüllermeier, 2009], multi-label extension of the k-nearest neighbor algorithm [Zhang

and Zhou, 2007], error-correcting output coding approach [Hsu et al., 2009, Zhang and

Schneider, 2012], classifier chains methods [Read et al., 2009, Dembczynski et al., 2010],

multi-dimensional Bayesian networks [van der Gaag and de Waal, 2006, Bielza et al., 2011],
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etc. However, each of the solutions has its own limits in terms of either optimality or

complexity and scalability.

In this thesis, we present three MLC frameworks that effectively learn and predict the

best output from complex input-output data objects. In the first solution, we assume that

dependences among class variables are restricted and follow a directed tree structure. The tree

structure can represent limited dependence relations in the output space, where each output

variable can be conditioned (dependent) on at most one other output variable (its parent in

the tree). The benefit is that this restriction lets us define efficient learning and prediction

methods. We develop a learning algorithm that efficiently discovers the optimal tree structure

from a pairwise conditional dependence analysis, and a linear-time prediction algorithm that

finds the best class labels for a given input. We implement the ideas using a special Bayesian

network, whose conditional distributions are defined using a set of probabilistic classifier

functions. We refer to the model as Conditional Tree-structured Bayesian Networks (CTBN;

Section 3.2).

Though the tree-structure assumption facilitates efficient learning and prediction in the

CTBN framework, yet it may restrict a full recovery of the underlying dependence relations

especially when the true dependences do not follow a tree. To alleviate this, we propose and

build a mixture ensemble framework for MLC that leverages the computational advantages

of CTBN and the abilities of mixtures that compensate for the tree-structure restrictions.

In particular, we extend the Mixtures-of-Trees [Meilă and Jordan, 2000] framework, which is

originally a generative framework that models multi-dimensional discrete data, to incorporate

multiple CTBNs as its base models. Consequently, our mixture can learn various dependence

relations, which a single tree-structured model cannot capture, and combine them to make

ensemble predictions that achieve a higher predictive accuracy. Our second MLC solution is

referred to as Mixtures-of-Conditional Tree-structured Bayesian Networks (Section 3.3).

Lastly, we further refine the above mixture solution by allowing the base MLC models to

have different structural assumptions other than a tree (e.g., chain [Read et al., 2009]). Using

the Mixtures-of-Experts [Jacobs et al., 1991] framework, our approach captures different

input–output and output–output relations that tend to change across data. As a result, we

can recover a rich set of dependence relations that a single MLC model cannot capture due to
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its modeling simplifications. We refer to this last solution as Multi-Label Mixtures-of-Experts

(Section 3.4).

Note that our MLC solutions presented in this thesis are based on the structured proba-

bilistic graphical models [Koller and Friedman, 2009, Bakir et al., 2007, Nowozin et al., 2014],

which provide the principles and techniques that support probabilistic model construction,

learning, and inference for complex data. Accordingly, at the end of the learning process,

our methods produce a well-defined model of posterior class probabilities that is extremely

useful not only for prediction, but also for decision making [Raiffa, 1997, Berger, 1985] and

for performing any inference over subsets of output class variables. In contrast to this, the

majority of existing MLC methods aim to only identify the best output configuration for the

given input.

The conditional outlier detection problem, which we will introduce next, is one of such

problems that can be effectively solved by utilizing our MLC models and methods. While

there are other types of problems that would benefit from our solutions, as we will describe

shortly, conditional outlier detection in multi-dimensional output spaces is particularly less

studied in the literature despite its potential importance. In the second half of the thesis,

we conduct an investigation on how to effectively approach and solve this specific type of

outlier detection problem.

1.2 CONDITIONAL OUTLIER DETECTION

Outlier detection [Markou and Singh, 2003, Kriegel et al., 2010, Aggarwal, 2017, Pimentel

et al., 2014] is a data analysis method that aims to find atypical behaviors, unusual out-

comes, or erroneous readings and annotations in data.1 It has been an active research topic

in data mining and machine learning communities and frequently used in various appli-

cations to identify rare and interesting data patterns that may be associated with either

beneficial or malicious events such as fraud identification [Fawcett and Provost, 1997, Wang,

2010], network intrusion surveillance [Tan et al., 2002, Garcia-Teodoro et al., 2009], disease

1Outliers are also referred to as anomalies, abnormalities, novelties, discordances, or deviants.
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outbreak detection [Wong et al., 2003], patient monitoring for preventable adverse events

(PAE) [Hauskrecht et al., 2007, Hauskrecht et al., 2013], etc. It is also utilized as a primary

data preprocessing step that helps to remove noisy or irrelevant signals in data [Hodge and

Austin, 2004, Liu et al., 2004].

Despite huge effort and progress in outlier detection research, however, the majority of

existing methods are designed only to detect unconditional outliers, that are unusual data

instances manifested in the joint space of all data attributes. Such methods may not work

when one wants to identify conditional (contextual) outliers that reflect unusual responses

for a given set of contextual information. That is, since the outliers are conditioned on the

context or properties of data instances, applying unconditional outlier detection methods to

the conditional outlier detection problem may lead to incorrect results.

Compared with the unconditional outlier detection problem, the multivariate conditional

setting is more useful in certain types of applications where the data are naturally associated

with multiple descriptors, views, or decisions. Below are some examples of multivariate

conditional outliers:

• Errors in user-annotated image/video tags: Most online media sharing services

allow the users to tag their images (or videos) with simple, relevant keywords. The

tags given by the users then serve as mnemonic indices, which make the images easily

accessible. However, those user-annotated tags may mistakenly include keywords that are

irrelevant to the associated image, which can be considered as multivariate conditional

outliers [Boutell et al., 2004, Qi et al., 2007a].

• Misassigned document classes: Classification-based search engines index the web

documents according to their topics, which are assigned by some labeling schemes or

automated algorithms. Considering a document can have multiple topics (e.g., a news

article that simultaneously covers political and economic issues), unusual assignments of

topics can be treated as multivariate conditional outliers [Kazawa et al., 2005, Zhang

and Zhou, 2006].

• Unusual gene or protein annotations: In bioinformatics, various methods are used

to identify biologically meaningful genomic sequences and annotate their function. Since

each sequence can be associated with multiple functional classes or protein products,
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incorrect annotation could be well considered as multivariate conditional outliers [Clare

and King, 2001, Zhang and Zhou, 2006].

• Monitoring for preventable adverse events (PAE): In hospitals, physicians and

medical professionals make decisions on what tests or treatments to give to a patient.

For those clinical decisions that are made based on the symptoms and conditions of

patients, the multivariate conditional framework could be useful for discovering unusual

decision patterns that potentially correspond to medical mistakes. [Hauskrecht et al.,

2007, Hauskrecht et al., 2010, Hauskrecht et al., 2013, Hauskrecht et al., 2016]

In spite of the importance and impact that the problem has, only recent years have seen in-

creased interest in conditional outliers and proposed methods that deal with them [Hauskrecht

et al., 2007, Song et al., 2007, Valko et al., 2011a, Hauskrecht et al., 2016]. Consequently,

the existing methods still exhibit limitations in availability and diversity.

In this thesis, we study the problem of conditional outlier detection (COD), where outliers

are manifested in multivariate binary response (output) space and are conditioned on their

context (input). Our goal is to identify irregular response patterns given a set of input-

output data pairs. This special type of outlier detection problem is challenging because both

the context, represented as input, and interdependences of responses should be taken into

account when identifying outliers.

Our investigations of the COD problem focus on two main directions: (1) We develop a

new COD framework in which multivariate conditional outlier scores decompose into a set of

univariate conditional outlier scores representing full dependences among input and outputs.

(2) We develop and investigate a new conditional outlier scoring approach that is built from

unconditional outlier scores.

First, we start our investigation of the multivariate COD problem by considering a proba-

bilistic view of outlier detection: conditional outliers are data instances with a low conditional

probability [Hauskrecht et al., 2007]. Using this definition we formulate the multivariate COD

problem with the help of multi-label classification (MLC) models that let us decompose the

multivariate conditional probability into the product of univariate conditional probabilities.

We show that this decomposition also transfers to outlier scores; that is, the multivariate

conditional outlier score is decomposed into a set of univariate conditional scores (one score

8



per input dimension). After that, we extend the idea to support other types of outlier scores

including non-probabilistic ones, yielding a decomposable multivariate conditional outlier

score framework. Throughout the thesis, we study different instances of this framework

that: (1) rely on relaxations of the exact probabilistic model, (2) permit different weighting

of univariate conditional scores, and (3) accept a new class of conditional scores based on

unconditional methodologies (see next).

Second, motivated by a gap in between two kinds of outlier detection problems, condi-

tional and unconditional, we focus on the development of a new class of conditional outlier

detection methods that rely on the solutions of unconditional methods. We propose to

compute the conditional outlier score for a data instance by comparing (via ratio) two un-

conditional outlier scores: one in which the score is calculated against the instances with the

same observed output value; and another in which the score is calculated for the instances

with the opposite output value. We explore how this new outlier score applies to univariate

conditional outlier detection, where data comes with high-dimensional input. After that, we

investigate how to utilize the score to support multivariate COD.

1.3 OUR CONTRIBUTIONS

The main contributions of this thesis are:

• Modeling and Prediction of Multivariate Responses

– We present a novel tree-structured probabilistic model that represents the posterior

distribution of multivariate output.

– We show how to build an ensemble model that incorporates multiple tree-structured

Bayesian networks into a data model that represents the joint conditional probability

of multivariate output.

– We present a generalized representation of the posterior distribution that includes

a number of previous relevant data models [Boutell et al., 2004, Clare and King,

2001, Batal et al., 2013, Read et al., 2009].
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– We extend the Mixtures-of-Experts [Jacobs et al., 1991] framework such that the

framework represents the joint conditional distribution of multivariate output using

our generalized posterior models as base classifiers.

• Conditional Outlier Detection

– We extend the definition of conditional outliers [Hauskrecht et al., 2007] to the multi-

variate conditional outlier problem where outliers are manifested in the multivariate

binary response (output) space, conditioned on their context (input).

– We develop a new multivariate conditional outlier detection framework that relies on

the decomposable models and extends the current state-of-the-art conditional outlier

detection approaches [Hauskrecht et al., 2007, Hauskrecht et al., 2010, Hauskrecht

et al., 2013, Hauskrecht et al., 2016] to multivariate settings.

– We propose and develop a new ratio-based conditional outlier scoring approach that

is derived by combining the results of any unconditional outlier scoring approach.

– We enhance the new ratio-based conditional outlier scoring approach with discrimi-

native dimensionality reduction methods to improve its performance for high-dimensional

settings.

We would like to note that parts of this thesis work have been published as [Batal et al.,

2013, Hong et al., 2014, Hong et al., 2015, Pakdaman et al., 2014, Hong and Hauskrecht,

2015, Hong and Hauskrecht, 2016].

1.4 ORGANIZATION OF THE THESIS

The rest of this thesis is organized as follows. Chapter 2 formally defines the problem that

we are addressing in this thesis and reviews the existing solutions to the problem. Chapter

3 studies the multivariate data modeling problem and presents our solutions that are based

on the structured probabilistic modeling approach and ensemble techniques. Chapter 4 in-

vestigates the conditional outlier detection problem and presents our solutions, including the

probabilistic model-based approach and the ratio-based conditional outlier scoring approach.

Finally, Chapter 5 concludes the thesis and outlines the future research directions.
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2.0 BACKGROUND

This chapter provides the background of the problems investigated in the thesis. We start

with the problem of probabilistic modeling and prediction of multivariate responses (Sec-

tion 2.1). We describe the problem and discuss how it can be effectively addressed by

learning the joint conditional probability from data. We briefly review the existing solu-

tions in the literature. We then move on to the problem of conditional outlier detection in

multi-dimensional response space (Section 2.2). We review the existing multivariate outlier

detection approaches and motivate the multivariate conditional approach by pointing out

the limitations of the previous solutions in identifying certain types of outliers. At the end

of each section, we stress the differences of our solutions from the existing methods.

2.1 MODELING AND PREDICTION OF MULTIVARIATE RESPONSES

This section considers the problem of modeling and prediction in the multi-dimensional bi-

nary response space, which is referred in the literature as Multi-Label Classification (MLC)

[Tsoumakas and Katakis, 2007, Tsoumakas et al., 2010, Zhang and Zhou, 2013]. In par-

ticular, we formulate our target problem as follows: We are given labeled training data

D = {x(n),y(n)}Nn=1, where x(n) = (x
(n)
1 , ..., x

(n)
m ) is a m-dimensional context vector repre-

senting the n-th instance (input) and y(n) = (y
(n)
1 , ..., y

(n)
d ) is its corresponding d-dimensional

binary response vector (output). As discussed in Chapter 1, this problem formulation ap-

plies to various real-world applications, such as document topic classification, semantic im-

age/video analysis, and gene functional annotation (see Chapter 1 for detailed description).

Our objective is to learn a function h from D such that h assigns to each instance, represented
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by its context vector, a response vector (i.e., h : Rm → {0, 1}d).

One approach to this task is to model and learn the joint conditional distribution P (Y|X),

where Y = (Y1, ..., Yd) is a random variable for the response vector and X is a random variable

for the context vector. Assuming the 0-1 loss function, the optimal classifier h∗ assigns to

each instance x the maximum a posteriori (MAP) assignment of the response variables:

h∗(x) = arg max
y

P (Y = y|X = x)

= arg max
y1,...,yd

P (Y1 = y1, ..., Yd = yd|X = x) (2.1)

A key challenge in modeling and learning P (Y|X) from data, as well as for defining the

corresponding MAP classifier, is that the number of all possible response combinations to

be considered is 2d. Accordingly, our goal is to develop efficient models and methods for

learning and inference that overcome this difficulty.

Remarks on Notation and Terminology :

• For notational convenience, we will omit the index superscript (n) when it is not necessary.

• We may also abbreviate the expressions by omitting variable names; e.g., P (Y1 = y1, ..., Yd =
yd|X = x) = P (y1, ..., yd|x).

• We will interchangeably use terms context, input, and feature, which are denoted by variable X.
Similarly, we will use terms response, output, and class interchangeably, which are denoted by
variable Y.

2.1.1 Binary Relevance – Why Learning Independent Classification Models is

Not Enough

A simple solution to the MLC problem is to learn a collection of independent classifiers – one

for each class variable [Boutell et al., 2004, Clare and King, 2001, Schapire and Singer, 2000]

– which is known as the Binary Relevance (BR) approach. That is, BR learns a separate

classifier hi for each class variable Yi : i ∈ {1, ..., d} and determines the output of a new

instance x by simply aggregating the predictions of all classifiers:

hBR(x) = (h1(x), ..., hd(x)) (2.2)

=

(
arg max

y1

P (y1|x), ..., arg max
yd

P (yd|x)

)
(2.3)
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From a probabilistic point of view, this approach can be justified by conditional independence

that all class variables are conditionally independent of each other given x:

PBR(y1, ..., yd|x) =
d∏
i=1

P (yi|x) (2.4)

However, this simple approach does not always produce correct results, as shown in the

following example [Batal et al., 2013].

Example 1. Assume the joint conditional distribution of class variables Y1 and Y2 for a

specific instance x is as shown in Table 2.1. The optimal classification for x (according

to Equation (2.1)) is h∗(x) = (Y1 = 1, Y2 = 0). However, the result of BR (according to

Equation (2.3)) is hBR(x) = (Y1 = 0, Y2 = 0).

P (Y1, Y2|X = x) Y1 = 0 Y1 = 1 P (Y2|X = x)

Y2 = 0 0.25 0.40 0.65

Y2 = 1 0.30 0.05 0.35

P (Y1|X = x) 0.55 0.45

Table 2.1: The joint distribution of class variables Y1 and Y2 conditioned on instance x. The

optimal (MAP) prediction is h∗(x) = (Y1 = 1, Y2 = 0).

2.1.2 Early Multi-label Classification Approaches

Realizing the deficiency of BR [Boutell et al., 2004, Clare and King, 2001, Schapire and

Singer, 2000] in addressing the MLC problem, several research directions have been proposed

to model the relations between the class variables. [Godbole and Sarawagi, 2004] proposed

a method that builds two levels of classifiers: The first level classifiers learns to predict

values of each class variable using the original features (i.e., the first level is equivalent

to BR). The second level learns to predict values of each class variable using the original

features and the output of the first level. [Zhang and Zhou, 2007] presented the Multi-Label

k-Nearest Neighbor (ML-KNN) method, which learns a classifier for each class variable by
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binding k-nearest neighbor with Bayesian inference. A combination of ML-KNN and logistic

regression was presented in [Cheng and Hüllermeier, 2009], where the class proportions of

nearest neighbors are used as additional features for the logistic regression classifiers. The

limitation of these early approaches is that class dependences are either not modeled at all

or modeled in a very limited way.

2.1.3 Output Coding Approaches

An alternative approach to MLC is based on the error-correcting output coding (or simply

output coding) approach [Dietterich and Bakiri, 1995]. The idea is to encode the output

values into a codeword, learn how to predict the codeword, and then recover the correct

output from noisy predictions. A variety of output coding methods have been proposed

by utilizing different encoding strategies, such as compressed sensing [Hsu et al., 2009],

principal component analysis [Tai and Lin, 2010], and canonical correlation analysis [Zhang

and Schneider, 2011]. The state-of-the-art in this approach utilizes a maximum margin

formulation that promotes both discriminative and predictable codes [Zhang and Schneider,

2012]. The limitation of output coding methods is that they can only predict the single “best”

output for a given input, and they cannot compute probabilities for different input-output

pairs.

2.1.4 Classifier Chains and Its Extensions

[Read et al., 2009] introduced the Classifier Chains (CC) method for MLC. The idea is to

link different binary classifiers in a chain, such that each classifier incorporates the (0/1)

predictions of all preceeding classifiers in the chain as additional features. For example,

assume that the order of the class variables in the chain is Y1 < Y2, ... < Yd. To classify a

new instance x, classifier h1 first predicts Y1 = ŷ1 ∈ {0, 1} from x. After that, h2 predicts

Y2 = ŷ2 using x and the predicted value ŷ1. By repeating this to Yd along the chain, hi

predicts Yi = ŷi using ŷ1, ..., ŷi−1 as additional input features.

The CC method has been extended in several ways. [Zhang and Zhang, 2010] realized

that the performance of CC is influenced by the order of class variables in the chain (the
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original proposal [Read et al., 2009] orders arbitrarily) and proposed a method that learns

such ordering from data. [Zaragoza et al., 2011] explored the unconditioned dependence

relations in the output space and constructed chains using the mutual information between

the class variables.

The main disadvantage of CC and its extensions [Read et al., 2009, Zhang and Zhang,

2010, Zaragoza et al., 2011] is that they do not perform proper probabilistic inference for clas-

sification (i.e., they do not correctly solve Equation (2.1)). Instead, they simply propagate

the predictions through the class variables according to the order defined by the chain, which

is a greedy mode-seeking heuristic [Dembczynski et al., 2010]. However, such a heuristic may

produce incorrect results as we show in the following examples.

Example 2. Consider the conditional distribution in Table 2.1 and assume the order of

the class variables in the chain is Y1 < Y2. CC starts incorrectly by predicting Y1 = 0 and

eventually produces the suboptimal prediction (Y1 = 0, Y2 = 1).

[Dembczynski et al., 2010] discussed the suboptimality of CC, which is depicted in the

above example, and presented Probabilistic Classifier Chains (PCC) that estimates the entire

posterior distribution of the class labels. However, this method has to evaluate exponentially

many label configurations, which greatly limits its applicability.

2.1.5 Multi-Label Conditional Random Fields

Another approach for modeling P (Y|X) relies on conditional random fields (CRFs) [Laf-

ferty et al., 2001]. [Ghamrawi and McCallum, 2005] presented a method called Collective

Multi-Label with Features classifier (CMLF) that captures label co-occurrences conditioned

on features. However, CMLF assumes a fully connected CRF structure which requires a

high computational cost. Later, [Shahaf and Guestrin, 2009] and [Bradley and Guestrin,

2010] proposed to learn tractable (low-treewidth) structures of class variables for CRFs us-

ing conditional mutual information. More recently, [Pakdaman et al., 2014] used pairwise

CRFs to model the class dependences and presented L2-optimization-based structure and

parameter learning algorithms. Although the later methods share similarities with our ap-
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Figure 2.1: An example MBC [van der Gaag and de Waal, 2006, Bielza et al., 2011] which de-

fines the joint probability distribution over three class variables {Y1, Y2, Y3} and four feature

variables {X1, X2, X3, X4}.

proach by modeling the conditional dependences in Y space using restricted structures, their

optimization of the likelihood of data is computationally more demanding. To alleviate this,

CRF-based methods often resort to optimization of a surrogate objective function (e.g., the

pseudo-likelihood of data [Pakdaman et al., 2014]) or include specific assumptions (e.g., fea-

tures are assumed to be discrete [Ghamrawi and McCallum, 2005]; relevant features for each

class are assumed to be known [Shahaf and Guestrin, 2009, Bradley and Guestrin, 2010]),

which complicate the application of the methods.

2.1.6 Multi-Dimensional Bayesian Network Classifiers

Multi-dimensional Bayesian network Classifiers (MBC) [van der Gaag and de Waal, 2006,

Bielza et al., 2011, Antonucci et al., 2013] build a generative model P (X,Y) using special

Bayesian network structures that assume all class variables are ancestors of all feature vari-

ables (see Figure 2.1). To facilitate the model, MBC parameterize three sets of arcs between

the input and output variables: namely, AY , AX , and AXY such that AY ⊆ VY ×VY are the

arcs between the output variables, AX ⊆ VX × VX are the arcs between the input variables

and AXY ⊆ VY × VX are the arcs from the output variables to the input variables, where

VX = {X1, ..., Xm} and VY = {Y1, ..., Yd} respectively denote the sets of input and output

variables. Figure 2.1 shows an example MBC that is defined over three class variables and

four feature variables.

Although our approach shares a few similarities with MBC, there are significant differ-
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ences:

• MBC only handles discrete features and, thus, all features should be a priori discretized;

while our approach handles both continuous and discrete features.

• MBC defines a joint distribution over both feature and class variables and the search

space of the model increases with the input dimensionality m; while our search space

does not depend on m.

• Feature selection in MBC is done explicitly by learning the individual relationships be-

tween features and class variables; while we perform feature selection by regularizing the

base classifiers.

• MBC requires expensive marginalization to obtain class conditional distribution P (Y|X);

while we directly model and estimate P (Y|X).

2.1.7 Ensemble Approaches

Several researchers proposed to use the ensemble approach for MLC in order to overcome

the limitations and disadvantages that individual models have and achieve more precise and

robust performance. [Read et al., 2009] presented Ensemble of Classifier Chains (ECC) that

simply averages the predictions of multiple randomly structured CC models that are trained

on bootstrapped subsets of data. [Zaragoza et al., 2011] followed the same ensemble approach

and proposed Ensemble of Bayesian Classifier Chains (EBCC) that combines several chain-

structured MBCs, obtained by changing the root node in the chain. [Antonucci et al.,

2013] proposed an ensemble of multi-dimensional Bayesian networks combined via simple

averaging. Each MBC in the ensemble represents different Y relation (the structures are set

a priori and not learned) and all of the networks adopt the näıve Bayes assumption (i.e.,

features are independent given class labels).

Although these methods significantly improve the predictive accuracy of the base models,

they are limited in that the way they diversify the base classifiers heavily relies on random-

ization. Also their ensemble predictions are based on simple (uniform) averaging. Unlike

these methods, our ensemble approaches learn the base models (both the structures and
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parameters of base classifiers) and the mixing coefficients of the ensemble from data in a

principled way.

2.1.8 Our Work

In Chapter 3, we develop and study novel probabilistic approaches that model and predict

multi-label data with multivariate responses.

• First, we present a new model that represents the posterior distribution of multivariate

responses (class labels) P (Y|X) using tree-structured Bayesian networks [Batal et al.,

2013]. By restricting the conditional dependence relations between class variables to

follow a directed tree, we devise efficient structure and parameter learning algorithms

and a linear time (O(d)) exact MAP inference algorithm.

• Second, we build an ensemble method that incorporates multiple tree-structured Bayesian

networks [Batal et al., 2013] into a data model that represents the joint conditional prob-

ability P (Y|X) [Hong et al., 2014]. Our approach is based on the Mixtures-of-Trees

[Meilă and Jordan, 2000] framework that originally defines a generative model of P (Y)

for discrete multi-dimensional domains. We extend the Mixtures-of-Trees framework and

present efficient supporting algorithms that learn the structures and parameters of the

mixture model and perform a fast MAP inference for MLC.

• Last, we improve our ensemble method [Hong et al., 2014] by developing a generalized

mixture framework for MLC [Hong et al., 2015]. We first propose a generalized repre-

sentation of the class posterior distribution P (Y|X) that includes a number of previous

MLC models [Boutell et al., 2004, Clare and King, 2001, Batal et al., 2013, Read et al.,

2009] as special cases. We then extend the Mixtures-of-Experts [Jacobs et al., 1991]

framework, which was originally built for the conditional distribution P (Y |X) such that,

by using our generalized class posterior models as base classifiers, the framework repre-

sents the joint conditional distribution. Our mixture representation recovers a rich set of

dependence relations among inputs and outputs that a single MLC model cannot capture

due to its modeling simplifications.
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2.2 CONDITIONAL OUTLIER DETECTION

This section considers the conditional outlier detection problem in (possibly high-dimensional)

binary response space – which we refer to as the conditional outlier detection (COD) problem.

Conditional outlier detection is a special type of the outlier detection problem where data

consists of m-dimensional continuous input vectors (context attributes) and corresponding

d-dimensional binary output vectors (response attributes). Our goal is to precisely identify

the instances with unusual input-output associations. Following the definition of an out-

lier given by Hawkins [Hawkins, 1980],1 we define multivariate conditional outlier in plain

language as follows:

Definition 1. A multivariate conditional outlier is an observation, which consists of context

and associated responses, whose responses are deviating so much from the others in similar

contexts as to arouse suspicions that it was generated by a different response mechanism.

As we illustrated in Chapter 1, this definition of conditional outlier fits well with various

practical outlier detection problems that require contextual understanding of data.

However, the majority of existing methods are designed only to detect unconditional

outliers that correspond to unusual data patterns expressed in the joint space of all data at-

tributes. Apparently, these methods do not consider the dependences among the attributes

and are not able to properly detect conditional outliers. Although there are several con-

ditional outlier detection approaches that attempt to recover and reflect the input-output

relations for outlier detection, existing solutions are rather limited and not capable of han-

dling the particular problem that we are interested in. Below we briefly review existing

outlier detection research, discuss their limitations in solving the multivariate conditional

outlier detection problem in detail, and differentiate our multivariate conditional approach

to them.

1While the concept of outlier is rather ill-defined and, indeed, there is no clear consensus on what an
outlier is, probably the most referenced definition has been given by [Hawkins, 1980]: “An outlier is an
observation deviating so much from the others as to arouse suspicions that it was generated by a different
mechanism.”
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2.2.1 Unconditional Outlier Detection Approaches

One of the most important components in outlier detection research is the assumption regard-

ing how outliers occur in a dataset. Below we categorize existing unconditional outlier de-

tection approaches into six general groups (according to the assumption that the approaches

have: distance-based, density-based, depth-based, deviation-based, classification-based, and

high-dimensional approaches), and summarize their main ideas.

2.2.1.1 Distance-based Approaches Distance-based approaches are one of the com-

monly used unconditional outlier detection approaches. The methods that fall in this cat-

egory assume that normal data instances are located in or near the main body of data

distribution, while outliers are found far away from most data instances. Several parametric

and nonparametric methods are proposed based on this assumption. Typical parametric

examples are [Rousseeuw and Hubert, 2011, Rousseeuw and Zomeren, 1990, Rousseeuw and

Leroy, 1987] that assign each data instance an outlier score using a robust distance metric

([Hubert and Debruyne, 2010, Rousseeuw and Driessen, 1999, Rousseeuw, 1984]) between

each instance to the distribution center (e.g., mean or median).

The nonparametric methods in this category have been proposed to evaluate outlier

scores by analyzing the distance to the local neighbors of each data instance. [Knorr and

Ng, 1997] computes the outlier score by counting the number of neighboring instances within

a hypersphere of radius d. An instance is considered as an outlier if more than a fraction

α of its k nearest neighbors are further than d from it. Similarly, [Byers and Raftery, 1998]

and [Guttormsson et al., 1999] evaluate the outlier score of an instance using the distance

to its k-th nearest neighbor in the dataset. [Eskin et al., 2002, Angiulli and Pizzuti, 2002]

extend the preceding methods to replace the outlier score with the sum of the distances to

the k nearest neighbors.

The distance-based approaches have been very popular in many applications as they are

easy and flexible. In particular, the nonparametric methods in this category are flexible with

respect to different data types in that they do not make assumptions about the underlying

data distribution and can adapt by replacing the distance metric. However, the approaches
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Figure 2.2: Example where the use of local density is desired.

are often computationally very demanding as they require to compute the distance between

every instance pairs. Moreover, coming up with a proper distance metric is difficult when the

data type is mixed or complex, such as graphs and sequences. Lastly, the approaches suffer

from the “curse of dimensionality” issue [Weber et al., 1998, Hinneburg et al., 2000, Aggarwal

et al., 2001]; i.e., as the dimensionality of data increases, the distance metrics and density

estimators become analytically ineffective and computationally intractable. These make the

methods less suitable for high-dimensional data.

