
Effects of Error Messages on a Student’s Ability to

Understand and Fix Programming Errors

by

Harsha Kadekar Beejady Murthy Kadekar

A Thesis Presented in Partial Fulfillment

Of the Requirements for the Degree

Master of Science

Approved August 2017 by the

Graduate Supervisory Committee:

Sohum Sohoni, Chair

Scotty D. Craig

Shawn S. Jordan

Kevin A. Gary

ARIZONA STATE UNIVERSITY

December 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/154281919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

i

ABSTRACT

Assemblers and compilers provide feedback to a programmer in the form of error

messages. These error messages become input to the debugging model of the

programmer. For the programmer to fix an error, they should first locate the error in the

program, understand what is causing that error, and finally resolve that error. Error

messages play an important role in all three stages of fixing of errors. This thesis studies

the effects of error messages in the context of teaching programming. Given an error

message, this work investigates how it effects student’s way of 1) understanding the

error, and 2) fixing the error. As part of the study, three error message types were

developed – Default, Link and Example, to better understand the effects of error

messages. The Default type provides an assembler-centric single line error message, the

Link type provides a program-centric detailed error description with a hyperlink for

more information, and the Example type provides a program centric detailed error

description with a relevant example. All these error message types were developed for

assembly language programming. A think aloud programming exercise was conducted as

part of the study to capture the student programmer’s knowledge model. Different codes

were developed to analyze the data collected as part of think aloud exercise. After

transcribing, coding, and analyzing the data, it was found that the Link type of error

message helped to fix the error in less time and with fewer steps. Among the three types,

the Link type of error message also resulted in a significantly higher ratio of correct to

incorrect steps taken by the programmer to fix the error.

ii

DEDICATION

I dedicate this work to my mother Prema Kadekar and my father Murthy

Kadekar who are making my dreams a reality. Sowmya Rao, my sister who always stood

by me silently.

Dodappa (B. C. Rao) who believed in me and always found ways to make it

happen. Suma Chikkamma my second mother who is always there. My cousin, well more

of an elder brother B. C. Mohan Rao – you made me to dream, encouraged me to take

steps to achieve those dreams.

SSAHASS – you guys always have a torch when I get lost in dark. Thanks Yash

for guiding.

iii

ACKNOWLEDGMENTS

I would like to thank Dr. Sohum Sohoni for giving me this opportunity to work

under him as a graduate assistant for SER 250 and allowing me to work for overall PLP

development. These experiences helped me in this thesis and it is because of his constant

motivation that I could complete it. I would like to thank Dr. Scotty Craig for making me

understand the human subject experiments and how to analyze the results of those

experiments. I would like to thank Dr. Scotty Craig and Dr. Shawn Jordan for guiding me

in designing the experiment of this thesis. I would like to thank Dr. Kevin Gary for

readily accepting to be on my defense committee. I am very grateful to Christopher Mar

who was of constant help and guide during my thesis journey.

iv

TABLE OF CONTENTS

Page

LIST OF FIGURES ... vi

LIST OF TABLES...……………………..viii

LIST OF ABBREVATIONS………….. ix

CHAPTER

1. INTRODUCTION .. 1

1.1 Motivation ………………………………………………………………………………….1

1.2 Review of Literature …………………………………………………………………….3

1.3 Problem Statement ……………………………………………………………………..7

1.4 Research Question ………………………………………………………………………7

2. IMPLEMENTATION …………………………………………………………………………………..8

3. METHODS ………………………………………………………………………………………………..13

3.1 Design ……………………………………………………………………………………….13

3.2 Procedure ………………………………………………………………………………….14

3.3 Materials …………………………………………………………………………………..16

3.4 Participants ……………………………………………………………………………….17

3.5 Transcribe, Segment and Code Verbal Data ………………………………….18

4. RESULTS ………………………………………………………………………………………………….27

 4.1 Cohen’s Kappa Coefficient for Inter-Rater Agreement …………………..27

 4.2 Time to Resolve the Error …………………………………………………………..27

 4.3 Number of Steps Taken to Resolve the Error ……………………………….28

 4.4 Correct and Incorrect Steps ……………………………………………………….29

 4.5 Error Message Read ………………………………………………………………….30

 4.6 Confusion After Reading Error Message ……………………………………..32

v

CHAPTER Page

4.7 Percentage of Participants Using Online Manual or Quick

Reference……………………………………………………………………………………………..33

 4.8 Correct Explore Steps …………………………………………………………………33

 4.9 Correct or Incorrect Understanding of Error Message …………………..34

 4.10 Effect of Programs and Their Order of Presentation ……………………35

5. DISCUSSION ……………………………………………………………………………………………39

5.1 Descriptive Analysis..………………………………………………………………….39

5.2 Reflection on Experiment …………………………………………………………..50

5.3 Subjectivity………………………………………………………………………………..51

5.4 Future Work ……………………………………………………………………………..51

6. CONCLUSION …………………………………………………………………………………………..53

REFERENCES ……………………………………………………………………………………………………..54

APPENDIX Page

A. PROGRAMS, ERRORS AND FIXES ………………….…………………………………..56

B. SAMPLE TRANSCRIBE, SEGMENT AND CODING ……………………………….63

C. CONSENT AND PARTICIPANTS RECRUITMENT FORM ……………………...72

vi

LIST OF FIGURES

Figure Page

1. Plptool ..10

2. The Default Type Of Error Message .. 11

3. The Link Type Of Error Message .. 12

4. The Example Type Of Error Message.. 12

5. Experiment Stages .. 13

6. Time Taken To Resolve The Error ... 28

7. Number Of Steps Taken To Resolve The Error ... 29

8. Correct And Incorrect Steps ... 30

9. Number Of Incorrect Steps Taken By Participants ... 31

10. How Many Read Error Message .. 32

11. Percentage Of Participants Confused On Reading Error Message 33

12. Percentage Of Participants Using Online Manual Or Quick Reference 34

13. Correct Or Incorrect Understanding Of Error Message ... 35

14. Total Explore Steps And Incorrect Explore Steps ... 36

15. Program Wise Time Taken To Fix The Error .. 37

16. Program Wise Number Of Steps To Fix The Error .. 38

17. Correct And Incorrect Steps Taken Program Wise .. 38

18. The Label Program ... 57

19. Default Type Error Message For The Label Program .. 58

20. Link Type Error Message For The Label Program .. 58

21. Example Type Error Message For The Label Program .. 58

22. The Instruction Program .. 59

23. Default Type Error Message For The Instruction Program .. 60

vii

Figure Page

24. Link Type Error Message For The Instruction Program .. 60

25. Example Type Error Message For The Instruction Program .. 60

26. Register Program .. 61

27. Default Type Error Message For The Register Program .. 62

28. Link Type Error Message For The Register Program .. 62

29. Example Type Error Message For The Register Program .. 62

viii

LIST OF TABLES

Tables Page

1. Treatment Groups .. 17

2. Basic Steps Code .. 22

3. Examine Step Codes .. 23

4. Correct and Incorrect Steps Code .. 23

5. Read Error Message Code .. 25

6. Time Taken to Resolve the Error ... 27

7. Number of Steps Taken to Resolve the Error.. 28

8. Correct and Incorrect Steps .. 30

9. Read Error Message .. 31

10. Percentage of Participant Expressing Confusion After Reading Error Message 32

11. Percentage of Participants Using Online Manual or Quick Reference 33

12. Total EXPLORE Steps and Incorrect EXPLORE Steps .. 34

13. Correct or Incorrect Understanding of Error Message .. 35

14. Program Wise Time Taken to Fix the Error .. 37

15. Program Wise Number of Steps to Fix the Error .. 37

16. Correct and Incorrect Steps Taken Program Wise .. 37

17. Sample Coding for Basic Steps .. 65

18. Sample Coding for Expected and Unwanted Steps .. 67

19. Sample Coding for Examine Steps ... 69

20. Sample Coding for Complete, Partial, Ignore .. 71

ix

LIST OF ABBREVATIONS

1. PLP – Progressive Learning Platform

2. IDE – Integrated Development Environment

3. FPGA – Field Programmable Gate Array

1

CHAPTER 1

INTRODUCTION

1.1 Motivation

 Assemblers and compilers act as feedback mechanisms which helps the student

programmer to test their mental models of programming (Traver, V. J., 2010). Each time

they use assembler/compiler, it will evolve those mental models. Assembler and

compiler error messages are typically formed from the perspective of the programmer

designing the compiler or assembler, rather than the perspective of the user of these

tools (Traver, V. J., 2010). Among the student programmers, novice programmers are

the ones who are most affected by these error messages (Nienaltowski, M. H., Pedroni,

M., & Meyer, B., 2008, March).

Usually an error message describes at what stage of assembling or compiling an

error occurred rather than describing what could have caused the error, or what mistake

on the programmer’s side could have caused the error. For a student programmer who

does not have any background on the inner workings of the assemblers/compilers, these

messages appear to be cryptic and unhelpful (Traver, V. J., 2010). Thus, usually the

novice programmer ends up making random changes, following an unguided trial and

error process hoping to get rid of the error. When the cryptic error messages persist, or

increase during these attempts to fix the error, the programmer’s frustration increases

(Rodrigo, M. M. T., & Baker, R. S., 2009, August). So, as many novice programmers treat

these errors as personal failures, they feel demotivated, and their fear of programming

increases (Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B.,

Thomas, L., & Zander, C. ,2008).

2

 There is a direct relation between error messages and debugging. There are three

steps in the process of fixing the error. First would be to identify the location of the error

in the program. The next step is to understand the cause of the error based on the error

message provided. The final step is to fix the error based on the information provided by

the error message. Basically, the error message generated by the assembler/compiler

should help the programmer in locating, understanding, and finally fixing the bug in the

code (Lazonder, A. W., & van der Meij, H., 1995). With cryptic error messages, it takes

more time to understand why the error is occurring. Programmers who do not

understand the error message will either misinterpret the error or completely lack the

understanding of what is going on in the program, and move towards trial and error.

Thus, it would take longer to fix the error. This leads to an overall increase in

programming time and programming steps as debugging will take a longer time.

 If a significant part of the course involves programming, the frustration caused

due to cryptic and unhelpful error messages negatively affect the motivation,

engagement and learning in the course (Rodrigo, M. M. T., & Baker, R. S., 2009,

August). As error messages are the direct feedback for the students’ learning models,

cryptic error message will become a barrier in the development of those learning models.

However, useful error messages will not only help in correcting the error, but will also

help to build a strong mental model of the programming language in the student’s mind.

They will help clarify concepts, remove misconceptions, and generally result in better

outcomes for programming intense courses (Traver, V. J., 2010).

 This thesis explores the impact of different types of error messages on a student’s

understanding of the error as well as fixing of the error. The study was conducted using

assembly language programs and their syntax errors.

3

1.2 Review of Literature

There are multiple studies conducted over many decades to understand the

effects of the error messages and improving those error messages to help programmers.

