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ABSTRACT

The electric power system is monitored via an extensive network of sensors in

tandem with data processing algorithms, i.e., an intelligent cyber layer, that enables

continual observation and control of the physical system to ensure reliable operations.

This data collection and processing system is vulnerable to cyber-attacks that impact

the system operation status and lead to serious physical consequences, including sys-

tematic problems and failures.

This dissertation studies the physical consequences of unobservable false data

injection (FDI) attacks wherein the attacker maliciously changes supervisory control

and data acquisition (SCADA) or phasor measurement unit (PMU) measurements,

on the electric power system. In this context, the dissertation is divided into three

parts, in which the first two parts focus on FDI attacks on SCADA and the last part

focuses on FDI attacks on PMUs.

The first part studies the physical consequences of FDI attacks on SCADA mea-

surements designed with limited system information. The attacker is assumed to have

perfect knowledge inside a sub-network of the entire system. Two classes of attacks

with different assumptions on the attacker’s knowledge outside of the sub-network

are introduced. In particular, for the second class of attacks, the attacker is assumed

to have no information outside of the attack sub-network, but can perform multiple

linear regression to learn the relationship between the external network and the attack

sub-network with historical data. To determine the worst possible consequences of

both classes of attacks, a bi-level optimization problem wherein the first level models

the attacker’s goal and the second level models the system response is introduced.

The second part of the dissertation concentrates on analyzing the vulnerability of

system to FDI attacks from the perspective of the system. To this end, an off-line

vulnerability analysis framework is proposed to identify the subsets of the test system
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that are more prone to FDI attacks.

The third part studies the vulnerability of PMUs to FDI attacks. Two classes of

more sophisticated FDI attacks that capture the temporal correlation of PMU data

are introduced. Such attacks are designed with a convex optimization problem and

can always bypass both the bad data detector and the low-rank decomposition (LD)

detector.
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Chapter 1

INTRODUCTION

1.1 Overview

The electric power system (EPS) is a hierarchical network involving the trans-

portation of power from the sources of power generation via an intermediate densely

connected transmission network to a large distribution network of end-users. To en-

sure reliable operation of the entire power system, the system operators at each level

should be aware of the real-time operation states. Therefore, secure and intelligent cy-

ber data processing systems that monitor and control each level of the physical power

system are crucial for reliable real-time operations. In traditional power systems, such

a cyber layer includes (a) supervisory control and data acquisition (SCADA) system,

and (b) energy management systems (EMSs) for data processing. In the past decade,

phasor measurement units (PMUs) have been deployed in the electric power system

to directly measure voltages and phase angles for key generation and transmission

buses. Due to its high sampling rate and accuracy, PMUs have the potential to play

a significant role in real-time power system state estimation (SE) [1], dynamic security

assessment [2, 3], system protection [4], and system awareness [5]. In recent years,

PMU measurements have gradually come to supplement the existing SCADA infras-

tructure. Moreover, in some specific regions, full observability of the power system

can be achieved by PMU measurements alone. Figure 1.1 illustrates an example of

the hierarchical electric power system. The figure demonstrates how at various levels

from generation through transmission, substation, distribution, and even end-users,

the network appropriate at each level is monitored using the collected SCADA and/or
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PMU data via an EMS to enable control and actuation of the underlaying physical

system.

Physical System Cyber System
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Figure 1.1: Hierarchical Cyber-Physical Power System.

However, at all levels of the hierarchy, SCADA, PMUs, and EMSs are vulnerable

to cyber attacks. In fact, such cyber attacks can undermine the observability of phys-

ical systems, and hence, lead to mis-operation, violation, and inappropriate and/or

untimely contingency response, which can potentially result in severe economic and

social consequences. This has been verified by several relevant cyber incidents in

recent years:

• In 2007, Idaho National Laboratory ran the Aurora Generator Test and demon-

strated a cyber attack in which a diesel generator’s circuit breaker was rapidly

opened and closed by the attack. This attack led to the generator becoming

out of phase from the rest of the power system and exploding [6].
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• In 2009, the Stuxnet virus ravaged roughly 20% of Iran’s nuclear centrifuges by

causing them to spin out of control [7].

• In 2010, the Stuxnet malware attacked SCADA systems that use Siemens

WinCC SCADA software, which in turn infected 14 power plants in Germany

[8].

• In 2012, the Industrial Control Systems Cyber Emergency Response Team re-

vealed that the number of reported cyber attacks is growing and the companies

with access to the country’s power grid have become the cyber attack targets [9].

The U.S. Department of Energy reported that from 2011 to 2014, 362 reports

were received from electric utilities of physical or cyber attacks that interrupted

power services [10]. In 2013, CNN reported that hacker hits on US power and

nuclear targets spiked in 2012 [9]. A Department of Homeland Security branch

recorded 161 cyber attacks on the energy sector in 2013, compared to just 31 in

2011 [10], which comprises 60% of all cyber attacks on cyber-physical systems.

• In 2015, there was a cyber-attack on the computers and SCADA systems of

four control centers in Ukraine, disconnecting the circuit breakers at nearly 60

substations. This attack resulted in a regional power outage for nearly 6 hours

across various areas, affecting approximately 225 thousand customers [11].

The list above illustrates that the cyber layer of the power system is vulnerable to

cyber attacks. Therefore, it is crucial to fully understand the consequences of realistic

and credible cyber-attacks as a first step to thwart such attacks. This dissertation

focuses on a specific class of cyber attacks, false data injection (FDI) attacks, on the

transmission system, in which the attacker replaces a subset of measurements with

counterfeits before they are processed by the cyber layer.
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1.2 Literature Review

There has been much recent interest in understanding the cyber-security chal-

lenges facing the electric power system. Since it is not possible to review all these

challenges, we will focus on the class of unobservable attacks. Unobservable attacks

are a class of cyber attacks in which the attacker focuses on SE and within SE, the

data change made by attacker appears exactly as if it originated from a normal state;

thus, it cannot be detected by existing bad data detectors. We briefly review the

existing literature on unobservable attacks.

In [12], the authors are the first to introduce a class of FDI attacks on DC SE. The

authors show that an attacker with sufficient system knowledge can inject malicious

data in SCADA measurements without being detected by existing bad data detection

techniques. In [13], Sandberg et al. introduce two security indices which quantify

the least effort to launch unobservable FDI attacks on DC SE. In [14], Teixeira et

al. analyze how to completely protect SE by placing encrypted devices on a set of

SCADA measurements into the power system. In [15], the authors further propose

the minimum cost protection scheme to thwart unobservable FDI attacks. In [16],

Kosut et al. discuss the trade-off between the attacker’s efforts to maximize the attack

strength and minimize the detection rate.

In contrast to the above mentioned references, in [17], Hug and Giampapa focus on

FDI attacks on AC SE and introduce a class of unobservable attacks that are limited

to a sub-graph of the networks. They demonstrate that although AC SE is vulnerable

to unobservable FDI attacks, doing so requires the knowledge of both system topology

and states to launch such attacks. In [18], Liang et al. introduce unobservable FDI

attacks for a nonlinear measurement model of AC SE and demonstrate that such FDI

attacks can lead to a re-dispatch of generators when none was actually needed; this
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re-dispatch can in turn cause a line to overload in the physical system.

The impact of FDI attacks on electric power markets is studied in [19]. The au-

thors demonstrate that FDI attacks can be utilized to manipulate locational marginal

prices (LMPs) of ex-post real-time market, and thus, allow the attacker to profit. In

general, there are many easier ways to make a profit from the market instead of at-

tacking the electric power system. Therefore, the focus should be on whether the

cyber attacks can have physical consequences on the power system.

Yet another class of FDI attacks is one that alters topology data in an unobserv-

able manner. In [20], Kim and Tong formally introduce an undetectable topology

attack as a specific class of FDI attacks on power systems and evaluate the attack’s

impact on the electric market. In [21], Rahman et al. study the impact of the un-

detectable topology attack introduced in [20] on DC OPF when DC SE is used; the

attack is optimized to increase the total operation cost of the system. In [22], Ashok

and Govindarasu analyze a different class of topology attacks wherein the attacker

compromises the critical measurements of the system to result in incorrect contin-

gency analysis results. In [23], the author and her collaborator study unobservable

state-preserving line-maintaining attacks (i.e., only topology data is changed) for

which an algorithm using breadth-first search (BFS) is developed to find the smallest

sub-network required to launch such an attack.

Recently, there are growing interests on understanding the consequences of FDI

attacks. In [24] and [25], the authors propose a max-min attacker-defender model to

study the most damaging FDI attacks with both a short term goal and a long term

goal. They formulate a class of load redistribution attacks as a bi-level optimization

problem. They find the attack which maximizes operation costs of the attack-induces

re-dispatch. More recently, in [26], the authors introduce a bi-level optimization for

the worst unobservable attacks on AC SE. The objective of the attack is to maximize
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power flow on a specific line, and thereby, cause overflow violations in the physical

system. This attack optimization problem can be solved using an equivalent mixed-

integer linear programming (MILP) problem. In [27] and [28], four computationally

efficient algorithms are proposed to scale the MILP in [26] to large systems so as

to provide lower and upper bounds on the attack consequences. Besides pure cyber

attacks on states, my prior work [29] demonstrates that a two-step attack strategy

can be utilized to design unobservable cyber attacks to coordinate and mask physical

attacks. Such a coordinated cyber-physical attacks can result in line overflow in the

physical power system while it is unobservable in the cyber layer.

Besides FDI attacks designed with complete system information as introduced

in the above literature, there are growing attempts to model FDI attacks with in-

complete and localized system information. In [30], Rahman and Mohsenian-Rad

introduce a class of FDI attacks modeled with incomplete system topology infor-

mation which results from lack of real-time knowledge of circuit breaker status and

transformer tap. The authors demonstrate that power systems are still vulnerable to

FDI attacks designed with incomplete system information, however, the probability

of the attacks being detected increases as the uncertainties of system information

grow. In [31] and [32], Liu and Li propose a local load redistribution attack model

with incomplete network information on DC SE and AC SE and demonstrate that

an attacker can design unobservable DC and AC FDI attacks, respectively, based on

localized information.

Thus far, the FDI attacks introduced in the above literature target on SCADA

measurements. Such attacks can also be converted and injected in PMU measure-

ments. In [33, 34], the authors study the cyber-security of PMU-based SE and classify

potential cyber-attacks on PMUs as attacks againt communication links, denial of

service attacks, and data spoofing attacks including GPS spoofing attacks and FDI
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attacks.

To thwart unobservable FDI attacks, several protection mechanisms and attack

detection approaches have been introduced. In [35], Kim and Tong introduce an ap-

proach to ensure system observability by placing secure PMUs so as to protect the

system from FDI attacks. However, since PMU measurements may also be vulnerable

to FDI attacks, this method cannot eliminate FDI attacks when PMUs are compro-

mised by attackers. In [36], the authors propose a decentralized detection scheme for

FDI attacks based on the Markov graph of bus phase angles. However, this method

might not work well when the system experiences a disturbance. In [37], Lee and

Kundur introduce a detector based on Expectation-Maximization to detect FDI at-

tacks in PMU measurements. This method needs to be solved iteratively and the

convergence rates are very slow for real-time detection (e.g., 105 iterations) for even

a small test system.

Recently in [38, 39, 40], low-rank decomposition (LD) has been proposed to detect

FDI attacks on the electric power system using a block of consecutive measurement

data. In [38], the authors propose an LD approach (introduced in [41] for arbi-

trary sparse datasets), for temporal SCADA data; specifically, they demonstrate that

attacks designed without knowledge of the temporal correlations of the SCADA mea-

surements can be detected by solving an LD problem. Furthermore, their model

assumes that while the FDI attack matrix is sparse in each time instant, the attacker

attacks a different set of measurements. While such a model is quite general, for at-

tacks designed with a specific effect (financial or physical damage), sustaining attacks

over time on the same meters can have more impact. Focusing on such sustained

attacks, for PMU data, the authors of [39, 40] show that an LD-based detector can

identify column sparse FDI attack matrix where the column sparsity is a result of the

assumption that the attacker attacks the same set of PMU measurements over time.
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1.3 Objective of the Dissertation

This dissertation analyzes the vulnerability and physical consequences of FDI at-

tacks in which the attacker can change SCADA or PMU measurements. In particular,

we focus on FDI attacks that can result in line overflow without being detected via

measurements.

It has been shown in [26] that attacks targeting SCADA measurements can be

designed via a bi-level optimization problem wherein the first level problem models the

attacker’s goal and the second level problem models the system response. However,

the attack optimization problem in [26] requires the attacker to know system-wide

information including topology, generation cost and capacity, as well as load data.

In practice, obtaining all the required information can be difficult for the attacker.

Therefore, one of the goals of this dissertation is to study the FDI attacks designed

with limited attacker information. Although [30, 31, 32] have already studied several

classes of FDI attacks inside a sub-network of the network graph, the analysis of

attacks is limited to its feasibility and observability. The physical consequences of

the worst-case limited information FDI attacks are yet to be studied. Therefore,

we seek to understand the physical consequences from the perspectives of both the

attacker and the system, so as to identify the subsets of the system that are more

vulnerable to FDI attacks. This in turn can be used to develop attack detection

resiliency mechanisms.

In addition, due to the lack of knowledge of the measurement temporal correla-

tions, the FDI attacks introduced in [26] can be detected by the LD detector intro-

duced in [38, 39, 40] when injecting to PMU measurements. Thus, the second goal

of this dissertation is to study whether FDI attacks can be designed to capture the

temporal correlation of PMU data and thereby bypass the LD detector.
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1.4 Dissertation Organization

The remainder of this dissertation is organized as follows.

Chapter 2 presents the mathematical formulation for the various computational

units of EMSs, including state estimation, bad data detection, and optimal power

flow. The unobservable FDI attack model is also reviewed in this chapter.

In Chapter 3, prior work on the bi-level optimization problem for line overflow

attacks with perfect information is reviewed.

In Chapter 4, two classes of unobservable FDI attacks designed with limited system

information are studied. In the first class of attacks, the attacker is assumed to have

perfect knowledge in an attack sub-network and limited estimated information outside

of the sub-network. A modified bi-level attack optimization problem considering

limited system information is presented. Discussion on the impact of incomplete

and inaccurate knowledge outside the attack sub-network on attack consequences

is given. The performance of the attack strategy and the long-term consequences of

such attacks are illustrated via simulation. In the second class of attacks, the attacker

is assumed to have no information outside of the attack sub-network. To overcome

the limited information, a multiple linear regression model is developed to learn the

relationship between the external network and the attack sub-network from historical

data. The worst possible consequences of such FDI attacks are evaluated by solving

a bi-level optimization problem. Justifications for the proposed attack strategy are

provided, followed by numerical results of the attack consequences. A sensitivity

analysis of the second class of attacks on multiple scenarios of imperfect historical

datasets is provided. Discussions on the impact of the approximations made in the

attack models are provided.

In Chapter 5, an off-line vulnerability analysis framework from the perspective
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of the system control center is proposed. The performance of this framework is

demonstrated with the IEEE 24-bus RTS system, IEEE 118-bus system, and IEEE

2383-bus (Polish) system.

Chapter 6 presents the vulnerability analysis to FDI attacks on PMU. In this

chapter, the PMU data is modeled as a low-rank matrix and a low-rank decomposition

detector is used to identify FDI attacks. Two classes of FDI attacks on PMU that

can bypass the low-rank decomposition detector are introduced. The performance of

the attack strategy is illustrated via simulation.

In Chapter 7, conclusions and future works are provided.
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Chapter 2

SYSTEM AND ATTACK MODEL

In this chapter, we introduce the mathematical formulation for the state estima-

tion (SE), and optimal power flow (OPF) units in EMS. The unobservable FDI attack

model is also reviewed. Throughout, we assume there are nb buses, nbr branches, ng

generators, nload load buses, and nz measurements in the system. The temporal na-

ture processing of real-time power operation is illustrated in Figure 2.1.

SCADA

/PMU

Generation 

Dispatch
Physical System

Create false 

data

Data Processing by Attacker

Cyber attack

Optimal 

Power Flow

State 

Estimator

Load 

Estimator

Figure 2.1: Temporal Nature of Real-Time Power System Operation.

2.1 State Estimation

Consider an nz × 1 vector z of nonlinear measurements given as

z = h(x,G) + e (2.1)
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where x = [θ, V ]T is the system state vector including voltage angles θ and volt-

age magnitudes V , and e is an nz × 1 noise vector which is independent of x and

is modeled as Gaussian distributed with 0 mean and σ2
i covariance, such that the

measurement error covariance matrix is given by R = diag({σ2
i }

M
i=1). The function

h(x,G) is a vector of nonlinear functions that describes the relationship between the

system states and measurements for a topology G. Both the line status data s and the

measurements z are collected by the SCADA system and/or PMUs. The commonly

obtained measurements in the grid are the active and reactive line power flows and

bus injections.

We use the weighted least-squares (WLS) AC SE to calculate the θ and V [42].

The objective of the estimation process is to minimize the sum of the squares of the

weighted deviations of the estimated measurements from z. The states are solved as

a least square problem with the following objective function

min J(x) = (h(x)− z)TR−1(h(x)− z), (2.2)

the solution to which satisfies

g(x̂) =
∂J(x̂)

∂x
= HT (x̂) ·R−1 · (h(x̂)− z) = 0 (2.3)

where H = ∂h(x)
∂x
|x=x̂ is the system Jacobian matrix, and x̂ is the 2nb × 1 estimated

state vector. The WLS solution for this nonlinear optimization problem can be solved

iteratively.

Specifically, the linearized measurement vector can be written as:

z = Hx+ e (2.4)

where x now is a nb × 1 vector with only voltage angle states.

We use the weighted least-squares (WLS) method to solve this problem [42] as

x̂ = (HTR−1H)−1HTR−1z (2.5)
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where x̂ is the estimated system state vector.

Measurements collected by SCADA may contain errors that can undermine the

accuracy of estimated states. Therefore, a bad data detector is equipped with SE to

detect faulty measurements, and hence, protect SE from large errors. The measure-

ment residual vector is used to detect bad data, as

r = z − h(x̂,G) (2.6)

where r is the nz × 1 residual vector.

In this dissertation, the χ2−detector is utilized to detect bad data. The threshold

is determined by the χ2−test. To bypass the bad data detection, the residual vector

should satisfy the following relationship

rTR−1r 6 χ2
(m−n),p (2.7)

where χ2
(m−n),p is the value from the χ2-distribution table corresponding to a detection

confidence with probability p (e.g. 95%) and m− n degrees of freedom.