2.2.1.2 Density-based Approaches Another category of widely used outlier detection

approaches is the density-based approaches. This category of methods assumes that the

density around a normal data instance is similar to the density around its neighbors while

that of an outlier is relatively lower than its neighbors. This assumption is particularly

useful in many real-world application where the data has regions of varying densities. For

example, in the dataset shown in Figure 2.2, the clusters C1 and C2 have different densities

whereas the instances p1 and p2 are outliers that we want to identify. With the distance-

based approaches, only p1 can be identified as an outlier because, for any instance in C1, the

distance between the instance and its nearest neighbor is greater than the distance between

p2 and C2. In other words, p2 would be considered as an outlier, only after all instances in

C2 are considered as outliers.

A number of nonparametric methods have been proposed to tackle the above illustrated

issue by estimating local density. Local Outlier Factor (LOF) [Breunig et al., 2000] is one of

the most popular methods in this regard. LOF evaluates the outlier score of a data instance
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Figure 2.3: Difference between the neighborhoods used by LOF and COF (when k = 6).

by computing the ratio between the local density of the instance and the average local density

of k neighboring instances:

LOF (x, k) =

∑
x′∈Nk(x)

lrdk(x
′)

lrdk(x)

|Nk(x)|

where Nk(x) denotes the k-nearest neighborhood of instance x and

lrdk(x
′) =

|Nk(x
′)|∑

x′′∈Nk(x′) max(k-dist(x′′), dist(x′,x′′))

is the local reachability density, which in essence measures the geometric dispersion of the

k-nearest neighborhood. The score given by LOF can be understood as the inverse of the

relative density within the local neighborhood. Instances that have LOF score greater than

1 are generally considered as outliers.

LOF has influenced several subsequent works in the literature. For instance, Connectivity-

based Outlier Factor (COF) extends LOF [Tang et al., 2002] to detect outliers from data on

a manifold. The key difference of COF in contrast to LOF is how the method defines the

local neighborhood. Specifically, to find the k nearest neighbors of an instance x, COF incre-

mentally grows a neighbor set denoted as N ′(x): First off, COF adds the nearest neighbor

of x to N ′(x). Then, COF repeatedly finds and adds other neighboring instances to N ′(x)

until |N ′(x)| = k, such that the newly added instance has the smallest distance to any of

the previously added instances in N ′(x). Unlike LOF, COF can capture localities over line

components as compared in Figure 2.3.
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Figure 2.4: An example multi-granularity problem.

[Papadimitriou et al., 2003] propose another variants of LOF, called Local Correlation

Integral (LOCI), to address the multi-granularity problem in outlier detection. The multi-

granularity problem refers to a case where data is polluted not only from outlier instances

but also from outlying-clusters (groups of outliers; see Figure 2.4). LOF is not able to handle

such a problem unless a proper value of the neighborhood size k is provided. LOCI addresses

it by introducing Multi-Granularity Deviation Factor (MDEF) that, for each test instance,

computes the standard deviation of the local densities of the nearest neighbors. The outlier

score of the instance is assigned by taking the inverse of this standard deviation.

The unique advantage of the density-based approaches is in that the solutions can be

locally sensitive, which in turn let the approaches achieve a better detection accuracy in

many real-world applications. The approaches are also very flexible as they do not make

assumptions about the underlying data distribution. However, similar to the distance-based

approaches, the density-based approaches are not easily scalable to larger datasets, because

the solutions require a pairwise distance matrix to find neighborhoods. In addition, some-

times a proper distance metric cannot be easily determined, which may limit the applicability

of the approaches. Lastly, as with the distance-based approaches, the approaches also suffer

from the “curse of dimensionality” issue [Weber et al., 1998, Hinneburg et al., 2000, Aggarwal

et al., 2001].
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(a) Dataset (b) Depth assigned by convex hull analysis

Figure 2.5: Depth-based outlier detection.

2.2.1.3 Depth-based Approaches Depth-based approaches assume that normal data

instances are close to or in the center of data clusters, whereas outliers are at the fringes.

Several nonparametric methods fall in this category that assign each data instance a depth

k by gradually removing data using iterative convex hull analysis (Figure 2.5). At each

iteration, all points that lie on the convex hull of data instances are removed; a depth of k is

assigned to the removed instances. The instances with a low depth are considered as “fringe”

instances and are possible candidates for outliers [Ruts and Rousseeuw, 1996, Johnson et al.,

1998].

The approaches are flexible in that no assumption regarding the underlying data distri-

bution is required. However, an application of the approaches could be very limited due to

the computational cost of the convex hull analysis (usually only efficient with low dimen-

sional datasets). Also, a convex hull in d-dimensional space contains at least 2d points, which

induces a large portion of data to be considered as outliers. This makes the approaches in

high-dimensional spaces extremely ineffective.

2.2.1.4 Deviation-based Approaches Deviation-based approaches assume outliers are

the outermost instances in a dataset, such that a removal of an outlier lowers the variance of

the set to a large extent. One of the well-known nonparametric methods in this category is

Linear Method for Deviation Detection (LMDD) [Arning et al., 1996]. Given a dataset, the

method computes how much the variance is reduced (called smoothing factor) by removing
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(a) Multi-class strategy (b) One-class strategy

Figure 2.6: Classification-based outlier detection.

an instance. The instances whose exclusion minimizes the variance are treated as outliers.

As with other nonparametric methods, the deviation-based approaches do not require

an assumption with respect to the underlying data distribution. However, the approaches

require O(2n) times of variance estimation, which limits the application of the approaches.

That is, for a dataset of size n, there are 2n options of which instances to remove, which

makes the approaches less scalable to large datasets.

2.2.1.5 Classification-based Approaches Classification-based approaches are based

on a parametric assumption that a function of feature classifying normal and outlier instances

can be learned from data. There are two major strategies to achieve classification-based

outlier detection: multi-class and one-class classification strategies.

Multi-class classification strategy further assumes that normal data instances form a

set of clusters (that the cluster information is either provided as class labels, or discovered

by an additional clustering step). It then learns a classifier for each cluster in the one-

vs-all manner.2 In the testing time (when detecting outliers using the learned classifier),

instances that do not belong to any of the clusters are considered to be outliers. Many early

methods are developed based on this strategy. [De Stefano et al., 2000, Odin and Addison,

2For each data cluster, a classifier is trained by treating the cluster as the positive class and the other
clusters as the negative class.
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2000] apply multi-class neural network classifiers to learn normal data patterns for outlier

detection. [Barbara et al., 2001, Valdes and Skinner, 2000] learn a simple Bayesian classifier

from data that assumes the input variables are independent from each other (i.e., a näıve

Bayes classifier). Bayesian networks that model the hierarchical (conditional) structures of

data have been applied in [Das and Schneider, 2007, Janakiram et al., 2006]. [Lee et al., 1997,

Fan et al., 2001] derive a set of classification rules from data using rule mining algorithms

(Repeated Incremental Pruning to Produce Error Reduction (RIPPER) [Cohen, 1995] or

decision trees [Quinlan, 1986]). The confidence associated with the rules are used to produce

outlier scores.

On the other hand, one-class classification strategy assumes that all training instances

are normal, and attempts to learn a discriminative boundary around the training (normal)

instances. In the testing time, instances that fall out of the obtained decision boundary

are considered to be outliers. support vector machines (SVMs) have been applied to outlier

detection using this strategy. [Schölkopf et al., 1999] trains an SVM classifier by learning

a decision boundary between training data and the origin (zero). Any test instances that

lie across the boundary are classified as outliers. [Tax and Duin, 2004] learns the smallest

hypersphere containing all training instances in the kernel space. This hypersphere is then

used for classification such that instances that fall outside of it are considered as outliers.

Similarly, [Roth, 2005, Roth, 2006] apply the one-class strategy to the Fisher discriminant

analysis, and propose one-class kernel Fisher discriminants models.

The classification-based approaches turn many of the powerful classification algorithms

to outlier detection methods. Accordingly, depending on the underlying data type and prop-

erties, one can further utilize various kernel techniques and optimization methods that are

originally developed for the base classifiers. However, many classification-based approaches

require an “outlier-free” training dataset to obtain a base classifier. This restricts their

application to many real-world problems where acquiring such a dataset is difficult [Amer

et al., 2013]. Also, some approaches (e.g., methods based on SVMs) are only able to output

binary labels indicating outliers, which are less informative than outlier scores.
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2.2.1.6 Approaches for High-dimensional Data In high-dimensional spaces, the

above described approaches often fail because the distance metrics and density estimators

become analytically ineffective and computationally intractable [Weber et al., 1998, Hin-

neburg et al., 2000, Aggarwal et al., 2001]. In addition, as the volume of the spaces grows

rapidly, all data objects appear to be sparse, and thus defining a meaningful neighborhood

becomes difficult. Researchers have proposed outlier detection methods for high-dimensional

data to handle such extreme cases. Typical methods in this category either adopt an invari-

ant distance measurement, such as the angle-based outlier factor [Kriegel et al., 2008, Pham

and Pagh, 2012], or apply dimensionality reduction techniques to project data to lower di-

mensional subspaces, such as grid-based subspace outlier detection [Aggarwal and Yu, 2001],

reconstruction-based outlier detection [Hawkins et al., 2002, Williams et al., 2002], and out-

lier detection with subspaces [Lazarevic and Kumar, 2005, Keller et al., 2012].

Specifically, just as with depth-based approaches, the angle-based methods assume that

outliers are located at the boundaries of data regions. However, the methods further exploit

an observation that, at the boundaries, it is likely to enclose the entire data within a smaller

angle [Kriegel et al., 2008]. Accordingly, the methods assume that the data instances with

a smaller angle spectrum are outliers, while those with a larger spectrum are normal. On

the other hand, the grid-based method [Aggarwal and Yu, 2001] partitions the original data

space into a multi-dimensional equi-depth grid by segmenting each dimension with the same

number of cells. Assuming statistical independence, the authors then sought k-dimensional

grid cells (projections) that contain a significantly low number of instances than expected.

[Hawkins et al., 2002, Williams et al., 2002] first find a lower dimensional representation of

the original data using dimensionality reduction techniques (e.g., replicator neural networks

(auto encoders)). Then the methods attempt to reconstruct the original data from the lower

dimensional representation. The outlier scores are assigned by measuring the reconstruction

error on each instance.

[Lazarevic and Kumar, 2005, Keller et al., 2012] propose to adopt subspace analysis

methods and utilize lower-dimensional representations of data for outlier detection. The

methods detect outliers in two-fold. First, multiple sets of outlier scores are computed on

different subspaces, which are either selected randomly [Lazarevic and Kumar, 2005] or found
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by minimizing (the absolute value of) the correlation coefficient between attributes [Keller

et al., 2012]. Second, the final outlier scores are obtained by combining the multiple scores

in the first fold via simple heuristics (e.g., average or maximum over multiple sets of scores).

These methods can be considered as meta-approaches in that they allow a choice of outlier

score. In Chapter 4, we present a similar meta-analysis technique for outlier detection.

So far we have reviewed existing unconditional outlier detection research by putting

them into six categories. Next section continues our discussion on existing outlier detection

solutions focusing on conditional outliers.

2.2.2 Conditional Outlier Detection

While the vast majority of existing methods attempt to solve the unconditional outlier

detection problem, recent years have seen increased interest in conditional outlier detection

(COD) that aims to identify outliers in responses given the observation of context variables.

[Hauskrecht et al., 2007] formally introduced the concept of conditional outlier detection

where the data instances consist of a set of input (context) and associated output (responses).

The authors proposed a probabilistic model-based framework for COD in which a parametric

model is used to describe the stochastic relations between the input and output variables.

The framework can be integrated with any data models that are capable of producing class

conditional probability P (y|x). Outliers are assumed to have a low conditional probability

given a trained model. In [Hauskrecht et al., 2007], the authors used a localized Bayesian

belief network (BBN) or localized näıve Bayes model to represent data with discrete input

and output variables. [Valko and Hauskrecht, 2008, Valko et al., 2008] investigated the

instance-specific methods to acquire more accurate predictive models for COD. The authors

presented a new metric learning algorithm to select instances that are similar to the target

instance. In [Valko et al., 2011b], the authors employed local methods based on the graph

laplacian [Chung, 1997] and value propagation methods [Zhu et al., 2003, Zhou et al., 2004]

to estimate P (y|x) for the target data instance. [Hauskrecht et al., 2010, Hauskrecht et al.,

2013, Hauskrecht et al., 2016] further developed the framework to address COD with mixture

of continuous and discrete input variables. To represent the dependence relations in data,
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the authors adopted support vector machines (SVM) with a post-hoc calibration method to

produce probability [Platt, 1999, DeGroot and Fienberg, 1983].

2.2.2.1 Multivariate Conditional Outlier Detection While the above COD ap-

proaches only tackled the problem with 1-dimensional output (i.e., univariate COD), in

this thesis, we are also interested in the multivariate COD problem that aims to identify

unusual sets of binary responses (output) given the observation of context (input).

Although it does not exactly match the problem that we are tackling, [Song et al., 2007]

presented a relevant model-based approach for continuous input and output variables. The

authors proposed to use two mixtures-of-Gaussian models to respectively represent input

and output, and define a mapping function between them. The mapping function indicates

the probability of a component in the input mixture being associated with that of the output

mixture. The framework defines a generative process as:

f(y|x) =

|U|∑
i=1

fG(x|Ui)P (Ui)∑|U|
k=1 fG(x|Uk)P (Uk)

|V|∑
j=1

fG(y|Vj)P (Vj|Ui) (2.5)

where

· x and y are input and output. |U| and |V| denote the number of mixture components

for input and output, respectively.

· fG(x|Ui) and fG(y|Vi) are Gaussian density functions. For example, fG(x|Ui) is the

likelihood that the i-th Gaussian component in U would produce x.

· P (Vj|Ui) is the probability that the i-th component from U maps to the j-th component

in V.

The authors presented an EM algorithm to learn this mixture from data. As in the above

model-based COD approaches, outliers are identified by seeking a low estimate of f(y|x).

2.2.3 Our Work

In Chapter 4, we focus on the univariate and multivariate conditional outlier detection (COD)

problem.
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• First, we review and explore the probabilistic approach to the univariate COD problem

by finding data instances that fall in the regions of low conditional probability P (y|x).

We illustrate the basics of the probabilistic COD approach that consists of two phases:

data modeling and outlier scoring. We revisit the previous work that fits this approach

and set the baseline for our following discussion.

• Second, we extend the probabilistic approach to address the multivariate COD prob-

lem. By applying the same definition regarding conditional outliers, we present a new

framework that aims to find data instances that fall in the regions of low conditional

joint probability P (y|x). To build a data model, we employ the decomposable multi-

label classification (MLC) models that represent the conditional joint probability using

a collection of discriminative probabilistic models. We present how to compute reliable

multivariate conditional outlier score by exploiting the decomposable structure of the

data model.

• Third, by recognizing a disconnect in the development of unconditional and conditional

outlier methods, we develop and present a new COD method that builds upon uncon-

ditional outlier methods. We propose a new framework, Ratio of Outlier Scores (ROS),

that computes a conditional outlier score using any outlier score developed for uncondi-

tional outlier methods. To cope with high-dimensional data, we present a variant of the

ratio-based score that relies on discriminative dimensionality reduction methods.

• Finally, we apply the new ROS approach to the multivariate COD problem. By adopting

the structured model building approach of MLC to the ROS framework, we present a

decomposition of a multivariate COD problem into a set of univariate COD problems.

We investigate how to combine the results from the decomposed problems to compute

effective conditional outlier scores. The resulting methods complement the probabilistic

approaches to multivariate conditional outliers.
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3.0 MODELING AND PREDICTION OF MULTIVARIATE RESPONSES

This chapter focuses on the Multi-Label Classification (MLC) [Tsoumakas and Katakis, 2007,

Tsoumakas et al., 2010, Zhang and Zhou, 2013] problem, where our goal is to predict the best

multivariate output (y) for a given input (x). As pointed out earlier in the thesis, different

models may be used to support the MLC prediction problem. In our work, we focus on

probabilistic models P (Y|X) that attempt to represent the relations between inputs (x) and

outputs (y) in data to make the predictions.

We present three different probabilistic models of P (Y|X) to represent the relations

between inputs and outputs. For each model, we develop algorithms for learning the model

from data and for predicting the best response for a given input. The key difference among

the methods is the assumption that each method makes about the input-output relations,

as well as relations among individual output variables.

First, we develop the Conditional Tree-structured Bayesian Networks (CTBN) model

that restricts the dependence relations among the output variables to a directed tree. Section

3.2 describes the tree representation and parameterization of the model, presents a learn-

ing algorithm that efficiently discovers the optimal (tree-structured) dependence relations,

and develops a linear-time prediction algorithm to find the maximum a posteriori (MAP)

class assignments for a given input. Second, we develop the Mixtures-of-Conditional Tree-

structured Bayesian Networks (MC) framework that builds a mixture ensemble of multiple

tree-structured models (CTBNs) to better represent the dependence relations among the re-

sponse variables. Section 3.3 briefly reviews the basics of the Mixtures-of-Trees (MT) [Meilă

and Jordan, 2000] framework, on which our mixture model is based, and describes the rep-

resentation of the new mixture model. The section also presents algorithms for learning the

parameters of the mixture, finding multiple tree structures, and inferring the MAP output
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configurations. Third, we develop the Multi-Label Mixtures-of-Experts (ML-ME) framework

that combines MLC models in the classifier chains family — our generalization of structured

MLC models that decompose the class posterior distribution P (Y1, ..., Yd|X) using a product

of posterior distributions over components of the output space. Section 3.4 describes the de-

tails of the classifier chains family, and briefly reviews the Mixtures-of-Experts [Jacobs et al.,

1991] framework. The section then presents algorithms for learning the ML-ME models from

data and making multi-label predictions from input data instances.

The rest of this chapter is structured as follows. In Section 3.1, we formally define the

prediction problem and introduce the notation used in this chapter. Sections 3.2-3.4 describe

in depth the three solutions we propose to model P (Y|X) and algorithms for their learning

and prediction. At the end of Sections 3.3 and 3.4, we report the experimental results on

multiple real-world datasets and demonstrate the effectiveness of our solutions compared

with the existing state-of-the-art methods. Section 3.5 summarizes our contributions and

concludes the chapter.

3.1 PROBLEM DEFINITION AND NOTATION

Multi-Label Classification (MLC) is a classification problem in which each data instance

is associated with d binary class variables Y1, ..., Yd. We are given labeled training data

D = {x(n),y(n)}Nn=1, where x(n) = (x
(n)
1 , ..., x

(n)
m ) is the m-dimensional feature variable of the

n-th instance (input) and y(n) = (y
(n)
1 , ..., y

(n)
d ) is its d -dimensional class variable (output).

We want to learn a function h that fits D and assigns to each instance a class vector (h :

Rm → {0, 1}d).

One approach to this task is to model and learn the joint conditional distribution P (Y|X)

from D. Assuming the 0-1 loss function, the optimal classifier h∗ assigns to each instance x

the maximum a posteriori (MAP) assignment of class variables:

h∗(x) = arg max
y1,...,yd

P (Y1 = y1, ..., Yd = yd|X = x) (3.1)
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The key challenge in modeling, learning and performing MAP inference is that the number

of configurations defining P (Y|X) is exponential in d. Overcoming this bottleneck is critical

for obtaining efficient MLC solutions.

In this chapter, we use the following notations:

· X, x Input (feature) variable and value

· Y, y Output (class) variable and value

· m Input dimensionality

· d Output dimensionality

· N Number of data instances

· n Index of data instance

· T A tree-structured MLC model (Section 3.2)

· K Number of base MLC models in a mixture (Sections 3.3 and 3.4)

· k Index of base MLC model in a mixture (Sections 3.3 and 3.4)

· Tk, Mk A base MLC model (with an index k) in a mixture (Sections 3.3 and 3.4)

· ΘT = {θT1 , ..., θTK} Parameters for base MLC models (Section 3.3)

· λk Mixture coefficient with an index k (Section 3.3)

· ΘM = {θM1 , ..., θMK
} Parameters for base MLC models (Section 3.4)

· ΘG = {θG1 , ..., θGK
} Parameters for a gate (Section 3.4)

3.2 CONDITIONAL TREE-STRUCTURED BAYESIAN NETWORKS

In this section, we present our probabilistic approach, which we refer to as Conditional Tree-

sturctured Bayesian Networks (CTBN) [Batal et al., 2013], to the MLC problem. In the

CTBN model, the feature vector X is defined to be a common parent for all class variables

(similar to BR [Boutell et al., 2004, Clare and King, 2001]). In addition to X, each class

variable can have at most another class variable as a parent (without creating a cycle). That

is, the conditional dependence relations between the class variables follow a directed tree.

We chose to restrict the dependence structure to a tree because (1) the optimal structure

can be learned using a simple and efficient learning algorithm, and (2) the prediction can be

33



Figure 3.1: An example CTBN.

done efficiently using exact inference. Below we describe the details of our CTBN method.

3.2.1 Representation

Let T be a CTBN model and let Yπ(i,T ) denote the parent class of class variable Yi in T .1

The joint distribution of class vector (y1, ..., yd) conditioned on feature vector x is expressed

as follows:

P (y1, ..., yd|x, T ) =
d∏
i=1

P (yi|x, yπ(i,T )), (3.2)

In Figure 3.1, we show an example CTBN with four class variables (Y1, Y2, Y3, Y4). The

joint conditional distribution of class assignment (y1, y2, y3, y4) given x according to this

network is defined as follows:

P (y1, y2, y3, y4|x) = P (y3|x) · P (y2|x, y3) · P (y1|x, y2) · P (y4|x, y2)

The parameterization of the CTBN model corresponds to specifying the conditional prob-

ability distribution (CPD) of each class variable Yi conditioned on its parents: P (Yi|X, Yπ(i,T )).

The standard parameterization of Bayesian networks uses conditional probability tables

(CPT) to define the distribution of each variable conditioned on every possible configu-

ration of its parents. However, the CPT style parameterization is not feasible for the CTBN

model. The reason is that the feature vector X, which is a common parent for all variables,

1By convention, Yπ(i,T ) = {} if Yi in T does not have a parent class.
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can be a high-dimensional vector of continuous values, discrete values or a mixture of both

(we cannot enumerate all possible configurations of X).

To overcome this difficulty, we represent the CPDs using probabilistic prediction func-

tions. More specifically, for each class variable Yi : i ∈ {1, ..., d}, we approximate its CPD

by learning a different probabilistic classifier fiv(X) for each possible value v ∈ {0, 1} of the

parent class variable:

P̃ (Yi|X = x, Yπ(i,T ) = v) = fiv(x), v ∈ {0, 1} (3.3)

Note that we can use several standard probabilistic classifiers in the CTBN model, such as

logistic regression, näıve Bayes, relevance vector machine or the maximum entropy model. In

our experiments, we use logistic regression with L2 regularization. The parameters of logistic

regression are trained to maximize the regularized conditional likelihood of the training data

and can be efficiently obtained using convex optimization techniques.

3.2.2 Learning the Structure

In this section, we describe how to automatically learn the structure from data. Our objective

is to find the tree structure that best approximates the conditional joint distribution P (Y|X).

This can be equivalently stated as finding the tree that maximizes the conditional log-

likelihood (CLL) of validation data. To do this, we partition the data into two parts: training

data Dt and hold-out data Dh. Given a CTBN T , we use Dt to train its parameters, which

corresponds to learning classifiers P̃ (Yi|X, Yπ(i,T )) as described above. On the other hand, we

use Dh to compute the score of T , which we define to be the CLL of Dh using T (adopting

the standard i.i.d. assumption):

Score(T ) = CLL(Dh|T )

=
∑

(x(n),y(n))∈Dh

d∑
i=1

log
(
P̃ (y

(n)
i |x(n), y

(n)
π(i,T ))

) (3.4)

In the following, we provide an algorithm to efficiently obtain the optimal CTBN T ∗ (the

model that has the maximum score) without having to explicitly evaluate all of the expo-

nentially many possible tree structures. Let us start by defining a weighted directed graph
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Figure 3.2: The complete directed graph G for four class variables. The weights of the edges

are defined using Equations (3.5) and (3.6). The optimal CTBN is obtained by running a

maximum branching algorithm on G.

G = (V,E) as follows:

• There is one vertex Vi for each class variable Yi.

• There is a directed edge Ej→i from each vertex Vj to each vertex Vi (G is complete).

Furthermore, each vertex Vi has a self loop Ei→i.

• The weights of the edges are defined as follows:

– The weight of edge Ej→i, denoted as Wj→i, is the CLL of class Yi conditioned on X

and Yj:

Wj→i =
∑

(x(n),y(n))∈Dh

log
(
P̃ (y

(n)
i |x(n), y

(n)
j )
)

if i 6= j (3.5)

– The weight of self-loop Ei→i, denoted as Wφ→i, is the CLL of class Yi conditioned

only on X:

Wφ→i =
∑

(x(n),y(n))∈Dh

log
(
P̃ (y

(n)
i |x(n))

)
(3.6)

By using this definition of edge weights (Equations (3.5) and (3.6)) and switching the

order of summation in Equation (3.4), we can rewrite the score of T simply as the sum of
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Algorithm 1 Find-an-optimal-CTBN-structure

Input: Training data Dt; validation data Dh

Output: Optimal CTBN T ∗

1: for i = 1 to d do
2: Learn P̃ (Yi|X) from Dt

3: Compute Wφ→i on Dh:

Wφ→i =
∑

(x(k),y(k))∈Dh
log
(
P̃ (y

(k)
i |x(k))

)
4: for j = 1 to d do
5: if j 6= i then
6: Learn P̃ (Yi|X, Yj) from Dt

7: Compute Wj→i on Dh:

Wj→i =
∑

(x(k),y(k))∈Dh
log
(
P̃ (y

(k)
i |x(k), y

(k)
j )
)

8: end if
9: end for

10: end for
11: Construct the weighted digraph G(V,E) using weights Wφ→i and Wj→i
12: return T ∗ = find maximum weight branching(G)

its edge weights (by convention, a node without a parent has a self loop):

Score(T ) =
d∑
i=1

Wπ(i,T )→i

Now we have transformed the problem of finding the optimal CTBN into the problem of

finding the tree in G that has the maximum sum of edge weights. The solution can be

obtained by solving the maximum branching (arborescence) problem [Tarjan, 1977], which

finds the maximum weight directed tree in weighted directed graphs. Note that although

this problem is similar in spirit to the problem of finding the maximum spanning tree in

undirected graphs, the algorithms are quite different because applying a maximum spanning

tree algorithm on a directed graph do not guarantee an optimal solution.

3.2.2.1 Complexity Algorithm 1 outlines how to learn the optimal CTBN. Lines 2-10

compute the edge weights (according to Equations (3.5) and (3.6)) for the complete directed

graph G (see Figure 3.2). Doing so requires estimating P̃ (Yi|X, Yj) for all d2 pairs of class

variables, which in turn requires learning different probabilistic classifiers as described in

Section 3.2.1. Line 12 finds the maximum branching in G, which can be obtained in O(d2)
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Algorithm 2 Predict-CTBN
Input: Instance x; CTBN T
Output: Prediction of x according to T : y∗

1: for Each node i (class Yi) in the post-order traversal of T do
2: Send message λi→j to its parent j = π(i, T ):

λi→j(yj) = maxyi

[
log P̃ (yi|x, yj) +

∑
h∈child(i,T ) λh→i(yi)

]
3: end for
4: for Each node i (class Yi) in the pre-order traversal of T do
5: Compute its optimal prediction y∗i :

y∗i = arg maxyi

[
log P̃ (yi|x, y∗j ) +

∑
h∈child(i,T ) λh→i(yi)

]
6: end for
7: return y∗

using Tarjan’s implementation [Tarjan, 1977] (this algorithm is as fast as Prim’s algorithm

for finding undirected maximum spanning tree). Therefore, the overall complexity is O(d2)

times the complexity of learning the probabilistic classifiers (e.g., logistic regression).

3.2.3 Prediction

In order to make a prediction for a new instance x, we should find the MAP assignment

of class variables (solve Equation (3.1)). This problem is NP-hard for general Bayesian

networks. However, since we have restricted our structure to a tree, we can solve the problem

efficiently using exact inference.

In particular, we perform inference using a variant of the max-sum algorithm [Koller and

Friedman, 2009]2 that we design for the CTBN model. This algorithm first computes the

local CPTs for each node Yi by applying the corresponding classifier for each possible value

of the parent class (see Equation (3.3)). After that, it performs two phases to obtain the

optimal prediction. In the first phase, the algorithm sends messages upward (from the leaves

to the root) where each node Yi applies the following steps: (i) compute the sum of the

logarithm of its local CPT and all messages sent from its children, (ii) maximize the result

over its value, and (iii) send it to the parent node (line 1-3, Algorithm 2). In the second

phase, the algorithm propagates the optimal assignments downward (line 4-6, Algorithm 2).

2The max-sum algorithm is analogous to the sum-product algorithm for computing conditional probability
queries.
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Figure 3.3: An example showing the CPTs of a CTBN model for a specific instance x.