The studies vary from identifying most common types of errors committed by the

programmers, understanding compiler error messages in the view of human computer

interactions, how the programmers debugging process varies, comparing the novice and

skilled programmer’s ability to handle error messages, understanding the error message

wording effects on the programmers, providing a better representation for the error

messages and so on.

In the study conducted by Chabert J.M. & Higginbotham T.F., 1976, the errors

committed by the novice programmers were tabulated based on the type of errors and

frequency of errors committed. Along with thisrecommendations were provided to

improve the course work and update the assembler design so that it facilitate the

reduction of the number of errors by novice programmers. Here target programming

language was IBM 370 (OS) assembly language. In our study also, we are using assembly

language and one of the future goals of our study is to explore possibilities to update

course work and language design.

The study by Marceau, G., Fisler, K. & Krishnamurthi, S., 2011, helps to quantify

the effectiveness of the error messages for a novice programmer.. This study explains

that an error message is effective if a student reads it, can understand its meaning, and

then use the information to formulate a useful course of action. Based on this theory,

various codes were developed to analyze how students programmed given an error

message. The programming activity was coded and this data was used to develop a

rubric. The rubric was used to develop a formula which helps to quantify the students

action on the program based on the presented error message. This study like ours, uses

4

human-factors research methods to explore the effectives of error message. “Read-

>Understand->Formulate” theory is also used in our study to understand the students

programming activity.

Vessey I., 1985 used verbal protocol analysis to understand the debug process

employed by an expert programmer and a novice programmer. The study found that

even though both expert and novice used breadth first approaches for debugging but the

novice is deficient in their ability to think in system terms. The novice is also poor in

chunking the programs when compared to expert programmers. This was the first study

which employed Think aloud experiment to capture the mental model of a programmer.

In our study, also we employ think aloud programming activity to better understand the

mental model of student programmers.

Nienaltowski M.H., Pedroni M. & Meyer B., 2008 studied three types of error

message representations – short form, visual form, and long form. Students from two

different universities took part in the study. The study tested hypotheses like “higher

experience results in faster answers, higher experience results in more correct answers,

at a lower experience level enhanced messages result in more correct answers, more

information results in more correct answers, the error type determines number of

correct answers, more information in the error messages results in shorter response

time”. Two set of multiple choice questionnaire was prepared. The questionnaire had 3

types of errors in 3 different forms of error messages. The results showed that providing

more information in the error message does not lead to more correct answers. It also

showed that giving more information in the error message did not reduce the response

time. The other hypothesis which proved wrong was type of error determines the

number of correct answers. In our study, also we have one short form error message and

two long form error messages. In the long form error message, we are providing more

5

information and description is enhanced when compared to short form error message.

Our study gave different results as enhanced error messages took less time to resolve

error and less steps to resolve it.

In the study conducted by McLaren B.M., DeLeeuw K.E. & Mayer R.E., 2011,

given the error message in a polite language, the student with low prior knowledge of the

subject performed better when compared to students who were exposed to error message

which was in direct language. A web based intelligent tutor was created which students

used to solve chemistry stoichiometry problems. The tutor provided hints and feedback

in either polite or direct language. In our study, two of the three error message types,

provides the error description in detail. They are well organized. The findings of our

study were like that of study conducted by McLaren B.M., DeLeeuw K.E. & Mayer R.E.

2011.

Lazonder A.W. & van der Meij H. 1995, studied the effects of error information

present in a (tutorial) manual. The study revealed that subjects who are exposed to

manuals that have more information on the error performed better when compared to

the subjects who were exposed to manual which are having less error related

information. It explains in detail about three steps of error correction – detection,

diagnosis, and correction. A think aloud activity was conducted in the study. As part of

the study two groups of 25 participants took 3 types of tests – constructive sill test,

corrective knowledge test, corrective still test. One group was provided with manual

having more information about the error message and another group was provided with

manual having less information about the errors. Each test measured different aspects of

error detection, diagnosis, and correction. In our study, one of the error message type

will be providing hyperlinks to relevant sections of the online manual to help the

6

participants in diagnosing the error and then resolving the error. The error message type

which had the links showed better results when compared to other error message types.

 Hartmann, B., MacDougall, D., Brandt, J. & Klemmer, S.R., 2010, April

developed a system which gives helpful suggestions to compiler and runtime error

messages. This system called as HelpMeOut, tracks the source code development from

its error state to final correct state. It stores all the compiler errors committed by the

users in a central database – what was the error message, what was the wrong code and

how that was corrected. When a user asks for help to correct an error message, it will

fetch relevant data from that central database. Suggestion would include a description of

possible fix, explanation of the error and previous code examples of error and how it was

fixed. This was done for 2 programming languages – Java and C++. A total of 39 hours of

programming data was collected out of which 178 times suggestions were provided.

Among them 47% of them were useful. In our study, one of the error message type has

similar feature of displaying a relevant example code.

Traver, V.J., 2010 studies the problem of cryptic compiler error messages in the

perspective of human-computer interaction to understand why error messages make the

work of programmers more difficult. This study talks about how current error messages

are more of compiler centric rather than programmer centric. When the error messages

were analyzed from the human computer interaction perspective, it was observed that

most of the error message were lacking in clarity and, they were context insensitive. Most

of the error messages were lacking in constructive guidance as well that means most of

the error messages were not polite and were not providing valid suggestions for

correcting errors. It also observed that many of the error messages were not specific

which resulted in different diagnostics. In our study, error messages were designed to

rectify the above mentioned lacking points.

7

1.3 Problem Statement

This study tries to understand the effect of an error message on different aspect of

resolving an error. This is an exploratory study, which tries to understand mental model

of a programmer and how an error message affects that mental model. As part of the

error message construction itself, study tries to find out what error information are more

helpful to programmers. It tries to find out if an enhanced and more detailed error

message help in improving the performance of programmer when compared to short

cryptic error message. To better capture all the different features which needs to be

tested as part of the study, three types of error message types were developed.

1. Default – Here error messages will be short and messages indicate at which stage

of assembling the error occurred.

2. Link – This will have detailed error messages and a weblink address for the

section of online manual where more information can be obtained

3. Example – This will have detailed error messages and sample code. The sample

code has two parts one with similar error as currently encountered by the

participant and other one with the fix for that sample code error.

1.4 Research Question

By analyzing the programmer’s interaction with respect to three types of error

messages and their corresponding programs, this study tries to answer following two

research questions.

1. What aspects of an error message help the programmer to understand the error?

2. What aspects of an error message help the programmer to fix the error?

8

CHAPTER 2

IMPLEMENTATION

The programming language used for the study is an assembly language called

Progressive Learning Platform (PLP) and the tool used to assemble the program is

PLPTool. “Progressive learning platform is an FPGA based computer architecture

learning platform, and was designed for students to anchor their conceptual learning

about microprocessors and computer architecture, and for them to see the connections

between assembly language and trade-offs in architecture” (Sohoni, S., 2014, June).

PLPTool and the assembler present in that tool was modified as part of this

study. A separate module for processing the assembler exceptions were created. Once the

assemblers discover that an error exists in the code, instead of raising the exception, this

module will be called. The control will be passed to this module along with the program

instruction which failed to parse, as well as other information needed. Then in the

module, a detailed analysis is conducted on the error.

Overall assembling process of the PLP language was studied and based on its

working and PLP language structure, each possible error was grouped into 4 types.

1. Invalid label – This error has two sub groups.

a. Duplicate label – This error occurs when the same label is used in two

different contexts.

b. Invalid target – This error occurs when the program is using a label name

which is not yet defined.

2. Invalid token – This has two sub groups.

a. Invalid instruction type – This error occurs when there is a spelling

mistake in the instruction keyword.

9

b. Invalid label – This error occurs when the label is not declared like

missing a colon.

3. Invalid number of tokens – This error is caused due to an invalid number of

arguments to the instruction. It has two sub groups

a. Missing tokens – This error occurs if there are less tokens then expected

b. Extra tokens – This error occurs if there are more tokens then expected

4. Invalid operand – This error is caused due to invalid operand to the instruction.

It has four sub groups.

a. Not Register – Instruction was expecting a register but got something

else.

b. Not Number – Instruction was expecting a number but got something else

c. Not String – Instruction was expecting a string but got something else

d. Invalid address – Instruction was expecting an address value but got

something else.

Once this categorization of errors was completed, I created an error information

repository. For each type of error following information was stored in the repository.

1. Description – This gives a detailed explanation of the error. Here explanation

would be program centric rather than assembler centric.

2. Links – This gives an http link to a section of the online PLP manual, where

the programmer can get more useful information for understanding and

fixing of the error.

3. Examples – This gives a code sample. It has two sub sections - before

correction and after correction. Before correction has an example instruction

which has the error. After correction has the fix for the same error sample

code.

10

Figure 1- PLPTool

Once the type of error is identified, error information will be retrieved from this

repository. Based on the type of error message, some information will be discarded, and

the rest will be formatted and displayed in the console window of the PLPTool. If the

11

Link type of error message is to be displayed, then example code part will be discarded. If

the Example type of error message is to be displayed, then link will be discarded. If the

Default type is chosen, then all the above information will be discarded and only an

assembler-centric, single sentence error message will be provided.

Every error message will have an error number and error location link which

upon on clicking will highlight the line where the error occurred. The link will have the

line number and file name where an error has occurred.

The idea of error message with code examples was adopted from Hartmann B.,

MacDougall D., Brandt J. and Klemmer S.R 2010 [9], where they had developed a

centralized repository which collects all the errors committed by the programmers and

the corresponding fixes done to those errors by the same programmers. Any time a

programmer commits an error, the error message will have the previous corrected code

samples thus turning the whole exercise into a community driven one.

Figure 2- The Default Type of Error Message

Figure 2 provides the Default type of error message. Instruction which is causing

the error is subiu $s1, $t3, 10. For a novice programmer, who does not know the inner

working of assembler or compiler, they will not know what is “token.” Error also says,

“unable to process token “subiu.” So, novice programmer might infer that the way

instruction and its operands is written might be wrong and hence processing of that

instruction failed. The actual reason for the error is PLP does not have any instruction by

name “subiu.” Instead in PLP, subtract operation can be performed by subu instruction.

12

Figure 3 provides the Link type of error message and Figure 4 provides the Example type

of error message.

Figure 3- The Link Type of Error Message

Figure 4- The Example Type of Error Message

To conclude that it’s an invalid instruction, we need to first check how many

tokens the line has. If one or more tokens, follow the unidentified token than it is a case

of wrong instruction name that is an error type INVALID TOKEN with the sub group as

INVALID INSTRUCTION TYPE. If the line has only one token which is unidentified,

then this might be the case of a missing colon for a label that is error type would be

INVALID TOKEN with sub group as INVALID LABEL. Once we know the error type and

its sub group we can query the error information repository to get more information like

detailed description, links, and example code. There are few instructions which have only

one word and an error can occur if that word has a spelling mistake. As of now it will be

flagged as an invalid label declaration error. In future, the error analysis had to be

improved further to handle such scenarios as well.

