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ABSTRACT

In a typical living cell, millions to billions of proteins—nanomachines that fluctuate and

cycle among many conformational states—convert available free energy into mechanochem-

ical work. A fundamental goal of biophysics is to ascertain how 3D protein structures

encode specific functions, such as catalyzing chemical reactions or transporting nutrients

into a cell. Protein dynamics span femtosecond timescales (i.e., covalent bond oscillations)

to large conformational transition timescales in, and beyond, the millisecond regime (e.g.,

glucose transport across a phospholipid bilayer). Actual transition events are fast but

rare, occurring orders of magnitude faster than typical metastable equilibrium waiting

times. Equilibrium molecular dynamics (EqMD) can capture atomistic detail and solute-

solvent interactions, but even microseconds of sampling attainable nowadays still falls

orders of magnitude short of transition timescales, especially for large systems, rendering

observations of such “rare events” difficult or effectively impossible.

Advanced path-sampling methods exploit reduced physical models or biasing to pro-

duce plausible transitions while balancing accuracy and efficiency, but quantifying their

accuracy relative to other numerical and experimental data has been challenging. Indeed,

new horizons in elucidating protein function necessitate that present methodologies be

revised to more seamlessly and quantitatively integrate a spectrum of methods, both numer-

ical and experimental. In this dissertation, experimental and computational methods are

put into perspective using the enzyme adenylate kinase (AdK) as an illustrative example.

We introduce Path Similarity Analysis (PSA)—an integrative computational framework

developed to quantify transition path similarity. PSA not only reliably distinguished AdK

transitions by the originating method, but also traced pathway differences between two

methods back to charge-charge interactions (neglected by the stereochemical model, but

not the all-atom force field) in several conserved salt bridges. Cryo-electron microscopy

maps of the transporter Bor1p are directly incorporated into EqMD simulations using MD

flexible fitting to produce viable structural models and infer a plausible transport mech-

anism. Conforming to the theme of integration, a short compendium of an exploratory
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project—developing a hybrid atomistic-continuum method—is presented, including initial

results and a novel fluctuating hydrodynamics model and corresponding numerical code.
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Chapter 1

INTRODUCTION: THE PROTEIN STRUCTURE-FUNCTION RELATIONSHIP

One of the fundamental ambitions of biophysics is to determine the function of pro-

teins from knowledge about their structure: the so-called structure-function relationship

[1–3]. Proteins comprise a very large class of biological macromolecules that in many ways

behave like nanomachines, underlying the most fundamental processes of biology. By

exploiting sources of thermodynamic free energy, proteins such as enzymes, molecular

motors, and membrane transporters perform mechanicochemical work by cycling between

multiple structural states called conformations. Determining the thermodynamic and mech-

anistic nature of such conformational transitions is therefore essential to understanding

protein function. The tiny spatiotemporal scales over which these processes occur presents

a formidable challenge, both experimentally and computationally. On the other hand,

there is an ever-growing number of structures of increasingly high resolution from X-ray

crystallography and NMR, and the advent of methods such as cryo-electron microscopy

(cryo-EM) and serial femtosecond crystallography are enabling structural imaging under

conditions that more closely represent the native environment and even the possibility

of time-resolved structure determination. Interdisciplinary research by a growing com-

putational community is driving innovation in numerical sampling and computational

analysis methods that, coupled with the unrelenting advance of hardware capabilities and

experimental techniques, is leading to exciting discoveries and new insights into protein

function.

This unprecedented growth in experimental and computational power has led to the

generation of enormous quantities of data, making the question of how to cultivate meaning

from that data of the utmost importance. A rethinking of contemporary methodologies is

necessary, implying the importance of not only incorporating experimental data into numer-

ical simulation but deeper quantitative integration—using computational frameworks—of

1



many scales of description from disparate physical models. This thesis represents an ex-

ploration, both theoretical and applied, of various aspects of numerical sampling, and

introduces one such analytical framework that can leverage data from a diverse range

numerical simulation methods used to study conformational transitions in proteins.

This chapter first introduces the structure-function relationship to conformational transi-

tions, then discusses experimental knowledge about the enzyme adenylate kinase (AdK) as

a concrete illustration, and lastly sets the stage for numerical simulation and path sampling;

it is based in part on the published review, Sean L. Seyler and Oliver Beckstein (2014). Sam-

pling large conformational transitions: adenylate kinase as a testing ground. Molecular Simulation,

40: 855–877. [4] My contribution to this work was a majority of the research, synthesis, and

writing. Chapter 2 then briefly surveys some of the advanced computational methods for

sampling such transitions (including methods used in this thesis) followed by a summary

of computational studies on AdK and the current state of knowledge. In Chapter 3, several

general computational tools for analyzing simulations are described, then Path Similarity

Analysis (PSA) [5] is introduced and illuminated with an application to a toy model. Chap-

ter 4 demonstrates the viability of PSA in analyzing realistic transition paths generated by a

variety of path-sampling methods, as well as relating back to discussions on AdK (Chapter 1

and Chapter 2) and path-sampling methods (Chapter 2). First, AdK is used as a testbed to

apply a number of path-sampling methods (introduced in Chapter 2) to generate open to

closed transitions. These transitions are compared using PSA along with two alternative

techniques introduced in Chapter 3. Then, two sampling methods are analyzed in greater

detail using ensembles of transitions generated from the AdK system and the diphtheria

toxin (DT) protein. We demonstrate the concept of Hausdorff pairs analysis, which pro-

vides a direct way to connect PSA to the molecular detail. At the end of the chapter, the

path-sampling methods comparison has been extended to include long-time, equilibrium

MD (EqMD) transitions generated using the Anton supercomputer [6], followed by a brief

discussion. Chapter 5 takes a look at a membrane transporter system, namely the borate

transporter Bor1p; in particular, it is shown how molecular dynamics flexible fitting (MDFF)

2



can be combined with experimental data from cryo-EM to model new protein structures [7].

Chapter 6 is based on results from the author’s project for the 2016 Blue Waters Graduate

Fellowship, which motivates the role of hydrodynamic models and hybrid multiphysics

methods in studying protein conformational transitions; preliminary findings—including a

novel fluctuating hydrodynamics numerical method written in Fortran 90—are presented

and a road map is given to help guide further development of the project in the future.

1.1 Proteins and conformational transitions

Conformational transitions are an inseparable aspect of protein function, as they are

essential to driving reactions, membrane transport, and other processes at rates necessary

to sustain life—far higher than would be possible in pure equilibrium. Concentrations of

essential nutrients or neurotransmitters are maintained, for example, by the active transport

of substrates into and out of cells by membrane transport proteins, which alternate between

states that expose binding sites to either the cytoplasm or periplasm of a cell [8–10]. The

catalytic cycling of enzymes, as another example, is responsible for maintaining appropriate

biological concentrations of various chemical compounds, and it is generally accepted

that conformational rearrangement acts to passively stabilize chemical transition states

at the chemical step*, thereby indirectly lowering free energy barriers to reaction [15,

18]. However, there is also strong evidence that large-scale conformational changes and

fluctuations enhance substrate fluxes into and out of binding sites by efficiently mediating

reactant binding and product release [19–21].

To elucidate the physical mechanisms of conformational transitions—transitions be-

tween structural states—that underlie function, it is necessary to investigate protein struc-

ture. In principle, the 3D (static) structure of a protein should encode information about its

biological function: the dynamics can be inferred from the structure, and the function can

*Although out of the scope of this dissertation, it bears mentioning that whether conformational motions also
play a more active, direct role over the course of the chemical step is a topic of intensive debate and possible
semantic confusion [11–17].
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be inferred from the dynamics. Much like one can learn about the motion and function of a

door by studying how its hinges allow it to swing between an open and closed position,

one can, in principle, learn about the function of proteins by studying how their structures

admit biologically relevant motions between two (or more) states.† X-ray crystallography,

nuclear magnetic resonance, and, more recently, cryogenic-electron microscopy (cryo-EM)

techniques are continuously contributing to a vast, growing database of protein structures

(the Protein Data Bank [26]), many of which can be identified with functionally relevant

states between which transitions take place. Such experimental methods have, however,

only been able to capture static snapshots of proteins, limiting what can be deduced about

biologically relevant motions [3].

Molecular dynamics (MD) simulation for many years has been the method of choice for

generating atomistic-resolution movies from static experimental structures. The dream of

watching a “movie” of a protein in motion is becoming a reality with the emergence of serial

femtosecond crystallography—femtosecond-pulses from an X-ray free-electron laser (XFEL)

pulses enable time-resolved structure determination [27, 28]. Although MD is playing

an integral role in the development and validation of serial femtosecond crystallographic

techniques, and the integration of both methods promises new horizons in the study of

macromolecular dynamics and the structure-function connection, there are, at present,

two underlying obstacles. The first is the equilibrium sampling problem (discussed in

Chapter 2)—conformational transitions are rare events in the sense that typical transition

events (on the order of nanoseconds) are disproportionately brief compared to the time

spent between such events in metastable equilibrium states (milliseconds and beyond).

Given that all-atom MD typically falls short by many orders of magnitude, approaches

such as the well-known elastic network model (ENM) [29] or targeted MD (TMD) [30]

†To wit, there are experimental and computational studies where mechanical stresses or forcing are, literally,
applied to a protein so as to measure its response and deduce possible connections between mechanical
properties and function [22–24]. It is even possible to apply forces during MD simulations using haptic devices
[25]; see also the Visualization and Simulation of Biomolecules Village on the Beckstein Lab website, an outreach
project sponsored by BioXFEL.
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have attempted to capture the essential physics using simple models or intelligent biasing,

thereby trading accuracy for efficiency (cf. Chapter 2). The second problem is, however,

intrinsic to both MD and time-resolved experimental techniques, both of which require a

quantitative means to process, analyze, and interpret high-dimensional trajectory data—

containing the position information of many thousands to millions of atoms—to be able

to extract meaning from trajectories and, ultimately, construct an intelligible mechanistic

description of the process of interest. Reducing the dimensionality of the data—so it is

amenable to, perhaps, a two- or three-dimensional visual representation—without losing

information in the process is hard (see Chapter 3, which briefly discusses dimensionality

reduction).

To make full use of increasingly capable experimental and simulation methods and

the increasingly massive quantities of (heterogeneous) data that will be generated, it will

be essential to develop quantitative methodologies and analytical frameworks that can

integrate these data, extract relevant structural-dynamical information with minimal bias,

and facilitate interpretation and understanding. One such step in this direction is the Path

Similarity Analysis (PSA) [5], which is explored in detail in Chapter 3 and Chapter 4.

1.2 Adenylate kinase as a model for large-scale conformational change

The intricacies of the current state of knowledge surrounding protein conformational

transitions and the structure-function connection is perhaps more easily understood in the

context of a suitable real-world example. To this end, we take a birdseye view of experimen-

tal and computational insights from the study of the enzyme adenylate kinase (AdK). The

discussion concentrates on the apo enzyme (apo-AdK), as its dynamics lend insight into

the structural changes involved in both ligand-binding and the full catalytic cycle. Indeed,

the complexity of protein-ligand interactions makes accurate simulation difficult, so many

computational studies have focused on the apo enzyme. We also primarily restrict our

attention to the AdK enzyme of the mesophilic bacterium Escherichia coli (AdKeco) as it has

been also the focus of the majority of computational studies. The conceptual simplicity of
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the apo-AdK transition is amenable to visualization and can serve as an intuitive guide

to other protein systems with more complex conformational transitions. In some sense,

apo-AdK has become a benchmark system for the development and application of an im-

pressive array of experimental and computational methods, which affords a rather detailed

picture of the uses and limitations of the various methods as well as how such methods

may complement one another. Despite these efforts, a full mechanistic description of the

relevant conformational changes is nevertheless still lacking, making AdK a worthwhile

system to explore more deeply.

1.2.1 Background

Adenylate kinase (AdK, EC 2.7.4.3) is a relatively small enzyme that regulates the

relative concentrations of ATP, ADP, and AMP and thereby assists energy homeostasis [31,

32]. AdK has three domains: a relatively stable CORE domain containing an α/β-sandwich

fold typical of P-loop NTPases [33, 34]; one mobile domain called the LID, which binds

the magnesium-bound ligand Mg2+·ATP along with the P-loop in the CORE; and another

mobile domain called NMP, which binds AMP. The hinge motions of the LID and NMP

domains allow closing over the reactants, precisely positioning each substrate so as to

catalyze phosporyl transfer while inhibiting the phosphate ion from diffusing away from

the AMP molecule,

Mg2+ ·ATP + AMP 
 Mg2+ ·ADP + ADP. (1.1)

The catalytic cycle is completed once the LID and NMP domains open up, allowing ADP

to diffuse away and new reactants to bind. Fig. 1.1 depicts the three domains and the

large conformational motions of the LID and NMP domains. NMR data suggest that the

ADP-bound opening step of the holo enzyme is comparable to the overall catalytic rate, on

the order of 300 s−1, and is therefore rate-limiting [19].

That both the NMP and LID domains can move about respective labile regions relatively

independently is supported by a preponderance of crystal structures exhibiting partially
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Figure 1.1: The closed↔ open conformational transition and mobile domain angles of E. coli adenylate kinase
(AdK) shown for the apo enzyme. AdK has three structural domains: a stable CORE domain containing an
α/β-sandwich fold [33, 34]; a mobile NMP (Nucleotide MonoPhosphate-binding) domain that binds AMP; and
a second mobile LID domain that binds Mg2+·ATP. The LID–CORE angle, θLID, is formed by the geometric
centers of backbone and Cβ atoms in residues 179–185 (CORE), 115–125 (CORE–hinge–LID), and 125–153 (LID);
the NMP–CORE angle, θNMP, is analogously formed by residues 115–125 (CORE–LID), 90–100 (CORE), and
35–55 (NMP).

open and closed conformations [35, 36]. Over 50 structures of AdKeco and homologous

proteins have been crystallized, predominantly in substrate-bound (holo), closed-like states

and four in ligand-free (apo), open-like states (PDB IDs 4ake, 2rh5, 3umf, 3gmt [26]).

An abundance of intermediate structures also suggestively spans a putative transition

path between the open and closed states [37–40]. By comparison of both apo and holo

X-ray structures, it has been conventionally thought that ligand binding induces a large-

scale conformational change [37]. Efforts to go beyond the limitations of static structures,

however, have led to a very different view, whereby the apo enzyme samples catalytically

active closed-like conformations and substrate binding effects a dynamical reweighting of

the relative distributions between open and closed states [41–43]. These limiting cases are

referred to as, respectively, the induced fit model [44] and the population shift (or conformational

selection) model [45].

Though a continuum exists between induced fit and conformational selection, there

is an emerging consensus that intrinsic conformational flexibility is critical to enzymatic
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function, necessitating a scrupulous examination of protein fluctuations and dynamics [3,

13, 14, 46–48]. We do not discuss the induced fit or conformational selection models in

the remainder of this thesis but, rather, focus on the nature of large-scale conformational

transitions and methods that can be used to investigate their role in protein function.

Relatively recently, new computational and experimental techniques have enabled greater

insight into the relationship between holo and apo dynamics, paving the way for a deeper

understanding of the transition pathways, intermediate states, energetics, and kinetics that

underlie the function of AdK. In the following section, we recapitulate key experimental

results to summarize what is known about AdK and to build a basis for understanding

the growing role of computational methodologies in studying large-scale conformational

transitions.

1.2.2 Experimental insight into timescales and motions

Experimental techniques such as NMR spectroscopy, Förster resonance energy transfer

(FRET), and small-angle X-ray scattering (SAXS) have revealed that the mobile domains

of the apo enzyme can sample a range of conformations in equilibrium spanning open

and closed states [41–43]. Numerous other experiments have further indicated that the

conformational dynamics of ligand-binding strongly correlate with apo enzyme dynamics

[49–52]. In the case of ligand-bound AdKeco, NMR experiments carried out by Wolf-Watz

et al. [19] estimated an opening rate of kopen ≈ 286 s−1 and a much faster closing rate of

kclose ≈ 1374 s−1 in the presence of saturating concentrations of AMP, Mg2+, and AMPPNP

(a nonconvertible ATP analog). As the opening rate was comparable to the overall steady-

state turnover rate (kcat ≈ 263 s−1), the ADP-bound opening step is effectively rate-limiting

and conformational equilibrium is shifted toward a predominantly closed state [19].

Kinetic rate estimates from NMR and FRET experiments have observed that ensembles

of conformations of apo AdK, with varying degrees of both NMP and LID closure, may

undergo transitions between open and closed states on the millisecond timescale [42, 43].

The LID domain in particular appears to move relatively unimpeded between open and
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closed conformations in the apo enzyme and has been a subject of investigation in several

studies. Hanson et al. [42], for instance, used FRET labels on the LID and CORE domains of

AdKeco to specifically probe LID-CORE distances and estimate LID opening and closing

rates, obtaining kopen ≈ 120 s−1 and kclose ≈ 220 s−1. SAXS has also been used to gauge the

global flexibility of AdKeco in solution and it was found that, under apo conditions, large-

scale rigid-body LID movements contribute considerably to the scattering intensity [53].

K. A. Henzler-Wildman et al. [43] measured somewhat faster opening and closing rates of

kopen ≈ 6500 s−1 and kclose ≈ 2000 s−1 for Aquifex AdK (from the hyperthermophile Aquifex

aeolicus) at 293 K, though this was achieved using the separation of FRET labels located

at I52 on the NMP domain and K145 on the LID as a 1D collective variable. Interestingly,

Shapiro and Meirovitch [54] obtained significantly faster estimates for opening and closing

rates of the apo AdKeco enzyme using NMR spectroscopy, indicating that both the LID and

NMP domains may move rapidly in the absence of ligands, possibly at rates of 1.9× 107 s−1

at 293 K.

Although NMR techniques provide direct access to timescales with atomic resolution,

a considerable advantage of FRET is that it can be used to measure time-resolved dis-

tance changes at the single molecule level, allowing a more intuitive visualization of the

underlying opening and closing motions [3]. Distances between fluorophore labels also

approximately correspond to Cα distances, which can be easily measured in NMR and

directly extracted from crystal structures and numerical simulations. Numerous studies

have used 1D FRET collective variables to directly measure overall opening and closing

motions of apo AdK [3, 41–43, 54, 55] and such data comprise the primary evidence that

the apo enzyme populates both open and closed states in conformational equilibrium. It

was subsequently shown by Matsunaga et al. [56] that the 1D FRET pair I52–K145 used

by K. A. Henzler-Wildman et al. [43] on Aquifex AdK reasonably tracks the overall confor-

mational change, suggesting that the very fast rates obtained by Shapiro and Meirovitch

[54] may underestimate apo enzyme transition times. Other the other hand, assigning

thermodynamic states (such as “open” and “closed”) to, say, multimodal distributions of
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1D FRET distances, is a nontrivial problem, as these and other order parameters do not

necessarily correspond to good reaction coordinates [40, 57, 58].

1.2.3 Experimental evidence of multiple pathways

Both NMR and FRET studies have indicated the presence of metastable intermedi-

ate states that are likely to be accessible through two different pathways [3, 41]. Fig. 1.2

schematically depicts two plausible closed ↔ open pathways connecting intermediate

states represented by half-open-half-closed AdK crystal structures. Specifically, starting

from the closed state on the left, the top pathway depicts an NMP-opening trajectory

that proceeds through an intermediate NMP-open-LID-closed conformation; the bottom

sequence represents a LID-opening pathway whose intermediate state resembles a NMP-

closed-LID-open conformation. Variations on the these two pathways are also possible,

whereby several partial opening or closing steps may take place over the course of a closed

→ open or open → closed transition. It is notable that Adén and Wolf-Watz [41], by

analyzing chemical shift perturbations from solution NMR, found evidence for unidirec-

tional allosteric communication—from the ATP binding site in the LID to the distant NMP

domain—observing that such energetic coupling could be rationalized if the ligand-free

enzyme samples open and closed conformations with a bias toward the open state. On the

other hand, the LID-CORE distances examined with FRET by Hanson et al. [42] led to the

unanticipated result that the LID in the apo enzyme favors a closed state in equilibrium.

Despite the apparent conceptual simplicity of rigid-body LID and NMP domain motions in

the closed↔ open transition of apo AdK, discrepancies in kinetic rate estimates remain and

there is as of yet no clear consensus regarding the relevant transition states and pathways.

Given the possibility of hinge-like behavior for both domains, it is likely that at least

two observables will be necessary to fully resolve independent NMP and LID motions. Two

FRET pairs between residues A55–V169 (NMP–CORE, [55]) and A127–A194 (LID–CORE,

[42]) have been shown to measure distances that track the major conformational change
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Figure 1.2: Two plausible pathways for the conformational change between the closed (left, represented by
PDB ID 1ake) and open (right, represented by PDB ID 4ake) conformations, during which the LID domain
(orange) and NMP domain (blue) move sequentially. The top path in the closed→ open direction (solid lines)
is the NMP-opening pathway, placing AdK in one possible intermediate state (top, represented by PDB ID
1ak2), followed by opening of the LID domain to the 4ake open state. The bottom pathway in the closed→
open transition starts with a LID-opening motion, occupies a LID-open/NMP-closed conformation (bottom,
represented by PDB ID 2ak3), and completes with the opening of the NMP domain. The dashed lines and
arrows indicated the closing order of the domains for the open→ closed (reverse) transition.

in (E. coli) apo-AdK in an almost orthogonal manner.‡ Indeed, a 2D space spanned by

such observables can shed light on the conformational dynamics of AdK at the level of

individual domain motions while at the same time providing a direct connection between

experimental and computational techniques. Questions still remain, however, about the

order of opening or closing motions of the mobile domains and the degree to which those

motions are correlated, particularly in the apo enzyme. To understand the mechanistic

‡Lou and Cukier [59], based on principal component analysis (PCA) of MD simulations, suggested that the
residue pair L40–L141 may be a better probe of LID motions than A55–V169, at least on the nanosecond
timescales that were sampled.
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role of the conformational motions involved and to reconcile apparent discrepancies in

experimentally measured timescales, further investigation will undoubtedly be necessary.

Naturally, the ready availability of AdKeco starting structures and experimental data have

paved the way for powerful computational methodologies to contribute new insights.

1.3 Connecting experiment and simulation

In talking about enzymes in general, the presence of multiple metastable intermediates

connected by multiple pathways appears to be a ubiquitous mechanistic aspect [14, 60].

Depending on the enzyme and reaction, billion- to trillion-fold rate enhancements (possibly

up to 1019!) over uncatalyzed reactions can be achieved [61], predominantly by a lowering

of the (quasi)thermodynamic free energy barrier [62, 63]. As the rate enhnacement of an

enzyme increases, so does its binding affinity for antagonists in the transition state (TS), but

not the unactivated state [64, 65]. That the binding affinity of an enzyme for the inhibiting

substrate correlates with the substrate’s resemblance to the TS is indicative of the relevance—

to the catalytic process—of those structural rearrangements involved in passing through

the TS [17, 63, 66]. From this transition-state theory (TST) [67] of enzymes, the motivation

for studying protein structure as it pertains to such enormous enhancements of catalytic

rates, and thus enzymatic function, is transparent. Going one step further, it is clear that

a physical model that can accurately estimate kinetic rates would reveal much about the

underlying physico-structural features of enzymatic catalytic competence and, perhaps,

other protein conformational transitions. Being a direct test of our mechanistic intuitions,

kinetic rate prediction is thus arguably a principal connection between experiment and

simulation.

The equilibrium sampling problem (cf. Chapter 2) makes brute-force rate calculations—

a task necessitating an explicit solvent environment and atomistic detail to account for all

relevant physical interactions—effectively impossible. The thermodynamic free energy

difference between, say, the open and closed states of apo-AdK moreover does not provide

kinetic (rate) information and brute-force calculations are impracticable for the same reasons.
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The ratio of the forward and reverse reaction rates between two states is, however, related

to the population ratio between those states through the equilibrium constant, K. In the

case of AdK, the primary evidence for there being an accessible open and closed states

in equilibrium comes from 1D FRET data. The opening and closing rates of apo-AdK in

equilibrium

closed
kopen−−⇀↽−−
kclose

open (1.2)

are related to the open and closed populations ([AdKopen] and [AdKclose], respectively) by

K =
kopen

kclose
=

[AdKclose]

[AdKopen]
, (1.3)

which, in turn, relates to the free energy difference between open and closed conformations,

∆G = Gopen − Gclose = −kBT ln K = −kBT ln
kopen

kclose
. (1.4)

In situations where, for instance, the opening rate constant is known—perhaps the opening

rate is easier to measure than the closing rate—the closing rate can be calculated from

Eq. 1.4 if the free energy difference between open and closed states is also known.

In principle, both the kinetics (rates) and thermodynamic properties (free energies),

as well as pathways, can be calculated in a single, sufficiently long all-atom, explicit-

solvent EqMD simulation. As mentioned previously, the equilibrium sampling problem

renders such an approach effectively impracticable (see expanded discussion in Chapter 3).

In many situations, free energy differences between two states can be computed without

knowledge of the pathways that connect them, but kinetic rates are comparatively expensive

to compute since they require that the full space of reactive pathways and intermediate

states be explored [62, 68].

Advanced computational methods have been devised to directly calculate rates without

resorting to free energy calculations (some are mentioned in Chapter 3), although a more

common strategy is to divide the problem into separate calculations for the free energies and

kinetic rates using complementary methods. Although free energy and rate calculations are

not presented in this dissertation, it is worth noting that, for instance, one can compute the
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free energy, or potential of mean force (PMF§), along a putative pathway to estimate the barrier

height at the transition state (TS) and then apply a kinetic rate theory (e.g., using transition

state theory [TST] or Kramers’ theory [75]). Accurate rate estimates can be obtained from

such an approach when it is feasible to: (1) identify relevant kinetic pathways and (2)

perform sufficient sampling along the pathways to compute a converged PMF. Kinetic rate

theories effectively transform the problem of rate estimation into one of locating the reaction

pathways with good collective variables (CVs). The difficult task of selecting a satisfactory

set of CVs generally falls under the purview of dimensionality reduction (cf. Chapter 3),

though it is possible, at least in principle, to choose arbitrary combinations of CVs when

using computational methods. An ideal, comprehensive computational approach might be

imagined to employ dimensionality reduction and enhanced sampling to identify a kinetic

pathway, construct a PMF by sampling free energies along the pathway, then generate a

rate estimate by applying a kinetic rate theory to the PMF.

The appeal of a PMF lies in the simplicity of the description, which depicts a free en-

ergy profile and barrier between two states as a function of a single coordinate. Although

it may be tempting to infer a mechanism from a PMF, it is imperative that one keep in

mind two failure points. Specifically, PMFs are: (1) subject to the usual concerns about

obtaining sufficient sampling for convergence; (2) constructed from a selected set of col-

lective variables that may not yield an adequate description of the underlying transition

process. In a situation where (1) and (2) can be addressed with both thorough sampling

and an unbiased selection of CVs describing a functionally relevant pathway, a PMF may

be able to yield a meaningful estimate of the transition state barrier and help connect to

the underlying kinetics. However, such a task is complicated by the fact that large-scale

conformational transitions can take place over multiple pathways proceeding through

functionally relevant intermediate states. That reactive pathways may not be described by

§PMFs can be computed, for example, using umbrella sampling [69] along with an unbiasing technique like the
weighted histogram analysis method (WHAM) [70, 71] or the multistate Bennett acceptance ratio (MBAR) [72]
estimator, or using specialized enhanced sampling algorithms like metadynamics [73] or the free energies from
adaptive reaction coordinate forces (FEARCF) method [74].
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obvious coordinates choices and that EqMD is generally unsuitable for this kind of search

is the primary motivation of numerical path sampling techniques [57].
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Chapter 2

NUMERICAL SIMULATIONS AND ADENYLATE KINASE

This chapter is based in part on the published review, Sean L. Seyler and Oliver Beck-

stein (2014). Sampling large conformational transitions: adenylate kinase as a testing ground.

Molecular Simulation, 40: 855–877. [4] My contribution to this work was a majority of

the research, synthesis, and writing. This chapter reflects a contemporary perspective that

incorporates the literature published since the review, as well as other articles not previously

mentioned, including many recent developments in path-sampling methodology [76–88]

and a number of new studies involving AdK [68, 84–86, 89–97].

A concise overview of numerical sampling approaches is given to set the stage for dis-

cussing computational studies on AdK. Many of these studies employ fast path-sampling

methods that overcome the timescale limitations inherent to equilibrium molecular dynam-

ics (MD) simulations. To this end, the first part of this chapter begins with an overview

of MD simulation since this method has been used to produce results in Chapter 4 and

Chapter 5 and is also discussed in Chapter 6. Next, there is a discussion of challenges to

sampling conformational transitions with equilibrium MD due to the so-called equilib-

rium sampling problem, motivating the reason that fast path-sampling algorithms have

been used to produce transition paths. To provide a concrete example of one such fast

path-sampling algorithm, the Dynamic IMportance Sampling MD (DIMS-MD) algorithm is

briefly described; DIMS-MD was also extensively used to produce the results presented in

Chapter 4, so this example also serves as a backdrop for later discussion. Then, a general

overview of various types of path-sampling approaches then puts into context many of the

computational studies on AdK, which are discussed in final part of this chapter.

16



2.1 Molecular dynamics

Equilibrium molecular dynamics (EqMD) simulation [98–101], much like an atomistic

resolution computational microscope [102, 103], is a robust and popular method that has

been valuable for investigating the link between protein structure and function [104–106].

In the molecular mechanics (MM) approach, mutual forces between particles are defined by a

classical force field; to generate the dynamics, experimental structures (often from X-ray

crystallography) are used as putative initial conditions and the equations of motion of

classical mechanics (i.e., Newton’s second law) are numerically discretized and integrated

forward in time [100, 101]. Symplectic numerical integrators such as Verlet methods* are

widely used for MD of Hamiltonian systems [101, 108] because they possess a number of

desirable properties, including time-reversibility and global energy conservation†

Classical force fields used in biomolecular and protein simulations—CHARMM [112],

AMBER [113], GROMOS [114], OPLS [115], and others—define a pairwise-additive potential

energy in terms of bonded and non-bonded energy terms with a general (or similar) form

[116–118]

U(X) = ∑
bonds

kb(l − l0)2 + ∑
angles

kθ(θ − θ0)
2 (2.1a)

+ ∑
dihedrals

kχ [1 + cos (nχ− δ)] + ∑
impropers

kimp(φ− φ0)
2 (2.1b)

+ ∑
n.b. pairs

[((
Aij

rij

)12

−
(

Bij

rij

)6
)
+

qiqj

εrij

]
. (2.1c)

In Eq. 2.1a, the first term is a summation is over atom pairs with bond length l and the

second term is taken over three consecutive atoms (1–3 interactions) that form an angle θ;

in Eq. 2.1b, the third (sinusoidal) and fourth (harmonic) terms involve four consecutive

*Variational, or Higher-Order Harmonic (HOH), integrators introduced by Predescu et al. [107] have many of
the desirable properties as Verlet methods and may be alternatives worth considering.

†More precisely, symplectic integrators conserve a “shadow Hamiltonian”—an asymptotic expansion in powers
of the time step—that closely approximates the real Hamiltonian, with energy errors that depend on the
timestep size and integration order [109–111].
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atoms (1–4 interactions), which are, respectively, dihedral rotations with “torsion” angle

χ and improper dihedrals with the out-of-plane angle ψ. The final sum (Eq. 2.1c) is taken

over non-bonded pair interactions, for atoms i and j with separation rij, that fall within

a predefined cutoff distance‡ The first non-bonded term is the 6-12 Lennard-Jones (LJ)

potential, which approximates van der Waals (vdW) dispersion interactions and short-

range repulsion between atoms i and j with separation rij. The second non-bonded term is

recognizable as the Coulomb potential; due to its long-range nature, truncation errors can

be avoided by computing electrostatic forces when atoms i and j (with respective charges

qi and qj) fall within the cutoff, while long-range interactions are computed using special

methods§

The parameters kb, kθ , kχ, and kψ (bonded parameters) and Aij, Bij, and ε (non-bonded

parameters) in Eq. 2.1 are often calibrated to reproduce a set of experimental observables

(e.g., thermodynamic equations of state or transport coefficients), but molecular mechanics

parameters may also be derived from quantum-mechanical electronic structure calculations,

especially when reliable empirical data are scarce [128]. By comparison, ab initio MD (AIMD)

[129, 130] determines forces from first principles by calculating the electronic structure on

the fly, avoiding excessive parameter fitting that can lead to model bias. AIMD can also

capture the chemistry and polarization of materials. Despite such appeal, the typically large

number of electronic degrees of freedom places severe limits on the number of atoms that

can be simulated (. 104) and the physical timescales that can be accessed (. 100 ps) [131,

132]. For all-atom equilibrium simulations of biological macromolecules, some of which

which may contain upwards of 106 atoms including solvent atoms, molecular mechanics

(i.e., EqMD) is still the most viable approach.

‡It is typical to choose a single cutoff—on the order of 8 Å to 12 Å for biomolecular simulations—for both van
der Waals and electrostatic terms [119].

§Mesh-based Ewald methods run in quasilinear time and are common for systems with periodic boundary
conditions [120–123], but techniques such as the multilevel summation method (MSM) [124] and the fast
multipole method (FMM) [125] that have comparable accuracy and handle general boundary conditions are
becoming potentially competitive alternatives to [126, 127].
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Force fields remain a significant, though manageable, source of systematic error in EqMD

simulations [93, 133–138]. Indeed, the task of quantifying all sources of error, both statistical

and systematic, is imperative if systematic errors are to be mitigated and the results of

computer experiments are to be taken seriously [138], especially with unprecedented access

to long timescales pushing the limits of current force fields [103]. Yet empirical biomolecular

force fields have often been within the accuracy of the experimental method [139] and

there has been considerable progress in recent years [103, 140–143]. Numerous millisecond-

timescale EqMD simulations indicate that biomolecular force fields are sufficiently accurate

to reproduce experimental quantities relevant to, for example, protein folding [134, 144,

145] and ongoing efforts to improve water models [137, 146] and polarizable force fields

[147–149] suggest that the molecular mechanics approach is far from obsolete. Development

efforts that extend the reach of conventional EqMD are underway—e.g., constant-pH MD

[150–152]. It is also becoming increasingly realistic to implement and optimize more capable

biomolecular force fields, such as anharmonic force fields [153–155] that go well beyond

the form of Eq. 2.1, using novel optimization techniques [155, 156] and machine learning

approaches [157, 158].

2.2 Why path sampling?

A primary advantage of applying EqMD to sampling large-scale conformational change

is that the dynamics from the (unperturbed) Hamiltonian is expected to remain faithful to

the microscopic dynamics while reproducing the expected thermodynamic observables and

their fluctuations. As such, it should be possible in principle to produce a true ensemble of

atomistically detailed equilibrium trajectories that sample a putative transition pathway.

On the other hand, most conformers extracted from an EqMD simulation necessarily corre-

spond to metastable states rather than transition states of interest. To be able to observe

large-scale transition events, which tend to take place among the low-frequency modes of

a protein [159], EqMD simulations must be able to sample timescales on the order of at

least tens to hundreds of microseconds if not well beyond milliseconds. Currently, all-atom
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EqMD simulations with explicit solvent can access the microsecond regime using modern

commodity GPUs and GPU-enabled MD codes [160–164] and continual improvements in

computational power will eventually allow access to even longer timescales. However,

all-atom EqMD requires timesteps on the order of femtoseconds for stable integration, ne-

cessitating at least billions of timesteps to access the microsecond regime. EqMD ultimately

falls short of relevant timescales—often by many orders of magnitude—where one would

observe most large-scale transition events, let alone achieve statistically valid sampling

[165, 166]. Even when EqMD can generate transitions in practice, such disproportionate

sampling of metastable states is a severe hindrance computational efficiency, limiting its

competitiveness as a method for generating conformation transitions [167].

It nevertheless seems that a detailed, mechanistic understanding of conformational

transitions should be essential to forming a complete picture of such protein functions as en-

zyme catalysis, ion channel gating, membrane transport, and other vital molecular-cellular

processes. Computational scientists have devised specialized algorithms, known generally

as enhanced sampling (or rare-event sampling) methods, to overcome the equilibrium

sampling problem (cf. [4, 29, 166, 168–171]). Some enhanced sampling techniques acceler-

ate the overall rate at which phase space is explored, while others incorporate additional

knowledge (about a dynamical system) so as to intelligently restrict sampling to relevant

regions of phase space. A wide variety of enhanced sampling algorithms have been de-

veloped for protein systems to generate conformational transitions—henceforth referred

to as path-sampling methods—using a fraction of the computational effort of equilibrium

MD [4, 166, 171]. On the one hand, enhanced sampling generally requires the introduction

of nonequilibrium forces/effects so as to overcome (equilibrium) free energy barriers; on

the other hand, ideal enhanced sampling trajectories should at least represent, if not fully

reproduce, equilibrium transition ensembles. By generating plausible transition paths very

efficiently, many path-sampling methods enable the study of fast processes that elude

equilibrium approaches, though whether these methods can reproduce physically realistic

transitions remains an open question [4, 5].
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2.3 Dynamic Importance Sampling MD

To provide an illustrative example of an enhanced (path-)sampling algorithm, we

discuss the Dynamic IMportance Sampling MD (DIMS-MD) [172–174] method, a biased-

MD approach that can be used to generate ensembles of plausible transition paths by biasing

trajectories from an initial state toward a known final state (e.g., X-ray crystal structures).

DIMS is used in Chapter 4 to generate ensembles of closed → open for apo-AdK and

diphtheria toxin (DT) transitions that are analyzed using the path similarity analysis (PSA)

method introduced in Chapter 3. As such, several relevant aspects of the DIMS-MD method

are reproduced here (cf. [174] for complete details) to reinforce intuition before introducing

other path-sampling approaches in the subsequent section.

DIMS-MD (or DIMS) combines MD with a Maxwell-demon-like biasing approach that

allows a trajectory to be stochastically guided from an initial state toward a known final

state (e.g., X-ray crystal structures). DIMS is currently implemented in the CHARMM MD

program and employs Langevin dynamics. Biasing is achieved through a combination of a

suitable progress variable and a choice of biasing algorithm. A simple progress variable

implemented in this dissertation is the root mean square distance (RMSD) to the target,

dRMS
(
X|XF) = √ 1

M ∑
i∈X

mi
(
xi − xF

i

)
·
(
xi − xF

i

)
, (2.2)

where X is set of 3D coordinates for a selection of atoms (e.g., backbone atoms), xi are the

3D coordinates of the ith atom in {atoms} and mi its mass, M is the total mass of the atoms

in {atoms}, and xF
i are the corresponding atomic coordinates in the final state XF. If the

coordinates at the nth MD step are Xn, then the change in RMSD relative to F at step n + 1

is given by

∆φ
(
Xn → Xn+1) = dRMS

(
Xn+1|XF)− dRMS

(
Xn|XF). (2.3)

Thus, when ∆φ is negative (positive), the step is considered to be toward (away from) the

final state F. In the case of the soft-ratcheting algorithm¶ (SRA), MD steps toward the

¶A normal-mode biasing scheme is also available, though this scheme is not used in this thesis; references to
DIMS also refer to the SRA implementation unless explicitly stated. See [174] for more details.
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target state are always accepted whereas steps away from the target are rejected with finite

probability (Fig. 2.1), leading to a Metropolis-like acceptance criterion

pacc(∆φ) =


1, ∆φ ≤ 0

exp{−|∆φ/φ0|2}, ∆φ > 0
(2.4)

where the soft-ratcheting parameter φ0 determines the softness of the ratcheting algo-

rithm; when φ0 → ∞ only forward steps are accepted, while φ0 = 0 recovers equilibrium

(unbiased) dynamics.

-1

1

210

accept

accept
reject

pacc(Δφ)

Δφ

Figure 2.1: Schematic depiction of the acceptance and rejectance regions for DIMS-MD steps using the soft-
ratcheting algorithm. Steps toward the target state, XF, lead to a decrease in the progress variable, φ, such that
∆φ ≤ 0 (by definition) and are always accepted (i.e., pacc = 1). Steps away from the target increase the progress
variable (i.e., ∆φ > 0) such that pacc = exp{−|∆φ/φ0|2}, meaning that large backward steps are less likely
than small steps.

During a DIMS simulation, a trial step is taken by computing the interatomic forces

(from the force field) and stochastic forces (from the noise term in Langevin dynamics)

and ∆φ is calculated. When a step is rejected (finite φ0), (only) the stochastic forces are

resampled and ∆φ calculated until a step is rejected. A notable advantage of SRA biasing

over TMD, for instance, is that SRA supplies what is essentially an “entropic force”—

thermal fluctuations that tend to progress a trajectory toward the target state are selected

preferentially—thus obviating the need to perturb the system’s native Hamiltonian with

an external bias potential. Furthermore, the softness of the acceptance criterion gives

energetically “stuck” trajectories a chance to circumnavigate large barriers via backtracking.
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2.4 Path-sampling methods

An impressive array of physical models and algorithmic techniques have been devel-

oped and exploited with the purpose of sampling large-scale conformational transitions

otherwise inaccessible to EqMD. Generally speaking, path-sampling techniques aim to

accelerate the overall rate at which configuration space is explored (e.g., reducing the

number of degrees of freedom via coarse-grained or implicit solvation models) [29, 169],

restrict the space of sampling by incorporating prior information into a biasing algorithm

(e.g., targeting an end state represented by a known experimental structure or driving

sampling away from previously explored regions), or employ some combination thereof [4,

166, 168, 170, 171]. Perhaps the simplest class of approaches is structural morphing based

on linear interpolation [175], including the linear adiabatic mapping algorithm [176] and

nonlinear morphing methods like Climber [177]. Many path-sampling methods are not

specific to protein systems and may be applied to an arbitrary dynamical system, while

others have in mind the specific goal of, for instance, generating protein conformational

transitions between two states (e.g., two-state elastic network models). One key function of

path-sampling is to locate a reaction coordinate that passes through the transition state (TS)

to obtain an accurate estimate of the free energy barrier (e.g., from a PMF calculation) [178].