3.2.3.1 Complexity The inference algorithm described above runs in O(d), where d is

the number of class variables.

Example 3. Consider the example in Figure 3.3, where we show the conditional probability

tables of a CTBN model for a specific instance x (obtained by applying the classifiers on x).

The optimal prediction for x is (Y3 = 0, Y2 = 1, Y1 = 0, Y4 = 0), which can be obtain by

running our exact inference algorithm.

3.2.4 Experiments

Experimental results of CTBN are reported in Section 3.3.6.

3.2.5 Discussion

In this chapter, we proposed a novel probabilistic approach to the MLC problem. Our

approach encodes the conditional dependence relations between the class variables using

a special tree-structured Bayesian network, whose conditional distributions are defined us-

ing probabilistic classifiers. We presented an efficient algorithm to learn the tree structure

that maximizes the conditional log-likelihood. Furthermore, we presented an efficient exact

inference algorithm that has a linear complexity in the number of class variables.
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Although our CTBN approach effectively discovers the dependence relations in data and

builds an accurate predictive multi-label data model, the approach may not fully recover the

underlying dependence relations due to its structural restriction. In the following, we develop

two variants of mixture frameworks that work with the structured probabilistic MLC models.

We show how to reveal and learn various dependence relations among inputs and outputs,

which a single MLC model cannot capture, and how to combine them into an ensemble to

achieve a higher predictive accuracy.

3.3 MIXTURES-OF-CONDITIONAL TREE-STRUCTURED BAYESIAN

NETWORKS

In this section, we describe the Mixture of Conditional Tree-structured Bayesian Networks

approach that uses the Mixtures-of-Trees [Meilă and Jordan, 2000] framework in combination

with the CTBN classifiers (Section 3.2) to improve the classification accuracy of MLC tasks.

Our mixture ensemble aims to learn a more accurate representation of the class posterior dis-

tribution P (Y|X) by leveraging the computational advantages of conditional tree-structured

models and the abilities of mixtures to compensate for tree-structured restrictions. Below

we show the representation of this new mixture model, and develop algorithms for learning

the structures and parameters from data and for performing multi-label predictions using a

learned mixture.

3.3.1 Preliminary: Mixtures-of-Trees Framework

The MLC solution we propose in this section combines multiple base MLC classifiers using

the Mixtures-of-Trees (MT) [Meilă and Jordan, 2000] framework, which uses a mixture of

multiple trees to define a generative model of P (Y) for discrete multi-dimensional domains.

The base classifiers we use are based on the Conditional Tree-structured Bayesian Networks

(CTBN) (Section 3.2). To begin with, we briefly review the basics of MT and CTBN.

MT consists of a set of trees that are combined using mixture coefficients λk to represent
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the joint distribution P (y). The model is defined by the following decomposition:

P (y) =
K∑
k=1

λkP (y|Tk), (3.7)

where P (y|Tk) are called mixture components that represent the distribution of outputs

defined by the k-th tree Tk. Note that a mixture can be understood as a soft-multiplexer,

where we have a hidden selector variable which takes a value k ∈ {1, ..., K} with probability

λk. That is, by having a convex combination of mutually complementary tree-structured

models, MT aims at achieving a more expressive and accurate model.

While MT is not as computationally efficient as individual trees, it has been considered as

a useful approximation at a fraction of the computational cost for learning general graphical

models [Kirshner and Smyth, 2007]. MT has been successfully adopted in a range of appli-

cations, including modeling of handwriting patterns, medical diagnostic network, automated

application screening, gene classification and identification [Meilă and Jordan, 2000], face

detection [Ioffe and Forsyth, 2001b], video tracking [Ioffe and Forsyth, 2001a], road traffic

modeling [Šingliar and Hauskrecht, 2007] and climate modeling [Kirshner and Smyth, 2007].

In this section, we apply the MT framework in context of MLC. In particular, we combine

MT with CTBN to model individual trees. CTBN is a recently proposed probabilistic MLC

method that has been shown to be competitive and efficient on a range of domains. CTBN

defines P (Y|X) using a collection of classifiers that model relations in between features

and individual labels, which are tied together using a special Bayesian network structure

that approximates the dependence relations among the class variables. In modeling of the

dependences, it allows each class variable to have at most one other class variable as a parent

(without creating a cycle) besides the feature vector X.

Although our proposed method is motivated by MT, there are significant extensions and

differences. We summarize the key distinctions below.

1. Model : Our model represents P (Y|X), the class posterior distribution for MLC, using

CTBNs that each consists of a collection of logistic regression models, linked together by

a directed tree; on the other hand, the MT model [Meilă and Jordan, 2000] represents

the joint distribution P (Y) using standard tree-structured Bayesian networks.
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Figure 3.4: An example MC.

2. Structure learning : Our structure learning algorithm optimizes P (Y|X) using weighted

conditional log-likelihood criterion; while MT relies on the standard Chow-Liu algorithm

[Koller and Friedman, 2009] that optimizes P (Y) using mutual information.

3. Parameter learning : Not surprisingly, both our parameter learning method and that

of MT rely on the EM algorithm. However, the criteria and optimization techniques

are very different. For example, the M-step of our algorithm corresponds to learning

of instance-weighted logistic regression classifiers; while that of MT is based on simple

(weighted) counting.

3.3.2 Representation

By following the definition of MT in Equation (3.7), MC defines the multivariate posterior

distribution of class vector y = (y1, ..., yd) as:

P (y|x) =
K∑
k=1

λkP (y|x, Tk), (3.8)
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where λk ≥ 0,∀k; and
∑K

k=1 λk = 1. Here each mixture component P (y|x, Tk) is the distri-

bution defined by CTBN Tk (as in Equation (3.2)) and mixture coefficients are denoted by

λk. Figure 3.4 depicts an example MC model, which consists of K CTBNs and the mixture

coefficients λk.

3.3.3 Parameter Learning

In this section, we describe how to learn the parameters of MC with the assumption that the

structures of individual CTBNs are known and fixed. The parameters of the MC model are

the mixture coefficients {λ1, ..., λK} as well as the parameters of each CTBN in the mixture

{θ1, ..., θK}.

Given training data D = {x(n),y(n)} : n ∈ 1, ..., N , the objective is to optimize the

log-likelihood of D, which we refer to as the observed log-likelihood.

N∑
n=1

logP (y(n)|x(n)) =
N∑
n=1

log
K∑
k=1

λkP (y(n)|x(n), Tk)

However, this is very difficult to directly optimize because it contains the log of the sum.

Hence, we cast this optimization in the expectation-maximization (EM) framework. Let us

associate each instance (x(n),y(n)) with a hidden variable z(n) ∈ {1, ..., K} indicating which

CTBN it belongs to. The complete log-likelihood (assuming z(n) are observed) is:

N∑
n=1

logP (y(n), z(n)|x(n)) (3.9)

=
N∑
n=1

log
K∏
k=1

P
(
y(n), Tk|x(n)

)1[z(n)=k]
(3.10)

=
N∑
n=1

log
K∏
k=1

[
λkP

(
y(n)|x(n), Tk

)]1[z(n)=k]

=
N∑
n=1

K∑
k=1

1[z(n) = k]
[
log λk + logP

(
y(n)|x(n), Tk

)]
,

where 1[z(n) = k] is the indicator function, which is one if the n-th instance belongs to the

k-th CTBN and zero otherwise; and λk is the mixture coefficient of CTBN Tk, which can be

interpreted as its prior probability in the data.
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The EM algorithm iteratively optimizes the expected complete log-likelihood, which is

always a lower bound to the observed log-likelihood [Moon, 1996]. In the E-step, the ex-

pectation is computed with the current set of parameters; in the M-step, the parameters

of the mixture (λk, θk : k = {1, ..., K}) are relearned to maximize the expected complete

log-likelihood. In the following, we describe our parameter learning algorithm by deriving

the E-step and the M-step for MC.

E-step In the E-step, we compute the expectation of the hidden variables. Let γk(n)

denote P (z(n) = k|y(n),x(n)), the posterior of the hidden variable z(n) given the observations

and the current parameters. Using Bayes rule, we write:

γk(n) =
λkP (y(n)|x(n), Tk)∑
k′ λk′P (y(n)|x(n), Tk′)

(3.11)

M-step In the M-step, we learn the model parameters {λ1, ..., λK , θ1, ..., θK} that maximize

the expected complete log-likelihood, which is a lower bound of the observed log-likelihood.

Let us first define the following two quantities:

Γk =
N∑
n=1

γk(n), wk(n) =
γk(n)

Γk

Γk can be interpreted as the number of observations that belongs to the k-th CTBN (hence,∑K
k=1 Γk = N), and wk(n) is the renormalized posterior γk(n), which can be interpreted as

the weight of the n-th instance on the k-th CTBN.

Note that when taking the expectation of the complete log-likelihood (Equation (3.9)),

only the indicator 1[z(n) = k] is affected by the expectation. By using the notations intro-

duced above, we rewrite the expected complete log-likelihood:

N∑
n=1

K∑
k=1

γk(n)
[
log λk + logP

(
y(n)|x(n), Tk

)]
=

K∑
k=1

Γk log λk +
K∑
k=1

Γk

N∑
n=1

wk(n) logP
(
y(n)|x(n), Tk

)
(3.12)

We wish to maximize Equation (3.12) with respect to {λ1, ..., λK , θ1, ..., θK} subject to the

constraint
∑K

k=1 λk = 1. Notice that Equation (3.12) consists of two terms and each term
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Algorithm 3 Learn-MC-parameters
Input: Training data D; base CTBNs T1, ..., TK
Output: Model parameters {θ1, ..., θK , λ1, ..., λK}
1: repeat
2: E-step:
3: for k = 1 to K, n = 1 to N do
4: Compute γk(n) using Equation (3.11)
5: end for
6: M-step:
7: for k = 1 to K do
8: Γk =

∑N
n=1 γk(n)

9: wk(n) = γk(n)/Γk
10: λk = Γk/N
11: θk = arg max

∑N
n=1wk(n) logP (y(n)|x(n), Tk)

12: end for
13: until convergence

has a disjoint subset of parameters – which allows us to maximize Equation (3.12) term by

term. By maximizing the first term with respect to λj (the mixture coefficient of Tj), we

obtain:

λj =
Γj∑K
k=1 Γk

=
Γj
N

To maximize the second term, we train θj (the parameters of Tj) to maximize:

θj = arg max
N∑
n=1

wj(n) logP (y(n)|x(n), Tj) (3.13)

It turns out Equation (3.13) is the instance-weighted log-likelihood, and we use instance-

weighted logistic regression to optimize it. Algorithm 3 outlines our parameter learning

algorithm.

3.3.3.1 Complexity E-step: We compute γk(n) for each instance on every CTBN. To

compute γk(n), we should estimate P (y(n)|x(n), Tk), which requires applying the logistic

regression classifiers for each node of Tk, which requires O(md) multiplications. Hence, the

complexity of the E-step is O(KNmd).

M-step: The major computational cost of the M-step is to learn the instance-weighted

logistic regression models for the nodes of every CTBN. Hence, the complexity is O(Kd)

times the complexity of learning logistic regression.
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3.3.4 Structure Learning

In this section, we describe how to automatically learn multiple CTBN structures from data.

We apply a sequential boosting-like heuristic, where in each iteration we learn the structure

that focuses on the instances that are not well predicted by the previous structures (i.e.,

the MC model learned so far). In the following, we first describe how to learn a single

CTBN structure from instance-weighted data. After that, we describe how to re-weight the

instances and present our algorithm for learning the overall MC model.

Learning a Single CTBN Structure on Weighted Data The goal here is to discover

the CTBN structure that maximizes the weighted conditional log-likelihood (WCLL) on

{D,Ω}, where D = {x(n),y(n)}Nn=1 is the data and Ω = {ω(n)}Nn=1 is the weight for each

instance. We do this by partitioning D into two parts: training data Dtr and hold-out data

Dh. Given a CTBN structure T , we train its parameters using Dtr and the corresponding

instance weights. On the other hand, we use WCLL of Dh to score T .

Score(T ) =
∑

(x(n),y(n))∈Dh

ω(n) logP (y(n)|x(n), T ) (3.14)

=
∑

(x(n),y(n))∈Dh

d∑
i=1

ω(n) logP (y
(n)
i |x(n), y

(n)
π(i,T ))

In the following, we describe our algorithm for obtaining the CTBN structure that op-

timizes Equation (3.14) without having to evaluate all of the exponentially many possible

tree structures.

Let us first define a weighted directed graph G = (V,E), which has one vertex Vi for

each class label Yi and a directed edge Ej→i from each vertex Vj to each vertex Vi (i.e., G

is complete). In addition, each vertex Vi has a self-loop Ei→i. The weight of edge Ej→i,

denoted as Wj→i, is the WCLL of class Yi conditioned on X and Yj:

Wj→i =
∑

(x(n),y(n))∈Dh

ω(n) logP (y
(n)
i |x(n), y

(n)
j ) (3.15)
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The weight of self-loop Ei→i, denoted as Wφ→i, is the WCLL of class Yi conditioned only on

X. Using the definition of edge weights, Equation (3.14) can be simplified as the sum of the

edge weights:

Score(T ) =
d∑

n=1

Wπ(i,T )→i

Now we have transformed the problem of finding the optimal tree structure into a problem

of finding a tree in G that has the maximum sum of edge weights. The solution can be

obtained by solving the maximum branching (arborescence) problem [Edmonds, 1967], which

finds the maximum weight tree in a weighted directed graph.

Learning Multiple CTBN Structures In order to obtain multiple CTBN structures

for the MC model, we apply the algorithm described above multiple times with different

sets of instance weights. We assign the weights such that we give higher weights for poorly

predicted instances and lower weights for well-predicted instances.

We start by assigning all instances uniform weights (i.e., all instances are equally impor-

tant a priori).

ω(n) = 1/N : n = 1, ..., N

Using this initial set of weights, we find the initial CTBN structure T1 (and its parameters

θ1) and set the current model M to be T1. We then estimate the prediction error margin

ω(n) = 1 − P (y(n)|x(n),M) for each instance and renormalize such that
∑N

n=1 ω
(n) = 1. We

use {ω(n)} to find the next CTBN structure T2. After that, we set the current model to be

the MC model learned by mixing T1 and T2 according to Algorithm 3.

We repeat the process by incrementally adding trees to the mixture. To stop the process,

we use internal validation approach. Specifically, the data used for learning are split into

internal train and test sets. The structure of the trees and parameters are always learned

on the internal train set. The quality of the current mixture is evaluated on the internal

test set. The mixture growth stops when the log-likelihood on the internal test set for the

new mixture is worse than that of the previous mixture. The trees included in the previous

mixture are then fixed, and the parameters of the mixture are relearned on the full training

data.
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3.3.4.1 Complexity In order to learn a single CTBN structure, we compute edge weights

for the complete graph G, which requires estimating P (Yi|X, Yj) for all d2 pairs of classes.

Finding the maximum branching in G can be obtained in O(d2) using [Tarjan, 1977]. To

learn K CTBN structures for the mixture, we repeat these steps K times. Therefore, the

overall complexity is O(d2) times the complexity of learning logistic regression.

3.3.5 Prediction

In order to make a prediction for a new instance x, we want to find the MAP assignment

of the class variables (see Equation (3.1)). In general, this requires evaluating all possible

assignments of values to d class variables, which is exponential in d.

One important advantage of the CTBN model is that the MAP inference can be done

more efficiently by avoiding blind enumeration of all possible assignments. More specifically,

the MAP inference on a CTBN is linear in the number of classes (O(d)) when implemented

using a variant of the max-sum algorithm [Koller and Friedman, 2009] on a tree structure.

However, our MC model consists of multiple CTBNs and the MAP solution may, at the

end, require enumeration of exponentially many class assignments. To address this prob-

lem, we rely on approximate MAP inference. Two commonly applied MAP approximation

approaches are convex programming relaxation via dual decomposition [Sontag, 2010], and

simulated annealing using a Markov chain [Yuan et al., 2004]. In this work, we use the latter

approach. Briefly, we search the space of all assignments by defining a Markov chain that is

induced by local changes to individual class labels. The annealed version of the exploration

procedure [Yuan et al., 2004] is then used to speed up the search. We initialize our MAP

algorithm using the following heuristic: first, we identify the MAP assignments for each

CTBN in the mixture individually, and after that, we pick the best assignment from among

these candidates. We have found this (efficient) heuristic to work very well and it often

results in the true MAP assignment.

48



3.3.6 Experiments

3.3.6.1 Datasets We perform experiments on ten publicly available multi-label datasets.

These datasets are obtained from different domains such as music recognition (emotions [Tro-

hidis et al., 2008]), semantic image labeling (scene [Boutell et al., 2004] and image [Dem-

bczynski et al., 2010]), biology (yeast [Elisseeff and Weston, 2001]) and text classification

(enron and RCV1 [Lewis et al., 2004] datasets). Table 3.1 summarizes the characteristics of

the datasets. We show the number of instances (N), number of feature variables (m) and

number of class variables (d). In addition, we show two statistics: label cardinality (LC),

which is the average number of labels per instance, and distinct label set (DLS), which is

the number of all distinct configurations of classes that appear in the data. Note that, for

RCV1 datasets, we have used the ten most common labels.

3.3.6.2 Methods We compare the performance of our two algorithms, CTBN that uses

a single model (SC) and the mixture-of-CTBNs (MC) model, to multiple MLC baselines.

These baselines include: simple binary relevance (BR) independent classification [Clare and

King, 2001, Boutell et al., 2004], classification with heterogeneous features (CHF) [God-

bole and Sarawagi, 2004], multi-label k-nearest neighbor (MLKNN) [Zhang and Zhou, 2007],

instance-based learning by logistic regression (IBLR) [Cheng and Hüllermeier, 2009], classi-

Dataset N m d LC DLS Domain

Emotions 593 72 6 1.87 27 music

Yeast 2,417 103 14 4.24 198 biology

Scene 2,407 294 6 1.07 15 image

Image 2,000 135 5 1.24 20 image

Enron 1,702 1,001 53 3.38 753 text

RCV1 subset1 6,000 8,394 10 1.31 69 text

RCV1 subset2 6,000 8,304 10 1.21 70 text

RCV1 subset3 6,000 8,328 10 1.22 74 text

RCV1 subset4 6,000 8,332 10 1.22 79 text
RCV1 subset5 6,000 8,367 10 1.31 76 text

Table 3.1: Datasets characteristics (N : number of instances, m: number of features, d:

number of classes, LC: label cardinality, DLS: distinct label set, DM: domain).
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fier chains (CC) [Read et al., 2009], ensemble of classifier chains (ECC) [Read et al., 2009],

probabilistic classifier chains (PCC) [Dembczynski et al., 2010], ensemble of probabilistic

classifier chains (EPCC) [Dembczynski et al., 2010], multi-label conditional random fields

(MLCRF) [Pakdaman et al., 2014], and maximum margin output coding (MMOC) [Zhang

and Schneider, 2012].

For all methods, we use the same parameter settings as suggested in their papers: For

MLKNN and IBLR, which use the k-nearest neighbor (KNN) method, we use Euclidean

distance to measure similarity of instances and we set the number of nearest neighbors to 10

[Zhang and Zhou, 2007, Cheng and Hüllermeier, 2009]; for CC, we set the order of classes to

Y1<Y2, ... <Yd [Read et al., 2009]; for ECC and EPCC, we use 10 CCs in the ensemble [Read

et al., 2009, Dembczynski et al., 2010]; finally for MMOC, we set the decoding parameter to 1

[Zhang and Schneider, 2012]. Also note that all of these methods except MLKNN and MMOC

are considered as meta-learners because they can work with several base classifiers. To

eliminate additional effects that may bias the results, we use L2-penalized logistic regression

for all of these methods and choose their regularization parameters by cross validation. For

our MC model, we decide the number of mixture components using our stopping criterion

(Section 3.3.4) and we use 150 iterations of simulated annealing for prediction.

3.3.6.3 Evaluation Metrics Evaluating the performance of MLC methods is more diffi-

cult than evaluating simple classification methods. The most suitable performance measure

is the exact match accuracy (EMA), which computes the percentage of instances whose

predicted label vectors are exactly the same as their true label vectors:

EMA =
N∑
n=1

δ(y(n), h(x(n)))

However, this measure could be too harsh, especially when the output dimensionality is

high. Another very useful measure is the conditional log-likelihood loss (CLL-loss), which

computes the negative conditional log-likelihood of the test instances:

CLL-loss =
N∑
n=1

− log
(
P (y(n)|x(n))

)
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CLL-loss evaluates how much probability mass is given to the true label vectors (the higher

the probability, the smaller the loss).

Other evaluation measures used commonly in MLC literature are based on F1 scores.

Micro F1 aggregates the number of true positives, false positives and false negatives for all

classes and then calculates the overall F1 score. On the other hand, macro F1 computes the

F1 score for each class separately and then averages these scores. Note that both measures

are not the best for MLC because they do not account for the correlations between classes

(see [Dembczynski et al., 2010] and [Zhang and Zhang, 2010]). However, we report them in

our performance comparisons as they have been used in other MLC literature [Tsoumakas

et al., 2010].

3.3.6.4 Results We have performed ten-fold cross validation for all of our experiments.

To evaluate the statistical significance of performance difference, we apply paired t-tests

at 0.05 significance level. We use markers ∗/~ to indicate whether MC is significantly

better/worse than the compared method.

Tables 3.2, 3.3, 3.4 and 3.5 show the performance of the methods in terms of EMA,

CLL-loss, micro F1 and macro F1, respectively. We only show the results of MMOC on four

datasets (emotions, yeast, scene and image) because it did not finish on the remaining data

(MMOC did not finish one round of the learning within a 24 hours time limit). For the

same reason, we do not report the results of PCC, EPCC and MLCRF on the enron dataset.

Also note that we do not report CLL-loss for MMOC, ECC and EPCC because they do not

compute a probabilistic score for a given class assignment.

In terms of EMA (Table 3.2), MC clearly outperforms the other methods on most

datasets. MC is significantly better than BR, CHF, MLKNN and CC on all ten datasets,

significantly better than IBLR, ECC and MLCRF on nine datasets, significantly better than

EPCC and SC on five datasets and significantly better than PCC on four datasets (see

the last row of Table 3.2). Although not statistically significant, MC performs better than

MMOC on all datasets MMOC is able to finish. MLKNN and IBLR perform poorly on the

high-dimensional (m > 1, 000) datasets because Euclidean distances between data instances

become indiscernible in high dimensions.
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Interestingly, MC shows significant improvements over SC (a single CTBN) on five

datasets, while SC produces competitive results as well. We attribute the improved per-

formance of MC to the ability of mixtures to compensate for the restricted dependences

modeled by CTBNs, and that of individual CTBNs to better fit the data with different

weight sets. On the contrary, ECC and EPCC do not show consistent improvements over

their base methods (CC and PCC, respectively) and sometimes even deteriorate the accu-

racy. This is due to the ad-hoc nature of their ensemble learning and prediction (see Section

2.1.7) that limits the potential improvement and disturbs the prediction of the ensemble

classifiers.

Table 3.3 compares MC to other probabilistic MLC methods using CLL-loss. The results

show that MC outperforms all other methods. This is expected because MC is tailored to

optimize the conditional log-likelihood. Among the compared probabilistic methods, only

PCC produces comparable results with MC because PCC explicitly evaluates all possible

class assignments to compute the entire class conditional distribution. On the other hand,

CC greedily seeks the mode of the class conditional distribution and results in large losses.

In addition, CHF and MLKNN perform very poorly because they apply ad-hoc classification

heuristics without performing proper probabilistic inference. Again, MC shows consistent

improvements over SC because mixing multiple CTBNs allows us to account for different

patterns in the data and, hence, improves the generalization of the model.

Lastly, Tables 3.4 and 3.5 show that MC is also very competitive in terms of micro

and macro F1 scores, although optimizing them was not our immediate objective. One

noteworthy observation is that ECC and EPCC do particularly well in terms of F1 scores.

We consider averaging out the predictions on each class variable enhances BR-like char-

acteristics in their ensemble decision. In the future, we will crossbreed these two different

ensemble approaches (e.g., MCC/MPCC by applying our mixture framework and algorithms

to CC/PCC; ECTBN using randomly structured CTBNs and simple averaging) and compare

the performances.
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3.3.7 Discussion

In this section, we presented a probabilistic ensemble approach to the MLC problem based

on the Mixtures-of-Trees [Meilă and Jordan, 2000] and Conditional Tree-structured Bayesian

Networks (CTBNs; Section 3.2) frameworks. We devised and presented algorithms for learn-

ing the parameters of the mixture, finding multiple tree structures and inferring the maxi-

mum a posteriori (MAP) output label configurations for the model.

Our experiments on a broad range of datasets revealed several interesting properties of

the base CTBN model (SC) as well as the mixture-of-CTBNs (MC) method. First, the tree

assumption of SC let us define efficient yet powerful learning and prediction algorithms, which

result in the most competitive performance among the non-ensemble methods (i.e., BR,

CHF, MLKNN, IBLR, CC, and PCC). This suggests that SC can be a favorable candidate

as a general off-the-shelf MLC solution, when one needs good predictive accuracy within a

short period of time. On the other hand, as a mixture ensemble, MC considerably improved

the accuracy of the outcomes over SC at the cost of longer parameter optimization (Section

3.3.3.1). We conclude that MC would be preferred when one needs more accurate multi-label

prediction and probability estimates at the extra expense of time.

In the next section, we further improve this ensemble approach by developing a Mixtures-

of-Experts [Jacobs et al., 1991] framework for MLC. We present a generalized representation

of the class posterior distribution P (Y|X) that covers a number of existing MLC models

[Boutell et al., 2004, Clare and King, 2001, Batal et al., 2013, Read et al., 2009] as spe-

cial cases. We show how this generalized representation is incorporated with our extended

Mixtures-of-Experts framework, which combines the decisions from multiple base MLC mod-

els using an input-dependent gate function (instead of a fixed set of mixture coefficients).

3.4 MULTI-LABEL MIXTURES-OF-EXPERTS

In this section, we develop a generalized probabilistic ensemble framework for the MLC

problem that is based on the Mixtures-of-Experts [Jacobs et al., 1991] architecture. This novel
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framework combines multiple MLC models in the classifier chains family (see Section 2.1)

that decompose the class posterior distribution P (Y1, ..., Yd|X) using a product of posterior

distributions over components of the output space. Our approach captures different input–

output and output–output relations that tend to change across data. As a result, we can

recover a rich set of dependence relations among inputs and outputs that a single multi-label

classification model cannot capture due to its modeling simplifications. We develop and

present algorithms for learning the Mixtures-of-Experts models from data and for performing

multi-label predictions on unseen data instances.

3.4.1 Preliminary: Mixtures-of-Experts Framework

The MLC solution we propose combines multiple MLC classifiers using the Mixtures-of-

Experts (ME) [Jacobs et al., 1991] architecture. While in general the ME architecture may

combine many different types of probabilistic MLC models, this work focuses on the models

that belong to the classifier chains family (CCF). In the following we briefly review the

basics of ME and CCF.

The ME architecture is a mixture model that consists of a set of experts combined by a

gating function (or gate). The model represents the conditional distribution P (y|x) by the

following decomposition:

P (y|x) =
K∑
k=1

P (Ek|x)P (y|x, Ek), (3.16)

=
K∑
k=1

gk(x)P (y|x, Ek),

where P (y|x, Ek) is the output distribution defined by the k-th expert Ek; and P (Ek|x) is

the context-sensitive prior of the k-th expert, which is implemented by the gating function

gk(x). Generally speaking, depending on the choice of the expert model, ME can be used

for either regression or classification [Yuksel et al., 2012].

Note that the gating function in ME defines a soft-partitioning of the input space, on

which the K experts represent different input-output relations. The ability to switch among

the experts in different input regions allows to compensate for the limitation of individual
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(a) CC (b) CTBN (c) BR

Figure 3.5: Example models in the classifier chains family.

experts and improve the overall model accuracy. As a result, ME is especially useful when

individual expert models are good in representing local input-output relations but may fail

to accurately capture the relations on the complete input space.

ME has been successfully adopted in a wide range of applications, including handwriting

recognition [Ebrahimpour et al., 2009], text classification [Estabrooks and Japkowicz, 2001],

bioinformatics [Qi et al., 2007b, Cao et al., 2010], and climate prediction [Lu, 2006]. In

addition, ME has been used in time series analysis, such as speech recognition [Mossavat

et al., 2010], financial forecasting [Weigend and Shi, 2000] and dynamic control systems

[Jacobs and Jordan, 1993, Weigend et al., 1995]. Recently, ME was used in social network

analysis, in which various social behavior patterns are modeled through a mixture [Gormley

and Murphy, 2011].

Here we apply the ME architecture to solve the MLC problem. In particular, we explore

how to combine ME with MLC models that belong to the classifier chains family (CCF).

The CCF models decompose the multivariate class posterior distribution P (Y|X) using a

product of the posteriors over individual class variables as follows:

P (Y|X,M) =
d∏
i=1

P (Yi|X,Yπ(i,M)), (3.17)

where Yπ(i,M) denotes the parent classes of class variable Yi defined by model M . An

important advantage of the CCF models is that they give us a well-defined model of posterior

class probabilities. That is, the models let us calculate P (Y = y|X = x) for any (x,y) input-

output pair. This is extremely useful not only for prediction, but also for decision making
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[Raiffa, 1997, Berger, 1985], conditional outlier analysis [Hauskrecht et al., 2007, Hauskrecht

et al., 2010, Hauskrecht et al., 2013], or performing any inference over subsets of output class

variables. In contrast, the majority of existing MLC methods aim to only identify the best

output configuration for the given x.