If the threshold in (2.7) is violated, the largest normalized residual (LNR) method

is further used for bad data identification as follows:

Max
i

|ri|
σri

6 τr (2.8)

where σri is the standard deviation of the ith residual error ri. If the LNR test is

not passed, the measurement with maximum residual is identified as a bad measure-

ment. The bad measurement is then removed from the measurement vector and SE

is repeated until no bad data is detected.

The SE solution that passes the bad data detection is used to compute the power

flow of the system, which hence yields the estimated loads of the system. The esti-

mated loads then pass to the OPF module for an optimal power dispatch solution. If

the state vector is maliciously altered by an attacker, it can result in a wrong dispatch

solution, which can lead the system to uneconomic and/or insecure operation states.
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2.2 Unobservable FDI Attack Model

In an unobservable FDI attack, the attacker aims to maliciously change the system

states from x to x+c without being detected by the bad data detector. In the absence

of noise, the measurements for AC SE after such attacks, za, satisfy

za = h (x+ c,G) (2.9)

where c is the 2nb × 1 attack vector.

The measurements for DC SE after unobservable FDI attacks satisfy

za = z +Hc = H (x+ c) (2.10)

where c is the nb × 1 attack vector.

2.3 Optimal Power Flow

The optimal power flow (OPF) problem aims to solve the optimal power dispatch

solution. The DC OPF problem can be written as:

minimize

ng∑
g=1

Cg (PGg) (2.11)

subject to GPG −Hθ = PD (2.12)

− Pmax 6 Γθ 6 Pmax (2.13)

PG,min 6 PG 6 PG,max (2.14)

where the optimization variables include the nb× 1 voltage angle vector θ and ng × 1

active power generation vector PG. Furthermore, G is the nb × ng generator-to-bus

connectivity matrix; Cg(·) is the quadratic cost function for generator g; H is the

nb × nb dependency matrix between power injections and states θ; Γ is the nbr × nb

dependency matrix between power flows and states θ; PD is the nb × 1 active power
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load vector; PG,max and PG,min are ng × 1 maximum and minimum generation limit

vectors, respectively; and Pmax is the nbr × 1 line rating vector.

The objective (2.11) is to minimize the total costs of all generators. Constraint

(2.12) is the power balance constraint for each bus. Constraint (2.13) represents the

power flow limit constraint for each transmission line. Note that power flow limit can

either be a thermal limit, which prevents the transmission line from overheating, or

a stability limit, which maintains synchronism and voltage stability among buses in

the system. Constraint (2.14) represents the generation limit for each generator.

Note that (2.11)−(2.14) are DC OPF formulated with the B−θ method, in which

the line power flow is calculated as the product of the dependency matrix of power

flow and voltage angle B, and voltage angle vector θ. It can also be equivalently

formulated using PTDF as follows:

minimize

ng∑
g=1

Cg (PGg) (2.15)

subject to

ng∑
g=1

PGg =

nb∑
i=1

PDi (2.16)

− Pmax 6 K(GPG − PD) 6 Pmax (2.17)

PG,min 6 PG 6 PG,max (2.18)

where K is the nbr × nb PTDF matrix, i.e., the dependency matrix between power

flows and power injections. In particular, constraint (2.16) is the power balance of

the entire system.
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Chapter 3

PRIOR WORK: PERFECT KNOWLEDGE FDI ATTACKS

In this chapter, we briefly review a closely related work [26] on unobservable FDI

attacks assuming a perfect knowledge attacker. As in [26], we distinguish between two

types of buses in the network: load buses that have load directly connected to that

bus, and non-load buses with no load. The knowledge (denote as K1) and capabilities

(denote as C1) of the attacker in [26] is described below:

K1. The attacker has knowledge of (i) the whole network topology; (ii) the cost,

capacity, and operational status of all generators in the system; and (iii) the

historical load data of the entire network.

C1. The attacker may choose a small area S, which is a subgraph of the entire network

G, i.e., a sub-network chosen in certain manner (see below for description) and

bounded by load buses. The attacker may replace measurements inside S and

has sufficient computational capability to perform SE.

Note that K1 and C1 model an omnipotent attacker who has perfect knowledge of

the entire network. In practice, such knowledge and resources may be too strong

to be achieved by attackers. However, the goal of this chapter is to evaluate the

consequences of the worst-case FDI attacks. Thus, extra knowledge and capabilities

are granted to attackers here.

3.1 Attack Design with Perfect Information

In [26], the authors formulate a bi-level optimization problem to determine the

worst-case FDI attacks that can maximize the power flow on a target line. The bi-level
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attack optimization problem is as follows:

maximize Pl − ζ ‖c‖0 (3.1)

subject to P = Γθ∗ (3.2)

‖c‖0 6 N0 (3.3)

− τPD 6 Hc 6 τPD (3.4)

{θ∗, P ∗G} = arg

{
min
θ,PG

ng∑
g=1

Cg (PGg)

}
(3.5)

subject to GPG −Hθ = PD (λ) (3.6)

− Pmax 6 Γ (θ + c) 6 Pmax

(
µ∓
)

(3.7)

PG,min 6 PG 6 PG,max

(
α∓
)

(3.8)

where

P ∗G is the ng × 1 vector of optimal generation dispatch solved by DC OPF;

τ is the load shift factor;

N0 is the l0-norm constraint integer;

ζ is the weight of the norm of attack vector c.

λ is the nb × 1 dual variable vector for node balance constraints;

µ∓ are the nbr × 1 dual variable vectors for the negative and positive directions

of thermal limit constraints, respectively.

α∓ are the ng×1 dual variable vectors for the minimum and maximum generation

limit constraints, respectively.

The objective of the optimal attack problem is to maximize the power flow on the

target line l while changing as few states as possible. In the first level, the attack
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vector is chosen subject to the l0-norm constraint of the attack vector in (3.3) and the

load shift limitation in (3.4). In the second level, the system response to the attack

determined in the first level is modeled via DC OPF in (3.6)−(3.8).

The bi-level optimization problem introduced above is non-linear and non-convex.

For tractability, several constraints have been modified to convert the original for-

mulation into an equivalent mixed-integer linear program (MILP). The modifications

include:

1. Relax the l0-norm constraint in (3.3) to an l1-norm constraint with limit N1 and

linearize it by introducing a slack vector u as

c 6 u, −c 6 u,

nb∑
i=1

ui 6 N1. (3.9)

The objective function (3.1) can be rewritten as

maximize
c,u

Pl − ζ
nb∑
i=1

ui (3.10)

2. Replace the second level DC OPF problem by its Karush-Kuhn-Tucker (KKT)

optimality conditions introduced in [43] as

(3.6)− (3.8)

0 =∇ [CG(PG)] +∇(GPG −Hθ − PD) · λ

+∇ [Γ(θ + c)∓ Pmax] · µ±

+∇ (PG − PG,max) · α+ +∇ (PG,min − PG) · α− (3.11)

0 6 µ± (3.12)

0 6 α± (3.13)

0 = diag(µ±) [Γ(θ + c)∓ Pmax] (3.14)

0 = diag(α+) (PG − PG,max) (3.15)

18



0 = diag(α−) (PG,min − PG) (3.16)

where constraint (3.11) is the partial gradient optimal condition, (3.12) and

(3.13) are the dual feasibility constraints, (3.14)–(3.16) represent the comple-

mentary slackness constraints.

3. Linearize the complementary slackness conditions in KKT by introducing a new

vector δ of binary variables for dual variables and a large constant M as

[δ±µ ; δ±α ] ∈ {0, 1} (3.17) µ± 6Mδ±µ

Pmax ∓ Γ (θ + c) 6M(1− δ±µ )
(3.18)


α± 6Mδ±α

Pmax
G − PG 6M(1− δ+

α )

PG − Pmin
G 6M(δ−α − 1)

(3.19)

The whole problem then becomes a single level MILP with objective (3.10), subject

to (3.21), (3.4), (3.6)–(3.9), (3.11)–(3.13), and (3.17)–(3.19).

In (3.5)−(3.8), B-θ method is used to formulate the DC OPF problem, in which

the line power flow is calculated as the product of the dependency matrix of power

flow and voltage angle B and the voltage angle vector θ. In contrast, PTDF can also

be utilized to formulate DC OPF problem, where the line power flow is calculated

as the product of PTDF matrix and power injection. Note that in this formulation,

the variable vector θ is eliminated, and hence, the thermal limit constraints become

independent of each other. The bi-level attack optimization problem is as follows:

maximize Pl − ζ ‖c‖0 (3.20)

subject to
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P = K(GP ∗G − PD) (3.21)

‖c‖0 6 N0 (3.22)

− τPD 6 Hc 6 τPD (3.23)

{P ∗G} = arg

{
minimize

PG

ng∑
g=1

Cg (PGg)

}
(3.24)

subject to

ng∑
g=1

PGg =

nb∑
i=1

PDi (3.25)

− Pmax 6 K(GPG − PD +Hc) 6 Pmax (3.26)

PG,min 6 PG 6 PG,max (3.27)

This problem can also be converted into MILP with modifications in (3.9)−(3.19).

3.2 Attack Implementation

Once the attack vector c is determined, the attacker can identify an attack sub-

graph S in which an unobservable attack can be implemented. The procedure for

attack subgraph identification is as follows:

1. Identify a set of buses that correspond to non-zero entries of c (denoted as center

buses).

2. Let S be the set of all center buses.

3. Extend S by including all branches and buses adjacent to center buses.

4. If any bus on the boundary of S is a non-load bus (i.e., no load is present),

extend S by including all branches and buses adjacent to this bus.

5. Repeat step 3 until all boundary buses are load buses.
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This method is first proposed in [17]. Constructing S with this method ensures that

nothing is changed outside of S while the changes needed at the non-center buses

inside S are presented as load changes.

Given attacker’s knowledge K1 and capabilities C1, the authors in [26] introduce

the FDI attacks on DC SE as follows:

zai =


zi ,

zi +Hic ,

i /∈ J

i ∈ J
(3.28)

where J denotes the set of measurements in S.

Note that, this attack may not be unobservable to AC SE [44], but can be con-

verted to an unobservable AC attacks as

zai =


zi ,

hi(x̂+ c) ,

i /∈ J

i ∈ J
(3.29)

where x̂ is the state vector that the attacker estimated with measurements in S.

The method is first introduced in [17] and [26]. Furthermore, in our prior work

[26, 29, 45], we have demonstrated that the consequences of the AC attacks track

those of the original DC attacks.
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Chapter 4

FALSE DATA INJECTION ATTACKS DESIGNED WITH LIMITED SYSTEM

INFORMATION

In this chapter, two classes of unobservable FDI attacks designed with limited

system information that can result in line overflow are studied. We first define the

attack sub-network (denoted with L) as the subset of the entire system where the

attacker has perfect system knowledge. Such system information will be specified in

sequel. The remaining network is defined as the external network denoted with E . For

each class of attacks, the theoretical attack model is presented, the implementation

of attacks is provided, and the worst-case attack and its consequences on the physical

system are exhaustively studied.

Throughout this chapter, we define an attack to be successful if the physical power

flow on the target line is greater than the line rating post-attack.

4.1 False Data Injection Attacks with Limited External Network Information

In this section, a class of unobservable FDI attacks designed with limited external

network information is studied. We introduce a bi-level optimization problem to find

unobservable line-overflow FDI attacks on DC SE when the attacker’s knowledge is

mostly limited to a given sub-network. In particular, the attacker has access to the

following information: (i) inside the sub-network, perfect system information includ-

ing topology, load data, and generator data, (ii) outside the sub-network, estimated

(i.e. possibly incorrect) generator data for the marginal generators, and (iii) esti-

mated power transfer distribution factor (PTDF) data for the entire network. we

demonstrate that using this bi-level optimization problem for limited information at-
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tacks, an attacker can cause a line overflow in the IEEE 24-bus RTS system even

given incomplete or inaccurate information.

4.1.1 Attack Strategy

In this subsection, we build upon the attack in [26] by replacing assumptions K1

and C1 with the following more limited assumptions on the attacker’s knowledge

(K2(a),K2(b)) and capability (C2):

K2(a) Attacker has perfect knowledge of the topology, the historical load, and the

generator data including operational status, capacity and cost, inside a sub-

network L of the entire network G. This sub-network L is bounded by load

buses.

K2(b) Attacker has estimated knowledge of (i) the power transfer distribution fac-

tor (PTDF) of G; (ii) operational status, capacity and cost of only marginal

generators (i.e., generators that are re-dispatched after attack) outside L.

C2 The attacker is restricted to a small sub-graph S within L, i.e., S ⊆ L, to access

and modify measurements.

In practice, to achieve K2(a) and C2, an attacker can access to the databases of

several adjacent substations. The K2(b) knowledge, however, is difficult to achieve

even when the attacker has already hacked into the databases. Thus, one should note

that extra knowledge is also granted here to evaluate worst-case limited information

FDI attacks.

Notation: Let N denote an electric power network. The subset of buses, lines,

and generators in N are denoted as Nb, Nbr, and Ng, respectively. For the limited

information attack we study, the attacker is assumed to have perfect information of

L, a sub-network of the entire network G. Thus, Lb, Lbr, and Lg are the set of buses,
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lines, and generators of L, respectively. We define the remaining network that the

attacker has limited information about as E = G \L. The set of buses in E is denoted

as Eb. We define the set of boundary buses in L as B, such that each bus in B is

connected to at least one bus in E . The set of remaining buses in L is defined as

the internal bus set I = Lb \ B. We define the set of marginal generators in E as

Eg,m. The set of buses that each element of Eg,m connects to is denoted as Eb,m. In

addition, let WEB denote the set of lines that connect a bus in L to a bus in E . In the

following, we distinguish different sets of elements (buses, lines, and generators) by

using corresponding superscripts. For matrices, the superscript (E,F ) represents a

sub-matrix, such that E and F represent the sets of rows and columns of the original

matrix, respectively. Finally, we use the subscript 0 to denote the variable values

before the attack.

Rewriting OPF with Limited Information

To form an optimization problem that only uses the limited information as detailed

in K2(a) and K2(b), we rewrite each line of the OPF as follows:

1. For the objective (3.5), the attacker is limited to only generators in Lg and Eg,m

(knowledge K2(a) and K2(b)). Therefore, the objective can be rewritten as:

minimize
∑
g∈Lg

Cg (PGg) +
∑
g∈Eg,m

Cg (PGg) ; (4.1)

2. For the thermal limit constraint (3.7), the attacker is limited to only the subset

for lines in Lbr as:

− PLbrmax 6 Γ(Lbr,Lb)
(
θLb+cLb

)
6PLbrmax; (4.2)

3. For the generation limit constraint (3.8), only those for generators in Lg and
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Eg,m can be formulated as:

P
Lg
G,min 6 P

Lg
G 6 P

Lg
G,max (4.3)

P
Eg,m
G,min 6 P

Eg,m
G 6 P

Eg,m
G,max. (4.4)

4. For the power balance constraint (3.6), the attacker can only formulate those

for the buses in I and B as:

G(I,Lg)P
Lg
G −H

(I,Lb)θLb = P ID (4.5)

G(B,Lg)P
Lg
G −[H(B,Lb) H(B,Eb)]

 θLb
θEb

 = PBD; (4.6)

In constraint (4.6), the term H(B,Eb)θEb is a vector of the power injections that flow

from E to the buses in B; however, this information is not available to the attacker.

For each bus in B, such a term equals to the sum of power flows on lines in WEB that

connects to that bus, i.e., H(B,Eb)θEb = A
(B,WEB)

KN PWEB , where AKN is the nb × nbr line-

to-bus connectivity matrix. The vector of power flow in WEB, PWEB , can be computed

as PWEB = K(WEB,Gb)(GPG − PD). The attacker has no knowledge of load in Eb and

generation of non-marginal generators in E . However, if the attacker’s knowledge

K2(b) is correct and complete, the loads and the output of non-marginal generators in

E will remain unchanged after attack since only marginal generators will re-dispatch.

We later study the errors that can result from incorrect attack information. Then

PWEB can be formulated with the sum of P
WEB
0 , i.e., the power flow on the lines before

attack, and the incremental power flow resulting from re-dispatch of generators in Lg

and Eg,m as:

PWEB = P
WEB
0 +K(WEB,Lb)G(Lb,Lg)∆P

Lg
G

+K(WEB,Eb,m)G(Eb,m,Eg,m)∆P
Eg,m
G , (4.7)
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where ∆P
Lg
G and ∆P

Eg,m
G represent the output changes of generators in Lg and Eg,m,

respectively, with ∆P
Lg
G = P

Lg
G − P

Lg
G,0 and ∆P

Eg,m
G = P

Eg,m
G − P

Eg,m
G,0 . For ease of

expression, we define the dependency matrix between the incremental injections and

generations as AGB, such that the sub-matrices of AGB for buses in B and generations

in Lg (denoted as A
(B,Lg)
GB ) and in Eg,m (denoted as A

(B,Eg,m)
GB ), respectively, are:

A
(B,Lg)
GB = A

(B,WEB)

KN K(WEB,Lb)G(Lb,Lg) (4.8)

A
(B,Eg,m)
GB = A

(B,WEB)

KN K(WEB,Eb,m)G(Eb,m,Eg,m). (4.9)

We define PBinj,0 to represent a vector of constant values which corresponds to the

portion of power injections in B that are from the entire network loads and the

output of the non-marginal generators in E , i.e., PBinj,0 = A
(B,WEB)

KN P
WEB
0 −A(B,Lg)

GB P
Lg
G,0 −

A
(B,Eg,m)
GB P

Eg,m
G,0 . Therefore, the constraint (4.6) can be rewritten as

G(B,Lg)P
Lg
G −H

(B,Lb)θLb − A(B,Lg)
GB P

Lg
G − A

(B,Eg,m)
GB P

Eg,m
G

= PBD + PBinj,0. (4.10)

Attack Optimization Problem under Limited Information

The limited information bi-level attack optimization problem can now be rewritten

as

maximize Pl − ζ
∥∥cLb∥∥

0
(4.11)

subject to PLbr = Γ(Lbr,Lb)θLb∗ (4.12)∥∥cLb∥∥
0
6 N0, cB = 0 (4.13)

− τPLbD 6 H(Lb,Lb)cLb 6 τPLbD (4.14){
θLb∗, P

Lg∗
G , P

Eg,m∗
G

}
= arg

minimize
θLb ,P

Lb
G ,P

Eg,m
G

∑
g∈Lg

Cg(PGg)+
∑
g∈Eg,m

Cg(PGg)

 (4.15)
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subject to (4.5), (4.2), (4.3)− (4.4), (4.10)

Note that, in addition to the changes in the OPF sub-problem described in Sec.

4.1.1, we have also changed the constraint on the attack vector in (4.13) to require

the attack to be within the sub-network L.