The barrier height (and width) will, however, depend on the choice of coordinate along

which the PMF is sampled, and poor reaction coordinates can lead to misleading pictures

of the underlying physical process [101].

As path-sampling methods may differ in their level of spatial detail, whether temporal

information is included (e.g., dynamical trajectories versus minimum energy paths), their

suitability for extracting thermodynamic information, their overall computational efficiency,

an so on. However, a path-sampling method may integrate a number of techniques to

enhance sampling; for instance, two MD-based methods may differ primarily in their

biasing algorithms, or normal mode information from an elastic network model (ENM) [29]

might be used to bias many distinct physical models (e.g., a model based on an all-atom
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molecular mechanics force field, another on a Gō model [179], and a third using only

stereochemical considerations [180]). It is clear that such combinatorics frustrates attempts

to find a consistent classification of all known path-sampling methods, especially since

many approaches hybridize several methods and physical models. In the synopsis that

follows, we focus on the classes of algorithms that are representative of the path-sampling

methods comparison performed in Chapter 4.

2.4.1 Enhanced dynamical sampling

Enhanced path-sampling methods based on dynamical algorithms (e.g., MD) retain

temporal information about the system and generate time-dependent trajectories [30, 172,

181–186]. Sampling can be enhanced over equilibrium MD either by reducing the com-

putational cost per time step (e.g., eliminating degrees of freedom via implicit solvent or

coarse-grained models), by minimizing the total number of time steps needed for sampling

(e.g., adding a bias that guides sampling toward a known target), or both [166]. Many

exploit the use of a low-dimensional collective variable (CVs) space in which sampling is

performed and, for some methods, in which the free energy surface can be estimated.

Examples of methods that combine a bias algorithm with a known target state include

essential dynamics sampling MD [187], dynamic importance sampling MD (DIMS-MD)

[172, 173, 188], adiabatic bias MD (ABMD) [189, 190], and targeted molecular dynamics

(TMD) [30, 191] and restricted perturbation TMD (RP-TMD) variants [192, 193]. Other

methods use compensatory biases to minimize time spent in metastable equilibria. Adaptive

biasing force (ABF) methods [194, 195] act to dynamically adjust an external biasing force

so as to exactly cancel an on-the-fly free energy (PMF) gradient estimate, thereby flattening

the free energy surface (FES). Metadynamics [73, 196], on the other hand, deploys history-

dependent biasing potentials in a (predefined) CV space to avoid regions where sampling

has already occurred, and whose effects on the equilibrium (Boltzmann) distribution

can be “undone” to compute the FES in the CV space; a recent adaptation known as

infrequent metadynamics enables direct kinetic rate calculations as well [78, 83]. Inspired by
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metadynamics, temperature-accelerated MD (TAMD) [197, 198] (which is fundamentally

different from TAD) is an extended-system approach, where a chosen set of CVs are

promoted to dynamical variables and artificially high temperatures are used to hasten the

exploration of the free energy surface over those CVs.

In the case of coarse-grained molecular dynamics (CG-MD) simulations that employ

structure-based models of the potential energy function, speed gains up to a few orders

of magnitude over atomistic MD are possible due to reduction in computational costs

at each step (i.e., fewer degrees of freedom are needed to compute forces) in addition to

smoothing the potential energy surface (PES) and increasing the rate of configuration space

exploration (i.e., removing roughness in the PES by removing full atomic detail) [169, 199].

Structure-based models incorporate interactions between atom or residue pairs and, using

microscopic or macroscopic mixing models, merge the energetic terms from two end states

into a unified PES [200]. Structure-based models are coarse-grained but retain important

local and global features of the landscape like metastable intermediate states and even the

atomic-scale roughness of the full PES. Several studies using structure-based models to

perform CG-MD have been applied to the AdK closed↔ open transition [201–204].

2.4.2 Methods based on elastic network models

The elastic network model (ENM) assumes a harmonic energy approximation about

a known structural configuration (e.g., an atomic crystal structure) and has found many

applications due to its conceptual and computational simplicity [29, 205–212]. The ENM

is often implement at a coarse-grained level (e.g., a Cα representation) making the calcula-

tion of slow, low-frequency modes with normal mode analysis (NMA) a computationally

inexpensive way to predict large-scale, collective protein motions. The first example was

the atomic resolution elastic network introduced by Tirion (the Tirion model) [205] and the

idea of a spring “network” applied to Cα atoms in the coarse-grained Gaussian network

model (GNM) by [206] less than a year later [29]. Soon after, Hinsen’s ENM [213, 214] and

then the similar, well-known anharmonic network model (ANM) [207] extended the GNM
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description of 1D fluctuations to 3D. More recently, a dissipative electro-elastic network

model (DENM) was introduced that includes charge-charge interactions and overdamped

Langevin dynamics on the normal modes [76], including a variation called the solvated

DENM (sDENM) that re-normalizes the Hessian to account for solvent interactions with

ionized surface residues [77].

In the context of conformational transition paths, the ENM can be used to generate

transitions using a number of different approaches. One approach that can roughly capture

intermediate states away from local minima is to iteratively advance a structure along the

slowest eigenmodes while gradually decreasing the distance to a target structure [215–217].

Another approach—used by many of the ENM-based methods examined in Chapter 4—has

been to construct two-state potential energy functions; from ENM representations of two

known end states, a “mixing function” unifies the harmonic wells and a plausible transition

path can be extracted by finding, for example, a minimum energy path (MEP) [38, 208, 209,

218, 219]. It is common for the ENM (and NMA) to be hybridized with other methods as a

means of guiding various kinds of geometry-based or dynamical sampling methods along

a few slow normal modes [216, 220–223].

2.4.3 Information-based approaches

There are a growing number of methods that exploit “prior information” to perform

an intelligent search of configuration space, usually without regards to the underlying

dynamics. One such method is the geometrical targeting algorithm FRODA [180], which

is used in Chapter 4 in testing Path Similarity Analysis (PSA) and comparing various

path-sampling methods. Other methods include motion planning algorithms, such as

the rapidly exploring random trees (RRT) algorithm [224, 225], the probabilistic road

map (PRM) [226, 227], and the “mining-minima” algorithm [228]. Some methods eschew

potential energy functions by incorporating basic geometric considerations (e.g., preserving

protein stereochemisty by avoiding atomic clashes, respecting loop-closure constraints,
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etc.), including geometry-based essential sampling [229], geometric-based RRT [230], and

geometric targeting [180].

2.4.4 Other methods

There are a substantial number of methods that bear mentioning, although the details

are beyond the scope of this dissertation. Ensemble-type approaches are based on the notion

of an equilibrium trajectory ensemble between two states. Such methods are often directly

suitable for or facilitate kinetic rate calculations, though some require an order parameter

or reaction coordinate as initial input. Many well known examples take the approach

of dividing up the region between the end states into a series of interfaces, including

transition path sampling (TPS) [57], transition interface sampling (TIS) [231, 232], forward

flux sampling [233–235], weighted ensemble dynamics [82, 236–238], and milestoning

algorithms [81, 239].

String-type methods place an ensemble of simulations in sequence, linking the members

by a virtual “string” to form a path; an initial path is defined as input and then relaxed

by performing energy minimization or MD on each member concurrently so as to locate a

MEP or minimum free energy path (MFEP). Those that generate an MFEP include the finite-

temperature (FTS) string method [240, 241] and FTS based on CVs [242, 243], “strings with

swarms” [244]. Methods that generate an MEP include the zero-temperature string (ZTS)

method [245], nudged elastic band methods [246–248], and conjugate peak refinement [249].

A disadvantage of these methods is that changing the initial path can alter the predicted

low energy pathway.

A few other methods include replica exchange MD (REMD) [182, 250], hyperdynamics

[80, 181, 251] and accelerated MD (aMD) [183], and temperature-accelerate dynamics (TAD)

[252, 253].
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2.5 Computational methods and AdK

The overview of AdK computational studies that follows serves two purposes. The first

objective is to revisit the concrete example of the AdK closed↔ open transition in order

to provide a lens through which the role of computational methods—in addressing the

protein structure-function problem—can be put into proper context, as well as connecting

back to experimental AdK studies (Chapter 1). In particular, it is hoped that this synopsis

reveals extant gaps in our understanding so as to motivate the need for some kind of

integrative framework that can facilitate quantitative comparisons between path-sampling

methods, “gold-standard” MD, and, in principle, experimental data, thus motivating the

Path Similarity Analysis (PSA) approach introduced subsequently in Chapter 3. The second

objective is to provide the necessary background for Chapter 4 in which the AdK closed

→ open transition is used as a model problem to compare a number of fast path-sampling

methods with the PSA framework. To be clear, it is not the intention of the author to provide

a thorough review of either path-sampling algorithms nor the entire body of literature

on AdK; however, every effort has been made to provide a fair, accurate, complete, and

up-to-date account of these broad, interesting areas of discourse while also concentrating

on general findings that are most relevant to this dissertation.

Convincing experimental evidence from several NMR and FRET-based studies [3, 19,

41] indicates a connection between the motions of substrate-bound AdK during the full

catalytic cycle and the intrinsic dynamics of the apo form. Since apo-AdK is simpler to

simulate but is still likely to follow the dynamics of its substrate-bound forms, it has been ap-

pealing system to study using computational approaches and, in particular, has motivated

meticulous investigations into the closed↔ open apo transition. An impressive number of

computational studies have since attempted to elucidate the mechanism underlying the

apo transition, has helped to turn apo-AdK into a de facto testbed. Though the picture of

AdK’s full catalytic cycle remains incomplete, the ever-increasing number of computational
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studies, along with the advent of novel computational algorithms, are helping to shed light

on AdK and enzyme function in general.

2.5.1 Metastable states and energy landscapes

Computational studies are divided on whether the closed or open state has a lower

relatively free energy. Though a majority indicate that the closed state is energetically

favorable [39, 40, 203, 204, 220, 254, 255], several studies explicitly predict a lower open

state free energy from 1D umbrella sampling [56, 58, 256, 257] and a few have observed a

preference for open conformations [184, 187, 258].

The 2D free energy landscapes computed by Beckstein et al. [40], Whitford, Onuchic,

and Wolynes [202], Q. Lu and J. Wang [203], and Bhatt and Zuckerman [255] all indicate

that at least two intermediates, resembling LID-open-NMP-closed or LID-closed-NMP-

open conformations, are plausible locally stable states. One study hypothesized that a

so-called half-open/half-closed (HOHC) state—a LID-semi-open and NMP-semi-closed

conformation similar to the 1ak2 crystal structure (Fig. 1.2, top)—should be directly involved

in the catalytic cycle [259]. Using a coarse-grained structure-based representation of AdK, Y.

Wang et al. [260] identified a population of LID-closed-NMP-open intermediates similar to

1dvr:A as well as the HOHC intermediate, though the apparent instability of the latter was

suggested to have been due to the absence of explicit protein-solvent interactions in their

model. A number of other computational studies also imply the existence of intermediate

states [184, 219, 220, 222, 257, 258, 261].

The existence of one or more metastable states—as distinct from closed and open

populations—in the apo ensemble entails a more intricate picture of the dynamics than

what is likely to be captured by a single order parameter or collective variable. Substantial

experimental and computational evidence has led to the contemporary view that the native

fluctuations of apo AdK encode the substrate-bound dynamics. There is a lively discourse

concerning the order of apo state domain motions and functional pathways due in large

part to the relative ease of ligand-free computational modeling. A variety of simulation
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methods have been used to produce several distinct pathways that recapitulate, to varying

degrees, the schematic representation of LID-opening and NMP-opening pathways and

intermediate states in Fig. 1.2.

Numerous computational studies have generally found that the LID can sample a range

of conformations in a relatively flat free energy landscape spanning open and closed states

[40, 56, 220, 254, 256, 259]. These results are in agreement with experimental SAXS data that

indicate large-scale, rigid-body movements of the LID comprise the dominant scattering

feature of the apo enzyme [53]. Such innate flexibility in the ATP-binding LID is consistent

with a conformational selection mechanism. Chemical shift perturbation analyses from

solution-state NMR support the idea that, much like the apo enzyme, the ATP-bound

complex comprises a transient structural ensemble that populates closed and open states

in similar proportions [41]. This dynamic equilibrium picture contrasts with an induced

fit model that implies a well-defined ATP-AdK complex is induced by ATP binding. A

particularly interesting result was that Whitford, Onuchic, and Wolynes [202] demonstrated

the viability of a mixed mechanism—LID motions are described by conformational selection

and NMP motions are ligand-induced—leading to a picture where LID opening (closing)

always precedes NMP opening (closing).

Most computational studies find clear evidence of a LID-opening pathway where the

LID opens in advance and independently of the NMP domain [38, 40, 203, 222, 224, 255, 258,

259, 261, 262]. On the other hand, an appreciable number of studies predict an NMP-opening

(or LID-closing) pathway, with most finding evidence for an initial step defined by a closed

LID and a partial opening of the NMP domain, resulting in a LID-closed-NMP-half-open (or

similar) intermediate state. It is not known whether this state is truly metastable, though

several studies suggest that a state similar to LID-closed-NMP-open conformation may

be catalytically competent [259, 263] including simulations using a structure-based model

[260] and a recent study involving extensive QM/MM (quantum mechanics molecular

mechanics) simulations [97]. The opening motions following partial NMP-opening were
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in some instances characterized by a complete opening of the LID [261] and in other cases

defined more or less by a concurrent opening of both mobile domains [184].

2.5.2 What does EqMD have to say about AdK?

Large-scale conformational changes are statistically rare events, but there is evidence

that the closed→ open transition of apo AdK may be accessible to equilibrium MD (EqMD)

simulations. The relatively early study by Pontiggia, Zen, and Micheletti [264] used the

OPLS-AA force field, running simulations from both the closed and open states (50 ns each),

observed appreciable LID closing from the open state. Brokaw and Chu [258] performed

EqMD simulations of AdK from the closed and open states both with and without ligands

using all-atom CHARMM27 (CHARMM22 + CMAP) force field, observing a near-complete

opening initiated by the LID and followed by NMP over the course of 40 ns in a 100 ns

simulation. H. D. Song and Zhu [257], using the all-atom CHARMM36 force field and

TIP3P water, reported multiple spontaneous closed → open transitions within ∼ 20 ns

and several within 100 ns to 200 ns in repeat simulations; most runs took a LID-opening

pathway, although two runs exhibited NMP-opening after the LID initially opened slightly.

More recently, D. Li, M. S. Liu, and Ji [90] EqMD with Amber03 force field observed distinct

LID-opening and NMP-opening pathways well within 100 ns, the former characterized by

relatively rapid opening by the LID and the latter by an initial partial opening of NMP into

a semi-open conformation. To compare with previous studies, D. Li, M. S. Liu, and Ji [90]

also produced 500 ns CHARMM27 and OPLS-AA simulations from the open state, finding

that the open conformation was stabilized with CHARMM27 but LID-closed states were

reachable on the order of 100 ns with OPLS-AA.

The question of the impact of force field choice on transition mechanisms was the subject

of interest in a recent study by Unan, Yildirim, and Tekpinar [93] where AdK was simulated

from the closed conformation for a total of 8 µs using Amber99, CHARMM27, Gromos53a6,

and OPLS-AA (2 µs per force field). Despite relatively extensive sampling, one should be

cautious in drawing firm conclusions about the energy landscape or functional pathways
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(predicted by a given force field); however, their results were consistent with previous stud-

ies, showing that CHARMM27 simulations were largely restricted to the vicinity of the 4ake

structure, while Amber and OPLS-AA simulations could adopt closed conformations and

access LID-closed-NMP-open states relatively easily. Up to this point, EqMD simulations

(regardless of force field choice) have not been observed to sample conformations in the

immediate vicinity of the 1ake closed crystal structure (& 2 Å), which is likely accessible on

the millisecond timescale [43]. However, simulations using OPLS-AA and, to a lesser extent,

Amber force fields have consistently been able to reach virtually closed conformations

starting from either closed or open states, while those using CHARMM force fields clearly

stabilized the open state. It is worthwhile to consider that chemical-shift NMR strongly

suggests that fully closed conformations require both substrates to be bound [41]; in an

MD study by Delalande, Sacquin-Mora, and Baaden [265] on guanylate kinase (GK), a

related enzyme with three domains and similar lid-like and substrate-binding moieties,

physics-based mechanical resistance analyses support the idea that magnesium ion (Mg2+)

coordination of a network of select residues (and possibly water molecules||) is necessary to

stabilize and “lock” the closed state. Nevertheless, the precise mechanostructural correlates

of cofactor-induced active-site coordination or even different MD force fields involved in

the closure (or opening) of AdK remain to be discovered.

2.5.3 Summarizing remarks

Although apo-AdK appears to represent a conceptually simple system whose closed

↔ open transition appears to be straightforward to investigate, there is as of yet no clear

consensus regarding many aspects of the free energy landscape, intermediate and transition

states, functional pathways, or kinetic rates—it is possible that the underlying dynamics

||Based on their observation of several localized water molecules near the Mg2+·ATP chelate, Delalande, Sacquin-
Mora, and Baaden [265] hypothesized that something like a water “channel” or “bridge” may also take part in
coordinating enzyme closure. Given the large negative charges of ATP, ADP, and AMP under physiological
conditions, it is plausible that multivalent metal cofactors like Mg2+—along with water molecules and charged
residues—may be necessary to facilitate the functional closure and/or nucleotide binding and release of AdK,
GK, or other kinases.
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are richer than originally suspected. In many cases it is still unclear whether either of the

mobile domains are occupying fully open or fully closed states. This question could be

resolved by computing a free energy landscape using a suitable set of collective variables

that can fully characterize the accessible substates that span the open and closed conforma-

tions for both mobile domains. However, 2D projections such as angle-angle or domain

center-of-mass coordinates may only be effective descriptions under the assumption that

mobile domains behave as rigid-bodies; such projections may differ in their sensitivity

to twisting or bending motions, or they may not be able to capture such motions at all,

which presents a challenge when precise distinctions are needed to resolve intermediates

in close proximity to closed and open state populations. An important consideration that

has been somewhat overlooked is the precise definition of the closed state; more carefully

analyses will be needed to elucidate any important differences between closed-like apo

and holo conformations and the conformation adopted by the inhibitor-bound 1ake crystal

structure.**

It should be reiterated that the depiction in Fig. 1.2 ultimately represents a convenient

but artificial dichotomy. Indeed, a number of studies describe transitions that do not

categorically delineate a LID-opening or NMP-opening pathway. For instance, Korkut

and Hendrickson [269] used the virtual atom molecular mechanics (VAMM) algorithm to

compute reversible closed↔ open paths mimicking apo, ATP-bound, and AMP-bound

structures; the apo transition, viewed in the closed→ open direction, shows that a slight

NMP opening preceding a dominant LID-opening step is followed by the more or less

concurrent opening of both domains. It is likely that the disagreement among computational

studies is likely due to, in part, the fact that PMFs strongly depend on the chosen path (or

CV space) along which sampling is performed, as well as on obtaining sufficient sampling

for convergence.

**MD-based mutation studies [266] and investigating the molecular mechanism of thermophile stability [267,
268] may shed light on the role of salt bridges, hydrogen bonding, and other electrostatic interactions (among
ions, charged residues and substrates, and water) in protein stability and kinase catalysis.
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That generated pathways can sensitively depend on user choice is demonstrated by Chu

and Voth [219], where a double-well ENM (DWNM) potential—effectively a network of 1D

double-wells that capture the “roughness” of the potential landscape—in which dissimilar

MFEPs between the closed and open states were computed by initiating the refinement

process in the DWNM potential using different initial paths as input; refining a path based

on simple linear interpolation produced an NMP-closing (LID-opening) pathway in the

DWNM, with a barrier located halfway between the end states. By contrast, starting from

a MFEP that was initially refined in a PNM-based (smooth) energy landscape led to a

LID-closing (NMP-opening) pathway in the DWNM with a barrier positioned near the

closed state. Making this point even more explicit, Pan et al. [270] found clear evidence that

certain collective variable choice prevented two tested enhanced sampling methods, namely

the string method and steered MD (similar as used to TMD), from producing accurate

paths. Given such difficulties in arriving at a consensus for a (relatively) simple enzyme

system such as apo-AdK, there is a need: (1) for a reconsideration of whether apo-AdK is

in reality an ideal testbed; (2) for reliable, automated methods for locating and validating

good collective variables [271]; (3) for computational methods that can quantify differences

between transition paths and their originating methods, as well as integrating data from

multiple methods. In the following chapter, we introduce the Path Similarity Analysis

(PSA) method [5] as a possible solution to point (3).
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Chapter 3

A NEW APPROACH TO QUANTIFYING CONFORMATIONAL CHANGE

This chapter is based in part on the published study, Sean L. Seyler, Avishek Kumar,

Michael F. Thorpe, and Oliver Beckstein (2015). Path Similarity Analysis: A Method for Quan-

tifying Macromolecular Pathways. PLoS Comput Biol 11(10): e1004568. [5] My contribution to

this work involved the conception, design, and performance of the experiments, analysis of

the data, writing of the paper, and design of the PSA software.*

With Chapter 1 and Chapter 2 establishing a need for new computational

methodologies—capable of integrating heterogeneous data generated by disparate

methods—the quandary of high-dimensional systems and dimensionality reduction is

summarily presented, followed by a detailed introduction to Path Similarity Analysis (PSA).

To strengthen intuition, the chapter culminates in a comprehensive mini-study of transition

paths (generated by a toy model based on Brownian dynamics) using the PSA approach;

the mini-study also provides a tangible means of verification for the PSA methodology

and corresponding Python module implemented in the MDAnalysis Python library [272,

273] (see mdanalysis.analysis.psa; the data are available via the PSA tutorial on GitHub

under the GNU General Public License, v3 DOI 10.5281/zenodo.31457). These analyses lay

the necessary groundwork for real-world applications of PSA using representative protein

systems in Chapter 4.

The toy model, which includes a simple but consistent coarse-graining scheme, repro-

duces several relevant aspects of biomacromolecular systems such as large-scale transitions,

thermal fluctuations, dimensionality changes under coarse-graining, and barrier-crossing

*The detailed author contributions are as follows. Conceived and designed the experiments: SLS OB. Performed
the experiments: SLS AK. Analyzed the data: SLS AK MFT OB. Contributed reagents/materials/analysis tools:
SLS AK. Wrote the paper: SLS AK MFT OB. Designed the software: SLS.
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events; full details, including the parameter settings and a mathematical derivation of the

coarse-graining scheme are provided in Appendix B.

3.1 Dimensionality reduction and collective variables

The concept of dimensionality reduction is essential to interpreting data, in both ex-

periment and numerical simulation, generated by a high dimensional system. The degree

of difficulty in quantifying and visualizing a dynamical system grows very quickly as the

dimensionality increases beyond three. The purpose of dimensionality reduction is to mini-

mize the number of independent variables necessary to distinguish between relevant states

of the system. In the case of a protein consisting of N-atoms, the raw spatial coordinates

collectively represent a 3N-dimensional (configuration) space. Conformational transitions,

represented by a sequence of conformers, are therefore 3N-dimensional configuration space

paths. To quantify large-scale collective motions, it is useful to define a reaction coordinate

(RC), order parameter, or collective variable (CV); these are similar concepts that take on

slightly different meanings in different contexts (cf. [57]). For brevity, the following distinc-

tions will suffice: CV is the most general term, RCs and order parameters are both examples

of CVs, and an RC is a special case of a discriminating order parameter. An order parameter,

q, simply assigns states to (one of two) basins of attraction in an energy landscape—it is a

discriminating order parameter if, given a transition state (TS) at q = q∗, it correctly assigns

the states where q < q∗ ( q > q∗) to the initial (final) basin I (F). By contrast, a (good)

reaction coordinate is fundamentally determined by the underlying reactive pathway; order

parameters are not necessarily good reaction coordinates, though discriminating order

parameters can sometimes serve as reasonable approximations. However, a discriminat-

ing order paramter can still obscure the actual sequence of events along the true reactive

pathway (cf. Figs. 8 and 9 in Bolhuis et al. [57]).

Most generally, a collective variable (CV) is a single coordinate that describes the

collective motion in a system, potentially having many degrees of freedom, as a possibly
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nonlinear combination of the spatial coordinates. Formally, the collective variable ξ is

ξ(X) = ξ(x1, x2, ..., xN), (3.1)

where xi is the 3D coordinate vector for particle i and N is the total number of particles in

the system. The ensemble-averaged probability density function (pdf), 〈ρ〉, describing the

system along ξ is a Boltzmann-weighted average over the spatial coordinates X, so that

〈ρ(ξ)〉 =
∫

dX δ
(
ξ ′(X)− ξ

)
e−U(X)/kBT∫

dX e−U(X)/kBT
(3.2)

To find the potential of mean force (PMF) along a collective variable ξ (relative to some

reference state, ξ I), we take the natural logarithm of the ratio of the ensemble-averaged

pdfs to obtain

W(ξF) = W(ξ I) −kBT ln
〈ρ(ξF)〉
〈ρ(ξ I)〉

(3.3a)

∆W(I F) = −kBT ln
〈ρ(ξF)〉
〈ρ(ξ I)〉

, (3.3b)

where ∆W(I F) = W(ξF)−W(ξ I) is the effective free energy difference between states

I and F as parameterized by ξ [101]. Rearranging Eq. 3.3b, it can furthermore be seen that

the ratio of the ensemble-averaged pdfs is the Boltzmann-weighted free energy difference

∆W(I F) = W(ξF)−W(ξ I) such that

〈ρ(ξF)〉
〈ρ(ξ I)〉

= e−∆W(I F)/kBT. (3.4)

In many situations it is not obvious how a CV such as ξ can be chosen so as to faithfully

characterize a transition (between states I and F); in the worst case, it is possible to chose

a CV along which the computed PMF provides a misleading characterization of the un-

derlying kinetic process.† Perhaps up to three or four CVs can be used for visualization

of a given dynamical process before plotting the CVs becomes laborious or unintuitive—a

†See the papers by Bolhuis et al. [57] and Dellago et al. [178] for some of the earlier discussions about order
parameters vs. reaction coordinates. Zuckerman [274] also has a nice write-up on his blog that draws attention
to some of the dangers of PMF calculations.
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good CV in general should be descriptive and intuitive. An ideal dimensionality reduction

algorithm would be able to identify the minimum number of CVs that correspond to the

intrinsic low-dimensional dynamical manifold [275] for an arbitrary system as input. In

reality, identifying CVs that adequately span the relevant dynamical space, e.g., capture a

conformational transition, is not only highly nontrivial, but often system-dependent [276,

277].

A common technique is to perform principal component analysis (PCA) on the Cartesian

coordinates of a system evolving in time. Since the eigenvalue corresponding to a given

principal component is a measure of the variation that it describes, one can project the full

dynamics onto the subspace spanned by the first few principal components so as to capture

most of the variation [278, 279]. Another general approach is native contacts analysis (NCA),

which has found frequent use in characterizing protein folding pathways [218, 280]. A

native contact is one that exists in a known reference structure; a relatively general analysis

approach involves measuring, for each conformer in a putative transition path, the fraction

of contacts that are present in (shared with) a native state—the native contacts. Given initial

and target conformations (e.g., from known crystal structures), native contact fractions can

then be plotted on a 2D space to produce a projection into native contact (NC) space. 2D

NC projections are particularly useful when good CVs are not known a priori.

Heuristic collective variables typically trade generality for an intuitive description

of a given system. Choosing ad hoc CVs usually requires strong intuition about the

system in question, limiting the utility of this approach when studying unfamiliar systems.

However, for relatively simple systems, one or more sets of CVs may be available as effective

low-dimensional descriptions; in the case of the AdK closed↔ open transition, several

descriptive collective variables are known (cf. Section 1.2.1 and Table 1 in S. L. Seyler and

Beckstein [4]). Previous studies, for example, have used angle-angle coordinates to quantify

the degree and order of opening of the LID and NMP domains relative to the CORE domain

during the closed↔ open transition [40]. The LID-CORE angle, θLID, is defined as the angle

between the backbone and Cβ atoms in residues 179-185 (CORE), 115-125 (CORE-hinge-
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LID), and 125-153 (LID), while the NMP-CORE angle, θNMP, is formed by the geometric

centers of the backbone and Cβ atoms in residues 115-125 (CORE-LID), 90-100 (CORE), and

35-55 (NMP). Projecting full trajectories into the 2D space defined by (θNMP, θLID) provides

an intuitive means to visualize the conformational changes involved. Such descriptive

projections are, however, not always available for many protein systems and may also fail

to describe such subtle movements as twisting, bending, or breathing modes.

One cannot guarantee that dimensionality reduction or heuristic approaches will iden-

tify a descriptive set of CVs for an arbitrary system—a set that is both descriptive (i.e.,

the CVs have intuitive or physical interpretations) and complete (i.e., the CVs capture the

essential dynamical motions). It should be reiterated, however, that the primary reason

for projecting dynamics in CV spaces is to visually distinguish and quantify differences

between multiple transition paths or pathways. Thus, in comparing paths generated by

path-sampling methods, a good set of CVs should be able to distinguish paths in situations

where those paths are meaningfully separated in configuration space; importantly, such

a set of good CVs can serve to identify the originating method of a given path when the

physical model used to produce it leads to a distinct dynamical pathway.

3.2 A new approach: Path Similarity Analysis

3.2.1 The general idea

To address the general problem of quantitatively comparing 3N-dimensional macro-

molecular transition paths, we describe the Path Similarity Analysis (PSA) approach in-

troduced in S. L. Seyler et al. [5]. PSA is a quantitative framework for the analysis of

conformational transition paths. The central idea is to employ a suitable distance function,

a path metric, in order to compute a distance between (i.e., geometric similarity of) two

transition paths. Once distances between all pairs of paths are calculated, cluster analyses

can be used to group paths by similarity. Furthermore, we can identify the structural

determinants that give rise to differences between any two transition paths at the atomic
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level by exploiting properties of the underlying metric. In other words, PSA allows us

to measure the degree to which any two transition paths are different and identify the

structural origins of those differences. A key advantage of the PSA approach is that it is

system-agnostic and is particularly effective for assessing transitions with well defined

initial and final states. A typical minimal procedure for applying PSA is to (1) represent the

transition paths as mathematical objects, (2) quantify the pairwise similarities between the

paths using a suitable distance function, and (3) use cluster analysis to extract groups of

similar paths.

Configuration space trajectories. To start, we treat a transition path (e.g., a simulation trajec-

tory) for a protein system of N atoms mathematically as an ordered sequence of points in

3N-dimensional configuration space; if it is imagined that successive points are connected

by straight lines, a transition path is thus a high-dimensional piecewise-linear, or polyg-

onal, curve. A set of transition paths can be meaningfully compared only if they exist in

the same 3N-dimensional configuration space, though it is possible to choose a reduced

representation for all paths (e.g., backbone atoms, only Cα atoms, etc.).

Path metrics. Next, a path metric is selected to quantify differences between paths; the

chosen path metric, δ, must accept two polygonal curves as input and return a non-negative

real number representing a distance between the curves. In particular, given three polygonal

curves A, B, and C, δ must satisfy

δ(A, B) ≥ 0 (3.5a)

δ(A, B) = 0 ⇐⇒ A = B (3.5b)

δ(A, B) = δ(B, A) (3.5c)

δ(A, C) ≤ δ(A, B) + δ(B, C). (3.5d)

Together, the identity property (Eq. 3.5b) and non-negativity (Eq. 3.5a) imply, for two

curves A and B, where B undergoes a continuous deformation (Fig. 3.1) such that δ(A, B)

is monotonically decreasing, that B becomes increasingly similar to A in such a way that

40



B is identical to A when δ(A, B) = 0. The commutative property (Eq. 3.5c) is clear from

the definition. The triangle inequality (Eq. 3.5d) generalizes the transitive property and

preserves our usual intuition about the concept of closeness—if two curves A and B are

“close” to C, then A and B are also close in the sense that their mutual distance is bounded

from above by d(A, C) + d(B, C). Many clustering algorithms furthermore require the

triangle inequality to hold, so the use of proper metric functions is advisable.

B'''

B

B''

B'

A

Figure 3.1: Schematic representation of two curves A and B that begin and end at the same states (green circle
and red diamond, respectively). B undergoes a continuous deformation through several intermediate curves
B→ B′ → B′′ → B′′′ → A (resp. green, blue, and purple dashed lines).

In this dissertation, we apply PSA to a toy model and realistic conformational transition

paths using two path metrics—the Hausdorff distance [281–283] and the discrete Fréchet

distance [284, 285] (defined below)—and assess any relevant differences. One important

property of these metrics is that they do not account for dynamics, nor any physical time

scales in a transition path; they are only sensitive to their geometry. Definitions are given in

the sections that follow.‡

Distance matrix. Finally, given a set of Npath transition paths, we perform an all-pairs

comparison, whereby the distances between all unique path pairs are stored in a symmetric

(Eq. 3.5c), traceless (Eq. 3.5b) distance matrix that has Npath(Npath− 1)/2 unique elements (in

the upper triangle). Equivalently, the distances may be stored in a distance vector of length

Npath(Npath− 1)/2. Many clustering methods utilize a distance matrix or vector—generated

‡Measures of “distance” between polygonal curves that do not strictly satisfy the triangle inequality are not true
distance functions, though some may be true metrics under restricted conditions; average-type Fréchet and
Hausdorff distance functions are briefly explored in Appendix F.
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from a distance metric—as input and return the distance matrix with its rows and columns

re-ordered to reflect the clustering. Though technically classified as unsupervised learning,

partitional clustering methods, such as the centroid-based k-means algorithm, are not used

since the number of clusters, k, must be specified as an input parameter [286]. In order to

avoid imposing a-priori constraints on the number of clusters—a quantity that we seek to

discover in the data—hierarchical (agglomerative) clustering was used previously [5], as well

as in this dissertation.§ Since the clustering is performed using pairwise comparisons, it is

important that the triangle inequality (Eq. 3.5d) hold for the metric used in generating the

distance matrix.¶ Other robust approaches that have not been explored here include Density-

Based Spatial Clustering of Applications with Noise (DBSCAN), which can be found in the

scikit-learn Python library (see sklearn.cluster.DBSCAN in v 0.19.0). Appendix E details

some considerations that went into choosing the clustering methods applied throughout

this dissertation.

3.2.2 Hausdorff distance

The Hausdorff distance is a measure of similarity between two distinct sets of points

that, in general, need not have any internal structure (e.g., a directed polygonal curve).

However, it is useful to define the Hausdorff distance in the context of transition paths

given its current application in this dissertation.

Given an N-atom protein, a path P in its 3N-dimensional configuration space may be

represented by a sequence of points {(pk)
n
k=1 | pk ∈ R3N , k = 1, . . . , n}. Similarly, defined

§The k-means algorithm, which is designed for Euclidean distances, also has the disadvantage that the cluster
centroids are not elements of the dataset. Thus, a centroid of a hypothetical cluster of transition paths will not a
member of the set of paths forming that cluster, meaning that conformers in a “centroid path“ will in general
not have realistic structural features (stereochemically or otherwise). Medoid-based clustering (e.g., k-medoids)
overcomes this limitation by seeking, for each cluster, a medoid—a “middle” or representative object (e.g., path)
of a set (e.g., of paths). There are many other advanced algorithms for clustering and data discovery, though
such discussion is well beyond the scope of this dissertation.

¶See, for instance, Baraty, Simovici, and Zara [287].

42

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html


another path Q, {(qk)
m
k=1 | qk ∈ R3N , k = 1, . . . , m}. We first define

δh(P Q) = max
p∈P

min
q∈Q

d(p, q) (3.6)

as the directed Hausdorff distance from P to Q, where d is a distance metric on R3N for

single points [281]—d(p, q) is measure of similarity between conformers p and q. For a

given point p in P, define the nearest neighbor of p as the nearest point, q∗, in Q. It can then

be stated informally that δh(P→ Q) measures the nearest neighbor distances for all points

in P and selects the maximum distance among them. Note that δh(P Q) 6= δh(Q P). The

Hausdorff distance can then be defined as

δH(P, Q) = max {δh(P Q), δh(Q P)} , (3.7)

which is now commutative as required by metric property Eq. 3.5c. Calculating the exact

Hausdorff distance can be naively done in O (pq) time, though an “early break” algorithm

[288] that has a nearly-linear runtime was recently implemented in SciPy 0.19.0 [289] (see

the directed_hausdorff function in scipy.spatial.distance and SciPy 0.19.0 RC1 for

more information).

Loosely speaking, the Hausdorff distance between transition paths P and Q is the upper

bound on their mutual nearest neighbor distances. We define a Hausdorff pair, or δH-pair, as

the unique pair|| of conformers, (p∗, q∗), corresponding to a Hausdorff distance. Fig. 3.2

schematically illustrates the Hausdorff pair concept, showing that the structural similarity

of the Hausdorff pair defines, in some sense, where P and Q are maximally dissimilar, since

all other conformers and their nearest neighbors are by definition structurally more similar:

d(p, q) ≤ d(p∗, q∗) ∀ p, q ∈ P, Q.

In comparison to pairs of conformers chosen at random, a Hausdorff pair should, in

principle, reveal the salient structural features that underlie differences in path geometry. As

such, a Hausdorff pair analysis enables the extraction of structural indicators designating

||It is possible to obtain a set of Hausdorff pairs under certain situations; in practice, a Hausdorff pair will
typically be unique.
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P

Q

p*

q*

Figure 3.2: Two paths P and Q begin and end at the same states (green circle and red diamond, respectively).
The Hausdorff distance, δH(P, Q), is indicated by the length of the yellow line and corresponds to the point
distance between the Hausdorff pair (conformers p∗ and q∗). The point-wise distance may be any structural
similarity measure (i.e., distance metric), such as the RMSD**, that reports a distance between two conformers
in configuration space.

“where to look” when searching for structural differences between two paths. While a

Hausdorff pair establishes an upper bound on the structural dissimilarity of two paths,

it may be useful to examine other “nearest neighbors”. Using Eq. 3.6, we can define the

nearest neighbor distance for a point pk on path P to a second path Q as δnn(k; P Q) :=

δnn(k; P Q) := minq∈Q d(pk, q); similarly, the corresponding nearest neighbor distance

for a point qk on path Q to path P is δnn(k; Q P). These distances are in general not

symmetric, i.e., δnn(k; P Q) 6= δnn(j; Q P) for any conformations j, k. By jointly plotting

δnn
(
k(ξ); P Q

)
and δnn

(
j(ξ); Q P

)
as a function of a suitable order parameter ξ, it is

possible to quantify the change in nearest neighbor distances over various segments or

sections of the trajectories. Such an approach can be valuable when a more precise geometric

picture of the manner in which two paths differ is needed. Hausdorff pairs and nearest

neighbors can be easily extracted from an all-pairs calculation of Hausdorff distances in a

transition path ensemble using the PSA module in the MDAnalysis Python library [272, 273],

which provides a simple and efficient means to scrutinize structural patterns—down to the
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atomistic level—across many sampled paths and, thus, identify the molecular-structural

determinants that encode geometric differences between full transition pathways.

3.2.3 Discrete Fréchet distance

Whereas the Hausdorff distance is insensitive to the order of points in a path, Fréchet

metrics are sensitive to orientation (i.e., direction of traversal). Indeed, when viewed as

trajectories in configuration space, conformational transition paths are directional in time

and, in principle, Fréchet metrics could be used to capture meaningful aspects of time

dependence. We first discuss the continuous Fréchet distance [284] to provide an intuitive

context for the discrete Fréchet variant.

The canonical way of visualizing Fréchet distance goes as follows [285]. First imagine a

human and a dog, connected by a taught, extendable leash, walking along two separate

paths P and Q, respectively, according several rules: (1) they both start at their respective

initial points on P and Q, and they must eventually end at their respective final points;

(2) backward steps are not allowed, so they can only stand still or move forward; (3) they

are allowed to move independently of one another. Then, under these rules, we visualize

all legal ways the human and dog can go from start to finish. Finally, remembering that

they are connected by an extendable, taught leash, we identify an optimal protocol that

minimizes the extension of the leash—the length of the shortest leash is defined as the

Fréchet distance between P and Q, δF(P, Q). For a formal description, see Alt and Godau

[285] and the discussion in S. L. Seyler et al. [5]. We note that for two polygonal paths, each

with p and q vertices, exact algorithms for the continuous Fréchet distance take O (pq log pq)

time [285]; faster, but approximate, algorithms have also been explored [290, 291].