The original classifier chains (CC) model was introduced by Read et al. [Read et al.,

2009]. Due to the efficiency and effectiveness of the model, CC has quickly gained large

popularity in the machine learning community. Briefly, it defines the class posterior distri-

bution P (Y|X) using a collection of classifiers that are tied together in a chain structure.

To capture the dependence relations among features and class variables, CC allows each

class variable to have only the classes that precede it along the chain as parents (Yπ(i,M) in

Equation (3.17)).

Figure 3.5(a) shows an example CC, whose chain order is Y3 → Y2 → Y1 → Y4. Hence,

the example defines the conditional joint distribution of class assignment (y1, y2, y3, y4) given

x as:

P (y1, y2, y3, y4|x,MFig.3.5(a))

= P (y3|x) · P (y2|x, y3) · P (y1|x, y3, y2) · P (y4|x, y3, y2, y1)

Likewise, CCF is defined by a collection of classifiers, P (Yi|X,Yπ(i,M)) : i = 1, ..., d, one

classifier for each output variable Yi in the chain (Equation (3.17)). Theoretically, the CCF

decomposition lets us accurately represent the complete conditional distribution P (Y|X)

using a fully connected graph structure of Y (see Figure 3.5(a)). However, this property

does not hold in practice [Dembczynski et al., 2010]. First, the choice of the univariate

classifier model in CC (such as logistic regression), or other structural restrictions placed

on the model, limit the types of multivariate output relations one can accurately represent.

Second, the model is learned from data, and the data we have available for learning may

be limited, which in turn may influence the model quality in some parts of the input space.

As a result, a specific CC model is best viewed as an approximation of P (Y|X). In such

a case, a more accurate approximation of P (Y|X) may be obtained by combining multiple

CCs, each optimized for a different input subspace.
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Conditional Tree-structured Bayesian networks (CTBN) (Section 3.2) is another model

in CCF. The model is defined by an additional structural restriction: the number of parents

is set to at most one (using the notation in Equation (3.17), Yπ(i,M) := Yπ(i,M)) and the

dependence relations among classes form a tree:

P (y|x,M) =
d∏
i=1

P (yi|x, yπ(i,M)),

where yπ(i,M) denotes the parent class of class Yi in M . Figure 3.5(b) shows an example

CTBN that defines: P (y|x,MFig.3.5(b)) = P (y3|x) · P (y2|x, y3) · P (y1|x, y2) · P (y4|x, y2). The

advantage of the tree-structured restriction is that it permits efficient structure learning and

exact MAP inference [Batal et al., 2013].

The binary relevance (BR) [Clare and King, 2001, Boutell et al., 2004] model is a special

case of CC that assumes all class variables are conditionally independent of each other

(Yπ(i,M) = {} : i = 1, ..., d)3. Figure 3.5(c) illustrates BR when d = 4.

Finally, we would like to note that Section 3.3 extends the Mixtures-of-Trees framework

[Meilă and Jordan, 2000, Šingliar and Hauskrecht, 2007] for multi-label prediction tasks using

multiple CTBNs (Section 3.2). In this section, we further generalize the approach using ME

and CCF.

3.4.2 Representation

By following the definition of ME (Equation (3.16)), ML-ME defines the multivariate pos-

terior distribution of class vector y = (y1, ..., yd) by employing K CCF models described in

the previous section:

P (y|x) =
K∑
k=1

gk(x)P (y|x,Mk) (3.18)

=
K∑
k=1

gk(x)
d∏
i=1

P (yi|x,yπ(i,Mk)), (3.19)

where P (y|x,Mk) =
∏d

i=1 P (yi|x,yπ(i,Mk)) is the joint conditional distribution defined by

the k-th CCF model Mk and gk(x) = P (Mk|x) is the gate reflecting how much Mk should

3By convention, Yπ(i,M) = {} if Yi in M does not have a parent class.
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Figure 3.6: An example of ML-ME.

contribute towards predicting classes for input x. We model the gate using the Softmax

function, also known as normalized exponential:

gk(x) =
exp(θGk

x)∑K
k′=1 exp(θGk′

x)
, (3.20)

where ΘG = {θGk
}Kk=1 is the set of Softmax parameters. Figure 3.6 illustrates an example

of ML-ME model, which consists of K CCFs whose outputs are probabilistically combined

by the gating function.

Parameters Let Θ = {ΘG,ΘM} denote the set of parameters for an ML-ME model,

where ΘG = {θGk
}Kk=1 are the gate parameters and ΘM = {θMk

}Kk=1 are the parameters of

the CCF models defining individual experts. We define a gate output for each expert by a

linear combination of inputs, which requires |θGk
| = (m + 1) = O(m) parameters. On the

other hand, we parameterize each CCF expert by learning a set of classifiers. This in turn

requires |θMk
| = d(m+O(d) + 1) = O(dm+ d2) parameters.

In summary, the total number of parameters for our ML-ME model is |ΘG| + |ΘM | =

O(Kmd+Kd2).
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3.4.3 Parameter Learning

In this section, we describe how to learn the parameters of ML-ME when the structures of

individual CCF models are known and fixed. We return to the structure learning problem

in Section 3.4.4. Our objective here is to find the parameters Θ = {ΘG,ΘM} that optimize

the log-likelihood of the training data:

l(D; Θ) =
N∑
n=1

logP (y(n)|x(n))

=
N∑
n=1

log
K∑
k=1

gk(x
(n))P (y(n)|x(n),Mk) (3.21)

We refer to Equation (3.21) as the observed log-likelihood. However, direct optimization of

this function is very difficult because the summation inside the log results in a non-convex

function. To avoid this, we instead optimize the complete log-likelihood, which is defined

by associating each instance (x(n),y(n)) with a hidden variable z(n) ∈ {1, ..., K} indicating

which expert it belongs to:

lc(D; Θ) =
N∑
n=1

logP (y(n), z(n)|x(n)) (3.22)

=
N∑
n=1

log
K∏
k=1

P (y(n),Mk|x(n))1[z
(n)=k]

=
N∑
n=1

log
K∏
k=1

[
gk(x

(n))P (y(n)|x(n),Mk)
]1[z(n)=k]

=
N∑
n=1

K∑
k=1

1[z(n) = k] log
(
gk(x

(n))P (y(n)|x(n),Mk)
)
,

where 1[z(n) = k] is the indicator function that evaluates to one if the n-th instance belongs to

the k-th expert and to zero otherwise. We use the EM framework that iteratively optimizes

the expected complete log-likelihood (E [lc(D; Θ)]), which is always a lower bound of the

observed log-likelihood [Dempster et al., 1977]. In the following, we derive an EM algorithm

for ML-ME.

Each EM iteration consists of E-step and M-step. In the E-step, we compute the expecta-

tion of the complete log-likelihood. This reduces to computing the expectation of the hidden
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variable z(n), which is equivalent to the posterior of the k-th expert given the observation

and the current set of parameters.

E
[
1[z(n) = k]

]
= P (z(n) = k|y(n),x(n))

=
gk(x

(n))P (y(n)|x(n),Mk)∑K
k′=1 gk′(x

(n))P (y(n)|x(n),Mk′)
(3.23)

In the M-step, we learn the model parameters {ΘG,ΘM} that maximize the expected com-

plete log-likelihood. Let h
(n)
k denote E

[
1[z(n) = k]

]
. Then we can rewrite the expectation of

Equation (3.22) using h
(n)
k and by switching the order of summations:

K∑
k=1

N∑
n=1

h
(n)
k log gk(x

(n)) + h
(n)
k logP

(
y(n)|x(n),Mk

)
As h

(n)
k is fixed in the M-step, we can decompose this into two parts, which respectively

involves the gate parameters ΘG and the CCF model parameters ΘM :

fG(D; ΘG) =
K∑
k=1

N∑
n=1

h
(n)
k log gk(x

(n))

fM(D; ΘM) =
K∑
k=1

N∑
n=1

h
(n)
k logP

(
y(n)|x(n),Mk

)
By taking advantage of this modular structure, we optimize fG(D; ΘG) and fM(D; ΘM)

individually to learn ΘG and ΘM , respectively. We first optimize fG(D; ΘG), which we

rewrite as (using Equation (3.20)):

fG(D; ΘG)

=
K∑
k=1

N∑
n=1

h
(n)
k θGk

x(n) − h(n)k log
K∑
k′=1

exp(θGk′
x(i))

Since fG(D; ΘG) is concave in ΘG, we can find the optimal solution using a gradient-based

method. The derivative of the log-likelihood with respect to θGj
is:

∇θjfG(D; ΘG) =
N∑
n=1

{
h
(n)
j − gj(x(n))

}
x(n) (3.24)

Note that this equation has an intuitive interpretation as the derivative becomes zero when

gj(x
(n)) = P (Mk|x(n)) and h

(n)
j = P (Mk|y(n),x(n)) are equal.

62



Algorithm 4 Learn-ML-ME-parameters
Input: Training data D; base CCF experts M1, ...,MK

Output: Model parameters {ΘG,ΘT }
1: repeat
2: E-step:
3: for k = 1 to K, n = 1 to N do

4: Compute h
(n)
k using Equation (3.23)

5: end for
6: M-step:
7: ΘG = arg maxΘG

fG(D; ΘG)−R(ΘG)
8: for k = 1 to K do
9: θMk

= arg max
∑N

n=1 h
(n)
k logP (y(n)|x(n),Mk)

10: end for
11: until convergence

In our experiments, we solve this optimization using the L-BFGS algorithm [Liu and

Nocedal, 1989], which is a quasi-Newton method that uses a sparse approximation to the

inverse Hessian matrix to achieve a faster convergence rate even with a large number of

variables. To prevent overfitting in high-dimensional space, we regularize with the L2-norm

of the parameters R(ΘG) = λ
2

∑K
k=1 ||θGk

||22.

Now we optimize fM(D; ΘM), which can be further broken down into learning K in-

dividual CCF models. Note that fM forms the weighted log-likelihood where h
(n)
k serves

as the instance weight. In our experiments, we optimize this by applying L2-regularized

instance-weighted logistic regression models.

3.4.3.1 Complexity Algorithm 4 summarizes our parameter learning algorithm. The

E-step computes h
(n)
k for each instance on each expert. This requires O(md) multiplications.

Hence, the complexity of a single E-step is O(KNmd). The M-step optimizes the parameters

ΘG and ΘM . Optimizing ΘG computes the derivative (Equation (3.24)) which requires

O(mN) multiplications. Denoting the number of L-BFGS steps by l, this requires O(mNl)

operations. Optimizing ΘM learns K CCF models. We do this by learning O(Kd) instance-

weight logistic regression models.
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3.4.4 Structure Learning

We previously described the parameter learning of ML-ME by assuming we have fixed the

individual structures. In this section, we present how to obtain useful structures for learning

a mixture from data. We first show how to obtain CCF structures from weighted data. Then,

we present our sequential boosting-like heuristic that, on each iteration, learns a structure

by focusing on “hard” instances that previous mixture tends to misclassify.

Learning a Single CCF Structure on Weighted Data To learn the structure that best

approximates weighted data, we find the structure that maximizes the weighted conditional

log-likelihood (WCLL) on {D,Ω}, where Ω = {ω(n)}Nn=1 is the instance weight. Note that

we further split D into training data Dtr and hold-out data Dh for internal validation.

Given a CCF structure M , we train its parameters using Dtr, which corresponds to

learning instance-weighted logistic regression using Dtr and their weights. On the other

hand, we use WCLL of Dh to define the score that measures the quality of M .

score(M) =
∑
n∈Dh

ω(n)

d∑
i=1

logP (y
(n)
i |x(n),y

(n)
π(i,M)) (3.25)

The original CC [Read et al., 2009] generates the underlying dependence structure (chain

order) by a random permutation. In theory, this would not affect the model accuracy as CC

still considers the complete relations among the class variables. However, in practice, using

a randomly generated structure may degrade the model performance due to the modeling

and algorithmic simplifications (see section 3.4.1). In order to alleviate the issue, Read et al.

[Read et al., 2009] suggested to use Ensembles of CC (ECC) that averages the predictions

of multiple randomly ordered CCs trained on random subsets of the data. However, this is

not a viable option because simply averaging the multi-dimensional output predictions may

result in inconsistent estimates (does not correctly solve Equation (3.1)).

Instead, we use a structure learning algorithm that learns a chain order greedily by

maximizing WCLL. That is, starting from an empty ordered set ρ, we iteratively add a class
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Algorithm 5 Find-an-optimal-chain-structure
Input: Training data D
Output: Chain order ρ

1: Split D into Dtr and Dh

2: Initialize an ordered set ρ = {}
3: for i = 1 to d and j 6∈ ρ do
4: for j = 1 to d do

5: θj = arg maxθj ω
(n) logP (y

(n)
j |x(n),y

(n)
ρ ) : n ∈ Dtr

6: end for
7: ρ = ρ ∪ arg maxj ω

(n) logP (y
(n)
j |x(n),y

(n)
ρ ;θj) : n ∈ Dh

8: end for

index j to ρ by optimizing:

scorej(ρ) =
∑
n∈Dh

ω(n) logP (y
(n)
j |x(n),y

(n)
i∈ρ), (3.26)

where y
(n)
i∈ρ denotes the classes previously selected in ρ. We formalize our method in Algo-

rithm 5. Note that this algorithm can be seen as a special case of [Kumar et al., 2012] that

optimizes the chain order using the beam search.

We would like to note that by incorporating additional restriction on the CC model,

the optimal (restricted) CC structure may be efficiently computable. An example of such a

model is the Conditional Tree-structured Bayesian Network (CTBN; Section 3.2). Briefly,

the optimal CTBN structure may be found using the maximum branch (weighted maximum

spanning tree) [Edmonds, 1967] out of a weighted complete digraph, whose vertices represent

class variables and the edges between them represent pairwise dependences between classes.

Learning Multiple CCF Structures To obtain multiple, effective CCF structures for

ML-ME, we apply the above described algorithms multiple times with different sets of in-

stance weights. This section explains how we assign the weights such that poorly predicted

instances have higher weights; and well-predicted instances have lower weights.

To start with, we assign all instances uniform weights (ω(n) = 1/N : n = 1, ..., N ; i.e., all

instances are equally important a priori). Using this initial set of weights, we first obtain a

CCF structure ρ1 (i.e., either a CC or CTBN structure) and train a model M1 that follows
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ρ1. Then, by setting the current mixture M to be M1, we compute the new instance weights

to be the normalized prediction error:

ω(n) ∝ 1− P (y(n)|x(n),M), s.t.
N∑
n=1

ω(n) = 1

With the updated weights {ω(n)}, we obtain another structure ρ2, and train M with M1

and M2 that follow ρ1 and ρ2, respectively (Algorithm 4).

We incrementally inject new models to the mixture by repeating this process. To stop

the process, we use internal validation approach. Specifically, the data used for learning are

split into internal train and test sets. The structure of the trees and parameters are always

learned on the internal train set. The quality of the current mixture is evaluated on the

internal test set. The mixture growth stops when the log-likelihood on the internal test set

for the new mixture does not improve any more. The structures included in the previous

mixture are then fixed, and the parameters of the mixture are re-learned on the full training

data.

3.4.4.1 Complexity To learn a single CCF using our greedy algorithm, we need to

estimate P (Yi|X,Yπ(i,M)) for O(d2) times. Since we learn K CCF structures for a mixture,

the overall complexity is O(Kd2) times the complexity of learning logistic regression.

3.4.5 Prediction

In order to make a prediction for a new instance x, we want to find the MAP assignment

of the class variables (see Equation (3.1)). Our ML-ME model consists of multiple CCF

models and the MAP solution may, at the end, require enumeration of exponentially many

class assignments. To address this problem, we rely on approximate MAP inference. The

two commonly applied MAP approximation approaches in the literature are: convex pro-

gramming relaxation via dual decomposition [Sontag, 2010], and simulated annealing using

a Markov chain [Yuan et al., 2004]. Here we use the latter approach. Briefly, we search

the space of all assignments by defining a Markov chain that is induced by local changes

to individual class labels. The annealed version of the exploration procedure [Yuan et al.,
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2004] is then used to speed up the search. We initialize our MAP algorithm using the fol-

lowing heuristic: first, we identify the MAP assignments for each CCF model in the mixture

individually [Dembczynski et al., 2010, Batal et al., 2013, Boutell et al., 2004]. After that,

we pick the best assignment among these candidates. We have found this heuristic to work

very well and often results in the true MAP assignment.

3.4.6 Experiments

3.4.6.1 Datasets We use seven publicly available MLC datasets obtained from different

domains. Table 3.6 summarizes the characteristics of the datasets, including dataset size,

label cardinality (the average number of labels per instance), distinct label set (the number

of distinct class configurations that appear in the data) and data domain.

3.4.6.2 Methods To demonstrate the benefits of our mixture framework, we compare

the performance of the following eight methods: binary relevance (BR) [Clare and King,

2001, Boutell et al., 2004], conditional tree-structured Bayesian networks (CTBN) [Batal

et al., 2013], classifier chains (CC) and their ensembles (ECC) [Read et al., 2009], prob-

abilistic classifier chains (PCC) and their ensembles (EPCC) [Dembczynski et al., 2010],

ML-ME with CTBN (MCTBN) and ML-ME with CC (MCC).

For a fair comparison of the methods, we fix the following parameters throughout all

DATASET N m d LC DLS DM

Image 2,000 135 5 1.24 20 image

Scene 2,407 294 6 1.07 15 image

Emotions 593 72 6 1.87 27 music

Flags 194 19 7 3.39 54 image

Yeast 2,417 103 14 4.24 198 biology

Medical 978 1,449 45 1.25 94 text

Enron 1,702 1,001 53 3.38 753 text

Table 3.6: Datasets characteristics (N : number of instances, m: number of features, d:

number of classes, LC: label cardinality, DLS: distinct label set, DM: domain).
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experiments:

• We use L2-penalized logistic regression for all of the methods and choose their regularization

parameters by cross validation.

• We set the maximum number of experts to 10 for MCTBN/MCC. We use our heuristic (section

3.4.4) to stop early if possible; ECC/EPCC use 10 fixed number of base models in an ensemble.

•We use our structure learning algorithm (Algorithm 5) for CC/PCC; we use random chain orders

for ECC/EPCC.

• For predictions on MCTBN/MCC, we use 150 iterations of simulated annealing.

3.4.6.3 Evaluation Metrics To compare different MLC methods, we use Exact match

accuracy (EMA) and Conditional log-likelihood loss (CLL-loss) (see Section 3.3.6.3 for de-

tailed description).

3.4.6.4 Results Tables 3.7 and 3.8 show the performance of all methods in terms of

EMA and CLL-loss, respectively. All results are obtained using ten-fold cross validation.

In parentheses, we indicate the relative ranking of the methods on each dataset. We do

not report the results of PCC/EPCC on Medical and Enron because evaluating all O(2d)

class assignments is clearly infeasible. Also, we do not report CLL-loss for ECC and EPCC

because they do not produce probabilistic output.

Based on the results, our ML-ME framework clearly improves the performance of the

base models. In terms of EMA (Table 3.7), the prediction accuracy of MCC is not only the

highest but also the most stable. Although not as good as MCC, MCTBN also shows a large

improvement compared with CTBN. The results demonstrate that ML-ME compensates for

the restrictions that the base MLC models have using their combinations. In addition, this

is in contrast to simple averaging, which often leads to inconsistent estimation (ECC and

EPCC). The model fitness of MCC measured by CLL-loss (Table 3.8) also indicates that

MCC is competitive, followed by MCTBN, CTBN, BR and CC. Although PCC is recording

the highest average ranking, it is computationally very expensive and does not scale up to

large data.

In summary, the experimental results show that our ML-ME method with the CCF
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experts is able to outperform or match the existing state-of-the-art methods across a broad

range of benchmark MLC datasets. We attribute this improvement to the ability of the

CCF mixture that simultaneously compensates for the restricted dependencies modeled by

an individual CCF, and to its ability that better fits the different regions of the input space

with new expert models.

3.4.7 Discussion

We presented a novel probabilistic ensemble framework for multi-label classification. Our

approach attempts to capture different input-output and output-output relations that tend

to change across data. We integrated the Mixtures-of-Experts architecture and the multi-

label classification models in the classifier chains family, which decompose the class posterior

distribution P (Y1, ..., Yd|X) using a product of posterior distributions over components of

the output space. We developed the learning and prediction algorithms for our mixture

framework, and showed that our approach recovers a rich set of dependence relations among

inputs and outputs that a single multi-label classification model cannot capture due to its

modeling simplifications.

Through the experiments on multiple benchmark datasets, we found that our generalized

mixture approach achieves highly competitive results and outperforms the existing state-of-

the-art multi-label classification methods. We conclude that our mixture solutions would be

useful when one prefers superior predictive accuracy to a manageable amount of additional

learning and prediction time. The results also showed that our solutions can be applied when

precise probability estimates are demanded. Unlike our approach, other existing solutions

revealed some limitations. For example, although PCC and EPCC showed competitive

prediction performance, they could not finish on some datasets due to the exhaustive search

involved in their prediction algorithms. Also, because of the the simplicity of the ensemble

prediction algorithm used in ECC and EPCC, the methods are only able to output binary

prediction and are incapable of producing probability estimates.

Lastly, note that MC (Section 3.3) is a special case of ML-ME where the base MLC

method is CTBN and the gating function is fixed to return gk(x) = 1/K for all k = 1, ..., K.

70



As a result, while the parameters of an MC can be optimized faster than that of an ML-ME,

the performance of ML-ME is generally superior or similar to that of MC.

3.5 SUMMARY

We studied the multi-label classification problem, where our goal is to predict the maximum

a posteriori (MAP) output y for a given input x.

First, we developed Conditional Tree-structured Bayesian Networks (CTBN) that re-

stricts the dependence relations among the response variables to follow a directed tree. Our

model represents the conditional dependence relations between classes using a special tree-

structured Bayesian network, whose conditional distributions are defined using probabilistic

classifiers. We presented an efficient algorithm to learn the tree structure that maximizes

the conditional log likelihood. We provided an efficient exact inference algorithm that has a

linear-time complexity in the number of class variables.

Next, we presented Mixtures-of-Conditional Tree-structured Bayesian Networks (MC)

that builds a mixture ensemble of multiple tree-structured models (CTBNs) to better rep-

resent the dependence relations among the response variables. We devised algorithms for

learning the parameters of the mixture, finding multiple tree structures, and inferring the

MAP output label configurations for a given input. Consequently, we developed a new mix-

ture framework that can learn various dependence relations, which a single tree-structured

model cannot capture, and combine them to make ensemble predictions that achieve a higher

predictive accuracy.

Last, we developed the Multi-Label Mixtures-of-Experts (ML-ME) framework that com-

bines MLC models in the classifier chains family — our generalization of structured MLC

models that decompose the class posterior distribution P (Y1, ..., Yd|X) using a product of

posterior distributions over components of the output space. We overviewed the classifier

chains family and the Mixtures-of-Experts [Jacobs et al., 1991] framework. We presented

algorithms for learning the ML-ME models from data and for performing multi-label predic-

tions on unseen data instances.

71



Our experimental evaluation on a range of datasets showed that our approaches outper-

form several state-of-the-art methods and produce much more reliable probabilistic estimates.
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4.0 CONDITIONAL OUTLIER DETECTION

This chapter explores and develops solutions for the conditional outlier detection (COD)

problem that aims to identify data instances with unusual input-output associations. More

specifically, we seek data instances with unusual output given its input (or context). We

assume the dataset in which we search for outliers is formed by input-output pairs; hence,

both the input and output attributes are given a priori.

In terms of conditional outlier detection methodology, we investigate two main directions,

(1) probabilistic methods and (2) outlier scoring methods derived from unconditional outlier

methods:

Probabilistic methods The idea behind probabilistic methods is to first build a model

of P (Y|X) from data, and then use it to identify conditional outliers. Briefly, conditional

outliers are data instances with a low probability P (Y|X). We note that the meaning of ‘low

probability’ should not be interpreted in absolute terms (absolute probability values) but in

relative terms – that is, relative to probabilities associated with other outcomes. For example,

assuming a binary case, the probability of 0.1 for an outcome is low relative to the opposite

outcome, which is 0.9. However, 0.1 may not be low if there are many different outcomes.

For example, when there are 10 outcomes and three of these are assigned probability 0.02,

0.1 should not be considered low.

We note that there are many different ways of defining and learning P (Y|X) models

from data. Regardless of the approach used, the key here is to assure that the model of

P (Y|X) is as accurate as possible, so that low probabilities are as precise as possible. This

is especially challenging when the model is learned from a limited finite-size data.

Outlier scoring methods derived from unconditional outlier methods As seen in

Chapter 2, there has been a tremendous amount of work in outlier detection research in recent
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years. The effort of the community has focused primarily on unconditional outlier detection

methods that seek unusual instances in data where all attributes are treated equally; that is,

there is no division of attributes between inputs and outputs. A large spectrum of different

unconditional methods have been developed. However, an important open issue is how one

can benefit from these methods to support conditional outlier detection. To address this, we

develop and explore a new general framework for defining conditional outlier scores in terms

of unconditional outlier scores. The new framework bridges the gap in the development of

conditional and unconditional outlier methods.

Throughout this chapter, we consider two types of conditional outlier detection (COD)

problems: univariate and multivariate. The two problems differ in the dimensionality of

the output. In the univariate COD (UCOD) problem, each input vector is associated with a

single output variable, whereas in the multivariate COD (MCOD) problem, each input vector

is associated with multiple output variables. In other words, UCOD is a special case of the

MCOD problem where the output dimensionality is one. For the sake of simplicity, we will

first tackle the UCOD problem to build our outlier detection solutions (Section 4.2). After

that, we will explore and develop solutions for the MCOD problem (Section 4.3) which is a

much harder version of the conditional outlier detection problem especially when dealing with

a high-dimensional output space. We show how one can tackle this problem by developing

outlier detection approaches based on the MLC-like decompositions (see previous chapter).

We develop a new multivariate conditional outlier framework that utilizes the decomposable

structure of the MLC models to acquire a set of projections representing the dimension-wise

conditional outlier scores. These scores are then combined to produce the final multivariate

conditional outlier score.

The rest of the chapter is organized as follows. Section 4.1 reviews the formal definition of

the COD problem. Section 4.2 presents solutions for the UCOD problem. Section 4.3 extends

the univariate approaches to the MCOD problem. The experimental results that demonstrate

the validity and effectiveness of our approaches to successfully identify conditional outliers

are presented at the end of each section.
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4.1 PROBLEM DEFINITION AND NOTATION

The conditional outlier detection (COD) problem is a special type of the outlier detection

problem, where we are interested in finding data instances that show unusual (or irregular)

output patterns given their input (or context).

More formally, let us assume we have a dataset D = {x(n),y(n)}Nn=1 that consists of

N data instances, such that each instance consists of an m-dimensional input vector (or

context) x(n) = (x
(n)
1 , ..., x

(n)
m ) and corresponding d-dimensional binary output vector (or

response) y(n) = (y
(n)
1 , ..., y

(n)
d ). We seek to identify an instance (x(n),y(n)) for which the

output y(n) is unusual for the given x(n) when compared to the rest of data instances in D.

Example problems are the identification of images with unusual annotation given the image

content, or an order of a medication that is unusual given the patient condition.

Please note that the above definition of the COD problem considers the multivariate out-

put space. We referred to this type of problem as the multivariate COD (MCOD) problem.

The univariate COD (UCOD) problem is a special case of the MCOD problem with d = 1.

In this chapter, we use the following notations:

· D Dataset

· X, x Input (context) variable and value

· Y, y Output (response) variable and value

· m Input dimensionality

· d Output dimensionality

· N Number of data instances

· n Index of data instance

· M A trained data model

· ρ = {ρ1, ..., ρd} Conditional probability estimates on individual output dimensions

(i.e., ρi = P (yi|x,π(yi);M))

· f(·), θf A discriminative function and its parameters (Sections 4.2.2 and 4.3.2)

· φ A discriminative projection of a data instance (Sections 4.2.2 and 4.3.2)

· oU(·) An unconditional outlier scoring function (Sections 4.2.2 and 4.3.2)
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4.2 UNIVARIATE CONDITIONAL OUTLIER DETECTION

This section explores the solutions for the univariate conditional outlier detection (UCOD)

problem where the dataset analyzed contains only one output variable. We focus our at-

tention on two approaches for scoring and ranking outliers explored throughout this thesis:

the probabilistic scoring approach and the outlier scoring approach where scores are derived

from unconditional outlier scores.

The objective of this section is to present the key ideas behind the two approaches on

a simpler (univariate) conditional outlier detection problem. The univariate solutions will

also develop the basic building blocks of our more general solutions for the MCOD problem

(Section 4.3).