The bi-level optimization problem introduced above is non-linear and non-convex.

For tractability, we modify several constraints to convert the original formulation into

an equivalent mixed-integer linear problem as in [26]. The modifications include: (a)

relaxing the l0-norm constraint in (4.13) to an l1-norm constraint with limit N1 and

linearizing it by introducing a slack vector u; (b) replacing the second level DC OPF

problem by its Karush-Kuhn-Tucker (KKT) optimality conditions; and (c) linearizing

the complementary slackness conditions in the KKT conditions by introducing new

binary variables δ for dual variables and a large constant M .

4.1.2 Discussion

As stated in Sec. 4.1.1, each of the attacker’s knowledge and capabilities in K2(a),

K2(b) and C2 may cause the attack solved by the limited information optimization

problem to be suboptimal compared to the perfect information optimization problem.

Recall that in assumption K2(b), the attacker has an estimated knowledge of certain

system parameters, which may be incomplete or inaccurate. As a result, the attacker

may obtain a wrong evaluation of attack consequences. We focus on the following

three scenarios to show that limited knowledge can possibly provide incorrect genera-

tion re-dispatch in the optimization problem, which in turn can finally lead to wrong

maximal power flow solution.

1. Congested lines in E : the attacker cannot capture the changes of generation

dispatch resulting from the thermal limit constraints of congested lines in E .
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2. Wrong external marginal generators: the attacker may choose a wrong Eg,m,

and hence, the approximation of the power injection in (4.10) will be incorrect.

3. Wrong PTDF: the attacker may obtain wrong PTDF, K, information due to

real-time topology changes in E .

Despite the limitations listed above, there is still a large chance that the system

operation will be worsened by such attacks, as illustrated in the following section, for

both perfect limited information and inaccurate knowledge scenarios.

4.1.3 Numerical Results

In this subsection, we illustrate the effect of attacks designed with the optimization

problem in Sec. 4.1.1. We first solve the optimization problem to find the optimal

attack vector cLb inside L. Subsequently, we use the attack vector cLb to simulate

an AC attack. The test system is the IEEE 24-bus reliability test system (RTS).

We assume: (i) the system is operating under optimal power flow; and (ii) the loads

of the system are constant and are equivalent to the historic load data. We use

MATPOWER to run AC power flow and AC OPF. The optimization problem is

solved with CPLEX.

Note that, to model realistic power systems, we assume that there are congested

lines prior to the attack and the attacker chooses one line in L as the target to

maximize power flow. This is achieved in simulation by uniformly reducing all line

ratings by 50% except for that of line 11 (to ensure no congestion in E). The test

system is shown in Fig. 4.1. When the attacker has perfect knowledge of L, we refer

to this case as perfect case.

We illustrate our results for the following choice of parameters: the weight of the

l1-norm of attack vector in (4.11), ζ, is set to 1% of the original power flow value
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Figure 4.1: IEEE 24-Bus RTS System Decomposed into The Attack Sub-network
and External Network.

of the target line; and the load shift factor in (4.14), τ , is set to 10%. We focus on

2 scenarios: (1) attacker’s estimate of information in E is perfect (perfect case); (2)

attacker’s estimate is inaccurate (three different imperfect cases).

Scenario 1: Perfect Estimated Knowledge of E

We first compare the attack consequences determined by the optimization prob-

lems for two cases: (i) limited but perfect knowledge (henceforth identified as local

case); (ii) complete system knowledge as in [26] ((identified as global case)). This

comparison for target line 28 is illustrated in Fig. 4.2 with sub-plots (a)−(c) illus-

trating the maximal power flow, the l1-norm, and the l0-norm of the attack vector,

respectively, as a function of the l1-norm constraint N1. In each subplot, we plot
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Figure 4.2: The Maximum Power Flow on The Target Line, The l1-Norm and l0-
Norm of Solved Attack Vector c V.S. The l1-Norm Constraint (N1) When Load Shift
(τ) Is Limited by 10%; Target Line 28 (Bus 16 – Bus 17).

two curves, one for local and one for global. As N1 increases, the maximal PF on

the target line, the l1-norm and l0-norm of attack vector in both limited and perfect

information attacks increase before N1 reaches 0.025. However, when N1 > 0.025,

getting a larger overflow on the target line requires measurements in both L and E

to be modified. Therefore, target line power flow resulting from global case can in-
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crease after N1 > 0.025, while that resulting from local case remains unchanged due

to limited attack resources.

Fig. 4.2 (d) illustrates the result of an AC attack using the attack vector cLb . The

system re-dispatch in response to this attack is via AC OPF in this case. It is shown

that although the attack vector is solved by a linear optimization problem, it can still

cause overflows in the AC system.

Finally, we exhaustively test all 13 lines inside L as targets in the perfect test case

with N1 = 0.05 and τ = 10%. We observe that attacks that target lines 23 and 28,

which are congested prior to the attack, can successfully cause overflows on target

lines. On the other hand, attacks that target lines 25, 26, 30, and 31 do not result

in target line overflows, however, they lead to overflows on lines 23 and 28. This

observation indicates that congested lines are more vulnerable to this class of attacks,

and therefore should be better protected.

Scenario 2: Inaccurate Estimated Knowledge of E

We use three specific test cases to illustrate the effects of incomplete or inaccurate

information conditions highlighted in Sec. 4.1.2. The modifications of the three test

cases on the perfect test case are:

• Case 1: decrease the rating of line 11 by 50% and that of line 7 by 60% to

create two congested lines in E ;

• Case 2: assume the Eg,m are generators that on buses 1 and 23 in contrast with

the correct ones on buses 7 and 13;

• Case 3: use wrong PTDF matrix which corresponds to a topology with an

outage on line 6.
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For each test case, we first solve the limited information attack optimization problem

to obtain the attack vector cLb as well as the dispatch results solved in second level

problem DC OPF. Then we create the false load patterns determined by cLb and use

such patterns to run a DC OPF as in (2.11)−(2.14). Throughout, N1 is set to be 0.05,

and the load shift is τ = 10%. We observe that the generation re-dispatch given by the

attack optimization problems in all three cases described above are different from the

actual system re-dispatch. Such differences may lead to incorrect post attack power

flow estimation. We compare the power flow on target line solved with our limited

information optimization problems (denoted as Computed PF ), and that solved with

the system response DC OPF (denoted as Actual PF ) in Table 4.1 for target line

28. From the Table, we can see that, all these three cases can distort the attacker’s

evaluations of target line power flow. However, even such limited inaccurate attacks

can cause damage to a congested system.

Table 4.1: Comparison of Computed PF and Actual PF within Attacks for Target
Line 28.

Case Actual PF Computed PF

Perfect 105.64% 105.64%

1 104.60% 105.64%

2 104.82% 105.95%

3 104.95% 105.90%

4.2 False Data Injection Attack with No External Network Information

In this section, a class of unobservable line overflow FDI attacks designed with

no external network information is studied. The attacker is assumed to have per-
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fect information only inside the attack sub-network, but can collect historical data of

the loads and generations inside the sub-network. To this end, we introduce a new

vector, pseudo-boundary injections, to represent the power flow delivered from exter-

nal network to the boundary buses and compute the power flow inside the attack

sub-network with power injections at buses inside the attack sub-network and the

pseudo-boundary injections. The multiple linear regression method is then utilized

to learn the relationship between pseudo-boundary injections and power injections in

attack sub-network with historical data. We introduce a bi-level attack optimization

problem similar as [26] in which the second level DC OPF is modeled with knowledge

inside attack sub-network and the pseudo-boundary injections. The existence of lin-

ear relationship between pseudo-boundary injections and power injections inside the

attack sub-network under certain circumstance is proved. The upper bound on the

target line flow within the designed attack is provided. We demonstrate that the at-

tacks designed with the proposed attack strategy can result in line overflows in IEEE

24-bus RTS system, IEEE 118-bus system, and IEEE 2383-bus (Polish) system.

The limited information attack problem studied in this chapter is similar to the

”seamless” market problem [46] which aims to achieve maximum social welfare across

several adjacent markets, while allowing each market to model its own system, ex-

changing boundary information with its neighbors. In order to predict the behavior

of the adjacent market, in [47, 46], linear regression model is used. However, in con-

trast to the market problem that requires perfect prediction of the external network,

the attacker only needs partial prediction to overload a target line. In this section,

we demonstrate that even if the prediction of the external network re-dispatch is

inaccurate, the attacker can still cause overflow on the target line.
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4.2.1 Attack Strategy

In this subsection, we build upon the attack in Chapter 3 by replacing assumptions

K1 and C1 with the following limited assumptions on the attacker’s knowledge (K3)

and capability (C3):

K3 Within a sub-network L, the attacker has perfect knowledge of the topology,

historical load data, generator data including operational status, capacity, cost,

and historical dispatch information, and locational marginal price (LMP). In

particular, we assume that the attacker has enough historical data to perform

the multiple linear regression described in the sequel. This sub-network L is

bounded by load buses.

C3 The attacker may modify measurements within an attack sub-graph S within L,

i.e., S ⊆ L.

As stated in Sec. 4.1, to achieve K3 and C3, the attacker can access the databases of

several adjacent substations. In addition, historical data can also be collected from

the historical market data released by ISOs, e.g., ERCOT releases all data after six

months.

An example of the attack sub-network in the IEEE 24-bus RTS system is shown

in Fig. 4.3.

Notation: The area outside L, where the attacker has no knowledge, is denoted

as the external network, i.e., E = G \ L. We define the set of boundary buses in

L as B, such that each bus in B is connected to at least one bus in E . The set of

remaining buses in L is defined as the internal bus set I = L \ B. For any vector

or matrix associated with the entire network G such as c,G,H,K, P, PG, and PD, we

write the equivalent parameters corresponding to the sub-network L with (̄·). For
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example, H̄ refers to the dependency matrix between power injection measurements

and state variables only inside L. Sub-vectors are denoted by subscripts with the

corresponding set of elements (buses, lines, or generators). Sub-matrices are denoted

with a subscript giving the set of rows, and a superscript giving the set of columns.
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Figure 4.3: IEEE 24-Bus RTS System Decomposed into Attack Sub-Network and
Attack External Network.

System Power Flow with Localized Information

According to assumption K3, the attacker only has knowledge inside L. Therefore,

the attacker cannot calculate the line power flow inside L with (3.21) since both the

PTDF matrix K of the network G and the subset of power injections in external
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network E are unavailable to attacker. To form the line power flow with K3, we

introduce a vector of pseudo-boundary injection P̄I,B as illustrated in Fig. 4.4. The

ith entry of P̄I,B, namely P̄I,i, corresponding to boundary bus i, represents the sum

of power flows delivered from L to E at boundary bus i, i ∈ B, as

P̄I,i =
∑
k∈WEi

Pk (4.16)

where WEi represents the lines located in E that are connected to boundary bus i.

Using (4.16), the vector of line power flows in L can be written as

P̄ = K̄I(ḠIP̄G − P̄D,I) + K̄B(ḠBP̄G − P̄D,B − P̄I,B) (4.17)

where K̄ is split into column-wise sub-matrices K̄I and K̄B, and Ḡ is split into row-

wise sub-matrices ḠI and ḠB, both corresponding to buses in I and B, respectively.

This equation can be further simplified as

P̄ = K̄(ḠP̄G − P̄D)− K̄BP̄I,B. (4.18)

Multiple Linear Regression

The optimal line overflow attack introduced in Sec. 3.1 involves determining the

attack vector in the first level and estimating the system response to the attack via

the whole system DC OPF in the second level. However, due to limited knowledge, the

attacker must predict the response of the OPF using only local knowledge. The OPF

may be reformulated to include power balance, thermal limit, and generation limit

constraints only in L, and apply (4.18) to capture all effects in the external network

through the pseudo-boundary injections P̄I,B. However, with this formulation, the

attacker still cannot predict how the attack affects P̄I,B since it depends on both

power injections in L and E . Therefore, before the attack is executed, the attacker

cannot estimate the system re-dispatch after the attack accurately.
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If the attacker can obtain a large amount of historical power injections and pseudo-

boundary injections data in L (for example, by observing the system over a long

time), it can learn a functional relationship between pseudo-boundary injection, P̄I,B,

and power injections inside L. The attacker can then predict the pseudo-boundary

injections with the power injection in L as

ˆ̄PI,B = F̂
(
ḠP̄G − P̄D

)
+ f̂0 (4.19)

where [f̂0 F̂ ] represent an affine relationship, and ˆ̄PI,B is the attacker’s prediction

of pseudo-boundary injection by capturing the functional relationship via a linear

model. Note that the historical pseudo-boundary injections can be computed with

data in L as

P̄I,i =
∑
g∈Gi

P̄G,g − P̄D,i −
∑
k∈WLi

P̄k (4.20)

where Gi is the set of generators connected to bus i, and WLi is the set of lines in L

that connected to bus i. We suppose the attacker uses multiple linear regression to
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learn [f̂0 F̂ ].

Multiple linear regression is a statistical method to find a linear relationship be-

tween multiple inputs and single output [48]. Take boundary bus i for an example.

Let the output yi = P̄I,i and inputs xT = ḠP̄G − P̄D. At one instance of time t, yi,t

satisfies

yi,t =

[
x1,t x2,t . . . xk,t

]


fi,1

fi,2
...

fi,k


+ fi,0 + εi,t (4.21)

where fi,j, j = 0, ..., k, are regression coefficients for boundary bus i, and εi,t is

random error. In the following, we let F̂i = [fi,1 fi,2 ... fi,k] be the coefficient vector

for boundary bus i.

Consider a problem with an m× 1 observed output vector yi, and an m× k + 1

input matrix X = [1 x1 ... xk]. The relationship in (4.21) can be written in matrix

notation as

yi = X
[
f̂i,0 F̂i

]T
+ εi. (4.22)

Least squares estimation (LSE) can be used to estimate the regression coefficients F̂i

in (4.22) as

[f̂i,0 F̂i]
T =

(
XTX

)−1
XTyi. (4.23)

Note that as we stated in K3, we assume the attacker has enough historical data.

Therefore,
(
XTX

)
is full-rank. We repeatedly use this process to obtain [f̂i,0 F̂i] for

each i, i ∈ B. Thus, the attacker can use historical data to obtain the estimate F̂ ,

such that [f̂0 F̂ ] = [f̂i,0 F̂i], ∀i ∈ B. The dimension of [f̂0 F̂ ] is nB × (k + 1), where

nB is the number of boundary buses. The attacker now can approximate (4.18) as

P̄ = K̄
(
ḠP̄G − P̄D

)
− K̄B

(
F̂
(
ḠP̄G − P̄D

)
+ f̂0

)
. (4.24)
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In the following subsection, (4.24) is used to evaluate the vulnerability to attacker

with limited information.

Attack Optimization Problem under Localized Information

In this part, we introduce a bi-level attack optimization problem to formulate the

limited information attack. The first level determines the attack vector in L that

maximize target line flow and the second level represents system re-dispatch after

attack via DC OPF formulated with only information in L. However, since the

attacker does not have knowledge of either the topology or the generator information

in E , we assume that the attacker only minimizes the total cost of generation in L

and approximates the effect of the total generation cost in E as the total cost of

the pseudo-boundary injections in the second level modified OPF. For boundary bus

i, this cost is estimated as the product of the LMP, λi, and the pseudo-boundary

injection at bus i. The limited information bi-level attack optimization problem is as

follows:

maximize
c̄,P̄

P̄l − ζ ‖c̄‖0 (4.25)

subject to

P̄ = K̄
(
ḠP̄ ∗G − P̄D

)
− K̄BP̄ ∗I,B (4.26)

‖c̄‖0 ≤ N0, c̄B = 0 (4.27)

− τ P̄D ≤ H̄c̄ ≤ τ P̄D (4.28)

{
P̄ ∗G, P̄

∗
I,B
}

= arg

{
minimize
P̄G,P̄I,B

∑
g∈L

Cg
(
P̄Gg

)
+
∑
i∈B

λiP̄I,i

}
(4.29)

subject to

P̄I,B = F̂
(
ḠP̄G − P̄D + H̄c̄

)
+ f̂0 (4.30)
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∑
g∈L

P̄G,g −
∑
i∈B

P̄I,i =
∑
i∈L

P̄D,i (4.31)

− P̄max ≤ K̄
(
ḠP̄G − P̄D + H̄c̄

)
− K̄BP̄I,B ≤ P̄max (4.32)

P̄G,min ≤ P̄G ≤ P̄G,max (4.33)

where (4.29) captures the modified OPF objective as the first term represents the total

cost of generation in L and the second term is the total cost of pseudo-boundary injec-

tions. Constraint (4.30) represents the attacker’s prediction of the pseudo-boundary

injection after attack resulting from the counterfeit loads. Note that, in the cyber

system (OPF with attack vector), the power injections in L is ḠP̄G − P̄D + H̄c̄,

thus, the corresponding pseudo-boundary injection should respond to these injec-

tions with attack. In (4.32), we directly write the second term with KBP̄I,B instead

of KB
(
F̂
(
ḠP̄G − P̄D + H̄c

)
+ f̂0

)
. In addition, we have changed the constraint on

the attack vector in (4.27) to limit the attack to be within the sub-network L.

As with the bi-level optimization problem for perfect information, (4.25)−(4.33)

is non-linear and non-convex. We employ the same modifications as detailed in Sec.

3.1 to convert it into a MILP.

Note that attacker can only overload lines in L. The attack optimization problem

ensures that only measurements inside L can be changed by attacker. The post-

attack system re-dispatch (OPF), on the other side, forces all the cyber line power

flows within the thermal limits. Therefore, the attacker can only hide the physical

overflow inside L with FDI attack.

4.2.2 Justification of the Localized Information FDI Attacks

In this subsection, we make a distinction between the physical system, as it ac-

tually exists, and the cyber system, as seen by the control center, which may differ

from the physical system due to the FDI attack. We use the superscripts p and c to
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denote the physical and cyber power flows, respectively. Due to limited information,

the attacker can only use data in L to compute the physical and cyber power flows

which may be different from the actual values. Therefore, we refer the physical and

cyber power flows computed by the attacker as attacker-computed physical and cyber

power flows, respectively.

We prove that: (i) there exists a linear relationship F between pseudo-boundary

injection and power injections in L under certain circumstances; and (ii) even if F̂

does not accurately predict the system response after attack, the attacker can still

compute an upper bound on the physical power flow with limited information.

The following assumptions are made about the historical data available to the

attacker: (i) the topology for all the historical data remains the same, (ii) each

instance of historical data satisfies OPF, and (iii) there exists a subset of buses Z in

E , for which power injections remain constant in the historical data. The subset of

remaining buses in E is denoted as Y = E \ Z. In our prior work [26, 29, 45, 27],

we have shown that congested lines are more vulnerable to line overflow FDI attacks.