To describe the discrete Fréchet distance, δdF, we return to the picture of paths in 3N-

dimensional configuration space (i.e., polygonal, or piecewise-linear, curves) as in the

discussion of the Hausdorff distance. Given two such paths P and Q, the leash analogy

can be modified for discrete Fréchet in the following manner. The human and dog: (1) are

restricted to discrete forward jumps to consecutive vertices (i.e., conformers) along a path;
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(2) can move in succession so that one jumps while the other remains in place, or both can

jump simultaneously to their respective consecutive vertices. When the typical distances

between consecutive conformers are small (i.e., when the segments of a polygonal curve

are short) relative to the characteristic distance between paths, the discrete Fréchet closely

approximates the continuous metric. Eiter and Mannila [292] explored a dynamic algorithm

that computes δdF in O (pq) time, providing a faster, simpler alternative to the continuous

metric.

From the leash analogy, it is intuitively clear that a wandering path that backtracks

should tend to make both Fréchet distances larger than the Hausdorff distance (Fig. 3.3). In

particular, given the conceptual connection between a random walk and thermal fluctu-

ations, dynamical path-sampling methods with explicit or stochastic solvent degrees-of-

freedom may produce transition paths that backtrack many times. An intuition for some of

the ways in which the Fréchet and Hausdorff metrics might differ can be understood in

terms of upper and lower bounds.

cf

c0

Fréchet distance

Hausdorff distance

P

Q

Figure 3.3: Two paths P and Q begin at state c0 (green circle) and end at state c f (red diamond) with direction
indicated by the arrows. The Fréchet distance, δF, and Hausdorff distance, δH , are given by the lengths of
the blue and orange lines, respectively. The two blue lines are the same length and correspond to the least
extended Fréchet “leash”; the orange line spans a pair of points separated by the Hausdorff distance (only one
is shown as there are infinitely many pairs of points with the same δH , since P and Q remain parallel after
the backtracking). The backtracking of path P toward state c0, combined with the monotonicity constraint
of Fréchet (i.e., no backward motion along a path), leads to δF > δH . In this depiction, there are two Fréchet
pairs (where the conformer Q is present in each pair) and an infinite number of Hausdorff pairs. [Reprinted
from S. L. Seyler et al. [5], Copyright © (2015), under the terms of the Creative Commons Attribution License /
Colors and fonts adapted from original.]

First, the continuous Fréchet distance is a lower bound on the discrete Fréchet dis-

tance, δF ≤ δdF, since it is always possible to emulate a discrete jump using continuous
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movements. In the leash analogy, smooth movements allow the possibility of advanc-

ing to the next pair of vertices using a shorter leash than would be required by discrete

jumps—which can always be emulated as a last resort. It is furthermore intuitively

clear that the difference between the discrete and continuous versions should be exac-

erbated when successive vertices are far apart. Second, the discrete Fréchet distance is

also bounded from above, in that it will differ from continuous Fréchet by no more than

the length of the longest line segment in the pair of polygonal paths in consideration.

Thus, δdF(P, Q) ≤ δF(P, Q) +max{dmax(P), dmax(Q)} for polygonal curves P and Q, where

dmax(P) ≡ maxi=1,...,p−1 d (pi, pi+1) is the length of the longest segment in P [292]. Third,

the Hausdorff distance is a lower bound on the continuous Fréchet distance, δF ≥ δH,

for any pair of polygonal curves [293]. In fact, the Hausdorff and continuous Fréchet

distances are equal for two convex polygonal curves [294], though it is possible to make

the Fréchet distance arbitrarily larger than Hausdorff for certain curve geometries [290].

Thus, δH ≤ δF ≤ δdF(P, Q) ≤ δF(P, Q) + max{dmax(P), dmax(Q)}. In this dissertation, the

discrete (rather than continuous) Fréchet distance is used exclusively; for brevity, “Fréchet

distance” and the symbol δF henceforth refer to the discrete version, unless explicitly stated.

We also mention for completeness that, in analogy to the definition of Hausdorff pairs given

above, Fréchet pairs can also be defined, although we choose to omit further discussion

since only Hausdorff pairs are used in this dissertation.

3.2.4 RMSD as a structural similarity measure

The Hausdorff metric (Eq. 3.7) and Fréchet metric (cf. Eiter and Mannila [292]) are

both defined in terms of a point metric d(p, q) on 3N-dimensional configuration space that

measures the distance (i.e., similarity) between conformations p and q. A common choice is

to employ the root mean square distance (RMSD), which we define in the usual way as

dRMS(p, q) =

√√√√ 1
N

3N

∑
i=1

(pi − qi)
2, (3.8)
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where N is the number of atoms, and {pi}3N
i=1 and {qi}3N

i=1 define the configuration space

coordinates of conformations p and q, respectively. It is common to compare the mutual

distance among several structures using the best-fit RMSD, where the RMSD is minimized

on a pairwise basis by finding the optimal translation and rotation. Though such pairwise

comparisons are intuitive, it is important to note that the best-fit RMSD is generally not a

metric on the configuration space of structures—it can fail to obey the triangle inequality

because the optimal superposition of conformer A onto conformer C and conformer B onto

C does not generally result in the optimal superposition of A and B [295]. As an alternative,

it is possible to use the RMSD as a metric by choosing a common (i.e., shared) reference

structure, fitting all conformers to the reference, then calculating the RMSD between each

pair (see Section 3.2.4). This global alignment approach is employed in Chapter 4 to

guarantee that the path metric properties hold.

It should also be noted that Hausdorff and Fréchet metrics can be defined in terms of

point metrics other than what is used in this dissertation. It is thus possible to deliberately

emphasize differences in specific structural features of macromolecules by selecting a

suitable point metric. As a simple example, one could choose to quantify the percentage of

shared contacts between conformers as a putative measure of similarity. Another approach

would be to use information-based metrics [296] to measure the similarity of protein

ensembles, which are currently available in the ENCORE analysis module [297] through

the MDAnalysis Python library [272, 273]. For reasons of simplicity and familiarity, however,

the analyses presented in Chapter 4 exclusively use the RMSD using the global alignment

approach based on a predefined reference structure.

3.3 A Path Similarity Analysis mini-study

In this section, the Path Similarity Analysis (PSA) method, using the Hausdorff and

Fréchet metrics, is introduced by applying PSA to the simple case of assessing transition

paths generated by a low-dimensional Brownian dynamics model. The trajectories are

generated by driving toy molecules in one direction using a ramp-like global potential
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function, while stochastically-driven fluctuations mimic temperature effects. Transition

progress is measured using the center of mass position along the ramp; a transition is

complete once a molecule’s center of mass crosses a predefined threshold.

3.3.1 Overview and setup

Each toy “molecule” is an N-particle cluster, where each particle has the same mass and

is connected to all others by springs as illustrated in Fig. 3.4. All inter-particle forces are

harmonic with an equilibrium at zero separation, while a global “double-slide potential”

drives particles with a constant force along the z-direction; the y-direction has the double-

well shape depicted in Fig. 3.4 with an energy barrier equal to 2 kBT ≈ 5 kJ mol−1 at

T = 300 K, while a harmonic potential restrains motion along the x-direction. Individual

particles move according to Brownian dynamics subject to the global and interparticle

spring forces.

z N=8

Figure 3.4: The toy model consists of an N-particle molecules and a double-well potential in the xy-plane.
An eight-particle molecule (not drawn to scale) depicts the spring connections (blue) between particles (red).
For the double-well potential, red (blue) regions correspond to high (low) energies—the cyan and purple
lines show, respectively, the parabolic shape in the x-direction and double-well shape the y-direction, their
intersection marking a saddle point. Combined with a linear “ramp” potential along the z-direction, two
“slides” or “tubes” (gray crosshatching) are separated by central barrier. Motion in this landscape is biased
toward the center of either slide (where the energy is low), but transitions between slides are possible at finite
temperature. [Reprinted from S. L. Seyler et al. [5], Copyright © (2015), used under the terms of the Creative
Commons Attribution License / Fonts adapted from original.]

Trajectories were initialized by placing molecules at the top of the ramp and giving

each a slight position bias toward one of the two slides. The starting state for a molecule
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was defined as having a center-of-mass located at z ≤ 0 nm and the final state as having

a center of mass position of z ≥ 4 nm. We simulated single particles and eight-particle

molecules to get, respectively, 3D and 24D transition paths to provide a simple way to test

how the path metrics behave when the configuration space dimensionality is varied by way

of coarse-graining.

A relatively consistent coarse-grained model was designed so as to handle a general

N-particle molecule, the requirements of which we describe here briefly.††. First, our

prescription was simplified under the requirement that all particles within a molecule be

initialized at the same point, thus eliminating interparticle forces at 0 K. We then demanded

that the zero-temperature dynamics be identical for any N-particle molecule subject to an

arbitrary global potential energy function and, at finite temperature, that all molecules have

the same effective diffusion coefficient (of their center of mass), assuming a flat potential

landscape. Simultaneous satisfaction of both constraints leads to a rescaling of the friction

coefficient and the coupling strength to the global potential proportional to 1/N, which

ensured that the mean transition time at any given temperature was invariant under coarse-

graining. Interparticle spring coefficients were determined somewhat arbitrarily, the only

requirement being that the springs be strong enough relative to the shape and height of the

center central barrier to prevent “straddling”.

3.3.2 Results and Discussion

Simulations were performed at temperatures from 0 K to 600 K in 50 K increments, result-

ing in two eight-trajectory ensembles (for both single particles and eight-particle molecules)

at each temperature; for each ensemble, four simulations were initialized towards one slide

at (x0, y0) = (0 nm, 0.4 nm) and four towards the other slide at (0 nm,−0.4 nm). Results

are shown for one- and eight-particle molecules at T = 0 K and 250 K (Fig. 3.5). The zero-

temperature simulations served as a reference point since, in the absence of any interparticle

††A complete discussion of the double-slide toy model and coarse-graining scheme are provided in Appendix B.
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separation or thermal fluctuations, particles were only subjected to forces from the double-

slide potential. The initial conditions guaranteed two distinct groups of zero-temperature

transitions such that all four paths in a group were identical.
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Figure 3.5: Double-barrel potential energy landscape projected onto the xy-plane and yz-plane. Groups of point
masses (clusters) mutually connected by harmonic springs move under the influence of a transition-inducing
ramp potential in the positive z direction and the two low-energy minima of the “barrels” at y = ±0.8 nm.
Colored lines depict the center of mass trajectories for each cluster. (A–C) trajectories at 0 K. (D–F) trajectories at
250 K. (A, D) Projection of paths onto the xy-plane together with the double-barrel potential. (B, E) Projection of
paths onto the yz-plane. (C, E) Clustered heat maps summarize the Fréchet distances for all pairs of trajectories;
dendrograms record cluster distances according to the Ward criterion. Trajectory colors in each row match
the corresponding path(s) in the dendrogram. The trajectory-averaged radius of gyration for clusters at finite
temperature is 0.35 nm (black circles). [Reprinted from S. L. Seyler et al. [5], Copyright © (2015), used under the
terms of the Creative Commons Attribution License.]

Fig. 3.5A,B shows the xy and yz projections of eight-particle molecule simulations at

0 K with one group of trajectories (green line) following the gradient of the top “tube” at

y ≥ 0 and the other group (red line) following the bottom tube y ≤ 0, consistent with

expectation. A hierarchical clustering of the trajectories clustered by their Fréchet distances

revealed two distinct clusters containing four trajectories each, as shown in Fig. 3.5C. In

particular, both the structure of the dendrogram and contrasting colors within the heat

map reflected the similarity of the paths within a group as well as the overall difference
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between the groups. At 250 K, thermal fluctuations substantially influenced the character

of the trajectories (Fig. 3.5D,E). The clusters in Fig. 3.5F were much less clearly defined

than in the zero-temperature case. While there still appeared to be roughly four trajectories

per cluster (red trajectories in one, green/blue in the other), blue underwent a transition

across the central barrier near z = −0.5 nm and was as an outlier of the cluster with three

green trajectories. Results did not substantially differ between the single-particle and

eight-particle cases, and meaningful differences in the center of mass motions were not

discernible. As a check, we found that using the center-of-mass trajectories for the 250 K

eight-particle trajectories (Fig. 3.5D–F) did not result in a different clustering (data not

shown). Overall, thermal fluctuations appeared to be a more dominant effect (Fig. 3.6).

We also repeated PSA using the Hausdorff distance and identified two distinct pathways

for temperatures below 300 K, similar to PSA with Fréchet. However, Hausdorff and

Fréchet distances became substantially uncorrelated between 350 K and 500 K (Fig. 3.7).

Decorrelation was expected to some degree since appreciable backtracking should occur

when the typical energy of thermal fluctuations becomes sufficient climb up the slope of the

slide potential (in the backward, negative z direction). Furthermore, thermal fluctuations

also became comparable to the central barrier height (2 kBT at 300 K), and barrier-crossing

events become probably. The Fréchet metric was expected to be sensitive to increased

backtracking, although backtracking among trajectories within the same slide was not

expected to be substantial since the trajectories were confined a narrow region. However, it

was somewhat unforeseen that minor backtracking could exacerbate the effect on Fréchet

distances in cases where two trajectories are in, or transition to, opposite slides, which was

the case for the blue trajectory in Fig. 3.5D–F. Such an effect is at play across intermediate

temperatures (i.e., the upper temperature range used here) where transition events become

important, and thermal fluctuations and backtracking are not so dominant as to render the

downward slope of the slide insignificant. Indeed, we observed that correlations between

Fréchet and Hausdorff (Fig. 3.7) returned to near-unity going from 500 K to 600 K, thus it

can be stated that thermal fluctuations were significant enough to wash out the central
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Figure 3.6: Correlation analysis of Fréchet (abscissa) and Hausdorff (ordinate) distances for double-slide model
using one- and eight-particle (resp. orange and purple) runs for temperatures between 0 K to 500 K in 50 K
increments (panels A–K) and at 600 K (panel L). Scatter points correspond to distance measurements in nm
RMSD. Shading about the regression lines corresponds to a 95% confidence interval. Marginal distributions
from kernel density estimates (KDE) are shown for each (N, T) pair; bandwidths for each pair are assigned
so as to unveil bimodal behavior at low T and unimodality at high T. [Reprinted from S. L. Seyler et al. [5],
Copyright © (2015), used under the terms of the Creative Commons Attribution License / Fonts adapted from
original.]
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barrier but not so large that backtracking on its own could further decorrelate Fréchet

and Hausdorff. As temperatures are continuously increased beyond 600 K, Fréchet and

Hausdorff should progressively decorrelate as sizable backward steps become more and

more probable.
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Figure 3.7: Coefficients of the Pearson correlation between Hausdorff and Fréchet distances for one- and
eight-particle simulations plotted as a function of temperature. Path distances remain well correlated up to
300 K and are least correlated at 500 K, with the one-particle simulations exhibiting a substantially larger drop
in correlation. At the highest temperature the central barrier becomes negligible and the simulations start to
equally sample a single tube dominated by the steep repulsive walls. Therefore, paths increase in similarity
between N = 1 and N = 8 particles and the correlation coefficient increases. [Reprinted from S. L. Seyler et al.
[5], Copyright © (2015), used under the terms of the Creative Commons Attribution License / Fonts adapted
from original.]

Unexpectedly, the aforementioned coordination between backtracking and barrier-

crossing events manifested as a dynamical transition as the temperature was increased,

where the bimodal distributions of Hausdorff and Fréchet distances (Fig. 3.6) for temper-

atures below roughly 250 K became increasingly unimodal beyond 300 K. With a central

barrier height of 2kBT at T = 300 K, it is reasonable to expect thermally-driven transitions

between slides to effect such bimodal behavior. Fig. 3.7 shows that Hausdorff and Fréchet

distances also began to decorrelate significantly at temperatures between 350 K to 500 K,

reaching a minimum at 500 K (Pearson correlation coefficients were ≈ 0.75 for N = 1 and

≈ 0.81 for N = 8); however, the correlation appeared to rebound strongly (> 0.9) near

the 600 K mark. Indeed, as the temperature approached 600 K, simulations increasingly
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sampled both slides as though they were a single pathway and the central barrier was

effectively washed out by thermal fluctuations. Fig. 3.8 depicts the means and standard

deviations of Hausdorff and Fréchet distances as a function of temperature, where a rough

cutoff was used to divide the measurements for T ≤ 250 K to more clearly delineate the

bimodal behavior.
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Figure 3.8: Means and standard deviations of the discrete Fréchet (blue) and Hausdorff (red) distances for
double-barrel simulations of one particle (A) and eight particles (B) are shown as a function of temperature.
Measurements for simulations at 250 K and below are divided into two distributions by dividing distance
measurements above and below a 1.25 nm cutoff. Above the cutoff, all measurements are grouped into one
distribution. Both the Fréchet and Hausdorff metric lose the ability to distinguish between the two slides as
paths begin to wander out of well-defined pathways when the temperature is comparable to the central barrier
energy (2kBT at 300 K). At higher temperatures, thermal perturbations begin to dominate, allowing molecules
to explore the full width of the double-slide and generate a unified pathway. [Reprinted from S. L. Seyler et al.
[5], Copyright © (2015), used under the terms of the Creative Commons Attribution License / Fonts and layout
adapted from original.]

3.3.3 Conclusions

Our analysis of a simple toy model of transitions demonstrates that PSA can clearly

distinguish between two pathways (the upper and lower slides) when the thermal energy

is small relative to the energy scale of distinguishing features (e.g., the central barrier) in

the potential energy landscape. Thermal fluctuations were a more dominant factor than

the dimensionality of configuration space. Results for the Hausdorff and Fréchet metrics

were in close agreement overall, with the Fréchet metric appearing to be somewhat more

sensitive to reversals of trajectory progress at higher temperatures. The Pearson correlation

55



between Hausdorff and Fréchet distances as a function of temperature was an indicator

of a dynamical shift from a two well-defined pathways to a single pathway spanning the

width of both slides. While the Pearson correlation coefficient between Hausdorff and

Fréchet distances was nearly unity at the low and high temperature extremes, there was

significant decorrelation between 350 K to 500 K with the correlation coefficient reaching a

minimum at 500 K for both the single- and eight-particle simulation. The distinguishing

feature of intermediate-temperature simulations was the presence of a small number of

barrier-crossing events (on the order of 1 over the course of a transition). However, barrier-

crossing events within the duration of a single transition are also possible at temperatures

below 250 K, given a sufficiently long slide; in the long-slide limit where many crossings

take place, it is unlikely that any two paths will take the same meandering trajectory in such

a way that their Hausdorff and Fréchet distances will be small. The current prescription of

path metrics and hierarchical clustering may be challenging to apply to cases where there is

an abundance of complicated, perhaps nonlinear, transition pathways, especially when the

intrinsic manifold of the dynamics is relatively high dimensional (e.g., in the extreme case

of pure, unbounded diffusion).

It would be worthwhile in the future to explore the effects of more complex potential

landscapes and dynamics, which may reduce the ability of PSA to differentiate between

paths and functional pathways. Such complications notwithstanding, it should be reiterated

that PSA (and the path metrics) can only identify paths as being “similar” insofar as

the researcher understands that the path metrics are functions of a point metric—in this

case, RMSD—which serves as a putative structural similarity measure. For example, if

RMSDs below 0.5 nm for two structures imply such a degree of structural similarity that the

structures, for hypothetical purposes, can be considered effectively indistinguishable, then

Fréchet or Hausdorff distances below 0.5 nm can be interpreted to mean that the paths in

question are also indistinguishable. The identity property (Eq. 3.5b) and triangle inequality

(Eq. 3.5d) provide a rigorous sense in which two paths can be said to be indistinguishable

when the path metrics return small values, as long as the point metric has a sensible

56



interpretation. When the distances measured by path metrics, on the other hand, are large,

then there is no guarantee that a cluster of paths are truly similar in any meaningful sense—

strong statements about similarity can only be made when distances are small. One should

be especially prudent when the dimensionality of the system in question is large, since

large distances become increasingly difficult to interpret (i.e., the curse of dimensionality).

However, in situations where Fréchet, Hausdorff, and RMSD prove inadequate for some

set of complicated transitions, distance measurements will almost certainly not be small.‡‡

‡‡This statement has clearly not been formally proven and there are known contrived situations where the
Hausdorff distance may become arbitrarily small while the Fréchet distance becomes arbitrarily large (cf. Fig. 1
in article by Alt, Knauer, and Wenk [293]); the Fréchet distance can serve as a check for the specific scenario
explored by Alt, Knauer, and Wenk [293], and it is probably wise to use both Hausdorff and Fréchet together
when possible as a simple control. The author acknowledges that this dissertation has not considered all corner
cases (albeit, such systems are unlikely to be amenable to conventional analyses, let alone PSA, in the first
place) and, as with any analysis, advises common sense in applying PSA.
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Chapter 4

APPLICATIONS OF PATH SIMILARITY ANALYSIS

This chapter is based in part on the published study, Sean L. Seyler, Avishek Kumar,

Michael F. Thorpe, and Oliver Beckstein (2015). Path Similarity Analysis: A Method for Quan-

tifying Macromolecular Pathways. PLoS Comput Biol 11(10): e1004568. [5] My contribution to

this work involved the conception, design, and performance of the experiments, analysis of

the data, writing of the paper, and design of the PSA software.* The Python module is im-

plemented in the MDAnalysis Python library [272, 273] (see mdanalysis.analysis.psa; the

data are available via the PSA tutorial on GitHub under the GNU General Public License,

v3 DOI 10.5281/zenodo.31457). The studies presented in this chapter build on Chapter 3

and can be broken down into the three following case studies.

In the first case study—Section 4.1—a comparison of closed → open transitions of

AdK is presented, integrating PSA and two collective variable (CV) approaches to assess

a number of paths generated by a variety of fast path-sampling methods. The heatmap-

dendrogram approach of PSA is presented first, followed by two analyses based on 2D CV

projections—native contacts analysis (NCA) and angle-angle coordinate projection—where

transition paths are visually assessed. A final discussion shifts the focus toward the apo

transition itself (rather than the methods) and serves to consolidate previous discussion in

light of all the data from PSA, NCA, and angle-angle coordinates.

In the second case study—Section 4.2—the analyses focus on two path-sampling meth-

ods, namely DIMS-MD and FRODA, which are applied to transition ensembles of closed

→ open transitions for two proteins: the diphtheria toxin (DT) protein, as a more difficult

example, as well as apo-AdK. In the ensemble-based study of apo-AdK, the usual heatmap-

*The detailed author contributions are as follows. Conceived and designed the experiments: SLS OB. Performed
the experiments: SLS AK. Analyzed the data: SLS AK MFT OB. Contributed reagents/materials/analysis tools:
SLS AK. Wrote the paper: SLS AK MFT OB. Designed the software: SLS.

58

https://github.com/Becksteinlab/PSAnalysisTutorial
https://dx.doi.org/10.5281/zenodo.31457


dendrogram approach has been supplemented with a detailed Hausdorff pair analysis that

has been successfully used to distinguish DIMS and FRODA pathways by identifying the

underlying structural differences between conformers produced by each method.

The final case study revists the path-sampling methods comparison with the inclu-

sion of four long-time equilibrium MD (EqMD) trajectories generated with the Anton

supercomputer [6]. Three of these “Anton transitions” have been integrated into a full

heatmap-dendrogram analysis with the original methods from the first case study (the

fourth way left out so as to keep all methods, three paths apiece, on an equal footing). All

four EqMD Anton transitions have been projected into 2D NC and angle-angle space so

as to enable a direct visual comparison with the original fast path-sampling approaches.

The chapter culminates with a forward-looking assessment of how direct comparisons with

EqMD trajectories can be carried out, taking into consideration the various issues that may

arise. For instance, the problem of finding a consistent definition of a “transition” is dis-

cussed in the context of an equilibrium trajectory; consideration is also given to the overall

utility of the path metrics when comparing fast path-sampling methods (characterized by

more direct paths between states) and EqMD trajectories (characterized by a broad range of

sampling).

4.1 Case study 1: assessing many path-sampling methods

To generate closed→ open transitions, the initial closed state (chain A of PDB ID 1AKE)

and final open state (chain A of PDB ID 4AKE) are used as inputs to the methods. Eight

tested methods were available on publicly accessible servers [176, 208, 209, 218, 223, 298,

299]. Local computational resources were used to generate NAMD-based targeted MD

(rTMD) trajectories [191], dynamic importance sampling MD (DIMS) trajectories with

CHARMM [174], and Framework Rigidity Optimized Dynamics Algorithm (FRODA)

trajectories [180]. Table 4.2 classifies each method by its means for generating a path (i.e.,

dynamics + biasing-to-target, minimum energy path, etc.), while Table 4.1 summarizes the

energetic interactions modeled by each method. The path-sampling methods comparison
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has also been extended to include a new, direct PSA comparison between the path-sampling

methods and three transitions extracted from equilibrium MD simulations generated with

the Anton supercomputer [6]. As it would be useful to be able to assess the quality of

transitions against a transition reference standard (e.g., leveraging equilibrium sampling

from MD) using the tools provided by PSA, the results presented in this thesis are intended

to establish the general viability of such an approach and help identify prerequisites for

more robust comparisons in the future. The tested methods are described in greater detail in

Appendix C, including the input parameters used to generate the closed→ open apo-AdK

transitions in this study.

4.1.1 Overview of tested path-sampling methods

We demonstrate a realistic application of path similarity analysis (PSA) by generating

apo-AdK closed→ open transitions using a variety of path-sampling methods. To retain

focus on PSA rather than directly evaluate the performance of the sampling methods,

several steps were taken: (1) each method was employed with the highest allowable

resolution—Cα representations were used for those that did not have atomistic resolution;

(2) three unique paths were generated for each method—stochastic algorithms were simply

re-run, while a single parameter (typically ENM cutoff distance) was varied between runs

for deterministic methods; (3) default input parameters were used wherever reasonable,

unless stated explicitly.

Three repeats were generated for DIMS, FRODA, and MDdMD due to their stochastic

nature. rTMD is also stochastic since we employed Langevin thermostatting, however

we performed three repeats using a slow pulling speed and three more with fast pulling

(six total). GOdMD was run using three different relaxation windows (20 ps, 50 ps, and

100 ps). To obtain three distinct paths for each ENM-based method, we varied the spring

cutoff distance, using the default cutoff along with a larger and smaller cutoff. Morph

trajectories were produced by modifying the settings for structural pre-alignment and
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energy minimization. A single “LinInt” path (i.e., simple linear interpolation between

1AKE and 4AKE) was included for reference.

Since the Cα representation corresponds the lowest model resolution among the tested

methods, all analyses were performed using Cα atoms to provide a fair basis for comparison.

All generated transition paths were furthermore aligned to the same reference structure,

which was produced by aligning and averaging the CORE Cα coordinates of the 1AKE:A

and 4AKE:A structures to mitigate biases toward a particular state and ensure the RMSD

satisfies the metric requirements in eqs. (3.5a) to (3.5d) (see Appendix D in the Supporting

Information for the detailed alignment procedure).

4.1.2 Methods

In all, 12 fast path-sampling methods were tested: 37 transition paths were generated in

total, including three transitions each for 11 of the methods, six transitions for rTMD, and

a single path representing simple linear interpolation. Paths were first analyzed with the

PSA approach introduced in Chapter 3 using the Hausdorff distance (Eq. 3.7) and Fréchet

distance (cf. Eiter and Mannila [292]) and several hierarchical clustering linkage algorithms.

To help establish the consistency of PSA results, each path was subsequently analyzed

using 2D native contacts analysis (NCA) followed by projecting each method onto 2D

angle-angle coordinates. Finally, the results from all three methods were integrated into a

unified discussion of the apo-AdK closed→ open transition itself. For further discussion of

the parameters used for the path-sampling methods, see Appendix C.

Path Similarity Analysis

Using the Hausdorff and Fréchet metrics, distance matrices were generated from an

all-pairs distance comparison and subsequently clustered using Ward’s minimum variance

criterion to produce a heat map-dendrogram representation (Chapter 3); supplementary

results were also obtained for average-type Hausdorff and Fréchet path distance functions,

which are not metrics (see Appendix F). All transition paths were initially reduced (if not
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already) to a Cα representation after which Cα RMSD alignment to a reference structure (cf.

Appendix D) was performed on all conformers in each path. As noted above, the Cα RMSD

was used in the Hausdorff and Fréchet metrics to measure the structural similarity between

(aligned) conformers. A Pearson correlation analysis was used to compare the Hausdorff

and Fréchet results.

Native contacts analysis

NCA was chosen because the approach is both simple and general in that can be applied

to any system when one or more native structures are known. A contact was defined

as a Cα pair falling with an 8 Å cutoff; using this definition, a native contact (NC) was a

contact present in a native structure (i.e., either 1AKE, 4AKE, or both). Given an arbitrary

conformer, the fraction of native contacts, Qi, is the fraction of contacts the conformer shares

with native structure i [300]. Given our two native states, 1AKE and 4AKE (respectively

i = 1, 2), we project each conformer (and, therefore, each path) onto 2D Q1-Q2 (NC) space

to obtain the fraction of native contacts relative to the closed starting state (Q1ake) and to

the open target conformation (Q4ake) as collective variables. The dynamic relationship of

contact formation and breaking for each method, i.e., the shape of paths in NC space, can

be used to assess putative transition states. Specifically, a positive slope (e.g., Q1ake and

Q4ake are both increasing or both decreasing) implies that contacts are either simultaneously

breaking or forming, which can be taken to be indicative of passage through a transition

state that is distinct from either end state conformation.

2D angle-angle coordinates

The 2D angle-angle space projection—in (θNMP, θLID) coordinates—for the closed↔

open AdK transition provides a natural visualization of LID and NMP domain motions

and connections to previous studies [40]. In particular, the (θNMP, θLID) projection manifests

the order in which the LID/NMP domains open and close, potentially revealing impor-

tant differences in how various path-sampling methods explore different pathways and
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intermediate states. The AdK LID-CORE angle, θLID, is defined as the angle between the Cα

atoms in residues 179-185 (CORE), 115-125 (CORE-hinge-LID), and 125-153 (LID), while

the NMP-CORE angle, θNMP, is defined as the angle between the geometric centers of the

Cα atoms in residues 115-125 (CORE-LID), 90-100 (CORE), and 35-55 (NMP).†

Table 4.1: Energetic models among tested path-sampling methods.

Resa Name
Force field,
potentialb

Mixing potential, other
energeticsc Tsim

d Solvent
interactionse

AA

DIMS[174] CHARMM27 – Y ACS/ACE2 IS
rTMD[191] CHARMM27 – Y Generalized Born IS
MDdMD[298] dMD UA bond/angle∗ + vdW/UE

† Y Lazaridis-Karplus IS
FRODA[180] stereochemical bond/angle‡ + overlap/H-bond‡ – hydrophobicity‡

Morph[176] CHARMM adiabatic mapping – –
LinInt – – – –

Cα

GOdMD[223] bond∗+Gō-like – Y –
ANMP[299] two-well ANM Umix = min

{
Ui , U f

}
– –

iENM[209] two-well ANM Umix = F(Ui , U f ) (any) + Ucoll – –
MAP[218] two-well ANM min OM action→ ODEs + BCs N OD Langevin
MENM-SD[208] two-well ANM Umix = β−1 ln

[
e−β(Ui+εi ) + e−β(U f +ε f )

]
N –

MENM-SP[208] two-well ANM Umix = β−1 ln
[
e−β(Ui+εi ) + e−β(U f +ε f )

]
N –

MD-based methods, Morph, and LinInt use atomistic resolution. Except for MAP, ENM-based methods
generate two-well (double-well) potentials via mixing function Umix from initial/final state anisotropic
network models (ANMs). MAP solves two ODEs (from minimizing the Onsager-Machlup action using
ANMs for end states) using position/velocity continuity at the ANM interface; thermal effects from
Langevin dynamics, but Tsim is not adjustable. MENM-SD/SP assumes weak mixing, Tm ∼ 300 K
(β = 1/kBTm is adjustable parameter, but not via server); in the no-mixing limit Tm → 0+, Umix =
min

{
Ui , U f

}
reduces to the ANMP double-well.

a AA, all-atom; Cα, alpha-carbon representation.
b dMD UA, discrete MD united atom force field (see [301]); pseudo CHARMM/X-PLOR energy; ANM,
anisotropic network model.
c vdW, van der Waals potential; UE, electrostatic potential energy; overlap, avoids steric clashes; H-
bond, hydrogen bond; Umix, mixing potential; Ui (U f ), initial (final) state potential; Ucoll, collision
penalty; OM, Onsager-Machlup.
d Adjustable simulation temperature? Y, yes; N, no, but thermal effects are present.
e IS, implicit solvent; OM, Onsager-Machlup; OD, overdamped Langevin (via OM).
* Bonded interactions use an infinite square well potential.
† Two-step square wells for attractive interactions; soft barrier for repulsive interactions.
‡ Constraints on bond distances/angles, H-bonds, and hydrophobic contacts; no solvent model.

†Note that [40] used the geometric centers of the backbone and Cβ atoms; since some path-sampling methods
only use a Cα representation, Cα atoms are used in this thesis to keep an even footing.
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Table 4.2: Approaches to transition path generation among tested path-sampling methods.

Type Name Dynamics Path propagation
& biasinga Revb TS/Stochc Progress

variable

DIMS[174] Langevin NVT SR N Y/Y RMSD-to-target
MD with rTMD[191] Langevin NVT moving harmonic restr. N Y/Y RMSD-to-target
biasing MDdMD[298] discrete MD SR + essential dynamics N Y/Y SSD-to-target†

GOdMD[223] discrete CG-MD SR + metadynamics N Y/Y SSD-to-target†

geometric
targeting FRODA[180] – stepwise-enforced

RMSD constraint* N Y/(Y/N) RMSD-to-target

ANMP[299] – SD via SP cusp to minima Y N/N –
iENM[209] – parametric SP/fixed-pt eq. Y N/N –

CG-ENM MAP[218] – OM minimum action path Y N/N –
MENM-SD[208] – SD from SP to minima Y N/N –
MENM-SP[208] – parametric SP/fixed-pt eq. Y N/N –

linear Morph[176] – adiabatic mapping Y N/N –
interp. LinInt – linearly interpolated snapshots Y N/N –

DIMS, rTMD, MDdMD, and GOdMD are all non-deterministic MD-based methods. DIMS and rTMD employ
a conventional force field and Langevin dynamics in the canonical ensemble; the discrete MD algorithms used
by MDdMD and GOdMD assume ballistic particle motion until a collision occurs—along with the depth of
the interatomic square wells, momentum and energy conservation are used to determine outgoing momenta
without explicitly computing forces. FRODA uses a non-physical dynamical algorithm to path-search stere-
ochemically correct regions of configuration space. CG-ENM methods generate transitions by constructing
low-energy paths in the potential energy landscape. Morph and LinInt linearly interpolate the position of each
atom between the initial and final states.
a SR, soft ratcheting; SD, steepest descent; SP, saddle point; OM, Onsager-Machlup.
b Is the method exactly reversible?
c Is the algorithm based on a (physical or non-physical) time step? Is it stochastic?
* At each step, RMSD reduced by fixed amount while simultaneously enforcing other constraints.
† SSD, sum of squared distances to target (includes weighting that varies between MDdMD and GOdMD.

4.1.3 Results and Discussion

Direct comparison using PSA and clustering

Fig. 4.1 shows the heat map-dendrogram generated by a hierarchical clustering of

Fréchet distances using the Ward linkage algorithm. Nearly all methods formed their

own clusters, implying that two transitions produced by a single method tend to have

greater similarity than two transitions produced by two different methods. In fact, the only

exceptions are Morph (3)—which shares a cluster with LinInt and the other Morph paths,

all of which are generated by linear interpolation—and the outlier cluster formed by the

GOdMD paths—which are substantially different from all other methods (δF > 3 Å). Given

that the Morph and LinInt paths are nearly identical (δF ≤ 0.5 Å), the additional features
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implemented in Morph, such as checking for steric overlaps, may not be relevant for the

closed→ open AdK transition.
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Figure 4.1: Path similarity analysis of apo-AdK closed→ open transitions from various path-sampling methods.
Each method was used to generate three paths, except for rTMD where six were generated (rTMD-F/S) and a
single LinInt path. Fréchet distances, δF, are in Å and correspond to a structural Cα RMSD in accordance with
the RMSD point metric. Smaller distances (lighter colors) correspond to greater similarity. The dendrogram
depicts a hierarchy of clusters where smaller node heights of parent clusters indicate greater similarity between
child clusters. See text for a description of the methods. S5FIG contains the same data annotated with numerical
values of δF. [Reprinted from S. L. Seyler et al. [5], Copyright © (2015), used under the terms of the Creative
Commons Attribution License.]

The dendrogram also reveals that methods with commonalities between their physical

models tended to cluster with one another. The two MD-based importance sampling

methods, DIMS and MDdMD, formed a cluster with the Langevin MD-based rTMD at slow

pulling velocity (“rTMD-S”; Fréchet distance 2.1 Å ≤ δF ≤ 2.7 Å). Correspondingly, the

ENM-based methods (iENM, MENM-SD/SP, and ANMP) another cluster, where MENM-

SD and iENM were the most similar (δF ≤ 2.3 Å) while MENM-SP and ANMP were the
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most different (δF ≤ 3.4 Å). In the case of FRODA, there is no potential energy function—

only stereochemical constraints are enforced—so its trajectories are pseudo-dynamical. The

absence of full energetics notwithstanding, FRODA forms a cluster of dynamical methods

with DIMS, MDdMD, and rTMD-S (2.6 Å ≤ δF ≤ 3.1 Å).

Remarkably, fast-pulling rTMD (“rTMD-F”) and MAP were very similar to both Morph

and LinInt paths (δF ≈ 1 Å) despite having fundamentally different physical models:

whereas rTMD-F uses MD and a physics-based atomistic force field, MAP uses a double-

well ENM for the energetics and generates paths by minimizing the Onsager-Machlup

action (without any linear interpolation). The similarity between rTMD-F and linear

interpolation is sensible, since, given that trajectories were driven by rapidly pulling a

harmonic RMSD restraint toward the target (i.e., heavy-atom RMSD to the target was the

biasing order parameter to match DIMS), rTMD-F simulations have little time to sample

orthogonal directions. It is not obvious that MAP should be in a different cluster than the

other ENM-based methods. However, given that the action-minimized paths generated

by MAP are minimum free energy paths (the other ENM-based methods produce, in effect,

minimum energy paths), it is not unreasonable that MAP may generate paths bearing

greater resemblance to those generated the dynamical methods. Indeed, the MAP/rTMD-

F/Morph sub-cluster and the sub-cluster of dynamical algorithms (DIMS, MDdMD, rTMD-

S, and FRODA) form a separate cluster from the ENM-based methods. At first glance,

the MAP, rTMD-F, and Morph paths somewhat resemble iENM and MENM-SD paths

(δF ≤ 2.5 Å). However, closer examination of the heat map—in particular, the patterns of

Fréchet distances evident in the heat map’s striping—reveals that MAP/rTMD-F/Morph

paths and DIMS/MDdMD/rTMD-S/FRODA paths bear qualitative resemblances in how

they all compare to iENM/MENM-SD. In other words, the qualitatively similar way in

which these methods all differ from iENM/MENM-SD paths is such that the “Morph-like”

and dynamical methods form a distinct cluster apart from the MEP-like ENM methods.

To check the effect of the linkage algorithm on the hierarchical clustering results,
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we tested four other linkage algorithms (single‡, complete, average, and weighted—see

Fig. 4.2A–D, respectively). The cluster composed of MAP/Morph/LinInt/rTMD-F ap-

pears particularly robust since it is reproduced by Ward, complete, average, and weighted

linkages. The DIMS/MDdMD/rTMD-S cluster generated by Ward is also produced by

complete and average linkage, and all three methods are contained in a larger cluster along

with the “Morph-like cluster” for weighted linkage. Interestingly, complete linkage assigns

FRODA to the dynamical methods cluster (DIMS/MDdMD/rTMD-S) like Ward, whereas

average linkage places FRODA in a unique cluster with MENM-SP and weighted places

both FRODA and MENM-SP outside of the cluster formed by nearly all other methods (ex-

cept ANMP and GOdMD). That FRODA should be grouped with DIMS/MDdMD/rTMD-S

thus seems less robust than, say, the cluster formed by DIMS with MDdMD, which is

produced by the Ward, complete, and average linkages. All linkage algorithms agree

that GOdMD paths are outliers, though it is curious that average and complete linkage

clusterings suggest ANMP is also somewhat of an outlier while ANMP is placed with in

the “ENM cluster” when Ward or complete linkage is used. Results were consistent among

the linkage algorithms, with the Ward and complete linkages appearing to be relatively

robust. (See Appendix E and Husic and Pande [302] for more in-depth analyses of clustering

algorithms).

The overall picture did not substantially change when using Ward linkage with the

Hausdorff distance (Fig. 4.3A), which reproduced the same clusters as with Fréchet; the

Pearson correlation coefficient between δH and δF was essentially unity (Fig. 4.3B). For

completeness, several alternative path distance functions were examined, namely the

average-type Fréchet and Hausdorff distances (which are, however, not proper metrics, as

proved in Appendix F). Both average-type path metrics reduced the amount of detail in the

clustering without substantially changing the overall picture, ultimately amalgamating the

clusters into one large “dynamical methods cluster” (TMD-S, DIMS, MDdMD, GOdMD,

‡The single linkage is known to be susceptible to measurement uncertainty and “chaining”, though it is included
for completeness.
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Figure 4.2: Path similarity analysis of apo-AdK closed→ open transitions from various path-sampling methods
using alternative linkage algorithms for hierarchical clustering. Dendrograms for each heat map correspond to
the hierarchical clustering produced by the single (A), complete (B), average (C), and weighted (D) linkage
algorithms, depicting a hierarchy of clusters where smaller node heights of parent clusters indicate greater
similarity between child clusters. [Reprinted from S. L. Seyler et al. [5], Copyright © (2015), used under the
terms of the Creative Commons Attribution License.]