13

CHAPTER 3

METHODS

3.1 Design

To examine the effects of different types of error messages on the student’s ability

to understand and fix the errors in the program, we need to first understand the

knowledge model of the student who is going to fix the error. To capture this knowledge

model effectively, think aloud programming was used. The experiment had three

components.

Figure 5- Experiment Stages

1. Demographic Survey - This survey is done via Qualtrics online survey tool after

the subject gives electronic consent. This survey is conducted to know more about

the participants programming background

2. Think Aloud Programming Activity - Think aloud activity helps in “obtaining a

real-time insight into the knowledge that a subject use and the mental process

applied while performing a process of interest” (Hughes, J., & Parkes, S., 2003).

Think aloud represents the subjects working memory. The terms verbal reports,

verbal protocols, think aloud protocol and talk aloud protocol are used

interchangeably, there are very few differences between each of these protocols.

“It refers to human subject’s verbalizations of their thoughts and successive

behaviors while they are performing cognitive tasks” (Ericsson, K. A., & Simon,

Consent Process

• 5 minutes

Demographic
Survey

• 5 minutes

Think Aloud
Programming 1

• 10 minutes

Feedback
Questionnaire 1

• 5 minutes

Think Aloud
Programming 2

• 10 minutes

Feedback
Questionnaire 2

• 5 minutes

Think Aloud
Programming 3

• 10 minutes

Feedback
Questionnaire 3

• 5 minutes

14

H. A. 1993). In this study, for each participant think aloud programming exercise

was done for 3 PLP programs.

3. Feedback Questionnaire - Questionnaires had questions related to role of error

message in programming activity. These questions were aimed for collecting

views of what helped and what did not help in the given error message type.

The whole study took approximately one hour to complete for one participant. Figure

4 represents the different steps of the experiment.

3.2 Procedure

Demographic Survey – As part of this survey, questions were asked to understand the

proficiency of participants in the subjects like PLP, assembly language, high level

programming language and usage of Integrated Development Environment(IDE). Each

question was given three answer choices - novice, intermediate and expert. It would be

better to choose a 4-scale option rather than three as participants tend to choose the

middle option. We can avoid this scenario by using a number scale like 2, 4, 6 and 8 with

2 being least proficient and 8 being expert. 5 minutes was given to complete the survey.

Think Aloud Programming Activity –In this study we are trying to understand the

knowledge structures student programmers use to solve the error and how those

knowledge structures are varying due to the error message, which was the input given to

the students. The study is more interested in the process followed by the participants to

solve the error rather than final result of whether error was fixed or not. As Vessey I.,

1985 mentions, verbal protocol or think aloud protocol is the preferred method of

examining problem-solving process. Think aloud protocol help us to capture more data

and captures how different features of input was used by the participants. In multiple

research (Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas,

15

L., & Zander, C. (2008); Letovsky, S. (1987); Jeffries, R. (1982, March)) think aloud

protocol is used to understand the mental model of the programmers

In this study, think aloud programming exercise was done for 3 PLP programs.

Each program had a single error. Participants were asked to correct the error. For each

program, 10 minutes time was given for the participant to understand the error and fix

it. PLP program was opened in PLPTool, the development tool used in this study. After

10 minutes, an online feedback questionnaire was provided. This process was repeated

for other two PLP programs.

Before the start of the think aloud programming exercise, following instruction

was provided to the participant - “I will give you a PLP program. Program has one

single error. Please keep talking aloud while correcting the error in program. You have

10 minutes time. It is okay, if you will not be able to fix the issue within 10 minutes.

Please try to say everything that goes through your mind.” When participant stops

talking and there is a silence for more than 15-20 seconds, then subjects were prompted

by showing a placard with sentence “Keep on talking” (Van Someren, M. W., Barnard, Y.

F., & Sandberg, J. A. C. , 1994). The complete session was screen recorded, i.e. whatever

happened on the computer screen during that session was recorded, and the session’s

audio was also recorded. Thus, for each participant, a maximum of 10 minutes of screen

and audio recording was done per program, for three programs.

Feedback Questionnaire – After each programming exercise completion, a feedback

questionnaire was provided to participants. Questionnaires had questions related to role

of error message in programming activity. Following questions were asked

1. Could you explain in your own words what was the error in the program?

2. How did the error message help you to understand the error?

16

3. How did the error message help you to fix the error?

These three questions were asked after completion of one PLP program. Participants

were given 5 minutes minimum to complete this questionnaire, but they were free to

take more than 5 minutes to fill out the questionnaire. The questionnaire was provided

as an online form. The main reason for questionnaire was to capture those points from

the subjects which were not verbalized during the programming activity itself. This

provides another medium for the participants to express what helped to build their

thought process. This is useful for the participants who generally not used to talk.

3.3 Materials

For each participant, 3 programs were provided to solve. Each program had one

error. Please refer the Appendix A for the actual programs presented to the participants.

Each program had the program description in comments at the beginning of the

program. The program description explained what is the intent of the program or what is

that program trying to do. Following are the three programs provided to participant.

Each participant faced these programs in the same order.

1. Label Program: This program had invalid label declaration error

2. Instruction Program: This program had invalid instruction error

3. Register Program: This program had invalid register error

There are 3 types of error messages representation which are tested –

1. Default Type: Existing error message type which has single line error description

which is assembler-centric.

2. Link Type: Descriptive program-centric error description with hyperlinks to get

more information

17

3. Example Type: Descriptive program-centric error message with code examples

related to error.

Please refer Appendix A for detailed information about each program, different types of

error messages displayed and correct fix for each of the errors. These error types were

chosen based on observations we had in SER 250 classes. Based on discussion with other

TA’s, it was decided that above types of assembler errors were most common among the

students. A detailed study on the type of errors and the time taken to fix them by the

novice students’ needs to be done in future Table 1 provides the treatment groups or the

order by which type of error messages were exposed to each of the subjects.

 Label

Program

Instruction

Program

Register

Program

Subject 1 Default Link Example

Subject 2 Link Example Default

Subject 3 Example Default Link

Table 1- Treatment Groups

3.4 Participants

PLPTool is used in Advanced Computer Architecture (SER 520) and

Microcomputer Architecture and Programming (SER 250) courses in Arizona State

University Software Engineering program. For this study, any students who are currently

enrolled in SER 250 or SER 520 subjects or previously had taken SER 250 or SER 520

were eligible to take part in the study. SER 250 is an undergraduate level course and SER

520 is a graduate level course. A short document, detailing the research work and actual

work involved in the experiment was developed. This document was sent to all students

who were taking SER 250 and to the students who are part of the Software Engineering

18

program via email. Any student who met the pre- requisites and interested to take part in

the experiment contacted via email address given in the document. Please refer

APPENDIX C for the consent/recruitment document. Those who volunteered for the

study and completed it were given $10 worth of gift card. 12 participants took part in the

study. To protect the identity of each of the participants, they were assigned a random

number between 1 to 100. All the data related to that subject were stored and referred

using that random number. Among the 12 participants, 6 participants were

undergraduate students who were taking SER 250 at that time or taken the course

previously. Remaining 6 participants were graduate students who had taken SER 520

previously. Subjects should be familiar with PLP language and PLPTool before taking up

the study as they will be spending time using PLP language and PLPTool during the

study. This is the reason for setting the prerequisite of SER 250 or SER 520 course for

taking part in the study. As per Hughes J. & Parkes S. 2003, who reviewed the

techniques of verbal protocol analysis used in software engineering research, “the

number of subjects utilized in software engineering studies tends to be small, with fewer

than 30 protocols being collected. Usually a sub-set of these are only used in the next

stages of the research, often with 10 or fewer being prepared for encoding… Experiments

normally take between 1 and 2 h to be completed, although shorter recordings have been

reported” (Hughes J. & Parkes S. 2003). So, this experiment with participant pool of 12

falls within the previous research standards.

3.5 Transcribe, Segment and Code verbal data

 All the participants recording were transcribed. Transcription involved both

verbal utterances as well as screen activity like changes in the program, searching in the

online manual. Transcribing was done in multiple iterations. In the first pass, complete

screen recording of that program was viewed along with the audio. In the second pass,

19

just the audio of the recording was transcribed. Finally, in the third pass, the

corresponding screen activities were transcribed and linked with the transcript of the

audio recording. If any words were not audible in the recording, they are transcribed as

[inaudible words]. If there are a few seconds of silence, then it is transcribed as ‘…’.

Similarly, if there is a long pause, it is mentioned in the transcript as [long pause]. Please

refer to Appendix B for a sample transcription and coding of data.

 Steps as prescribed by Chi, M. T., 1997, were followed for coding verbal data.

Those steps are

1. Reducing or sampling the protocols

2. Segmenting the reduced protocols

3. Developing a coding scheme

4. Operationalizing evidence in the coded protocols that constitute a mapping to

some chosen formalism

5. Seeking pattern(s) in the mapped formalism

6. Interpreting the pattern(s)

7. Repeating the whole process, perhaps coding at a different grain size.

Reducing or sampling the protocols – Even though screen and audio was recorded for

the whole session, transcribing of the data was done for parts where the participants

solved the program.

Segmenting the reduced protocols – Segmentation was done based on the activity. Here

activity can be reading a program code, assembling the code, making changes to the

code, searching for information, evaluating the code changes or hypothesizing a solution.

Each segment can consist of just verbal words spoken by the participants or just the

screen changes done by the participants or combination of both.

20

Developing a coding scheme – It took 4 iterations to come up with the codes necessary

to analyze the data. The first set of codes define the activity which the participant is

doing. This forms the basic steps. Each step or segment forms one activity. Table 2 gives

the codes and their definitions of it.

When participant is trying to go through the information presented in front of

him/her, that step will be treated as examine. Each examine step is further coded to

understand what exact activity is being performed by the participant. These extra codes

which define the Examine activity are given in Table 3.

A basic step can be further coded as correct or incorrect step. An

expected/correct step is a step taken by the participant which will help to resolve the

error in the program. This usually means participant has understood the error and is in

the right direction to fix the error. Any step which is not helping to understand or fix the

error can be classified as an unwanted/incorrect step. Among our basic steps, Examine

and Evaluate cannot be classified like this but the rest, (Explore, Hypothesis and Repair

steps) can be further coded as Expected or Unwanted. There are different possibilities for

the unwanted steps. Table 4 gives the list of codes which can be used to define the

Explore, Hypothesize and Repair step.

Error in Instruction program is that an invalid instruction subiu is used to do the

subtraction. So, the right step would be to use subu instead of subiu or use addiu with

negative 10 to do the operation. If a participant’s action reflects any of the above two

steps that will be treated as Expected. For example, “so I think that means that it

supposed to be subu I think it is I remember have seen this problem before” – this is an

expected hypothesis.

21

Gaming occurs when a participant tries to copy the contents of the error message

to fix the code without understanding what is the error or how this is going to fix the

error. Participant faced an error message as “[ERROR] #68 Asm: main.asm:19 Register

used is not recognized by the PLP. Addu is expecting a register but got something else 10.