Analogously, in this section, we assume the target line is congested.

Validation of Multiple Linear Regression Method

In this part, we prove the existence of linear relationship between pseudo-boundary

injections and power injections in L under certain circumstances.

For simplicity, we define the set of lines in the network G that are the congested

for each instance of historical data as C, where C+ and C− are the subsets in C for

which the power flow directions are positive and negative, respectively. We assume

there are nc congested lines in C, nL, nE , and nY buses in L, E , and Y , respectively.

In order to evaluate the performance of the coefficient matrix F̂ , we define a

matrix B = [KYC ; 1T ], where KYC is the sub-matrix of K whose rows correspond to
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the congested lines in C and columns correspond to the buses in Y .

Theorem 1. The coefficient matrix F̂ perfectly predicts the pseudo-boundary injec-

tions with power injections in L linearly if and only if B is full column rank.

Proof. We denote the vector of power injections in G as v; that is v = GPG − PD;

the vectors vL, vE , vY , and vZ represent the subsets of v corresponding to buses

in L, E , Y , and Z, respectively. We define Wi as the set of lines connecting to

boundary bus i, i ∈ B, where WLi and WEi are the subsets of lines located in L and

E , respectively. We define a vector Ji as the sum of row vectors in K corresponding

to lines in WEi ; that is Ji =
∑

k∈WEi
Kk. The matrices JLi , JYi , and JZi are the sub-

matrices of J in which the columns of the matrices corresponding to buses in L, Y ,

and Z, respectively. As introduced in Sec. 4.2.1, the pseudo-boundary injection at

bus i is a linear combination of power injections at each bus in L, Y , and Z is given

by

P̄I,i = JLi vL + JYi vY + JZi vZ . (4.34)

Note that vZ is a constant across all instances of historical data. Since each instance

of historical data resulted from an converged OPF, vL and vY satisfy the following:

KLk vL +KYk vY = Pk,max −KZk vZ ∀k ∈ C+ (4.35)

KLr vL +KYr vY = −Pr,max −KZr vZ ∀r ∈ C− (4.36)

1TvL + 1TvY = −1TvZ (4.37)

where (4.35) and (4.36) are the thermal limit constraints for congested lines in C+

and C−, respectively, and (4.37) is the power balance constraint.

Equations (4.35)−(4.37) can be collected as

AvL +BvY = d. (4.38)
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where A = [KLC ; 1T ] and d = [SPC,max −KZC vZ ; −1TvZ ]. The matrix S is a nc × nc

diagonal matrix with Skk = 1, ∀k ∈ C+, and Skk = −1, ∀k ∈ C−.

The dimensions of A and B are (nc + 1)×nL and (nc + 1)×nY , respectively. Note

that the number of columns in B represents the total number of buses in Y .

Suppose that B is full column rank. Thus, BTB is non-singular; that is, there

exists a pseudoinverse B+ =
(
BTB

)−1
BT , such that B+B = I. Therefore, applying

B+ to (4.38), the vector vY can be rewritten as

vY = −B+AvL +B+d. (4.39)

The pseudo-boundary injection P̄I,i in (4.34) can be written as

P̄I,i =
(
JLi − JYi B+A

)
vL + JYi B

+d+ JZi vZ . (4.40)

Therefore, the linear coefficient Fi between P̄I,i and vL is

Fi = JLi − JYi B+A

fi,0 = JYi B
+d+ JZi vZ .

(4.41)

From (4.41), we see that Fi is unique and is the perfect linear predictor. The linear

coefficient matrix between P̄I,B and vL is F = [Fi], ∀i ∈ B.

Suppose that B is not full column rank. Thus there exist infinitely many of

vY satisfying (4.38), i.e., vY cannot be uniquely determined by vL. Therefore, the

multiple linear regression will not perfectly predict the pseudo-boundary injections.

In Sec. 4.2.3, we provide two test cases in both the IEEE 24-bus system and

Polish system for which the B matrices are full column rank. We demonstrate that

for each test case, the F̂ obtained with multiple linear regression method does indeed

lead to perfect prediction of P̄I,B. We also provide four counter examples (one in the
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IEEE 24-bus system, two in the IEEE 118-bus system, and the other in the Polish

system). For these illustrated counter-examples, B satisfies (nc + 1) < nY , which

indicates that B is not full column rank. However, even for a case with B satisfying

(nc + 1) ≥ nY , B cannot be assumed to be full column rank. An example is a system

with 3 buses in Y and 2 parallel congested lines. For this system, rank
(
KYC
)

= 1

since the row vectors in K for the parallel lines are the same. The matrix B, hence,

is not a full rank matrix since rank (B) ≤ 2 and by Theorem 1, F̂ cannot result in an

accurate prediction.

Note that B does not determine the feasibility of the limited information FDI

attacks. In fact, B only determines whether P̄I,B can be perfectly predicted by vL or

not. However, that does not mean that when B is not full column rank, such attacks

are infeasible. The matrix B which is not full column rank may undermine the

attacker’s evaluation of the attack consequences via the bi-level attack optimization

problem. But the attacker can still find attack vector c and design the attack.

Upper Bound on Physical Consequences of Attack

Although F̂ in general cannot accurately predict P̄I,B when B is not full column

rank, the attacker can still utilize F̂ in the bi-level attack optimization problem

(4.25)−(4.33) to predict the physical power flow on target line. However, the attacker-

computed physical power flow may not match the physical power flow. The following

theorem shows that even so, the attacker can compute an upper bound P ub
l on the

physical power flow on the target line subsequent to an attack.

Theorem 2. The physical power flow on the target line l resulting from attack vector

c̄∗ is upper bounded by

P ub
l = Pl,max − K̄lH̄c̄

∗. (4.42)

44



Proof. Solving the attack optimization problem (4.25)−(4.33), the attacker can obtain

the optimal attack vector c̄∗. The resulting attack vector for the whole system is c∗,

where c∗i = c̄∗i for i ∈ L and c∗i = 0 for i ∈ E . Injecting c∗ in the system will result in

a system re-dispatch determined by (3.5)−(3.8). The difference between the physical

and cyber power flows (P p
l and P c

l , respectively) on target line l after the post-attack

system re-dispatch is

P p
l − P

c
l = −KlHc

∗. (4.43)

Thus, the physical power flow on target line l satisfies

P p
l = P c

l −KlHc
∗ ≤ Pl,max −KlHc

∗. (4.44)

where the upper bound follows from the thermal limit constraint on P c
l in (3.7). Note

that Kl and H are unknown to the attacker with limited information. However, the

attacker has the knowledge of K̄l and H̄. We now show that the upper bound in

(4.44) is equivalent to P ub
l defined in (4.42).

The PTDF matrices K̄ and K satisfy the following

K̄ = Γ̄H̄+ (4.45)

K = ΓH+ (4.46)

where Γ and Γ̄ are the dependency matrices between power flow measurements and

voltage angle states in G and L, respectively, H+ and H̄+ are the pseudoinverse of

H and H̄, respectively. Note that for target line l, both Γl and Γ̄l have only two

non-zero elements corresponding to the two end buses of l (denoted as buses lf and

lt, respectively). In particular, Γ
lf
l = Γ̄

lf
l = −Γltl = −Γ̄ltl = 1

xl
, where xl is the line

impedance of line l. Thus,

K̄lH̄c̄
∗ = Γ̄lc̄

∗ = Γlc
∗ = KlHc. (4.47)
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Therefore, the right-hand side of (4.44) is exactly equal to P ub
l . This proves the upper

bound in (4.42). Moreover, P ub
l can be computed by the attacker, since it requires

knowledge only of the local network L and the attack vector c̄∗.

Note that from (4.26) and (4.32), the attacker can compute the difference between

the physical and cyber power flows on target line l (P̄ p
l and P̄ c

l , respectively) solved

with limited information attack optimization as

P̄ p
l − P̄

c
l = −K̄lH̄c̄

∗. (4.48)

Thus, the difference between physical and cyber power flows seen by the attacker and

the system are the same

P̄ p
l − P̄

c
l = P p

l − P
c
l . (4.49)

4.2.3 Numerical Results

In this subsection, we illustrate the efficacy of the attacks designed with the

method proposed in Sec. 4.2.1. To this end, we first compute the coefficient ma-

trix with historical data using the multiple linear regression method. Subsequently,

we solve the optimization problem to find the optimal attack vector c̄∗ inside L. Fi-

nally, we test the physical consequences of the attack vector c̄∗ on the entire network

G. The test systems include the IEEE 24-bus reliability test system (RTS), IEEE

118-bus system, and Polish system from MATPOWER v4.1. In particular, the line

rating data for IEEE 118-bus system is adopted from [49]. The whole network DC

OPF and limited information attack algorithm is implemented with Matlab. The

optimization problem is solved with CPLEX.

To model realistic power systems, we assume that there are congested lines prior

to the attack and the attacker chooses one of them in L as the target to maximize
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power flow. This is achieved in simulation by uniformly reducing all line ratings by

50% for the IEEE 24-bus RTS and 45% for the IEEE 118-bus system.

We illustrate our results for the following choice of parameters: the weight of the

l1-norm of attack vector in (4.25), ζ, is set to 1% of the original power flow value of

the target line; and the load shift factor in (4.28), τ , is set to 10%. We assume that

the attacker can obtain 200 instances of historical data inside L.

We focus on two scenarios for the historical data:

• Scenario 1 - Constant Loads in E: In each instance of data, loads in E

remain unchanged while loads in L vary as a percent p of the base load, where

p is independent N (0, 10%). That is, power injections vary only at buses with

marginal generators (denoted EM). Therefore, in this scenario, the set Y is

given by Y = EM . The number of buses in EM is denoted by nEM

• Scenario 2 - Varying Loads in G: In each instance of data, loads in both

L and E vary as a percent p of the base load, with p chosen independently for

each load as N (0, 10%). In this scenario, power injections at all buses in E vary

in the historical data, i.e., Y = E .

Note that the data in both scenarios also satisfy the following assumptions: (i) the

topology for all the historical data remains the same, (ii) the historical generation

dispatches data in both scenarios satisfies OPF, and (iii) there exists a subset of buses

Z in E , for which power injections remain constant in the historical data. An example

of attack is that an attacker hacks into the system and collects the data from 12:00

p.m. to 2:00 p.m. for the entire month of July and then launches a FDI attack at the

end of the month.
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Results for IEEE 24-bus RTS system

In this part, we present attack consequences on the IEEE 24-bus RTS system for

Scenarios 1 and 2. The sub-network L is illustrated in Fig. 4.3. In each scenario, we

compare the attack consequences on target line 28 determined by the optimization

problems for two cases: (i) complete system knowledge as in [26] (identified as global

case), and (ii) limited system knowledge (henceforth identified as local case). For lo-

cal case, we compare the physical power flow P p
l and the attacker-computed physical

power flow P̄ p
l . The results of attacks are illustrated in Fig. 4.5. We illustrate the dif-

ference between the physical and the attacker-computed pseudo-boundary injections

in Fig. 4.6.
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Figure 4.5: The Maximum Power Flow (PF) V.S. The l1-Norm Constraint (N1)
When Target Line Is 28 of IEEE 24-Bus System for (a) Scenario 1, and (b) Scenario
2 Historical Data.
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Figure 4.6: The Pseudo-Boundary Power Injection Error V.S. The l1-Norm Con-
straint (N1) When Target Line Is 28 of IEEE 24-Bus System for (a) Scenario 1, and
(b) Scenario 2 Historical Data.

In Figs. 4.5(a) and (b), we note that the solutions for the local case is sub-optimal

relative to that for the global case. The reason is that as N1 is relaxed, getting a larger

overflow on the target line requires measurements in both L and E to be modified.

Therefore, the constraint on limited attack resources prevents any further increase in

the maximal target line flow for the local case.

The parameters of the test system are summarized in Table 4.2. The histori-

cal data in Scenario 1 satisfies rank(B) = nEM . Thus, by Theorem 1, the pseudo-

boundary power injections are perfectly predicted by the multiple linear regression

method, which explains why the attacker-computed system response post-attack is

the same as the actual response, as illustrated in Figs. 4.5(a) and 4.6(a).

Furthermore, Table 4.2 shows that for the historical data in Scenario 2, rank(B) <

nE . Thus, by Theorem 1, the predictions of pseudo-boundary injections by the mul-

tiple linear regression are not accurate and there will be mismatches between the
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actual and the attacker-computed system response post-attack. This is verified by

the non-zero pseudo-boundary power injection differences shown in Fig. 4.6(b). In

Fig. 4.5(b), in addition to plotting the attacker-computed physical power flow, we

also plot the upper bound on physical power flow. From Fig. 4.5(b), we observe

that although there are mismatches between the actual and attacker-computed sys-

tem response under attack, the upper bound found in Sec. 4.2.2 exactly matches the

physical power flow.

Results for IEEE 118-bus System

In this part, we test the consequences of attacks on the IEEE 118-bus system. The

details of sub-network L are listed in Table 4.3. The results of attacks designed with

historical data in Scenarios 1 and 2 are illustrated in Fig. 4.7 with sub-plots (a)

and (b), respectively. The difference between the physical and the attacker-computed

pseudo-boundary injections at 3 of 18 boundary buses, buses 23, 70, and 80, for both

scenarios are illustrated in Fig. 4.8.
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Figure 4.7: The Maximum Power Flow (PF) V.S. The l1-Norm Constraint (N1)
When Target Line Is 5 of IEEE 118-Bus System for (a) Scenario 1, and (b) Scenario
2 Historical Data.
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Figure 4.8: The Pseudo-Boundary Power Injection Error V.S. The l1-Norm Con-
straint (N1) When Target Line Is 5 of IEEE 118-Bus System for (a) Scenario 1, and
(b) Scenario 2 Historical Data.

The parameters of the test system are also summarized in Table 4.2. Note that

for historical data in both scenarios, B does not have full column rank. Therefore,

Theorem 1 predicts a mismatch between physical and attacker-computed pseudo-

boundary injections. This is verified by Fig. 4.8, which shows the pseudo-boundary

injection error. In Figs. 4.7(a) and (b), we find that in both scenarios, both the

attacker-computed physical power flow and the upper bound match the physical power

flow. This case demonstrates that even though there are mismatches between physical

and attacker-computed pseudo-boundary injections, the attacker-computed physical

power flow can still be correct. Note that, in this case, both the cyber power flow

and the attacker-computed cyber power flow reach the limit post-attack since the

target line is congested before attack. Therefore, from (4.49), the attacker-computed

physical power flow is the same as the physical power flow.
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Table 4.3: Summary of The Attack Sub-network in IEEE 118-Bus System

Buses 1-14, 16, 17, 23, 25-27, 30, 33-35, 37-40, 47, 49, 59-66, 68-70, 75, 77, 80,

81, 116, 117

Lines 1-17, 20, 22, 31-33, 36-38, 47, 48, 50-55, 65, 88-100, 102, 104-108, 115,

116, 119, 120, 123, 124, 126, 127, 183, 184

Boundary

Buses

13, 14, 17, 23, 27, 33-35, 40, 47, 49, 59, 62, 66, 70, 75, 77, 80

Results for Polish System

In this part, we test the consequences of attacks on the Polish system. The topology

of the Polish system is illustrated in Fig. 4.9 where the sub-network L is highlighted

with orange and the target line 1816 is highlighted with red. The results of attacks

are demonstrated in Fig. 4.10. The difference between the physical and the attacker-

computed pseudo-boundary injections at 3 of 7 boundary buses, buses 919, 1055, and

1215 for both scenarios are illustrated in Fig. 4.11.

The parameters of the test system are also summarized in Table. 4.2. In this test

system, the historical data in Scenario 1 satisfies rank(B) = nEM . Thus, as stated in

Theorem 1, the attacker can perfectly predict the pseudo-boundary injections with the

multiple linear regression method. This can be verified by Figs. 4.10(a) and 4.11(a)

which show the perfectly matched physical and attacker-computed power flow and

pseudo-boundary injections, respectively. The matrix B for historical data in Scenario

2, on the other hand, does not have full column rank. Therefore, a mismatch between

physical and attacker-computed pseudo-boundary injections is predicted by Theorem

1. This is verified by the non-zero pseudo-boundary injection errors shown in Fig.

4.11(b). In Fig. 4.10(b), we also find that in Scenario 2, both the attacker-computed
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physical power flow and the upper bound match the physical power flow. This case

further verifies our observation in the IEEE 118-bus system that even with prediction

errors on pseudo-boundary injections, the attacker-computed physical power flow can

still be correct when both the cyber and the attacker-computed cyber power flow

reach the limit post-attack.
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Figure 4.10: The Maximum Power Flow (PF) V.S. The l1-Norm Constraint (N1)
When Target Line Is 1816 of Polish System for (a) Scenario 1, and (b) Scenario 2
Historical Data.

The attack sub-network studied here as well as in the IEEE 24-bus RTS and IEEE

118-bus systems are compared in Table. 4.4. From this table, it can be seen that

compared to the attack sub-networks in the IEEE 24-bus and 118-bus systems, the

size of the attack sub-network L studied here only covers 1% of the Polish system.

This test case shows that even with a minuscule amount of system information, the

attacker can still cause physical line overflow in a large-scale system.
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Figure 4.11: The Pseudo-Boundary Power Injection Error V.S. The l1-Norm Con-
straint (N1) When Target Line Is 1816 of Polish System for (a) Scenario 1, and (b)
Scenario 2 Historical Data.

Table 4.4: Comparison of the Attack Sub-networks in IEEE 24-Bus RTS, IEEE
118-Bus, and Polish Systems.

Test

System

# of

Buses

% of the

Total

Buses

# of

Branches

% of the

Total

Branches

# of

Generators

% of the

Total

Generators

24-bus 8 37.5% 12 31.58% 16 48.48%

118-bus 47 39.83% 63 33.87% 22 40.74%

Polish 26 1.09% 27 0.93% 5 1.53%

4.3 Sensitivity Analysis

In Sec. 4.2.3, several historical data assumptions have been made to ensure both

the pre-attack and post-attack operation conditions have the similar characteristics
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with each instance of historical data. Such characteristics include the congestion

patterns, topologies, load distribution patterns, and marginal generation sets. In

addition, linear (DC) power flow model is utilized for learning and attack design

in Sec. 4.2. In this section, we denote such an instance of historical data as perfect

historical data. We denote the historical dataset that consists of only perfect historical

data as perfect historical dataset. Throughout, the perfect historical data for each test

system satisfies the following assumptions: (i) in each instance of data, the system

topology, the set of operating generators, and the cost of each generator are the

same with the pre-attack operation condition, (ii) in each instance of data, the loads

in G vary as a percent p ∼ N (0, 10%) of the base load, and (iii) the historical

generation dispatches data satisfies OPF. Our simulation results in Sec. 4.2 have

demonstrated that limited information attacks designed with perfect historical dataset

can result in physical line overflow successfully. However, in reality, the attacker may

obtain imperfect historical datasets which do not satisfy the perfect historical dataset

definition. As a result, consequences of the attack may be reduced.