FRODA), a “Morph-like cluster” (Morph, LinInt, TMD-S, MAP), and an “ENM cluster”

(ANMP, iENM, MENM-SP/SD). In the sections that follow, the robustness of the PSA results

is assessed in the context of NCA and angle-angle projections.

Native contacts analysis

Native contact fractions relative to the closed starting state (Q1ake) and to the open target

conformation (Q4ake) were computed for each closed→ open transition path. Fig. 4.4A

shows that most trajectories began on or near the right vertical axis (green circle), corre-

sponding to the first conformers of the paths having essentially 100% of their contacts in
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Figure 4.3: (A) Heat map for path-sampling methods for the apo-AdK closed→ open transition of Hausdorff
distances produced using the Ward algorithm. Clusters are identical to the Ward clustering for Fréchet
distances in Fig. 4.1. (B) Correlation and joint distributions between (discrete) Fréchet versus Hausdorff
distance measurements (in Å rmsd) for the AdK closed→ open methods comparison. Strong linear correlation
indicated by the scatter plot, with a Pearson correlation coefficient very close to unity, indicates that either
metric could have been used to perform the path-sampling methods analysis with essentially identical results.
A slight deviation of the scatter points below the line of unity slope is consistent with the fact that Fréchet
distances are bounded from below by corresponding Hausdorff distances. [Adapted from S. L. Seyler et al. [5],
Copyright © (2015), used under the terms of the Creative Commons Attribution License.]

common with the native contacts of the initial 1ake closed state (Q1ake = 1.00) and around

95% of the final 4ake open state contacts (Q4ake = 0.95).§ Correspondingly, most trajectories

terminated near the top horizontal axis (red diamond), the final conformers containing

nearly 100% of the 4ake native contacts (Q4ake = 1.00) and around 93% of 1ake contacts

(Q1ake = 0.93). Both DIMS and MDdMD paths did not finish precisely at the final state

since both use a soft-ratcheting biasing algorithm; since precise convergence to the target

is difficult, simulations are terminated once a conformer falls within a cutoff radius of the

final 4ake final state (0.5 Å heavy atom [non-hydrogen] RMSD for DIMS; 1.5 Å Cα RMSD

for MDdMD). DIMS and MDdMD trajectories broke a comparable number of contacts

relative to both native states (around 8-9% and 9-10%, respectively), though MDdMD failed

to reform any 4ake contacts (Q4ake < 0.94) while DIMS reformed most (Q4ake ≤ 0.98).

§Close examination of DIMS trajectories would show that they start with 96% of 1ake contacts, which is to
be expected given that the 1ake structure must be energy-minimized and equilibrated prior to performing
DIMS-MD.
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Paths generated by the dynamical methods (DIMS, rTMD, FRODA, MDdMD, and

GOdMD) were relatively noisy compared to the non-dynamical methods; fluctuations

were primarily along lines of positive slope and orthogonal to progress in the direction of

the final state. The NC space paths from FRODA exhibited the greatest degree of contact

breaking (Q1ake = 0.82, Q4ake = 0.80) of all methods tested, though this behavior is not

unexpected given the nature of FRODA’s stochastic algorithm.¶

Overall, NCA qualitatively recapitulates the general dichotomy between the dynamical

and non-dynamical methods seen in PSA. NC paths that took more direct paths toward the

final state (negative slopes) were typically from non-dynamical methods; paths that moved

away from both native states before heading to the final state (positive slopes) were mostly

from dynamical methods. With the exception of GOdMD (which more closely resembles

Morph), NC paths from dynamical methods also exhibited a “V”-shaped structure indica-

tive of a transition state region. In contrast, non-dynamical methods tended to show the

opposite pattern, as ANMP, iENM, Morph, and LinInt paths wandered relatively little on

the way to the final state.

The strong qualitative similarities among DIMS, MDdMD, and rTMD-S in NC space is

consistent with robust cluster they form in PSA; moreover, that FRODA formed a looser

cluster with DIMS/MDdMD/rTMD-S (among the various linkage algorithms) is unsur-

prising given the degree to which it broke contacts. The V-shape of rTMD-F paths was

less pronounced than rTMD-S paths, indicating that faster rTMD pulling velocity directly

limited the extent of contact breaking and formation. PSA accordingly clustered rTMD-S

among the dynamical methods and rTMD-F in the robust rTMD-F/MAP/Morph/LinInt

cluster; in the latter case, though neither MAP nor rTMD-F resembled Morph/LinInt in NC

space, both were not entirely different from one another since both break excess 1ake native

¶Stochasticity in FRODA is achieved at each step by a random displacement and rotation of one rigid unit of
the molecule (rigid units for a protein are constructed at sub-amino acid level), after which stereochemical
constraints are enforced. Limited only by geometric constraints, rigid units containing Cα atoms can therefore
move in a manner that may otherwise be prohibited by a realistic force field, leading to potentially larger
fluctuations in the Cα distances, which in turn is likely to magnify contact breaking and (re-)formation behavior.
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dimensional collective variables. The initial 1AKE:A (final 4AKE:A) structure is shown in each plot by the
green circle (red diamond). (A) Projection of all paths from the path-sampling methods onto NC space. The
abscissa (ordinate) corresponds to the percentage of contacts shared with the initial (final) state. The top-left
legend identifies EN-based methods and the remaining methods are listed on the bottom-right. LinInt is shown
a broken black curve. (B) Projection of run #2 of each method onto NMP angle (θNMP) vs LID angle (θLID). In
B and C, trajectories generated by the dynamical methods (DIMS, rTMD, FRODA, MDdMD, GOdMD) are
plotted with diamonds and non-dynamical method trajectories with circles. [Adapted from S. L. Seyler et al.
[5], Copyright © (2015), used under the terms of the Creative Commons Attribution License / Adapted from
original.]

contacts (Q1ake ≈ 0.92) that reform toward the final state (Q1ake ≈ 0.93). Indeed, MAP and

also MENM-SD/SP were clear exceptions to the non-dynamical methods by way of contact

breaking/formation. What is particularly interesting is that MENM-SD/SP paths not only

broke the most excess 1ake contacts among the non-dynamical paths (Q1ake ≈ 0.90–0.91),

but also exhibited the characteristic “V” shape produced by dynamical methods.

Angle-angle space projection

Projecting representative trajectories from the path-sampling methods onto angle-angle

(AA) space (Fig. 4.4B) immediately reveals considerable variation in the apparent order in
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which the mobile domains open (or close). A majority of the transitions lie in the vicinity

of the linear-interpolation path (LinInt), which is a reflection of the fact that apo AdK has

little in the way of structural obstructions that would otherwise prevent a direct path in

going from its closed state (green circle) to its open state (red diamond). There are also a

number of transitions that clearly deviate from the direct path. As with PSA and NCA, the

projection onto AA space (Fig. 4.4B) reproduces the overall dichotomy between dynamical

and non-dynamical methods. ENM-based methods appeared to prefer a NMP-opening

pathway (i.e., NMP-opening takes place prior to LID-opening) on the whole, though Morph,

MAP, and MENM-SP tracked LinInt closely. In contrast, dynamical methods generally

sampled a LID-opening pathway, including DIMS, MDdMD, and GOdMD, though the

FRODA path sampled the vicinity of LinInt.

DIMS and MDdMD appeared qualitatively very similar in AA space, in full agreement

with both PSA and NCA. The exaggerated LID-opening of the GOdMD path was unlike

any of the other methods and its classification as an outlier by PSA is sensible (Fig. 4.1). In

the case of rTMD-S, its similarity to DIMS and MDdMD in PSA seems reasonable since

it remained in the vicinity of the LinInt path despite being fairly erratic. When rTMD is

used with a very high pulling speed, the system moves almost exclusively in the direction

of the restraint potential which in turn follows the order parameter (used for targeting);

with an RMSD-to-target restraint, the restraint potential exactly follows the LinInt path. It

is thus clear that rTMD-F should behave more like Morph/LinInt and less like equilibrium

MD with an perturbing potential, which is in turn reinforced by the agreement between

PSA and projection in AA space. FRODA also predominantly followed LinInt, though its

overall behavior was somewhat erratic due to the stochastic nature of the algorithm.

The ANMP path displayed unambiguous NMP-opening behavior with the NMP domain

opening most of the way before much LID-opening took place; the iENM path also showed

initial NMP-opening, but was shortly followed by a simultaneous opening of both the LID

and NMP domains. Given that the ANMP path exhibited dramatic NMP-opening relative

to any other method, it is easy to see why ANMP was somewhat of an outlier in PSA
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(average and weighted linkages). MENM-SP was the most distant member in the cluster

of ENM methods in PSA (Fig. 4.1), in addition to being grouped with FRODA (average

linkage) and being an outlier (weighted linkage). Careful inspection of the MENM-SP path

revealed a sizable gap between the penultimate conformer (located in the first half of the

transition) and the 4ake final state. Though two MENM-SP paths with well-aligned gaps

may not produce a discernible effect on their Hausdorff or Fréchet distance, it is clear that

an MENM-SP path will tend to have larger distances to another paths from a different

method—there will likely be at least one conformer in the other path (in the part of the

transition where the MENM-SP gap occurs) whose nearest neighbor is either the final or

penultimate conformer in the MENM-SP path but is relatively far from both.

Further observations

It is compelling that the MAP and MENM-SP/SD paths initially exhibit slight LID-

opening until around 116°, but MENM-SD, in contrast with MENM-SP and MAP, exhibited

a partial reversal in the LID-opening pathway whereby the NMP domain was nearly

completely opened. The presence of this “wiggle” in MAP and MENM-SD/SP but not

others in AA space is compatible with the contact breaking behavior seen in MAP/MENM-

SD/MENM-SP but not in the other non-dynamical methods in NCA. Such qualitative

resemblances notwithstanding, MENM-SD consistently clustered with iENM while MENM-

SP forms somewhat inconsistent clusters across all linkage algorithms. In the case of ANMP,

its paths appeared quite similar to iENM and Morph in NC space; in PSA, ANMP and iENM

were somewhat similar (1.4 Å ≤ δF ≤ 2.7 Å in Fig. 4.1)—though ANMP was sometimes

an outlier—but ANMP and Morph were very different (2.8 Å ≤ δF ≤ 3.1 Å). Furthermore,

NCA did not appear to recapitulate the close correspondence between MAP, rTMD-F, and

Morph paths. On the other hand, the ANMP paths, which were reasonably similar to iENM

in PSA (1.4 Å ≤ δF ≤ 2.7 Å in Fig. 4.1) but fairly different from Morph (2.8 Å ≤ δF ≤ 3.1 Å),

appeared fairly similar to both iENM and Morph in NC space.

It is difficult at this stage to pinpoint the exact reasons for apparent discrepancies
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between PSA and NCA results. The division between dynamical and non-dynamical

methods is consistent with PSA, including some subdivisions such as the inconsistent

grouping of FRODA in comparison with the otherwise close-knit DIMS/MDdMD/rTMD-

S cluster. rTMD-F and MAP generated NC paths that occupied an intermediate region

between most paths and also displayed qualitative similarities to both dynamical and non-

dynamical paths, suggesting a partial explanation as to why MAP and rTMD-F consistently

clustered with Morph/LinInt. However, the clear “V” shape of MENM-SP/SD paths cannot

be explained directly from the clusterings in PSA. NCA did not offer clear hints as to why

PSA subdivided ANMP, iENM, and MENM-SD/SP is it did, nor did it reveal why GOdMD

always appeared as an outlier.

Whether the “wiggles” in AA space coincide with each path’s cusp-like region in NCA

space, and whether these features predict a physical transition state, cannot be inferred

from the data. If the gap in the MENM-SP paths were filled, PSA might cluster with the

larger group formed by MAP and DIMS/MDdMD/TMD-S; the MENM-SD path is distinct

and somewhat resembles both iENM and ANMP, so it is reasonable that MENM-SP and

iENM form a robust cluster. The heatmap-dendrogram analysis alone did not furnish

this somewhat nuanced picture derived from considering NCA and AA projections. We

anticipate that a Hausdorff pair analysis (cf. Section 3.2.2 and Section 4.2) could provide

the necessary structural insight to help answer these questions.

4.1.4 Summary of path-sampling methods study

PSA was shown to be an effective means of quantitatively comparing conformational

transition paths generated by algorithmically distinct path-sampling methods. For this

investigation, we used AdK—reviewed in Chapter 1 (experimental studies) and Chapter 2

(computational studies)—as a testbed protein to generate closed→ open transitions from

the 1ake closed state to the 4ake open state. Using PSA, we were able to distinguish broad

features among the transition paths, linking our observations to their originating physical

models and algorithms. Paths generated by a given method were more similar to one
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another than two paths from different methods, and there was a consistent distinction

between dynamical and non-dynamical algorithms and the apparent domain-opening

pathways (generally LID-opening and NMP-opening, respectively). This analysis required

only Cα trajectories as input along with the familiar Cα RMSD as a structural similarity

measure. It should be made clear that the comparison presented in this section was not

intended to represent a comprehensive assessment of all path-sampling methods that have

been applied to the apo-AdK closed↔ open transition.

One important avenue of exploration would be to examine more sophisticated ap-

proaches that do not require a predefined order parameter or progress variable as input,

like transition path sampling (TPS) [57], those that find a MFEP by refining an initial

path, such as the finite-temperature string method [303], or an interface-based method like

weighted ensemble sampling [82, 255]. Alternatively would be to use metadynamics-based

[91] approaches (made possible through the PLUMED plugin [304, 305]) in conjunction

with MD-based biasing methods (e.g., DIMS, TMD, etc.) to assess the degree to which

pathways and energetics are affected by differing choices of CVs (e.g., 1D RMSD-to-target,

2D angle-angle variables, or 2D RMSD-to-end-states; cf. Table 1 in S. L. Seyler and Beck-

stein [4]). It would also be useful to design a comparison whereby different aspects of

physical models—electrostatic forces, solvent interactions, etc.—can be toggled so as to

systematically examine how each type of interaction contributes to the pathway geometry.

4.2 Case study 2: transition ensemble analyses

We first apply PSA to the DT transition ensemble using the same general approach as in

the path-sampling methods comparison in Section 4.1. For clarity, only the PSA results for

the Fréchet distance are presented here as the Hausdorff distance results lead to identical

conclusions. In the second part of our ensemble study, we revisit AdK and repeat the usual

PSA approach for the closed→ open transition ensemble. Then, we extend this analysis

by generating Hausdorff pairs for the entire transition ensemble, extracting representative

Hausdorff pairs, and examining their projections in angle-angle space. To help make the
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analysis more transparent, we conceptually divided the full set of Hausdorff distance

measurements into: (1) distances between pairs of DIMS paths, (2) distances between pairs

of FRODA paths, and (3) inter-method distances measured between a DIMS and a FRODA

path. Since the full ensemble consists of N = 400 paths, we generated N(N− 1)/2 = 79800

δH-pairs in aggregate. A total of six representative δH-pairs were then selected by extracting

the δH-pairs associated with the median and maximum Hausdorff distances for each of the

segregated comparisons (1), (2), and (3) above.

4.2.1 Methods

The overall flow of the analyses goes as follows: first, the standard heatmap-dendrogram

protocol is straightforwardly applied to the diphtheria toxin protein to set the stage. Then,

we illustrate a thorough investigation of DIMS and FRODA closed→ open transitions of

apo-AdK. Finally, a realistic Hausdorff pair (δH-pair) analysis is presented for the apo-AdK

closed→ open transitions; in particular, due the availability of relatively good CVs (i.e.,

LID-CORE, NMP-CORE angle-angle coordinates) for the AdK transition, we show the

δH-pairs projected in AA space to provide an intuitive visual reference.

Hausdorff pair analysis

Though PSA is effective for analyzing arbitrary systems using (up to) the full 3N-

dimensional configuration space, the global heatmap-dendrogram analysis presented thus

far does not provide any direct connection to the molecular-structural details. To extract

physically relevant differences at the molecular level, a Hausdorff pairs (or Fréchet pairs)

analysis can be used to single out a pair of conformers that are relatively likely to harbor

structural features giving rise to physically relevant differences between the paths in

question. We only performed a Hausdorff, rather than Fréchet, pairs analysis since the

Hausdorff and Fréchet results were found to be strongly correlated in the AdK ensemble

comparison.

The concept of a Hausdorff pair (δH-pair) follows from the description of the Hausdorff
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distance in Section 3.2.2 and is recapitulated briefly here. Given two paths, the Hausdorff

distance represents the maximum nearest neighbor distance between a conformer in one

path and a conformer in the other; we call this pair of conformers a Hausdorff pair. A

Hausdorff pair should, in principle, reveal salient structural differences giving rise to

their mutual dissimilarity more frequently than an pair of conformers chosen at random.

Hausdorff pairs can be easily extracted from an all-pairs calculation of Hausdorff distances

in a transition path ensemble using the MDAnalysis Python library [272, 273], providing an

efficient means within the PSA framework to scrutinize structural patterns—down to the

atomistic level—across many sampled paths and, thus, identify the molecular-structural

determinants of differences between full transition pathways.

AdK and DT closed→ open ensembles from DIMS and FRODA

To demonstrate a different mode of analysis within the PSA framework, we concentrated

on two distinct, stochastic methods—DIMS-MD and FRODA—to generate ensembles

of transitions containing hundreds of trajectories. For this exercise, the closed → open

transition of apo-AdK was supplemented by a second example, namely a closed→ open

transition of the diphtheria toxin (DT) protein, which exists in inactive (closed) and active

(open) conformations, from the bacterium Corynebacterium diphtheriae. It is thought that

DT—a potent exotoxin that disrupts protein synthesis via inactivation of the eukaryotic

elongation factor-2 (EEF-2) protein—leverages such a conformational change to gain access

to susceptible mammalian cells through receptor-mediated endocytosis [306, 307]. There are

three domains, depicted in Fig. 4.5, in a DT monomer: the N-terminal, catalytic (C) domain

(resids 1–190), which disables EEF-2 by catalyzing ADP-ribosylation (of EEF-2); and the

transmembrane (translocation or T) domain (resids 191–378), which assists the C domain in

traversing the cytoplasmic membrane of a host cell; and the C-terminal, receptor-binding

(R) domain (resids 379–535), which initiates endocytosis by binding to specific cell surface

receptors [307]. After binding, a conformational change maneuvers the C- and T-domains

(toward the bilayer, away from the R-domain) into position for membrane insertion and
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translocation; visual inspection of the R-domain, which differs between closed and open

states by both an extension and ∼ 180° rotation relative to the C- and T-domains (Fig. 4.5),

hints at the motions involved in the transition.

A closed DT conformation was solved in a monomeric form by Bennett and Eisenberg

[308], though the open conformation was found in a domain-swapped dimeric structure

[309] where the R-domain of each monomer has an interdomain interface with the other

monomer. It was proposed by Carroll, Barbieri, and Collier [310] that monomeric DT con-

verts to an open conformation upon a decrease in pH, which in turn leads to dimerization

via monomer-monomer hydrophobic interactions enabled by domain swapping.

Previously, the open→ closed transition was generated computationally by Krebs and

Gerstein [176] using morphing (adiabatic mapping) and declared “a hard or impossible

case” due to the unphysical rearrangement of atoms along the linearly interpolated path;

it was speculated that unfolding and refolding (of the R-domain) could yield a physical

pathway, though Farrell, Speranskiy, and Thorpe [180] demonstrated that FRODA could

generate a plausible open→ closed path without unfolding/refolding by enforcing DT’s

stereochemistry. To generate DT transitions compatible with the aforementioned studies,

we extracted a closed initial state from the monomeric structure (chain A of PDB ID 1MDT

[308]) and an open final state from the domain-swapped dimeric structure (chain A of PDB

ID 1DDT [309]).

DIMS and FRODA were used to generate the transitions as both methods have the

necessary stochasticity to generate meaningful ensembles and use similar progress variables

to induce transitions. Specifically, FRODA attempts to gradually decrease the Cα RMSD

to the target, while DIMS uses a heavy-atom RMSD-to-target progress variable for soft-

ratcheting. The purely geometric landscape employed by the FRODA algorithm then

serves to contrast with the atomistic MD force field used in DIMS without unnecessarily

confounding the analyses with dissimilar progress variables. We generated four separate

ensembles, with one ensemble per method per protein; in total, 800 transitions were

generated, with 200 transitions per method per protein. All transition paths were subjected
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Figure 4.5: Diphtheria toxin (DT) accesses closed and open conformations, similar to the two depicted crys-
tallographic structures, that are linked by a closed↔ open transition. Comparing the two crystallographic
structures suggests that the transition should involve a combination of rolling, twisting, and extending motions
of the C-terminal, receptor-binding (R) domain (shown in gray) about the N-terminal, catalytic (C) domain
(cyan) and the translocation (T) domain (green).

to a careful alignment protocol so as to minimize source of bias (details for both AdK and

DT are provided in Appendix D of the Supporting Information).

4.2.2 Results and discussion

DT closed→ open transition

The first pass of PSA on the DT transitions unveiled nine FRODA trajectories having

Fréchet distances up to 12 Å from most other paths in the ensemble, indicated by the dark

green bands in Fig. 4.6 showing Fréchet distances upwards of 10 Å. Visual inspection of

the transition paths in question found that several trajectories terminated very short of the

open DT target structure and a few exhibited large, unrealistic fluctuations about the final

state. These erroneous trajectories were trimmed from the distance matrix and clustering

was repeated, producing the heat map and dendrogram in Fig. 4.7. The DIMS and FRODA

transitions formed two distinct clusters with no intermixing between the methods. The

upper left section of the matrix showed that DIMS generated relatively similar paths, with

darker stripes corresponding to a number of outliers. By comparison, however, the FRODA
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paths (seen in the lower right part of the matrix) were much more similar to one another

and, with the exception of a few outliers as well, appeared less diverse overall.
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Figure 4.6: The raw, clustered heatmap-dendrogram generated by PSA from all-pairs calculations of the
(discrete) Fréchet distances, δF, for all 200 DIMS (blue bars) and 200 FRODA (red bars) transitions of the
diphtheria toxin protein (1MDT:A to 1DDT:A). Nine paths generated by FRODA (orange cluster) were very
different from every other path in the comparison. Visual assessment confirmed that the erroneous paths were
generated by unsuccessful FRODA runs and were subsequently filtered from the ensemble. [Adapted from
S. L. Seyler et al. [5], Copyright © (2015), used under the terms of the Creative Commons Attribution License.]

We quantified these observations by histogramming DIMS–DIMS, FRODA–FRODA,

and DIMS–FRODA distances for both the Fréchet and Hausdorff metrics and performing

a Pearson correlation analysis. Fig. 4.8A shows near perfect correlation between Fréchet

and Hausdorff distances (for corresponding pairs of paths), indicating that backtracking

was unlikely a contributing factor. The distance distribution for FRODA paths (green)

was both smaller on average and narrower than the DIMS distribution (red), consistent

with a visual inspection of the heat map. However, whereas the bulk of the FRODA

distribution was qualitatively more symmetric than the DIMS distribution, which was

somewhat positively skewed, there were several outlier FRODA paths that were relatively

dissimilar to most other paths (reflected in the dark stripes in Fig. 4.7). Moreover, it was
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Figure 4.7: Clustered heat map comparing ensembles of diphtheria toxin (1MDT:A to 1DDT:A) transition
pathways produced by DIMS (blue bars) and FRODA (red bars) using the (discrete) Fréchet distance, δF.
Hierarchical cluster analysis was produced using the Ward linkage criterion using ascending distance order;
incomplete trajectories were filtered and not displayed (see text).

observed that the distribution of DIMS–FRODA distances overlapped with the upper tail

of the DIMS distribution as well as FRODA outliers. Thus, although DIMS and FRODA

paths are grouped into distinct clusters, it can be concluded that the width of the transition

tubes sampled by each method are comparable (via the triangle inequality of the metrics)

to their separation in configuration space.

AdK closed→ open transition

As with the DT ensemble, PSA generates two distinct clusters separating DIMS and

FRODA paths with no intermixing (Fig. 4.9). In contrast with the DT results, however,

FRODA generated paths that were more dissimilar to one another (〈δF〉 = 2.2(1)Å) than

DIMS paths were from each other (〈δF〉 = 1.4(2)Å). Plotting the distributions of DIMS–

DIMS, FRODA–FRODA, and DIMS–FRODA Fréchet and Hausdorff distances (Fig. 4.8B)

shows that the DIMS–DIMS and FRODA–FRODA distributions have indeed swapped
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Figure 4.8: Correlations and joint distributions of (discrete) Fréchet versus Hausdorff distances (in Å RMSD)
of the AdK (B) and DT (A) ensemble analyses are shown. Measurements are divided into three separate
distributions: (1) mutual distances for DIMS paths (red), (2) mutual distances for FRODA paths (green), and
(3) inter-method distances (blue) measured between a DIMS and a FRODA path. Both scatter plots indicate
near perfect correlation between the path metrics for all distributions, with Pearson correlation coefficients
equal to unity and p-values equal to zero to two decimal places, indicating that one path metric could be
substituted for the other with affecting results. A slight deviation of the scatter points below the regression line
(of unity slope) is consistent with the fact that Fréchet distances are bounded from below by their corresponding
Hausdorff distances. DIMS simulations exhibited less variation than FRODA in the AdK transition, but had a
larger average variation in the DT transition. For both DT and AdK, inter-method DIMS-FRODA distances are
substantially larger than distances among paths from a given method. [Adapted from S. L. Seyler et al. [5],
Copyright © (2015), used under the terms of the Creative Commons Attribution License.]

places, while all three distributions also showed little overlap. Furthermore, the mean

Fréchet distance between DIMS and FRODA paths was 2.9(2)Å, significantly larger than the

mean Fréchet distances within the FRODA and DIMS ensembles, indicating that transition

tube sampled by each method is narrower than their separation in configuration space.

To connect to the atomistic structural differences between DIMS and FRODA conformers

that gave rise to apparent differences in the sampled pathways, we explicitly extracted

several δH-pairs and examined their projections in angle-angle space. Specifically, for each

of the comparisons in DIMS–DIMS, FRODA–FRODA, and DIMS–FRODA, we extracted

the δH-pairs corresponding to the median and max Hausdorff distances, giving the six

total pairs plotted in Fig. 4.10A (red, blue, and purple circles and lines, respectively).

Taking the median δH-pair among DIMS–FRODA comparisons and projecting the per-atom
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Figure 4.9: Clustered heat map comparing ensembles of adenylate kinase (1AKE:A to 4AKE:A) transition
pathways produced by DIMS (blue bars) and FRODA (red bars) using the (discrete) Fréchet distance, δF,
measured in Å. Lighter values indicate similar paths, while dark green corresponds to greater dissimilarity.
Cluster analysis was produced using the Ward linkage criterion using ascending distance order. The DIMS and
FRODA clusters are distinct, with two clusters were formed within both the DIMS ensemble (green and orange
branches) and FRODA ensemble (magenta and cyan branches). [Adapted from S. L. Seyler et al. [5], Copyright
© (2015), used under the terms of the Creative Commons Attribution License.]

displacements between the two structures (Fig. 4.10A), it became clear that the NMP domain

in DIMS transitions had a number of evolutionarily conserved salt bridges (D33–R156, R36–

D158, D54–K157) that tended to remain intact well into the transition. A direct examination

of the DIMS conformer in the δH-pair indicated that the strong electrostatic interactions

between the acidic and basic moieties [40] (Fig. 4.10B) were preferentially impeding the

opening motions of the NMP domain. Full opening of the NMP domain required all salt

bridges to be broken, while the LID domain could move relatively unhindered since the

salt bridges are primarily located on its side. In the case of FRODA, which operates using

purely geometrical influences, has no notion of the charge-charge interactions necessary

for salt-bridge formation or breaking. Indeed, the FRODA conformer from the median

δH-pair (with DIMS) did not have intact salt bridges (Fig. 4.10C) and did not reproduce the
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“salt-bridge zipper” [40] evident in DIMS transitions. The manifest difference between DIMS

and FRODA trajectories in angle-angle space for the apo-AdK closed→ open transition was

therefore a predominantly LID-opening pathway for DIMS simulations (Fig. 4.10A, blue

circles), whereas FRODA paths (Fig. 4.10A, green circles) exhibited roughly simultaneous

LID/NMP-opening in the vicinity of LinInt (Fig. 4.10A, black dashed line).

An alternative way to visualize differences between two paths is to consider their

corresponding sets of nearest neighbor distances where, by construction, δH-pairs coincide

with the maxima of the sequences of nearest neighbor distances. Fig. 4.11 depicts sequences

of nearest neighbor distances for the three median δH-pairs shown in Fig. 4.10A. The

DIMS and FRODA paths in question differed considerably from one another along the

initial ∼ 60% of the transition, corresponding to the slightly favored LID-opening pathway

explored by the DIMS trajectory. The two FRODA trajectories differed by ∼ 2 Å near

the middle portion of the transition but were essentially coincident at the end points,

demonstrating that FRODA, even with its stochastic component enabled, can systematically

connect two given end-point structures. The DIMS trajectories differed from each other in

a nearly uniform manner, / 1.3 Å, for the duration of the transition, suggesting that both

effectively sampled the same pathway up to perturbations induced by thermal fluctuations.

4.2.3 Transition ensemble analyses in summary

To test whether PSA was amenable to ensembles containing hundreds of trajectories,

we used the closed→ open transitions of both AdK and DT as test systems to which the

DIMS-MD and FRODA methods were applied. DT, representing a “hard” transition case

Krebs and Gerstein [176], was previously shown to be amenable to a geometric targeting

approach (FRODA) [180]. Initially, the heatmap-dendrogram approach in PSA allowed us

to straightforward disregard erroneous trajectories without having to manually validate

individual trajectories in the ensemble by direct inspection. A re-clustering of the Fréchet

distances showed that DIMS and FRODA effectively sampled distinct pathways as indicated
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Figure 4.10: “Hausdorff pairs” (δH-pairs) analysis using 200 DIMS (cyan) and 200 FRODA (light green)
trajectories projected into AA space. Hausdorff distances were computed for all unique path pairs. (A)
Conformer pairs—corresponding to the δH-pairs with the median and maximum Hausdorff distances (solid
and dashed lines, respectively)—are projected onto domain angle space for the following comparisons: DIMS–
FRODA (purple), DIMS–DIMS (red), and FRODA–FRODA (blue). Experimental crystal structures, including
some intermediates, are shown as stars [40], with further details available in S1Tab. Insets: Two heavy-
atom representations for the median δH-pair structures between a DIMS and FRODA path, corresponding to
conformers from their respective trajectories. The magnitudes of the per-atom displacement vectors between
the two conformations are projected onto each conformer, with per-atom displacements given in Å according to
the color bar. The initial and final conformations (green circle and red diamond, respectively) are provided for
reference along with the linear interpolation path (LinInt – black dashed line). (B,C) Salt bridges in the DIMS
and FRODA conformers from the DIMS–FRODA median Hausdorff pair. Three LID–NMP salt bridges (R156–
D33, D158–R36, and K157–D54) and a CORE–NMP salt bridge (E170–K57) are intact in the DIMS structure (B)
that are broken in the FRODA structure (C). The locations of the residues responsible for these salt bridges are
towards the base of the LID and so the moment arm with respect to the NMP domain is substantially larger.
[Reprinted from S. L. Seyler et al. [5], Copyright © (2015), used under the terms of the Creative Commons
Attribution License.]
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Figure 4.11: The nearest neighbor distances δnn(k; Q P) (solid line) and δnn(k; P Q) (dashed line) between
pairs of paths P/Q belonging to the three median Hausdorff pairs in the AdK ensemble comparison (Fig. 4.10A)
are shown for DIMS–FRODA (purple), DIMS–DIMS (blue), and FRODA–FRODA (green). The largest value
maxk,j{δnn(k; Q P), δnn(k; P Q)} is the actual Hausdorff distance. For illustrative purposes, nearest neighbor
distances are parameterized by plotting them as a function of frame number, k, normalized to the interval
[0, 1] (i.e., k/|P|), where 0 (1) corresponds to the first (last) frame. In general, it is more appropriate to use a
one-dimensional order parameter or, ideally, a good reaction coordinate. [Reprinted from S. L. Seyler et al. [5],
Copyright © (2015), used under the terms of the Creative Commons Attribution License.]

by the absence of intermixing. Similar results were obtained for AdK, with both methods

again forming separate clusters. Interestingly, there was larger variation among paths in the

DIMS AdK ensemble than the variation in the FRODA AdK ensemble, which was opposite

to the results obtained for DT.

A Hausdorff pairs analysis of the AdK transition ensemble demonstrated that δH-pairs

were effective indicators of pathway differences arising at the molecular level. Specifi-

cally, extracting median δH-pairs enabled us to implicate charge-charge interactions—fully

modeled by the atomistic CHARMM27 force field in DIMS but completely omitted in

FRODA—within a set of conserved salt bridges as the molecular-structural origin of dif-

ferences between the predominantly LID-opening pathway sampled by DIMS and the

relatively linear pathway sampled by FRODA. Notwithstanding the use of the Cα RMSD

effectively limited the resolution of the analyses to the backbone or residue level, the Haus-
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dorff pairs and nearest neighbor analyses could still resolve the salient molecular-structural

features.

It might have been anticipated that the sampling space accessible to a DIMS simulation

should be more limited in scope, relative to coarse-grained potentials, by the detailed

all-atom energetics of its force field and should, in principle, be a subset of the space

delimited by the purely stereochemical constraints in FRODA. However, no overlap between

the transition tubes sampled by DIMS and FRODA was observed in either the AdK or DT

ensembles, indicating that the overall extent of sampling can be substantially modulated by

the character of a given biasing scheme and, if applicable, any progress variables. In the

case of AdK transition ensembles, the Hausdorff pairs analysis revealed that the inclusion

of electrostatics, resulting in salt-bridge breaking in DIMS-MD, was sufficient to explain the

inclination toward a LID-opening pathway.

4.3 Case study 3: path-sampling methods and equilibrium MD

In studying conformational transitions using path-sampling methods rather than equi-

librium MD (EqMD), we are routinely interested in the extent to which a given transition

path is indistinguishable from an ensemble of unbiased transitions generated in equilibrium.

Long-time simulations using unbiased, equilibrium MD with modern all-atom force fields

can, in principle, be used to generate unbiased transition ensembles and calculate select

observables to a sufficient degree of precision [166], though such efforts are frustrated by

the sampling problem. However, with continual advancements in software and hardware,

relatively simple conformational transitions of small proteins, like apo-AdK, may soon

be amenable to such “gold-standard” equilibrium simulations. Using these systems as

de facto test beds, one could then employ a suitable metric to directly compare fast path-

sampling methods to gold-standard MD, thus allowing one to anticipate the performance

of a fast path-sampling approach when applied to more complicated transitions that are

otherwise inaccessible via equilibrium approaches. Special-purpose machines for fast

MD simulations, such as the Anton [6] and Anton 2 [311] supercomputers, have enabled
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millisecond-timescale simulations and may eventually be able to provide gold-standard

transitions.

To demonstrate the general idea, we used apo-AdK system as the basis for long-time

equilibrium simulations using the Anton supercomputer. In total, we consider 4 µs of

sampling starting from the 1ake closed state and 7.5 µs of sampling from the 4ake open state

(data not shown||). Transitions were only observed in the closed→ open direction in spite

of there being nearly 7.5 µs of simulation time starting from the open state. All four closed→

open runs, on the other hand, made appreciable progress toward the open state within the

first couple hundred nanoseconds. To get an idea of the time scales involved, the Cα RMSD

relative to the 4ake state was measured over the course of each simulation and a closed→

open transition was considered to have taken place once the RMSD from the open state

dropped below 1.5 Å. Runs 1 through 4 reached the 1.5 Å cutoff within 17 ns, 278 ns, 138 ns,

and 63 ns, respectively. These four trajectories were then truncated at their respectively

defined transition cutoff times to create “Anton transitions” which we examined using PSA,

angle-angle space projections, and 2D NCA alongside the original path-sampling methods

from the comparison in Section 4.1. We note again that, for consistency with the original

path-sampling methods comparison, only three runs (1, 3, and 4) were used; Run 3 was

specifically chosen for exclusion since it exhibited the largest fluctuations (occurring around

the 4ake open state) among the four simulations initiated at the closed state. This is an

interesting observation on its own, though we omit further discussion to keep the analyses

brief.

The heatmap-dendrogram comparison combining Anton transitions with the original

paths (Fig. 4.12) from the path-sampling methods comparison did not, apart from the Anton

transitions themselves, actually change the hierarchical clustering (Fig. 4.1) of the original

path-sampling methods when using the Ward linkage criterion. Several changes in the

clustering were observed when using the complete, average, and median linkage algorithms

||Sampling from the 4ake open state was primarily to check whether a spontaneous open→ closed transition
could be observed despite no such events having taken place.
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were used (data not shown), but the general patterns also did not change substantially. The

reason for similar clustering is sensible, because the Anton transitions were substantially

less similar to all other paths than the paths from any other methods were to non-Anton

paths—since the hierarchical clustering is performed agglomeratively, building up from the

most similar (smallest Fréchet distances) transitions to the least similar (greatest Fréchet

distances), the Anton transitions are clustered nearly last. Despite being dissimilar to

GOdMD based on the heatmap coloring (paricularly Run 3), the Anton cluster and GOdMD

cluster formed a cluster among themselves, though this only implies that the Anton cluster

(of three) is more similar to the GOdMD cluster than it is to the very large cluster composed

of all other methods, at least according to the Ward criterion.

In the angle-angle space projection (Fig. 4.13), Anton transitions unambiguously ex-

plored a LID-opening pathway. Given the evidently large region of angle-angle space that

they sampled, it is remarkable that the Anton transitions were considerably more similar to

one another (. 3.5 Å) than they were to nearly any other method (typically ≈ 4 Åto6 Å),

which is an indication that there are relevant structural relationships among the conformers

from Anton transitions that are not present in the other methods. Fig. 4.13 suggests that

relatively extensive sampling in the large basin surrounding the 4ake open region is partly

responsible for such differences, though it seems that those differences would also arise

among the Anton transitions as well. It is thus probable that the intermediate conformers

comprising the LID-open-NMP-closed metastable basin sampled by the Anton transitions

are primarily responsible for the observed differences between Anton transitions and fast

path-sampling methods. That Run 1, which appears qualitatively similar to GOdMD transi-

tions in angle-angle space, is also the most similar overall to other methods, and Run 4 to a

lesser degree. Run 3 extensively sampled a LID-open-NMP-closed metastable basin, clearly

delineating putative boundaries of such a state, and was the least similar to all methods

in PSA. All Anton transitions suggest the a LID-open-NMP-closed intermediate state to
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Figure 4.12: Path similarity analysis is used to compare three Anton closed→ open “transitions” for apo-AdK
with the path-sampling methods from Fig. 4.1. Method labels are unchanged from the original comparison.
Fréchet distances, δF, are in Å and correspond to a structural Cα RMSD in accordance with the RMSD point
metric. Smaller distances (lighter colors) correspond to greater similarity. The second Anton trajectory was
excluded to avoid obfuscating the comparison by otherwise relatively large Fréchet distances it generated
(refer to Fig. 4.13, the red conformers are scattered over a very broad region in the general vicinity of the open
4AKE:A state).

different degrees, with Run 4 being the least convincing, Run 3 being unequivocal, and

Runs 1 and 2 definitely consistent with such a metastable basin.

It should first be noted that the Anton trajectories rapidly moved away from the 1ake

state almost as soon as backbone restraints were released during equilibration (dashed lines

and stars in Fig. 4.13). It is clear that the relatively compact, originally substrate-bound

structure represented by 1ake played a role in the way in which EqMD trajectories tended to

move away from the closed state, especially since closed state simulations are initialized by

deleting the AP5A inhibitor coordinates from 1ake prior to minimization/relaxation/pro-

duction. Crystal contacts and other 1ake native contacts affected by the inhibitor are

90



NMP-CORE angle
40° 60°50° 70°

140°

110°

130°

150°

120°

LI
D

-C
O

R
E

 a
ng

le

40° 60°50° 70°

140°

110°

130°

150°

120°

A    Run 1 B    Run 2

D    Run 4C    Run 3

Figure 4.13: Projections of closed→ open transitions from four 1 µs equilibrium MD trajectories generated
with the Anton supercomputer—onto 2D NMP-CORE and LID-CORE angles (θNMP, θLID). The initial 1AKE:A
(final 4AKE:A) structures are shown as green circles (red diamonds). Stars indicate the location of conformers
at various stages of a multi-stage equilibration procedure (to achieve stable Anton runs); red (pink) stars
indicate the final (penultimate) stage prior to production (stars corresponding to earlier stages are mostly
obscured by green circles at the initial state). The forward temporal progress of each Anton transition is
encoded by a gradual change in color from dark blue (early times) to dark red (late times), with light colors
indicating intermediate times; successive conformers (circles) are separated by 240 ps. Transitions from the fast
path-sampling methods are included for comparison and de-emphasized for clarity (translucent gray). (A–D)
First through fourth Anton runs, respectively; the second run was excluded from Fig. 4.12.

possible causes of such behavior, which has been observed in a number of other EqMD

studies of AdK that used the CHARMM27/36 force field [257, 258]. Such behavior was also
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evident in NC space (Fig. 4.14), which showed Anton trajectories reaching the “V-shaped”

cusp (discussed in Section 4.1.3 in the original path-sampling methods comparison) be-

fore the proper production runs were initiated. Once reaching the region of NC space

roughly delineated by 87.5%–92.5% of 1ake contacts and 91%–95% of 4ake contacts, the

Anton trajectories did not progress closer to the 4ake state. Notably, they are occupied the

putative transition region sampled by MENM-SD/SP (and MAP, to a lesser extent) paths,

perhaps indicating that there are relevant structural commonalities that could be explored.