Error occurred around word – “10” ”. To fix this error, participant replaced 10 in subu

$s1, $t3, 10 instruction to “10” as shown in the error message resulting in instruction

subu $s1, $t3, “10”. Now this is an example of gaming as participant has not understood

what is the error and how the fix is going to help.

Code Definition Examples

Examine

Action involving reading

program description,

program code, error

message and reading

searched information

“addition on v0

subtraction on v1

multiplication on

v2”

Explore

Actions involving

searching in internet,

PLP Online manual, PLP

Quick reference guide

and error location link

“Goes to online

manual. In that

opens Register

names and

conventions

section.”

Hypothesize

A possible solution or an

explanation given by the

participant

“hmmm… so

addiu is for sign

extended addition

but there is no I

am not able to

find any command

for subtraction so

I think we should

use subu”

Repair
Doing the code changes

in the program

“Line 14 is

changed. Replaces

subiu with subu.

Now line 14 has

instruction subu

$s1, $t3, 10”

Evaluate An action taken to test Assembles the

22

the repair or

hypothesize.

program by

clicking assemble

button. Gets one

error.

[ERROR] #68

Asm: main.asm:

14 Invalid

Register(s)

Table 2- Basic Steps Code

Code Definition Examples

Program Description
Examining the given

description of the program

“this program performs

addition subtraction and

multiplication operation on

two registers $a0 and $a1”

Code
Examining the code of the

program

“So, the first the assembler

direction org is done then we

are loading ahh t1 with 0 t2

with 45 t3 with 60”

Error message

Examining the error

message displayed in the

tool

“hmm so now it is saying

invalid registers line 14”

Search Information
Examining the information

which was searched either

“jump register instruction can

be used to this return address

23

through internet, PLP

Online Manual or PLP

Quick Reference

jump back to this thing load

the content of ra…”

Table 3- Examine Step Codes

Code Definition

Expected Action taken by the participant was expected by us

Gaming

Error was fixed using the error message but

participant did not understand the error or the

solution

T&E Trial and Error

Correct Independent
A correct action was taken independent of the error

message

Incorrect Interpretation
Incorrect action was taken based on the error

message

Incorrect Independent
An incorrect action was taken independent of the

error message

Silly Mistake
Interpretation was correct but made a mistake while

fixing it

Table 4- Correct and Incorrect Steps Code

24

Trial and Error occurs when a participant does a code change(repair) followed by

assembling the changed code. On finding an error, they revert the changes done. So

usually it will have Repair – Evaluate – Repair steps.

When participants tend to do wrong code fixes or come up with wrong solutions

based on the read error message, it shows that participant has incorrectly interpreted the

error message. “After assembled I am getting error at main asm 20 unable to process

token addition… line 20 that would be ahmm it says addition on that line and it

appears it could be either a comment” – Here participant interpreted the error as

possible missing ‘#’ for making that line as comment but it is missing ‘:’ to make it as a

label.

If the code changes done or hypothesis are not related to the displayed error

message and the code changes done is not correct, then that is categorized as Incorrect

Independent - “Okay now I am getting error invalid register…Okay I got the error

actually we are checking branch on equal t1 with $0 it should be 0 only”. Here error

occurred due to usage of an integer 10 instead of register in instruction subu $s1, $t3, 10

and the error was at line number 14. The participant thinks that error occurred at line 12

in instruction beq $t1, $0, increment. There is no relation between the error message

displayed and the solution came up by the participant.

When a participant comes with the correct solution for the error without

understanding what is the error or without taking the help of error message, then correct

independent occurs. This scenario usually occurs when participant tries different ways to

fix the error unsuccessfully and suddenly does the correct change without giving any

explanation of why this change is done or does not explain what is the error. This is little

difficult to identify as some participant do not express it while solving the problem. This

25

could be a case where participant has recalled a previous experience which helped them

to correct the error. Usually I look for their answers in the feedback questionnaire and as

well as pattern of how the corrections were done until that step to decide whether correct

independent has occurred.

When participant clearly understands what is the error but while fixing it does

some syntax error, this is treated as Silly Mistake. “Changes done in line 28. $v2 is

replaced with again $v2. So final change is same as the prior to edit mull0 $v2, $a1,

$a0”. In this case participant knows that $v2 is a wrong register but while fixing it again

places $v2 instead of some other register thus causing an error.

Codes were also generated to analyze whether participants read the error

message complete, partial, or ignored it. Table 5 gives 3 codes used for identifying how

much error message was read by a participant.

Code Definition

Complete Participant reads error message completely

Partial

Participant reads error message partially. Usually they only read the

description and ignore the link provided or sample code provided

with the error message

Ignore
Participant did not read the error message. Participant solves an error

without even reading the error message.

Table 5- Read Error Message Code

Operationalizing evidence in the coded protocols – In this step, all the coded data were

analyzed and tabulated. Final results can be seen in chapter 3 Results. This involved

frequency measurement of certain codes, looking through order of code occurrence, etc.

26

Seeking pattern(s) in the mapped formalism – Based on the results, the pattern which

emerged is Link type of error message has advantage over the Example type and Default

type of error message.

Interpreting the pattern(s) - This is explained in detail in chapter 5 discussion. In that

chapter with the help of different results and transcriptions, we try to explain why we

observed these patterns.

Repeating the whole process, perhaps coding at a different grain size –The whole

process of coding and analyzing the coded data was repeated with a different perspective

– a program perspective instead of error message. This process helped us to understand

whether there is any effect of the programs and their order of exposure to participants.

27

Chapter 4

RESULTS

4.1 Cohen’s Kappa Coefficient for Inter-Rater Agreement

Once the coding was done, 3 participants data was chosen randomly which

covered all the three scenarios presented in Table 1. This set was coded by two raters

independently. After coding Cohen’s Kappa was calculated on the coded data to measure

interrater reliability. For the basic steps coding that is for marking of

‘Examine/Explore/Hypothesize/Repair/Evaluate’, we got a score of 0.8736 which means

near perfect agreement. For the expected and unwanted steps, we got a score of 0.62

which means moderate agreement.

4.2 Time to Resolve the Error

The time to fix the error is the time from when the error message was received to

when the error was fixed. Usually, even after the error was resolved a participant would

perform other activities like simulating the program. Time spent on those activities is not

considered. Table 6 provides the average time it took for the participants to fix an error

for the different error messages types.

 Average
(seconds)

STD Variance

Default 184.34 148.77 22132.06
Link 136.67 74.047 5482.96
Example 200.25 101.62 10325.66

Table 6-Time Taken to Resolve the Error

28

Figure 6- Time Taken to Resolve the Error

As can be seen from the table, programs which are given the Link type of error

message took less time when compared to the other types of error message. The Link

type took less time, the time was also more consistent when compared to other types of

error message. The Example type took more time to fix than the default type.

4.3 Number of Steps Taken to Resolve the Error

For every program which was solved and coded, we measured the number of

steps taken to fix the error. In every program, we had segmented into different steps or

activities where each step is coded as one among

Examine/Explore/Hypothesis/Repair/Evaluate. The table 7 gives the statistics related to

steps taken to fix the error.

 Average STD Variance
Default 14 11.3 127.81
Link 9.8 4.17 17.42
Example 15.83 10.77 116.15

Table 7- Number of Steps Taken to Resolve the Error

0

100

200

300

400

500

600

7 35 28 37 31 87 47 16 77 15 12 40

Ti
m

e
in

 s
ec

o
n

d
s

Participant Ids

Time Taken to Resolve the Error

Default Link Example

29

The same pattern appears in the Table 7 as of Table 6. The Link type not only is

taking less time to fix the error but also taking few steps when compared to other two

type of error message. Again, the Link type is more consistent. The Example type is

taking more steps to fix the error when compared to other two.

Figure 7- Number of Steps Taken to Resolve the Error

4.4 Correct and Incorrect Steps

 Among Explore-Hypothesize-Repair, we can code it as correct steps or

incorrect steps. Here correct steps include those which are coded as Expected or Correct

Independent and incorrect steps include those which are coded as Silly Mistake, Trial &

Error, Gaming, Incorrect Interpretation and Incorrect Independent. Table 8 provides

how much of these steps (Explore-Hypothesize-Repair) were correct steps and how

much were incorrect steps.

0

5

10

15

20

25

30

35

40

45

50

7 12 15 16 28 31 35 37 40 47 77 87

N
u

m
b

er
 o

f
St

ep
s

Participant IDs

Number of Steps Taken to Resolve the Error

Default Link Example

30

Based on table 8, programs given with Link type of error message has fewer

wrong steps. So, based on previous data errors given in Link type of error message took

less time to fix, took fewer steps to fix and among the steps taken most of them tend to be

right steps.

 Correct Steps (%) Incorrect Steps (%)

Default 54 (59.34%) 37 (40.65%)

Link 53 (89.83%) 6 (10.17%)

Example 73 (71.56%) 29 (28.43%)

Table 8- Correct and Incorrect Steps

Figure 8- Correct and Incorrect Steps for different Error Message Type

4.5 Error Message Read

Table 9 gives the percentage of participants who read the error message while

solving the error. Participants can read the error message partially or completely. There

is also possibility of ignoring the error message.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Default Link Example

Correct and Incorrect Steps

Right Steps Wrong Steps

31

Figure 9- Number of Incorrect Steps Taken by Participants

 Complete Partial Ignore
Default 91.67 0 8.33

Link 66.67 33.33 0

Example 50 41.67 8.33

Table 9- Read Error Message

The Default type has highest percentage of complete reading of error message.

Both the Link type and the Example type have two parts in the error messages. First part

is a detailed error description and next part is either a hyperlink or a sample code. In

most of the scenarios participant only reads the description and skips the second part of

the error message. Sometimes participant may not verbalize the seen error message. In

such cases, the data is inferred based on the information given in the answers of

feedback questionnaire

0

5

10

15

20

25

30

7 12 15 16 28 31 35 37 40 47 77 87

N
u

m
b

er
 o

f
w

ro
n

g
st

ep
s

Participant ID

Number of Incorrect Steps Taken by Participants

Default Link Example

32

Figure 10- How Many Read Error Message

4.6 Confusion After Reading Error Message

 After reading the error message, participants sometimes express confusion.

There are instances where participants verbalize this confusion while solving an error or

they mention it in the feedback questionnaire. Table 10 provides the percentage of

participants who expressed confusion after reading an error message of type.

Default Link Example

16.67% 0% 50.00%

Table 10- Percentage of Participant Expressing Confusion After Reading Error Message

 Participants after reading the Link type of error message did not express any

confusion where as participants after reading the Example type of error message,

maximum number of them showed confusion.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Default Link Example

P
er

ce
n

ta
ge

 o
f

P
ar

ti
ci

p
an

ts

Error Message Types

How Many Read Error Message

Complete Partial Ignore

33

Figure 11- Percentage of Participants Confused on Reading Error Message

4.7 Percentage of Participants Using Online Manual or Quick Reference

 To get extra information about the program or instruction, participants use either

online manual or quick reference provided in the PLPTool itself. Table 11 gives the

percentage of participants who took help from these two when given different type of

error messages.