In this section, we perform sensitivity analysis of the attacks designed with the

method proposed in Sec. 4.2.1 on multiple scenarios of imperfect historical datasets.

The test systems include the IEEE 24-bus, 118-bus, and 2383-bus (Polish) systems.

The following parameters are chosen to illustrate the results: the weight of the l1-norm

of attack vector in (4.25), ζ, is set to 1% of the original popwer flow value of the target

line, the load shift factor in (4.28), τ , is set to 10%, and the l1-norm constraint limit,

N1, are set to 0.05, 0.4, and 0.5 for the IEEE 24-bus, 118-bus, and Polish systems,

respectively. We assume that the attacker can obtain 200 instances of historical data

inside L for each of the three test systems. In particular, we only consider historical

datasets with varying loads in the entire network G so as to demonstrate the worst-

case performance.
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We focus on the following four classes of imperfect historical datasets:

1. Dataset has different load varying percentage with the desired load shift τ (de-

noted as load varying error dataset).

2. Dataset includes topologies different from the target operation condition (de-

noted as topology error dataset).

3. Dataset has different generation dispatch plans (e.g., some generators are shut

down, or the outputs of some generators have been manually changed) (denoted

as dispatch error dataset).

4. Dataset satisfies non-linear (AC) power flow model instead of DC power flow

model (denoted as AC power flow dataset).

In the following subsections, we exhaustively test the performance of the linear regres-

sion method obtained with the 4 classes of imperfect historical datasets. To evaluate

the impacts of different factors to the prediction accuracy and attack consequences,

we ensure that the historical data in each subsection only has one of the above four

mentioned errors. The other factors remain the same as the perfect historical dataset.

For each choice of imperfect parameters, we randomly generate a corresponding im-

perfect historical dataset, compute the coefficient matrix with this dataset, solve the

optimization problem to find the optimal attack, and test the physical consequences

of the attack. We repeat this process 100 times and demonstrate the following sta-

tistical results: (i) the percentage of trials in which the target line has physical line

overflow; (ii) the percentage of trials in which the target line physical power flow

(PPF) equals to the attacker-computed physical power flow (CPF); (iii) the maxi-

mum, minimum, and median of the target line physical power flow values; (iv) the

maximum positive and negative differences between the target line physical power
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flows and attacker-computed physical power flows; and (v) the percentage of trials

in which the pseudo-boundary injection prediction error decreased. Note that for

statistical result (v), we use the error between the physical and attacker-computed

pseudo-boundary injections to demonstrate the pseudo-boundary injection prediction

accuracy. In particular, since there are multiple boundary buses in each test system,

we compute the l2-norm of the errors on all boundary buses and compare it with the

average l2-norm of the errors obtained from 100 perfect historical datasets. In the

following subsections, we use % of trails with target PPF overflow, % of trials with

target PPF matching CPF, statistic results of the target PPF, max +/- target line

PF difference, and % of trials with prediction error increasing to denote statistical

results (i)–(v) for short, respectively.

4.3.1 Load Varying Error Dataset

In this subsection, the impact of the historical data with load varying errors on the

attack consequences has been studied. Compared to the perfect historical dataset,

the imperfect historical dataset includes no% of imperfect historical data in which

the loads in G vary as a percent p ∼ N (0, τ̄) of the base load, where τ̄ 6= 10%.

All possible choices of no% imperfect historical data ranging between 20% to 100%

with 20% increments and the standard deviation τ̄ of the load varying percent p

ranging between 20% to 70% with 10% increments have been exhaustively studied to

demonstrate the effect of the load varying errors.

Results for IEEE 24-bus RTS System

In this part, we demonstrate the sensitivity analysis results of the attacks in the IEEE

24-bus RTS system. The statistical results (i)–(v) are summarized in Tables. 4.5–4.9.
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Table 4.5: Summary of The % of Trials with Target PPF Overflow for Load Varying
Error Dataset in the IEEE 24-Bus System (Statistics (i)).

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

no% 20% 30% 40% 50% 60% 70%

20% 100% 100% 99% 96% 92% 93%

40% 100% 99% 96% 92% 93% 92%

60% 99% 99% 95% 91% 90% 91%

80% 100% 99% 90% 93% 93% 91%

100% 100% 99% 91% 92% 86% 87%

no%: Percentage of imperfect data in the historical dataset.

Table 4.6: Summary of The % of Trials with Target PPF Matching CPF for Load
Varying Error Dataset in The IEEE 24-Bus System (Statistics (ii)).

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

no% 20% 30% 40% 50% 60% 70%

20% 0 2% 5% 11% 19% 15%

40% 0 6% 13% 10% 13% 12%

60% 1% 4% 12% 17% 20% 20%

80% 0 3% 16% 12% 14% 21%

100% 2% 8% 17% 15% 19% 20%

no%: Percentage of imperfect data in the historical dataset.
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Table 4.7: Summary of The Statistic Reuslts of The Target PPF for Load Varying
Error Dataset in The IEEE 24-Bus System (Statistics (iii)).

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

Statistics 20% 30% 40% 50% 60% 70%

Max 105.54% 105.50% 105.58% 105.55% 105.57% 105.59%

Min 102.04% 96.63% 95.10% 94.62% 94.43% 94.13%

Median 104.20% 104.20% 104.20% 104.20% 104.20% 104.20%

Table 4.8: Summary of The Max +/- Target Line PF Error for Load Varying Error
Dataset in The IEEE 24-Bus System (Statistics (iv)).

Max Target

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

PF Error 20% 30% 40% 50% 60% 70%

+ 5.96% 8.08% 9.42% 13.29% 14.6% 19.3%

− 1.99% 1.99% 2.63% 6.5% 6.4% 7.8%

Table 4.9: Summary of The % of Trials with Prediction Error Increasing for Load
Varying Error Dataset in The IEEE 24-Bus System (Statistics (v)).

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

no% 20% 30% 40% 50% 60% 70%

20% 91% 97% 93% 83% 86% 88%

40% 99% 98% 88% 93% 94% 89%

60% 99% 93% 95% 94% 95% 96%

80% 100% 95% 97% 99% 100% 100%

100% 100% 97% 99% 100% 99% 100%

no%: Percentage of imperfect data in the historical dataset.
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Results for IEEE 118-bus System

In this part, we demonstrate the sensitivity analysis results of the attacks in the IEEE

118 system. The statistical results (i)–(v) are summarized in Tables. 4.10–4.14.

Table 4.10: Summary of The % of Trials with Target PPF Overflow for Load Varying
Error Dataset in The IEEE 118-Bus System (Statistics (i)).

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

no% 20% 30% 40% 50% 60% 70%

20% 100% 100% 100% 100% 100% 99%

40% 100% 100% 100% 100% 100% 100%

60% 98% 100% 100% 100% 100% 100%

80% 100% 100% 100% 100% 100% 100%

100% 100% 100% 100% 100% 100% 100%

no%: Percentage of imperfect data in the historical dataset.

Table 4.11: Summary of The % of Trials with Target PPF Matching CPF for Load
Varying Error Dataset in The IEEE 118-Bus System (Statistics (ii)).

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

no% 20% 30% 40% 50% 60% 70%

20% 83% 90% 98% 99% 100% 98%

40% 80% 97% 99% 100% 100% 100%

60% 71% 92% 99% 100% 100% 100%

80% 68% 89% 99% 100% 98% 98%

100% 59% 91% 95% 98% 100% 100%

no%: Percentage of imperfect data in the historical dataset.
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Table 4.12: Summary of The Statistic Reuslts of The Target PPF for Load Varying
Error Dataset in The IEEE 118-Bus System (Statistics (iii)).

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

Statistics 20% 30% 40% 50% 60% 70%

Max 106.13% 106.13% 106.13% 106.13% 106.13% 106.13%

Min 97.98% 105.52% 104.01% 103.29% 102.97% 100.05%

Median 106.13% 106.13% 106.13% 106.13% 106.13% 106.13%

Table 4.13: Summary of The Max +/- Target Line PF Error for Load Varying Error
Dataset in The IEEE 118-Bus System (Statistics (iv)).

Max Target

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

PF Error 20% 30% 40% 50% 60% 70%

+ 2.60% 8.05% 4.77% 3.96% 1.00% 1.00%

− 0 0 0 0 0 0

Table 4.14: Summary of The % of Trials with Prediction Error Increasing for Load
Varying Error Dataset in IEEE The 118-Bus System (Statistics (v)).

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

no% 20% 30% 40% 50% 60% 70%

20% 27% 26% 43% 28% 34% 44%

40% 35% 34% 50% 57% 47% 42%

60% 41% 46% 57% 53% 52% 35%

80% 59% 50% 53% 56% 38% 28%

100% 41% 69% 40% 34% 22% 14%

no%: Percentage of imperfect data in the historical dataset.
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Results for the Polish System

In this part, we demonstrate the sensitivity analysis results of the attacks in the Polish

system. The statistical results (i)–(v) are summarized in Tables. 4.15–4.19.

Table 4.15: Summary of The % of Trials with Target PPF Overflow for Load Varying
Error Dataset in The Polish System (Statistics (i)).

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

no% 20% 30% 40% 50% 60% 70%

20% 100% 100% 100% 100% 100% 99%

40% 99% 99% 100% 100% 99% 98%

60% 100% 100% 99% 99% 99% 100%

80% 100% 100% 96% 99% 100% 98%

100% 100% 97% 99% 99% 100% 95%

no%: Percentage of imperfect data in the historical dataset.

Table 4.16: Summary of The % of Trials with Target PPF Matching CPF for Load
Varying Error Dataset in The Polish System (Statistics (ii)).

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

no% 20% 30% 40% 50% 60% 70%

20% 75% 97% 97% 94% 94% 97%

40% 83% 89% 96% 91% 94% 94%

60% 87% 89% 84% 69% 67% 71%

80% 83% 77% 59% 38% 33% 35%

100% 75% 56% 31% 7% 4% 7%

no%: Percentage of imperfect data in the historical dataset.
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Table 4.17: Summary of The Statistic Reuslts of The Target PPF for Load Varying
Error Dataset in The Polish System (Statistics (iii)).

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

Statistics 20% 30% 40% 50% 60% 70%

Max 102.86% 102.86% 102.85% 102.85% 102.85% 102.85%

Min 99.31% 98.80% 97.10% 98.25% 99.85% 99.07%

Median 102.56% 102.52% 102.50% 102.47% 102.45% 102.43%

Table 4.18: Summary of The Max +/- Target Line PF Error for Load Varying Error
Dataset in The Polish System (Statistics (iv)).

Max Target

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

PF Error 20% 30% 40% 50% 60% 70%

+ 1.79% 3.53% 8.36% 3.24% 2.84% 2.94%

− 0.31% 1.58% 5.67% 0.31% 0.50% 2.78%

Table 4.19: Summary of The % of Trials with Prediction Error Increasing for Load
Varying Error Dataset in The Polish System (Statistics (v)).

Standard Deviation τ̄ of Load Varying Percentage p ∼ N (0, τ̄)

no% 20% 30% 40% 50% 60% 70%

20% 59% 56% 72% 76% 77% 66%

40% 54% 63% 64% 68% 73% 74%

60% 56% 54% 67% 74% 78% 86%

80% 53% 59% 80% 87% 91% 90%

100% 58% 74% 83% 93% 95% 93%

no%: Percentage of imperfect data in the historical dataset.

65



The results in this subsection demonstrate that with load varying errors in his-

torical data, the prediction errors on the pseudo-boundary injections will increase.

For most of the test cases, the pseudo-boundary prediction errors will increase as the

number of the imperfect data increase. The prediction errors seem to be irrelevant

with the load varying factors. Table. 4.16 shows that for the Polish system, the

prediction errors on the target line physical power flow also increase as the number

of imperfect data increases. However, the attacker can still result in line overflow

with such imperfect historical datasets. This can be verified with the data shown in

Tables. 4.5, 4.10, and 4.15, for the IEEE 24-bus, IEEE 118-bus, and Polish systems,

respectively, where physical line overflow occurs in over 95% of the test cases.

4.3.2 Topology Error Dataset

In this subsection, the impact of the historical data with topology errors on the

attack consequences has been studied. We assume that the attacker is not aware

of line outages in E when collecting historical data. We have studied two types of

imperfect historical datasets as follows:

a. All instances of data in the imperfect historical dataset have uniform topology

with a single line outage in E .

b. The imperfect historical dataset consists of data under two different topologies.

Each topology has a single line outage in E .

The results of the above two types of imperfect historical datasets are demonstrated

in Tables 4.20.

From this table, it can observed that if the attacker uses historical datasets with

topology errors to design attacks, the pseudo-boundary prediction errors will increase.

However, in over 90% of the test cases, the attacker can still cause line overflow with
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the inaccurate coefficient matrices. Specifically, in the IEEE 118-bus and Polish

systems, the physical power flow and attacker-computed physical power flow matches

in near 95% and 80% test cases, respectively.

4.3.3 Dispatch Error Dataset

In this subsection, we demonstrate the implication of the historical data with

generation dispatch errors to the attack consequences. Specifically, we consider the

following two types of dispatch errors:

1. Compared to the set of generators in the perfect historical data, all instances

of data in the imperfect historical dataset have one generator outage in E .

2. The generation dispatch in the imperfect historical dataset does not satisfy OPF

result. This type of error is to mimic the manual generation dispatches in the

historical dataset.

Generator Outage Error

In this part, we assume the attacker is not aware of the generator outages in E

when collecting historical data. We have exhaustively tested the attack consequences

resulting from the imperfect historical datasets with

a. All possible choices of a single generator outage in E .

b. The imperfect historical dataset consists of data under two different generator

outage patterns. Each pattern has a single generator outage in E .

The results of the above two types of imperfect historical datasets are demonstrated

in Tables 4.21.
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The last column in this table demonstrates that prediction errors on the pseudo-

boundary injections increase when historical datasets with generator outage errors

are utilized to design attacks. However, in each test system, there are over 95% of the

designed attacks resulting in physical line overflow. In particular, the physical con-

sequences can be accurately predicted with near 97% and 82% inaccurate coefficient

matrices in the IEEE 118-bus and Polish systems, respectively.

Manual Dispatch Error

In this part, we assume the some instances of the historical data do not satisfy the

OPF results. This type of errors is to mimic the manual generation dispatches under

some conditions (e.g., to eliminate emergences). To simulate such errors, we randomly

assign the generation cost to each generator in the test system and run OPF to obtain

the results. Such results ensure that there are no violations in the system while the

dispatches are totally different from the perfect historical dispatches. Compared to the

perfect historical dataset, the imperfect historical dataset includes no% of imperfect

historical data. We have studied the imperfect historical dataset with 20% to 100%

imperfect data with 20% increments. The statistical results (i)–(v) are summarized

in Tables. 4.22–4.26, respectively.
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Table 4.22: Summary of The % of Trials with Target PPF Overflow for Manual
Dispatch Error Dataset (Statistics (i)).

Test Systems

no% 24-bus 118-bus Polish

20% 89% 98% 100%

40% 92% 93% 96%

60% 90% 98% 96%

80% 95% 96% 100%

100% 80% 96% 99%

no%: Percentage of imperfect data in the historical dataset.

Table 4.23: Summary of The % of Trials with Target PPF Matching CPF for Manual
Dispatch Error Dataset (Statistics (ii)).

Test Systems

no% 24-bus 118-bus Polish

20% 20% 97% 35%

40% 11% 93% 40%

60% 22% 98% 42%

80% 21% 96% 31%

100% 15% 96% 26%

no%: Percentage of imperfect data in the historical dataset.
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Table 4.24: Summary of The Statistic Reuslts of The Target PPF for Manual Dis-
patch Error Dataset (Statistics (iii)).

Test Systems

Statistics 24-bus 118-bus Polish

Max 105.64% 106.13% 102.85%

Min 95.00% 100.66% 101.76%

Median 105.64% 106.13% 102.76%

Table 4.25: Summary of The Max +/- Target Line PF Error for Manual Dispatch
Error Dataset (Statistics (iv)).

Max Target

Test Systems

PF Error 24-bus 118-bus Polish

+ 10.81% 11.42% 0.98%

− 6.5% 0 0

Table 4.26: Summary of The % of Trials with Prediction Error Increasing for Manual
Dispatch Error Dataset (Statistics (v)).

Test Systems

no% 24-bus 118-bus Polish

20% 92.59% 44% 54%

40% 95.65% 39% 52%

60% 100% 29% 53%

80% 100% 26% 54%

100% 100% 41% 49%

no%: Percentage of imperfect data in the historical dataset.
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From Tables. 4.23 and 4.26, it can be seen that as the number of imperfect data

with manual dispatch error increases, the attacker’s prediction on both the target

line physical power flow and the pseudo-boundary injections will be undermined.

However, Table. 4.22 indicates that the attacker can still cause physical line overflow

on the target line in most of the test trials.

4.3.4 AC Power Flow Dataset

In this subsection, the impact of the historical data with AC power flow on the

attack consequences has been studied. We tested the performances of coefficient ma-

trices learned form the historical dataset with load varying percent as p ∼ N (0, 10%),

same topology, same on-line generators and costs with the pre-attack and post-attack

operation conditions, but under AC power flow model. The statistical results (i)–(v)

for all tested cases are summarized in Tables. 4.27.

From this table, it can be seen that historical datasets with non-linear power flow

data can reduce the prediction accuracy of the pseudo-boundary injections. However,

for all the test systems, 100% of the designed attacks can result in physical target

line overflows.

Overall, the sensitivity analysis results in this section demonstrate the robustness

of the limited information attack strategy introduced in Sec. 4.2.1 on imperfect

datasets with load varying errors, topology errors, generation dispatch errors, and

non-linear power flow data.

4.4 Discussion

In this chapter, several approximations are made to model ideal attackers and sys-

tems. In this section, the impacts of such approximations on the attack consequences

in a realistic system are analyzed.
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4.4.1 Approximation on Power Flow Limit Constraints

Throughout this chapter, the attack is defined to be successful if it can result in

the physical active power flow on the target line exceeding the power flow limit. Note

that only thermal limits are considered here, i.e., Pmax in (4.2) and (4.32) is the vector

of thermal ratings. In practice, stability limit constraints for some specific lines may

also be modeled to maintain the system synchronism and voltage stability. For such

a transmission line, the stability line rating is generally less than the thermal rating.