It is difficult to determine not only the relevance of the native state contacts from 1ake

given the aforementioned concerns about contacts arising from crystallization and/or the

AP5A inhibitor, but possibly also the relevance of 4ake native contacts, which remain ≈ 5%

different from all of the Anton trajectories, even when including the full 1 µs trajectories of

each transition (data not shown). In the future, a straightforward comparison among EqMD

simulations using different all-atom force field may help resolve the question of whether

such structural contacts are significantly force field-dependent and should be included in a

future study.

4.4 Conclusions and Recommendations

We have shown that path similarity analysis (PSA) and the components comprising it—

path metrics, hierarchical clustering-based heatmap-dendrogram approach, and Hausdorff

pairs analysis—can be used to quantitatively investigate conformational transition paths of

proteins. In the first study, path-sampling methods were compared and we verified that

PSA (via heatmap-dendrogram visualization) was, at minimum, consistent with the overall

picture provided by sensible collective variable projections, specifically AdK domain-angle

space and NC space. The visual presentation of the data facilitated the identification of

general patterns among the paths, their parent methods, and the underlying physical model

that produced them. The heatmap-dendrogram analysis was also robust against various

combinations of the path metrics and (clustering) linkage algorithms. The “trajectory

ensemble” is a useful statistical mechanical picture for conceptualizing the dynamics of

92



80 8085 85 9595

95

85

85

95

80

80

9090

90

90

100

100

100 100

Percentage of 1ake native contacts

P
er

ce
nt

ag
e 

of
 4

ak
e 

na
tiv

e 
co

nt
ac

ts

A Run 1 B Run 2

C Run 3 D Run 4

Figure 4.14: Native contacts analysis of closed→ open transitions—extracted from four 1 µs equilibrium MD
trajectories generated with the Anton supercomputer. Conformers are projected onto the 2D native contacts
space where abscissa (ordinate) corresponds to the percentage of contacts shared with the 1AKE:A initial (final
4AKE:A) state shown as a green circle (red diamond). Stars indicate the location of conformers at different
stages of an extensive equilibration procedure (to achieve stable runs on Anton); red (pink) indicates the final
(penultimate) stage prior to the production run (stars from backbone restrained equilibration during earlier
stages are mostly obscured by the green circles at the initial state). For production trajectories, each conformer
is represented by a colored circle, with 240 ps separating successive conformers. The forward progress of
each trajectory in time is encoded by a gradual change in color from dark blue (early times) to dark red (late
times) with light colors indicating intermediate times. For clarity, Anton transitions are plotted separately
(red/blue circles and lines) and transitions from the original comparison of fast path-sampling methods are
de-emphasized (translucent gray) for clarity. (A) First Anton run. (B) Second Anton run. (C) Third Anton run
(excluded from Fig. 4.12). (D) Fourth Anton run.

high-dimensional dynamical systems, including conformational transitions in proteins. As

such, we demonstrated that PSA is a viable means of analyzing hundreds of stochastic

trajectories having potentially hundreds or thousands of frames. In particular, this statistical
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approach combined with Hausdorff pair analysis revealed that the electrostatics modeled in

DIMS (but not FRODA) created the conditions for a force imbalance between the mobile LID

and NMP domains—caused by charge-charge interactions in several salt bridges connecting

the mobile domains—that induced a LID-opening pathway bias in DIMS simulations.

The methods and ensemble studies strongly support the idea that PSA would be a

good tool to assess the influence of a biasing protocol—as well as biasing strength and

progress variable selection—on the overall extent of (orthogonal) sampling. Though it was

not immediately obvious how one could go about tuning one path-sampling method so

as to emulate the sampling behavior of another method, we observed, for example, that

pulling the rTMD restraint potential with fast and slow speeds led to quantitatively (Fig. 4.1)

and qualitatively (Fig. 4.4) different behavior; quickly moving the restraint potential along

RMSD-to-target progress variable created paths resembling LinInt, while a slow pulling

speed produced paths comparable to dynamical methods like DIMS and MDdMD. In

general, stronger biasing potentials or fast-moving protocols should be expected to restrict

sampling to a narrower tube, while “soft” biasing approaches (e.g., soft-ratcheting) should

be less likely to discourage sampling orthogonal to the overall course of progress. Moreover,

the ensemble study suggests that it would be instructive to carefully examine how transition

pathways are transformed when specific aspects of a physical model are changed (e.g.,

electrostatic forces). In principle, one should be able to test whether adding realistic charge-

charge interactions in FRODA would be sufficient to generate DIMS-like LID-opening

pathways. To take an even deeper look at charge-charge and solvent-protein interactions,

one might adapt a version of the solvated dissipative ENM (sDENM) [76, 77] for the task of

generating transitions between two input states. By direct comparison with other ENM-

based path generating approaches, a two-state sDENM could allow that electrostatic effects

be isolated and quantified at the molecular-structural level using heatmap-dendrogram

analysis, Hausdorff pair analysis, and other integrative analyses.

A key objective in studying protein structure-function is to identify fast path-sampling

methods—and the physical models and sampling schemes therein—that consistently repro-
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duce (important aspects of) realistic conformational transitions. Eventually, quantitative

assessments of path-sampling accuracy will have to be devised so as to build confidence

in the various physical models and algorithms that have been discussed. As a first step

toward this goal, we extended the original methods comparison to include a preliminary

comparison with long-time equilibrium MD trajectories produced with the Anton super-

computer. “Anton transitions” generally favored a LID-opening pathway (Fig. 4.13), thus

recapitulating the distinguishing qualitative feature among the dynamical path-sampling

methods, and three transitions were consistent with an extant LID-open-NMP-closed in-

termediate state, with one simulation (Fig. 4.13C) unmistakably demarcating a region of

metastability. All of the original methods were, however, quantitatively more similar to

one another than to any of the equilibrium runs (Fig. 4.12), consistent with the very broad

extent of sampling evinced by the angle-angle projection (Fig. 4.13). Although precise con-

clusions about the performance of each method cannot yet be drawn from this comparison,

the mutual similarities among the Anton transitions indicate that there are quantifiable

structural patterns that distinguish them from the fast path-sampling methods.
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Chapter 5

COMPUTATIONAL INSIGHT INTO THE BOR1P TRANSPORT MECHANISM

This chapter is based on the published study, Nicolas Coudray, Sean L. Seyler, Ralph

Lasala, Zhening Zhang, Kathy M. Clark, Mark E. Dumont, Alexis Rohou, Oliver Beckstein,

and David L. Stokes (2017). Structure of the SLC4 transporter Bor1p in an inward-facing

conformation. Protein Science, 26: 130–145. [7] My contribution to this work was the design

of the protocol for generating an outward-facing model, execution of MD flexible fitting

(MDFF), performance of equilibrium MD simulations, and the assessment of structural

viability and the transport mechanism via the analysis of MDFF and MD simulation data.

5.1 Introduction

The family of SLC4 transporters is part of the Amino acid-Polyamine-organoCation

(APC) superfamily, which, next to the Major Facilitator Superfamily (MFS), is the second

largest superfamily of secondary transporters [312]. Members of the SLC4 family are solute-

carrying secondary active transporters that play important roles in pH homeostasis and, in

animals, acid-base transport in the kidney, stomach, pancreas, and other organs [313]. SLC4

transporters regulate the flux of bicarbonate (or a similar species) across a cell membrane

by coupling its transport to ions. In humans, the well-known anion exchanger 1 (AE1)

antiporter is essential to, among other things, the uptake of CO2 by red blood cells via the

electroneutral exchange of chloride and bicarbonate, which cannot otherwise permeate

the plasma membrane [313, 314]. Other SLC4 members are electrogenic (i.e., transport

net charge across a membrane), such as the sodium bicarbonate cotransporters (NBC) and

the boron transporter from yeast (Bor1p), the latter being the focus of this chapter. Bor1p

has been implicated in the transport of borate (BO3
-) and protons [315] and it has been

suggested that the closely homologous BOR1 boron exporter facilitates the tolerance of

yeast to boron [316], which is toxic in high concentrations. Boron has been known to be an
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essential micronutrient in plants (for instance, in maintaining the integrity of cell walls); in

animals, boron plays a role in the regulation of steroid hormone levels and the activity of

certain enzymes, and the recent discovery of the mammalian homolog NaBC1 by Park et al.

[317] has suggested that animals may also require detailed control of boron concentrations

[318].

Studies of the SLC4 transport mechanism have been limited by a lack of experimen-

tal structural data. However, the fold revealed by the X-ray crystal structure of AE1’s

membrane domain [319] bears a close resemblance to the uracil transporter UraA and uric

acid-xanthine permease UapA from the NCS2 family, as well as the fumarate transporter

SLC26Dg from the SLC26 family, all of which are members of the APC superfamily. In par-

ticular, the arrangement of transmembrane (TM) helices in AE1, UraA, UapA, and SLC26Dg

is characterized by 7 + 7 (referring to the TM helices) inverted structural repeats that mesh

to form a “gate” domain (often involved in dimerization and helping to anchor the protein

in the membrane) and a “core” domain (implicated in substrate binding and transport).

Fig. 5.1 depicts the secondary structure topology of the Bor1p homology model, which

delineates two inverted repeats (defined by the purple dashed boxes), gate domain helices

(dotted cylinders), and core domain helices (solid cylinders). Such structural congruence is

suggestive of a common transport mechanism, which has been hypothesized to involve

the relative movements of the gate and core domains [320–322]. There are two different

mechanistic pictures consistent with the alternating-access transport model [10], whereby

the stoichiometry of the transport cycle is preserved during the conformational transition

by alternatively exposing the binding site to the cytoplasm and periplasm.

The first picture—the so-called elevator mechanism—proposes that a core or transport

domain translocates vertically relative to both the membrane plane and the gate or scaffold

domain anchoring the protein in the bilayer. NapA [323], apical sodium-dependent bile

acid transporters (ASBT) [324], CitS [325], and GltPh transporters [326] have been shown

to involve large vertical movements of the core domain; though these transporters are not

themselves in the APC superfamily, they bear an analogous core/gate architecture that led
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Figure 5.1: Secondary structure of the homology model for Bor1p. Dashed boxes are drawn around the two
pseudo-symmetric, repeats, which have an inverted topology with respect to the membrane. Dotted helices
correspond to the gate domain and solid helices correspond to the core domain. [Reprinted from Coudray et al.
[7], Copyright © (2016), with permission from Wiley / Adapted from Fig. S4A.]

Alguel et al. [321] to propose that the elevator mechanism may extend to the NCS2 and

AE families. In the second picture—the rocking-bundle mechanism—the transport cycle

does not involve a significant vertical translocation of the substrate binding site relative

to the membrane, but rather a rigid-body pivoting motion of the core domain about the

binding site. The rocking-bundle picture describes the conformational motions of several

transporters from the APC superfamily, including Mhp1, BetP, AdiC, vSGLT, and LeuT [8,

9], which all share a 5 + 5 inverted repeat topology. Despite the similarity in the folds among

APC superfamily members, it is not known whether the rocking-bundle description can be

extended to the 7 + 7 topology of the NCS2, SLC26, and AE1 families, particularly because

their evolutionary relationship is not fully understood [312]. Additionally, given that AE1

has only been resolved in an outward-facing conformation, determining the nature of the

transport mechanism has been challenging.

To provide structural insight into the function of SLC4-like transporters, our collabora-

tors solved the structure of Bor1p from the yeast Saccharomyces mikatae in an inward-facing

conformation. Cryo-electron microscopy (cryo-EM) was used to generate an electron den-

sity map of helical crystals of membrane-bound protein at ∼ 6 Å resolution. We used

molecular dynamics flexible fitting (MDFF) to flexibly fit an atomistic homology model
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based on the AE1 structure into the density map, after which several MD simulations in an

explicit solvent/membrane environment were performed on the model to assess its stability

and study its dynamics. Water accessibility calculations suggest the structure represents an

inward-facing conformation. An outward-facing model of Bor1p was generated by using

MDFF to guide the structure into a pseudo-density map produced from the outward-facing

AE1 structure. Further MD simulations of the outward-facing Bor1p model did not exhibit

the large vertical shift expected of an elevator mechanism, but were instead more consistent

with the rocker-switch model that describes other members of the APC superfamily.

5.1.1 Structural determination and cryo-EM

The determination of 3D protein structures has been essential to our understanding

of how proteins work. X-ray crystallography has been one of the most successful tech-

niques, enabling the study of many macromolecules at near-atomic resolution (. 4 Å) when

crystallization is possible. Growing high quality crystals of a protein is a difficult task,

however, and one must account for structural artifacts or crystal contacts that may not

reflect physiological conformational states. In the challenging case of membrane proteins

whose native environment is a lipid bilayer, large portions of their hydrophobic surface

must be stabilized (often using detergents) to achieve crystallization, a process hindered

by the presence of detergents [327]. Solution nuclear magnetic resonance (NMR) can be

applied to aqueous solutions of proteins, though the approach is less suitable for membrane

proteins since good resolution requires the molecules to be reoriented rapidly in solution.

Solid-state NMR has been applied to study time-averaged conformations of membrane

proteins in a bilayer, but atomistic resolution remains a challenge.

Cryo-electron microscopy (cryo-EM) refers to a set of several subdisciplines—

cryo-electron tomography, single-particle cryo-electron microscopy, and electron

crystallography—that combine cryogenic freezing techniques with electron microscopy

[328]. Cryo-EM has the advantage over other microscopy techniques in that specimens

can be observed in native-like environments and has been used in many contexts for
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biological structure determination. By rapidly reducing a protein sample to cryogenic

temperatures using liquid ethane, the aqueous environment is vitrified without inducing

crystallization that not only can damage the sample but also create diffraction peaks that

obscure the signal [329]. In particular, cryo-EM is better suited than other methods to

characterize membrane proteins in a lipid bilayer and can reveal important lipid-protein

interactions in the transmembrane region of a protein [330, 331]. Single-particle cryo-EM

of detergent-solubilized membrane proteins leads to 3D electron density maps that, in

principle, represent equilibrium ensembles of one native-state conformations; a variety

of techniques can be used to process and cluster the structural ensembles to reconstruct

a 3D image. Lipid nanodiscs offer one means of mimicking a bilayer and avoiding the

problems with detergent-based techniques [332]. Electron crystallography, the approach

our collaborators used to generate EM density maps, can also be used to grow 2D arrays of

helical or tubular crystals of transmembrane proteins [330].

Using single-particle cryo-EM, de novo structure determination is possible at resolutions

below ∼ 3.5 Å, where side-chains can be resolved clearly. Though the best achievable

resolutions were typically limited to 4 Å . 7 Å, especially for larger macromolecules that

admit higher signal-to-noise ratios [333], recent advances in both electron detection and

image processing were sufficient to build the first de novo atomic structure using single-

particle cryo-EM [334], namely an icosahedral virus solved by X. Zhang et al. [335]. In the

case of electron crystallography, it is generally difficult to obtain ordered crystals, and the

achievable resolutions are typically insufficient to build atomic structural models de novo.

However, computational “fitting” methods can integrate moderate-resolution EM density

data, for instance, into MD flexible fitting (MDFF) simulations and be used to generate

plausible atomic structural models.

5.1.2 Molecular dynamics flexible fitting

Atomistic models of a protein can be taken directly from existing structures (perhaps

one or several conformations from X-ray crystallography) or they can be built through
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homology modeling techniques when such structures are unavailable. Flexible fitting meth-

ods, including MD, coarse-grained, and structure-based fitting approaches, are designed

to aid the refinement of such models—particularly when only medium-resolution density

data is available [336–342]. In the study described in this chapter, the molecular dynamics

flexible fitting (MDFF) approach is used, which accepts an EM map as input and defines a

global “fitting” force field that guides an MD simulation into higher density regions of the

EM map [336].

Where high-resolution data are available, MDFF variants such as cascade MDFF

(cMDFF) and resolution exchange MDFF (ReMDFF) can help to overcome difficulties

in fitting high resolution maps (sub-5 Å) that often contain sharp peaks and valleys where

structures can be trapped [343]. By combining several methods with different physical

models, consensus flexible fitting can be used to improve the confidence level of the global

and local features of a fit, offering an automated means to enhance the overall interpretation

of cryo-EM data [344, 345].

5.2 Methods

5.2.1 IF and OF Bor1p models from EM maps and MDFF

Starting with a homology model of Bor1p based on the AE1 atomic structure

(PDB 4yzf)—built by our collaborators using an online version of MODELLER

(https://toolkit.tuebingen.mpg.de/modeller) [346, 347]—MDFF was used to fit the

model into the experimental EM density maps (cf. Table 5.1). To generate the 3D density

maps, our collaborators first produced batches of helical Bor1p crystals and eventually

identified a promising batch having two populations of tubes with radii 164 Å (Type 1,

Fig. 5.2A) and 157 Å (Type 2) [7]. 3D reconstructions were then generated from these tubes

using either Fourier-Bessel reconstruction or iterative real-space refinement. From the

estimated 9–10 Å resolution of the Fourier-Bessel reconstruction (Fig. 5.2B), the architec-

ture of the TM helices was difficult to resolve, though the membrane boundaries were
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well-defined. In the real-space reconstruction implemented in the Frealix program [348],

the TM helices were clearly defined by the tubes of density spanning the full height of the

membrane (Fig. 5.2C–D). The maps from Fourier-Bessel and real-space reconstruction were

used to generate the inward-facing (resp. IF/1 and IF/2 for Fourier-Bessel and Frealix

real-space) models, respectively (see Table 5.1).

Table 5.1: Summary of models used in this study.

Name Start model Map Method

AE1 PDB 4yzf N/A Published X-ray structure

AE1-based homology AE1 N/A MODELLER using sequence
alignment for threading

IF/1
AE1-based homology
(manual manipulation
to match map)

Fourier-Bessel MDFF

IF/2 AE1-based homology Frealix, real-space MDFF
OF/1 IF/1 AE1 simulated density MDFF
OF/2 IF/2 AE1 simulated density MDFF

Using the colores tool in SITUS [350], each inward-facing model was initially placed

into the experimental density maps via rigid-body docking. The docked models and their

corresponding density maps were then used as inputs to molecular dynamics flexible fitting

(MDFF) calculations as implemented in VMD [351] and NAMD [352]. MDFF simulations

used the CHARMM27 force field [112, 139] to model atomic interactions in addition to the

global fitting forces derived from the density map. The protocol for each model closely

followed the recommended settings described in the tutorial (http://www.ks.uiuc.edu/

Training/Tutorials/science/mdff/tutorial_mdff-html/), which included constraints on

secondary structure, cis peptides, and chirality during the fitting process. Two MDFF steps

were performed for each model, the first of which being a Langevin dynamics simulation

performed in vacuo for 106 steps using a 1 fs timestep with the map-derived forces using a

scaling factor of 0.3; the second step involved a final energy minimization using a stronger

scaling factor of 2. Other scaling factors were tested, though the values recommended by

the tutorial produced satisfactory results.

To supplement our analyses, we generated outward-facing Bor1p models (Table 5.1,

OF/1 and OF/2) based on the outward-facing conformation of AE1 and the structural
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Figure 5.2: Fourier-Bessel (FB) and Frealix-based real-space reconstructions from Bor1p tubular crystals. (A)
3D reconstruction from Type 1 tubes showing the tubular morphology. The bilayer is visible as an almost
continuous density around the perimeter of the tube. The lack of extra-membranous domains in Bor1p means
that the surfaces of the tubes are relatively smooth, though a regular lattice is detect-able. One unit cell has been
outlined. The zoomed view of the outer surface depicts a top-down view of the Bor1p dimer extracted from
Type 1 tubes and is rotated 90° with respect to the structures depicted in B–D. (B) Fourier-Bessel reconstruction
of the Bor1p dimer as viewed along the membrane plane. The continuous densities at the top and bottom
correspond to the boundary of the membrane, with poorly resolved TM densities running in between. The
surface of the map has been colored according to estimates of local resolution as determined by ResMap [349].
(C) Overlay of independently determined Frealix maps from Type 1 and Type 2 tubes (blue and purple mesh),
showing the close correspondence between these structures. (D) Real-space map of the Bor1p dimer from Type
1 tubes viewed parallel to the membrane plane shows well resolved TM densities. The surface has been colored
according to the local resolution as determined by ResMap [349]. [Reprinted from Coudray et al. [7], Copyright
© (2016), with permission from Wiley / Adapted from Figs. 2 and 3.]

information of the EM maps from the MDFF-derived inward-facing models. The final

frames of the MD-equilibrated (after MDFF) inward-facing models served as starting

structures, where IF/1 (IF/2) was used as the starting point for OF/1 (OF/2). The docking

step was again performed with colores to place the IF/1 and IF/2 models into the density

maps prior to MDFF simulation. To build the OF/1 model, two simulated EM density

maps were first generated from the AE1 dimer at 7 Å and 15 Å resolution using the MDFF

plugin in VMD. Then, the IF/1 starting structure was run through a first round of MDFF

with Langevin dynamics to drive the structure into the lower resolution simulated map at

15 Å using 250 ps of simulation time and a scaling factor of 0.3; in the second step, MDFF
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with Langevin dynamics was performed again for 750 ps using the same scaling factor to

further fit the model to the higher resolution map (7 Å to match the Fourier-Bessel IF map

resolution); using an scaling factor of 2, a final energy minimization was performed as

was done to create the IF/1 model. The purpose of the additional MDFF step was to more

gently guide the initial IF/1 structure into the simulated map to avoid producing artifacts

(that could be caused by fitting a model of one protein, Bor1p, to a simulated map from

a homolog, AE1). Such artifacts did not arise as reversing the order of the target maps in

the first two MDFF Langevin dynamics steps produced comparable results. Thus, to create

the IF/2 model, we only performed one MDFF Langevin dynamics step by fitting to an

additional AE1-based simulated map at 6 Å (to match the Frealix IF map resolution) for

1 ns (again, using a scaling factor of 0.3) after which a final minimization (using a scaling

factor of 2) was performed.

5.2.2 Equilibration protocol for MD

CHARMM-GUI [353, 354] was used to embed the MDFF-derived models in a membrane

composed of a mixed 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE): 1-

palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer with a 4:1 ratio, which

approximates the E. coli lipids present in the tubular crystals, and generate input parameters

for Gromacs. Atomistic MD simulations were performed in explicit solvent and explicit

membrane using Gromacs 5.1 [355] using the all-atom CHARMM36 force field [356] and

CHARMM TIP3P water model. The systems contained between 127,995 and 169,563 atoms

in a hexagonal unit cell as described in Table 5.2. Leap-frog integration was used with a time

step of 2 fs. Production runs were performed at T = 310 K and P = 1 bar in the isobaric-

isothermal (NPT) ensemble using stochastic velocity rescaling thermostat [357] (with time

coupling constant (1 ps) and semi-isotropic Parrinello-Rahman barostat [358] with coupling

constant (5 ps). Verlet neighbor lists were updated every 20 time steps using a 1.2 nm

cutoff. Force-switching was used for Lennard-Jones potentials from 1.0 nm to the cutoff

at 1.2 nm. Electrostatic interactions had a real-space cutoff of 1.2 nm; the reciprocal space
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contribution was computed with the smoothed particle-mesh Ewald (SPME) method [359],

utilizing an FFT grid with 0.12 nm spacing and fourth-order spline interpolation. SETTLE

was used to constrain the TIP3P water molecules and covalently-bonded hydrogen atoms

were constrained using P-LINCS with fourth-order expansion and two LINCS iterations.

Given the sensitivity of lipids to non-bonded parameters, the above settings were matched

those used in [323] which were shown to reproduce the original CHARMM36 values from

[356].

Table 5.2: Summary of molecular dynamics simulations performed for this study.

Namea Conformation Mapb Atomsc Lipids Water Na/Cl a (Å) c (Å)
Timed

(ns)

IF/1.1 Inward-facing FBe 127,995 445 19,117 125/54 140.96 78.4 1100
IF/1.2 1100
IF/1.3 1100
IF/2.1 Inward-facing Frealix 153,914 480 26,058 154/74 145.25 89.25 433.5
IF/2.2 451.1
IF/2.3 162,339 480 28,861 162/82 145.25 94.25 433.3
IF/2.4 430.1
OF/1.1 Outward-facing FB 138,378 450 22,231 134/63 140.11 84.61 729.7
OF/1.2 MDFF 731.1
OF/1.3 AE1 146,010 450 24,763 140/69 140.11 89.61 702.1
OF/1.4 687.2
OF/2.1 Outward-facing FB 169,563 482 31,267 167/87 144.6 97.9 522.1
OF/2.2 MDFF 524.8
OF/2.3 AE1 512.1
a Numbers after the decimal indicate the repeat number. Models are summarized in Table 5.1.
b Summary of map and approach used to build the model serving as initial structures for MD simulation.
c System composition (number of atoms, lipids, water molecules, and ions as well as the a and c unit cell
parameters for the hexagonal simulation cells; values varied between simulations but were kept identical
for repeat simulations.
d The total equilibrium simulation time was 9.5 µs.
e Fourier-Bessel.

To achieve stable equilibrium MD simulations, a careful minimization and equilibra-

tion process was used to relax various components of the protein-membrane systems.

The default protocol for generated by the bilayer builder in CHARMM-GUI was used

as a rough template. Restraint definitions were initially identical to those suggested by

CHARMM-GUI: lipid phosphorus positions (1000 kJ mol−1 nm−2), lipid chain double-bond

dihedral angles (1000 kJ mol−1 nm−2), protein backbone positions (4000 kJ mol−1 nm−2),

and side chain carbon positions (2000 kJ mol−1 nm−2). Energy relaxation was carried out

with restraints using the steepest-descent method followed by conjugate-gradient mini-
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mization until the maximum force in the system fell below 500 kJ mol−1 nm−1. The first five

stages of equilibration were carried out at constant temperature, using the weak coupling

Berendsen thermostat with small time steps (1 fs), followed by further NPT equilibration,

using the Berendsen barostat with 2 fs time steps. By the sixth stage, all restraint forces had

been gradually reduced to zero over the previous equilibration steps, with the exception

of position restraints on the protein backbone (500 kJ mol−1 nm−2); a full 5 ns of protein

backbone-restrained equilibration using the stochastic velocity-rescaling thermostat and

Parrinello-Rahman barostat was performed to allow the bilayer to relax around the protein.

Two final equilibration steps were performed to gradually reduce the backbone restraints

to zero. Each production simulation was initialized from the final frame of restrained

equilibration, varying in length from 433 ns to 1100 ns for a total of 9.5 µs of sampling (cf.

Table 5.2).

5.2.3 Analysis of MD simulations

RMSDs, RMSFs, and water densities were computed for the MD simulation systems

using code based on MDAnalysis [272]. Most structural alignments and RMSD calculations

were restricted to the Cα atoms in TM helices and other secondary structure regions (i.e.,

loop regions were excluded). Secondary structure assignments from DSSP [360] were

collected with the Gromacs do_dssp tool [355] and subsequently processed with code

that utilized the GromacsWrapper package (https://doi.org/10.5281/zenodo.437705). The

degree of water molecule penetration in the models was evaluated from equilibrium MD

simulations by mapping the locations of water molecules to a 1 Å grid and histogramming

the water-oxygens using simulation frames sampled every 10 ps; to improve the water den-

sity sampling, intermediate conformers from the MD trajectories were superimposed onto

the TM helices of chain A (used as a reference structure for RMSD fitting). In some instances,

only the final half to a third of the trajectory was used for water density calculations to

ensure that the protein-membrane systems were sufficiently equilibrated. As a consistency
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check, we alternatively employed the HOLE program [361] to locate solvent-accessible

cavities within the static structures taken from the final steps of MDFF simulations.

To ascertain domain motions characteristic of a possible elevator-like transport mech-

anism, the distributions of the differences in core and gate domain positions relative to

the membrane horizontal were computed as described in previous work [323] and sum-

marized briefly here. Specifically, we calculated the centers-of-mass of the core and gate

domains—using only TM helices and excluding loops (to reduce noise due to their fluc-

tuating behavior)—relative to the z-position center-of-mass of the membrane for both the

IF/2 and OF/2 simulations (cf. Table 5.2) at each time step. Time series of the gate and core

z-displacements were obtained by first subsampling at 1 ns intervals* then applying a Gaus-

sian kernel density estimator to generate smooth distributions, f (z), of the z-coordinate

for each domain. Data from each chain (A and B) from all IF/2 and OF/2 simulations

were extracted independently and later combined to improve statistics. An effective total

of 3.50 µs of IF data (NIF = 2 chains/frame× 1748 frames at 1 ns subsampling) and 3.12 µs of

OF data (NOF = 2 chains/frame× 1559 frames at 1 ns subsampling) were used. The differ-

ence in domain displacements between inward-facing and outward-facing simulations,

f (ZOF − ZIF), were calculated by convolving the individual distributions to generate the

joint distributions. A rough estimate of the standard error of the mean for the joint differ-

ence distribution was calculated from σ
√

N−1
IF + N−1

OF , where σ is the standard deviation

of the distribution, and NIF (NOF) is the number of independent samples for the IF (OF)

simulations.

*The longest correlation time of the domain position data was estimated to be < 199 ps using a single exponential
fit to the autocorrelation function, so the intervals could be treated as independent samples.
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5.3 Results and Discussion

5.3.1 MDFF

Fig. 5.3A,B shows the final snapshots of MDFF simulations for both the Fourier-Bessel

and Frealix real-space [348] maps from which the IF/1 and IF/2 models (cf. Table 5.1) were

generated, respectively. A strong correspondence between the 14 TM helices and their

respective densities is evident, and the resulting cross-correlations over the course of MDFF

showed relatively fast convergence. Given the uncertainty of the membrane orientation

based on Fourier-Bessel reconstruction, we ran MDFF simulations with the starting model

in both orientations (after manually adjusting several helices to better match the densities)

and found that the cross-correlations did not indicate an unambiguous distinction. While

the cross-correlations from MDFF (Fig. 5.3C) using the real-space map also did not reflect

the sharper structural details that were clear from direct visual inspection, the real-space

reconstruction nevertheless allowed us to unequivocally determine the orientation of the

model in the bilayer, implying that the cross-correlation is not necessarily a reliable measure

of the validity of MDFF results. In particular, the density revealed the characteristic shape

of the M13-M14 hairpin on the side of each monomer, as well as the N-terminal helix

H1 on the cytoplasmic side of the membrane. From the density corresponding to the H4

surface helix (between M12 and M13), which is not reflected in the inverted-repeat (Fig. 5.1)

symmetry, we were also able to distinguish between the surface helices in M4-H2-M5 and

M11-H3-M12.

Though the CHARMM27 force field used in MDFF provides a reasonable model of

intramolecular forces, MDFF introduces an artificial map-derived fitting potential and

performs dynamics in vacuo; to more realistically evaluate protein-solvent interactions and

the dynamics, a proper solvent and membrane environment—matching the constitution

of the E. coli lipids used in the tubular cryo-EM crystals—is necessary. As such, using the

final structures of the MDFF simulations, the IF/1 (from MDFF with Fourier-Bessel map)
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Figure 5.3: MDFF fitting to Fourier-Bessel and real-space reconstructions. (A) MDFF model (IF/1) superim-
posed on the Fourier-Bessel reconstruction from Type 1 tubular crystals (see Supporting Information Movie 1
and 3). (B) MDFF model (IF/2) superimposed on real-space reconstruction from Type 1 crystals (see Supporting
Information Movies 2 and 4). (C) Cross-correlation coefficients showing the course of the MDFF fitting to both
Fourier-Bessel (light grey) and real-space maps (dark grey). The spike at the end of the latter reflects the final
energy minimization step with higher scaling factor. [Reprinted from Coudray et al. [7], Copyright © (2016),
with permission from Wiley.]

and IF/2 (from MDFF with real-space map) were evaluated in an all-atom explicit solvent,

explicit membrane environment using equilibrium MD and the CHARMM36 force field.

5.3.2 Structural stability and flexibility in equilibrium MD

Three MD simulations of the IF/1 model, each 1100 ns long (IF/1.1–IF/1.3 in Table 5.2),

exhibited significant structural relaxation, the Cα RMSD (relative to the final MDFF struc-

ture) exceeding 5 Å (data not shown) over the course of each run. The source of the large

overall Cα RMSD was reflected in the per-residue RMSF calculations (Fig. 5.5A), which

revealed large fluctuations in the loops regions between M5-M6, M6-M7, M7-M8, M8-M9,

M10-M11, and H4-M13. The Cα RMSD was thus recalculated among only secondary struc-

ture elements (i.e., non-loop regions), which included primarily the TM helices (M1-M13),

as well as the surface helices (H2-H4) and non-helical S1/S2 β-strand regions near the

putative substrate binding sites. The resulting RMSD timeseries ranged between 3 Å to
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5 Å, though it did not appear to converge after even 1 µs of equilibrium MD. The lack of

convergence notwithstanding, the IF/1 TM helices retained their α-helical character to a

reasonable degree (Fig. 5.6A).
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Figure 5.4: Structural drift during MD simulations as measured by RMSD relative to the starting frame. All
frames in the MD trajectory where superimposed on the initial frame by minimizing the RMSD of the Cα

atoms in all the TM helices. The RMSD of these atoms to the initial frame, which is close to the starting
model, was plotted as a function of simulated time. Bands show the 95% confidence interval of the data
around the mean (solid line) over short blocks of 10 ns duration. (A) Simulations the IF/1 model, based on the
inward-facing Fourier-Bessel-generated model. (B) Simulations the IF/2 model, based on the inward-facing
Frealix-generated model. (C) Simulations the OF/1 model, based on the outward-facing model generated
from IF/1. (D) Simulations of the OF/2 model, based on the outward-facing model generated from IF/2.
Separate lines for independent simulations and the two chains forming the dimer are shown. More information
about these simulations is contained in Table 2. These data suggest that IF/2 and OF/2 simulations are well
equilibrated, whereas IF/1 and OF/1 require longer simulations. [Adapted from Coudray et al. [7], Copyright
© (2016), with permission from Wiley.]

For the IF/2 model derived from MDFF on the Frealix real-space map, we performed

four MD simulations for at least 430 ns each (IF/2.1–IF/2.4 in Table 5.2). Despite shorter

simulations, the non-loop (secondary structure) Cα RMSD (Fig. 5.6C) showed reduced

structural drift ∼ 3 Å and improved convergence, while the TM helices were better pre-

served overall (Fig. 5.6B), even gaining additional helical turns in the case of H3, M12, and

M13. Interhelical loops still exhibited large fluctuations in the per-residue RMSF (Fig. 5.5C),

though the TM helices displayed remained comparatively stable in the explicit solvent-

membrane environment. Overall, the IF/2 model based on the real-space construction
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Figure 5.5: Fluctuation of residues during MD simulations of the model derived from the Fourier-Bessel and
real-space EM maps. The root mean square fluctuation (RMSF) for Cα atoms was computed after superposition
of all TM helices with RMSD fitting. Transmembrane helices and other secondary structure elements noted
in Fig. 5.1 are indicated as shaded regions. Data represent averages over equivalent simulations and over
both chains of the dimer, and are representative of at least two simulations from a given model. Heavy
lines correspond to the mean, whereas bands indicate an interval containing 95% of the data, as determined
by bootstrapping. (A) Data from inward-facing model based on Fourier-Bessel reconstruction (simulations
IF/1.1–IF/1.3, see Table 2). (B) Data from outward-facing model based on IF/1 and generated by MDFF (simu-
lations OF/1.3 and OF/1.4). (C) Data from inward-facing model based on Frealix reconstruction (simulations
IF/2.1 and IF/2.2, see Table II). (D) Data from outward-facing model based on IF/2 and generated by MDFF
(simulations OF/2.1–OF/2.3). [Adapted from Coudray et al. [7], Copyright © (2016), with permission from
Wiley.]

retained secondary structures better than IF/1 throughout the simulations, especially in the

β-strand geometry of the S1 and S2 regions near the binding sites (Fig. 5.6A,C).

In the case of the OF/1 model, the secondary structure Cα RMSD did not appear to

converge over the course of the four & 700 ns MD simulations, approaching 5 Å much like

the IF/1 simulations. Similarly, the per-residue RMSF (Fig. 5.5B) and secondary structure

profile from DSSP (Fig. 5.6B) of the OF/1 simulations were similar in magnitude and

structure to the IF/1 simulations, especially in the lack of helical structure in the M11 and

H3 helices and β-strand geometry in the S1 and S2 regions. On the other hand, OF/2

simulations appeared well-converged, with RMSDs remaining . 3.5 Å (Fig. 5.4D) over the

course of three ∼ 500 ns runs. OF/2 simulations also had a similar RMSF profile to IF/2

(Fig. 5.5C,D), both displaying reduced overall fluctuations across the interhelical loops,
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Figure 5.6: Probability of observing secondary structure during MD simulations. The secondary structure was
assigned to each residue with DSSP for trajectory frames sampled every 0.1 ns and the probability calculated as
the number of frames with the observed secondary structure divided by the total number of frames. Data were
averaged over all chains and repeat simulations. (A) IF/1 model (Fourier-Bessel model), average of simulations
IF/1.1, IF/1.2, and IF/1.3. (C) OF/1 model, average over OF/1.1 and OF/1.2. (C) IF/2 model (Frealix), average
of simulations IF/2.1 and IF/2.2. (D) OF/2 model, average over OF/2.1, OF/2.2, and OF/2.3. [Adapted from
Coudray et al. [7], Copyright © (2016), with permission from Wiley.]

while the DSSP profile indicated much greater stability in the S1 and S2 β-strand regions

as well as the H3 and M11-H4 surface helix regions (Fig. 5.6C,D). The consistency of these

analyses indicates not only that the (IF/2-based) OF/2 model retained the structural features

of the Frealix real-space reconstruction and was of comparable quality to IF/2, but also that

the real-space models were of superior quality as compared to the Fourier-Bessel-based

IF/1 and OF/1 models.
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5.3.3 Water accessibility analysis

In order to assess solvent accessibility, we computed water densities by mapping the

locations of water molecules to a grid and also searched for cavities in the PDB models

using the HOLE program; both approaches produced consistent results across the four

models. As mentioned in Section 5.2, the water density calculations for chains A and B

were consolidated by fitting chain B onto chain A using the non-loop Cα RMSD. Fig. 5.7A,C

indicates the presence of intracellular funnels with higher-than-bulk density between

the gate and core domains of the IF/1 and IF/2 models. Although there also appeared

to be a funnel in the water densities on the periplasmic side, HOLE detected a deeper

water-accessible cavity on the cytoplasmic side (Fig. 5.8A,C); however, a continuous water

pathway was not visible from either method, indicating that IF/1 and IF/2 both represent

inward-facing conformations.

Water densities from the OF/1 and OF/2 simulations were somewhat more ambiguous,

exhibiting what appeared to be water-accessible funnels on both the intracellular and

extracellular sides (Fig. 5.7B,D). Although OF/1 had somewhat higher densities than OF/2

in the extracellular region, a continuous water pathway through the protein was visible,

symptomatic of the lower quality of the OF/1 model. In the case of OF/2, the cavity

found by HOLE (Fig. 5.8D) was in agreement with the clear intracellular funnel in the AE1

structure (Fig. 5.8B). HOLE also also revealed (Fig. 5.8D) that water accessibility on the

intracellular side of OF/2 was not as well-defined as in the IF/2 model. Taken together,

the presence of intracellular and extracellular solvent-accessible cavities in the IF/2 and

OF/2 models, respectively, along with the absence of continuous water pathways in both

models, is fully compatible with the alternating access model for secondary transporters.

Our analyses further support that the Bor1p EM density represents an inward-facing

conformation rather than an outward-facing state as in the AE1 X-ray structure [319]. It

should be noted, however, that both structures were solved in ligand-bound states (DIDS

in AE1 and borate in Bor1p), which generally induces a partial closure of the binding site
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Figure 5.7: Maps of the density of water molecules during equilibrium MD simulations of Bor1p models
measured relative to the bulk density of water. (A) Water density from MD simulations of IF/1, showing
accessibility to the interior of the model from the cytoplasmic side (“IN”) of the membrane. This map represents
simulations IF/1.1 and IF/1.2 for which data from chains A and B were averaged over the second half of the
trajectories. (B) Water density from MD simulations of the OF/1 model from the periplasmic side (“OUT”) of
the membrane determined from the last ∼ 270 ns of simulations OF/1.1 and OF/1.2 from both chains A and B.
(C) Water density from MD simulations of the inward facing model of Bor1p (last ∼ 100 ns from simulations
IF/2.1 and IF/2.2). White arrows indicate the entrance to the funnel. (D) Water density from MD simulations
of the OF/2 as determined from the full simulations OF/2.1, OF/2.2, and OF/2.3 from both chains A and B.
The density is measured relative to bulk water density at ambient conditions with the color code shown to the
left. Transmembrane helices for gate and core domains are colored similar to panel A. [Adapted from Coudray
et al. [7], Copyright © (2016), with permission from Wiley.]

more typical of an occluded state. Indeed, it is possible that the core domain may undergo

larger rocking motions than the ∼ 10° rotation seen by direct comparison of the AE1 and

Bor1p structures.