Default Link Example

58.33% 58.33% 50.00%

Table 11- Percentage of Participants Using Online Manual or Quick Reference

4.8 Correct Explore Steps

 As seen in Table 11, irrespective of the type of error message participants have use

EXPLORE step, i.e. explore online manual or PLPTool quick reference. Table 12 provides

among those EXPLORE steps, how many are incorrect steps. The Link type has 0

incorrect steps where as other two types have some incorrect EXPLORE steps.

0

10

20

30

40

50

60

Default Link Example

P
er

ce
n

ta
ge

 o
f

P
ar

ti
ci

p
an

ts

Types of error messages

Confused from Error Message

Confused

34

 Default Link Example

Total Explore Steps 26 14 28

Wrong Explore Steps 7 0 8

Table 12- Total EXPLORE Steps and Incorrect EXPLORE Steps

Figure 12- Percentage of Participants Using Online Manual or Quick Reference

4.9 Correct or Incorrect Understanding of Error Message

 After participant reads the error message, they hypothesize the solution or

express the error in their own words. If participant can understand the error message,

then they hypothesis right solution or clearly express the error in their own words. Table

13 provides the percentage of correct and incorrect hypothesis immediately after reading

an error message.

0

10

20

30

40

50

60

70

80

90

100

Default Link Example

P
er

ce
n

ta
ge

 o
f

p
ar

ti
ci

p
an

ts

Error Message Types

Online PLP Manual or Quick Reference usage

Participants

35

 Correct Hypothesis (%) Incorrect Hypothesis (%)

Default 12 (66.67%) 6 (33.33%)

Link 20 (90.90%) 2 (9.1%)

Example 18 (78.26%) 5 (21.74%)

Table 13- Correct or Incorrect Understanding of Error Message

Figure 13- Correct or Incorrect Understanding of Error Message

4.10 Effect of Programs and Their Order of Presentation

All the transcribed data was recoded to understand the effect of program and

their order of exposure to student programmers. The question we are trying to answer by

following this step was whether these patterns which we have observed till now is a

resultant of the programs and their order of presentation to the participants. As the

Label program is the first program, participant should take more time and more steps to

fix it as they are still getting adjusted to the PLP, PLPTool and the experiment in general.

As the new programs are given, their performance should improve. Table 14 show that

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Default Link Example

P
er

ce
n

ta
e

o
f

st
ep

s
m

ea
su

re
d

Type of Error Message

Correct vs Incorrect Understanding of Error Message

Correct Incorrect

36

from first program to second program there is an increase in the time taken to fix it and

again from second program to third program there is a decrease in the time taken to fix

the error. Similar pattern can be observed for number of steps which is shown in Table

15. Table 16 shows the percentage of correct vs incorrect steps with respect to various

programs. Clearly there is some effect of the order of program as for first program (Label

program) there is higher percentage of incorrect steps as shown in Table 16 even though

it took less time to fix and fewer steps to fix the error. But, overall order of the programs

has not contributed to the above observed pattern for error message types.

Figure 14- Total EXPLORE Steps and Incorrect EXPLORE Steps

 Average STD Variance

Label Program 119.38 106.71 11387.26

Instruction Program 234.46 123.09 15153.60

Register Program 157.38 70.30 4942.42

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Default Link Example

P
er

ce
n

ta
ge

 S
te

p
s

ta
ke

n
 f

o
r

ex
p

lo
re

Types of error message system

Right vs Wrong Explore Steps

Correct Explore Wrong Explore

37

Table 14- Program Wise Time Taken to Fix the Error

Figure 15- Program Wise Time Taken to Fix the Error

 Average STD Variance

Label 10.07 10.16 103.41

Instruction 17.76 8.98 80.69

Register 12.07 7.38 54.57

Table 15-Program Wise Number of Steps to Fix the Error

 Correct Steps (%) Incorrect Steps (%)

LABEL 35 (53.03%) 31 (46.97%)

INSTRUCTION 97 (77.60%) 28 (22.40%)

REGISTER 69 (79.31%) 18 (20.68%)

Table 16- Correct and Incorrect Steps Taken Program Wise

0

100

200

300

400

500

600

7 35 72 28 47 77 15 16 31 37 87 12 40

Ti
m

e
in

 s
ec

o
n

d
s

Participant Ids

Program Wise Time Taken to Fix the Error

Label Instruction Register

38

Figure 16- Program Wise Number of Steps to Fix the Error

Figure 17- Correct and Incorrect Steps Taken Program Wise

0

10

20

30

40

50

7 12 15 16 28 31 35 37 40 47 72 77 87

N
u

m
b

er
 o

f
St

ep
s

Participants ID

Program Wise Number of Steps to Fix the
Error

Label Instruction Register

0%

20%

40%

60%

80%

100%

Label Instruction Register

Pe
rc

en
ta

ge
 o

f
R

ig
h

t
vs

 W
ro

n
g

St
ep

s

Types of programs

Correct vs Incorrect Steps Program Wise

Right Steps Wrong Steps

39

Chapter 5

DISCUSSION

5.1 Descriptive Analysis

 Based on the data we have collected and analyzed, it is very clear that the Link

type of error message system helped the most for the participants. Now let us try to

understand how did the Link type of error message helped participants to understand

the error and how did it help them to fix it.

What aspects of an error message help the programmer to understand the

error?

First thing which helps a participant in trying to know about the error is

description of the error message. The Link type when compared to the Default type had a

detailed description. The error description of the Link type was generated based on the

program’s perspective rather than assembler’s perspective. For both the Label program

and the Instruction program, the Default type showed similar description of error

message. Even though both are completely different errors, for an assembler theses

errors are caught at the same stage. Hence the Default type gave similar description for

both errors. For the Label program, the Default type error message had description

“unable to process token addition” and for the Instruction program, the Default type

error message had description “unable to process token subiu”. These error message

descriptions have words like ‘token’ which are related to assembler functioning and it

has less information to the programmer. If a student does not know the working of

assembler and is a novice, then “unable to process token” would be alien to his current

knowledge model. So, error message is not helping the programmer to understand what

is the error.

40

When programmer don’t understand the error, they tend to use either TRAIL &

ERROR or GAMING way of fixing the error. This can be seen in case of participant

##7## for whom the Default type error message was given for the Label program.

Participant after reading the error message starts changing code at places where word

‘addition’ appears even though that line has nothing to do with error. Participant has

committed 5 TRAIL & ERROR code changes, 2 INCORRECT INTERPRETATION code

changes and 5 INCORRECT INDEPENDENT code changes. Even though participant

corrected the error but does not show any signs that participant understood the meaning

of the error. For the feedback question ‘could you explain in your words what was the

error in the program’ the participant answers as “There was a missing ":" at the end of

the function definition. This made the function incomplete.” This clearly shows

participant did not understand what is the error.

Good Amount of Error Information in the Error Message

Second problem with the Default type of error message is it has too little

information about the error. As there is too little information, programmers had to take

extra steps to get more information and understand better about the error. To get these

extra information, they usually search in internet, use online PLP manual or PLPTool

quick reference. For participant ##12##, Instruction program was provided with Default

error message type. The error message read “unable to process token subiu”. After

reading the error message, participant opens the quick reference and tries to search for

subiu. Participant is unable to find subiu, then makes a connection that there is no such

instruction. Here is the transcript of participant ##12##, “it says unable to process

token subio subiu okay ahhn so I will just go to the help quick reference check for

subiu… so I can see that there is no subiu operation given in the quick reference card

this means that there is no such token…”. This behavior can be seen in other participants

41

like participant ##31## “error is unable to process token subiu then it will jumping on

exit… [long pause] this is a right command right subiu?... So… I am just checking the

quick reference and making sure that subiu is the right command I found addiu but

hmmm so addiu is for sign extended addition but there is no I am not able to find any

command for subtraction…”

Due to insufficient error information, programmer might take some time or some

more steps before finally understanding what is the error. Participant ##28## was

provided with Default type of error message for Label program. ##28## after reading

the error message for the first time interprets it incorrectly. After reading the error

message which was generated due to wrong code correction, comes to the right

understanding of the error. Transcript of participant ##28## is “after assembled I am

getting error at main asm 20 unable to process token addition line 20 that would be

ahmm it says addition on that line and it appears it could be either a comment I am not

understanding exactly what the user was attempting to do since there is an addition

below it were in addu operation below it I am going to comment out addition word and

see if it should be a jump nope nope since it is a last one see if that works save

reassemble okay so next error says asm 13 invalid branch target addition so that based

on line of 13 addition is no supposed to be comment it supposed to be a label…”

In case of the Link type and the Example type of error message, description of the

error is descriptive and formed with respect to the program which is being assembled.

For the Label program, description of error by the Link and the Example type is “The

error caused due to missing colon : after label name addition. May need a : at the end to

declare it as label. Error occurred around word addition.” Similarly, for the Instruction

program, description of error by the Link and the Example type is “The error is caused

due to wrong instruction name. PLP does not have an instruction as mentioned in the

42

code. subiu – instruction is not defined in PLP. Unable to process the instruction. Error

occurred around word subiu”. In both the error descriptions, there are no words which

are related to assembler or its inner working.

As sufficient information is provided with the error description, participants

would understand the error without need to search the extra information. As the

message is clear, they would interpret the error message in the right way. Let us consider

the Label Programs error message provided with the Link type or the Example type of

error message. Participant ##16## reads the error message and then hypothesizes what

is the error followed by correct code change to fix the error. Transcript - “Okay I see that

there is an error on line 16 so that’s what I am looking at line 20 I mean with the

addition… okay so in addition I see that there is it is prompting me that error is in line

20 there is a missing colon So I am going to try adding that making it a label and see if

that fixes it”. Clearly participant knew that problem is caused due to incorrect label

declaration. Let us see participant ##37## transcription – “the error is caused due to

missing semi colon after label name addition okay [inaudible words] oh so I want the

semi colon after the label name addition so that’s it this is a method and I want to go

ahead and add the colon for that so that’s a label and label name addition oh it even

told me the method interesting okay at the end to declare its label. Error occurred

around word addition”. Here also participant ##37## clearly made the connection that

error is related to incorrect label declaration. Similarly, participant ##47## understands

that error is caused due to incorrect label declaration – “okay asm 20 the error is due to

missing colon lets see main 20 exit j oh j exit now I can see what it is doing ahhh chuchu

may need a colon at the end of declare as label Oh! Yeah that’s it it just a colon at the

end it will make it a label so… compile it”. There is a possibility of gaming with this error

message description as solution for the fix is given directly in the error description. So

43

even without understanding the error, participant just try to do what the error

description says and might get it correct. This behavior was observed in one participant

out of twelve participants.