4.2.1 Probabilistic Approach to Univariate Conditional Outlier Detection

The basic idea of the probabilistic approach is to build a data model of conditional probability

P (Y |X) from data D. The model is then used to identify outliers by calculating P̃ (Y =

y(n)|X = x(n)), where (x(n), y(n)) denotes a data instance being examined1. In general, the

instance is an outlier when it leads to a low conditional probability. Since it may be hard

to define a fixed “low probability” threshold, the conditional probability can be also used to

score and rank the different data instances in terms of their outlier strength. We note that

the probabilistic approach has been successfully applied to solve multiple UCOD problems in

the literature [Hauskrecht et al., 2007, Song et al., 2007, Hauskrecht et al., 2010, Hauskrecht

et al., 2016].

Figure 4.1 illustrates the basics of the probabilistic approach and its two phases: data

modeling and outlier scoring. In the following, we review methods one can use for building

the data model and discuss the outlier scoring step.

4.2.1.1 Data Modeling The first phase of the probabilitic approach regards model

building that produces a probabilistic model M that captures stochastic dependence rela-

1The vertical bar (|) denotes conditioning; variables to the left of the symbol are conditioned on those to
the right of the symbol.
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Figure 4.1: Probabilistic conditional outlier detection.

tions among data attributes. The goal of this phase is to obtain a precise data representation

that can efficiently estimate the conditional probability P̃ (y|x;M) for any observed input

and output pair (x, y). Various statistical machine learning models and methods can be used

for this purpose. These include generative and discriminative models.

Generative models compute the conditional probability using Bayes rule (i.e., P (Y |X) =

P (X, Y )/P (X)). That is, approaches based on generative models first learn the joint distri-

bution of both input and output, P (X, Y ), using a set of model parameters. Subsequently,

the joint distribution is used to estimate the conditional distribution through an algebraic

transformation defined by Bayes rule. This approach was applied to COD by [Hauskrecht

et al., 2007] to detect unusual emergency room admissions from emergency room observations

and findings. The authors built a probabilistic model of the admission action conditioned

on the current patient status (such as symptoms, observations) using Bayesian belief net-

works (BBN) [Pearl, 1988, Lauritzen and Spiegelhalter, 1988, Cooper and Herskovits, 1992].

A similar approach for COD was also used in [Song et al., 2007]. This work tackled a

slightly different type of COD problem where both input and output attributes are contin-

uous. The generative model used in the work was based on the Gaussian mixture model

(GMM) [Nowlan, 1991, Titterington et al., 1985] which was used to represent the conditional

probability by modeling the correlations among the input and output spaces respectively.

In contrast to generative models, discriminative models directly learn the conditional

distribution P (Y |X) by optimizing a likelihood or loss function expressed by a set of param-

eters. The discriminative models were used to support COD for identification of unusual
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patient management actions (medication and lab orders) in clinical workflow [Hauskrecht

et al., 2010, Hauskrecht et al., 2013, Hauskrecht et al., 2016]. More specifically, the ap-

proach applied in this work used calibrated support vector machines (SVM) models that

first learn a discriminative projection of the input attributes that reflect the associated out-

put values. Then, a transformation from the projection to a probability estimate is obtained

using a post-hoc recalibration approach [Platt, 1999, DeGroot and Fienberg, 1983].

Apparently, generative and discriminative models have very different properties as well as

complementary strengths and weaknesses (e.g., generative models allow one to generate new

data similar to existing data; whereas discriminative models generally outperform generative

models in classification tasks). Detailed discussion on the comparison of generative and

discriminative models could be found in [Ng and Jordan, 2002, Ulusoy and Bishop, 2006,

Bishop and Lasserre, 2007].

To represent the probabilistic approach in our empirical studies, we implement the base-

line probabilistic model using the discriminative approach, where the L2-regularized logistic

regression model is used to directly learn the conditional probability from D.

4.2.1.2 Outlier Scoring The second phase of the probabilistic approach aims to com-

pute outlier scores using the obtained data model. The goal is to assign each instance an

outlier score such that the higher the score is, the more likely the instance is an outlier.

Since outliers are associated with low probabilities, we can convert probabilities to outlier

scores (where stronger outliers are associated with a higher score) using one of the following

transformations:

ScorePROB(y(n)|x(n)) = 1− P̃ (y(n)|x(n);M) (4.1)

or

ScorePROB(y(n)|x(n)) =
1

P̃ (y(n)|x(n);M)
(4.2)

In the following discussion, we use a minor modification of the second score, where we

take the logarithm of the inverse probability to rank the conditional outliers:

ScorePROB(y(n)|x(n)) = − log P̃ (y(n)|x(n);M) (4.3)
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Note that the logarithm is a monotonous function. Therefore, the order of scores before and

after the transformation is preserved.

4.2.1.3 Limitations of Probabilistic Models Probabilistic outlier detection approaches,

however, has several fundamental drawbacks that may affect the COD performance. This

mainly regards the accuracy of the underlying data models that produce the probability

estimates, with which we compute the outlier score.

More specifically, standard parameter optimization criteria for generative models, such

as the Bayesian belief networks, näıve Bayes model, and linear discriminant analysis, assume

that data instances are drawn independently from an unknown population (i.e., indepen-

dently and identically distributed or i.i.d.). Accordingly, they treat all instances equally

important and minimize the expected loss under the i.i.d. assumption. However, this as-

sumption is often violated in many practical problems [Dundar et al., 2007].

Although discriminative models, such as logistic regression, are less strict with the i.i.d.

assumption, the models still often fail to produce well calibrated probabilities for sparse

regions of the input (X) space (i.e., the regions where X has a low support) [MacKay,

2003]. In addition to that, the fixed representation of parametric data models may constrain

accuracy in the estimates. A parametric approach relies on a set of model parameters

that reflect the underlying assumptions about the population. When the assumptions are

correct, the approach will produce accurate and precise probability estimates. However,

if the assumptions are not correct, the approach has a large chance of failing; e.g., when

one trains a linear model for nonlinear domains, the assumption that the probability is

monotonously increasing along the discriminative projection does not hold and leads to

imprecise probability estimation.

Apparently, the above described issue may have a crucial impact on the outlier detection

performance. Unfortunately, there are no rules of thumb for avoiding the issue. For example,

it is possible to consider local (instance-based) models instead of building a global model,

such as the work by [Valko and Hauskrecht, 2008]. However, this approach typically reduces

the sample size, and thus the resulting probability estimates may still be inaccurate. Al-

ternatively, calibration via binning [Tukey, 1961, Bella et al., 2009, Pakdaman, 2017] might
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address the general issues with imprecise probability estimates. However, this again would

not be a good solution for outlier detection, in which we want to correctly estimate very

small probabilities. Since outlier detection is often done on a finite dataset, this becomes

particularly hard as binning reduces sample size.

4.2.2 Univariate Conditional Outlier Detection with Unconditional Outlier De-

tection Methods

Now we switch our focus to conditional outlier detection methods that do not require proba-

bility estimation. This switch is partly driven by the fact that a large spectrum of successful

outlier detection models, which were developed by the machine learning and data mining

communities for unconditional outlier detection, are non-probabilistic. In addition, the ex-

istence of many unconditional outlier detection methods (see Section 2.2) raises another

important question: Is it possible to take advantage of these methods when defining the con-

ditional outliers and when building the conditional outlier detection methods? The current

state-of-the-art conditional outlier detection does not take much advantage of the progress

and solutions developed in unconditional approaches. To bridge this gap we propose, develop

and test a new conditional outlier detection framework that defines the conditional outlier

score by combining the results of multiple unconditional outlier scores.

4.2.2.1 Ratio of Outlier Scores Briefly, our new conditional outlier score for a data

instance works by comparing (via ratio) two unconditional outlier scores: one score calculated

against data instances with the same observed output value; and another calculated against

instances with the opposite output value. We refer to the new conditional outlier scoring

approach as Ratio of Outlier Scores (or Ratio-based Outlier Scoring; ROS) approach. It

comes with a couple of important advantages. First, it allows us to utilize a wide variety of

unconditional outlier scores. Also, it lets us effectively avoid the cases where instances with

rare x (but properly associated with y) undesirably receive a high conditional outlier score.

More formally, let us consider a binary-labeled dataset D = {x(n), y(n)}Nn=1 where each

instance in D consists of a continuous input vector x(n) ∈ Rm and an associated output value
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y(n) = {0, 1}. For notational convenience, let us also define DAgree(n) and DDisagree(n), subsets

of D based on the value of y(n):

DAgree(n) = {x∗|y∗ = y(n)} A subset of D whose output value is equal to y(n)

(DAgree(n) does not include x(n))

DDisagree(n) = {x∗|y∗ 6= y(n)} A subset of D whose output value is not equal to y(n)

We define ScoreROS(x(n), y(n)) as the ratio between two unconditional outlier scores eval-

uated on DAgree(n) and DDisagree(n), respectively:

ScoreROS(y(n)|x(n)) :=
oU(x(n);DAgree(n))

oU(x(n);DDisagree(n))
(4.4)

where oU(x(n);D) denotes an unconditional outlier score calculated for x(n) on the dataset

D.

ROS measures the unusualness in the input x(n) being associated with its output y(n).

For normal instances ScoreROS(x(n), y(n)) will be low, which in turn indicates the outlier

score from DAgree(n) is low and that of DDisagree(n) is high. On the other hand, instances with

a high ScoreROS(x(n), y(n)) are deemed as outliers, because ScoreROS(x(n), y(n)) is high if the

outlier score from DAgree(n) is high and that of DDisagree(n) is low.

Note that Equation (4.4) easily turns many existing unconditional outlier scores to con-

ditional outlier scores. That is, we can compute and compare the conditional outlier score of

the data instances by simply applying any unconditional outlier score – such as density-based

outlier scores [Breunig et al., 2000, Papadimitriou et al., 2003], distance-based outlier scores

[Knorr and Ng, 1997], or other unconditional outlier score reviewed in Section 2.2.1 – to the

subsets of D and computing their ratio. Another advantage of this approach is that it can

properly handle instances that fall in regions of the input space with low support. For a

data instance that does not have enough support (i.e., the instance falls in a sparse neigh-

borhood of X), it is not straightforward to come up with an outlier score that is confident.

However, our outlier score suffers less from the issue, because both oU(x(n);DAgree(n)) and

oU(x(n);DDisagree(n)) will be high in such a sparse region and, as a result, by cancelling each

other out in Equation (4.4), the resulting conditional outlier score will not be high.
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In summary, our new conditional outlier detection approach based on the ratio-score

defines a general and flexible framework that allows one to plug in an unconditional outlier

score and use it to perform conditional outlier detection. In the remainder of the chapter

we will use our new conditional score in combination with the Local Outlier Factor (LOF)

method and its score definition [Breunig et al., 2000], which we briefly summarize next.

4.2.2.2 Local Outlier Factor Recall that LOF is a nonparametric approach used to

detect unconditional outliers based on the density of the local neighborhood of the target

data instance. More specifically, it computes the outlier score of an instance by comparing

the local density of the instance to the average local density of its k nearest neighbors:

oU(x(n);D) = LOF
(
x(n), k;D

)
=

∑
x′∈Nk(x(n);D)

lrdk(x
′;D)

lrdk(x(n);D)

|Nk(x(n);D)|
(4.5)

where oU(x(n);D) is the unconditional outlier score for the instance x(n) and dataset D,

Nk(x
(n);D) denotes the k-nearest neighborhood of the instance x(n) in D and

lrdk(ξ;D) :=
|Nk(ξ;D)|∑

o∈Nk(ξ;D) max(distk(o), dist(ξ, o))
(4.6)

is the local reachability density, which measures the geometric dispersion of the k-nearest

neighborhood, where dist(ξ, o) denotes the distance between two instances ξ and o; and

distk(o) denotes the distance to the k-th nearest neighbor of o. We will use the Mahalanobis

distance to compute the pairwise distances.

4.2.2.3 Ratio of Outlier Scores on Discriminative Projections Our newly de-

signed conditional outlier score is defined by a ratio of two unconditional outlier scores

defined over the input space. Hence, any issues affecting the quality of the unconditional

scores are likely to be inherited by the new ratio score.

Recall that one of the recurring challenges of many unconditional outlier detection ap-

proaches is that they tend to exhibit poor performance when the data dimensionality is high

(see Section 2.2). This is because in high-dimensional data spaces, with many (random)

dimensions, all data objects appear to be sparse, and many of the distance metrics and

density estimators become analytically ineffective and computationally intractable [Weber
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et al., 1998, Hinneburg et al., 2000, Aggarwal et al., 2001]. As a result, outliers are hard to

define and detect. It is reasonable to assume that these limitations also translate to the COD

score based on the ratio outlier score, and devising a solution to improve the robustness of

the method is appropriate.

One common way to resolve the problem of a high-dimensional space (in unconditional

settings) is to reduce the dimensionality of the space via various dimensionality reduction

methods, such as principal component or independent component analysis [Jolliffe, 1986,

Hyvärinen et al., 2004], before the detection. However, the conditional outlier detection is

different, since the importance of the input space and its individual dimensions depends on

how important the dimensions are in defining (or predicting) the output. In such a case,

various supervised space transformations or supervised metric learning approaches can be

applied.

To cope with the dimensionality problem, in this work, we adopt a relatively simple

supervised dimensionality reduction approach that relies on a discriminative model and its

output to define a lower-dimensional projection of the original (high-dimensional) input

data. In principle, one can use one or more such discriminative projections. In this work,

we focus on and experiment with one dimensional projections, in which a high dimensional

input space is reduced to a one-dimensional discriminative space. These projections can be

built with the help of various classification learning methods. For example, by applying the

logistic regression to the dataset D, we can obtain a probabilistic projection of (x(n), y(n))

representing P (Y = y(n)|X = x(n)). Similarly, by taking a raw output of the support vector

machines model, we can obtain non-probabilistic discriminative projections. We denote such

a discriminative projection function as f and the projection of the function as φ.

f : x(n) → φ(n) (4.7)

Obtaining a discriminative projection function f and its projections φ is equivalent to

training (learning) of a model on the input-output instances in D. Assuming the logistic

regression model, the parameters of the projection function are optimized as:

θf = arg max
θ

N∑
n=1

logP (y(n)|x(n); θ) (4.8)
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After θf is obtained from data, we define the projection function f on an observed input

x(n) as follows:

φ(n) = f
(
x(n)

)
=

1

1 + exp(−x(n)θf )
(4.9)

To combine the discriminative projections with our ROS approach, we first map the

original data to the projected discriminative space. After that, we compute the ROS score

(Equation (4.4)) only on the new projected space. We refer to this new score and the

associated approach as Ratio of Outlier Scores on Discriminative Projections (ROS-DP)

approach. Given the parameters of the disriminative projection f , the ROS-DP score is

defined as:

ScoreROS-DP(y(n)|x(n), f) :=
oU(f(x(n));DAgree(n))

oU(f(x(n));DDisagree(n))
=

oU(φ(n);Df :Agree(n))

oU(φ(n);Df :Disagree(n))
(4.10)

where

Df :Agree(n) = {φ∗|y∗ = y(n)} A subset of the projections of f on D whose output value

is equal to y(n)

(DAgree(n) does not include (φ(n)))

Df :Disagree(n) = {φ∗|y∗ 6= y(n)} A subset of the projections of f on D whose output value

is not equal to y(n)

In the following, we show the advantages of our conditional outlier approach based on the

ROS score and its combination with discriminative projections (ROS-DP) dimensionality re-

duction approach on multiple datasets. To assure fair comparison, we use local outlier factor

(LOF) approach to calculate the unconditional outlier scores throughout the experiments.
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4.2.3 Experiments

In this section, we test the above UCOD methods, including the newly designed ROS and

ROS-DP approaches, by performing experiments on multiple synthetic datasets. After that

we focus on real-world data based on the digit recognition (MNIST ) dataset [LeCun et al.,

1998].

Tested Methods We perform experiments with the following methods:

• Local Outlier Factor on the Joint Space (LOF) [Breunig et al., 2000] (Sections 2.2.1.2 and

4.2.2.2) – applies LOF to the joint space of all data attributes (both input and output)

• Conditional outlier scoring based on the probabilistic model (PROB) (Equation (4.3)) –

uses − logP (y|x) estimated from the logistic regression model as the outlier score

• Ratio of Outlier Scores (ROS) (Equation (4.4)) – scoring based on our ratio-based outlier

score calculated on the original input space

• Ratio of Outlier Scores on Discriminative Projection (ROS-DP) (Equation (4.10)) –

scoring based on our ratio-based outlier score combined with a discriminative projection

For ROS and ROS-DP, we use LOF score as the base unconditional outlier score. For every

instance of LOF (LOF and LOF used in ROS and ROS-DP), we set the number of neighbors

to k = 50; and use Mahalanobis distance to measure the distance between pairs of instances.

To obtain data models/discriminative projection functions in PROB and ROS-DP, we use

L2-regularized logistic regression and choose regularization parameters using the internal

cross validation.

Experiment Setup The evaluation and comparisons of COD methods are often very

challenging because outlier validation may be ambiguous and may require additional human

feedback. For the purpose of our comparative evaluation, we conduct experiments on simu-

lated outliers. In the following experiments on UCOD, we will use a fixed simulation process

such that

1. In each simulation, select 1.0% of instances uniformly at random (Outlier ratio = 1.0%)

2. For each selected instance, invert the output value (youtlier = |yoriginal − 1|)
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The resulting outliers can be interpreted as contextually abnormal output signals (errors or

mistakes). For example, in an annotated image dataset, the outliers would be perceived as

images with incorrect labels.

We would like to stress that all methods (including their model building and outlier

scoring stages) are run on data with simulated outliers. In other words, we never train a

model on the original (clean) data and perform a test on the data with simulated outliers.

Such a setup would be impractical since in real world applications where we do not know

a priori which data instances should be excluded from training a model in order to obtain

outlier-free data.

Evaluation Metrics We use precision-alert rate (PAR) curves [Hauskrecht et al., 2016]

and precision-recall (PR) curves as our primary evaluation metrics. PAR measures the

percentage of true outliers over all predicted outliers (precision) at different alert rates

[Hauskrecht et al., 2016]. We report PAR in two ways: We present the average PAR (APAR)

in [0.00, 0.01] range, which coincides with the simulated outlier ratio, on all experiments. We

also provide the PAR curves and compare the performance of different outlier scores on se-

lected experiments.

The PR curves plot the overall performance on all ranges of the alert rate in terms of

precision and recall tradeoff [Davis and Goadrich, 2006]. We report the area under the PR

curve (AUPRC) and summarize the tradeoff over the entire range of threshold values.

Briefly, precision and recall are defined as below:

Precision = (True positive outliers)/(Predicted outliers)

Recall = (True positive outliers)/(True outliers)

Note that the recall can be computed only when true outliers are known a priori (as in our

simulated study) and may not be available in some real-world data analysis.

4.2.3.1 Synthetic Datasets 1 We first consider two synthetic datasets shown in Figure

4.2, referred to respectively as SD1 and SD2. Each dataset consists of 1,000 instances
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(a) Synthetic dataset 1 (SD1 ) (b) Synthetic dataset 2 (SD2 )

Figure 4.2: Two synthetic datasets (SD1 and SD2 ) with example conditional outliers

(marked with a star). Colors represent the output assignment (red = 1; blue = 0).

with two-dimensional input data; each random variable Xi is generated by the uniform

distribution between -1 and 1.

xi ∼ unif(α, β); α = −1, β = 1 (i = 1, 2)

The output Y is determined depending on the input values. SD1 (Figure 4.2(a)) estab-

lishes a linear discriminative boundary, whereas SD2 (Figure 4.2(b)) sets up a nonlinear

discriminative boundary.

(SD1) y(n) =

 1, if x
(n)
1 + x

(n)
2 < −0.5

0, otherwise.

(SD2) y(n) =

 1, if (x
(n)
1 )3 + (x

(n)
2 )3 < −0.53

0, otherwise.

Conditional Outliers Each dataset contains 1.0% of conditional outliers, which are sim-

ulated by the above described process that flips the label of the instance. The instances

marked with a star in Figure 4.2 indicate outliers.
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SD1 SD2

APAR[0.00,0.01] AUPRC APAR[0.00,0.01] AUPRC

LOF 0.88 ± 0.08 0.69 ± 0.12 0.88 ± 0.08 0.66 ± 0.14

PROB 0.99 ± 0.00 0.90 ± 0.00 0.91 ± 0.06 0.64 ± 0.14

ROS 0.93 ± 0.03 0.81 ± 0.04 0.95 ± 0.04 0.79 ± 0.10

ROS-DP 0.99 ± 0.01 0.89 ± 0.02 0.94 ± 0.05 0.72 ± 0.14

Table 4.1: Average precision-alert rate in alert rate = [0.00, 0.01] range (APAR[0.00,0.01])

and area under the precision-recall curve (AUPRC) for the conditional outlier detection on

synthetic datasets SD1 and SD2. Numbers shown in bold indicate the best results on each

experiment set (by paired t-test at α=0.05). Higher APAR/AUPRC is better.

Results The results of the outlier detection experiments on SD1 and SD2 data are in

Table 4.1. The results are averages over five repetitions of outlier simulations. We compare

APAR and AUPRC of the tested methods. In both metrics, we find consistent improve-

ments when we use the COD methods (PROB, ROS, or ROS-DP). On the dataset with a

linear discriminative boundary (SD1 ), PROB and ROS-DP show statistically significant im-

provements over LOF, whereas ROS also shows a slight improvement over the unconditional

outlier detection method. On the dataset with a nonlinear discriminative boundary (SD2 ),

although there are no statistically significant differences, the COD methods generally beat

LOF. The only exception is the AUPRC of PROB. This is because the base probabilistic

model (i.e., logistic regression) cannot properly learn the nonlinear decision boundary of

SD2. However, we find ROS-DP has a favorable property in that it recovers the discrim-

inability that the linear model lost. That is, while ROS-DP examines data instances on the

same linear projection space as PROB, it outperforms PROB and performs comparably to

the best method (ROS) on the dataset.

4.2.3.2 Synthetic Datasets 2 (Higher-dimensional Input) Now consider two new

synthetic datasets, referred to respectively as SD3 and SD4. Each dataset consists of 1,000

instances with ten-dimensional input data; each random variable Xi is generated by the
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SD3 SD4

APAR[0.00,0.01] AUPRC APAR[0.00,0.01] AUPRC

LOF 0.35 ± 0.23 0.14 ± 0.12 0.27 ± 0.17 0.06 ± 0.04

PROB 0.84 ± 0.06 0.57 ± 0.13 0.68 ± 0.13 0.36 ± 0.16

ROS 0.88 ± 0.07 0.59 ± 0.08 0.55 ± 0.24 0.27 ± 0.18

ROS-DP 0.99 ± 0.01 0.88 ± 0.02 0.72 ± 0.13 0.43 ± 0.15

Table 4.2: Average precision-alert rate in alert rate = [0.00, 0.01] range (APAR[0.00,0.01])

and area under the precision-recall curve (AUPRC) for the conditional outlier detection on

synthetic datasets SD3 and SD4. Numbers shown in bold indicate the best results on each

experiment set (by paired t-test at α=0.05). Higher APAR/AUPRC is better.

uniform distribution between -1 and 1.

xi ∼ unif(α, β); α = −1, β = 1 (i = 1, ..., 10)

The output Y is determined depending on the input values. As in the previous datasets, SD3

establishes a linear discriminative boundary, whereas SD4 defines a nonlinear discriminative

boundary.

(SD3) y(n) =

 1, if
∑10

i=1 x
(n)
i < −0.5

0, otherwise.

(SD4) y(n) =

 1, if
∑10

i=1(x
(n)
i )3 < −0.53

0, otherwise.

Conditional Outliers Each dataset contains 1.0% of conditional outliers, which are sim-

ulated by the above describe process.

Results Table 4.2 shows the results on SD3 and SD4 in terms of APAR and AUPRC.

Again, the results are averages calculated based on five simulation rounds. The numbers

shown in boldface indicate the best results (by paired t-test at α = 0.05). In general, we find

the performance differences become more distinguished on high-dimensional data. On SD3,
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Figure 4.3: MNIST dataset [LeCun et al., 1998].

while ROS-DP shows a statistically superior performance, other COD methods (PROB and

ROS) outperform LOF with a larger difference. This is because LOF equally examines all

data attributes and hence fails to identify the abnormality that occurred only in the output

space. On the other hand, our ratio-based counterpart (ROS) shows much competitive

performance even though it relies on the same underlying LOF score.

On SD4, again, all the COD methods outperform LOF by a large margin. Also, we

reaffirm ROS-DP can improve the performance of PROB on the datasets with a nonlinear

discriminative boundary. Another interesting point is that, in a high-dimensional space, the

performance difference between ROS-DP and ROS becomes larger. This demonstrates the

benefit of dimensionality reduction via discriminative projection in our ratio-based (ROS)

framework.

4.2.3.3 Public Image Datasets with Simulated Outliers Now we evaluate the

methods on the MNIST dataset [LeCun et al., 1998]. The dataset contains images of hand-

written digits (as in Figure 4.3), along with the ground truth labels telling what digits are

scanned.

Experiment Setup We use six subsets of MNIST ; each subset includes 2,000 randomly

sampled images of two pre-selected digits (1,000 images per digit). The pre-selected pairs of

digits are:
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Figure 4.4: Precision-alert rates (PAR) at alert rates (detection thresholds) between 0.00 and

0.04. The vertical dashed lines at alert rate = 0.01 indicate where the alert rate coincides

with the simulated outlier ratio.

• 3 and 5

• 8 and 9

• 3 and 8

• 0 and 1

• 5 and 6

• 0 and 6

We note that we chose the digit pairs that are hard to distinguish based on the similarity

in their visual patterns. Given the images as input, we create a new binary output label,

such that it indicates the matching digit; e.g., in the first subset, output values 0 and 1

indicate 3 and 5, respectively.

Simulating Outliers On each experiment, we simulate conditional outliers by selecting

1.0% of the dataset instances and by inverting their output labels. Given that each dataset

contains two classes of handwritings with subtle differences, the simulated outliers can be
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APAR[0.00,0.01] LOF PROB ROS ROS-DP

3 and 5 0.02 ± 0.04 0.83 ± 0.04 0.22 ± 0.06 0.86 ± 0.02

3 and 8 0.00 ± 0.00 0.52 ± 0.09 0.13 ± 0.08 0.55 ± 0.07

5 and 6 0.04 ± 0.05 0.92 ± 0.02 0.41 ± 0.08 0.94 ± 0.02

8 and 9 0.00 ± 0.00 0.83 ± 0.04 0.35 ± 0.08 0.83 ± 0.09

0 and 1 0.03 ± 0.04 0.99 ± 0.01 0.82 ± 0.03 1.00 ± 0.00

0 and 6 0.00 ± 0.01 0.98 ± 0.01 0.48 ± 0.05 0.97 ± 0.03

Table 4.3: Average precision-alert rate in alert rate = [0.00, 0.01] range (APAR[0.00,0.01]).

Numbers shown in bold indicate the best results on each experiment set (by paired t-test at

α=0.05). Higher APAR is better.

AUPRC LOF PROB ROS ROS-DP

3 and 5 0.01 ± 0.00 0.71 ± 0.05 0.08 ± 0.01 0.73 ± 0.04

3 and 8 0.01 ± 0.00 0.46 ± 0.07 0.07 ± 0.01 0.45 ± 0.06

5 and 6 0.01 ± 0.00 0.83 ± 0.01 0.20 ± 0.06 0.84 ± 0.03

8 and 9 0.01 ± 0.00 0.76 ± 0.03 0.18 ± 0.06 0.76 ± 0.08

0 and 1 0.01 ± 0.00 0.94 ± 0.01 0.52 ± 0.06 0.95 ± 0.01

0 and 6 0.01 ± 0.00 0.92 ± 0.01 0.32 ± 0.05 0.91 ± 0.02

Table 4.4: Area under the precision-recall curve (AUPRC). Numbers shown in bold indicate

the best results on each experiment set (by paired t-test at α = 0.05). Higher AUPRC is

better.

interpreted as errors or mistakes in image labels.

Results Figure 4.4 and Tables 4.3 and 4.4 present the results on the six digit subsets. All

the results are averages over five simulation runs. The numbers shown in boldface in the

tables indicate the best results (by paired t-test at α = 0.05) on each experiment set.

The PAR curves (Figure 4.4) show that the precision of the tested methods at different

alert rates (detection thresholds) ranging between 0.00 and 0.04. The vertical dashed lines

at alert rate = 0.01 indicate where the alert rate coincides with the ratio of simulated

outliers. Note that the PAR curves show the precision of the outlier detection can be

controlled by tightening the alert rate. Also, in all experiments, the COD methods offer

more precise outlier scores than unsupervised LOF over the joint input-output space. The
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same information is observed in Tables 4.3 and 4.4, where all three COD methods clearly

improve APAR and AUPRC over LOF. Among the COD methods, PROB and ROS-DP

show superior performance. Albeit not as good as other two COD methods, ROS consistently

improves the results over LOF. All in all, the results on the real-world image datasets confirm

the validity of the COD methods in addressing their intended problem.

4.2.4 Discussion

In this section, we studied the UCOD problem, which is a special case of MCOD where

the output dimensionality is one. We focused on and presented the key ideas of two ap-

proaches: the probabilistic model-based (PROB) approach, that is extensively used in the

literature, and the new ratio-based outlier scoring (ROS) approach, that is newly proposed.