5.3.4 Domain movement and transport

By tracking the core and gate domain centers-of-mass during MD simulations of the IF/2

and OF/2 models, we were able to assess the putative domain movements that are likely

to occur during an inward-facing to outward-facing transition. Adopting the membrane

plane as a frame of reference, the z-positions of the domains fluctuated between 4 Å to 6 Å
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Figure 5.8: Solvent accessibility of Bor1p models as determined by HOLE [361]. (A) Water accessibility
for the IF/1 model as determined by HOLE. The surface of a water accessible cavity is shown with colors
indicating its diameter at each point along a putative pore: blue when radius is twice the minimum for a single
water molecule, green when there is room for a single water molecule, red when the cavity is too narrow for
water molecules. (B) Water accessibility for the AE1 X-ray structure (PDB 4yzf) determined by HOLE after
removing the DIDS ligand from the structure. The large funnel from the extracellular side of the membrane
is consistent with the outward-facing state. (C) Solvent accessible surface for inward-facing model of Bor1p
(IF/2) determined by HOLE. In this case, the gate domain is light blue and the core domain is orange. (D)
Solvent accessible surface for outward-facing model of Bor1p (OF/2) as determined by HOLE, which shows a
funnel leading to the extracellular side of the membrane. The surface is colored blue (pore radius R > 2.3 Å),
green (1.15 Å ≤ R ≤ 2.3 Å) or red (R ≤ 1.15 Å) depending on the width of the channel at each point. The gate
domain is colored blue and the core domain red. [Adapted from Coudray et al. [7], Copyright © (2016), with
permission from Wiley.]

about well-defined equilibrium positions (Fig. 5.9A,B). The equilibrium positions varied

by conformation and in general can depend on protein-membrane interactions, as seen

previously for the elevator-type NapA transporter [323]. In Fig. 5.9C, relative domain

movements—calculated from the difference of position distributions between the inward-

and outward-facing states after aggregating all simulation data over chains A and B—were

very small, with mean shifts (and standard errors) of (−0.6± 0.0)Å and (−0.2± 0.0)Å for

the gate and core domain, respectively.

As an elevator-like transport mechanism would require a large translocation of a domain

across the membrane (≥ 6 Å), such small shifts are more consistent with a rocking-bundle
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Figure 5.9: Domain shifts between inward-facing (IF) and outward-facing (OF) conformations of Bor1p
calculated from core/gate domain z-displacements. (A) Representative time series (left) and histogram (right)
of domain displacements of the OF/2.2 MD simulation (chain A) showing the the center of mass z-displacements
of the core/gate (orange/blue) domain relative to the instantaneous center of mass of the lipid membrane.
(B) Analogous data from chain A of the IF/2.2 simulation. (C) Overlay of IF and OF conformations; the
gate domains (blue) are closely aligned, whereas the core domains of the IF/OF conformations (red/orange)
show different inclinations without any noticeable vertical displacement. (D) Schematic illustration of the
proposed (core) tilting during interconversion between IF and OF conformations. (E) Distribution of differences
of gate/core displacements between IF and OF simulations (aggregated over both chains and all IF/2 and
OF/2 MD runs). Both the core and gate shift by less than 1 Å relative to the membrane between IF and OF
conformations and even less relative to each other. [Adapted from Coudray et al. [7], Copyright © (2016), with
permission from Wiley / Adapted from Figs. 7 and S9.]

mechanism. The correspondence of the folds among SLC4 transporters and other members

of the APC superfamily—several of which having solved structures for multiple states—

provides insight into the putatively related conformational changes underlying the transport

mechanism [8, 9]. In particular, several members of the APC superfamily, including the

well-studied Mhp1, vSGLT and AdiC transporters (characterized by a 5 + 5 TM fold),

exhibit shifts involving rocking-bundle motions of the substrate-binding (core) domain

about to the opposing scaffold (gate) domain, similar to the rigid-body domain-rocking

of both Bor1p and AE1. Indeed, APC superfamily transporters are generally presumed to

operate by a rocking-bundle transport mechanism [9], which is consistent with our analysis

of Bor1p domain motions based on equilibrium MD simulations (Fig. 5.9). In the case of
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UraA, UapA, and SLC16Dg, superposing their gate domains on the outward-facing AE1

structure suggests that a displacement of the TMs 1, 3, 8, and 10 in the core domain of up to

10 Å is possible [321]. Identifying the transport mechanism is nevertheless difficult because,

despite sharing the 7 + 7 inverted repeat topology of AE1 and Bor1p, their folds exhibit a

different helix organization in the gate domain and their structures have only been solved

in inward-facing conformations, making their alignment to AE1 is rather imprecise (as

compared to Bor1p) [7]. Currently, the core domain translations that would be necessary for

elevator-like transport in UraA, UapA, and SLC16Dg have yet to be directly observed, and

our results support the notion that APC superfamily generally operate by a rocking-bundle

transport mechanism.

5.4 Conclusions

An inward-facing structure of Bor1p from yeast was solved at 6 Å resolution within a

reconstituted lipid membrane using cryo-EM. The arrangement of well-resolved TM helices

in the cryo-EM map allowed the construction of a high fidelity homology model based

on the atomistic outward-facing structure of AE1, a homologous SLC4 transporter with

which Bor1p shares a 23% sequence identity. At this resolution, surface loops tend to be

poorly defined, though the orientations of TM and several surface helices was sufficient

to unambiguously determine the inward-facing orientation of Bor1p in the membrane.

Two different types of tubular crystals were used to produce two completely independent

EM density maps, after which MDFF was used to refine and prepare the structures for

all-atom equilibrium MD simulations with an explicit membrane and solvent. Both MDFF-

refined models had essentially the same α-helix orientations. Over the course of multiple

microseconds of equilibrium simulation, substantial flexibility was observed in the loop

regions; the TM helices and structural core of the model, however, remained sufficiently

stable and well-defined throughout, thus retaining the substantial conformational difference

between the Bor1p EM density and the outward-facing AE1 structure.

Recently, the structure of Bor1 was solved in an inward-facing conformation in the
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absence of a bound ligand by X-ray crystallography and has been suggested to operate by

an elevator-like mechanism [362]. As a bound substrate can trigger a shift to an occluded-

like state, it is possible that the larger domain shifts necessary for an elevator mechanism

would be evident in structures without bound ligands. Thurtle-Schmidt and Stroud [362]

did not, however, simulate the equilibrium dynamics of the Bor1 structure and, without

such dynamical information, it is difficult to draw conclusions about the conformational

changes involved. In the absence of a bound ligand, AE1 and Bor1p are likely to adopt

conformations that differ from the somewhat occluded states observed thus far. However,

our results based on multi-microsecond equilibrium MD simulations are consistent with

the rocking-bundle model, and so it remains to be determined whether an elevator-like

mechanism describes SLC4 transporters and other members of the APC superfamily.

Given the wide range of dynamical time scales involved in secondary transport com-

bined with the complexity of the solvent-bilayer environment, ascertaining the confor-

mational motions involved remains a serious challenge to both experimental and com-

putational approaches. Although the rapid, continuous improvement of cryo-EM-based

imaging techniques has already enabled new insights into the equilibrium ensembles of

transporters in a native-like environment, we anticipate that computational methods like

flexible fitting and atomistic equilibrium MD simulations will become increasingly impor-

tant rather than secondary to experiment. For instance, generating and examining plausible

conformational transition paths will become an increasingly viable approach to studying

transporters as the number of transporters solved in multiple conformations inevitably

grows. Not only will such methods continue to provide intuition that can help interpret and

guide experiments, atomistic simulations remain the only viable approach to accessing the

dynamics involved in transport with atomistic spatiotemporal detail. Thus, the confluence

of rapidly improving experimental and computational approaches will likely provide the

greatest opportunity for insight.
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Chapter 6

DEVELOPMENT OF A HYBRID ATOMISTIC-CONTINUUM METHOD

Recently, there has been growing interest in multiphysics simulation in which two

or more disparate physical models are integrated into a unified numerical method that

balances accuracy and efficiency [363]. One example is the hybrid atomistic-continuum (HAC)

method, which applies an atomistic numerical method (e.g., MD or Monte Carlo [MC]

[101]) to a restricted subdomain requiring atomistic resolution (e.g., an atomistic model

of a protein or other solute) while using a relatively frugal fluctuating hydrodynamics

(FHD) model to replaces some, or all, of the solvent [363–365]. By avoiding a fully explicit

solvent representation whose water-water interactions would otherwise comprise most of

the computational expense in explicit solvation MD, HAC approaches have the potential

to capture crucial features of solute-solvent interactions and extend the reach of atomistic

simulations to longer timescales. The research project described in this chapter—the

development of a hybrid atomistic-continuum numerical simulation method with a view

toward biomacromolecular simulation—was carried out for the 2016 Blue Waters Graduate

Fellowship (BWGF) and was composed of two phases: (1) development of a custom FHD

code for modeling dense fluids (i.e., aqueous solutions) based on the Landau-Lifschitz

Navier-Stokes (LLNS) equations [366], a system of stochastic hydrodynamic equations—

describing mass, momentum, and energy transport—subject to thermal fluctuations in

the viscous stress tensor and heat flux vector; (2) design and implementation of a viable

hybrid simulation code combining the FHD model developed in phase one with a flexible,

open-source MD engine suitable for biomolecular simulation (e.g., LAMMPS [367], NAMD

[352], OpenMM [164], or GROMACS [355]).

Though the implementation of a full HAC method was not expected to be achieved

within a year-long timeframe, there were a number of tangible outcomes at the culmination

of the BWGF. A novel FHD model and viable numerical solver was derived from a Fortran
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90 code called PERSEUS, a numerical model of the eXtended MagnetoHydroDynamics

(XMHD) equations for high-energy-density plasma simulation [368]. The PERSEUS-derived

hydrodynamics code has been named HERMESHD (Hyperbolic Equations and Relaxation

Model for Extended Systems of HydroDynamics) to distinguish it from original PERSEUS

code. The HERMESHD code organically developed from a basic implementation of the

LLNS system into fully fledged extension of LLNS designed to better capture physics

expected to arise at the nanoscale; in addition, a Python-based interface was developed

for the Fortran-based HERMESHD code that allowed FHD simulations to not only be

executed from a Python environment, but also integrated with the Python interface to

LAMMPS to implement a proof-of-concept HAC method. The HERMESHD model and

numerical code are detailed in Section 6.2. Perhaps the most valuable outcome of the

project was a deeper intuition of hydrodynamic effects at the nanoscale in dense fluids and,

more generally, the relationship between atomistic and continuum perspectives (i.e., the

continuum limit). This chapter begins by briefly summarizing the history of the PERSEUS

numerical code and motivates the purpose of HERMESHD in going beyond the LLNS

formulation. recapitulates important project milestones and an in-depth discussion of

essential theoretical and numerical aspects of the HERMESHD model, including several

detailed derivations. A rough road map is given that serves to motivate future investigation.

6.1 Motivation

Proteins (and other biological macromolecules) largely exist in ionic aqueous conditions

and, in the case of membrane proteins, a phospolipid bilayer. Restricting attention to the

case of globular proteins like enzymes, for simplicity, explicit solvent all-atom EqMD (using

the molecular mechanics approach) arguably remains the most robust method equilibrium

simulation method that can capture solute-solvent interactions with atomistic detail [369].

At the cost of reduced detail and, presumably, some degree of accuracy, an implicit solvent

model can be used in lieu of explicit representations of the water molecules, which would
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otherwise be specified by a water model [370–372]. Implicit solvent models* are typically

static continuum representations that attempt to capture the mean influence of the solvent

on the solute and can accelerate simulations by up to one or two orders of magnitude,

depending on the physical process being studied [378].

To generate constant-temperature dynamics for equilibrium implicit solvent simula-

tions, particles are typically driven by Langevin dynamics—a dynamical model balancing

viscous dissipation and stochastic forcing—to account for the eliminated solvent degrees of

freedom and thus simulate an idealized heat bath. When correctly implemented, Langevin

dynamics can offer an effective means of temperature control and equilibrium sampling in

the absence of a solvent [379, 380], though care must be taken in making judgements about

nonequilibrium processes since larger-scale motions tend to be overdamped compared

to EqMD [381, 382]. Given the limitations of implicit solvents (e.g., static representation,

secondary structure biases, poor reproduction of synthetic FRET diagnostics [383–386]) and

Langevin dynamics (e.g., linear model restricted to a local equilibrium assumption, damp-

ing of larger-scale motions [381, 382]), a sensible approach may be to augment the static

continuum model with one that captures nonlinear flows and the resultant correlations

arising from hydrodynamic effects.

The extent to which hydrodynamics and hydrodynamic fluxes are important in de-

scribing such processes are subtle. As the small length and velocity scales encountered

in biomacromolecular systems place the dynamics well into the Stokes regime, where

the Reynolds number, Re, falls well below unity, diffusive dynamics would seem to be

dominant. However, it has been known for some time that inertial forces can be dominated

by solute-solvent coupling at small scales, as evidenced by observations of “long-time tails”

(i.e., power-law decay) in the velocity autocorrelation function [387–389], as well as solvent

influences the slow internal dynamics of proteins suggested by the comparison of MD

*More specifically, implicit solvent models estimate the solvation free energy from either geometric properties
of the solute, like the solvent-exposed surface area (SASA), or using a continuum electrostatics approach and
solving the Poisson-Boltzmann equation [373] (or the linearized Generalized Born [GB] theory) to calculate the
electrostatic solvation free energy [369, 374–377].
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simulations of solvated and unsolvated lysozyme [390].; for short-time velocity fluctuations,

such coupling can also overshadow steady-state Stokes damping and necessitate the inclu-

sion of hydrodynamic interactions in Brownian dynamics [389]. Indeed, the assumption of

Stokes damping is only valid for flows that have relaxed to steady, constant-velocity motion

and does not account for the energy of the fluid set in motion by the acceleration of an

immersed particle—the memory of a particle’s acceleration retained by the vorticity field

of a viscous fluid [391, 392]. For an accelerating spherical particle under the assumption

of creeping flow, additional terms are required to account for differences in its velocity

and that of the surrounding fluid, leading to a transient hydrodynamic force known as the

Boussinesq-Basset force [393, 394]. In particular, one study found that thermal motions of

DNA are significantly affected by inertial effects, particularly with respect to configurational

transitions in equilibrium [395].

6.1.1 The hybrid atomistic-continuum approach

Multiphysics simulation approaches can provide a compromise between explicit and

implicit solvent representations in terms of accuracy and efficiency, helping to extend the

accessible spatiotemporal scales [364]. The hybrid atomistic-continuum (HAC) method

can be used to replace most of the solvent in MD simulations with a relatively frugal

fluctuating hydrodynamics (FHD) model that retains much of the solute-solvent physics; in

the subdomain containing, say, a protein, an all-atom force field can be used to capture the

heterogeneities in its structure. The separate atomistic and hydrodynamic codes must also

have some sort of overlap region where the simulations can exchange boundary conditions;

the question of how this should be handled is nontrivial and is a topic of intensive research

[363, 365, 396].

HAC methods have already become valuable tools to study microelectromechanical

systems (MEMS) such as microfluidic devices [397, 398], polymer melts and shear flows

[399, 400], and macromolecular dynamics (e.g., enzyme dynamics or molecular motors)

[401–403]. The simplest HAC methods employ Brownian dynamics, though such models
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are incapable of reproducing many effects† seen in experiment and all-atom simulations,

prompting a need to incorporate hydrodynamic effects [388, 402, 404]. The basic idea

is conveyed in Fig. 6.1, which schematically shows one possible scheme for hybridizing

particle-based (orange lines, boxes) and continuum-based (purple lines, boxes) numerical

codes using a top-level driver or umbrella program that facilitates communication and

manages data between two independent codes. In Section 6.3, we revisit Fig. 6.1 in greater

detail as it pertains to the HAC method that was developed for the BWGF project.

6.1.2 LLNS and beyond

To construct a proper HAC method for protein simulation, where length scales are on

the order of nanometers, it is necessary to augment the Navier-Stokes (NS) equations—a

macroscopic hydrodynamic model—with the effects of thermal fluctuations [402, 405, 406].

This procedure was first explored by Landau and Lifschitz [366], where stochastic hydro-

dynamic equations describing mass, momentum, and energy transport were obtained by

incorporating fluctuations in the viscous stress tensor and heat flux vector with correlations

obeying linear fluctuation-dissipation [366, 407, 408]. This fluctuating hydrodynamics

model, commonly known as the Landau-Lifschitz Navier-Stokes (LLNS), contains the fa-

miliar linear constitutive relations of the macroscopic Navier-Stokes system: Newton’s law

of viscosity (stress is proportional to velocity gradients) and Fourier’s law (heat flux is pro-

portional to the temperature gradient). Hydrodynamic timescales in the Landau-Lifschitz

hydrodynamic theory are assumed to be “long” compared to the microscopic mean colli-

sion time, which leads to Gaussian white noise fluctuating terms that are spatiotemporally

uncorrelated.

Intuitively, it can be seen that LLNS will have a limited domain of applicability as

the nanoscale is approached: if one substitutes the aforementioned constitutive relations

†Brownian dynamics implicitly assumes a large timescale separation between momentum and configurational
degrees of freedom—i.e., a separation between the molecular (kinetic) collision timescale and the hydrodynamic
timescale—that predicts exponential relaxation in the velocity autocorrelation function [Muser2013].
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LAMMPS HERMESHDHAC driver

Figure 6.1: A schematic depiction of a hybrid time step involving the coupling of HERMESHD to an MD code,
such as LAMMPS, via a HAC driver/umbrella code. The Pythonic HAC driver runs a hybrid simulation by
communicating with and managing the exchange of data between MD (LAMMPS) & FHD (HERMESHD);
atomistic and field (fluid) data in the reservoir region (buffer, B) is extracted and sent by respective codes to
HAC driver for exchange. [Image of FH–B–MD schematic (with fluid cells and overlapping MD particles)
from Rafael Delgado Buscalioni, Hybrid MD setup: Molecular Dynamics coupled to Fluctuating Hydrodynamics;
downloaded from http://www.uam.es/personal_pdi/ciencias/rdelgado/setupnew.jpg on November 2017.]

into the momentum and energy equations, it can be seen that the resulting LLNS system

contains second-order spatial derivatives, making the LLNS system semi-parabolic. In

particular, the NS and LLNS contain parabolic laws of heat conduction and shear diffusion,

leading to a paradox in which localized perturbations in temperature and shear velocity

spread instantaneously throughout the entire spatial domain [409, 410]. Such a situation is

not usually a problem for many physical systems encountered by physicists and engineers;

however, when modeling mesoscale or nanoscale phenomena such as those involved in
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protein dynamics, transport speeds should be expected to appear finite and, possibly,

comparable to other characteristic physical scales.

Though LLNS has proven a powerful approach to modeling many nanoflows, aforemen-

tioned assumptions are expected to break down for dense fluids, especially as simulation

grid cells approach nanometer dimensions (i.e., a water molecule and hydrodynamic

timescales of interest become comparable to collision times. The main scaling parameter

quantifying this breakdown is the Knudsen number,

Kn = λ/L, (6.1)

which is the ratio of the mean free path, λ, to a characteristic length scale, L (i.e., the

dimension of a simulation grid cell); Navier-Stokes is valid in the limit Kn � 1, though

it will begin to fail as a description of certain processes as Kn approaches unity [411–413].

Indeed, the mean free path of liquid water is comparable to the length scales of interest,

implying that LLNS may be an inadequate hydrodynamic description for HAC applications.

In extending the NS and LLNS equations in the subsequent section, it will be useful

to keep ideas from kinetic theory in view, namely that the hydrodynamic equations can

be interpreted as statistical moments in the velocity distribution of the Boltzmann transport

equation [414–416]. In particular, the five hydrodynamic equations for (scalar) mass, (vector)

momentum, and (scalar) energy transport in NS/LLNS can be derived from kinetic theory

by taking, respectively, the zeroth, first, and second statistical moments over the velocities

of the Boltzmann transport equation (BTE). Thus, higher-order (in a sense) systems of

hydrodynamic systems can be constructed by taking higher-order statistical velocity mo-

ments of the BTE. A relatively well known example is the 13-moment approach pioneered

by Grad [417], which includes (beyond the five Navier-Stokes equations) five additional

equations describing viscous stress transport (i.e., off-diagonal tensorial components from

the second velocity moment, apart from the scalar energy) and three further equations for

the transport of heat flux (taking the third moment) [413, 417, 418]. Grad’s classical moment

equations have the property of hyperbolicity (at least, in the near-equilibrium regime), which
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guarantees finite speeds of propagation [409, 419–421]. Grad’s approach is not unique, and

the 13-moment equations (G13, for brevity) have been obtained through other techniques,

such as the Chapman-Enskog expansion [413, 422–424].

6.2 From the Euler equations to HERMESHD

The first phase of development was focused on constructing a viable approach to

incorporating a fluctuating hydrodynamics model within the existing structure of PERSEUS

(Physics of the Extended-mhd Relaxation System using an Efficient Upwind Scheme), a

numerical 3D finite-volume method (FVM) designed to model dense Z-pinch experiments

generating plasmas whose energy and density scales span many order of magnitude

[368]. PERSEUS formulates the extended magnetohydrodynamics (XMHD) model—closely

related to two-fluid formulations based on the generalized Ohm’s law (GOL) [425–427]—as

a hyperbolic relaxation model to capture Hall physics and other beyond-MHD effects using

time steps much larger than otherwise demanded by the high frequency dynamics. The

original FVM-based PERSEUS was subsequently upgraded to a discontinuous Galerkin

(DG) spatial discretization that further improved accuracy and efficiency for high-energy-

density (HED) plasma applications [428] and has been applied to the study of shock

structures in supersonic plasma flows past an obstacle [429].

The DG implementation solves the governing transport equations in conservation form

(as with the original finite-volume formulation), several advantages of which include shock

capturing and higher overall accuracy in calculating the conserved quantities. PERSEUS is

already capable of solving the inviscid, compressible Euler equations used in MHD, but the

need to model dense fluids necessitated a means to incorporate both viscous forces and

thermal transport. The well-known Navier-Stokes equations differ from the Euler equations

primarily by the addition of a term containing a viscous stress tensor (sometimes called

the Cauchy stress tensor in continuum mechanics), the form of which is specified through

a constitutive relation—namely, Newton’s law of viscosity—relating the gradients of the

fluid velocity to the stress components [430]. When diffusive heat transport is relevant, the
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Navier-Stokes system can be supplemented with Fourier’s law of heat conduction, leading

to the Navier-Stokes-Fourier equations. Starting from the Euler equations, the Navier-

Stokes equations are derived, followed by a description of how viscosity and heat flux (resp.

momentum and heat transport) are managed by HERMESHD. Finally, a numerical “trick”

of sorts—constructing a so-called hyperbolic relaxation system—will be used to derive the

hydrodynamic equations in HERMESHD (cf. S. Jin, Pareschi, and Slemrod [431]).

6.2.1 The Euler equations

The Euler equations describe the flow of an inviscid, compressible, adiabatic fluid

(i.e., an ideal fluid), and take the form of five conservation-type equations representing,

respectively, the conservation of mass, vector momentum, and energy,

∂tρ +∇ · (ρu) = 0 (6.2a)

∂t(ρu) +∇ ·
(

ρuu + p~~1
)
= 0 (6.2b)

∂tE +∇ · (u(E + p)) = 0. (6.2c)

The corresponding fluid is described in terms of five independent field quantities for the

(mass) density ρ, momentum density ρu, and total energy density E = ρe + ρu2/2, where u

is fluid velocity, p is the thermodynamic pressure, e is the specific internal energy (per unit

mass) of the fluid, ρe is the internal energy density, and ρu2/2 is the kinetic energy density.

Note that the right-hand sides of all the equations are zero—there are no source/sink terms

describing additional sources of mass, momentum, or energy. Thus, the rates of change of

the field quantities are identically balanced by divergences of their respective fluxes.

As dissipation is absent in an ideal fluid, the Euler equations can also be expressed

using a continuity equation for the conservation of entropy density,

∂t(ρs) +∇ · (ρsu) = 0, (6.3)

instead of the energy equation, Eq. 6.2c, where s is the specific entropy (per unit mass).

Eq. 6.3 describes so-called isentropic flow, which says that the entropy density is conserved
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along fluid streamlines. Though the entropy equation is not directly used in HERMESHD

(at least in its current form), it is included as a point of contact to the concept of entropy

balance in nonequilibrium thermodynamic theories. In particular, a nonequlibrium process

would lead to source terms on the right-hand side of Eq. 6.3 corresponding to entropy

production.‡

6.2.2 The Navier-Stokes equations

The Navier-Stokes equations can be viewed as an extension to the Euler equations that

incorporates viscous effects, specifically the dissipation of momentum and energy due to

shear flow, which can be respectively added to Eq. 6.2b and Eq. 6.2c as source terms to give

∂tρ +∇ · (ρu) = 0 (6.4a)

∂t(ρu) +∇ ·
(

ρuu + p~~1
)
= ∇ ·~~σ (6.4b)

∂tE +∇ · (u(E + p)) = ∇ · (~~σ · u). (6.4c)

While the continuity equation remains the same, the momentum and energy equations

acquire additional terms on their right-hand sides that introduce a new quantity,~~σ, called

the Cauchy stress tensor, the pressure tensor, or sometimes just the stress tensor [430].

The stress tensor captures all sources of stress at a given point in space. For instance,

the tendency of neighboring fluid streamlines with different velocities to relax to the

same velocity is due to shear stresses (forces per unit area) that are described by the off-

diagonal components of the stress tensor—this “drag” on adjacent fluid layers is due to

the microscopic exchange of momentum when velocity gradients are present, the result

of which are dissipative stresses that depend on the material properties, i.e., microscopic

molecular details, of the fluid. A full description of a fluid therefore requires the inclusion

‡It is usually demanded that the entropy production, Σ, be non-negative, which corresponds to the second
law of thermodynamics and the maximization of the global entropy, S, in equilibrium. A central objective
in contemporary theories of nonequilibrium thermodynamics is to extend the equilibrium formulation by
expressing Σ in terms of quantities characterizing specific irreversible processes [409, 410].
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of a constitutive equation for the viscous stresses,

~~σ′ = ζ(∇ · u)~~1 + η

(
∇u + (∇u)ᵀ − 2

3
(∇ · u)

)
, (6.5)

where ζ and η are the bulk and (dynamic) shear viscosities, the prime on~~σ′ indicating that

stresses due to the thermodynamic pressure, p, are excluded. Thus, the full stress tensor,~~σ,

is the sum of the thermodynamic pressure and viscous stresses,

~~σ = −p~~1 +~~σ′. (6.6)

It is worth noting that the bulk viscosity modulates an isotropic term, while the shear

viscosity sets the scale of deviatoric (non-isotropic, symmetric) contributions to the stress.

Alternatively, the full stress tensor is sometimes decomposed into isotropic and deviatoric

components,

~~σ = π~~1 +~~s, (6.7)

where π = (1/3)Tr~~σ is the mean stress and~~s is the (traceless) stress deviator tensor; lastly,

subtracting the contribution of bulk viscosity from the mean stress, π, gives

p = −1
3

Tr
(
~~σ − ζ(∇ · u)~~1

)
= ζ(∇ · u)− π, (6.8)

which is the usual thermodynamic pressure. Note that p manifestly does not arise from

the fluid velocity field, u, which is an averaged quantity; the trace of the full stress tensor

extracts the contributions from diagonal elements so that only thermodynamic sources of

pressure remain once contributions from velocity field divergences (due to bulk viscous

effects) are removed.

6.2.3 The Navier-Stokes-Fourier equations

To account for the flow of energy due to the conduction of heat, we introduce the heat

flux vector,

q = −κ∇T. (6.9)
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Eq. 6.9 is the familiar Fourier’s law, where κ is the thermal conductivity of the fluid. When

thermal conduction is non-negligible, the rate at which energy can flow into (or out of) a

point in space will depend on the divergence of the heat flux vector. Thus, Eq. 6.4c will

acquire an additional term, i.e.,

∂tE +∇ · (u(E + p)) = ∇ · (~~σ · u) +∇ · q, (6.10)

where the heat flux, q, is defined by Eq. 6.9. The mass (Eq. 6.4a), momentum (Eq. 6.4b), and

energy (Eq. 6.10) equations, taken together, are the equations of motion for a compressible,

viscous, thermally conducting fluid and are sometimes referred to as the Navier-Stokes-

Fourier (NSF) equations. It is important to mention that the NSF system is only strictly valid

under the assumption of local thermodynamic equilibrium or LTE—sometimes referred to

as the local-equilibrium hypothesis [410].

6.2.4 Hyperbolic relaxation system

To help motivate the additional equations in the HERMESHD hydrodynamic model that

go beyond Navier-Stokes, we examine an illustrative 1D hyperbolic relaxation system. As

mentioned in Section 6.1, the NSF equations contain second-order spatial derivatives in the

velocities and temperature (or, equivalently, the energy), which is due to the velocity and

temperature gradients in the constitutive laws for viscosity and thermal conduction (resp.

Eq. 6.5 and Eq. 6.9). To circumvent architectural difficulties in handling second-order spatial

derivatives, HERMESHD uses a kind of numerical “trick”, which involves casting the

momentum and energy equations from the original (semi-parabolic) NSF system into the

form of a hyperbolic relaxation system (HRS). In effect, HERMESHD solves a generalization

of the following 1D HRS,

∂tu + ∂xγ = 0 (6.11)

ε∂tγ− D∂xu = γ, (6.12)

where u is a conserved quantity (e.g., density), γ is an auxiliary dynamical variable, D

represents a diffusion coefficient, and ε is a (small) relaxation parameter [368]. In the fast
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relaxation limit (ε→ 0), the system reduces to a parabolic diffusion-type problem for u,

∂tu = D∂2
xu. (6.13)

An HRS as in Eq. 6.11 can thus be used to reproduce the diffusive dynamics in Eq. 6.13 by

inputting small values of ε, which forces the simulated dynamics to relax to the equilibrium

solution in the fast relaxation time limit.

The relaxation model effectively sidesteps the explicit evaluation of second-order spatial

derivatives (that would otherwise be required in directly solving for the usual expression

for Navier-Stokes), but requires integrating six auxiliary dynamical variables in time—

one per independent stress tensor component, beyond the usual five (mass density, three

momentum densities, and energy density). The hyperbolic relaxation system currently

employed in the HERMESHD code contains linearized (relaxation-type) equations for

the tensorial deviatoric stress (Eq. 6.15d) and vectorial heat flux (Eq. 6.16e), which are

connected to the so-called Bhatnagar-Gross-Krook (BGK) [432, 433] model of the Boltzmann

equation. The idea behind the BGK approach was to find solutions to the nonlinear integro-

differential Boltzmann equation by replacing the nonlinear collision term, (∂t f )coll, with a

linear relaxation approximation to obtain(
∂ f
∂t

)
coll
∼ − ( f − f 0)

τ
, (6.14)

where f = f (x, v, t) is single-particle distribution function (from the Boltzmann equation),

f 0 is the (stable) equilibrium distribution, and τ is a characteristic timescale pertaining

to the relaxation of the fluid to the equilibrium distribution f 0. It is clear by inspection

that Eq. 6.14 has an analogous form to Eq. 6.15d and Eq. 6.16e. Indeed, the hyperbolic

relaxation perspective was not so much a numerical “trick” for reproducing the Navier-

Stokes equations (in the relaxation limit where τ → 0) as was suggested at the outset,

because it mirrors a number of rigorous approaches presented in the literature that have

been used to derive higher-moment hydrodynamic equations, such as the use of the

Knudsen number, Kn, as the expansion parameter in Chapman-Enskog theory [423, 431,

434, 435].
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6.2.5 Compressible flow with shear stresses and dissipation

It can be seen that the Navier-Stokes equations are of the parabolic type because second-

order spatial derivatives show up when dissipative stresses and thermal conduction are

included—the constitutive laws for viscous stress (Eq. 6.5 and Eq. 6.6) and heat flux (Eq. 6.9)

are expressed, respectively, as gradients of the velocities and temperature. HERMESHD

(and PERSEUS) do not directly solve the Navier-Stokes equations in the form of Eq. 6.4

in large part to avoid computing second-order spatial derivatives (in velocities and tem-

perature); both codes are designed to solve hyperbolic systems of equations expressed in

conservation form after re-casting the Navier-Stokes or LLNS system in terms of first-order

derivatives in space and time. In particular, HERMESHD uses a hyperbolic relaxation

system (HRS) representation and an implicit-explicit time integration scheme to “drive”

the numerical solution toward the equilibrium solution represented by the parabolic sys-

tem of equations in Navier-Stokes/LLNS. The relaxation from a hyperbolic to a parabolic

system is achieved in the limit as a relaxation time parameter, τ, becomes small relative to

hydrodynamic “observation” timescales. The HRS approach, in effect, trades second-order

spatial derivatives (and the computational expense to compute them) for an additional set

of dynamical variables, each described by its own balance equation. Furthermore, the HRS

representation permits the five-moment Navier-Stokes/LLNS system of equations to be

naturally extended to 13-moment (or higher) hydrodynamic equations. In comparison to

alternative approaches, the structure of HERMESHD is conducive to efficient simulations

of dense fluids at the nanoscale, and potentially with greater physical accuracy than the

conventional five-moment LLNS model.

In the absence of bulk viscous effects, the full stress tensor reduces to the shear stress

tensor,~~σ′. Since~~σ′ is symmetric and traceless, the HRS must include five additional dy-

namical field variables: three for the off-diagonal stresses, two for the diagonal components

under the traceless condition. Thus, five dynamical equations govern shear stresses in in

the HRS representation—in addition to the mass, momentum, and energy equations—for a
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total of 10 dynamical equations,

∂tρ +∇ · (ρu) = 0 (6.15a)

∂t(ρu) +∇ ·
(

ρuu + p~~1
)
= 0 (6.15b)

∂tE +∇ · (u(E + p)) = 0 (6.15c)

∂t~~σ +
η

τν

(
∇u + (∇u)ᵀ − 2

3
(∇ · u)~~1

)
= − 1

τη

~~σ. (6.15d)

The tensor equation for the stress components (Eq. 6.15d) is the linearized equation from

the full pressure-tensor moment equation containing the deviatoric stresses and the scalar

energy. The linearized form of Eq. 6.15d is obtained using a closure relation that specifies

the phenomenological relaxation time parameter time τη . While it is possible that additional

physics can be extracted from the full nonlinear pressure moment equation, the present

study only considers linear effects, which already include potentially important memory

(non-Markovian) effects that the Navier-Stokes equations do not capture. It can also be

seen that the second term in the equations for shear stress is exactly the right-hand side

of Eq. 6.5 with ζ = 0 and contains only first-order spatial derivatives of the velocity.§ The

relaxation parameter, τ, sets the timescale of viscous dissipation and can be associated

with a microscopic collision time. It can be seen that the time derivatives of the shear

stress components vanish in the small τ limit and we are left with the usual shear stress

components of the Cauchy stress tensor.

A slight complication arises after the spatial domain is discretized into (rectangular)

finite-volume grid cells, because the fluxes at each of the six faces of a cell will, in general,

differ—the faces of a cell are not at the same point in space, so the traceless condition

is not exactly satisfied after discretization. The five shear stress equations, Eq. 6.15d,

must be supplemented with an additional independent variable/equation to handle the

diagonal components (instead of just two equations plus the traceless condition). In total,

§The shear stresses, written in tensor notation in Eq. 6.15d, are not quite in conservation form. However,
since only first-order spatial derivatives (of the velocities) are present and since the full system of equations
(Eq. 6.15a–d) is hyperbolic, the shear stress “fluxes” can be integrated analogously to the mass, momentum,
and energy fluxes in Eq. 6.15a–c. The advantage of this structure is simplicity.
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HERMESHD integrates 11 dynamical equations to solve for 11 dynamical field variables:

5 for the usual mass, momentum and energy densities, 3 for the off-diagonal shear stress

components, and 3 for the diagonal shear stress components.¶

Inclusion of bulk viscous dissipation

The bulk viscosity, ζ, captures dissipative viscous effects caused by isotropic changes in

the velocity field, i.e., the divergence of the velocity field, u.|| Bulk viscous effects are rele-

vant when compressibility effects are important; for example, bulk viscosity is responsible

for the attentuation of sound waves and is important in describing the hydrodynamics of

liquids containing gas bubbles [430]. In situations where bulk viscosity is non-negligible, an

isotropic contribution in Eq. 6.5 manifests in the spatial derivatives for the diagonal stress

components in Eq. 6.15d. In general, the quantities η and ζ are functions of temperature and

pressure and ζ is usually of the same order of magnitude as η, though there are cases where

ζ may exceed η considerably [366]; as such, the relaxation parameter, τη , may differ (or be

insufficient) when bulk viscous effects are present due to the introduction of a separate

timescale associated with bulk dissipation. Appendix G also provides some detail as to

how bulk viscosity manifests in fluctuating hydrodynamics.

Inclusion of thermal conduction

When thermal conduction is important, we must look to Eq. 6.10 to incorporate heat

flux. However, as with the stress tensor, a similar situation is encountered where second-

order spatial derivatives of the temperature field are introduced upon substitution of

Fourier’s Law (Eq. 6.9), albeit this time (only) in the energy equation (Eq. 6.10). To solve

¶A thought: it might be possible to satisfy the traceless condition identically through some clever algorithmic
means; for example, one could look at techniques in plasma codes that are used to satisfy Gauss’ law for
magnetic fields, ∇ · B = 0. Such an approach would probably have to account for the manner in which
numerical fluxes are calculated at each cell interface—it is not clear whether it would be desirable to do this,
even if it were feasible.

||The bulk viscosity is alternatively referred to as the volume viscosity, expansion viscosity, or second coefficient
of viscosity [430].
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Eq. 6.10 using the hyperbolic relaxation approach in HERMESHD, three new dynamical

field variables must be introduced—one for each vector component of the heat flux—leading

to an auxiliary vector equation analogous to the tensor equation for shear stress (Eq. 6.15d).

The full 13-moment HRS becomes

∂tρ +∇ · (ρu) = 0 (6.16a)

∂t(ρu) +∇ ·
(

ρuu + p~~1
)
= 0 (6.16b)

∂tE +∇ · (u(E + p)) = 0 (6.16c)

∂t~~σ +
η

τη

(
∇u + (∇u)ᵀ − 2

3
(∇ · u)~~1

)
= − 1

τη

~~σ (6.16d)

∂tq +
κ

τκ
∇T = − 1

τκ
q, (6.16e)

where τκ is a phenomenological relaxation time of the same order as τν and is related to the

kinetic processes underlying thermal conduction. As with Eq. 6.15d, the vector equation

for heat flux (Eq. 6.16e) is the linearized version of the full heat-flow moment equation,

which may be obtained by using a closure assumption that determines the relaxation

time, τκ. Eq. 6.16 thus defines the linearized 13-moment system (L13, for brevity) used in

HERMESHD.

6.2.6 Fluctuations in the linearized 13-moment system

The fluctuating hydrodynamics equations in the linearized 13-moment system (L13)

was achieved by incorporating stochastic fluxes in the momentum equations (Eq. 6.16b)

and energy equation (Eq. 6.16c) so as to recover the LLNS equations in the limit of high

collision frequency, τη → 0 and τκ → 0. The fluctuating L13 (FL13) system may then be
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expressed as

∂tρ +∇ · (ρu) = 0 (6.17a)

∂t(ρu) +∇ ·
(

ρuu + p~~1 + S
)
= 0 (6.17b)

∂tE +∇ · (u(E + p) + u · S +Q) = 0 (6.17c)

∂t~~σ +
η

τη

(
∇u + (∇u)ᵀ − 2

3
(∇ · u)~~1

)
= − 1

τη

~~σ (6.17d)

∂tq +
κ

τκ
∇T = − 1

τκ
q, (6.17e)

where S is the stochastic stress tensor andQ is the stochastic heat flux vector. Both S andQ

are stochastic fluxes that have zero mean and covariances (neglecting bulk viscosity) given

by

〈
Sij(x, t)Skl(x

′, t′)
〉
= 2ηkBT

(
δilδjk + δikδjl −

2
3

δijδkl

)
δ(x− x′)δ(t− t′), (6.18)〈

Qi(x, t)Qj(x
′, t′)

〉
= 2κkBT2δijδ(x− x′)δ(t− t′), (6.19)

and 〈
Sij(x, t)Qk(x

′, t′)
〉
= 0, (6.20)

where, as before, η is the dynamic viscosity and κ is the thermal conductivity [366, 407].

More details are given in Appendix G, which, focusing specifically on the formal structure

and sampling of the stochastic stress tensor, provides an intuitive sense of how stochastic

terms have been handled in HERMESHD.