Let’s consider the error message given for the Instruction Program using the Link

type or the Example type. The error description clearly mentioned that subiu was not an

instruction and hence participants next step was not to ascertain whether there is an

instruction called subiu but rather how to fix this. Let’s see the transcript of participant

##7##, the same participant who failed to understand the error in the Label program. In

this case, error was displayed using the Link type of error message. Here is the transcript

- “error caused by wrong instruction name PLP does not have an instruction as

mentioned in the code. subiu instruction is not defined in PLP unable to process the

instruction error occurred around word subiu alright [reads complete error

message]… so what about do this I deleted I from subiu…[does the code changes and

compiles] to see if compiles again alright now register used is not recognized by the

PLP subu is expecting a register but got something else 10 Okay you can’t subtract a

number you can’t use a number when you using subu so I go and declare a register and

store a number in it”. After reading error message participant is thinking of fixing of

error message rather than checking whether subiu is an instruction or not. Similar case

happens for participant ##47##. ##47## was provided with the Example type of error

message for Instruction program. In this case participant reads the error message

partially, just the description and ignores the sample code part. Transcript is “okay error

is caused by wrong instruction name PLP does not have an instruction as mentioned

line 16 number 16 it line 14… Oh subiu it should be subu there is no instruction”. Let’s

see the transcript of participant ##28## who was given the Link type of error message in

the Instruction program. Transcript is “rest of the error says this error is caused due to

44

wrong instruction name. PLP does not have an instruction as mentioned in the code

subiu instruction is not defined in the PLP Unable to process the instruction error

occurred around subiu please refer following link for more information okay iu does

not sounds right it should probably ui I believe… ahmmm.. unsigned immediate yeah

subu unsigned immediate lets give that a shot”. Even though ##28## interpretation for

fix is wrong, but after reading the error message next step was not to ascertain whether

there is an instruction called subiu is there or not rather the thought process was how to

correct the wrong instruction of subiu.

Once participant understands the error, they either rephrase the error as

understood by them or verbalize their way of solving the error. This is marked as

HYPOTHESIS step in our coding. If participant immediately after reading an error

message HYPOTHESIS, then that step gives some insight into participants

understanding of error based on the given error message. Table 13 gives the percentage

of those HYPOTHESIS steps which are correct and incorrect among different types of

error message. The Link type has higher ratio of correct HYPOTHESIS steps when

compared to others. The Default type has the least favorable ratio when compared to

other two types.

So, with a detailed error message description which describes what is wrong based on

programs perspective rather than at what stage of assembling did program fail we are

reducing the number of steps taken to understand the error. As this kind of error

message help them to understand the error better, programmers tend to avoid the

TRAIL & ERROR or GAMING way of fixing the error. Thus, again leading to overall less

time and overall few steps for error correction.

45

What aspects of an error message help the programmer to fix the error?The Default

type of error message has just a small description usually explaining at which stage of

assembling did the program fail. Some error messages mentioned the exact word at

which point error was generated. Apart from that there was not much help was provided

to correct the error. For the Register program, the Default type of error message

provided the message “Invalid Register(s)”, but did not mention which register was

invalid. In the instruction which was having the error there were 3 registers. Users had to

verify each of the registers to check which register was invalid and which others are valid.

Participant ##15## was provided with the Default type of error message for the Register

program. Here is the transcript – “Okay so I can see two ahh one error in it at main.asm

28 invalid register so tells me that there is a invalid register used in this program at

line number 28 so its like ahh $v2, $a1, a0 jr ra so okay I have to figure out which

register it is that is invalid”. Clearly more steps and time is spent.

Without better understanding of the error it is difficult to come up with a proper fix

for the error. To solve the poor understanding problem in the Default type, both the Link

type and the Example type of error message system had detailed description. Even

though both had similar error description message, the Link type has better performance

when compared to the Example type. In fact, in some cases the Example type

performance is worse than the Default type.

Why does the Link type perform better than the Example type?

The Link type provided a hyperlink to a section of online PLP manual, where

participant can get more information about the instructions which had errors in the

program. By reading more about the instruction and its syntax, programmer would be

able to figure out exact reason of error and which in turn help them to fixing that part

46

(Lazonder, A. W., & van der Meij, H., 1995). The Example type provided a relevant

example code with a format of “BEFORE CORRECTION sample instruction AFTER

CORRECTION sample instruction”, where a similar code error was provided as example

and how the fixed code looked like (Hartmann, B., MacDougall, D., Brandt, J., &

Klemmer, S. R., 2010, April). By looking at this example code, programmer could relate

to the error they are facing. By relating it they should now be able to better understand it

and thus fix the error like how the example code fix is provided.

Let us consider reasons why the Example type error message failed to give similar

results as the Link type. As can be seen in Table – 10 about 50% of the participants

expressed or showed confusion after reading error message of the Example type.

Similarly, 16.67% of participants expressed or showed confusion after reading error

message of the Default type. For the Default type as there was very little information was

provided and message told at what stage of assembling error occurred instead of

explaining it in program view, there could arise confusion. What part of Example type

was confusing? It is not the error description. If error description was confusing, then

even Link type should have created the confusion among the participants as both the

Link type and the Example type share same error description. The main source of

confusion is the example code given in the Example type. Participants after seeing the

example code, instead of relating the code to the current error, participants thought that

example code is part of the program, not an example and that is causing the error.

Participant ##72## expresses this - “the error says the issue is on line number 28 the

register used is not recognized by the PLP mullo is expecting a register but got

something else $v2 error occurred around word $v2 if I click error location which

mentioned in the console it will take me to the line where error is there and saying $v2

is not supported $v2 is the it also tells that before correction addition operation is like

47

this and after correction addition operation is like this but we are not using addition

operation here”. Here error was caused due to wrong usage of register. The line had

mullo $v2, $a1, $a0 and sample code was provided as “BEFORE CORRECTION addu

$t1, $t2, $a4 AFTER CORRECTION addu $t1, $t2, $a3”. The reason this example was

given is like how $a4 was replaced with $a3 in addu instruction, participant should

replace $v2 with some other register in mullo instruction. But participant thought that

sample code was part of program. Participant ##28## expressed similar confusion.

##28## in feedback explains the confusing part of Example type error message – “the

first part of the error message was clear and concise leading me to the correct line of

code and even the correct register, however, the sample fix provided was confusing

because it did not match the exact register, or line, and so I have a moment of

confusion”.

Some participants after experiencing the confusion, will ignore the sample code,

and try to solve it just using the description, but many of the participants due to this

confusion starts committing other errors at wrong locations. Participant ##16## was

given the Example type of error message for the Instruction program. Transcript of

participant ##16## - “so I tried changing it to subu to see if it fixes it… okay that fixed

that error but there is another error with the add instruction… this one based on the

error message it is little harder to figure out what it is I think… I think it is because with

the register I think… so that ahmmm… this one it says before and after correction

ahmmm…. It just kind of confusing error message because I haven’t changed there so I

will try addu and see if it does anything.” ##16##, because of this confusion, started

misinterpreting the error message and did the code changes at wrong locations thus

resulting in more unwanted errors and steps. ##15## did similar mistake of

misinterpreting the error message of the Example type for the Instruction program

48

which resulted in 8 unwanted steps which included TRAIL & ERROR, GAMING,

INCORRECT INTERPRETATION. Even participant ##77## got confused with the

Example type error message for the Instruction program resulting in 2 extra errors.

Even if participant understands that given sample code is an example, it takes

some steps or time to understand what is that example code is conveying and how is that

related to current error. Participant ##40## displays this behavior in the Register

program where Example type of error message was displayed – “whats this before

correction and after correction in the console… Okay before correction addu $t1 $t2

$a4 after correction addu $t1 $t2 $a3 lets see… [looks in online manual for notes on

register $a0-$a3] so for a its a0 to a3 only Okay ahhn if I change it to v0”. Particpant

##40## uses online manual to understand about sample code and then based on that

deduces that v0 should be used for fix. Thus, increasing the number of steps and time for

fix. Out of 12 participants, 4 of them read the Example type error message partially. They

read only the description ignoring the example code part. Among them total of only one

incorrect step is observed.

How do the Link type error message provide better performance?

 Table – 11 gives the percentage of participants who used either online PLP

manual or quick reference while solving the error in the programs. Even though we are

only providing hyperlink in the Link type of error message, online PLP manual and quick

reference is accessed almost equally for other types of error message system. Then, we

need to ask the question what is the added advantage the Link type of error message

system is providing? Table 12 gives answer to this question. In case of the Default type

and the Example type of error message, participants should search the online manual or

the quick reference in-order to come to the relevant information. Sometimes due to

49

confusion after reading the error message or due to little information provided by the

error message, participants are not sure what to search for in the online manual or quick

reference. So, they look for few other information before actually consider relevant

information. Thus, increasing the number of steps to solve the error as well as increasing

the time to fix the error. In case of the Link type of error message, participant is clearly

given the location where they need to look for the right information. They need not have

to spend time in searching for that. These links also act as a confidence building to the

hypothesis of possible cause of error. Online PLP manual has clear cut explanation of

each instruction, its syntax as well as some code examples of how they should be used. In

case of the Instruction program where error is due to subiu an invalid instruction, the

Link type provides hyperlink to arithmetic instructions section of the PLP online manual.

By going through that, participant not only understands that there is no instruction

called subiu but also learns about the syntax of the alternate instruction subu which

needs to be used. The error instruction was subiu $s1, $t3, 10. Now just by replacing

subiu with subu is not enough, we need to replace 10 with another register as subu

expects all inputs in registers. This information is clearly provided in the manual. In case

of the Register program where error is due to $v2 an invalid register, the Link type

provides hyperlink to register usage convention section of PLP online manual. Here also

participant not only confirms that there is no $v2 listed in the PLP registers but also

finds the complete list of registers available in PLP. So, participant can then decide which

one to use based on the convention.

Thus, the Link type provides a detailed program-centric error description to

better understand the error. By doing this it is avoiding the trial & error and gaming way

of fixing the error. Then it provides hyperlinks to online manual which not only further

improves in understanding of error but also gives proper syntax and other information

50

which help participants to fix the error by reducing the chance of incorrect interpretation

of the error message.

5.2 Reflection on Experiment

 All the participants could fix errors in all the programs given to them. Though

during the process some of them committed other errors due to wrong code changes.

Once recording has been stopped that is once experiment is over, participants tend to

involve in informal talks and discuss about given programs, errors they encountered and

error messaging types. They give valuable feedback during that time. A trial run of the

experiment was conducted before recruitment advertisement for participation was made

public. This helped to identify few gaps in the experiment setup like environment setup

for the experiment which helped to conduct experiment with other participants

smoothly. In the demographic survey, most of the participants choose PLP proficiency as

intermediate. It would be better to have a 4-scale or even a number ranking scale as

options for the questions in demographic survey. Many of the participants would become

silent and get completely involved in solving the error mentally. In that scenario, they

need to be prompted for “Keep talking”, so that they get back to the think out aloud

setup. For the feedback questionnaire, as the questions were phrased as “How did the

error message helped in understanding/fixing the error?”, participants tend to give only

positives about the error message. It is better to mention to participants that both

positives and negatives about the error message can be provided as feedback. Most of

the participants finished the feedback within 2 minutes by writing just one or two lines.