To begin with, we revisited the existing probabilistic model-based methods and defined our

own solution that will be used in our following discussion. We then switched to the ratio-

based approach and defined a new method that computes the conditional score based on

unconditional outlier detection methods and their scores. We also presented a dimension-

ality reduction technique for the ratio-based approach using discriminative projection. The

importance of this new approach is that it bridges the gap between the development of un-

conditional and conditional outlier detection methodologies and, hence, provides users with

more flexibility when designing conditional outlier detection solutions.

The experiments on synthetic and public image datasets with simulated outliers demon-

strated that our COD methods achieved good performance. The results showed that a

probabilistic score can be used to identify conditional outliers, which an unconditional out-

lier detection method cannot discover. The ratio-based score also showed competitive or

superior performance, especially when data are high-dimensional and have a nonlinear dis-

criminative boundary.

Lastly, we note that we will use the methods presented here as basic building blocks

for developing the solutions for a more general multivariate conditional outlier detection

(MCOD) problem in the next section.
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4.3 MULTIVARIATE CONDITIONAL OUTLIER DETECTION

In this section, we turn our focus to the multivariate conditional outlier detection (MCOD)

problem that concerns data with multi-dimensional output variables. Generally, the MCOD

problem is more complex than the UCOD problem primarily in that the inter-dependences

with respect to the output variables, as well as the contextual dependences, should be taken

into account when identifying outliers.

To cope with the increased complexities, we take two UCOD approaches presented in

the previous section and extend them to handle the MCOD problem. In doing so, one

straightforward approach is to divide and solve an MCOD problem as d independent UCOD

problems, such that each UCOD problem focuses on one output dimension (analogous to the

Binary Relevance approach in MLC; Section 2.1.1). This simple solution, however, inevitably

ignores all inter-dependence relations and does not suffice to fully address the MCOD prob-

lem. That is, in the UCOD setting, only dependences between input and output (contextual

dependences) are considered when computing the outlier scores, but in the general MCOD

setting, the output variables may be dependent on each other (output inter-dependences).

Accordingly, our discussion throughout this section focuses on how to properly extend

COD approaches to effectively identify multivariate conditional outliers in data. Our pro-

posed solutions are largely inspired by the structured (decomposable) models used for multi-

label classification (MLC) which we studied in Chapter 3. More specifically, we utilize the

decomposable MLC models and methods to capture stochastic dependence relations among

input and output attributes, and incorporate them into our COD approaches to compute

outlier scores for multivariate conditional outliers. Through the experimental results, we

demonstrate the performance of our proposed methods that successfully identify multivari-

ate conditional outliers.

4.3.1 Probabilistic Approach to Multivariate Conditional Outlier Detection

This section describes a probabilistic approach that tackles the MCOD problem by building

a probabilistic model of P (Y|X). Similarly to the probabilistic UCOD solution, the model
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is built (learned) from all available data, aiming to capture and summarize all relevant

dependences among data attributes and their strength as observed in the data. Conditional

outliers are then identified with the help of this model. More specifically, a conditional

outlier corresponds to a data instance that is assigned a low probability by the model.

To convert the above idea into a workable MCOD framework, multiple issues need to

be resolved. First, it is unclear how the probabilistic model P (Y|X) should be represented

and parameterized. To address this issue, we resort to and adapt structured probabilistic

data models of P (Y|X) that provide an efficient representation of input-output relations by

decomposing the model using the chain rule into a product of univariate probabilistic factors

P (Yi|X,π(Yi)) : i = 1, ..., d; i.e., each response Yi is dependent on X and a subset of the

other responses π(Yi). The univariate conditional probability models and their learning are

rather common and well-studied, and multiple probabilistic models (e.g., logistic regression

or näıve Bayes) can be applied to implement them. These were also reviewed and discussed

in Subsection 4.2.1 devoted to probabilistic approaches supporting UCOD. We note that

the structured probabilistic data models were originally proposed and successfully applied

to support structured output prediction problems [Zhang and Zhou, 2013]. However, their

application to outlier detection problems has not been formally investigated. The key differ-

ence between the two tasks is that while in prediction we seek to find outputs that maximize

the probability given the inputs, in conditional outlier detection we aim to identify abnormal

(or low probability) associations in between observed inputs and outputs.

The second issue concerns the question of how to define and score multivariate outliers

with the help of the probabilistic models. For example, the outliers (in varied application

contexts) may manifest themselves differently across the different output dimensions. Take

for instance analysis of network attacks on multiple network nodes by exploring their normal

and saturated traffic state given the context. In that case, one may want to identify unusual

data instances with abnormal outputs (many saturated states across network nodes). Other

applications may prefer outliers that are manifested in just one or a few output dimensions.

These different outlier definitions may lead to different outlier scoring methods. Another

issue that may affect identification of outliers is the quality of probability estimates trained on

finite size data and inaccuracies in probability estimates that may lead to, which may affect
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the identification of outliers. To address this concern, we present outlier scoring methods

that combine probability estimates with the help of weights reflecting their reliability in

assessment of outliers.

4.3.1.1 Data Modeling Our probabilistic approach works by analyzing data instances

using a statistical model representing the conditional distribution P (Y|X). In general, the

representation and learning of such a model from data may be very costly because the number

of possible output combinations grows exponentially with d. To avoid such inefficiencies and

yet achieve an accurate data representation for outlier detection, we first decompose the

conditional joint into a product of conditional univariate distributions using the chain rule

of probability:

P (Y1, ..., Yd|X) =
d∏
i=1

P (Yi|X,π(Yi)) (4.11)

where π(Yi) denotes the parents of Yi; i.e., all the output variables preceding Yi [Read et al.,

2009]. This decomposition lets us represent P (Y|X) in terms of d univariate conditional fac-

tors, P (Yi|X,π(Yi)), each factor representing one output dimension. We note that similarly

to UCOD, multiple probabilistic models ( e.g., logistic regression, näıve Bayes, relevance

vector machine [Tipping, 2001], or support vector machine with probabilistic output [Platt,

1999]) can be used to represent these factors and learn them from data.

In the remainder of this chapter, we assume a logistic regression model is used to represent

each of these factors. This choice of the model allows us to handle input spaces defined by

a mixture of continuous and discrete variables (i.e., X and π(Yi) that predict Yi). Each

model can be learned by optimizing the likelihood based loss function. When the input

dimensionality is high the learning can be enhanced through regularization techniques [Ng,

2004, Cetin and Karl, 2001] .

4.3.1.2 Outlier Scoring Once the model of P (Y|X) is learned from data, it can be ap-

plied to calculate conditional probability for any data instance< x(n),y(n) >. Similarly to the

previous section, outliers are data instances that are assigned a low probability P̃ (y(n)|x(n)).

96



To match the definition of the outlier score (higher score implies stronger outlier) for the uni-

variate probabilistic score, we define the multivariate probabilistic conditional outlier score

for model M as:

ScoreMPROB(y(n)|x(n)) = − log P̃ (y(n)|x(n);M) (4.12)

Rewriting the multivariate conditional probability using the chain rule we get:

ScoreMPROB(y(n)|x(n)) =
d∑
i=1

− log P̃ (y
(n)
i |x(n),π(y

(n)
i );M). (4.13)

Now using the outlier scoring for UCOD (see Equation (4.3)) the probabilistic MCOD score

can be rewritten as:

ScoreMPROB(y(n)|x(n)) =
d∑
i=1

ScorePROB(i)

(
y
(n)
i

∣∣∣x(n),π(y
(n)
i )
)

(4.14)

In other words, the multivariate probabilistic COD score can be expressed as the sum of

univariate probabilistic COD scores; one univariate COD score per output dimension.

This multivariate score decomposition is extremely important, since it can be the basis

of many other multivariate outlier scoring methods formed by plugging in the definitions of

other univariate COD scores, such as those that rely on ratio of outliers score (ROS) that

were presented earlier in this chapter.
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4.3.1.3 Decomposable Data Model with Circular Dependences In theory, the

product P (Y1, ..., Yd|X) =
∏d

i=1 P (Yi|X,π(Yi)) in (Equation (4.11)) should be invariant re-

gardless of the chain order (order of Yi). Nevertheless, in practice, different chain orders

produce different conditional joint distributions as they draw in models learned from differ-

ent data [Dembczynski et al., 2010]. For this reason, several structure learning methods that

determine the optimal set of parents have been proposed [Zhang and Zhang, 2010, Kumar

et al., 2012]. However, these methods require at least O(d2tc) of time, where tc denotes the

time of learning a base statistical model (e.g., logistic regression). Such a complexity would

negatively affect many outlier detection applications, especially when the output dimension-

ality d is high. Instead, we address the issue of the chain order by relaxing Equation (4.11)

and by permitting circular dependences among the output variables. More specifically, we

let π(Yi), the parents of Yi, be all the remaining output variables. That is, we approximate

P (Y1, ..., Yd|X) =
∏d

i=1 P (Yi|X,π(Yi)) with:

Ψ(Y1, ..., Yd|x) =
d∏
i=1

P (Yi|X,Y−i) (4.15)

where Y−i denotes the values of all other output variables except Yi.

This new decomposition allows us to capture the interactions among the output variables,

as well as the input-output relations, using a collection of individually trained probabilistic

functions with a relaxed conditional independence assumption. We note that although the

new conditioning set for each output dimension always includes other outputs, those outputs

that do not contribute to the prediction, can be regularized out when learning the model from

data, and hence controlling the complexity of the individual models. Finally, we note that

the new decomposition can be substituted into the multivariate probabilistic COD score in

Equation (4.13) and Equation (4.14) to define a slightly different yet very reasonable MCOD

score:

ScoreMPROB-RELAX(y(n)|x(n)) =
d∑
i=1

− log P̃ (y
(n)
i |x(n),y

(n)
−i ;M) (4.16)
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4.3.1.4 Outlier Scoring with Reliability Weights Note that our probabilistic scores

and models assumed all our probability estimates and the models generating them are of

high quality. However, in practice, the models that produce the probability estimates may

not be all equally reliable as they are trained from a finite number of samples (this is

important especially when the number of input and output variables is high, and the sample

size is small). Also, some dimensions of Yi|X,π(Yi) may not fit well the base statistical

assumption (which in this section is a logistic curve) and result in miscalibrated estimations.

Consequently, if we treat P (Yi|X,π(Yi)) for all i = 1, ..., d equally and merely search for the

regions with low probabilities, the resulting scores degenerate to a noisy vector, which makes

the detection of true irregularities hard.

To alleviate the above issues, we propose to consider the reliability of each estimated

conditional probability and incorporate it into the outlier score. Let ρ
(n)
i define a condi-

tional probability estimate for the data point < x(n),y(n) > and output dimension i that is

generated either via the chain model or the proxy model with circular output dependences.

Let ρ(n) be a collection of all ρis, that is, ρ(n) = {ρ(n)1 , ρ
(n)
2 , · · · , ρ(n)d }. In that case, the

multivariate probabilistic score (Equation (4.13)) can be rewritten as:

ScoreMPROB(y(n)|x(n)) = −
d∑
i=1

log ρ
(n)
i (4.17)

One way to incorporate the reliability of each probability estimate and combine it with

conditional probabilities is to define a weighted outlier score:

ScoreRW(y(n)|x(n)) = −
d∑
i=1

wi log ρ
(n)
i (4.18)

where wi denotes the reliability weight of the model used to score the i-th dimension. Triv-

ially, when wi = 1 for all dimensions i= 1, ..., d, the score becomes equivalent to Equation

(4.17).

Calculating Reliability Weights One of the widely used metrics that assesses the

reliability of a probabilistic predictive model is the Brier score [Brier, 1950] which measures
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the quality of the model based on model’s probability outputs. The Brier score is defined

by averaging the squared errors of the probability estimates over all instances:

N−1
N∑
n=1

(f (n) − o(n))2 = N−1
N∑
n=1

(1− ρ(n)i )2 (4.19)

where f (n) and o(n) respectively denote the predicted probability and actual outcome of the n-

th instance. For our weighting purpose (Equation (4.18)), however, direct application of the

Brier score to the assessment of model quality would not be appropriate as it imposes different

penalties for different errors and varies the distribution of errors [Willmott and Matsuura,

2005] (the mean squared error penalizes larger errors more than smaller errors). Therefore

we compute the reliability using Equation (4.19) without squaring the error (i.e., the mean

estimation error), which allows us to estimate the quality of each estimate dimension ρi

without distorting the distribution of errors. We finally define the reliability weight wi by

taking the inverse of this reliability measure.

More formally, let ε
(n)
i = 1− ρ(n)i be the estimation error in probability on the dimension

i for the n-th data instance. We define the reliability weight wi for the outlier score in

Equation (4.18) as:

wi =
N∑N

n=1 ε
(n)
i

(4.20)

This weight effectively prioritizes the components of the outlier score, such that contribution

of outlier scores for more reliable partial models covering the output dimensions increases,

whereas the contribution from noisy (unreliable) models and their dimensions decreases.

Local Reliability Weights The above weighting scheme (Equation (4.20)) implicitly

assumes that the reliability of probability estimates (i.e., the quality of a model) is invariant

across all data regions. However, the assumption often does not hold because in most prac-

tical problems, especially in high-dimensional data spaces, data is not uniformly distributed

in its attribute space. As a result, modeling and estimation of P (Yi|X,π(Yi)) cannot be

achieved properly in data-sparse regions of the space.
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We tackle such a sparsity issue by evaluating the reliability of each dimension of ρ

locally in the region around the instance that we want to test. This localized approach can

be implemented as follows:

ScoreLRW(y(n)|x(n)) = −
d∑
i=1

w
(n)
i log ρ

(n)
i (4.21)

where

w
(n)
i =

|Nk(n)|∑
n∈Nk(n)

ε
(n)
i

(4.22)

and Nk(n) denotes k-nearest neighbors of the n-th instance in the original input (context)

space. In the next section, we show the benefits of our reliability weights and outlier scores

through experimental results.

4.3.1.5 Experiments To validate and demonstrate the performance of our approach,

we conduct experiments with multivariate data obtained from various domains. Through

the empirical analysis in this section, we would like to verify the advantages of (1) adopting

the COD approach, (2) considering the dependence relations among outputs, (3) weighting

via reliability estimation, and (4) localized reliability weights and outlier scores. Below we

describe our experimental design and present the evaluation results.

Tested Methods To achieve our objectives, we perform experiments with the following

methods:

• Local Outlier Factor for the Joint Input-Output Space (LOF) [Breunig et al., 2000] –

LOF is an unconditional method that estimates outliers using a relative local density

measure and helps to find instances that fall in sparse regions of data. Here we apply it

to the joint space of all data attributes (see Sections 2.2.1.2 and 4.2.2.2 for details).

• Conditional outlier detection with d independent UCOD models (I-PROD) – Solves the

multivariate conditional outlier detection problem by considering d independent condi-

tional probability models P (Yi|X) (where Yi is not dependent on other output variables)

and UCOD scores defined on these models.
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Dataset N/m / d Domain
Value Description

Input Output

Mediamill 43,907 / 120 / 101 Video Video frames Concepts

Yahoo-business 11,214 / 21,924 / 30 Text News articles Topics

Yahoo-arts 7,484 / 23,146 / 26 Text News articles Topics

Bibtex 7,395 / 1,836 / 159 Text Paper metadata Topics

Enron 1,702 / 1,001 / 53 Text Emails Properties

Yeast 2,417 / 103 / 14 Biology Genes Functionalities

Birds 645 / 276 / 19 Sound Bird songs Species

Cal500 502 / 68 / 174 Music Waveforms Annotations

Table 4.5: Dataset characteristics (N : number of instances, m: input dimensionality, d:

output dimensionality).

• MCOD without weighting (M-PROD) – Solves the multivariate conditional outlier detec-

tion problem by considering d dependent conditional probability models (with circular

dependences) and UCOD scores defined on these models. (Equation (4.17))

• MCOD with Reliability Weights (M-RW) Solves the multivariate conditional outlier de-

tection problem by considering d dependent conditional probability models (with circular

dependences) and reliability weighted UCOD scores defined on these models. (Equation

(4.18))

• MCOD with Local Reliability Weights (M-LRW) Solves the multivariate conditional

outlier detection problem by considering d dependent conditional probability models

(with circular dependences) and local reliability weighted UCOD scores on these models

(Equation (4.21))

To obtain data models in I-PROD, M-PROD, M-RW, and M-LRW, we use L2-regularized

logistic regression and choose their regularization parameters by cross validation. For LOF

and M-LRW, we set the number of neighbors k = 100.

Datasets We use eight public datasets with multi-dimensional input and output.2 These

are collected from various application domains, including semantic video/image annotation

(Mediamill), text categorization (Yahoo datasets, Enron), biology (Yeast), and sound recog-

2Datasets are available at http://mulan.sourceforge.net [Tsoumakas et al., 2010].
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nition (Birds). Table 4.5 summarizes the characteristics of the datasets, such as dataset size,

data domain, and short descriptions of the input and output variables.

Experiment Setup For our comparative evaluation, we simulate multivariate conditional

outliers by perturbing the output space of data. There are two parameters in our simulation

process. Outlier ratio specifies how many outliers per simulation are injected. We set this

parameter to 1.0% throughout the experimental study. Outlier dimensionality specifies how

many output dimensions per outlier to be perturbed. We vary this parameter relative to the

output dimensionality by perturbing {2.5, 5.0, 10.0, 20.0}% of outputs. Therefore a dataset

creates up to four sets of experiments.3 To summarize, we simulate outliers as:

1. In each simulation, select 1.0% of instances uniformly at random

2. For each of the selected instances in Step 1, perturb the values in {2.5, 5.0, 10.0, 20.0}%

of the output dimensions uniformly at random (yperturbed = |yoriginal − 1|)

These simulated outliers can be interpreted as contextually abnormal output signals (errors

or mistakes) in each application (see Table 4.5). For example, in semantic video annotation

(e.g., Mediamill), the outliers (perturbed output values) can be perceived as video frames

with inaccurate concept tags. In text categorization (e.g., Yahoo-business), the outliers can

be seen as news articles with incorrectly assigned topics.

We would like to stress that all methods (including both the model building and outlier

scoring stages) are run on data with simulated outliers. In other words, we never learn a

model on the original (unperturbed) data and detect outliers on the simulated (perturbed)

data. Such an experimental setting would be impractical since in real world applications we

do not know a priori what data instances to remove to learn a model from outlier-free data.

Evaluation Metrics We use the precision-alert rate (PAR) curves, average PAR (APAR)

in [0.00, 0.01] range, and area under the precision-recall curve (AUPRC) as our evaluation

metric. See Section 4.2.3 for detailed description of the metrics.

Results Figures 4.5-4.7 and Tables 4.6-4.7 present the results of the five tested methods.

3For Yahoo-arts, Yeast, and Birds, outlier dimensionality = 2.5% cannot be applied due to the low output
dimensionality.
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(a) Mediamill (outlier dimensionality = {2.5, 5.0, 10.0}%)

(b) Yahoo-business (outlier dimensionality = {2.5, 5.0, 10.0}%)

(c) Yahoo-arts (outlier dimensionality = {5.0, 10.0, 20.0}%)

Figure 4.5: Precision-alert rate (PAR) at alert rates (detection thresholds) between 0.00 and

0.04. The vertical dashed lines at alert rate = 0.01 indicate where the alert rate coincides

with the simulated outlier ratio.

All results are obtained from ten repeats.

(1) Precision-Alert Rate Figures 4.5-4.7 show PARs at different alert rates (detec-

tion thresholds). X-axes show alert rate, ranging between 0.00 and 0.04; Y-axes show
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(a) Bibtex (outlier dimensionality = {2.5, 5.0, 10.0}%)

(b) Enron (outlier dimensionality = {5.0, 10.0, 20.0}%)

(c) Yeast (outlier dimensionality = {5.0, 10.0, 20.0}%)

Figure 4.6: Precision-alert rate (PAR) at alert rates (detection thresholds) between 0.00 and

0.04. The vertical dashed lines at alert rate = 0.01 indicate where the alert rate coincides

with the simulated outlier ratio.

PAR. For each dataset, three sets of plots are displayed for different outlier dimensional-

ity ({2.5, 5.0, 10.0}% or {5.0, 10.0, 20.0}%).4 Meanwhile, Table 4.6 presents the same result

4The plots of three configurations – Mediamill with outlier dimensionality = 20%, Yahoo-business with
outlier dimensionality = 20%, Bibtex with outlier dimensionality = 20%, Enron with outlier dimensionality
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(a) Birds (outlier dimensionality = {5.0, 10.0, 20.0}%)

(b) Cal500 (outlier dimensionality = {2.5, 5.0, 10.0}%)

Figure 4.7: Precision-alert rate at alert rates (detection thresholds) between 0.00 and 0.04.

The vertical dashed lines at alert rate = 0.01 indicate where the alert rate coincides with

the simulated outlier ratio.

set in a different format – it shows the average PAR (APAR) in [0.00, 0.01] range. The

numbers shown in boldface indicate the best results (by paired t-test at α = 0.05) on each

experiment set. In general, PARs improve as the outlier dimensionality increases, because

outliers with larger perturbations are easier to detect.

Comparing the COD approaches (I-PROD, M-PROD, M-RW, and M-LRW) to the un-

conditional approach (LOF), the conditional approaches clearly outperform. M-PROD, M-

RW, and M-LRW almost always produce better PAR than LOF. Although I-PROD performs

worse than LOF on Mediamill, Yeast, and Cal500, more often I-PROD outperforms LOF

(Table 4.6 shows this more clearly). On the other hand, as expected, LOF hardly detects

= 2.5%, and Cal500 with outlier dimensionality = 20% – are omitted for space limitation. Please see Table
4.6 for the omitted results.
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conditional outliers. In most experiments, its PAR is close to zero because it seeks unusual

data patterns in the joint space of all attributes. One notable exception is on the results

of Mediamill and Cal500, where the PARs of LOF are recorded unusually high. This is

because the datasets have high-dimensional output (Table 4.5) and thus a perturbation in

the output space can make the resultant conditional outliers obtrusive and noticeable even

to the unconditional method.

Comparing the performance of M-PROD to I-PROD, M-PROD outruns I-PROD more

often than vice versa. Recalling that the only difference between M-PROD and I-PROD is

the type of data model they use, this verifies the advantages of adopting the decomposable

probabilistic data model that is able to capture the conditional dependences among different

output variables (Equation (4.15)). To account for the intervals where I-PROD rises (i.e.,

certain intervals of alert rate on Yahoo-arts, Enron, and Cal500 ), we conjecture that the

datasets do not have strong dependences in the output space and therefore that the data

model used in M-PROD is less accurate than the model used in I-PROD.5 (However, as the

next paragraph discusses, M-RW and M-LRW can recover this inaccuracy of M-PROD.)

To validate our outlier scores with reliability weighting, we compare the performance

of M-RW and M-LRW to that of M-PROD. Recall that all three methods are utilizing the

same data representation; i.e., the difference is only in the way they compute the outlier

score. The figures show that, in many experiment sets, M-RW and M-LRW (methods with

reliability weighting) improve PAR over M-PROD. In particular, the results on Yahoo-arts,

Enron, and Cal500 well illustrate the advantages of reliability weighting in that M-RW and

M-LRW are able to recover the low PAR of M-PROD and demonstrate the best MCOD

performance. Table 4.6 further shows that M-RW and M-LRW are not only capable of

improving the outlier detection performance, but are also able to make PARs more consistent

(the standard deviation in PAR decreases with reliability weighting). All in all, the results

support that our proposed method can effectively assess the quality of each base model, and

the resulting weights are useful for multivariate conditional outlier scoring.

Lastly, we compare the performance of M-LRW and M-RW and highlight the advantages

5Provided that there are no strong dependences in the output space, conditioning with other output
variables (Equation (4.15)) would be analogous to adding noise to the model.
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of the local outlier score. The results show that M-LRW can further improve PAR over M-

RW using the reliability weights computed locally. Although the local outlier score does not

always increase PAR, in several sets of experiments our local approach drastically improves

the performance (e.g., Mediamill with outlier dimensionality = 2.5 and 5%; Yahoo-arts with

outlier dimensionality = 20%; Enron with outlier dimensionality = 10 and 20%; Bibtex with

outlier dimensionality = 2.5 and 5%).

(2) Area Under the Precision-Recall Curve Table 4.7 shows the results in terms of

AUPRC. Again, the numbers shown in boldface indicate the best results (by paired t-test at

α = 0.05) on each experiment set. Generally, the performance in AUPRC agrees with what

we analyzed above. As with PAR, M-RW and M-LRW outperform the rest and produce the

best results across all experiment sets. This confirms that our proposed approaches do not

sacrifice recall to gain greater PAR but do well to balance them.

The other methods also show similar performance patterns as the above. AUPRC of

LOF is very low in most cases. This conforms to the previous observation that the approach

is not effective in addressing the conditional outlier problem. Comparing M-PROD to I-

PROD, M-PROD results in better AUPRC in most experiment sets. Although M-PROD

underperforms I-PROD on Yahoo-business, Yahoo-arts with outlier dimensionality = 20%,

and Cal500 with outlier dimensionality = 10 and 20%, M-RW and M-LRW are able to

recover such performance drops through reliability weighting.

4.3.2 Multivariate Conditional Outlier Detection with Ratio-based Outlier Scor-

ing

In this section, we explore the extension of our decomposable multivariate conditional outlier

score schema to support a collection of univariate ratio-based outlier scoring methods (ROS

and ROS-DP; Sections 4.2.2.1 and 4.2.2.3). Recall that ROS methods were introduced to

complement probabilistic conditional outlier detection methods for univariate outputs (see

Sections 4.2.2.1-4.2.2.3).

Briefly, ROS measures the relative unusualness of an input pattern conditioned on its

output value. More specifically, it is defined as a ratio between two (unconditional) outlier
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scores: one assessed within instances having the same output value and another assessed

within instances having different output values.

Now consider the general multivariate conditional outlier decomposition schema, which

can be written as follows.

ScoreMPROB(y(n)|x(n)) =
d∑
i=1

ScorePROB(i)

(
y
(n)
i

∣∣∣x(n),π(y
(n)
i )
)

(4.23)

Assuming the same decomposition, we can define the multivariate ROS schema ScoreROS-M(x(n),y(n))

by substituting ScorePROB(i) for each output dimension i in the score with:

ScoreROS-M(y(n)|x(n)) =
d∑
i=1

ScoreROS(i)

(
y
(n)
i

∣∣∣x(n),π(y
(n)
i )
)

(4.24)

=
d∑
i=1

oU(x(n),π(y
(n)
i );DAgree(i, n))

oU(x(n),π(y
(n)
i );DDisagree(i, n))

(4.25)

where π(y
(n)
i ) denotes the values of the parents of y

(n)
i and

DAgree(i, n) =
{

x∗,π(y∗i )
∣∣∣y∗i = y

(n)
i

}
A subset of D whose output value is equal to y

(n)
i

(DAgree(i, n) does not include (x(n),π(y
(n)
i )))

DDisagree(i, n) =
{

x∗,π(y∗i )
∣∣∣y∗i 6= y

(n)
i

}
A subset of D whose output value is not equal to y

(n)
i

Please note that the above decomposition considers the model with chain dependences and

its decomposition. Equivalently, we can replace the chain dependency with the circular

dependency decomposition (i.e., π(Yi) := Y−i).

Also, note that ROS is itself a meta-score in that it allows a choice of a large spectrum

of unconditional outlier scores. In all experiments in this section, we have adopted the local

outlier factor (LOF) [Breunig et al., 2000], a nonparametric method that examines data for

unconditional outliers using a relative local density measure (see Sections 2.2.1.2 and 4.2.2.2

for details), as our unconditional outlier score.

Finally, we note that although the conditioning set for each output dimension in ROS-M

includes both inputs and other outputs, attributes that do not contribute to the prediction

can be regularized out when learning the model from data and hence reduce complexity of

the individual models. Below we discuss and formalize such a regularization step as a part

of the ROS schema.

111



4.3.2.1 Ratio of Outlier Scores on Multi-dimensional Discriminative Projections

The ROS approach relies on unconditional outlier scores defined on the input space. For

MCOD decompositions the input space is defined by the original input space, as well as,

outputs that model dependences and follow the respective decompositions (either via chain

or cicular decompositions). The problem with the new input space is that it may become

very complex and methods for controling its complexity are needed. In Section 4.2.2.3 we

introduced the univariate ROS-DP that lets us control the complexity of the input space via

two mechanisms: regularization, and dimensionality reduction via discriminative projections.

Hence, following Section 4.2.2.3, we present our last variant of the ROS score that works for

data with multi-dimensional output.

The main idea is to employ a supervised discriminative function on top of the ROS-

M framework. We define a set of discriminative projection functions {f1, ..., fd} and their

projections {φ1, ..., φd}, such that we specify a projection function for each output dimension.

fi :
(
x(n),π(y

(n)
i )
)
→ φ

(n)
i (4.26)

To obtain such functions and projection, we train (learn) a model from the input-output

instances in D. Note that the resulting projection also coincides with our probabilistic data

representation discussed in Section 4.3.1.3.

To incorporate the discriminative projections with the ROS framework, we project the

original data to the d-dimensional discriminative space (Equation (4.9)). We then compute

the ROS score on the new projected space with respect to individual output dimension.