Therefore, if such a line is chosen as the target line, it is difficult for the attacker

to cause physical line overflow which violates the thermal limit and overheats the

line. However, the attacker can still use the attack optimization structure here to

maximize the power flow on this line. Under this condition, FDI attacks obtained

with the attack optimization problem may result in losing synchronism between the

two end buses or voltage collapse problems.

In addition, the line thermal ratings here are adopted from MATPOWER test

cases for the IEEE 24-bus, 118-bus, and Polish systesms with modifications. Such

limits are assumed to be constant values in this chapter. However, in practice, thermal

ratings of lines are calculated based on the maximum operating temperature of the

conductor. There are typical continuous operation and emergency limits. These limits

may vary druing summer and winter and depend on ambient temperature and wind

speed. The ampacity of the conductor determines the limiting value and this in turn

is dependent on a number of factors. Therefore, if the attacker neglects these factors

and only models constant thermal limits (e.g., some inaccurate values obtained from

the historical data), the bi-level attack optimization problems proposed in this chapter

can also result in erroneous estimation on the attack consequences. This, in turn, can

undermine the physical damage caused by the designed attacks.
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4.4.2 Approximation on PTDF Matrix

In this chapter, a static PTDF matrix is utilized to compute DC power flows. That

is, the PTDF matrix is computed only with reactances of transmission lines. However,

instead of the static PTDF matrix, a dynamic PTDF matrix which is linearized at the

current operating condition is utilized in practice to compute power flow. Therefore,

even when the system topology remains unchanged, PTDF matrices can vary under

different operating conditions (e.g., different load levels). Such an approximation can

also undermine the attacker’s estimation on the attack consequences.

Although the approximations discussed above can undermine the attack conse-

quences on real power systems, attackers can always intensify the attacks by achieving

more system knowledge and modeling a more accurate system response. Therefore,

the system control center should take such vulnerabilities into consideration.

4.5 Concluding Remarks

This chapter studies the physical system consequences of two classes of limited

information FDI attacks. In the first attack class, a bi-level optimization problem

is formulated to maximize the power flow on a chosen target line with attacker’s

perfect information in a sub-network L as well as estimated information of marginal

generators and PTDF out of L. It is illustrated that with an appropriately chosen

sub-network and perfect localized information, the attacker can overload transmission

lines with limited load shifts in both linear and non-linear models in the test system.

In second attack class, we have introduced pseudo-boundary injections to represent

the power flow delivered from the external network and developed a multiple linear

regression model to learn the relationship between pseudo-boundary injections and the

power injections inside L. Furthermore, we have formulated a bi-level optimization
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problem is to maximize the power flow on a chosen target line with attacker’s perfect

information in a sub-network L as well as the predicted pseudo-boundary injections.

It is illustrated that the attacker can overload transmission lines with the proposed

bi-level attack optimization problems with both perfect and inaccurate predictions of

pseudo-boundary injections. Sensitivity analysis of this attack strategy is performed

on imperfect historical datasets with load varying errors, topology errors, generation

dispatch errors, and non-linear power flow data. It is demonstrated that such an

attack strategy is robust to all the four types of errors.
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Chapter 5

VULNERABILITY ANALYSIS FRAMEWORK FROM THE PERSPECTIVE OF

SYSTEM

In Chapters 3–4, the feasibility and physical consequences of the FDI attacks de-

signed with perfect and limited information have been analyzed from the perspective

of the attacker. However, how can the control center perform the vulnerability anal-

ysis apriori is a question that remains to be answered. In this chapter, an off-line

analysis method is proposed to identify the set of sub-networks in a test system that

are more prone to FDI attacks. Throughout, such sub-networks are denoted as key

sub-networks.

5.1 Off-line Vulnerability Framework

In the following, we propose an off-line vulnerability analysis framework to identify

the key sub-networks in the power system.
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Algorithm 1 Off-Line Vulnerability Analysis Algorithm to Identify Key Sub-

Networks

Step 1 Assume the control center has a typical operation condition corresponding to

a set of historical data. Such an operation condition can be obtained as follows:

1.1 Analyze system historical data including system topologies, loads, line

power flows, generation cost, capacity, and dispatch, during a long period

of time. Classify the historical data by load and generation dispatch values.

1.2 Identify the sets of historical data in which the power flow on at least one

line reaches 90% of the line limit over 80% of the times. Denote such a set

of historical data as a congested historical dataset.

1.3 For each congested historical dataset, create a typical operation condition

by averaging the loads at each bus.

Step 2 Select a congested line l in a congested historical dataset to perform the

following analysis:

2.1 Choose the end buses of this congested line as the center buses.

2.2 Identify the sub-graph S corresponding to the center buses. Denote the

non-boundary buses in the sub-graph as I. Check the number of buses

(denoted as nS) inside S. If nS is greater than the maximum number of

buses that the attacker can compromise (denoted as nmax), i.e., nS > nmax,

go to Step 3.

79



Algorithm 1 Off-Line Vulnerability Analysis Algorithm to Identify Key Sub-

Networks

Step 2 (continued)

2.3 Solve the following bi-level attack optimization problem with the created

typical operation condition to identify the attack vector c inside S that

can maximize the physical power flow on line l.

maximize
c,P

Pl (5.1)

subject to ci = 0, ∀i /∈ I (5.2)

and (3.4)–(3.8).

If any line k inside S satisfies |P ∗k | > Pk,max, record S as a key sub-network.

2.4 Set all the buses inside S as center buses and go to Step 2.2.

Step 3 Repeat Step 2 for all congested lines in all congested historical datasets to

exhaustively identify all the key sub-networks.

In the following section, we evaluate the vulnerability of the IEEE 24-bus, IEEE

118-bus, and Polish systems to FDI attacks with the proposed framework. In par-

ticular, for medium- or large-scale test systems such as the IEEE 118-bus and the

Polish systems, the attack optimization problem in Step 2.3 may become intractable

due to the increasing number of constraints and their associated binary variables. To

overcome this difficulty, our prior work [27, 28] introduces four computationally effi-

cient algorithms to provide upper and/or lower bounds on the objective value. These

algorithms include:

1. Row generation for line limit constraints (RG), which reduces the number of line
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limit constraints and their associated binary variables of the equivalent single

level mixed integer linear programming (MILP) problem of the bi-level attack

optimization problem using row generation.

2. Row and column generation for line and generator limit constraints (RCG),

which further reduces the number of binary variables by judiciously eliminating

generation limit constraints using column generation.

3. Cyber-physical-difference maximization (DM) which provides upper and lower

bounds via a linear program (LP) that maximizes the difference between target

line cyber and physical power flows.

4. Modified Benders’ decomposition for bi-level programs (MBD) that uses Ben-

ders’ decomposition to solve the original bi-level optimization problem.

In Sec. 5.2, one or more of these algorithms are used to ensure the tractability of the

optimization problem in Algorithm 1.

5.2 Numerical Results

In this section, we illustrate the efficacy of the framework proposed in Algorithm

1. In particular, we assume the base case operation conditions in the modified IEEE

24-bus, IEEE 118-bus, and Polish systems (see Sec. 4.2.3) are the typical operation

conditions learned from the historical datasets. The load shift factor is chosen to be

10%. The maximum number of buses that the attacker can compromise, nmax, is set

as 2
3

of the total number of buses in each test system, i.e., nS ≤ 2
3
nG. In particular,

RG and RCG methods are utilized to ensure the tractability of the framework in the

IEEE 118-bus and Polish systems, respectively.

The vulnerability analysis framework in Algorithm 1 identifies 5, 8, and 28 key

sub-networks in the IEEE 24-bus, IEEE 118-bus, and Polish systems, respectively.
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The parameters of the key sub-networks in each test systems are summarized in Table.

5.3.

From the table, it can be seen that for each test system, there are key sub-networks

covering a small portion of the entire system. It further verifies our observation in

Chapter 4 that FDI attacks can cause line overflow even within a minuscule amount

of system information. In addition, we can also see that in general, as the size of the

key sub-network expands, not only the maximum line overflow value on the target

line, but also the number of lines with violation resulting from FDI attacks increase.

However, an opposite example of the two key sub-networks corresponding to the target

line 11 in the IEEE 24-bus system shows that the attack consequences will not get

worse as the key sub-network expands. It can also be verified by the second and third

key sub-networks corresponding to the target line 155 in the IEEE 118-bus system.

Such examples indicate that the load redistribution on buses inside the smaller key

sub-network plays an essential role in causing target line overflow.
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Table 5.3: Summary of the Key Sub-networks in the IEEE 24-bus System, IEEE
118-bus System, and Polish System.

Target

Line

# of

Buses

# of

Branches

# of

Violations

Max PF

(%)

IE
E

E
24

-b
u
s

S
y
st

em

11
4 3 1 114.29%

14 18 1 114.29%

23 12 15 2 104.78%

28
8 11 1 100.67%

15 19 2 107.78%

IE
E

E
11

8-
b
u
s

S
y
st

em

5
7 6 1 100.85%

43 46 1 104.62%

11
8 8 1 100.13%

48 51 1 103.09%

104 76 98 2 104.79%

155

12 12 1 101.62%

24 34 1 104.95%

63 82 1 104.95%

P
ol

is
h

S
y
st

em

24
813 911 2 100.46%

1378 1595 3 101.38%

292

321 352 1 100.32%

829 931 1 100.93%

1386 1609 2 101.67%

1381 9 8 1 100.13%

continued on next page
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continued from previous page

Target

Line

# of

Buses

# of

Branches

# of

Violations

Max PF

(%)

P
ol

is
h

S
y
st

em

1381

33 33 1 100.64%

184 194 2 101.41%

775 874 2 102.00%

1483 1686 2 102.14%

1382

21 20 1 100.37%

178 186 1 100.59%

775 873 2 101.22%

1483 1686 2 102.14%

1816

11 11 1 100.78%

121 128 1 101.67%

688 774 1 101.67%

1316 1502 3 101.99%

2109

8 7 1 100.21%

317 350 1 101.06%

839 939 2 101.80%

1403 1622 4 103.02%

2110

4 3 1 100.88%

11 10 1 101.12%

321 354 1 102.08%

843 944 3 103.10%

continued on next page
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continued from previous page

Target

Line

# of

Buses

# of

Branches

# of

Violations

Max PF

(%)

P
ol

is
h

S
y
st

em 2110 1407 1627 3 104.74%

2239 1152 1321 1 100.2%

*S: Sub-network, PF: Power flow

To better protect the system, at least one secure measurement should be placed

inside the smallest key sub-networks for each congestion line in each test system.

Furthermore, when a specific pattern of congested lines occurs, the control center

should closely monitor the load varying patterns inside the key sub-networks, so as

to identify the anomalies in time.

The computation time for each test system is summarized in Table. 5.4. We can

observe that Algorithm 1 can assess the vulnerability of all the test systems in less

than 7 seconds. These results demonstrate the computational efficiency of Algorithm

1, which further indicates its potential to be employed as an on-line vulnerability

analysis tool.

Table 5.4: Summary of The Computation Times.

Test System IEEE 24-bus IEEE 118-bus Polish

Times (s) 2.00 6.31 3.19

5.3 Concluding Remarks

In this chapter, we focused on the vulnerability analysis of power systems to FDI

attacks from the perspective of the system control center. We proposed an off-line
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vulnerability analysis framework to analyze historical data, identify patterns of con-

gested lines, assess the vulnerability of the sub-network surrounding each congested

line layer by layer, and finally identify key sub-networks that are prone to FDI attacks.

It is demonstrated that this framework is both accurate and efficient in assessing the

vulnerability of the test system apriori. How to identify key measurements to keep

secure and to analyze load varying behaviors inside the identified key sub-networks

is crucial future work that needed to further protect the system from FDI attacks.
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Chapter 6

FALSE DATA INJECTION ATTACKS ON PHASOR MEASUREMENTS THAT

BYPASS LOW-RANK DECOMPOSITION

In this chapter, we focus on the vulnerability of PMUs to FDI attacks.

Recently, using measurements obtained from deployed PMUs in the grid, [50]

and [51] illustrate the low-rank nature of PMU data. These approaches suggest that

PMU measurements can be modeled as a matrix to capture both the temporal aspects

(e.g., via the rows of the matrix) and the spatial aspects (for each time instant via

the columns).

As reviewed in Sec. 1.2, in [38, 39, 40], low-rank decomposition (LD) has been

proposed to detect FDI attacks on the electric power system using a block of con-

secutive measurement data. On the other hand, the FDI attacks of most interest

are those in which the attacker is not omniscient and omnipresent — this limited

knowledge and limited capabilities of FDI attacks are often captured (see, for e.g.,

[12, 14, 52, 26, 29, 45, 27, 53]) by restricting attacker knowledge to a subset of the

network and restricting counterfeits to a small number of meters, respectively. This

latter restriction along with the above mentioned low-rank properties of a block of

PMU data suggests that the resulting counterfeit PMU measurement matrix can be

viewed as a linear combination of a low-rank (actual) measurement matrix and a

sparse attack matrix (counterfeit additions to measurement).

In [38], the authors propose a LD approach (introduced in [41] for arbitrary sparse

datasets), for temporal SCADA data; specifically, they demonstrate that attacks de-

signed without knowledge of the temporal correlations of the SCADA measurements

can be detected by solving an LD problem. Furthermore, their model assumes that
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while the FDI attack matrix is sparse in each time instant, the attacker attacks a

different set of measurements. While such a model is quite general, for attacks de-

signed with a specific effect (financial or physical damage), sustaining attacks over

time on the same meters can have more impact. Focusing on such sustained attacks,

for PMU data, the authors of [39, 40] show that an LD-based detector can iden-

tify column sparse FDI attack matrix where the column sparsity is a result of the

assumption that the attacker attacks the same set of PMU measurements over time.

Following [39, 40] we model PMU data as a low-rank matrix. Furthermore, fo-

cusing on impactful FDI attacks, our attack model involves sustained attacks on the

same meters over time, i.e., column sparse attacks (using the nomenclature that rows

and columns indicate spatial and temporal data, respectively). Although the LD de-

tector shows good performance in detecting column sparse unobservable FDI attacks

on both synthetic data and some field PMU data [39, 40], a question that needs to

be addressed is the following: if an attacker has knowledge of the time correlation

of the PMU data, can it take advantage of such knowledge and design FDI attacks

that can bypass the detector? In this chapter, we assume the attacker has the ability

to predict the system dynamics, and we introduce a new class of FDI attacks that

can bypass the LD detector. These attacks are designed with a convex optimization

problem. We prove that the LD detector cannot identify the exact set of states that

are modified by the attacker. We demonstrate that such attacks are unobservable for

both traditional bad data detectors and the LD detector on both the IEEE 24-bus

and IEEE 118-bus systems.

6.1 Preliminaries

In this section, we introduce the models for the SE with phasor measurements,

FDI attacks on PMU, and the LD detector. Throughout, we assume there are nb
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buses, nbr branches, ng generators, and nz measurements in the system.

6.1.1 State Estimation with Phasor Measurements

PMUs collect complex bus voltage and branch current measurements. The re-

porting rate of the PMU measurements is usually 30 times per second [54]. These

measurements have a linear relationship with the complex bus voltage states. At each

time instant t, the PMU measurement model can be written as

zt = Hxt + et (6.1)

where at time instant t, zt is the nz × 1 measurement vector; xt is the state vector of

complex bus voltage; et is an nz×1 noise vector assumed to be composed of indepen-

dent Gaussian random variables; the complex matrix H is the nz × nb dependency

matrix between measurements and states. Note that the state can be estimated based

on PMU measurements via a single weighted least squares (WLS) [54], unlike tradi-

tional SCADA-based SE which requires multiple iterations due to the nonlinearity of

the measurement function [42].

One possible way to process PMU data is to collect over a block of time (e.g., 5

to 20 seconds) and then process them as a batch (see for example [55]). We adopt

this approach and write the PMU measurements as a matrix where each row vector

corresponds to PMU measurements at one time instant and each column vector con-

sists of the measurements collected in the same channel over a period of times. The

PMU measurements in (6.1) over N time instants can then be collected as

Z = XHT + E (6.2)

where matrices Z =
[
zT1 ; zT2 ; . . . ; zTN

]
, X =

[
xT1 ; xT2 ; . . . ;xTN

]
, and E =

[
eT1 ; eT2 ; . . . ; eTN

]
are PMU measurement matrix, state matrix, and noise matrix, respectively. Note that
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zTt , xTt , and eTt for t = 1, 2, . . . , N are the transpose of the measurement, state, and

noise column vectors, respectively, in (6.1).

6.1.2 Unobservable FDI Attack on PMU

Assume the attacker has control of the measurements in a subset S of the network,

denoted as the attack subgraph. As in Chapter 3, we first distinguish between two

types of buses in the network: load buses that have load directly connected to them,

and non-load buses with no load. We assume S is bounded by load buses. The set of

measurements in S are denoted as J . In the absence of noise, an attack is defined to

be unobservable if

Z̃ = Z +D = Z + CHT = (X + C)HT + E (6.3)

where Z̃ is the N × nz post-attack measurement matrix, D is the N × nz attacked

measurements matrix such that D = CHT , and C is the N×nb attack matrix. In the

following, we define the set of non-zero columns in a matrix as its column support,

written as supp (·). Note that the attacker is constrained to inject false data only in

the measurements in J . Thus, D is a column sparse matrix where supp (D) ⊆ J .

One natural way to form a column sparse D is to choose a column sparse C.

Prior work [12, 14, 52, 26, 29, 45, 27] considers a special case of (6.3) with only

one time instant, i.e., N = 1. These works show that traditional bad data detectors

based on measurement residuals cannot detect such FDI attacks.

6.1.3 Prior Work: Attack Detection Based on Low-Rank Matrix Decomposition

Traditional bad data detectors based on measurement residuals cannot detect the

FDI attacks introduced in (6.3). However, exploiting the low-rank nature of the high-

dimensional PMU data matrix Z, the authors in [39] propose a new attack detection
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mechanism based on LD so as to separate the low-rank matrix Z and column sparse

matrix CHT in (6.3). We now briefly review their attack assumptions and detection

methodology.