6.2.7 Initial verification of HERMESHD

In order to examine the accuracy and performance of the hydrodynamic solver(s) in

HERMESHD, two standard hydrodynamic test problems** were implemented: (1) 1D Sod

**Further testing is needed for rigorous verification, though the 1D Sod shock tube and 2D isentropic vortex
problems sufficed for illustrative purposes during the BWGF. It is also imperative that the new models—such
as the 10- and 13-moment fluctuating hydrodynamics approach in HERMESHD—eventually be validated by
direct comparison with experimental data.
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shock tube [436] (not shown); (2) 2D isentropic vortex [437]. The tests were performed for

the linearized 10-moment (L10) equations, which neglect the effects of thermal conduction

(Eq. 6.15). Fig. 6.2 shows an example of the advective evolution of the 2D isentropic vortex

over 10 periods (cf. [438]) for an 802 grid using a linear basis with 8 Gaussian quadrature

points per cell (not shown) and second-order Runge-Kutta integration. The vortex is

advected horizontally (across periodic boundaries) at a uniform velocity—its shape should

be preserved as it returns to its starting position. The density profile after 10 periods

demonstrates low numerical diffusion and very reasonable qualitative agreement with

the exact solution. As all the hydro tests have analytical flow solutions, they have been

especially helpful for ensuring correctness in the process of modularizing the HERMESHD

codebase.
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Figure 6.2: Density plots of the 2D isentropic vortex simulation for L10 system of equations (neglecting thermal
conduction). Left: 2D fluid density at the initial time. Right: vortex evolution over 10 periods. The density
profile at y = 0 along x-direction is shown at t = 0 (initial condition, blue circles), t = 5 (5 periods, green
diamonds), t = 10 (10 periods, red triangles), with analytical solution shown as solid black line. Simulation was
performed on a grid of 80× 80 cells (DG basis function data within cells not shown) in dimensionless units.

Several preliminary benchmarks were also performed on the Blue Waters supercom-

puter, using the vortex problem for initial performance tests of the L10 system: (1) second-
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and third-order Runge-Kutta integration††, (2) spatial resolution and performance with

varying combinations of grid resolution and discontinuous Galerkin (DG) basis representa-

tions, (3) parallel scaling performance of the MPI-based domain decomposition. Fig. 6.3

gives an idea of raw strong scaling performance in the 2D isentropic vortex problem for

up to 8 nodes (32 MPI ranks per node) using a 1602 grid with linear (2,8), quadratic (3,10),

and cubic (4,20) DG basis representations. Overall, these results suggest that the FL10

code scales well to many processing elements in a predictable manner, with the linear and

quadratic bases being very efficient as compared to simulations using cubic basis functions.

In the future, formal scaling efficiency benchmarks will be carried out for HERMESHD

across a range of problems, including tests of the FL13 and full, nonlinear 13-moment

systems.
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Figure 6.3: Raw strong scaling of isentropic vortex problem on Blue Waters XE nodes using 32 MPI ranks/node
on a grid of 160× 160 cells for linear (blue triangles), quadratic (orange circles), and cubic (green squares) basis
representations with 8, 10, and 20 internal points, respectively.

As a further qualitative test of the HERMESHD fluctuating hydrodynamics model, a

comparison between conventional Navier-Stokes and the fluctuating L10 (FL10) system

(Eq. 6.17a–d, with Q = 0) was carried out using a simulation of a nanoscale hydrodynamic

††Third-order Runge-Kutta integration is needed for variance-preserving properties to correctly recover the
fluctuations in the LLNS equations [405].
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jet of a viscous, compressible fluid under isothermal conditions.‡‡ The jet was initialized in

a periodic domain with small, random velocity perturbations (. 1kBT) and simulated with

and without fluctuating terms (resp. top and bottom of Fig. 6.4). The velocity shear was

expected to cause the perturbations to grow into a visible Kelvin-Helmholtz instability [430],

with the prediction that the FHD simulation should go unstable before the conventional NS

due to the action of thermal fluctuations. Indeed, jet breakup occured sooner for the FL10

simulation than the NS system, as seen around the 12 ns mark in Fig. 6.4, corroborating

the importance of correctly incorporating hydrodynamic fluctuations at the nanometer

observation scales where biological macromolecular dynamics are important.

8 ns 12 ns 20 ns16 ns0 ns

FHD

NS

Figure 6.4: Comparison of the rightward horizontal velocities for a simple fluid around water density at
STP using Navier-Stokes (NS, top) and FL10 hydrodynamics (FHD, bottom) after 8 ns, 12 ns, 16 ns, and 20 ns.
The FL10 system consists of Eq. 6.17a–d with Q = 0 (neglecting heat flux). The simulation region is a 302

grid measuring 300 nm per side. Blue and red correspond to small and large velocities (from 0 nm ns−1 to
100 nm ns−1), respectively. Simulation was performed using linear quadrature with four basis elements (1,x,y,z)
and RK2 integration.

6.3 Synopsis of the hybrid atomistic method

The FHD and MD components of a hybrid code must have a means of communication,

though it can be difficult to determine the most appropriate approach at the outset. One

‡‡This simple test was performed primarily as a visual sanity check that the hydrodynamic fluctuations in the
FHD model were sensible, though it was not intended as a rigorous means of code verification. One possible
way in which the nanojet test could be improved would be to analytically estimate the expected time to jet
break-up for the FHD and NS models and compare the analytical and numerical results.
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option that was considered was to use the MD code as the master program to “call” (sub-

routines from) HERMESHD, though the problem with this approach was that the HAC

code would have to be tied to that particular MD engine. In the opposite approach, which

is a more portable alternative, the MD engine would be slave to HERMESHD acting as the

master code; this was also rejected due to the fact that MD codes would have to be called

from Fortran, making it somewhat difficult to maintain HERMESHD as a standalone code

without the extensive modifications needed to build an interface to HERMESHD in Fortran.

As such, a decision was made to design and implement the prototype HAC code using an

umbrella (driver) program model, where the continuum and MD codes are accessed on an

equal footing as libraries. The umbrella program was written in Python—a good language

for gluing together disparate software components that may be written in a several different

languages—helping to maintain the independence of the hydro and particle components.

One key advantage of unifying the HAC prototype through a Python interface was the ease

with which code output could be handled, which, for HAC simulations, serves to alleviate

possible complications in managing the data structures representing fundamentally differ-

ence types of data (i.e., particle- and cell-based data). Paraview [439] and yt [440] are two

excellent options as they can be used to visualize mesh and particle data, are open-source,

and can be interfaced with Python.

HERMESHD in its current form has a basic Python interface (hermeshd.py) generated

with the help of f90wrap [441] (based on the work of Pletzer et al. [442] and the f2py package

[443]) that exposes high-level subroutines to Python. Subroutine arguments are passed

as (Fortran-order) NumPy arrays that point to the underlying Fortran data in memory.

Fig. 6.5 represents a functional Python script that can be used to run a hydrodynamic

simulation using the Python interface to HERMESHD; in particular, one can call individual

time steps, allowing, for instance, MD steps to be called in between hydro steps. As a

specific example, the step() method advances time forward by a single step by solving for

the fluid fluxes/sources and integrating the equations of motion in time; the field variables

can then be directly extracted from the NumPy arrays. This is particularly useful for HAC
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simulations where boundary conditions to/from HERMESHD will be passed periodically

after a small number of time steps.

import numpy as np

from mpi4py import MPI

from hermeshd import FHDsim

# Init sim params and data arrays for fluid variables; Qio is primary data array

nx, ny, nz = 80, 80, 1 # 80× 80× 1 grid

nQ, nB = 11, 8 # 11 equations (10-moment), 8 basis funcs

t = np.array(0.00, dtype=float) # current time, t
dt = np.array(0.01, dtype=float) # timestep, ∆t
tf = np.array(10.0, dtype=float) # final time, t f

dtout = np.array(0., dtype=float) # output period (every dtout units of time), tout

Qio = np.empty((nx,ny,nz,nQ,nB), order='F', dtype=np.float32)

Q1 = np.empty_like(Qio) # temp array for vars w/ 2nd-order RK integrator

Q2 = np.empty_like(Qio) # temp array for vars w/ 2nd-order RK integrator

# Setup and run HERMESHD

FHDsim.setup(Qio, t, dt, dtout, MPI.COMM_WORLD.py2f()) # fill F90 data structs

while (t < tf):

FHDsim.step(Qio, Q1, Q2, t, dt) # perform a single FHD timestep

FHDsim.output(Qio, t, dt, dtout) # generate VTK output every dtout interval

FHDsim.cleanup()

Figure 6.5: Example Python script (hermes_run.py) for performing an MPI-enabled run using mpi4py and the
Python interface to HERMESHD. Fortran-order NumPy array data, Qio, is initialized in Python, sent through
a Python interface to the setup() subroutine in HERMESHD, and updated by iterating through the main
simulation loop until the final time is reached, t>=tf. A 16-core MPI run can be executed from the command
line by calling the Python script with, for instance, mpirun -n 16 python hermes_run.py.

For the MD component of the HAC method, the LAMMPS MD engine was chosen

for reasons of simplicity and flexibility as it: (1) is relatively easy to dynamically modify

particle properties, custom potentials, and boundary conditions during a timestep using

a so-called “fix”, (2) supports CHARMM/Amber/OPLS force fields, (3) can be compiled

as a library to be called from an external program, and (4) has a built-in Python interface.

To leverage the LAMMPS Python interface for communication with the driver program,

LAMMPS was built as a library with MPI support.

The prototype hybrid code was implemented by combining a minimal implementation

of a Python-based driver program, a Python- and MPI-compatible build of LAMMPS as
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a library, and the HERMESHD program with a custom Python interface to the Fortran

code based on f90wrap.§§ All communication was managed at the top level by the driver

program, which behaved as a server that facilitated communication between the clients

programs (the individual MD and hydro components); such a scheme, if designed poorly,

may be detrimental to performance because data must be first moved from one client to

the driver program before being sent to the other client code. On the other hand, such a

consolidated approach has a clear advantage in terms of organizational and semantic clarity,

since what the HAC simulation is “doing” at any given timestep can be expressed explicitly

in terms of actions taken by the umbrella code (rather than hidden actions executed by

either the hydro or MD codes). Fig. 6.1 illustrates the flow of the HAC method timestep,

where a fixed number of MD steps were followed by the transfer of atomistic data (from

the buffer region) to the hydro code, in turn followed by a single hydro time step; once the

field data was updated by the hydro code, those (continuum) data in the buffer were sent

to the MD code, beginning the cycle anew.

Communication between the atomistic and continuum regions was implemented as a

simple one-way continuum-to-atomistic coupling (C→ A) scheme where the drag force

on a particle, p, was given as the difference between the particle velocity, vp, and the

hydrodynamic velocity, u,

dxp

dt
= vp (6.21a)

m
dvp

dt
= −ξ

(
vp − u

)
−∇xpU (X) , (6.21b)

where ξ is a phenomenological friction coefficient, xp is the position of particle p, and X

is the configuration space vector of particle positions; since only C → A coupling was

implemented, no forces due to the particles were applied to the fluid. The advantage of

Eq. 6.21 over conventional Langevin dynamics is that the particles feel a drag force with

§§As a starting point, f90wrap was used to generate a Fortran 90 interface to the HERMESHD source code together
with a high-level Pythonic wrapper. The Python extension modules were then modified to provide the desired
user-level access to subroutines and data structures in the source code.
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respect to the background fluid velocity rather than a fixed reference frame; also, unlike

the Langevin equation, no additional stochastic term was included in Eq. 6.21b since the

(hydrodynamic) fluctuations were left to implicitly enter into the fluid velocity, u, through

the momentum equation (Eq. 6.17b). This approach is similar in spirit to the fluctuating

hydrodynamics thermostat used in Y. Wang et al. [444] and the lattice Boltzmann approach

taken by Mackay, Ollila, and Denniston [445]—the implementation based on Eq. 6.21 was

not intended as a realistic coupling approach, but only as a proof-of-concept to test the

communication between the LAMMPS and HERMESHD codes. The test simulation was a

Couette flow (shear flow) problem with fully-overlapping MD and hydro domains (data not

shown), which was designed to simplify complications associated with boundary condition

communication in the buffer region (i.e., region B in Fig. 6.1).

6.4 Future directions

A functional HAC prototype will demonstrate the ability to: (1) deploy HERMESHD

as a library callable from Python, (2) dynamically modify MD simulation parameters and

particle data through LAMMPS fixes, (3) exchange boundary condition information in

the buffer region between the hydro and MD domains through the umbrella program, (4)

produce a qualitatively accurate hybrid simulation of a simple fluid like liquid argon. In

particular, the handling of boundary conditions (point 3) is a nontrivial task and there are

many different approaches to exchanging particle and continuum information in the over-

lap region [446] other than the simple method mentioned above (Eq. 6.21). It is also possible

that a particle-stat—a particle regulator for open boundary conditions that obeys basic ther-

modynamic considerations—will need to be incorporated into the HAC model; fortunately,

good solutions to this problem already exist [447, 448]. Future hurdles notwithstanding, it

has been demonstrated that the HERMESHD hydrodynamics model is viable and can be

interfaced—using Python—with an MD engine to construct a hybrid atomistic-continuum

method. Modest progress, with respect to the software and algorithmic architecture of the

HAC code, has provided a clear picture of important hurdles, but has also left substantial
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room to re-think various aspects of constructing a fully working model as well as the

physics that underlie particle-to-continuum mapping and vice versa.

The question of how to bridge disparate length scales applies not only to our numer-

ical models, but to our physical models. The development of consistent coarse-graining

schemes that capture the most relevant aspects of atomic-resolution force fields using a

smaller number of composite particles is an active area of research [449–452]. More closely

related to HAC simulation are the questions surrounding the existence and nature of a

proper continuum limit. Efforts on this front tend to focus on single-particle phase space

distributions and the Boltzmann equation; many overlapping approaches have been used to

obtain continuum (hydrodynamic) models from kinetic theory [453–455]. However, it is not

know whether a consistent mathematical framework exists for mapping atomistic systems

to continuum fields, though some degree of progress is being made. From the opposite end

of the spectrum, contemporary theories of nonequilibrium thermodynamics are providing

a top-down perspective, offering new perspectives in beyond-equilibrium thermodynamic

processes.¶¶ Despite being phenomenological in nature, generalized thermodynamics

approaches may help drive the connection between hydrodynamics and nonequilibrium

dissipative processes [458–461]; indeed, Grad’s original 13-moment method has played a

central role many of these modern thermodynamic theories. Furthermore, shedding light

on these fundamental problems is central to elucidating how HAC methods and other

multiphysics approaches can incorporate disparate physical models in a mathematically

consistent way.

6.4.1 A teaser on the non-Markovianity of L13

The advent of experimental techniques like neutron scattering and molecular simulation

methods (e.g., molecular dynamics) has led to a relatively recent re-examination of the

¶¶There are a number of distinct, but related frameworks, including classical irreversible thermodynamics
(CIT), rational thermodynamics (RT), thermodynamics of irreversible processes (TIP), extended irreversible
thermodynamics (EIT), and rational extended thermodynamics (RET) [456–459].
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theory of transport coefficients. In particular, a generalized hydrodynamic theory allows a

spatiotemporal dependence of the transport coefficients that permits the molecular structure

of the fluid to play a role. On length scales in the vicinity of 1–10 molecular diameters and

time scales on the order of 30 molecular collisions, fluids exhibit viscoelastic behavior and

other effects arising from the microscopic molecular structure [388]. Progress on the FHD

front has been robust, and there is promise in investigating extended hydrodynamic models

that go beyond Landau-Lifschitz FHD theory and conventional Navier-Stokes. Recently,

researchers used the extended thermodynamics formalism to develop a 13-moment FHD

model for monatomic ideal gases [462]. Although this model is less general than HER-

MESHD and it is not known at the time of writing whether Arima et al. [462] have released

a numerical model, it is encouraging that other researchers are taking interest in merging

the formalisms of extended hydrodynamic theories and hydrodynamic fluctuations. To

conclude this chapter, it seems appropriate to provide a forward-looking perspective that

might inspire curiosity, starting with three interrelated points of focus:

1. Is the HAC method in any way a viable replacement for EqMD in simulating

biomolecules in native-like aqueous environments?

2. Can we quantify the physical consistency of various HAC coupling methods and can a

proper continuum limit (i.e., atomistic-to-continuum coarse-graining) be established?

3. What is the relevance of higher-moment FHD models to the description of (nonequi-

librium) transport at the nanoscale? Furthermore, can hydrodynamic approaches offer

more intuitive descriptions of biomacromolecular phenomena than MD simulations

(and techniques for identifying collective variables)?

One intriguing feature of the linearized 13-moment model*** (L13) in HERMESHD is the

way in which viscoelasticity emerges from the linearized stress and heat flux equations due

***In general, this is also true of the full, nonlinear G13 system, though only the L13 system is considered due to
the comparative simplicity of the analyses. From the perspective of the BGK approximation [432, 433], it is seen
that the relaxation term (the BGK operator), which drives relaxation of the single-particle distribution back to
equilibrium in the BGK model, in some sense originates such viscoelastic and thermoacoustic memory effects
in the L13 system via the stress (Eq. 6.15d) and heat flux equations (Eq. 6.16e).
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to the presence of the relaxation (source) terms. Whereas NS and LLNS tacitly assume linear,

time-independent constitutive relations connecting viscous stresses to the velocity gradients

[463], and heat flux to the temperature gradient—respectively, Newton’s law of viscosity

and Fourier’s law of heat conduction—the L13 system generates history-dependent stresses

and heat flux, leading to non-Markovian behavior that emerges at small spatiotemporal

scales. Certain viscoelastic effects may also be measurable in real-world and numerical

experiments, possibly offering a way to verify and validate the L13 model as it pertains to

dense fluids like water.

Starting with the L13 equations (Eq. 6.16). In L13, the five hydrodynamic equations

describing the deviatoric stress components, σij, which is a linearized 3rd-moment equation,

take the form
∂σij

∂t
+ p0ε̇ij = −νσij,

where p0 is an equilibrium pressure, ν is a microscopic collision frequency (at this point, a

phenomenological material parameter), and i and j can take on the values 1, 2, and 3 for

each spatial component; ε̇ij (neglecting bulk viscosity, for now) is a tensorial component of

the rate-of-strain tensor (from Newton’s law of viscosity) [430]

ε̇ij =
∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk
.

In the limit of large collision frequency (fast relaxation time, τ � 1), ∂t � ν, the time-

derivative term is dropped and σij becomes a dependent variable,

σij =
p0

ν

(∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij

∂uk

∂xk

)
.

After identifying η = p0/ν with the dynamic viscosity, we recover the constitutive rela-

tion for a Newtonian fluid with strain-rate tensor ε̇ij, where σij = ηε̇ij is the viscous (shear)

stress tensor, which describes momentum diffusion. In other words, if the hydrodynamic

timescales of observable interest are long relative to microscopic collision processes, the L13

system reduces, or relaxes, to the five-moment Navier-Stokes system. In the opposite limit,

∂t � ν, where observation timescales are much faster than microscopic collision times,
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the source term, −νσij, is dropped. If we then write ui = ∂tξi, relating the fluid velocity

components, ui, to material displacements, ξi, we can eliminate the time derivatives on

both sides to obtain the elastic stress tensor

σij = p0

( ∂ξi

∂xj
+

∂ξ j

∂xi
− 2

3
δij

∂ξk

∂xk

)
.

The general solution of the deviatoric stress equation is

σij(x, t) = −p0

∫ t

−∞
dt′eν(t−t′)ε̇ij(x, t′),

which, by the above analysis, is a viscoelastic stress tensor whose non-Markovian nature is

apparent. The ε̇ij(x, t) are understood to depend spatially on the (gradients of) the velocity

field which in turn depends explicitly on time.
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Chapter 7

CONCLUSIONS

Deducing the function of a protein from information about its 3D structure is a cen-

tral ambition in biophysics. This dissertation explored several aspects of computational

methodology in elucidating this link between protein structure and function. The enzyme

adenylate kinase (AdK) was adopted as a lens through which state-of-the-art experimental

and computational techniques could be placed into a proper context. In particular, the

catalytically relevant motions that AdK undergoes are relatively simple to visualize, albeit

sufficiently complicated so as to: (1) illustrate the interplay between experiment and numer-

ical simulation, (2) introduce the role of numerical path-sampling methods in surmounting

the equilibrium sampling problem, (3) discuss extant gaps in our understanding of the

mechanisms underlying AdK’s function and enzymes in general, and (4) lay the ground-

work for Path Similarity Analysis (PSA) and other computational approaches to quantifying

and integrating potentially heterogeneous data.

Path-sampling methods can generate plausible conformational transition paths with

relatively little computational effort, overcoming the typical timescale limitations of equi-

librium MD (EqMD) simulation. Though both EqMD and path-sampling techniques have

furnished some insight into the closed↔ open apo-AdK transition, contemporary sampling

methodologies have yet to decisively deduce the underlying mechanism, in large part due

to the difficulty of assessing the accuracy of such sampling methods. We developed the

Path Similarity Analysis (PSA) framework—based on the idea of using a path metric to

measure the similarity between two transition paths—as a step toward addressing the

emerging problem of path-sampling verification; we demonstrated that PSA enables direct

quantitative comparisons of large trajectory data sets while minimizing a-priori assump-

tions that can lead to bias. The heatmap-dendrogram approach in PSA was viable not only

for a toy model system, but also realistic scenarios involving path-sampling trajectory data
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obtained from apo-AdK and diphtheria toxin transitions. Despite the visual simplicity of

the closed→ open apo-AdK transition, there were marked differences among the methods

and resultant paths that could not be fully rationized by the presented analyses. That the

closed↔ open transition may be, for instance, compared to the opening and closing of a

clam shell, is an oversimplification, and it is perhaps the case that AdK does not represent an

ideal testbed. As hinted previously in Chapter 1 and Chapter 2, AdK (and other enzymes)

seems to be hiding a much richer picture.

Due to complications caused by the lipid environment around membrane proteins,

few structures have been solved in comparison to globular proteins; such proteins as

transporters are thus especially challenging to study experimentally and, computationally,

explicit membrane and solvent EqMD simulations are difficult and expensive. However, we

were able to take initial strides toward elucidating the structure and transport mechanism

of the SLC4 membrane transporter Bor1p. We succeeded in constructing viable structural

models by using MD flexible fitting (MDFF) to integrate medium-resolution cryo-EM data

into explicit-solvent, explicit-membrane EqMD simulations. Although serial femtosecond

crystallography promises to make “movies” of macromolecules a reality, numerical sim-

ulations offer the only viable means of obtaining truly atomistic trajectories. Atomistic

EqMD, path-sampling, and computational algorithms to integrate experimental data into

simulation (like MDFF) are likely to become even more useful. Indeed, as the number of

transporters solved in multiple conformations inevitably grows, path-sampling methods,

for instance, will become an increasingly viable approach to studying transporters; com-

bined with quantitative frameworks like PSA, it will soon be possible to generate transition

paths, perform EqMD, and quantify those data with increasing confidence.

In general, nanoscale transport phenomena (e.g., transfer of mass, momentum, heat,

etc.)—especially in dense fluids and aqueous solutions—are dictated by large thermal

fluctuations, leading to nonequilibrium phenomena that often necessitate nonlinear de-

scriptions of fluid flow and quasithermodynamic phenomena. The author’s Blue Waters
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Graduate Fellowship (BWGF) project* offered an opportunity to investigate the viability of

hybrid methods and fluctuating hydrodynamics (FHD) simulation for modeling biomacro-

molecular dynamics. The hybrid atomistic-continuum (HAC) method—the third mode of

methodological integration explored in this dissertation—is but one example of a multi-

physics method that couples multiple physical models into a unified numerical method.

Given that some nanoscale biophysical processes may be characteristically hydrodynamic

by nature, HAC and FHD simulation are viable means of investigating such phenomena.

As one example, the linearized 13-moment FHD equations used in PERSEUS were shown

to predict non-Markovian behavior that leads to viscoelasticity, thermoacoustic phenomena,

and other memory effects when observation scales approach the nanometer range. To

wit, the analyses in Chapter 6 show that L13 contains the well known Maxwell model

of viscoelastic materials, implying that a dense fluid like water behaves like a Maxwell

fluid at the nanoscale [464]. There is experimental evidence that hydrodynamics may be

relevant to the description of diffusion enhancement observed in enzymes upon the release

of heat during catalysis [465]. Hydrodynamics may also be important in protein hydration

dynamics [466–468], protein folding [469], hydrodynamic collective effects in cells [470–472],

and inertial effects on slow kinetic processes of DNA [395] and other biomacromolecules.

However, the particle picture of biomolecular phenomena has been reinforced by an abun-

dance of atomistic X-ray crystal structures and the ubiquity of atomistic numerical methods

like MD; perhaps a hydrodynamic perspective would not only be refreshing, but provide a

new source of physical insight.

The extent to which biomolecular sampling efficiency and accuracy depends, in general,

on specific aspects of the physical and numerical models is a fundamental yet unanswered

question. These matters have important implications for understanding the physics in-

volved in biomolecular dynamics and also building confidence in the accuracy of the

methods and models. The analyses as presented in this dissertation are insufficient to

*Developing a Hybrid Atomistic-continuum Method for Simulating Large-scale Heterogeneous Biomolecular Systems
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fully elucidate how different aspects of a path-sampling method (i.e., model resolution,

biasing algorithms, progress variables, collective variables, etc.) are connected to pathway

that will be sampled. However, the core components of the path similarity analysis (PSA)

framework—the visual heatmap-dendrogram approach based on hierarchical clustering

and Hausdorff pairs analysis—were found to be useful not only for assessing pathway

similarities, but more importantly in identifying and extracting molecular-structural cor-

relates of their differences at the atomistic level. Given the modular nature of PSA and

the ease with which it can evaluate large trajectory ensembles, it is possible to construct

sophisticated analysis pipelines, and the author hopes that its core components or ideas will

be integrated into new and existing quantitative analyses. It would be valuable to perform a

thorough path-sampling method comparison covering a broader range of physical models,

numerical algorithms, and biasing schemes. Ultimately, ascertaining the extent to which

specific features of a numerical model determine sampling behavior is a necessary compo-

nent of verification and validation of numerical simulations. The difficulty of such a task

notwithstanding, there is an opportunity to deepen our understanding of the relationship

between our physical models (i.e., how we conceptualize reality) and real natural processes

(i.e., reality). Indeed, in light of the impressive number and variety of sampling methods,

frameworks like PSA can quantify essential differences between physical models, allowing

us to connect specific pictures we derive from our physical models to the dynamical motions

and mechanisms underlying protein function.

Though this dissertation provides but a glimpse of emerging modes of scientific inquiry

through the lens of protein structure-function, the importance of integration and quantifi-

cation to scientific methodology is clear. It seems self-evident that, given the increasingly

complexity of the physical systems being studied, the generation of data cannot be a viable

long-term solution. Indeed, in a time when the volume of data and the size of data sets is

growing exponentially, it is imperative that we focus on extracting meaning from that data,

which in turn requires that we, as scientists, be mindful of the increasingly variegated ways

in which both systematic and statistical error can confound our analyses. The development
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of robust computational methodologies to verify and validate our methods and data is

essential, and it seems inevitable that the future of scientific exploration and discovery will

depend on such methodologies that emphasize deeper integration of increasingly powerful

numerical simulations methods and experimental techniques.
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Mathematical details are provided for the simulation of the double-slide model. The
system assumes overdamped Langevin dynamics (Brownian motion) and numerical
integration was performed using a first-order scheme in time. The construction of
the model permits consistent coarse-graining with respect to the number of parti-
cles in a cluster, effectively allowing tuning of the number of degrees of freedom, or
the dimensionality of the configuration space.

B.1 Simulating dynamics in the double-slide model

In the double-slide model, we consider the dynamics of clusters of particles in an
external potential energy landscape. A cluster of size N (an N-cluster) is a collection of N
identical, interconnected particles of mass m, where each particle interacts with the other
N − 1 particles through springs with a force constant k. To produce a simple model, we
assume that (1) particles in a cluster only interact through their springs, (2) particles in a
cluster are identical smooth spheres moving in the Stokes’ flow regime of a Newtonian fluid
of uniform viscosity, and (3) each particle obeys a Langevin equation in the overdamped
regime (Brownian motion).

We use assumption (1) to neglect complicated particle-particle interactions, such as
hard-sphere potentials. Using assumption (2), individual particles are subject to identical
viscous Stokes’ flow drag forces via immersion in a uniform solvent bath. Under all three
assumptions, all particles in a cluster are then subject to the same (Brownian) dynamics,
where each particle interacts identically with a solvent acting as a thermal bath, and where
inter-particle interactions enter only through the external force term in Langevin equation.
All particles in an N-cluster thus have identical collision frequencies and, therefore, fric-
tion/diffusion coefficients. Furthermore, assumption (3) implies that the dynamics are
Markovian, so that particles do not perturb the velocity of the surrounding fluid, and are
thus not subject to memory effects due to the motion of nearby particles—the model ignores
interactions between particles through the solvent bath.

B.1.1 Particle dynamics

Individual particles within a cluster were subject to the equation of motion for Brownian
dynamics [118],

ṙi =
1
ζ
∇iU(r(t)) + Ŵi(t), (B.1)

where r = (r1, . . . , rN) is a 3N-dimensional vector of all particle positions, ri is the position
of particle i, −∇iU(r(t)) = −∂U(r)/∂ri is the non-thermal force on particle i as a function
of all particle positions at time t, ζ is the viscous damping constant, and Ŵ(t) is a stochastic
process. The stochastic term, Ŵ(t), is a delta-correlated, zero-mean, stationary Gaussian
process, 〈

Ŵα(t) Ŵβ(τ)
〉
= 2Dδαβδ(t− τ), (B.2)

where D = kBT/ζ is the diffusion coefficient, and α and β run over all spatial dimensions.
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B.1.2 Numerical simulation

The trajectory of particle i in a cluster was generated using a first-order integration
scheme (cf. Ch. 3.9 of the 2016.3 GROMACS Manual Abraham et al. [118]),

rn+1
i = rn

i +
∆t
ζ
∇iU(rn) +

√
2D∆t Ĝn

i , (B.3)

where a superscript n denotes a time t = n∆t, and −∇iU(rn) is the non-thermal force
on particle i at time step n; Ĝn

i is a random variable representing the nth realization of
the stochastic process—for each spatial component of particle i at each time step n, it was
generated with a Gaussian random number generator having zero mean and unit variance:〈

Ŵn
i,α Ŵm

i,β

〉
= 2D∆t

〈
Ĝn

i,α Ĝm
i,β

〉
= 2D∆t δαβδnm, (B.4)

where α and β run over all spatial dimensions, and n and m are the nth and mth time steps,
respectively.

B.2 Double-slide potential energy landscape

It is prudent to reiterate that the double-slide model’s purpose is to generate “large-
scale” transitions that are induced by an external ramp potential, particularly so that certain
aspects of path similarity analysis (PSA) can be examined. The total potential energy in
Eq. B.3 consists of an external potential and particle interaction terms: U = U(ext) + U(int),
respectively. The external potential is broken into a ramp potential and double-slide
potential, where, for particle i (in a cluster), located at position ri

.
= (xi, yi, zi),

U(ext)(ri) = Uramp(ri) + Uslide(ri) (B.5)

U(ramp) = F zi, (B.6)

U(slide) = Ax2
i + B y2

i
(
y2

i − 2C2) , (B.7)

where A controls the strength of confinement in the x-direction, B and C control the shape
of the slides with y = ±C defining the slide minima in nanometers, and F dictates the ramp
steepness or transition force. The inter-particle potential is modeled by Hookean springs:

U(int)(r) =
1
2

ks

2

N

∑
j 6=i

(
ri − rj

)2 , (B.8)

ks is the inter-particle spring constant.
The ramp potential generates directed progress along the z-coordinate that replicates a

large-scale transition. (Note that although these transitions were produced by forcing center-
of-mass translation in the positive z-direction, one should keep in mind that real transitions
do not necessarily correspond to center-of-mass translations of the system, though they
may be present.) The double-slide potential operates as a means to produce two distinct
pathways at sufficiently low temperatures. The inter-particle springs are independent of
the coarse-graining level and serve to confine particles into compact clusters.
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B.3 Conditions and parameter selection for consistent coarse-graining

As PSA can take advantage of the full configuration space, the double-slide model was
designed in part to test PSA when a system is coarse-grained to reduce the degrees of
freedom. Transitions generated by the double-slide model should therefore be consistent in
some sense across clusters of varying size. To achieve a reasonable coarse-graining scheme,
(1) the transition rate and (2) net diffusivity of a cluster should be independent of its size. In
particular, condition (1) demands that if all particles in a cluster are initialized at precisely
the same location under zero-temperature conditions—so they all move identically under
the external potential—they must transition at a rate independent of the number of particles
in the cluster.

As discussed above, we assume all particles in an N-cluster are identical spheres subject
to Stokes’ flow in the same solvent bath. The Stokes’ (viscous) drag force on a particle of
radius r in a fluid of dynamic viscosity η is

Fdrag = 6πηrU∞, (B.9)

where U∞ is the uniform (far-field) velocity of the surrounding fluid [430], which we treat
as unperturbed by neighboring particles. For the above fluid at temperature T, the Einstein
relation gives the diffusion coefficient,

D =
kBT
mγ

=
kBT

ζ
=

kBT
6πηr

, (B.10)

in terms of, γ, the collision frequency, and ζ = 6πηr, the viscous damping coefficient [473,
474]. The last equality in Eq. B.10 follows directly from Eq. B.9. In the analysis that follows,
we consider an N-cluster, where each particle, i, is subject to the dynamics in Eq. B.1 in the
cases of zero and finite temperature.

B.3.1 Constraints on the friction and potential from zero-temperature dynamics

We first examine conditions for constancy of the transition rate at zero temperature given
identical initial conditions of all particles in an N-cluster (i.e., ri(t) = r0 for i = 1, . . . , N).
Under these conditions, the stochastic term vanishes and Eq. B.1 reduces to

ṙi =
1
ζ
∇iU(r0). (B.11)

Since a transition takes place by traversing a set length of the slides along the z-coordinate,
the transition rate depends only on the z-component of the velocity in Eq. B.11. Furthermore,
the velocity will depend only on the ratio of the magnitude of the gradient of the external
potential and the friction coefficient, ζ. Thus, under coarse-graining, we are permitted to
change ζ and U for the CG particle so long as they are scaled by the same factor.

One may appeal to the necessity of conserving mass under coarse-graining so that
the CG particle mass is the sum of the masses in the N-cluster. In this case, the friction
coefficient of the CG particle should be N-times larger than those of the individual N-cluster
particles. However, the diffusion coefficient for the CG particle will decrease by a factor of
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N, which will change the dynamics at finite temperature when the stochastic term is non-
vanishing. We keep the general analyses above in view before deciding on an appropriate
scaling factor for ζ (or, equivalently, D) as we proceed to the finite-temperature case.

B.3.2 Diffusion constraints from finite-temperature dynamics

To derive more general CG constraints at finite temperature, we further require the net
diffusive behavior of the CG particle to match its N-cluster. Indeed, if the diffusion coeffi-
cient in Eq. B.3, which is proportional to the average squared displacement, is preserved,
then the average velocity and, thus, average transition rate will also be preserved.

We consider replacing an N-cluster of total mass M by a CG particle positioned at the
center of mass of the cluster, where

r̄(t) =
1
M

N

∑
i=1

miri(t) =
1
N

N

∑
i=1

ri(t), (B.12)

is the center of mass, and

˙̄r(t) =
1
N

N

∑
i=1

ṙi(t) (B.13)

is the center-of-mass velocity. We formulate our constraint on the transition rate to be
equivalent to requiring that the diffusion of the CG particle be identical to the net diffusion
of center of mass of the N-cluster it replaces.

To see how coarse-graining modifies the dynamics, we take Eq. B.1, sum over all
particles in the cluster, and divide by N, to obtain the center-of-mass equation of motion for
an N-cluster:

˙̄r(t) =
1
ζ

1
N

N

∑
i=1

∇iU(r(t)) +
1
N

N

∑
i=1

√
2D Ĝi(t), (B.14)

where ζ and D are the friction and diffusion coefficients of each particle, and
√

2D Ĝi(t) =
Ŵi(t). We can simplify the equation of motion by working individually with each term on
the right-hand side.

Potential term. The external potential, U(ext), is a linear function of the positions and
takes the same form for each particle, but the inter-particle potential, U(int), includes nonlin-
ear cross terms. To simplify the analysis, we begin by assuming the particles in the N-cluster
are initialized at a single point and are rigidly connected. Then R(t) = r1(t) = · · · = rN(t)
for all t. We furthermore allow the spring potential to remain constant in the limit as ks → ∞
and (ri − rj)

2 → 0 for all i and j. Under these conditions, U and its gradient become linear
functions of the positions, so that the force on each particle i,

∇iU(r) = Fi(r̄), (B.15)

depends only on the center-of-mass coordinate; the potential term in Eq. (B.14) then becomes

1
ζ

1
N

N

∑
i=1

∇iU(r) =
1
ζ

1
N

N

∑
i=1

Fi(r̄) =
1
ζ

F̄(r̄), (B.16)
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where F̄(r̄) is the average of the individual forces acting on the particles, which acts at the
center of mass of the N-cluster. We consider scenarios where the particles have arbitrary
locations and nonzero inter-particle forces in the subsequent section.

Thermal noise term. The second term on the right hand side of Eq. B.14 can be viewed
as the average of N realizations of the stochastic process Ĝi. Alternatively, it is the average
of the partial sum of N independent, identically distributed (iid) random variables, ŜN =

∑N
i=1 Ĝi. The mean and variance of ŜN is the sum of the means and sum of the variances,

respectively, of the Ĝi. Furthermore, since the Ĝi are iid Gaussian random variables, ŜN
and M̂N = ŜN/N are also a Gaussian random variables, with zero mean and respective
variances N and 1/N. Using the central limit theorem, we replace the stochastic term in
Eq. B.14 with a new stochastic process,

M̂(t) =
1
N

N

∑
i=1

Ĝi(t), (B.17)

where 〈
M̂α(t) M̂β(τ)

〉
=

1
N
〈

Ĝα(t) Ĝβ(τ)
〉
=

2D
N

δαβδ(t− τ). (B.18)

Therefore, the center-of-mass motion of an N-cluster due to N independent, identical
stochastic processes acting on the particles is statistically equivalent to a single stochastic
process with a rescaled diffusion coefficient, D(com) = D/N, acting on the center of mass of
the particles.

Coarse-grained equation of motion. By Eq. B.18, we can write the stochastic term in
terms of Ĝi(t) with a rescaled diffusion coefficient. Combining this with Eq. B.16, the
expression for the center-of-mass dynamics of a rigid N-cluster becomes

˙̄r(t) =
1
ζ

F̄(r̄(t)) +

√
2
(

D
N

)
Ĝi(t). (B.19)

We see that the center-of-mass diffusion is smaller than the individual particle diffusion
by a factor of N. If one were to replace the cluster with a CG particle at the center of mass
of an N-cluster using the same diffusion coefficient D, as for each of the particles, the CG
particle would diffuse too quickly. The CG particle’s diffusion coefficient should thus be
scaled by N so that D(CG) = D(com) = D/N to preserve the rate of diffusion and, thus, the
transition rate.

To maintain the proper relationship between the friction and diffusion coefficients
through Eq. B.10, the new friction coefficient must also be increased by a factor of N:
ζ(CG) = Nζ. However, the external force must in turn be increased by a factor of N to ensure
the external force on the CG particle is the same as the net force on the corresponding
N-cluster. Thus, if we begin with an N-cluster under forces Fi(r), with diffusion coefficient
D and friction ζ, the equation of motion for the CG particle should be

Ṙ(t) =
1

ζ(CG) F(CG)(R(t)) +
√

2D(CG) Ĝ1(t), (B.20)

where R(t) is the position of the CG particle at time t, D(CG) = D/N = kBT/ζ(CG), and
F(CG)(R) = F1(R) (where we picked i = 1 to denote terms identical to quantities for any
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single particle in the cluster). The new friction coefficient, ζ(CG), is additionally consistent
with the previous consideration of conserving particle mass under coarse-graining:

ζ(CG) = Nζ = (Nm)γ = m(CG)γ, (B.21)

where the mass of the CG particle, m(CG) = Nm = M, is the sum of the masses of the
individual (identical) particles. Furthermore, we see that the collision frequency, γ, can be
held fixed across simulations at all levels of coarse-graining.

B.3.3 Deviations from rigid-cluster coarse-grained behavior

It is clear that F(CG)(R) = F1(R) = F̄(R) (averaged over all particles i) in the case where
all particles are constrained to the same point for all time. This assumption guarantees
the linearity of the potential energy function. Our simulation system on the other hand
has finite inter-particle spring constants and an N-cluster will tend to have its constituent
particles wandering to some degree. If the single-point, rigid-cluster assumption is relaxed,
we can then ask under what conditions the force on the center of mass is well-approximated
by the average of the individual particle forces.