Participants had to be reminded that until minimum 5 minutes is over, they cannot go on

to next segment. Participants were reminded of using that extra time to rephrase and

add new information to the feedback.

51

5.3 Subjectivity

 As there was no study done previously to understand the types of error which is

affecting most to the students of PLP language, types of error for this study were chosen

based on the consultation with the previous TA’s of SER 250 course and the instructors

of that course. Similarly, we need to understand how the programs were challenging to

all types of students – expert and novice.

5.4 Future Work

 There is still lot of data from this experiment which needs to be further analyzed.

One interesting data to look for is the confidence with which a participant makes the

changes to the code. We need to understand what factors help to increase the confidence

of a programmer. To understand this, we need to look the data as set of impasses and

their resolutions. We should also further analyze the wrong steps taken by the

participants. Analysis on what type of wrong steps are taken more common and once

wrong step is taken, how the programmers correct it. This could help in understanding

features of the programming language and teaching techniques that negatively impact

student programmers mental model. There is also needed to analyze the flow of steps

taken by the participants – is there any particular pattern in debugging. We must also

understand what part of the program is more examined and is there a pattern in that also

– description of program, program’s code, error message itself. We need to understand

better about the relationship between wrong steps taken, error message and PLPTool

itself. This would help us to understand the factors of a programming language, IDE and

error message which would make programmer to take wrong steps and help us to

remove or reduce those factors.

 We need to see the effects of error message types on the novice programmers. In

the current experiment, participants were selected in general without any PLP

52

proficiency level precondition. It is difficult to analyze how these error messages would

affect the novice programmer’s performance. So, in future experiment we need to have a

participant pool with equal representation of novice and expert programmers. This will

help to clearly understand what factors of error messages help novices and expert and

find out whether it differs. As every participant in this experiment could solve the

programs, we need to come up with better programs which can test more factors of the

error message. One of the way is single type of error is provided in two different locations

in a program with different instructions. Thus, we can see how a programmer applies

learned knowledge of previous error correction. By this we can clearly say whether a

programmer learned from his/her mistakes and is able to reapply those knowledge for

future errors.

 As for the tool and error message system itself, the current experiment is just a

preliminary step towards the development of an intelligent IDE. These IDE’s should act

as coding assistant which improve the performance of the programmers by reducing the

unnecessary steps taken by programmers. Already there are couple of researches which

are moving in that direction (Layman, L. M., Williams, L. A., & St Amant, R. (2008,

May); Layman, L., Williams, L., & Amant, R. S. (2007, September)). They should also

teach programmers more about the programming language itself through the error

messages.

53

Chapter 5

CONCLUSION

This exploratory study used think aloud programming exercise to understand the

effects of an error message on the overall debugging process of student programmers. As

part of this study, three different error message types were developed. The effect of each

of these error message types was analyzed from the perspective of understanding of an

error and resolving the error. In the study, it was found that an error message type which

describes the error in a program-centric way rather than an assembler-centric way

helped in better understanding of the error. An error message type which has a hyperlink

to a relevant section in an online manual, helped in fixing the error by reducing the

incorrect interpretation of the error and increasing the understanding of the error.

The Link type of error message helped to fix the error in less time and with fewer steps.

It also helped the student programmers to search for information in the online manual

and quick reference in a more focused manner. On the other hand, in the study it showed

that giving a relevant example code as part of the error message may lead to confusion

among the student programmers. The error message which provides little description, or

an assembler-centric error description also creates confusion. The confusion and lack of

information in the error messages led to more steps and more time to resolve the error.

This lack of clarity in the error message led to less understanding of error which in turn

led to more incorrect steps in resolving the error. In this study, the Link type error

message which has a program-centric enhanced error description and a hyperlink to

relevant online manual content, appears to be an ideal error message display system.

54

REFERENCES

Chabert, J. M., & Higginbotham, T. F. (1976, April).

An investigation of novice programmer errors in IBM 370 (OS) assembly

language. In Proceedings of the 14th annual Southeast regional conference (pp.

319-323). ACM.

Nienaltowski, M. H., Pedroni, M., & Meyer, B. (2008, March).

Compiler error messages: What can help novices? In ACM SIGCSE Bulletin (Vol.

40, No. 1, pp. 168-172). ACM.

 Marceau, G., Fisler, K., & Krishnamurthi, S. (2011, March).

Measuring the effectiveness of error messages designed for novice programmers.

In Proceedings of the 42nd ACM technical symposium on Computer science

education (pp. 499-504). ACM.

McLaren, B. M., DeLeeuw, K. E., & Mayer, R. E. (2011).

A politeness effect in learning with web-based intelligent tutors. International

Journal of Human-Computer Studies, 69(1), 70-79.

Vessey, I. (1985).

Expertise in debugging computer programs: A process analysis. International

Journal of Man-Machine Studies, 23(5), 459-494.

Chi, M. T. (1997).

Quantifying qualitative analyses of verbal data: A practical guide. The journal of

the learning sciences, 6(3), 271-315.

Sohoni, S. (2014, June).

Making the hardware-software connection with PLP. In Proceedings of the 2014

conference on Innovation & technology in computer science education (pp. 324-

324). ACM.

Lazonder, A. W., & van der Meij, H. (1995).

Error-information in tutorial documentation: supporting users' errors to

facilitate initial skill learning. International Journal of Human-Computer

Studies, 42(2), 185-206.

Hartmann, B., MacDougall, D., Brandt, J., & Klemmer, S. R. (2010, April).

What would other programmers do: suggesting solutions to error messages.

In Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (pp. 1019-1028). ACM.

Traver, V. J. (2010).

55

On compiler error messages: what they say and what they mean. Advances in

Human-Computer Interaction, 2010.

Hughes, J., & Parkes, S. (2003).

Trends in the use of verbal protocol analysis in software engineering

research. Behaviour & Information Technology, 22(2), 127-140.

Van Someren, M. W., Barnard, Y. F., & Sandberg, J. A. C. (1994).

The think aloud method: a practical guide to modelling cognitive processes

Academic Press. London, UK.

Ericsson, K. A., & Simon, H. A. (1993).

Protocol analysis. Cambridge, MA: MIT press.

Rodrigo, M. M. T., & Baker, R. S. (2009, August).

Coarse-grained detection of student frustration in an introductory programming

course. In Proceedings of the fifth international workshop on Computing

education research workshop(pp. 75-80). ACM.

Fitzgerald, S., Lewandowski, G., McCauley, R., Murphy, L., Simon, B., Thomas, L., &

Zander, C. (2008).

Debugging: finding, fixing and flailing, a multi-institutional study of novice

debuggers. Computer Science Education, 18(2), 93-116.

Letovsky, S. (1987).

Cognitive processes in program comprehension. Journal of Systems and

software, 7(4), 325-339.

Jeffries, R. (1982, March).

A comparison of the debugging behavior of expert and novice programmers.

In Proceedings of AERA annual meeting.

Layman, L. M., Williams, L. A., & St Amant, R. (2008, May).

MimEc: intelligent user notification of faults in the eclipse IDE. In Proceedings of

the 2008 international workshop on Cooperative and human aspects of software

engineering (pp. 73-76). ACM.

Layman, L., Williams, L., & Amant, R. S. (2007, September).

Toward reducing fault fix time: Understanding developer behavior for the design

of automated fault detection tools. In Empirical Software Engineering and

Measurement, 2007. ESEM 2007. First International Symposium on (pp. 176-

185). IEEE.

56

APPENDIX A

PROGRAMS, ERRORS, AND FIXES

57

 As part of this study, three programs were used in the experiments. In this

appendix, all the programs their errors and how those errors can be fixed are provided.

1. Label Program

This was the first program given in the experiment to a participant. Figure 18

shows the program. This program has an error at line number 20. Here word

‘addition’ is a label. It is missing a ‘:’ to declare it as label.

Figure 18- the Label Program

58

Figure 19 gives the error message as displayed using the Default type.

Figure 20 gives the error message as displayed using the Link type and Figure 21

gives the error message as displayed using the Example type. The correct way to

fix this error is to place a ‘:’ at the end of line 20 to make word addition as label.

So, line 20 will have ‘addition:’ after error correction.

Figure 19- Default Type Error Message for the Label Program

Figure 20- Link Type Error Message for the Label Program

Figure 21- Example Type Error Message for the Label Program

2. Instruction Program:

This was the second program given to participants during the experiment. Figure 22

gives the Instruction program. This program has an error at line 14. Here program’s

intention is to subtract value 10 from the register $t3 and store back the result into

register $s1. For unsigned operations, we do not have a subtract instruction in PLP.

59

So ‘subiu’ is not an instruction in PLP. Figure 23 gives the error message as displayed

by the Default type. Figure 24 gives the error message as displayed by the Link type

and Figure 25 gives the error message as displayed by the Example type.

Figure 22- the Instruction Program

There are two ways of fixing this error. First way is using subu instruction

of PLP. As subu cannot have an immediate value, we need to first load the value

10 into a register say $t2, using li instruction. Use the newly loaded register in

subu instruction to achieve the decrement operation. So, line 14 can be replaced

with these two lines ‘li $t2, 10’ and ‘subu $s1, $t3, $t2’. Second way is using addiu

instruction of PLP. Replace line 14 with ‘addiu $s1, $t3, -10’. As you can see in

both the ways there is steps to fix the error.

60

Figure 23- Default Type Error Message for the Instruction Program

Figure 24- Link Type Error Message for the Instruction Program

Figure 25- Example Type Error Message for the Instruction Program

3. Register Program (P3):

This was the third and final program given to the participants during the

think aloud experiment. Figure 26 shows the program and its description. The

error is at line 28. Here program’s intention was to call different

subroutines/functions each of them will perform addition, subtraction and

multiplication and return their respective operations result. For returning the

calculated results, program is using ‘v’ registers. There are only v0 and v1 register

available in PLP. So v2 used in the program is not a register in PLP. Figure 27

gives the error message as provided by the Default type, Figure 28 gives the error

message as provided by the Link type and Figure 29 gives the error message as

provided by the Example type.

61

To fix the error in this program, we need to replace $v2 with a register

recognized by the PLP. While replacing the register, we should also take care that

a new register should be used to avoid overwriting the already used register. For

example, we can use $s0 instead of $v2. There are other possible replacement

registers also. So, to assemble properly we can replace $v2 with $s0 in line 28.

Final instruction after edit would be ‘mullo $s0, $a1, $a0’.

Figure 26- Register Program

62

Figure 27- Default Type Error Message for the Register Program

Figure 28- Link Type Error Message for the Register Program

Figure 29- Example Type Error Message for the Register Program

63

APPENDIX B

SAMPLE TRANSCRIBING, SEGMENTING, AND CODING

64

 This section will give an example of coded data. The example will be of

Participant #28 solving Invalid Label Error Program. For this exercise, error message

was displayed using Default type.