Given a measurement matrix Z̃(LD), the measurement matrix without attack,

Z(LD), and the attack matrix C(LD) can be identified by solving the following con-

vex optimization problem:

minimize
Z(LD)∈CN×nz ,CLD∈CN×nb

‖Z(LD)‖∗ + λ‖C(LD)‖1,2 (6.4)

subject to Z̃(LD) = Z(LD) + C(LD)H̃T (6.5)

where ‖Z(LD)‖∗ is the nuclear norm of Z(LD); ‖C(LD)‖1,2 is the l1,2-norm of C(LD),

i.e., the sum of l2-norm of columns in C(LD); λ is a weight factor; and H̃ is the

normalized dependency matrix, where for each row vector Hi, H̃i = Hi/‖Hi‖. The

objective (6.4) is to minimize the rank of Z∗(LD) (captured by its nuclear norm) and

the column sparsity of C∗(LD) (captured by its l1,2-norm).

After obtaining the optimal solution,
(
Z∗(LD), C∗(LD)

)
for (6.4)–(6.5), the set of

attacked measurements and states, supp
(
C∗(LD)H̃T

)
and supp

(
C∗(LD)

)
, respectively,

can be identified as the column support of C∗(LD)H̃T and C∗(LD). Assume there exists

unobservable attacks in Z̃(LD), such that Z̃(LD) = Z + CH̃T . The authors prove

that for a specific range of λ, i.e., λ ∈ [λmin, λmax], the optimization in (6.4) can

successfully identify supp(C), i.e., supp
(
C∗(LD)

)
= supp (C), under the assumption

that every nonzero column of CH̃T does not lie in the column space of Z.

6.2 FDI Attack Exploiting Low-Rank Property of PMU Measurement Matrix

In this section, we introduce a class of FDI attacks that cannot be detected by the

LD detector in (6.4)–(6.5). We assume that the attacker has the following knowledge

and capabilities:
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1. The attacker has full system topology information.

2. The attacker can perfectly predict the measurements in the following N in-

stances and has the capability to estimate the predicted states.

3. The attacker has control of the measurements in a subset S of the network.

6.2.1 Attack Strategy

Given a PMU measurement matrix Z and the potential attacked states set I, we

propose the following optimization problem to design FDI attacks:

minimize
C∈CN×nb

‖Z + CH̃T‖∗ (6.6)

subject to supp(C) ⊆ I (6.7)

where ‖·‖∗ denotes the nuclear norm. For optimal solution C∗, the optimal post-

attack measurement matrix denoted as Z̃∗ can be written as

Z̃∗ = Z + C∗H̃T . (6.8)

The goal of the attacker is to ensure that the attacked measurement matrix Z̃∗ is

low-rank when Z is low-rank. This can be approximated by minimizing the nuclear

norm of Z̃∗ as (6.6). Constraint (6.7) ensures that the attacker can only attack states

in I, i.e., C∗ is a column sparse matrix.

In the following, we prove that either Z̃∗ bypasses the LD detector (i.e., results

in C∗(LD) = 0), or the LD detector identifies at least one measurement as corrupted

that is not.

Theorem 3. Assume the attack-free measurement matrix Z can bypass the LD de-

tector, i.e., for Z̃(LD) = Z,
(
Z∗(LD), C∗(LD)

)
= (Z,0). Assume the solution C∗ of

(6.6)–(6.7) is non-zero. Then using Z̃∗ in the LD detector, the resulting C∗(LD) satis-

fies that either C∗(LD) = 0, or supp
(
C∗(LD)

)
6⊆ supp (C∗).

92



Proof. First, we prove that for a given Z, ‖Z̃∗‖∗ ≤ ‖Z‖∗. For a given Z, C = 0 is

always a feasible solution for (6.6)–(6.7). For C = 0, the objective ‖Z̃‖∗ = ‖Z +

CH̃T‖∗ = ‖Z‖∗. Since we minimize (6.6), the objective of C∗ is less than or equal to

that of the feasible solution 0. That is, ‖Z̃∗‖∗ ≤ ‖Z‖∗ always holds.

Suppose Z can bypass the LD detector. That is, for input Z̃(LD) = Z,
(
Z∗(LD), C∗(LD)

)
=

(Z,0). As we just proved

‖Z + C∗H̃T‖∗ = ‖Z̃∗‖∗ ≤ ‖Z‖∗ = ‖Z∗(LD)‖∗. (6.9)

Thus,

‖Z + C∗H̃T‖∗ ≤ ‖Z‖∗ ≤ ‖Z‖∗ + λ‖C∗‖1,2. (6.10)

Let C∗(LD) be the optimal solution of the LD detector for Z̃(LD) = Z̃∗. The

objective (6.4) for Z̃∗ satisfies

‖Z̃∗ − C∗(LD)H̃T‖∗ + λ‖C∗(LD)‖1,2 ≤ ‖Z̃∗‖∗ ≤ ‖Z‖∗. (6.11)

Note that ‖Z̃∗ − C∗(LD)H̃T‖∗ can be rewritten as ‖Z +
(
C∗ − C∗(LD)

)
H̃T‖∗.

If supp
(
C∗(LD)

)
⊆ I, then

‖Z +
(
C∗ − C∗(LD)

)
H̃T‖∗ ≥ ‖Z + C∗H̃T‖∗ (6.12)

since C∗ is the optimal solution for (6.6)–(6.7). That is, Z̃∗ and C∗(LD) satisfy

‖Z̃∗ − C∗(LD)H̃T‖∗ + λ‖C∗(LD)‖1,2 ≥ ‖Z̃∗‖∗. (6.13)

Therefore, the only solution that can satisfy both (6.11) and (6.13) is C∗(LD) = 0.

6.2.2 Numerical Results

In this subsection, we illustrate the efficacy of the unobservable FDI attacks in-

troduced in Sec. 6.2.1. To this end, we first solve the attack optimization problem
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Figure 6.1: Current Magnitudes of The Synthetic PMU Data.

in (6.6)–(6.7) to find the optimal attack matrix C∗. Subsequently, we construct the

post-attack measurement matrix Z̃∗ with C∗ as (6.8). Finally, we solve the LD de-

tection optimization problem (6.4)–(6.5) for Z̃∗ to check if the attack matrix C∗ is

detected. Throughout, we assume that the LD detector selects 2 seconds worth of

PMU measurements data, i.e., N = 60, while the attacker injects bad data. The

test systems include the IEEE 24-bus reliability test system (RTS) and IEEE 118-

bus system. The convex optimization problems for LD detection and attack design

are solved with MOSEK. In the LD detection optimization problem, the weight λ is

chosen to be 1.05 for both the IEEE 24-bus and the IEEE 118-bus systems.

We assume both test systems are fully observable with PMU measurements. This

is achieved by solving an optimal PMU placement problem as introduced in [56]. The

details of the PMU locations and measurements for both test systems are summarized

in Table 6.2. In [39], the authors demonstrate an actual PMU dataset, which we do
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Figure 6.2: Singular Values of The Synthetic PMU Data Matrix in Decreasing
Order.

not have access to. Therefore, to make a fair comparison, we generate synthetic PMU

data over 5 seconds in each test system. To model realistic data with a disturbance,

at the first time instant t after 1 second, we change the load at each bus by adding

a random value d to the base load, such that d ∼ N
(
0, 60

1.1(t−31)

)
. We then solve an

AC power flow to obtain the measured phasors of bus voltage and branch current as

measurements at time instant t. The resulting synthetic measurements for the IEEE

24-bus system and the IEEE 118-bus system are partially illustrated in Fig 6.1. The

singular values for the synthetic measurement matrices for the IEEE 24-bus system

and the IEEE 118-bus system are illustrated in Fig 6.2. It can be seen that these

synthetic measurements have the same low-rank property as the actual PMU data

as illustrated in [39]. The synthetic data is then broken into two parts for testing,
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one for t =1–3 seconds, the other for t =3–5 seconds. Observe that the measurement

matrix for t=1–3 seconds has more disturbances than that for t=3–5. Furthermore,

we assume noiseless measurements, i.e., E = 0 in (6.3).

Table 6.1: Statistic Results of ‖Z̃∗‖∗ in The IEEE 118-Bus System.

Time

Period

‖Z̃∗‖
‖Z‖

Min Max Ave

1–3 second 116.1 116.7 116.5 116.8

3–5 second 56.9 57.1 57.0 57.1
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(a) Statistic results of the post−attack measurement matrix for t=1−3 s
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Figure 6.3: Statistic Results of ‖Z̃∗‖∗ in The IEEE 24-Bus System.

We exhaustively generate the unobservable attacks with all potential attacked
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state sets I for which 1 ≤ |I| ≤ 5 in the IEEE 24-bus system; for tractability we

consider only |I| = 1 in the IEEE 118-bus system. Specifically, as observed in our

prior work [26, 29], unobservable attacks must be designed inside a subgraph S which

is bounded by load buses. In S, the states of all the non-bounded buses (including

load and non-load buses) have to be changed. In this subsection, the attacked state

sets I are selected according to this rule.
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Figure 6.4: Magnitude of The From Side Current Measurement on Line 12 in The
IEEE 24-Bus System with I = {8}.

For every attack we tested, the LD detector is completely bypassed, i.e., C∗(LD) =

0. We summarize the statistic results including maximum, minimum, and average

values of ‖Z̃∗‖∗ for the IEEE 24-bus system and the IEEE 118-bus system in Fig. 6.3

and Table 6.1, respectively. From these results, it can be seen that for every attack

we tested, ‖Z̃∗‖∗ ≤ ‖Z‖∗ always holds. In addition, in Fig. 6.3, we also find that for
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the IEEE 24-bus system, ‖Z̃∗‖∗ gradually decreases as the number of attacked state

increases.

We now illustrate a typical case in the IEEE 24-bus system in with I = {8}.

In Fig. 6.4, the magnitudes of the from side current measurement on line 12 are

demonstrated, before and after attack. From this case, we can see that the designed

attack accurately captures the temporal correlation of the PMU measurements.

These observations are consistent with Theorem 3. In fact, they are stronger than

Theorem 3 since we did not find any case where the LD detector results in C∗(LD)

such that C∗(LD) 6= 0 and supp
(
C∗(LD)

)
6⊆ I.
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Table 6.2: Monitored PMU Measurements in Both The IEEE 24-Bus System and
The IEEE 118-Bus System.

IE
E

E
24

-b
u
s

S
y
st

em
Voltage (Buses with

PMU)

1, 2, 7, 9, 10, 11, 15, 17, 20

Current (From Side) 1, 2, 3, 4, 5, 11, 14, 15, 16, 17, 18, 19, 24, 25, 26, 27,

30, 31, 36, 37

Current (To Side) 1, 6, 8, 9, 10, 12, 13, 14, 16, 28, 34, 35

IE
E

E
11

8-
b
u
s

S
y
st

em

Voltage (Buses with

PMU)

2, 5, 10, 12, 15, 17, 21, 25, 29, 34, 37, 41, 45, 49, 53,

56, 62, 64, 72, 73, 75, 77, 80, 85, 87, 91, 94, 101, 105,

110, 114, 116

Current (From Side) 5, 11, 13, 17, 20, 21, 23, 26, 28, 33, 39, 40, 44, 49, 50,

52, 53, 58, 60, 62, 68, 70, 71, 74, 75, 76, 80, 82, 85, 86,

95, 97, 98, 99, 100, 101, 106, 120, 121, 123, 124, 128,

133, 135, 136, 143, 147, 148, 150, 151, 152, 153, 155,

162, 169, 170, 171, 176, 177, 178, 182, 184, 185

Current (To Side) 1, 3, 4, 8, 9, 12, 13, 14, 15, 18, 19, 21, 22, 27, 31, 32,

35, 36, 45, 47, 48, 50, 51, 56, 61, 65, 66, 67, 68, 69, 73,

78, 79, 91, 92, 94, 111, 112, 113, 115, 116, 117, 118,

119, 120, 123, 124, 125, 127, 131, 132, 134, 140, 145,

146, 160, 166, 168, 174, 175, 180, 183
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6.3 Worst-case Physical Line Overflow Attacks

In this section, we propose a heuristic method to study the physical consequences

of worst-case unobservable FDI attacks on phasor measurements. Specifically, we

assume the system response at each time instance satisfies OPF. Although this as-

sumption is far fetched now, it is made here for evaluation of the worst-case attack

consequences. The FDI attacks studied in this section are able to (i) bypass the LD

detector, and (ii) result in physical line overflow which cannot be found in the cyber

layer. Besides the knowledge and capabilities introduced in Sec. 6.2, we assume that

the attacker has additional knowledge as follows:

1. The attacker has knowledge of load distribution, generation costs, and line

thermal limits of the system.

2. The attacker has perfect prediction of the load varying patterns in the following

N instances.

6.3.1 Attack Strategy

In this subsection, we introduce a bi-level attack optimization problem with one

leader (first level) and multiple independent followers (second level) to formulate the

worst-case line overflow FDI attacks. The leader problem formulates the attacker’s

limitation. The tth independent follower problem formulates DC OPF under attacks

as post-attack system responses at time instance t, t = 1, ..., N . In order to ensure the

tractability of the problem, we only consider DC power flow model and formulate the

matrix of the voltage angle states, Θ, instead of that of the complex voltage states,

X. The voltage angle attack matrix is denoted with C ′ so as to distinguish with the
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complex voltage attack matrix C. The formulation is as follows:

maximize
Θ,P

N∑
t=1

Pl,t (6.14)

subject to ‖Θ∗ + C ′‖∗ ≤ N∗ (6.15)

PIa (C ′) = C ′ (6.16)

− τP T
D ≤ HC ′T ≤ τP T

D (6.17)

P = ΓΘ∗T (6.18)

{P ∗G,t, Θ∗t } = arg

{
min
PG,t,Θt

ng∑
g=1

fgPGg,t

}
t = 1, ..., N (6.19)

subject to GP T
G,t −HΘT

t = P T
D,t (λt) (6.20)

− Pmax ≤ Γ(Θt + C ′t)
T ≤ Pmax

(
µ∓t
)

(6.21)

PG,min ≤ P T
G,t ≤ PG,max

(
α∓t
)

(6.22)

where for any matrix A, At represents the tth row vector of A, P is the t × nbr

real power flow matrix, PG is the t × ng real power generation output matrix, PD

is the t × nb real power load matrix, Pmax is the nbr × 1 vector of thermal limits,

PG,max and PG,min are the ng×1 vectors of maximum and minimum generation limits,

respectively, G is the nb × ng generator-to-bus connectivity matrix, f is the ng × 1

generation cost vector, H is the nb × nb dependency matrix between power injection

and voltage angle state, Γ is the nbr×nb dependency matrix between power flow and

voltage angle state, τ is the load shift factor, N∗ is the nuclear norm constraint limit,

N is the number of time instances formulated in the problem, λt, µ
∓
t , and α∓t are

the vectors of dual variables for the second level node balance, thermal limit, and

generation limit constraints at time instance t, respectively.

The objective of the optimal problem is to maximize the sum of physical power

flows on target line l over N time instances. In the first level, the attack vector is
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chosen subject to the nuclear norm constraint of the attack matrix in (6.15), attacked

states limitation in (6.16), and the load shift limitation in (6.17). In the second level,

the system responses to the attack matrix over N time instances determined in the

first level are modeled via N independent DC OPF problems in (6.19)−(6.22).

The bi-level optimization problem introduced above is non-linear and non-convex.

For tractability, a modified Benders’ decomposition method is used to solve this

problem. This method is first introduced in our prior work [28] to solve a bi-level

attack optimization problem with one leader and one follower. The problem in [28]

is to determine an attack vector at one time instance to maximize the physical power

flow on the target line. This bi-level attack optimization problem is first converted

to an equivalent single level problem by replacing the second level problem with its

optimal conditions. After then, the equivalent single level problem is decomposed

into a master problem (MP) and a slave problem (SP). In this section, we further

extend this method to solve the one leader multiple independent followers problem to

determine an attack matrix for N time instances. That is, we decompose the original

bi-level attack optimization problem into one MP and N independent SPs.

The MP takes the following form:

minimize
C′,γ

γ (6.23)

subject to (6.15)− (6.17)

where γ is a variable introduced to represent
N∑
t=1

P ∗l,t, which will be updated by adding

cuts. Note that in MP, the state matrix Θ is fixed as a constant matrix.

The SP at t instance takes the following form:

minimize
Θt,PG,t

− ΓΘT
t (6.24)

subject to GP T
G,t −HΘT

t = P T
D,t

(
λ̃t

)
(6.25)
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− Pmax ≤ Γ(Θt + C ′t)
T ≤ Pmax

(
µ̃∓t
)

(6.26)

PG,min ≤ P T
G,t ≤ PG,max

(
α̃∓t
)

(6.27)

ng∑
g=1

fgPGg,t = λTt P
T
D,t + α+T

t PG,max − α−Tt PG,min

+ µ+T
t

(
Pmax − ΓC ′Tt

)
(6.28)

+ µ−Tt
(
Pmax + ΓC ′Tt

)
GTλt + α+

t − α−t = fg (ωt) (6.29)

−HTλt + ΓTµ+
t − ΓTµ−t = 0 (6.30)

[µ+
t µ−t α+

t α−t ] ≤ 0 (6.31)

where α̃t, µ̃
∓
t , α̃∓t , and ωt are dual variable vectors of the corresponding constraints.

The objective of SP in (6.24) is to maximize the physical power flow at time instance

t subject to the optimal conditions of the DC OPF. Note that, the attack vector C ′t is

fixed at C ′∗t obtained from MP. The optimal conditions include the primal feasibility

constraints (6.25)–(6.27), the strong duality constraint (6.28), and the dual feasibility

constraints (6.29)–(6.31).

At the optimal solution of the SP at time instance t satisfies

P ∗l,t = ΓΘT∗
t = λ̃Tt PD,t + µ̃+T

t

(
Pmax − ΓC ′∗Tt

)
+ µ̃−Tt

(
Pmax + ΓC ′∗Tt

)
+ α̃+T

t PG,max (6.32)

− α̃−Tt PG,min + ωTt fg.

Therefore, one way to add an optimality cut in the MP is to take the summation of

the right hand sides of (6.32) for t = 1, ..., N , such as

γ ≥ −
N∑
t=1

[
λ̃∗Tt PD,t + µ̃+∗T

t

(
Pmax − ΓC ′Tt

)
+µ̃−∗Tt

(
Pmax + ΓC ′Tt

)
+ α̃+∗T

t PG,max (6.33)
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−α̃−∗Tt PG,min + ω∗Tt fg
]
.

Note that the fixed constant C ′∗ is replaced with the variable matrix C ′ and the dual

variable vectors obtained from SP are fixed at the optimal solutions α̃∗t , µ̃
∓∗
t , α̃∓∗t ,

and ω∗t for t = 1, ..., N . The MP and SP can then be solved iteratively, with the MP

updating C ′∗ and the SP updating cuts in each iteration. The method is summarized

in Algorithm 2.
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Algorithm 2 Modified Benders’ Decomposition Algorithm

Step 0: Initialization:

• Set the initial iteration counter k, the initial matrix C ′, and the lower bound

of the objective function, ZD(k), as k = 1, C ′(k) = 0, and ZD(k) = −105,

respectively.