Again, these steps result in a d-dimensional outlier score vector. We use the general mul-

tivariate condition outlier schema to compute the final outlier score. We refer to this score

and the associated approach as Ratio of Outlier Scores on Multi-dimensional Discrimina-

tive Projections (ROS-MDP) approach. ROS-MDP can be written as below, by defining

ROS-MDP as the sum over d ROS scores:

ScoreROS-MDP(y(n)|x(n)) =
d∑
i=1

ScoreROS-DP(i)

(
y
(n)
i

∣∣∣(x(n),π(y
(n)
i )), fi

)
(4.27)

=
d∑
i=1

ScoreROS(i)

(
y
(n)
i

∣∣∣fi (x(n),π(y
(n)
i )
))

(4.28)
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4.3.2.2 Alternative Multivariate Conditional Outlier Scoring Approaches The

MLC-based decompositions considered so far allowed us to define the multivariate conditional

outlier score as a sum of univariate conditional scores. In general, the decomposition can be

written as:

ScoreMCOD(y(n)|x(n)) =
d∑
i=1

ScoreUCOD(i)

(
y
(n)
i

∣∣∣x(n),π(y
(n)
i )
)

where ScoreMCOD and ScoreUCOD represent multivariate and univariate conditional outlier

score, respectively. π(Yi) is defined either based on chain-rule or circular dependences.

The above schema assumes all univariate scores contribute equally to the final multivari-

ate score. However, if there is any reason to prefer any output dimensions, this generalized

multivariate conditional outlier decomposition can be easily extended to bias the score to-

wards the different output dimensions using weighting:

ScoreMCODW
(y(n)|x(n)) =

d∑
i=1

w
(n)
i ScoreUCOD(i)

(
y
(n)
i

∣∣∣x(n),π(y
(n)
i )
)

The advantage of this new schema is that it remains decomposable to individual univariate

conditional scores. Recall that we have used this approach in Section 4.3.1.4 when exploring

probabilistic reliability weighting.

Finally, we note that decomposable MCOD scoring can be extended also to cover other

types of scoring biases. For example, when we assume the outliers can occur in just one or

a very few dimensions it may be appropriate to define the MCOD score by maximizing over

the individual UCOD scores:

ScoreMCODMAX
(y(n)|x(n)) = max

i∈{1,...,d}
ScoreUCOD(i)

(
y
(n)
i

∣∣∣x(n),π(y
(n)
i )
)

Briefly, unlike the standard MCOD scheme that weights all dimensions equally when defining

the outliers, the max score focuses on the worst (or maximum) outlier score.

113



4.3.2.3 Experiments To validate and demonstrate the performance of our approach, we

conduct experiments with synthetic and public datasets with simulated conditional outliers.

Through the empirical analysis in this section, we would like to verify the advantages of

ROS-M and ROS-MDP.

Tested Methods We compare the following outlier detection methods:

• Local Outlier Factor for the Joint Input-Output Space (LOF) [Breunig et al., 2000] –

LOF is an unconditional method that estimates outliers using a relative local density

measure and helps to find instances that fall in sparse regions of data. Here we apply it

to the joint space of all data attributes covering both inputs and outputs.

• Probability as Outlier Score (PROB) – Solves the multivariate conditional outlier detec-

tion problem by considering d dependent conditional probability models (with circular

dependences) and probabilistic UCOD scores defined on these models. (Equation (4.17))

• Ratio of Outlier Scores on Multi-dimensional Output (ROS-M) – Solves the multivariate

conditional outlier detection problem by considering d dependent conditional probability

models (with circular dependences) and ratio of outliers UCOD scores defined on these

models.

• Ratio of Outlier Scores on Multi-dimensional Discriminative Projections (ROS-MDP) –

Solves the multivariate conditional outlier detection problem by considering d dependent

conditional probability models (with circular dependences) and ratio of outliers UCOD

scores with discriminative projections (based on the logistic regression) defined on these

models.

To obtain data models/discriminative projections in PROB and ROS-MDP, we use L2-

regularized logistic regression and choose their regularization parameters by cross validation.

In LOF, ROS-M, and ROS-MDP, we set the number of neighbors k = 50.

Recall that PROB, ROS-M, and ROS-MDP require a multivariate function that combines

multiple outlier scores into one. In our experiments, we use max and average operations.

Accordingly, we use the following labels for the tested methods: PROBMAX, PROBSUM,

ROS-MMAX, ROS-MSUM, ROS-MDPMAX, and ROS-MDPSUM.
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Experiment Setup We continue to use the same experiment setup as in the previous

section, with small modifications in outlier dimensionality. To highlight, in our experimental

study, we simulate outliers as:

1. In each simulation, select [outlier ratio]% of instances uniformly at random

2. For each of the selected instances, perturb the values in [outlier dimensionality ]% of the

output dimensions uniformly at random (yperturbed = |yoriginal − 1|)

Note that, in all experiments in this section, we fix outlier ratio to 1.0%. See Section 4.3.1.5

for detailed description on the experiment setup.

Evaluation Metrics We use the precision-alert rate (PAR) curves, average PAR (APAR)

in [0.00, 0.01] range, and area under the precision-recall curve (AUPRC) as our evaluation

metric. For all three metrics, higher is better. See Section 4.2.3 for detailed description of

the metrics.

4.3.2.3.1 Synthetic Datasets We first conduct experiments on two synthetic datasets,

SD5 and SD6 (Figure 4.8). Each dataset contains 1,000 instances with two-dimensional

output data (d = 2); each random variable Yi is generated by the Bernoulli distribution.

yi ∼ Bern(θ); θ = 0.3 (i = 1, 2)

Now we create {2, 5, 10, 30}-dimensional input data. Depending on the values of Y, the first

two dimensions of input X1, X2 are generated by multivariate Gaussian.

x1, x2 ∼ N (µ,Σ)

µ and Σ are determined based on the values of Y. The actual parameter values used for

the data generation of SD5 and SD6 are listed in Table 4.8. Note that this process defines

nonlinear discriminative boundaries among different output values.

For the rest of the input dimensions, we generate some values that are irrelevant to the

output. This adds noisy attributes to the input space.

x3, ..., xm ∼ N (µ′,Σ′); µ′ = 0, Σ′ = 0.25 ·
√
m ·I(m−2)
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(a) Synthetic dataset 5 (SD5 ) (b) Synthetic dataset 6 (SD6 )

(c) SD5 with outliers (d) SD6 with outliers

Figure 4.8: Synthetic datasets 5, 6 (SD5 and SD6 ; the first row) and example conditional

outliers (marked with a star; the second row).

Simulated Outliers Each experiment run contains 1.0% of conditional outliers. We use

outlier dimensionality = {50.0, 100.0}; i.e., one or two output dimensions are perturbed for

outliers.

Results Figures 4.9-4.10 and Tables 4.9-4.10 present the results of the tested methods on

the three synthetic datasets, SD5 and SD6. The results are averages over five repetitions of

outlier simulations.

(1) Precision-Alert Rate Figures 4.9 and 4.10 show the precision of the tested methods

at different alert rates (precision-alert rate (PAR) curves) ranging between 0.00 and 0.04,

116



Y = {0, 0} Y = {0, 1} Y = {1, 0} Y = {1, 1}

SD5

µ =
[

0 0

]

Σ =

 5 1.5

1.5 1


µ =

[
3 0

]

Σ =

 0.2 0

0 0.2


µ =

[
−3 0

]

Σ =

 0.2 0

0 0.2


µ =

[
0 −2

]

Σ =

 0.2 0

0 0.2



SD6

µ =
[

0 0

]

Σ =

 1.5 0

0 1.5



Let U ∼ unif(0, 1);

if U < 0.5 :

µ =
[

3 0

]

Σ =

 0.1 0

0 0.1


otherwise:

µ =
[
−3 0

]

Σ =

 0.1 0

0 0.1



Let U ∼ unif(0, 1);

if U < 0.5 :

µ =
[

0.91 2.86

]

Σ =

 0.1 0

0 0.1


otherwise:

µ =
[
−0.91 2.86

]

Σ =

 0.1 0

0 0.1



Let U ∼ unif(0, 1);

if U < 0.5 :

µ =
[
−1.74 −2.44

]

Σ =

 0.1 0

0 0.1


otherwise:

µ =
[

1.74 −2.44
]

Σ =

 0.1 0

0 0.1



Table 4.8: Parameters for the data generation of SD5 and SD6.

on SD5 and SD6, respectively. The vertical dashed lines at alert rate = 0.01 indicate where

the alert rate coincides with the ratio of simulated outliers. Notice that, for each dataset,

the PAR curves are shown in two groups according to the type of the multivariate combine

function used by the MCOD methods. Within each group, the curves are organized in

such a way that each column shows an outlier dimensionality and each row shows an input

dimensionality. In general, PAR improves as the outlier dimensionality increases, because

outliers with larger perturbations are easier to detect. Table 4.9 presents the average PAR

(APAR) in [0.00, 0.01] range. The numbers shown in boldface indicate the best results (by

paired t-test at α = 0.05) on each experiment set.

Overall, the PAR curves (Figures 4.9 and 4.10) show that ROS-MDP achieves superior

results across all experiments. It maintains the best precision and controllability regardless

of the type of combine function (MAX or AVG), input or outlier dimensionality. In terms

of APAR over alert rate [0.00, 0.01] (Table 4.9), ROS-MDP also shows significantly better
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(a) Combine function: MAX (b) Combine function: SUM

Figure 4.9: Precision-alert rate (PAR) on SD5. Each plot draws PAR at alert rates (detection

thresholds) between 0.00 and 0.04. The vertical dashed lines at alert rate = 0.01 indicate

where the alert rate coincides with the simulated outlier ratio.
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(a) Combine function: MAX (b) Combine function: SUM

Figure 4.10: Precision-alert rate (PAR) on SD6. Each plot draws PAR at alert rates (de-

tection thresholds) between 0.00 and 0.04. The vertical dashed lines at alert rate = 0.01

indicate where the alert rate coincides with the simulated outlier ratio.
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APAR[0.00,0.01]

Outlier dimensionality=1

LOF PROBMAX PROBSUM ROS-MMAX ROS-MSUM ROS-MDPMAX ROS-MDPSUM

SD5

(m=2) 0.88 ± 0.04 0.47 ± 0.11 0.58 ± 0.16 0.71 ± 0.11 0.59 ± 0.11 0.87 ± 0.09 0.87 ± 0.10

(m=5) 0.46 ± 0.20 0.53 ± 0.29 0.70 ± 0.25 0.22 ± 0.20 0.09 ± 0.13 0.93 ± 0.04 0.94 ± 0.04

(m=10) 0.24 ± 0.25 0.48 ± 0.29 0.57 ± 0.29 0.07 ± 0.16 0.05 ± 0.11 0.89 ± 0.11 0.89 ± 0.11

(m=30) 0.10 ± 0.13 0.65 ± 0.17 0.72 ± 0.11 0.01 ± 0.03 0.02 ± 0.04 0.87 ± 0.09 0.85 ± 0.10

SD6

(m=2) 0.87 ± 0.06 0.42 ± 0.25 0.54 ± 0.31 0.79 ± 0.05 0.71 ± 0.11 0.83 ± 0.07 0.87 ± 0.06

(m=5) 0.16 ± 0.11 0.26 ± 0.17 0.44 ± 0.17 0.01 ± 0.01 0.00 ± 0.00 0.87 ± 0.06 0.86 ± 0.05

(m=10) 0.05 ± 0.03 0.21 ± 0.20 0.32 ± 0.24 0.02 ± 0.04 0.03 ± 0.06 0.81 ± 0.09 0.80 ± 0.10

(m=30) 0.00 ± 0.00 0.23 ± 0.13 0.34 ± 0.22 0.00 ± 0.00 0.00 ± 0.00 0.68 ± 0.08 0.66 ± 0.07

APAR[0.00,0.01]

Outlier dimensionality=2

LOF PROBMAX PROBSUM ROS-MMAX ROS-MSUM ROS-MDPMAX ROS-MDPSUM

SD5

(m=2) 0.98 ± 0.01 0.57 ± 0.25 0.57 ± 0.25 0.97 ± 0.01 0.96 ± 0.02 0.96 ± 0.03 0.96 ± 0.03

(m=5) 0.72 ± 0.04 0.63 ± 0.17 0.63 ± 0.17 0.26 ± 0.16 0.13 ± 0.19 0.94 ± 0.04 0.93 ± 0.04

(m=10) 0.64 ± 0.16 0.68 ± 0.16 0.68 ± 0.16 0.16 ± 0.15 0.13 ± 0.15 0.94 ± 0.04 0.95 ± 0.03

(m=30) 0.38 ± 0.11 0.68 ± 0.18 0.68 ± 0.18 0.06 ± 0.13 0.05 ± 0.11 0.96 ± 0.04 0.95 ± 0.03

SD6

(m=2) 0.83 ± 0.08 0.42 ± 0.17 0.49 ± 0.22 0.84 ± 0.05 0.80 ± 0.11 0.89 ± 0.03 0.92 ± 0.04

(m=5) 0.06 ± 0.06 0.39 ± 0.16 0.53 ± 0.22 0.01 ± 0.01 0.01 ± 0.01 0.88 ± 0.10 0.89 ± 0.09

(m=10) 0.06 ± 0.13 0.29 ± 0.12 0.43 ± 0.12 0.02 ± 0.04 0.02 ± 0.04 0.94 ± 0.06 0.95 ± 0.05

(m=30) 0.00 ± 0.00 0.15 ± 0.21 0.28 ± 0.29 0.00 ± 0.00 0.00 ± 0.00 0.84 ± 0.08 0.82 ± 0.07

Table 4.9: Average precision-alert rate in [0.00, 0.01] (APAR[0.00,0.01]). Numbers shown in

bold indicate the best results on each experiment set (by paired t-test at α=0.05).

performance than other tested methods in most experiments. This confirms the validity of

ROS-MDP in addressing the MCOD problem.

The results also reveal that, although PROB produces relatively consistent results (com-

pared to ROS-M and LOF), there are significant performance gaps between ROS-MDP and

PROB (Table 4.9). Given that ROS-MDP and PROB run on essentially identical linear

discriminative projection (logistic regression), this signifies that our ROS-MDP framework

can effectively deal with conditional outliers, especially on data that form nonlinear decision

boundaries. Note that this capability comes from the base unconditional outlier detection

method (LOF). In other words, ROS-MDP can recover the discriminability that the linear

projection may lose, by locally examining data as the base LOF method constitutes.

Compared to ROS-MDP and PROB, LOF and ROS-M appear to suffer severely from

increasing input dimensionality. More specifically, LOF performs reasonably well when d = 2;

this suggests that, when the input dimensionality is low, unconditional outlier detection

methods still can identify conditional outliers. However, when d ≥ 5, the performance of LOF
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AUPRC
Outlier dimensionality=1

LOF PROBMAX PROBSUM ROS-MMAX ROS-MSUM ROS-MDPMAX ROS-MDPSUM

SD5

(m=2) 0.62 ± 0.09 0.24 ± 0.07 0.33 ± 0.14 0.41 ± 0.12 0.29 ± 0.09 0.60 ± 0.12 0.60 ± 0.13

(m=5) 0.27 ± 0.16 0.38 ± 0.16 0.47 ± 0.19 0.08 ± 0.07 0.05 ± 0.05 0.69 ± 0.09 0.69 ± 0.10

(m=10) 0.10 ± 0.09 0.31 ± 0.19 0.38 ± 0.21 0.03 ± 0.03 0.02 ± 0.01 0.63 ± 0.22 0.63 ± 0.22

(m=30) 0.03 ± 0.01 0.38 ± 0.16 0.45 ± 0.15 0.02 ± 0.01 0.02 ± 0.01 0.60 ± 0.15 0.58 ± 0.16

SD6

(m=2) 0.63 ± 0.10 0.16 ± 0.09 0.25 ± 0.15 0.43 ± 0.06 0.39 ± 0.09 0.59 ± 0.09 0.62 ± 0.09

(m=5) 0.12 ± 0.03 0.07 ± 0.04 0.14 ± 0.11 0.03 ± 0.02 0.02 ± 0.02 0.62 ± 0.11 0.61 ± 0.10

(m=10) 0.04 ± 0.02 0.06 ± 0.06 0.09 ± 0.09 0.02 ± 0.02 0.02 ± 0.02 0.51 ± 0.16 0.50 ± 0.16

(m=30) 0.01 ± 0.00 0.03 ± 0.02 0.11 ± 0.10 0.01 ± 0.00 0.01 ± 0.00 0.36 ± 0.10 0.35 ± 0.10

AUPRC
Outlier dimensionality=2

LOF PROBMAX PROBSUM ROS-MMAX ROS-MSUM ROS-MDPMAX ROS-MDPSUM

SD5

(m=2) 0.82 ± 0.05 0.30 ± 0.21 0.30 ± 0.21 0.81 ± 0.03 0.80 ± 0.03 0.74 ± 0.09 0.75 ± 0.09

(m=5) 0.48 ± 0.07 0.31 ± 0.21 0.31 ± 0.21 0.12 ± 0.05 0.07 ± 0.04 0.71 ± 0.12 0.70 ± 0.12

(m=10) 0.36 ± 0.16 0.38 ± 0.14 0.38 ± 0.14 0.06 ± 0.04 0.05 ± 0.04 0.72 ± 0.07 0.74 ± 0.06

(m=30) 0.11 ± 0.04 0.35 ± 0.21 0.36 ± 0.21 0.02 ± 0.02 0.02 ± 0.01 0.76 ± 0.11 0.75 ± 0.11

SD6

(m=2) 0.49 ± 0.11 0.13 ± 0.10 0.19 ± 0.14 0.53 ± 0.06 0.49 ± 0.09 0.70 ± 0.09 0.73 ± 0.10

(m=5) 0.10 ± 0.05 0.12 ± 0.10 0.21 ± 0.17 0.04 ± 0.02 0.04 ± 0.02 0.68 ± 0.14 0.69 ± 0.14

(m=10) 0.03 ± 0.02 0.08 ± 0.03 0.15 ± 0.08 0.02 ± 0.02 0.02 ± 0.01 0.74 ± 0.12 0.74 ± 0.11

(m=30) 0.02 ± 0.00 0.07 ± 0.05 0.14 ± 0.14 0.01 ± 0.00 0.01 ± 0.00 0.59 ± 0.12 0.58 ± 0.11

Table 4.10: Area under the precision-recall curve. Numbers shown in bold indicate the best

results on each experiment set (by paired t-test at α=0.05).

significantly degrades because, first of all, finding unusual input-output associations in the

higher-dimensional joint space becomes nontrivial; second, LOF does not explicitly handle

irrelevant attributes in data. ROS-M shows an even worse performance degradation with

high-dimensional input, which concurs with our previous analysis that ROS-M would not

show a reasonable performance without a complementary regularization mechanism (Section

4.3.2).

Lastly, the choice of the multivariate combine function yields interesting patterns in

results. That is, PROBSUM always outperforms PROBMAX; whereas ROS-MMAX often out-

performs ROS-MSUM. This may suggest that there is a proper choice of combine function for

each method. On the other hand, ROS-MDP is less affected by the combine function, which

could be an advantage as an outlier detection method. We will continue our discussion on

this in the experiments on real-world data.

(2) Area Under the Precision-Recall Curve Table 4.10 presents the results in terms
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Dataset N/m / d Domain
Value Description

Input Output

Mediamill 43,907 / 120 / 101 Video Video frames Concepts

Yahoo-business 11,214 / 21,924 / 30 Text News articles Topics

Yahoo-arts 7,484 / 23,146 / 26 Text News articles Topics

Bibtex 7,395 / 1,836 / 159 Text Paper metadata Topics

Enron 1,702 / 1,001 / 53 Text Emails Properties

Birds 645 / 276 / 19 Sound Bird songs Species

Cal500 502 / 68 / 174 Music Waveforms Annotations

Yeast 2,417 / 103 / 14 Biology Genes Functionalities

Rcv1sub1-top10 6,000 / 8,394 / 10 Text News articles Topics

Rcv1sub3-top10 6,000 / 8,328 / 10 Text News articles Topics

Table 4.11: Dataset characteristics (N : number of instances, m: input dimensionality, d:

output dimensionality).

of AUPRC. Again, the numbers shown in boldface indicate the best results (by paired t-test

at α = 0.05) on each experiment set.

In general, the results reported in AUPRC show similar patterns as in PAR/APAR.

ROS-MDP reports overall the best AUPRC, followed by PROB, LOF, and ROS-M. This

indicates that the ROS-MDP scores achieve a good balance between precision and recall.

All in all, the results in AUPRC reaffirm our observations and conclusions from PAR/APAR.

4.3.2.3.2 Public Datasets We use ten public datasets with multi-dimensional input

and output in our experiments.6 These are collected from various application domains,

including semantic video/image annotation (Mediamill), text categorization (Yahoo and

Rcv1 datasets, Bibtex, and Enron), biology (Yeast), and sound/music recognition (Birds

and Cal500 ). Table 4.11 summarizes the characteristics of the datasets, such as dataset size,

data domain, and short descriptions of the input and output variables.

Simulated Outliers Each experiment run contains 1.0% of conditional outliers. We use

outlier dimensionality = {5.0, 10.0, 50.0, 100.0}%.

6Datasets are available at http://mulan.sourceforge.net [Tsoumakas et al., 2010].
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APAR[0.00,0.01]

Outlier dimensionality = 5 %

LOF PROBMAX PROBSUM ROS-MMAX ROS-MSUM ROS-MDPMAX ROS-MDPSUM

Mediamill 0.02 ± 0.04 0.13 ± 0.13 0.07 ± 0.02 0.02 ± 0.04 0.02 ± 0.04 0.13 ± 0.08 0.14 ± 0.05

Yahoo-business 0.02 ± 0.05 0.03 ± 0.05 0.00 ± 0.00 0.03 ± 0.05 0.02 ± 0.03 0.47 ± 0.10 0.42 ± 0.09

Yahoo-arts 0.00 ± 0.00 0.13 ± 0.11 0.06 ± 0.08 0.01 ± 0.02 0.00 ± 0.00 0.10 ± 0.09 0.04 ± 0.07

Bibtex 0.00 ± 0.00 0.11 ± 0.15 0.09 ± 0.16 0.00 ± 0.00 0.00 ± 0.00 0.22 ± 0.17 0.25 ± 0.25

Enron 0.00 ± 0.00 0.10 ± 0.11 0.17 ± 0.16 0.00 ± 0.00 0.00 ± 0.00 0.11 ± 0.05 0.15 ± 0.13

Birds 0.04 ± 0.06 0.43 ± 0.26 0.16 ± 0.13 0.00 ± 0.00 0.01 ± 0.01 0.06 ± 0.06 0.15 ± 0.11

Cal500 0.00 ± 0.00 0.30 ± 0.16 0.44 ± 0.17 0.00 ± 0.00 0.00 ± 0.00 0.49 ± 0.14 0.49 ± 0.14

Yeast - - - - - - -

Rcv1sub1-top10 - - - - - - -

Rcv1sub3-top10 - - - - - - -

APAR[0.00,0.01]

Outlier dimensionality = 10 %

LOF PROBMAX PROBSUM ROS-MMAX ROS-MSUM ROS-MDPMAX ROS-MDPSUM

Mediamill 0.02 ± 0.04 0.23 ± 0.15 0.15 ± 0.06 0.02 ± 0.04 0.02 ± 0.04 0.49 ± 0.07 0.59 ± 0.11

Yahoo-business 0.00 ± 0.00 0.01 ± 0.03 0.01 ± 0.01 0.03 ± 0.05 0.02 ± 0.05 0.49 ± 0.13 0.42 ± 0.12

Yahoo-arts 0.00 ± 0.00 0.13 ± 0.12 0.07 ± 0.10 0.01 ± 0.02 0.00 ± 0.00 0.12 ± 0.11 0.06 ± 0.04

Bibtex 0.00 ± 0.00 0.13 ± 0.19 0.10 ± 0.18 0.00 ± 0.00 0.00 ± 0.00 0.24 ± 0.20 0.31 ± 0.25

Enron 0.00 ± 0.00 0.15 ± 0.20 0.28 ± 0.24 0.00 ± 0.00 0.00 ± 0.00 0.13 ± 0.11 0.08 ± 0.13

Birds 0.16 ± 0.12 0.38 ± 0.23 0.61 ± 0.19 0.00 ± 0.00 0.00 ± 0.00 0.09 ± 0.07 0.14 ± 0.15

Cal500 0.00 ± 0.00 0.47 ± 0.05 0.75 ± 0.13 0.00 ± 0.00 0.00 ± 0.00 0.79 ± 0.09 0.80 ± 0.11

Yeast 0.20 ± 0.07 0.54 ± 0.11 0.55 ± 0.10 0.02 ± 0.04 0.01 ± 0.01 0.49 ± 0.07 0.46 ± 0.05

Rcv1sub1-top10 0.00 ± 0.00 0.41 ± 0.17 0.28 ± 0.22 0.00 ± 0.00 0.00 ± 0.00 0.52 ± 0.17 0.53 ± 0.16

Rcv1sub3-top10 0.00 ± 0.00 0.58 ± 0.10 0.45 ± 0.13 0.00 ± 0.00 0.04 ± 0.06 0.74 ± 0.10 0.74 ± 0.10

APAR[0.00,0.01]

Outlier dimensionality = 20 %

LOF PROBMAX PROBSUM ROS-MMAX ROS-MSUM ROS-MDPMAX ROS-MDPSUM

Mediamill 0.03 ± 0.04 0.47 ± 0.09 0.53 ± 0.07 0.02 ± 0.04 0.02 ± 0.04 0.81 ± 0.07 0.85 ± 0.07

Yahoo-business 0.01 ± 0.01 0.08 ± 0.08 0.04 ± 0.09 0.03 ± 0.05 0.01 ± 0.03 0.71 ± 0.17 0.51 ± 0.17

Yahoo-arts 0.00 ± 0.00 0.20 ± 0.16 0.14 ± 0.11 0.01 ± 0.02 0.00 ± 0.00 0.13 ± 0.12 0.07 ± 0.07

Bibtex 0.00 ± 0.00 0.21 ± 0.20 0.37 ± 0.38 0.00 ± 0.00 0.00 ± 0.00 0.60 ± 0.08 0.73 ± 0.14

Enron 0.00 ± 0.00 0.23 ± 0.13 0.46 ± 0.24 0.00 ± 0.00 0.00 ± 0.00 0.08 ± 0.05 0.00 ± 0.00

Birds 0.17 ± 0.19 0.40 ± 0.12 0.74 ± 0.22 0.01 ± 0.02 0.00 ± 0.00 0.07 ± 0.07 0.14 ± 0.12

Cal500 0.01 ± 0.01 0.32 ± 0.25 0.93 ± 0.06 0.00 ± 0.00 0.00 ± 0.00 0.92 ± 0.06 0.90 ± 0.08

Yeast 0.27 ± 0.05 0.55 ± 0.03 0.58 ± 0.05 0.02 ± 0.04 0.00 ± 0.00 0.38 ± 0.06 0.34 ± 0.03

Rcv1sub1-top10 0.00 ± 0.00 0.51 ± 0.19 0.47 ± 0.17 0.00 ± 0.00 0.00 ± 0.00 0.73 ± 0.10 0.71 ± 0.09

Rcv1sub3-top10 0.00 ± 0.00 0.74 ± 0.09 0.71 ± 0.08 0.00 ± 0.00 0.03 ± 0.06 0.74 ± 0.09 0.76 ± 0.07

APAR[0.00,0.01]

Outlier dimensionality = 50 %

LOF PROBMAX PROBSUM ROS-MMAX ROS-MSUM ROS-MDPMAX ROS-MDPSUM

Mediamill 0.05 ± 0.05 0.67 ± 0.13 1.00 ± 0.00 0.02 ± 0.04 0.02 ± 0.04 0.95 ± 0.04 0.99 ± 0.01

Yahoo-business 0.01 ± 0.02 0.10 ± 0.06 0.30 ± 0.09 0.03 ± 0.05 0.00 ± 0.00 0.78 ± 0.06 0.49 ± 0.04

Yahoo-arts 0.00 ± 0.00 0.46 ± 0.15 0.47 ± 0.10 0.00 ± 0.01 0.00 ± 0.00 0.40 ± 0.10 0.28 ± 0.09

Bibtex 0.01 ± 0.03 0.15 ± 0.13 0.73 ± 0.22 0.00 ± 0.00 0.00 ± 0.00 0.81 ± 0.06 0.91 ± 0.05

Enron 0.00 ± 0.00 0.22 ± 0.14 0.33 ± 0.12 0.00 ± 0.00 0.00 ± 0.00 0.33 ± 0.22 0.00 ± 0.00

Birds 0.23 ± 0.18 0.39 ± 0.16 0.99 ± 0.01 0.01 ± 0.01 0.00 ± 0.00 0.22 ± 0.24 0.20 ± 0.09

Cal500 0.03 ± 0.04 0.22 ± 0.21 0.95 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 0.91 ± 0.06 0.86 ± 0.10

Yeast 0.31 ± 0.08 0.59 ± 0.02 0.62 ± 0.03 0.02 ± 0.06 0.00 ± 0.00 0.26 ± 0.03 0.26 ± 0.04

Rcv1sub1-top10 0.00 ± 0.00 0.63 ± 0.20 0.78 ± 0.11 0.01 ± 0.01 0.00 ± 0.00 0.87 ± 0.07 0.88 ± 0.05