Speaker Audio Screen Examine
Explore
Hypothesize
Repair
Evaluate

##28## So first I am going to read
the problem and trying to
understand what program
is doing given two
numbers 45 and 60 based
on the value in register t1
perform either addition
or subtraction operation
final result should be
stored in register $s1 0 is
addition 1 subtraction

 Examine

##28## after assembled I am
getting error at main asm
20 unable to process
token addition

[ERROR] #16 Asm
main.asm:20 unable to process
token addition

Examine

##28## line 20 that would be
ahmm it says addition on
that line and it appears it
could be either a
comment

 Hypothesize

##28## I am not understanding
exactly what the user was
attempting to do since
there is an addition below
it where in addu
operation below it I am
going to comment out
addition word and see

 Hypothesize

##28## if it should be a jump
nope nope since it is a last
one

 Hypothesize

##28## ##28## comments out line 20.
So after edit, line 20 is
’#addition’.

Repair

##28## see if that works save
reassemble

Saves the program assembles
it. Gets one error.
#71 Asm: main.asm:13: Invalid
branch target “addition”

Evaluate

##28## okay so next error says Examine

65

asm 13 invalid branch
target addition

 so that based on line of 13
addition is not supposed
to be [inaudible word]
supposed to be a label so I
am adding a colon after
the word and

 Hypothesize

##28## ##28## uncomments line 20
and adds ‘:’ at the end of the
line 20 that is after word 20.

Repair

##28## I save and compile or
assemble again

##28## saves the program.
clicks assemble button. No
error is generated

Evaluate

##28## and I do not have any
more errors. Do you want
me to go and test run the
program?

instructor Yeah you can its upto you
##28## Okay yeah I mean I can

test run see if the
program works as
intended based on the
problem I am bring up
cpu watcher and organize
these screens little bit so I
can see cpu watcher and
the program and add
registers $t1 $t2 $t3 and
based on value of based
on value of register t1 a an
addition step through the
program everything looks
good jumps to branches
to addition does the
addition and stores that
in $s1 perfect it appears
to work so it is not
thorough testing but

##28## opens watcher
window. Reorganizes the
PLPTool window. Adds $t1,
$t2, $t3 registers to watcher
window. Then starts step
simulation. Each instruction is
executed stepwise. ##28##
adds $s1 register to watcher
window.

Examine

Table 17- Sample Coding for Basic Steps

66

Speaker Audio Screen Expected
Gaming
T&E
Incorrect-
Interpretation
Incorrect-
Independent
Correct-
Independent
Silly Mistake

##28## So first I am going to read
the problem and trying to
understand what program
is doing given two
numbers 45 and 60 based
on the value in register t1
perform either addition
or subtraction operation
final result should be
stored in register $s1 0 is
addition 1 subtraction

##28## after assembled I am
getting error at main asm
20 unable to process
token addition

[ERROR] #16 Asm
main.asm:20 unable to process
token addition

##28## line 20 that would be
ahmm it says addition on
that line and it appears it
could be either a
comment

 Incorrect
Interpretation

##28## I am not understanding
exactly what the user was
attempting to do since
there is an addition below
it where in addu
operation below it I am
going to comment out
addition word and see

 Incorrect
Interpretation

##28## if it should be a jump
nope nope since it is a last
one

 Expected

##28## ##28## comments out line 20.
So after edit, line 20 is
’#addition’.

Incorrect
Interpretation

##28## see if that works save
reassemble

Saves the program assembles
it. Gets one error.
#71 Asm: main.asm:13: Invalid
branch target “addition”

67

##28## okay so next error says

asm 13 invalid branch
target addition

 so that based on line of 13
addition is not supposed
to be [inaudible word]
supposed to be a label so I
am adding a colon after
the word and

 Expected

##28## ##28## uncomments line 20
and adds ‘:’ at the end of the
line 20 that is after word 20.

Expected

##28## I save and compile or
assemble again

##28## saves the program.
clicks assemble button. No
error is generated

##28## and I do not have any
more errors. Do you want
me to go and test run the
program?

instructor Yeah you can its upto you
##28## Okay yeah I mean I can

test run see if the
program works as
intended based on the
problem I am bring up
cpu watcher and organize
these screens little bit so I
can see cpu watcher and
the program and add
registers $t1 $t2 $t3 and
based on value of based
on value of register t1 a an
addition step through the
program everything looks
good jumps to branches
to addition does the
addition and stores that
in $s1 perfect it appears
to work so it is not
thorough testing but

##28## opens watcher
window. Reorganizes the
PLPTool window. Adds $t1,
$t2, $t3 registers to watcher
window. Then starts step
simulation. Each instruction is
executed stepwise. ##28##
adds $s1 register to watcher
window.

Table 18- Sample Coding for Expected and Unwanted Steps

Speaker Audio Screen Program-

68

Description
Error-
Message
Code
Search-
Information

##28## So first I am going to read
the problem and trying to
understand what program
is doing given two
numbers 45 and 60 based
on the value in register t1
perform either addition
or subtraction operation
final result should be
stored in register $s1 0 is
addition 1 subtraction

 Program
Description

##28## after assembled I am
getting error at main asm
20 unable to process
token addition

[ERROR] #16 Asm
main.asm:20 unable to process
token addition

Error
Message

##28## line 20 that would be
ahmm it says addition on
that line and it appears it
could be either a
comment

##28## I am not understanding
exactly what the user was
attempting to do since
there is an addition below
it where in addu
operation below it I am
going to comment out
addition word and see

##28## if it should be a jump
nope nope since it is a last
one

##28## ##28## comments out line 20.
So after edit, line 20 is
’#addition’.

##28## see if that works save
reassemble

Saves the program assembles
it. Gets one error.
#71 Asm: main.asm:13: Invalid
branch target “addition”

##28## okay so next error says
asm 13 invalid branch
target addition

 Error
Message

69

 so that based on line of 13
addition is not supposed
to be [inaudible word]
supposed to be a label so I
am adding a colon after
the word and

##28## ##28## uncomments line 20
and adds ‘:’ at the end of the
line 20 that is after word 20.

##28## I save and compile or
assemble again

##28## saves the program.
clicks assemble button. No
error is generated

##28## and I do not have any
more errors. Do you want
me to go and test run the
program?

instructor Yeah you can its upto you
##28## Okay yeah I mean I can

test run see if the
program works as
intended based on the
problem I am bring up
cpu watcher and organize
these screens little bit so I
can see cpu watcher and
the program and add
registers $t1 $t2 $t3 and
based on value of based
on value of register t1 a an
addition step through the
program everything looks
good jumps to branches
to addition does the
addition and stores that
in $s1 perfect it appears
to work so it is not
thorough testing but

##28## opens watcher
window. Reorganizes the
PLPTool window. Adds $t1,
$t2, $t3 registers to watcher
window. Then starts step
simulation. Each instruction is
executed stepwise. ##28##
adds $s1 register to watcher
window.

Table 19- Sample Coding for Examine Steps

Speaker Audio Screen Complete
Partial

70

Ignore

##28## So first I am going to read
the problem and trying to
understand what program
is doing given two
numbers 45 and 60 based
on the value in register t1
perform either addition
or subtraction operation
final result should be
stored in register $s1 0 is
addition 1 subtraction

##28## after assembled I am
getting error at main asm
20 unable to process
token addition

[ERROR] #16 Asm
main.asm:20 unable to process
token addition

Complete

##28## line 20 that would be
ahmm it says addition on
that line and it appears it
could be either a
comment

##28## I am not understanding
exactly what the user was
attempting to do since
there is an addition below
it where in addu
operation below it I am
going to comment out
addition word and see

##28## if it should be a jump
nope nope since it is a last
one

##28## ##28## comments out line 20.
So after edit, line 20 is
’#addition’.

##28## see if that works save
reassemble

Saves the program assembles
it. Gets one error.
#71 Asm: main.asm:13: Invalid
branch target “addition”

##28## okay so next error says
asm 13 invalid branch
target addition

 Complete

 so that based on line of 13
addition is not supposed
to be [inaudible word]
supposed to be a label so I

71

am adding a colon after
the word and

##28## ##28## uncomments line 20
and adds ‘:’ at the end of the
line 20 that is after word 20.

##28## I save and compile or
assemble again

##28## saves the program.
clicks assemble button. No
error is generated

##28## and I do not have any
more errors. Do you want
me to go and test run the
program?

instructor Yeah you can its upto you
##28## Okay yeah I mean I can

test run see if the
program works as
intended based on the
problem I am bring up
cpu watcher and organize
these screens little bit so I
can see cpu watcher and
the program and add
registers $t1 $t2 $t3 and
based on value of based
on value of register t1 a an
addition step through the
program everything looks
good jumps to branches
to addition does the
addition and stores that
in $s1 perfect it appears
to work so it is not
thorough testing but

##28## opens watcher
window. Reorganizes the
PLPTool window. Adds $t1,
$t2, $t3 registers to watcher
window. Then starts step
simulation. Each instruction is
executed stepwise. ##28##
adds $s1 register to watcher
window.

Table 20- Sample Coding for Complete, Partial, Ignore

72

APPENDIX C

Consent and Participant Recruitment Form

73

Impacts of error messages on student’s ability to understand and fix errors

in programs

I am a graduate student under the direction of Dr. Scotty Craig in the Department

of Engineering at Arizona State University. I am conducting a research study to examine

the impact of different forms of error messages in PLP (Progressive Learning Platform)

language on student’s ability to understand and fix errors in programs. Please be assured

that your responses will be kept completely confidential.  

 The study should take you around 1 hour to complete, and you will receive $10

for your participation. Your participation in this research is voluntary. You have the right

to withdraw at any point during the study, for any reason, and without any prejudice. If

you have questions, concerns, or complaints, contact Dr. Scoty Craig at (xxx) xxx-

xxxx or scotty.craig@asu.edu. If you have any questions about your rights as a

subject/participant in this research, or if you feel you have been placed at risk, you can

contact the Chair of the Human Subjects Institutional Review Board, through the ASU

Office of Research Integrity and Assurance, at (480) 965-6788.

I am inviting your participation, which will involve demographic survey, think

aloud programming exercise consisting of three PLP (Progressive Learning Platform)

programs and a short interview about the three PLP programs. You have the right to

refuse to answer any of the questions, and to stop participation at any time. There are no

foreseeable risks or discomforts to your participation.

If you have previously taken SER 250/SER 520 course or currently taking SER

250/SER 520 course, your grades in SER 250/SER 520 may be used for data analysis.

74

This will not have any impact on your grades in SER 250/SER 520. Your name and other

identifiable information will only be used during the study for proper data analysis. They

will be removed in the final results. Results will only be shared in the aggregate form.

The results of this study may be used in reports, presentations, or publications but your

name or other identifiable information will not be used.

Everything visible to you on the computer monitor will be recorded (commonly

referred to as screen recording). The entire session will be audio recorded. The screen

audio recording will not take place without your permission. Please let me know if you do

not want the screen or audio to be recorded; you also can change your mind after the

recording starts, just let me know.

 By clicking the button below, you acknowledge that your participation in the

study is voluntary, you are 18 years of age, and that you are aware that you may choose to

terminate your participation in the study at any time and for any reason.