Step 1: SP solutions:

• Fix C ′t with C
′(k)
t and solve all SPs for t = 1, ..., N ;

• Update the upper bound of the objective function, ZU(k), as ZU(k) =
N∑
t=1

ΓlΘ
∗(k)
t =

N∑
t=1

P
∗(k)
l,t .

Step 2: Convergence checking:

• If |ZU(k)−ZD(k)|
|ZD(k)| ≤ ε, the solution with a level of accuracy ε of the objective

function is C ′∗ = C ′(k), Θ∗ = Θ(k), and P ∗G = P
(k)
G . Otherwise, the algorithm

continues with the next step.

Step 3: MP solution:

• Add an optimality cut (6.33) in MP. Note that the dual variable vectors in

(6.33) are fixed with α̃
∗(k)
t , µ̃

∓∗(k)
t , α̃

∓∗(k)
t , and ω

∗(k)
t for t = 1, ..., N , and the Θ

in (6.15) is fixed with Θ∗(k).
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Algorithm 2 Modified Benders’ Decomposition Algorithm (Continued)

Step 3: MP solution: (continued)

• Update the iteration counter, k ← k + 1, and solve the MP. Note that at every

iteration a new constraint is added. The solution of the MP provides C ′∗(k) and

γ∗(k).

• Update the objective function lower bound, ZD(k) = γ(k). The algorithm con-

tinues in Step 1.

In particular, since the original bi-level optimization problem is non-convex, Al-

gorithm 2 is not guaranteed to give the global optimal solution of the original attack

optimization problem [57]. Therefore, the optimal solution obtained with Algorithm

2, denoted as
N∑
t=1

P
∗(BD)
l,t , is a lower bound of the global optimal solution

N∑
t=1

P ∗l,t.

Since the LD detector is designed for non-linear measurement matrix, we need to

construct the post-attack non-linear measurement matrix with the attack matrix C ′.

Prior work [26] has introduced a method to construct a non-linear post-attack mea-

surement vector with a DC attack vector. We now modify this method to construct

the complex post-attack measurement matrix with the DC attack matrix as follows:

Algorithm 3 Convert DC Attack to AC Attack

1. Identify the attack subgraph with Ia.

2. At time instance t, collect measurements in S, perform local SE and obtained

the estimated states as X̂t,i = V̂t,i∠Θ̂t,i, ∀i ∈ S.

3. For load bus i ∈ S, set the voltage angle as Θ
(a)
t,i = Θ̂t,i +C ′t,i, and compute the

post-attack complex voltage state as X
(a)
t,i = V̂t,i∠Θ̂

(a)
t,i .
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Algorithm 3 Convert DC Attack to AC Attack (Continued)

4. For non-load bus u in S, the state should be updated to ensure the power flow

balance on the bus as

∑
s∈Ωu

Ius = Xt,u

∑
s∈Ωu

Xt,s (Gus + jBus)∀j ∈ S. (6.34)

where rus + jxus is the reactance of line connecting bus u and s, Ωu is the set

of buses connecting to bus u. Note that the attacker has already known X
(a)
t,s .

That is, the attacker can solve (6.34) to update X
(a)
t,u .

5. Compute the post-attack measurement Z̃t as Z̃T
t,i = ZT

t,i, ∀i /∈ S, and Z̃T
t,i =

HiX
(a)T
t , ∀i ∈ S.

6. Repeat 1–5 for t = 1, ..., N .

Note that, since Algorithm 2 is for DC attack design, when converting to a non-

linear post-attack matrix, it is not guaranteed that such a post-attack measurement

matrix can always bypass the LD detector. The performance of this attack model is

demonstrated in Sec. 6.3.2.

6.3.2 Numerical Results

In this subsection, we illustrate the efficacy of the worst-case physical line overflow

FDI attacks introduced in Sec. 6.3.1. To this end, we first solve the attack optimiza-

tion problem in (6.14)–(6.22) with Algorithm 2 to find the optimal attack matrix C ′∗.

Subsequently, we construct the post-attack measurement matrix Z̃∗ with Algorithm

3. Finally, we solve the LD detection optimization problem (6.4)–(6.5) for Z̃∗ to check

if the attack matrix C ′∗ is detected. Same as in Sec. 6.2.2, we assume that the LD

detector selects 2 seconds worth of PMU measurements data, i.e., N = 60, while the
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attacker injects bad data. The test system is the IEEE 24-bus reliability test system

(RTS). To model realistic power systems, we assume that there are congested lines

prior to the attack and the attacker chooses one line in L as the target to maximize

power flow. This is achieved in simulation by uniformly reducing all line ratings by

50%. The convex optimization problems for the LD detection and attack design are

solved with MOSEK. In the LD detection optimization problem, the weight λ is cho-

sen to be 1.05. The rules to place PMU and generate phasor measurements are the

same as introduced in Sec. 6.2.2. The resulting synthetic measurements before attack

are partially illustrated in Fig 6.5.
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Figure 6.5: IEEE 24-Bus System 5 Out of 24 Current Measurement Magnitudes of
The Synthetic PMU Data for Testing Worst-Case Attack Optimization Problem.

We choose the attacked states set as Ia = {16, 17, 18, 21, 22}, the load shift factor

τ as 10%, the convergence threshold ε as 6 × 10−4, the maximum iteration number

in Algorithm 2 as 100.

The converge behavior for attacks at t =1–3 seconds and t =3–5 seconds are

demonstrated in Figs. 6.6(a) and (b), respectively. The upper and lower bounds

variation for attacks at t =1–3 seconds and t =3–5 seconds are illustrated in Figs.

6.7(a) and (b), respectively.
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Figure 6.6: The Converge Behavior of Algorithm 2 for The Test Case.
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It can be observed from Figs. 6.6 and 6.7 that for both simulation time peri-

ods, Algorithm 2 can converge within 10 iterations. This result indicates the good

convergence behavior of Algorithm 2 on the test case.

The post-attack cyber and physical power flow for t =1–3 seconds under both

DC (from the bi-level attack optimization problem) and AC power flow models are

demonstrated in Figs. 6.8(a) and 6.8(b), respectively. The results for t =3–5 seconds

are illustrated in Fig. 6.9.
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Figure 6.8: The Post-Attack Power Flow (PF) When The Target Line Is 28 of IEEE
24-Bus System for t =1–3 Seconds.

Figs. 6.8(a) and 6.9(a) demonstrate that the attack designed with the bi-level

attack optimization problem can lead to unobservable physical target line overflow at

118 out of 200 time instances during t = 1− 5 seconds. Figs. 6.8(b) and 6.9(b) illus-

trate that although the attack matrices are solved by linear optimization problems,

they can still cause overflows in the non-linear system model.
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Table 6.3: Summary of The Nuclear Norm Results for Both DC and AC Attacks at
t =1–3 Seconds and t =3–5 Seconds.

Time Period
DC Attack AC Attack

‖Θ∗ + C ′∗‖ ‖Θ∗‖ ‖Z̃∗‖ ‖Z‖

1–3 second 7.61 7.65 79.95 80.88

3–5 second 6.22 6.27 63.46 64.41

The post-attack measurement matrices Z̃∗ constructed with Algorithm 3 at both

t =1–3 seconds and t =3–5 seconds completely bypass the LD detector, i.e., C∗(LD) =

0. We summarize the detection results in Table. 6.3. From these results, it can

be observed that (i) ‖Θ∗ + C ′∗‖∗ ≤ ‖Θ‖∗ holds for both DC attacks designed with
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Algorithm 2; and (ii) ‖Z̃∗‖∗ ≤ ‖Z‖∗ holds for both AC attacks constructed with

Algorithm 3.

6.4 Concluding Remarks

In this chapter, we have studied the vulnerability of phasor measurement units to

FDI attacks. Prior work demonstrated that unobservable FDI attacks that can bypass

traditional bad data detectors based on measurement residuals can be identified by

the LD detector. In this work, we have shown that a more sophisticated attacker

that understands the temporal correlation of PMU data can exploit it to design

unobservable FDI attacks that cannot be detected by the LD detector. Moreover,

we have illustrated that the attacker can further developed a single leader multiple

followers problem to design a worst-case FDI attacks that can both bypass the LD

detector and cause physical line overflow problems.
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Chapter 7

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The cyber layer of the electrical power system is vulnerable to FDI attacks. In this

dissertation, the vulnerability and physical consequences of FDI attacks on SCADA

and PMUs are analyzed. From the perspective of the attacker, two classes of limited

information FDI attacks on SCADA measurements and two classes of FDI attacks

on PMU data are introduced. For each class of attacks, the attack model is pro-

posed; the attacker’s knowledge is identified; the physical consequences of attacks

are demonstrated via one or more IEEE test systems. From the perspective of the

system control center, an off-line vulnerability analysis framework is proposed as the

first step to thwart FDI attacks. The major conclusions are drawn as follows:

1. The physical consequences of FDI attacks desgined with perfect knowledge in

an attack sub-network L and limited estimated information outside of the sub-

network are analyzed. A bi-level optimization problem is formulated to maxi-

mize the power flow on a chosen target line with the attacker’s perfect informa-

tion in L, as well as estimated information of marginal generators and PTDF

outside of L. It is illustrated that with an appropriately chosen sub-network

and perfect localized information, the attacker can overload transmission lines

with limited load shifts in both linear and non-linear models in the test sys-

tem. The incomplete congestion knowledge, inaccurate external marginal gen-

eration, and inaccurate PTDF matrix in the external network E can undermine

the attacker’s evaluation of attack consequences. However, even designed with
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inaccurate estimated knowledge, FDI attacks can still cause line overflows.

2. A class of FDI attacks designed with perfect information inside an attack sub-

network L and no information outside of L is introduced. Pseudo-boundary

injections are introduced to represent the power flows delivered from the exter-

nal network. A multiple linear regression model is developed for the attacker

to learn the relationship between pseudo-boundary injections and power injec-

tions inside L. A bi-level optimization problem is formulated to maximize the

power flow on a chosen target line with the attacker’s perfect information in the

attack sub-network, as well as the predicted pseudo-boundary injections. It is

proved that the attacker can perfectly predict the pseudo-boundary injections

with power injections in L under certain circumstances and can still compute

the upper bounds on the attack consequences even with inaccurate predictions.

Numerical results illustrate that the attacker can overload transmission lines

with the proposed bi-level attack optimization problems. A sensitivity analysis

on multiple scenarios of imperfect historical datasets shows the robustness of

this attack strategy. It can be seen that even with a minuscule amount of sys-

tem information and imperfect historical datasets, the attacker can still learn

the system-wide re-dispatch behavior with a simple multiple linear regression

model. In conclusion, one must be concerned that even with limited informa-

tion, an attacker with access to historical data can take advantage of it to the

detriment of reliable system operations.

3. For the two classes of limited information attacks, approximations including

constant thermal line limits and static PTDF matrix are made to model ideal

attacker and system. Although such approximations may undermine the attack

consequences in actual power systems, the attack consequences still indicate
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that such attacks are credible threats in power systems.

4. An off-line vulnerability analysis framework from the perspective of the control

center is developed to analyze historical data, identify patterns of congested

lines, assess the vulnerability of sub-networks surrounding each congested line

layer by layer, and finally identify key sub-networks that are prone to FDI

attacks. It is demonstrated that this framework is both accurate and efficient

in assessing the vulnerability of the test system apriori and has the potential to

be employed as an on-line analysis tool to identify real-time vulnerability. The

identified key sub-networks indicate that the load redistribution on a small set

of key buses play an essential role in causing target line overflow. In conclusion,

how to identify key measurements to keep secure and to analyze load varying

behaviors inside the identified key sub-networks is crucial to further protect the

system from FDI attacks

5. The vulnerability of phasor measurement units to FDI attacks is analyzed. A

convex optimization problem that ensures the low-rank post-attack measure-

ments matrix is introduced to design the FDI attacks on PMU data that can

bypass the LD detector. A bi-level single leader multiple followers attack opti-

mization problem is proposed to design a worst-case FDI attack that can both

bypass the LD detector and result in physical line overflow problems. It can

be concluded that a more sophisticated attacker that understands the tempo-

ral correlation of PMU data can exploit it to design unobservable FDI attacks

that can cause physical overflow on the system, while it cannot be detected

by the LD detector. A better detection mechanism that can further identify

FDI attacks that tract the temporal correlation of the PMU measurements are

needed.
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7.2 Future Work

To further study the implications of FDI attacks on power system operations, the

following work is suggested for the future.

7.2.1 Generalization of the Attack Optimization Structure to Achieve Other

Attack Consequences

In this dissertation, we focus on understanding the class of FDI attacks that can

result in physical line overflow violations. However, other attack objectives can also

be achieved with both the perfect and limited information bi-level attack optimization

structures. The potential attack consequences of interest are listed as follows:

1. Maximize the total operation costs of the attack-induces re-dispatch. For perfect

information attacks, this can be simply achieved by changing the objective in

(3.1) as

Maximize

ng∑
g=1

Cg (PG,g) . (7.1)

For limited information attacks, these attack consequences can be achieved by

replacing (4.25) with

Maximize
∑
g∈L

Cg
(
P̄G,g

)
. (7.2)

2. Maximize the load shedding in the post-attack system re-dispatch. To achieve

this goal, a new vector of load shedding variables (denoted as PS) is introduced

in the second level DC OPF problem. The perfect information bi-level attack

optimization problem can be rewritten as:

maximize

nb∑
i=1

PS,i − ζ ‖c‖0 (7.3)

subject to (3.3)− (3.4)
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{θ∗, P ∗G} = arg

{
min
θ,PG

ng∑
g=1

Cg (PGg) +

nb∑
i=1

CS,iPS,i

}
(7.4)

subject to GPG −Hθ = PD − PS (7.5)

(3.7)− (3.8)

where CS,i is the cost of the shedding load at bus i. This attack optimization

problem can be further modified as a limited information attack optimization

problem.

3. Maximize the physical interface power flow to result in voltage collapse. In

practice, the net active power flows on key transmission lines that connect one

region and the other should be within a interface power flow limit to ensure

the voltage stability [58]. In general, such a limit is lower than the sum of the

thermal limits on these lines, since operating at the thermal limit may result in

voltage collapse. The attack optimization problem introduced in Chapter 3 can

be modified to maximize the physical interface power flow by replacing (3.1)

with

Maximize
∑
k∈Ωint

Pk (7.6)

where Ωint represents the set of key transmission lines connecting two regions.

7.2.2 Generalization of the Limited Information Attack Strategy to Cyber-Physical

Attacks

In previous work [29], the author and her collaborator introduce a class of unob-

servable cyber-physical topology attacks. By implementing these attacks, the attacker

can open a circuit breaker as well as change measurements to result in line overflow

in an unobservable way. It is useful to evaluate the vulnerability of the limited in-
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formation cyber-physical topology attacks that combines methods introduced in [29]

and Chapter 4.

7.2.3 FDI Attacks Considering Real-time Contingency Analysis Module

The EMS model considered in this dissertation as well as in [26, 29] neglect the

contingency analysis module. In practice, SE is followed by contingency analysis.

Security constraints of lines and generators that have post-contingency violations

are then included in the subsequent economic dispatch module. In fact, if such

security constraints are not modeled in the bi-level attack optimization problem, it will

undermine the attackers’ evaluation of attack consequences. Therefore, consequences

of line overflow FDI attacks modeled with security constraints should be evaluated.

The attack optimization problem can be modified as

maximize Pl − ζ ‖c‖0 (7.7)

subject to (3.21)− (3.23) (7.8)

{P ∗G} = arg

{
ng∑
g=1

Cg (PGg)

}
(7.9)

subject to (3.6), (3.8) (7.10)

P a = K(GPG − PD +Hc) (7.11)

− Pmax ≤ P a ≤ Pmax (7.12)

− Pk,max ≤ P a
k + Lk,oP

a
o ≤ Pk,max k, o ∈ {1, 2, ..., nbr}, k 6= o (7.13)

where P a is the post-attack power flow vector in the cyber layer, Lk,o is the line outage

distribution factor which represents the change of power flow in the line k post to

the outage of line o. Same as the bi-level attack optimization structure introduced in

Chapter 3, the first and second levels model the attacker and system response to the

attack, respectively. In particular, besides DC OPF, N − 1 line outage constraints
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are formulated with (7.13) in the second level.

A related problem is to understand the feasibility and consequences of FDI attacks

that can mask contingencies. Assume that line outage contingencies exist before at-

tacks. These contingencies can be masked by FDI attacks designed with the following

optimization problem:

minimize
c

‖c‖0 (7.14)

subject to ‖c‖0 ≤ N0 (7.15)

− τPD ≤ Hc ≤ τPD (7.16)

P a = K(GPG − PD +Hc) (7.17)

− Pmax ≤ P a ≤ Pmax (7.18)

− Pk,max ≤ P a
k + Lk,oP

a
o ≤ Pk,max k, o ∈ {1, 2, ..., nbr}, k 6= o (7.19)

where the objective is to minimize the size of the attack subgraph.

7.2.4 Design of the Detection Mechanisms

Besides analyzing the vulnerability of other classes of FDI attacks, another avenue

is to design detection mechanisms to identify anomalies caused by FDI attacks.

It can be observed that all classes of unobservable FDI attacks studied in this

dissertation lead to an inevitable load redistribution inside a subgraph. Although

the net loads in both the subgraph and the entire system remain unchanged, the

load varying behavior at each bus may be inconsistent with that observed in the

historical data. For example, after analyzing the historical data from 12:00 p.m. to

2:00 p.m. during the summer, operators found that at this time period, the loads at

two adjacent buses vary at the same direction over 95% of times. When the loads

at the two buses are observed to vary at different directions during this time period,

one can suspect that there are FDI attacks inside the system. In Chapter 5, it is also
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illustrated that the load redistribution at some specific buses play an essential role in

causing target line overflow. If the buses with abnormal load varying behaviors also

fall into this set of essential buses, one can conclude the existence of FDI attacks.

In addition, FDI attacks may result in anomalies on congested line power flow

in the cyber layer. It can be seen from the simulation results in Chapters 4–6 that

to cause a physical power flow violation, the attacker has to first reduce the cyber

power flow on the target congested line with FDI attacks. In the following system re-

dispatch, power outputs from cheaper generators will increase due to the relaxation

of the thermal limit constraint on the target line. This in turn, result in physical

overflow violation in the target line. Such anomalies can supplement the load varying

anomaly detection to better diagnose FDI attacks.
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