Rcv1sub3-top10 0.00 ± 0.00 0.78 ± 0.09 0.89 ± 0.08 0.00 ± 0.00 0.02 ± 0.03 0.71 ± 0.07 0.79 ± 0.05

Table 4.12: Average precision-alert rate in [0.00, 0.01] (APAR[0.00,0.01]). Numbers shown in

bold indicate the best results on each experiment set (by paired t-test at α=0.05). Dashes

(-) indicate the sets that we cannot create due to low output dimensionality.
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AUPRC
Outlier dimensionality = 5 %

LOF PROBMAX PROBSUM ROS-MMAX ROS-MSUM ROS-MDPMAX ROS-MDPSUM

Mediamill 0.02 ± 0.01 0.04 ± 0.03 0.02 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.07 ± 0.02 0.06 ± 0.02

Yahoo-business 0.01 ± 0.01 0.01 ± 0.01 0.01 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.20 ± 0.06 0.15 ± 0.06

Yahoo-arts 0.01 ± 0.00 0.03 ± 0.02 0.03 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.04 ± 0.01 0.03 ± 0.01

Bibtex 0.01 ± 0.01 0.10 ± 0.13 0.10 ± 0.17 0.01 ± 0.01 0.01 ± 0.00 0.09 ± 0.08 0.12 ± 0.16

Enron 0.01 ± 0.00 0.07 ± 0.07 0.12 ± 0.12 0.01 ± 0.00 0.01 ± 0.00 0.06 ± 0.04 0.07 ± 0.07

Birds 0.03 ± 0.01 0.23 ± 0.21 0.14 ± 0.06 0.02 ± 0.01 0.02 ± 0.01 0.06 ± 0.03 0.07 ± 0.04

Cal500 0.02 ± 0.00 0.16 ± 0.09 0.18 ± 0.05 0.01 ± 0.00 0.01 ± 0.00 0.29 ± 0.07 0.27 ± 0.09

Yeast - - - - - - -

Rcv1sub1-top10 - - - - - - -

Rcv1sub3-top10 - - - - - - -

AUPRC
Outlier dimensionality = 10 %

LOF PROBMAX PROBSUM ROS-MMAX ROS-MSUM ROS-MDPMAX ROS-MDPSUM

Mediamill 0.03 ± 0.01 0.11 ± 0.06 0.08 ± 0.03 0.01 ± 0.00 0.01 ± 0.00 0.31 ± 0.08 0.34 ± 0.10

Yahoo-business 0.01 ± 0.00 0.02 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.22 ± 0.07 0.17 ± 0.08

Yahoo-arts 0.01 ± 0.00 0.05 ± 0.04 0.05 ± 0.02 0.01 ± 0.00 0.01 ± 0.00 0.06 ± 0.04 0.06 ± 0.03

Bibtex 0.01 ± 0.01 0.11 ± 0.16 0.10 ± 0.18 0.01 ± 0.01 0.01 ± 0.00 0.10 ± 0.09 0.15 ± 0.17

Enron 0.01 ± 0.00 0.10 ± 0.10 0.18 ± 0.17 0.01 ± 0.00 0.01 ± 0.00 0.07 ± 0.04 0.06 ± 0.05

Birds 0.06 ± 0.03 0.22 ± 0.20 0.38 ± 0.18 0.02 ± 0.01 0.02 ± 0.01 0.08 ± 0.04 0.08 ± 0.07

Cal500 0.04 ± 0.01 0.19 ± 0.03 0.50 ± 0.15 0.01 ± 0.00 0.01 ± 0.00 0.60 ± 0.13 0.61 ± 0.14

Yeast 0.05 ± 0.02 0.34 ± 0.09 0.33 ± 0.08 0.01 ± 0.00 0.01 ± 0.00 0.25 ± 0.05 0.23 ± 0.04

Rcv1sub1-top10 0.01 ± 0.00 0.14 ± 0.10 0.10 ± 0.08 0.01 ± 0.00 0.01 ± 0.00 0.27 ± 0.11 0.27 ± 0.10

Rcv1sub3-top10 0.01 ± 0.00 0.26 ± 0.09 0.19 ± 0.07 0.01 ± 0.00 0.01 ± 0.01 0.46 ± 0.14 0.46 ± 0.13

AUPRC
Outlier dimensionality = 20 %

LOF PROBMAX PROBSUM ROS-MMAX ROS-MSUM ROS-MDPMAX ROS-MDPSUM

Mediamill 0.06 ± 0.01 0.25 ± 0.06 0.43 ± 0.06 0.01 ± 0.00 0.01 ± 0.00 0.66 ± 0.09 0.72 ± 0.05

Yahoo-business 0.01 ± 0.00 0.03 ± 0.01 0.02 ± 0.01 0.01 ± 0.00 0.01 ± 0.00 0.48 ± 0.16 0.38 ± 0.13

Yahoo-arts 0.01 ± 0.00 0.06 ± 0.04 0.06 ± 0.03 0.01 ± 0.01 0.01 ± 0.00 0.07 ± 0.02 0.06 ± 0.02

Bibtex 0.01 ± 0.01 0.19 ± 0.15 0.30 ± 0.32 0.01 ± 0.01 0.01 ± 0.00 0.36 ± 0.09 0.47 ± 0.18

Enron 0.01 ± 0.00 0.11 ± 0.09 0.28 ± 0.26 0.01 ± 0.00 0.01 ± 0.00 0.05 ± 0.02 0.03 ± 0.00

Birds 0.09 ± 0.06 0.22 ± 0.12 0.55 ± 0.21 0.02 ± 0.01 0.02 ± 0.01 0.09 ± 0.03 0.10 ± 0.06

Cal500 0.07 ± 0.01 0.15 ± 0.11 0.78 ± 0.11 0.01 ± 0.00 0.01 ± 0.00 0.77 ± 0.09 0.75 ± 0.10

Yeast 0.07 ± 0.02 0.32 ± 0.04 0.34 ± 0.05 0.01 ± 0.00 0.01 ± 0.00 0.21 ± 0.02 0.16 ± 0.03

Rcv1sub1-top10 0.01 ± 0.00 0.21 ± 0.13 0.19 ± 0.12 0.01 ± 0.00 0.01 ± 0.00 0.46 ± 0.09 0.45 ± 0.08

Rcv1sub3-top10 0.01 ± 0.00 0.45 ± 0.10 0.43 ± 0.09 0.01 ± 0.00 0.01 ± 0.01 0.50 ± 0.09 0.49 ± 0.07

AUPRC
Outlier dimensionality = 50 %

LOF PROBMAX PROBSUM ROS-MMAX ROS-MSUM ROS-MDPMAX ROS-MDPSUM

Mediamill 0.12 ± 0.02 0.49 ± 0.12 0.95 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.90 ± 0.05 0.94 ± 0.01

Yahoo-business 0.01 ± 0.00 0.05 ± 0.01 0.11 ± 0.04 0.01 ± 0.00 0.01 ± 0.00 0.63 ± 0.06 0.51 ± 0.08

Yahoo-arts 0.01 ± 0.00 0.22 ± 0.10 0.26 ± 0.09 0.01 ± 0.00 0.01 ± 0.00 0.22 ± 0.08 0.19 ± 0.06

Bibtex 0.02 ± 0.01 0.11 ± 0.06 0.64 ± 0.20 0.01 ± 0.01 0.01 ± 0.00 0.61 ± 0.07 0.75 ± 0.10

Enron 0.01 ± 0.00 0.09 ± 0.05 0.17 ± 0.10 0.01 ± 0.00 0.01 ± 0.00 0.17 ± 0.10 0.03 ± 0.01

Birds 0.06 ± 0.05 0.24 ± 0.11 0.90 ± 0.01 0.02 ± 0.01 0.02 ± 0.00 0.21 ± 0.09 0.20 ± 0.04

Cal500 0.13 ± 0.02 0.11 ± 0.08 0.82 ± 0.04 0.01 ± 0.00 0.01 ± 0.00 0.73 ± 0.06 0.66 ± 0.10

Yeast 0.09 ± 0.05 0.35 ± 0.03 0.39 ± 0.04 0.01 ± 0.01 0.01 ± 0.00 0.14 ± 0.02 0.15 ± 0.01

Rcv1sub1-top10 0.01 ± 0.00 0.34 ± 0.18 0.53 ± 0.13 0.01 ± 0.00 0.01 ± 0.00 0.72 ± 0.09 0.75 ± 0.09

Rcv1sub3-top10 0.01 ± 0.00 0.56 ± 0.15 0.70 ± 0.14 0.01 ± 0.00 0.01 ± 0.00 0.54 ± 0.09 0.61 ± 0.11

Table 4.13: Area under the precision-recall curve. Numbers shown in bold indicate the best

results on each experiment set (by paired t-test at α= 0.05). Dashes (-) indicate the sets

that we cannot create due to low output dimensionality.
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Results Figures 4.11-4.20 and Tables 4.12 and 4.13 report the experiment results on the

public datasets. The results are averages over five repetitions of outlier simulations.

(1) Precision-Alert Rate Figures 4.11-4.20 show the precision of the tested methods

at different alert rates (precision-alert rate (PAR) curves) ranging between 0.00 and 0.04.

The vertical dashed lines at alert rate = 0.01 indicate where the alert rate coincides with

the ratio of simulated outliers. Notice that, for each dataset, the PAR curves are shown in

two groups according to the type of the multivariate combine function (i.e., MAX or SUM)

used by the MCOD methods. Within each group, we list the results for different outlier

dimensionality from 5.0 to 50.0% (for Yeast, Rcv1sub1-top10, and Rcv1sub3-top10, outlier

dimensionality is given from 5.0 to 50.0%). Table 4.12 presents the average PAR (APAR) in

[0.00, 0.01] range. The numbers shown in boldface indicate the best results (by paired t-test

at α = 0.05) on each experiment set.

Overall, ROS-MDP exhibits the best performance. In terms of APAR over alert rate

[0.00, 0.01], ROS-MDPMAX achieves statistically superior performance on 28 experiments

(numbers shown in boldface in Table 4.12); ROS-MDPSUM does so on 25 experiments.

The PAR curves also suggest that ROS-MDPMAX and ROS-MDPSUM can produce pre-

cisely controllable outlier scores. For example, on Mediamill, Yahoo-business, Bibtex, Cal500,

Rcv1sub1-top10, and Rcv1sub3-top10, ROS-MDPMAX and ROS-MDPSUM result in excellent

PAR curves (Figures 4.11-4.20).

PROB also performs very competently. PROBSUM reports statistically superior perfor-

mance on 26 experiments; and PROBMAX does so on 18 experiments. The PAR curves of the

methods show a desirable pattern as well. For example, on Yahoo-arts (when Outlier dimen-

sionality ≥ 20), Enron, Birds, Cal500 (PROBSUM), Yeast, and Rcv1sub3-top10, PROBMAX

and PROBSUM show preferable results (Figures 4.11-4.20).

On the other hand, the results of LOF, ROS-MMAX, and ROS-MSUM apparently do

not produce competitive results. Our conjecture on why LOF do not perform well is ac-

counted in the previous discussion on experiments with synthetic data. As expected (Section

4.3.2), ROS-MMAX, and ROS-MSUM do not produce any meaningful results on the real-world

datasets.
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The results with respect to the choice of combine function and varying outlier dimension-

ality also reveal an interesting performance pattern. The performance of ROS-MDPMAX and

ROS-MDPSUM appear to be correlated; when ROS-MDPMAX performs well, ROS-MDPSUM

also performs well, or vice versa. Their APAR are often within statistically equivalent. On

the other hand, the performance of PROBMAX and PROBSUM show contrasts. When the

outlier dimensionality is low (5%), PROBMAX often outperforms PROBSUM. As the outlier

dimensionality increases, however, PROBSUM more often outperforms PROBMAX. Note that

this agrees with our conjecture that, when the outlier dimensionality is low, the max function

should be preferred; when the outlier dimensionality is high, otherwise.

The results also suggests that certain datasets prefer certain methodology. For example,

on Birds, the PROB methods perform extremely well compared to ROS-MDP. On Yahoo-

business, the same is observed for ROS-MDP.

(2) Area Under the Precision-Recall Curve

Table 4.13 presents the results in terms of AUPRC. Again, the numbers shown in boldface

indicate the best results (by paired t-test at α = 0.05) on each experiment set. Overall,

ROS-MDP and PROB exhibits the best performance. ROS-MDPMAX achieves statistically

superior performance on 26 experiments (numbers shown in boldface in Table 4.13); ROS-

MDPSUM does so on 26 experiments. Similarly, PROBSUM reports statistically superior

performance on 23 experiments; PROBMAX does so on 16 experiments. On the other hand,

the results of LOF, ROS-MMAX, and ROS-MSUM apparently do not produce competitive

results.

4.3.3 Discussion

In this section, we developed and explored solutions for multivariate conditional outlier

detection (MCOD).

We started our investigation by proposing the probabilistic approach to multivariate

conditional outlier detection that relies on a model of the conditional joint probability

P (Y = y|X = x). In this approach, data instances that correspond to low probabilities

for this model are considered to be outliers. To build the model of the conditional joint
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probability, we used the chain decomposition idea from multi-label classification (MLC) to

decompose the model to multiple components, one for each dimension of the output space.

The chain model decomposition comes with one important property from the viewpoint of

outlier detection and outlier scoring: the multivariate conditional outlier score can be com-

puted using a collection of univariate conditional outlier scores defined upon the decomposed

components of the chain model. This property can be generalized and extended to a wide

range of new multivariate conditional outlier scores that are defined in terms of the univariate

conditional outlier scores.

Following the new multivariate conditional outlier score decomposition schema, we pro-

posed and studied two new modifications of the probabilistic scores. First, we replaced the

model components in the chain decomposition of P (Y = y|X = x) with univariate condi-

tional components based on circular output dependences. Second, we proposed the idea of

modifying the probabilistic score with reliability weights where less reliable model compo-

nents contribute less to the overall outlier score.

Next, we explored the application of the new multivariate conditional outlier score de-

composition schema to a more general class of conditional outlier scoring approaches that are

not necessarily probabilistic. We revisited the ratio-based outlier scoring methods, developed

for univariate conditional outlier detection (Section 4.2.2), and showed how to incorporate

the ratio-based outlier scores to support multivariate conditional outlier detection.

Through the experiments on the synthetic and public datasets with simulated outliers, we

provided empirical evidences that support our proposed MCOD methods. More specifically,

the experiments with the probabilistic model-based approach (Section 4.3.1.5) showed that

our methods can effectively identify multivariate conditional outliers, which could not be

found by analysis in the joint space. The results also indicated that our reliability weights

can further improve the MCOD performance and produce more consistent outlier scores. To

summarize, by exploiting the probabilistic chain decomposition and modifying the framework

using individual model reliabilities, we successfully extended the model-based COD approach

to properly handle the MCOD problem, which has not previously been addressed.

From the experiments with the ratio-based approach (Section 4.3.2.3), we confirmed the

validity of the ROS framework (Equation (4.10)). The results of our framework tested in
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combination with the LOF score (our choice out of many unconditional scores) demonstrated

its superior MCOD performance, especially when data are high-dimensional and have a non-

linear discriminative boundary. To conclude, the application of the decomposition schema,

inspired by the probabilistic MCOD approach, let us develop a new ratio-based MCOD

framework that can potentially work with any unconditional outlier score. Our solutions

may be particularly useful for the COD problems where we cannot easily obtain reliable

probabilistic data models. One important recapitulation of the approach is that it connects

the unconditional and conditional outlier detection methodologies that previously have not

much benefited from each other. We expect that our approach opens new opportunities in

the advancement of conditional outlier detection by adopting and testing with different types

of unconditional outlier scores in the framework.

4.4 SUMMARY

We studied the conditional outlier detection (COD) problem, a special type of the outlier

detection problem where data instances are associated with a set of binary responses. We

introduced two approaches, the probabilistic and ratio-based outlier scoring approaches, by

focusing on two types of the COD problem – univariate and multivariate conditional outlier

detection (UCOD and MCOD).

First, we presented the probabilistic COD approach relying on a model of the conditional

joint probability P (Y = y|X = x). We reviewed existing solutions to the UCOD problem

and set the basic framework that learns a conditional model from data and examines instances

by probability estimation, such that data instances corresponding to low probabilities for

this model are considered to be outliers. We further developed this framework to tackle

the MCOD problem using the chain decomposition idea. That is, to build the model of the

conditional joint probability, we decompose the model into multiple components, one for

each dimension of the output space. This, in turn, let us compute a multivariate conditional

outlier score using a collection of univariate conditional outlier scores defined upon the

decomposed components of the chain model.

128



Second, we proposed and studied the ratio-based outlier scoring (ROS) approach that

uses unconditional outlier detection methods and their scores to calculate the conditional

score. We defined the ROS score for the UCOD problem by comparing (via ratio) two

unconditional outlier scores: one score calculated against data instances with the same

observed output value; and another calculated against instances with the opposite output

value. We then showed how to incorporate the ROS methods to support MCOD. This new

COD approach offers a couple of important advantages. First, it allows us to utilize a wide

variety of unconditional outlier scores. Also, it lets us effectively avoid cases where instances

with rare x (but properly associated with y) undesirably receive a high conditional outlier

score.

We provided experimental results on synthetic and public datasets with simulated outliers

that support the effectiveness of our methods in addressing UCOD and MCOD problems.
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(a) Combine function: MAX

(b) Combine function: SUM

Figure 4.11: Precision-alert rate (PAR) on Mediamill (outlier dimensionality = {5.0, 10.0,

20.0, 50.0}%).
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(a) Combine function: MAX

(b) Combine function: SUM

Figure 4.12: Precision-alert rate (PAR) on Yahoo-business (outlier dimensionality = {5.0,

10.0, 20.0, 50.0}%).
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(a) Combine function: MAX

(b) Combine function: SUM

Figure 4.13: Precision-alert rate (PAR) on Yahoo-arts (outlier dimensionality = {5.0, 10.0,

20.0, 50.0}%).
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(a) Combine function: MAX

(b) Combine function: SUM

Figure 4.14: Precision-alert rate (PAR) on Bibtex (outlier dimensionality = {5.0, 10.0, 20.0,

50.0}%).
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(a) Combine function: MAX

(b) Combine function: SUM

Figure 4.15: Precision-alert rate (PAR) on Enron (outlier dimensionality = {5.0, 10.0, 20.0,

50.0}%).
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(a) Combine function: MAX

(b) Combine function: SUM

Figure 4.16: Precision-alert rate (PAR) on Birds (outlier dimensionality = {5.0, 10.0, 20.0,

50.0}%).
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(a) Combine function: MAX

(b) Combine function: SUM

Figure 4.17: Precision-alert rate (PAR) on Cal500 (outlier dimensionality = {5.0, 10.0, 20.0,

50.0}%).
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(a) Combine function: MAX

(b) Combine function: SUM

Figure 4.18: Precision-alert rate (PAR) on Yeast (outlier dimensionality = {10.0, 20.0,

50.0}%).
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(a) Combine function: MAX

(b) Combine function: SUM

Figure 4.19: Precision-alert rate (PAR) on Rcv1sub1-top10 (outlier dimensionality = {10.0,

20.0, 50.0}%).
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(a) Combine function: MAX

(b) Combine function: SUM

Figure 4.20: Precision-alert rate (PAR) on Rcv1sub3-top10 (outlier dimensionality = {10.0,

20.0, 50.0}%).
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5.0 CONCLUSIONS

In this thesis, we focused on data objects with multivariate binary output and two problems

related to them:

1. Multi-Label Classification (MLC) that studies modeling and prediction of multi-

variate output from complex input-output data.

2. Conditional Outlier Detection (COD) that is concerned with how to effectively

identify contextually unusual output patterns in multivariate conditional data.

5.1 MODELING AND PREDICTION OF MULTIVARIATE RESPONSES

In Chapter 3, we have considered the multi-label classification (MLC) problem.

5.1.1 Contributions

• We presented a tree-structured probabilistic model that represents the posterior distri-

bution of multivariate output. We also developed supporting algorithms for structure

and parameter learning, and a MAP (maximum a posteriori) prediction.

• We studied a mixture model of multiple tree-structured Bayesian networks. We developed

algorithms to learn multiple tree structures and their parameters from data and to make

a MAP prediction using the trained mixture model.

• We presented a generalized representation of the multivariate posterior distribution that

includes a number of previous relevant data models as special cases, such as binary
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relevance [Boutell et al., 2004, Clare and King, 2001], classifier chains [Read et al., 2009],

and conditional tree-structured Bayesian networks [Batal et al., 2013].

• We extended and applied the Mixtures-of-Experts [Jacobs et al., 1991] framework to

represent the conditional joint distribution of multi-dimensional output using our gener-

alized multivariate posterior representation as base models.

5.1.2 Open Questions

• While we have successfully addressed the MLC problem using the structured learning

and prediction approach, we tested our models and methods only with a linear proba-

bilistic base model (i.e., logistic regression). However, in many practical problems, the

underlying decision boundary is nonlinear or discontinuous. In such cases, our choice of

the base model could fail or limit the model capacity. Considering nonlinear probabilis-

tic base models (e.g., kernel SVMs [Shawe-Taylor and Cristianini, 2004] with a post-hoc

calibration [Platt, 1999, DeGroot and Fienberg, 1983, Pakdaman, 2017]) would define

an interesting extension from our solutions.

• Class imbalance [He and Garcia, 2009] is one of the commonly encountered issues when

dealing with classification problems. When class imbalance is present, the obtained

(learned from data) classification model could deteriorate both in terms of predictive

accuracy and the quality of probability estimates. In this regard, class imbalance could

be a critical issue in addressing the MLC problem, especially when a structured learning

and prediction approach is used as in our work. Conducting a comprehensive study on

the effect of class imbalance to the quality of the MLC models and performance would

induce important findings.

• Our prediction algorithm for the mixture models is based on the simulated annealing

approach, which is a stochastic approximation to find the global optimum (the maxi-

mum a posteriori (MAP) prediction). Although the approach let us achieve outstanding

MAP prediction results, a proper non-approximating prediction algorithm would be much

preferred. Methods such as dual decomposition [Sontag, 2010] would be a promising can-

didate.
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• An investigation of a large-scale MLC problem that has high N and d (i.e., a large

number of instances with a high-dimensional output space) is another intriguing research

direction. In such an extreme case, our structure learning algorithms may suffer, since

their time complexity is bounded by both N and d2 (see Sections 3.2.2.1, 3.3.4.1, and

3.4.4.1). What kind of approximations could address such a massive MLC problem

within a reasonable amount of time and space? How can we discover and utilize the

conditional relations among the output variables in such solutions? To this end, the

solutions would suggest more effective approaches to practical problems that require

scalable data models and prediction, such as web-scale data analyses [Agrawal et al.,

2013, Yu et al., 2014, Bhatia et al., 2015].

• Considering a similar predictive modeling problem with multi-dimensional continuous

output variables – which is multi-target regression (MTR) [Borchani et al., 2015] – would

be a very interesting and practical investigation. Could our structured prediction and

ensemble approaches apply to the problem with the different type of output? What kind

of modification should be taken to resolve the regression counterpart? Furthermore,

we may consider an even more complicated problem where the output space is defined

by a mixture of discrete and continuous attributes (i.e., multivariate conditional data

modeling with mixed types of output variables) [De Leon and Chough, 2013, Dine et al.,

2009, Choi, 2012]. Would our proposed structured modeling and prediction algorithms

still work with different types of output variables and produce acceptable performance?

Could our ensemble approaches still improve the predictive accuracy of the base multi-

dimensional methods? Success in this regard would deliver a useful set of tools and

theories for complex data analysis, such as medical/clinical data analysis [Miglioretti,

2003, Dine et al., 2009, Saha et al., 2017].

5.2 CONDITIONAL OUTLIER DETECTION

In Chapter 4, we have explored the conditional outlier detection (COD) problem.
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5.2.1 Contributions

• We started our investigation by considering conditional outlier detection with one di-

mensional output space [Hauskrecht et al., 2007]. We have identified a large gap and

disconnect in the development of conditional and unconditional outlier methods. Moti-

vated by this fact, we proposed a new ratio-based conditional outlier (ROS) score that

can be derived from any unconditional outlier score. To cope with a high-dimensional

input data, we proposed a variant of the ROS method that applies discriminative dimen-

sionality reduction techniques prior to calculating the ratio-based score.

• We introduced and defined multivariate conditional outlier detection (MCOD) problem

in which outliers are assumed to occur in multi-dimensional binary output (response)

space, conditioned on their input (context).

• We presented a probabilistic framework for the multivariate conditional outlier detection

(MCOD) problem that finds data instances that fall in the regions of low conditional

joint probability. Inspired by the multi-label classification (MLC) models, our frame-

work works by decomposing the model using the chain rule and by using a collection of

discriminative probabilistic models to represent each output dimension. We showed that

under this model the probabilistic multivariate conditional outlier score decomposes to

the sum of probabilistic univariate condition outlier scores, one univariate score per one

ouptut dimension.

• We use the result on the decomposition of the probabilistic outlier scores to define a

more general family of decomposable multivariate conditional scores and extended it to

handle:

– models with circular instead of chain output dependences;

– models permitting outlier score weighting; and

– models with univariate Ratio of Outlier Scores (ROS) and its variants.

5.2.2 Open Issues

• To build a probabilistic data model for MCOD, we relaxed the chain rule and applied the

circular-chain heuristic to represent the underlying output dependency structure. At this
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time we do not have any empirical evidence that this heuristic either improves or hurts

the outlier detection performance. However, a theoretical justification of the circular

relaxation or its performance guarantees remain an interesting open question.

• Similarly, we have developed heuristically-motivated weighting schemas for the proba-

bilistic model-based MCOD approach. Although our proposed approaches have shown

a favorable performance in our empirical analysis, a theoretical study on the bounds

that the weights guarantee could be followed. The new findings will let us assure the

optimality of the proposed schemas or come up with the optimal set of weights for the

approach.

• We have developed the ROS approach to bridge the gap in between unconditional and

conditional outlier methods. However, in the experimental phase we tested ROS approach

by considering only one possible unconditional outlier score, namely Local Outlier Factors

(LOF) [Breunig et al., 2000]. Plugging in other types of unconditional outlier scores to

the ROS framework and testing their performance would lead to better and more refined

insights on the advantages and potential shortcomings of ROS.

• Throughout our evaluation studies, we only considered and used a simple discriminative

function based on the logistic regression model to represent probabilistic dependences

for calculating the probabilistic outlier score. It would be interesting to test and explore

alternative nonlinear models and their benefits for the problem. Similarly, simple logistic

regression models were used to implement ROS projection methods. Applying and testing

different dimensionality reduction methods in the ROS framework would let us further

improve the method.

• In our experiments, we built our data models from all data, without excluding any of the

instances. However, we might obtain more precise data models and, hence, further im-

prove outlier detection performance, if we trained the models on data without suspected

outliers [Aggarwal, 2017]. Interesting questions would be: what if we train the data mod-

els from an “outlier-free” dataset? What if we instead applied a robust model building

approach to minimize the effect of outliers on the data model? Although the questions

may raise an unrealistic scenario, answering them would push us to contemplate the

correctness and capability of the method on a fundamental level.
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• Similar to one of the open issues of MLC, considering MCOD on data with an output

space that is defined by continuous attributes or, most generally, a mixture of discrete

and continuous attributes would be an interesting and useful research direction.

• Another open question is related to missing output values: what is the best decision

(outlier calls) when only a subset of output values are observed? How do we compute

the outlier scores based on such limited observations?

• In the thesis, we have been concerned only with data in which the division of attributes

between inputs and outputs is pre-specified. However, if no such information is available,

how do we apply our proposed approach to perform MCOD? More generally, how can we

determine whether to apply conditional or unconditional outlier detection approach when

the input-output division is not a priori known? The results would suggest a generalized

data analytic procedure for (both conditional and unconditional) outlier detection.
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survey on multi-output regression. Wiley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, 5(5):216–233.

[Boutell et al., 2004] Boutell, M. R., Luo, J., Shen, X., and Brown, C. M. (2004). Learning
multi-label scene classification. Pattern Recognition, 37(9):1757 – 1771.

[Bradley and Guestrin, 2010] Bradley, J. K. and Guestrin, C. (2010). Learning tree con-
ditional random fields. In International Conference on Machine Learning (ICML 2010),
Haifa, Israel.

[Breunig et al., 2000] Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000). Lof:
identifying density-based local outliers. In ACM sigmod record, volume 29, pages 93–104.
ACM.

[Brier, 1950] Brier, G. W. (1950). Verification of Forecasts expressed in terms of probability.
Monthly Weather Review, 78(1):1–3.

147



[Byers and Raftery, 1998] Byers, S. and Raftery, A. E. (1998). Nearest-neighbor clutter re-
moval for estimating features in spatial point processes. Journal of the American Statistical
Association, 93(442):577–584.

[Cao et al., 2010] Cao, K.-A. L., Meugnier, E., and McLachlan, G. J. (2010). Integrative mix-
ture of experts to combine clinical factors and gene markers. Bioinformatics, 26(9):1192–
1198.

[Cetin and Karl, 2001] Cetin, M. and Karl, W. C. (2001). Feature-enhanced synthetic aper-
ture radar image formation based on nonquadratic regularization. Image Processing, IEEE
Transactions on, 10(4):623–631.
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