If all particles are located at different positions, then they will see different parts of the
external potential and will also have nonzero inter-particle forces between them. However,
due to Newton’s third law these inter-particle forces sum to zero and do not contribute to a
force acting on the center of mass. On the other hand, the sum of the external forces on all
particles will not generally be equal to the gradient of the external potential evaluated at
their center of mass. Now consider replacing an N-cluster with a CG particle that feels N
times the force of a regular particle at the same point: F(CG)(r∗) = NF1(r∗). In this case, the
net force on the N-cluster (at its center of mass) is, in general, different than the force on the
CG particle due to the external potential (at the center of mass):

F(CG)(R) = −N∇RUext(R) 6=
N

∑
i=1

Fi(r) = −
N

∑
i=1

∇iUext(ri) (B.22)

In particular, Eq. B.22 will occur when the external potential Uext has non-vanishing second
(or higher) derivatives, i.e., the external force is not a constant function of position.

These statements can be made more precise by first transforming to coordinates relative
to the center of mass and writing the positions as

ri = ∆ri + R, (B.23)

where ∆ri is the displacement vector of the ith particle relative to the center of mass. The
total external force,

F(total) =
N

∑
i=1

Fi(ri) =
N

∑
i=1

Fi(∆ri + R), (B.24)

can then be expressed, for small displacements in ∆ri, as a Taylor series expansion about
the center of mass,

N

∑
i=1

Fi(∆ri + R) =
N

∑
i=1

[
Fi(R) +

∂Fi

∂ri
· ∆ri + O

(
∆r2

i
)]

. (B.25)
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For sufficiently small displacements, the product ∂Fi
∂ri
· ∆ri can be dropped, giving

F(total) ∼
N

∑
i=1

Fi(R). (B.26)

In the case that the (external) forces are derivable from a potential function, Eq. B.26 holds
when the second derivatives of the potential are small.

If we assume the particles are sufficiently proximate at time t such that ∇iU(r(t)) can be
treated as approximately constant across the space occupied by the N-cluster, then coarse-
graining according to the above prescription will approximately preserve net diffusion to
first order in the displacements, ∆ri, of the particles. Under this condition, the total force on
the cluster can be approximated by the external force on the CG particle. For the form of
the potential in Eq. (B.7), we expect diffusive behavior orthogonal to the z-coordinate for
an N-cluster to deviate from that of the CG particle since the potential is nonlinear along
those directions. However, as our transition rate is determined by the constant-gradient
potential in the z-direction in Eq. (B.6), the transition rate will be statistically identical for
CG particles if the same identical initial conditions as the N-clusters are used. This is the
key result that assures the average transition rate is unchanging with respect to N.

B.4 Double-slide simulation parameters

We emphasize that the double-slide system was designed to produce noisy, non-trivial
trajectories to test PSA and the path metrics. The parameter values used for the double-slide
simulations, while guided by realistic physical systems, were determined in part by our
coarse-graining constraints and practical considerations (i.e., numerical stability of the
integrator, simulation time, number of simulation steps, etc.).

Table B.1 summarizes the parameters used for simulations of single- and eight-particle
molecules. The potential was constructed to produce potential energy changes on the
order of (or less than) 10 kJ/(mol Å) with a time step then chosen as large as allowed
by the numerical stability of the integrator. The friction coefficient, γ, was heuristically
chosen to reflect typical values using water as a solvent, which can range from 0.1–100 ps to
depending on the solute of interest [381, 475–477]. Spring constants, which approximate
bond strength, are usually on the order of 0.1–10 kJ/(mol Å

2
) [205, 478, 479] and were set

to within an order of magnitude of values used in the literature.
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Table B.1: Double-slide model parameters for one- and eight-particle molecules.

Potential landscape parameters Dynamical parameters

N A∗

(kJ/(mol nm2))
B∗

(kJ/(mol nm4))
C

(nm)
F∗

(kJ/(mol nm))
ks

(kJ/(mol nm2))
γ†

(ps−1)
m∗

(Da)
∆t‡

(fs)

1 30.0 12.18 0.8 7.5 — 50.0 10.0 0.5-2.5
8 3.75 1.523 0.8 0.9375 41.84 50.0 1.25 0.5-2.5

Simulations were performed in 50 K steps from 0 K to 500 K, and also at 600 K. Values for N = 8
are either unchanged from the N = 1 case or scaled down by a factor of eight to produce (zero-
temperature) center-of-mass dynamics corresponding to single-particle dynamics. A controls x-direction
confinement, B and C control the slide shape, with y = ±C being the slide minima in nanome-
ters, and F is the ramp steepness. The collision frequency, γ, was the same for all systems, but
particle masses (and friction coefficient, ζ = mγ) were scaled to keep total cluster mass constant.
* Value of parameter was scaled inversely proportionally to N.
† Constant collision frequency; friction coefficient, ζ = mγ, scales proportionally to the particle mass, m,
and particle number, N.
‡ Time steps were chosen to mitigate simulation time while maintaining integrator stability for a given
temperature. Values for N = 8 are either unchanged from the N = 1 case or scaled down (by a factor of
eight) to match the (zero-temperature) center-of-mass dynamics corresponding to one-particle systems.
Simulations were performed in 50 K steps from 0 K to 500 K, and also at 600 K. Time steps were chosen
heuristically at each temperature to balance simulation length and stability of the integrator.
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APPENDIX C

PATH-SAMPLING METHODS USED IN THE ADK COMPARISON
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A summary of the transition path generating algorithms, used in the comparison of
sampling methods, is provided for convenience. We summarize the key aspects of
each of the physical models and path generating algorithms to help lay the ground-
work for connecting algorithmic/model differences to differences between the re-
spective transition paths that were produced.

C.1 Overview

The sampling methods used to generate paths were selected primarily among those
available on publicly accessible servers. DIMS-MD [172, 174] and FRODA [180] trajectories
were generated in-house to produce large AdK and DT path ensembles, which was not
feasible for the other methods through their web server interfaces. Table C.1 summarizes
the primary references and web server locations for each method. It is urged that readers
interested in further details about the methods refer to the original published articles for
complete descriptions.

Table C.1: Primary references and public web servers (if available) for methods employed in path-sampling
comparison.

Name Reference Web server∗ Adjusted parameter†

DIMS Perilla et al. [174] – re-run
FRODA Farrell, Speranskiy, and Thorpe [180] http://pathways.asu.edu re-run
MDdMD Sfriso et al. [298] http://mmb.irbbarcelona.org/MDdMD/ re-run
GOdMD Sfriso et al. [223] http://mmb.irbbarcelona.org/GOdMD/ relax: 20,50,80 ps
rTMD Ferrara, Apostolakis, and Caflisch [480] – k, pull spd, re-run
ANMP Das et al. [299] http://anmpathway.lcrc.anl.gov/anmpathway.cgi/ cutoff: 12,15,18 Å
MAP Franklin et al. [218] http://lorentz.dynstr.pasteur.fr/joel cutoff: 7,10,13 Å
MENM Zheng, B. R. Brooks, and Hummer [208] http://enm.lobos.nih.gov/start_path.html cutoff: 8,10,12 Å
iENM Tekpinar and Zheng [209] http://enm.lobos.nih.gov/start_ienm.html cutoff: 8,10,12 Å
Morph Krebs and Gerstein [176] http://molmovdb.org/cgi-bin/submit.cgi fit/min, fit, none
LinInt – – –

The methods used to generate transition paths are given with their primary references and corresponding
URL for submitting jobs. Three different transitions were generated per method (except LinInt) by adjusting
a single parameter to three different values; Morph transitions were produced by varying input structure
superimposition and energy minimization settings. The URL of the server for FRODA is shown in red to
indicate that the site was down at the time of writing.
* Web server: URL of job submission page
† Adjusted parameter: re-run, initial conditions automatically randomized; relaxation, relaxation window in
picoseconds; k, spring constant; pull spd, speed of equilibrium position of moving restraint; cutoff, spring
cutoff distance in Å; fit, superimposition of input structures; min, energy minimization (adiabatic mapping).

DIMS, MDdMD, and GOdMD are all non-deterministic dynamical algorithms that
implement importance sampling in the form of a soft-ratcheting Metropolis condition,
although MDdMD and GOdMD are hybrid methods that also incorporate additional
biasing based on normal mode information derived from coarse-grained potentials. The
FRODA algorithm is dynamical and deterministic, but can be made stochastic by turning
on a random motion setting that performs a random displacement/rotation of each rigid
subunit prior to each step. The five ENM-based methods (counting MENM-SD and MENM-
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SP separately) are all based on double-well anisotropic network models, but use different
approaches to generating a single (mixed) potential, and how they generate a minimum
energy path. MAP is unique in that it solves for the path that minimizes the Onsager-
Machlup action subject to Brownian dynamics boundary conditions, whereas the other
ENMs find steepest descent or saddle point paths.

C.2 Transition path methods details

DIMS MD [172, 174] employs an informational criterion to bias a transition toward a
target structure. Here we use DIMS MD with the soft ratcheting algorithm together with
Langevin dynamics and the Analytical Continuum Electrostatics (ACE) model to generate
stochastic MD steps in an implicit solvent bath, as described previously [40]. A 1 fs time
step was used with a collision frequency (damping coefficient) of 25 ps−1. Steps toward
the target (measured using heavy-atom rmsd-to-target as the progress variable) are always
accepted, while steps increasingly farther away from the target are accepted with decreasing
probability according to a Boltzmann distribution of the square of the order parameter. Soft
ratcheting has emerged as a robust approach to ensure overall progress toward the target
structure while retaining the capability to back out of energetic dead ends [40, 174].

FRODA [180] advances proteins toward a target structure by incrementally reducing the
rmsd while enforcing steric constraints. Random paths are produced by introducing random
perturbations to the orientation of one side chain per simulation step. Contact constraints
shared by the initial and final conformations were preserved throughout the simulations,
while non-common contacts were allowed to be broken and/or formed. Contacts were
defined as atom pairs falling within an 8 Å cutoff radius.

Both MDdMD [298] and GOdMD [223] employ deterministic discrete MD to quickly
sample large regions of configuration space; for each simulation a sub-sequence of configu-
rations is dynamically constructed by selecting conformer snapshots on the fly according
to a Metropolis-like Monte Carlo (MC) procedure combined with informational criteria.
The sub-sequences represent physically plausible transition paths. In both approaches,
progress is driven toward a final state using an soft ratcheting-like algorithm. MDdMD
further selects pre-accepted snapshots based on the degree of eigenvector overlap with
the essential transition vector. The essential transition vector is computed (via NMA of a
Gō-like potential) using primarily the initial state. GOdMD differs in that it employs an
ENM-metadynamics method to bias proteins away from the initial energetic well.

The MDdMD method employs simplified or multi-step square potentials for bonded
interactions at the atomic level. Solvent, van der Waals, and electrostatic forces are modeled
using two-step square wells for attractive interactions and soft barriers for repulsion.
GOdMD is based on a Cα representation. Square wells define the physical chemistry while
a multi-well Gō-like potential describes non-bonded interactions. For both methods the
initial velocities are randomized so that separate runs generate distinct trajectories. The
three GOdMD trajectories were produced, however, by varying the relaxation window:
20 ps, 50 ps, and 100 ps.

The rTMD [480] (restrained TMD) method resembles the original TMD algorithm which
was based on a time-dependent holonomic constraint that moves linearly toward a target
structure; in the rTMD variation, a moving harmonic restraint is used instead. As with

208



DIMS, the rTMD method requires a progress variable in the form of an atom selection for
biasing. rTMD simulations were set up to mimic DIMS simulations as closely as possible:
the heavy-atom rmsd-to-target progress variable was used for biasing and rmsd fitting;
we used Langevin dynamics with an identical time step and collision frequency, and the
Generalized Born implicit solvent as implemented in the NAMD simulation code [352]
with a matching time step, collision frequency. During each time step, the equilibrium
position of the harmonic restraint is moved a fixed amount by decreasing the rmsd to the
target conformation. We generated six transitions in total, three for each of the following
settings (using velocities randomly sampled from the Maxwell-Boltzmann distribution):
three fast-pulling simulations with k = 4.184× 105 kJ mol−1 Å

−1
and ∼ 1 Å ps−1 pulling

speed; three slow-pulling simulations with k = 4.184× 103 kJ mol−1 Å
−1

and ∼ 0.01 Å ps−1

pulling speed.
Using the Cα positions of an initial and final structure, the CG-EN models examined

here construct two energetic potentials around the respective states. The separate potentials
are then combined (e.g. through a heuristic mixing rule) to form a double-well potential
that models the energy landscape of the configuration space spanning the two states. A
path is generated from the double well potential using, for instance, a minimum energy
path (MEP) approach. The ANMP [299] algorithm constructs two anisotropic network
models (ANM) about their respective end states, iteratively searches for transition state
defined as the minimum energy structure lying on the cusp hypersurface of a combined two-
state potential, and performs two steepest descent (SD) minimizations from the transition
state to generate a sequence of conformers that represent a conformational path. Three
transitions were generated using the following spring cutoff distances: 12 Å, 15 Å, and
18 Å. Similarly, MAP [218] generates a separate ANM potential around each end state. The
MAP transition is generated by first minimizing the Onsager-Machlup action assuming
overdamped Langevin dynamics, then the resulting deterministic equations are solved
analytically for positions and velocities using appropriate boundary conditions. Spring
cutoff distances were set to 7 Å, 10 Å, and 13 Å.

The AD-ENM Web Server [208, 209] offers two approaches to generating ENM transi-
tions. Like the ANMP and MAP models, both approaches are based on ANM representa-
tions of the initial and final protein configurations. The MENM of the PATH-ENM server
generates a double-well potential from a predefined mixing function. The energetic minima
and saddle points (SPs) are computed and transitions are generated in one of two ways:
(1) The steepest descent (SD) paths about each SP; (2) The path tracing the minima and
SPs. The iENM server exploits the independence of the equation for the minima and SPs
on the detailed form of the mixing function. An iterative procedure is used to solve for
the universal minimum-energy path (MEP) through the SPs of an arbitrary double-well
potential that includes a predefined steric collision energy. Three distinct transitions for
each method were produced using an 8 Å, 10 Å, and 12 Å spring cutoff distance.

The Morph [176] servers generate transitions using adiabatic mapping, which combines
simple linear interpolation (between two structures) and CHARMM-based energy mini-
mization to reduce severe steric clashing. Two transitions were generated using stepwise
energy minimization: one transition used the ‘superimpose before morphing’ option, while
the other relied on our CORE alignment procedure (described in S4 Text), allowing us to
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compare possible path differences arising from structural pre-alignment. A third transition
without both energy minimization and superimposition was also performed.

We also generated a zeroth-order transition path using naive linear interpolation
(LinInt). The path is defined by a sequence of evenly spaced conformers lying along
the line formed by the separation vector between the Cα representations of the initial
and final states. We used LinInt as a convenient reference path for the comparison of the
higher-order methods.

C.3 Similarities between DIMS-MD and ABMD

There is an MD-based method, going by several names, that uses a ratchet-and-pawl
approach, where a one-sided harmonic potential guides a simulation toward a target
structure, much like SRA in DIMS; it has been referred to as adiabatic bias molecular
dynamics (ABMD) [189], biased MD (BMD) [481], and ratcheted MD [190]. There are
several subtle differences between the ABMD algorithm and SRA, the most important one
being that ABMD introduces an explicit bias force into the molecular potential along the
progress variable with a harmonic form

Vrat(ρ(t)) =

{
0, ρ(t) ≤ ρm(t)
(ρ(t)− ρm(t))

2 , ρ(t) > ρm(t),
(C.1)

where ρ(t) = d2
RMS

(
X|XF) is the mean-squared distance to the target (similar to Eq. 2.2)

and ρm(t) = min0≤τ≤t{ρ(τ)} is the equilibrium value of the harmonic potential; ρm(t)
takes on a value that corresponds to the smallest value of ρ(t) that occurred over the entire
simulation (up to the current time), which is to say that the potential moves (all the way)
up to the point at which the simulation was nearest the target. ABMD thus also differs
from DIMS in that the potential bias Vrat moves up to and remains at the point of maximum
progress (the pawl aspect prevents Vrat from moving backward), while the SRA algorithm
“follows” the simulation along both forward and backward steps. However, both methods
are similar in the following way: Vrat will sample backward steps when ρ(t) > ρm(t) with
the Boltzmann-weighted probability exp (−ρ2/kBT), which matches the form of pacc (when
∆φ > 0). In the adiabatic limit (and ignoring the pawl aspect of ABMD for the moment
to match DIMS, so that ρn+1

m = ρn, where n is the current step), the bias potential Vrat in
ABMD generates a distribution identical to pacc when we set (∆φ0)2 = kBT, with ABMD
generating an purely enthalpic force and DIMS an purely entropic force.
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In this addendum, the best-fit RMSD is discussed as it pertains to the application of
the path metrics used in this dissertation. Theoretical considerations are discussed,
motivating the means by which the structural alignment of the AdK and DT systems
were carried out prior to applying PSA.

D.1 Best-fit rmsd as a point metric

In general, a simulation snapshot will be a (protein) structure having an arbitrary
orientation and center-of-mass translation. Since the rmsd between two conformations of
the same structure will depend on their relative orientation and separation, it is necessary to
employ an alignment procedure to ensure a unique rmsd will be computed for the pair. The
best-fit rmsd between a structure pair is computed by first aligning the centers of mass and
finding the rotation (matrix) that minimizes the rmsd. Though this approach is common,
we discuss several reasons why the best-fit rmsd may not be the best choice of point metric
for PSA.

To perform PSA of a collection of transition paths, we must compute path similarities
for all unique pairs of paths. For each pair of paths P and Q, there are p and q snapshots,
respectively. Using the rmsd as the point metric, the Hausdorff and Fréchet distance
between P and Q both require pq rmsd calculations. If the best-fit rmsd is to be used, then
pq optimizations must be performed, corresponding to pairwise alignment of all unique
pairs of structures between P and Q.

While it may be thought that computing the best-fit rmsd be computed on a pairwise
basis, there are two drawbacks to this approach: The first issue has to do with computa-
tional cost, as rmsd optimization, though relatively fast using the Quaternion Characteristic
Polynomial (QCP) algorithm [482, 483], can quickly become computationally expensive.
Given N transition paths, each having s snapshots, to be compared with PSA, there are
N(N − 1)/2 unique path comparisons. For each comparison (of two paths), there are s2

unique pairs of conformers, one conformer each, between them. The pairwise best-fit rmsd
approach would then necessitate N(N − 1)s2/2 optimizations: the cost grows proportion-
ally to the product of square of the number of paths and the product of the numbers of
time steps in each pair of paths. Comparing an ensemble of hundreds of trajectories, each
composed of hundreds of conformer snapshots, can easily demand upwards of a billion
best-fit rmsd optimizations. The second problem is that the pairwise-minimal rmsd will
not generally preserve the triangle inequality and thus will not behave as a proper metric
on configuration space [295]. Intuitively, it can be seen that, since a triplet of trajectories
will have three unique rotational alignments between each of the three combinations of
unique trajectory pairs, and since each rotation depends only on the trajectories in the pair,
pairwise-minimal rmsd measurements need not obey the transitive property and can thus
violate the triangle inequality.

The Hausdorff and Fréchet metrics are only proper metrics provided that they are
defined in terms of a (proper) point metric. Thus, Hausdorff and Fréchet calculations will
not preserve metric properties if the best-fit rmsd is used. One may argue that the metric
requirement may be relaxed for the path metrics without affecting the quality of results. It is
also possible that there are benefits to using the best-fit rmsd to maximize consistency with
its use in the literature. We were nevertheless able to obtain sensible and consistent results
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using heuristic alignment schemes (discussed next) that preserve all the properties of a
metric. Although the relationship of structural similarity measures and PSA is interesting
and likely worth further examination, it is out of the scope of this paper.

D.2 Alignment procedures used in study

To mitigate computational costs, our current implementation of PSA utilizes a pre-
alignment procedure: for each path, the rotation matrix Ri that minimizes the rmsd between
frame i and a single reference structure is computed, then used to rotate frame i. Thus, the
alignment of all conformer snapshots in a path P to a pre-defined reference structure scales
linearly with respect to the number of snapshots, p, in a path, whereas pairwise alignment
scales quadratically. Given a path ensemble, a single reference structure common to the
entire ensemble is used as the basis for aligning each conformer in each path. Although
a poor choice of reference structure may be suboptimal, we found that our procedure
produces sensible results at much reduced computational cost and complexity. Furthermore,
the use of a single reference structure for the structural superposition preserves the triangle
inequality for the point metric and thus imbues δH and δF with the qualities of a proper
metric for paths.

D.2.1 AdK trajectory alignment

In the special case of AdK, since the conformational motion is known to be primarily
confined to the NMP and AMP domains and the hinges connecting them to the CORE
domain, we chose to align the CORE domain of each intermediate conformation to the
average of the aligned CORE Cα coordinates (using the best-fit rmsd) of the 1AKE:A and
4AKE:A structures with the center of mass of the averaged CORE at the origin. We chose to
use the average CORE Cα coordinates as a putative reference structure to reduce the align-
ment bias of intermediate snapshots residing closer to one of the boundary conformations
than the other. The alignment procedure, in the context of the comparison of transition path
methods, is demonstrated in the example Python script psa\_full.py in the PSA tutorial,
which is available as open source at github.com/Becksteinlab/PSAnalysisTutorial under
the GNU General Public License 3.

To align a given AdK conformer snapshot, it was translated so that the center of mass of
its Cα CORE atoms coincided with the origin. All of the atoms of the conformer were then
rigidly rotated according to the rotation matrix that generated the best-fit rmsd between
the conformer’s Cα CORE and the (Cα-CORE) reference structure, using the QCP algorithm
[482, 483] implemented in MDAnalysis [272]. The entire structure of each snapshot in
each path, for all paths in a transition path comparison, was translated and rotated so
as to align each Cα-CORE region to the reference Cα-CORE coordinates. Path metric
calculations were then performed on the set of aligned paths, where for each structural
comparison, the Cα rmsd was directly computed without any further rotation/alignment.
In the hypothetical case where the Cα CORE domains of two intermediate conformers
have coordinates identical to the reference coordinates, the Cα rmsd between the (entire)
intermediate structures will be solely due to Cα deviations in the LID and NMP domains.
Therefore, this alignment procedure produces rmsds reflecting residue displacements in the
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mobile LID and NMP domains, and not the CORE domains. In the case of the path-sampling
methods comparison, structural rmsd measurements were made once CORE domains were
aligned. The comparison between DIMS and FRODA used the same alignment protocol
outlined above with the added step of translating the center of mass of all conformer
snapshots to the origin (instead of just the CORE). This was done in part to lower the rmsd
and path distance measurements further to see if the effectiveness of the Hausdorff pairs
comparison would be reduced; our results suggest that Hausdorff pairs analysis is still
viable.

D.2.2 DT trajectory alignment

We found that a satisfactory alignment procedure for DT transition paths was achieved
by using the average Cα coordinates of the full 1MDT:A and 1DDT:A structures to generate
a reference structure. The DT path ensembles were otherwise aligned in an identical manner
to the AdK ensembles: each conformer snapshot for each path was aligned to the reference
prior to calculating path similarities; after aligning each path, the rmsd between conformers
in different paths without any further rotations/alignments was used as the point metric.

Although DT is conceptualized as having a mobile Receptor-binding (R) domain that
moves relative the Catalytic (C) and Translocation (T) domains, it was not amenable to the
alignment procedure we used for AdK (see Fig. 4.5 in the main text). If we were to carry out
an analogous procedure, we must align the Cα atoms corresponding to the C and T domains
in the 1MDT:A and 1DDT:A end structures. The average coordinates of the 1MDT:A C/T
Cα atoms and 1DDT:A C/T Cα atoms would then be then be used as the reference structure
to which individual conformers would be aligned. We found, however, that the procedure
produced larger Hausdorff and Fréchet distances than when simply aligning the Cα atoms
of entire conformers to either of the end structures.

The reason that C/R domain alignment performs poorly is likely due to a confluence
of several factors. First, the C and T domains were seen to fluctuate greatly throughout
DIMS and FRODA simulations and were not static to the same degree as the AdK CORE.
Second, the overall shape of the C and T domains taken together is somewhat cylindrical
with an approximate axis running through both, while the R domain is displaced mostly
orthogonally from this axis. A structure aligned to this region may be rotated relative
to another in the sense that its R domain has been swung around the cylindrical R/C
domains during alignment. R domains will therefore tend to be displaced if only the C
and T domains are used to produce a reference. After alignment, the rmsd becomes too
sensitive to the orientation of the R domain about the T and C domain. In the case of using
the entire structure to produce reference coordinates, alignment is sufficiently constrained
about the T/C “axis” to prevent erroneous R domain displacements.
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ON SELECTING AND VALIDATING HIERARCHICAL CLUSTERING LINKAGES
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In this addendum we mention qualitative and quantitative considerations in select-
ing the Ward linkage criterion for hierarchical clustering, in the context of other
linkage criteria. Some comments on potential data interpretation pitfalls when per-
forming general cluster analyses are provided with a view toward viable approaches
to PSA cluster and data validation.

E.1 Hierarchical clustering and linkage criteria

Since we use PSA to generate a distance (proximity) matrix (of all path pairs), cluster
analysis is directly amenable as a mode of exploratory data visualization. One approach
that requires little external input is agglomerative hierarchical clustering, which generates a
binary tree (dendrogram) depicting the relationships between objects and clusters.

The similarity between one object (a singleton cluster) and another is specified directly
by the distance matrix, while a linkage defines a general inter-cluster distance as a function
of the pairwise distances of the individual objects (in the clusters). A given linkage will
emphasize certain features of the distribution(s) underlying the objects and choosing a
good linkage may depend on a confluence of factors. In general, a linkage should generate
a clustering that corresponds well with the original distance matrix while highlighting
potentially relevant patterns in the data. We summarize below—in the context of transition
paths—several linkage algorithms that we applied. The linkages were implemented using
the SciPy clustering package and are also described in the SciPy Reference Guide online
[289]. R. Xu and Wunsch [484] also provides alternative definitions and descriptions of the
linkages, as well as a general overview of hierarchical clustering.

E.1.1 Ward linkage

Ward’s (minimum variance) method is motivated by the statistical analysis of variance
between distributions. A candidate object will be grouped with the cluster whose sum of
squared errors increases the least upon the object’s inclusion [484]. The inter-cluster distance
for Ward linkage between clusters u and v, where u is constructed from two sub-clusters, s
and t, is

d(u, v) =

√
n(s) + n(v)

N
d2(s, v) +

n(t) + n(v)
N

d2(t, v) +
n(v)

N
d2(s, t), (E.1)

where d is the inter-cluster distance, n(∗) is the cardinality of (numbers of paths in) cluster
∗, and N = n(u) + n(v) = n(s) + n(t) + n(v) is the total number of paths. The definition is
recursive in that the distance between two clusters is defined in terms of distance between
their constituent clusters. The first two terms under the square root give the fractional
contributions of paths in sub-clusters s and t to the overall distance. The third term is a
distance “penalty” that is proportional to the relative size of v, n(v)/N, and the “spread”
of u, δ2(s, t), which is the squared distance between its sub-clusters. Under Ward linkage,
the clustering procedure, which during each pass seeks the two clusters with the smallest
distance, will tend to agglomerate small, compact clusters [484, 485].
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E.1.2 Other linkages

Single linkage. Also called the Nearest Point Algorithm, single linkage defines the
distance between two clusters of paths as

d(u, v) = min
(
δ(ui, vj)

)
, (E.2)

u and v, and ui and vj are the ith and jth paths in clusters u and v, respectively.
Complete linkage. Similar to single linkage, complete linkage (Farthest Point Algo-

rithm) defines inter-cluster distance as

d(u, v) = max
(
δ(ui, vj)

)
. (E.3)

Average linkage. Also called the Unweighted Pair Group Method Average (UPGMA),
average linkage defines the distance between clusters as

d(u, v) =
1

n(u) · n(v)

n(u)

∑
i=1

n(v)

∑
j=1

δ(ui, vj), (E.4)

In other words, the distance between u and v is the average distance between a path in u
and a path in v. Average linkage can also be defined recursively in terms of two sub-clusters,
s and t, comprising u:

d(u, v) =
1

n(s) + n(t)
[n(s)d(s, v) + n(t)d(t, v)] . (E.5)

The contributions of s and t to the distance, d(u, v), between u and v are proportional to
their relative sizes so that each path contributes equally to the cluster distance, d.

Weighted average linkage. The Weighted Pair Group Method Average (WPGMA) or
weighted average linkage is defined recursively as

d(u, v) =
1
2
[d(s, v) + d(t, v)] . (E.6)

Weighted average linkage gives equal importance to sub-clusters s and t, regardless of the
number of paths in each. Thus, if s contains half the number of paths in t, a path in s will
have twice the weight as a path in t in contributing to the inter-cluster distance, d(u, v).

E.2 Examining cluster quality

Although analyzing in depth the consequences of using different linkages was out of the
scope of this study, we produced four additional Fréchet heat map dendrograms (see Fig. S5)
for the path-sampling methods analysis using the single, complete, average, and weighted
average linkages to perform a basic comparison. The structure of each dendrogram is a
function of the linkage algorithm, although it can be difficult (and tricky) to draw strong
conclusions about the underlying data.
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E.2.1 Quantitative measures

The cophenetic distance is a measure of correlation between the original distance matrix
and the distances between objects according to the inter-cluster distances assigned by a
given linkage. To obtain an approximate measure of the quality of cluster divisions, we
examined the inconsistency coefficients for clusters containing more than two children (i.e.,
ignoring singleton clusters and clusters with vanishing inconsistency coefficients). We also
computed the maximum inconsistency coefficients for each linkage, where the coefficient
for a given cluster is the largest of the coefficients between itself and its children [289, 485].

We computed cophenetic distances for the clusterings produced by each linkage. To
concisely examine the inconsistency coefficient data, we averaged the (nonzero) values
for each linkage; we likewise computed the average of the maximum inconsistencies for
each linkage. There were eleven clusters with inconsistency coefficients of zero among
the non-singleton clusters, which were excluded from both averages. The three values
computed for each linkage are summarized in Table E.1.

Table E.1: Summary of the computed clustering-quality measures for each linkage for the methods comparison
of Fréchet distances.

Linkage Cophenetic Distance Inconsistency Coefficient Statistics
Average* Maxima average†

Ward 0.78 0.86 0.93
single 0.85 0.75 0.80
complete 0.82 0.88 0.92
average 0.85 0.85 0.91
weighted 0.86 0.83 0.91

A cophenetic distance near zero indicates that the overall clustering poorly reflects
the actual pairwise distances between the paths, while values close to unity indicate
a viable—but not necessarily good—clustering. All linkages produced clusterings with
adequate correspondence. A large inconsistency coefficient indicates that the height
of the link corresponding to a cluster is large compared to the average link heights of
its children, which in turn indicates that the two child clusters joined at this level are
dissimilar. Clusters (links) having larger inconsistency coefficients have more distinct
child clusters.
* Average of the nonzero inconsistency coefficients computed for non-singleton clusters.
† For each non-singleton cluster along with its descendents, find the maximum inconsis-
tency coefficient, take the average of the nonzero maxima.

E.2.2 Selecting a linkage criterion

Inter-cluster distances will tend to be smaller for a single linkage than a complete linkage,
since the former defines inter-cluster distance as the minimum (rather than maximum) inter-
point distance. As a result, fluctuations due to measurement uncertainty will be relatively
larger for single linkage, making it more susceptible to noise and a “chaining” effect that
can produce stretched clusters [484]; the single linkage (see Fig. S5A) in the methods
comparison produced a large (yellow) cluster resembling this effect. The other four (Ward,
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average, weighted average, complete), on the other hand, generated qualitatively viable
clusterings. We note that the average and weighted average linkages merged MDdMD
with the Morph/MAP cluster, then merged the result with DIMS, then finally again with
FRODA, while the other ENM methods still formed their own cluster. The complete
linkage, however, while having placed MDdMD and DIMS in their own cluster, merged
FRODA with the ENM methods! It is difficult at this point to determine why FRODA
transitions are subject to such different clusterings, although It appears that FRODA paths,
being somewhat uniformly different from all others, are subject to being clustered by their
dissimilarity, in some sense, rather than their similarity to other paths.

To decide which linkage is “best” at this stage corrupts the purpose of exploratory
data analysis. A more productive view is that each linkage emphasizes different aspects
of the data and can be used to tease out specific types of information. A sound general
approach is likely to involve the integration of results from a variety of linkages as a means
to identify common features and patterns. If a particular cluster, say, Morph/MAP/LinInt,
were to appear as a motif across several linkages, it would be a more robust indication
that its constituent paths were truly similar (relative to other paths). This approach can be
expanded to include other clustering algorithms, such as partitional clustering approaches
(e.g., the K-means algorithm).

In light of the previous discussion and the quantitative results in Table E.1, the Ward,
complete, average, and weighted average linkages perform adequately for the purposes of
this study. Both Ward and complete linkage produced particularly well-defined clusters,
which was reflected by their overall large inconsistency coefficients. Arguments can easily
made in favor of the average-type linkages as well. To keep the focus of the study on the
presentation of PSA, we elected to concentrate on one—the Ward linkage–for clarity of
presentation.
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APPENDIX F

EXPLORING DISCRETE AVERAGE FRÉCHET AND AVERAGE HAUSDORFF
DISTANCE FUNCTIONS
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This addendum explores variations of the Hausdorff and discrete Fréchet metrics
that are based on averages rather than maxima. Straightforward definitions are pro-
vided for these average-type path distance functions. We walk through an example
where they violate the triangle inequality to show that they do not define proper met-
rics. Both average-type path distance functions are applied in the context of the
path-sampling methods comparison (using Ward hierarchical clustering) and their
behavior is discussed. Future studies may serve to explore other possible defini-
tions and the extents of their application.

F.1 Definitions and implementation

The Hausdorff and discrete Fréchet metrics are both sensitive to path outliers—even
when the majority of points in two paths are spatially proximate, a single point that
deviates substantially can generate large path distance measurements. Indeed, Hausdorff
and discrete Fréchet may not be suitable for calculating an “overall” similarity along
the entire lengths of two paths. There exist many possible definitions for path distance
functions based on measures of central tendency, such as variations based on average or
median distances; we consider two variations of the Hausdorff and discrete Fréchet distance
functions based on averages rather than maxima.

Recall that a metric must satisfy the following properties:

δ(A, B) ≥ 0 (F.1a)
δ(A, B) = 0 ⇐⇒ A = B (F.1b)
δ(A, B) = δ(B, A) (F.1c)
δ(A, C) ≤ δ(A, B) + δ(B, C). (F.1d)

A distance function may be said to satisfy the first three properties, whereas the triangle
inequality (Eq. F.1d) may be violated. Below, we provide explicit definitions for average-
type Hausdorff and discrete Fréchet distance functions and show that they are not metrics
using an example where the triangle inequality is not satisfied.

F.1.1 Average Hausdorff distance

We define the average Hausdorff distance between two paths to be the sum of the
nearest neighbor distances for all points (on both paths) divided by the total number of
points. We define the one-sided summed Hausdorff distance from path P to path Q as

δ sum
h (P | Q) = ∑

p∈P
min
q∈Q

d(p, q), (F.2)

so that the (symmetric) average Hausdorff distance is the total sum normalized by the total
number of points:

δ
avg
H (P, Q) =

1
|P|+ |Q| [δh(P | Q) + δh(Q | P)] , (F.3)

where |P| and |Q| are the cardinalities of (the number of points comprising) P and Q,
respectively. A similar definition was examined by Eiter and Mannila [292], the only
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difference being that they normalized by the number of paths ( 1
2 ) rather than the total

number of points in the paths ( 1
|P|+|Q| ). A sensible alternative is a weighted average

Hausdorff distance,

δ
wavg
H (P, Q) =

1
2

[
1
|P|δh(P | Q) +

1
|Q|δh(Q | P)

]
, (F.4)

which normalizes the contribution of each one-sided sum so that each path contributes
equally irrespective of the number of constituent points. This prevents paths with relatively
many points from “diluting” the overall average when compared to those with fewer points.
Weighted average Hausdorff should thus minimize sensitivity to the number of points
used to parameterize a path, whereas the average Hausdorff distance will tend to discount
distance contributions from paths with relatively few points.

In Eq. F.3, the average is over |P|+ |Q| total points, while in Eq. F.4, separate averages
over |P| and |Q| points are averaged together with equal weights. These definitions are
consistent with the usage of “average” and “weighted average” for hierarchical clustering
linkages (see S2 Text). For brevity, we focus on the weighted average Hausdorff distance
(Eq. F.4) in this text.

F.1.2 Discrete average Fréchet distance

As with average-type Hausdorff distances, several definitions for a discrete average
Fréchet distance function are possible. We use a definition identical to that employed by
Dickson, H. Huang, and Post [486] where the coupling distance is defined as the average
link length (in the coupling), which is defined in the subsequent discussion.

Following the description of the conventional discrete Fréchet distance in the main
paper, we consider two polygonal curves P and Q, each with n and m ordered points
(respectively), in a metric space (V, d) for some metric d. The sequence of line segments
of P and Q are respectively defined as σ(P) = (p1, . . . , pn) and σ(Q) = (q1, . . . , qm). The
coupling (in the product space σ(Q, P) ≡ σ(P)× σ(Q)) between P and Q is

C(P, Q) ≡ (pa1 , qb1), (pa2 , qb2), . . . , (paL , qbL), (F.5)

of L unique pairs of points (i.e., number of links) and satisfies the following conditions: (1)
The first/last pairs correspond to the first/last points of the respective paths (a1 = b1 = 1,
aL = n and bL = m); (2) at least one point on either of the paths must be advanced to
its successive point, i.e., (ai+1 = ai and bi+1 = bi + 1) or (ai+1 = ai + 1 and bi+1 = bi) or
(ai+1 = ai + 1 and bi+1 = bi + 1) for all i = 1, . . . , L.

The definitions up to this point are identical to conventional Fréchet; however, the
coupling distance, C, is now defined as an average distance over all pairs of points in a
coupling:

‖C‖ ≡ 1
L

L

∑
i=1

d(pai , qbi). (F.6)

We now consider, as usual, the set of all possible couplings between P and Q, ΓP,Q, and take
the discrete average Fréchet distance between P and Q to be the minimum coupling distance:

δ
avg
dF (P, Q) = min

C∈ΓP,Q
‖C‖. (F.7)
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Since the average is taken over the number of links in the coupling, the normalization
factor for two paths depends not only on the numbers of points in the paths, but the optimal
coupling between them. We can generate a coupling between P and Q with the possible
fewest links by jumping simultaneously along both paths (ai+1 = ai + 1 and bi+1 = bi + 1)
until an end point on one path is reached, then stepping along the rest of the points on the
other path. Quantitatively, we have

Lmin = min {|P|, |Q|}+ |(|P| − |Q|)| = max {|P|, |Q|} . (F.8)

On the other hand, the maximum number of links is generated when a step is taken on
only one path at a time, i.e., no simultaneous jumps occur (ai+1 = ai, bi+1 = bi + 1 or
ai+1 = ai + 1 and bi+1 = bi):

Lmax = |P|+ |Q| − 1. (F.9)

In general, the normalization factor for discrete average Fréchet will be smaller than that
for average Hausdorff, and greater than or equal to the number of points in the larger of
two paths:

max {|P|, |Q|} ≤ L ≤ |P|+ |Q| − 1. (F.10)

F.2 Are such average-type distance functions also metrics?

Motivated by Buchin’s examination of summed and average Fréchet distances [487],
we construct three polygonal paths whose mutual average Hausdorff and discrete average
Fréchet distances violate the triangle inequality. We consider three paths P, Q, and R whose
direction of traversal along each path is from left to right

F.2.1 Average Hausdorff violates the triangle inequality

In Fig. F.1, we consider the nearest neighbor distances for each pair of paths among P, Q,
and R. As with the usual Hausdorff distance, the average Hausdorff distance, δ

wavg
H , will

be invariant to the ordering of points. Following the illustration in Fig. F.1A, the distance
between P and Q, δ

wavg
H (P, Q), is computed by considering the nearest neighbors in Q for

all points in P and those in P for all points in Q.
Procedure:

1. For each point in P, locate its nearest neighbor (the nearest point) in Q and record the
distance.

2. Compute the average nearest neighbor distance over all points in P, normalizing by
the number of points in P (five).

3. Repeat the process for Q (same as in previous step by symmetry).
4. Average the two average nearest neighbor distances for P and Q to compute the

(weighted) average Hausdorff distance.

Summing the distances explicitly, we have

δ
wavg
H (P, Q) =

1
2

[
1
5
(2l + l + 2l + l + 0) +

1
5
(2l + l + 2l + l + 0)

]
=

6
5

l. (F.11)
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The distance between P and R is calculated analogously from Fig. F.1B:

δ
wavg
H (P, R) =

1
2

[
1
5
(l + 0 + l + 0 + 0) +

1
6
(0 + 0 +

l
2
+

l
2
+ 0 + l)

]
=

11
30

l. (F.12)

By symmetry, we also have δ
wavg
H (P, R) = δ

wavg
H (Q, R), so we have the relationship

11
30

l +
11
30

l <
6
5

l (F.13)

δ
wavg
H (P, R) + δ

wavg
H (Q, R) < δ

wavg
H (P, Q), (F.14)

which does not satisfy the triangle inequality. It can be easily shown that the (unweighted)
average Hausdorff distance (Eq. F.3) also violates the triangle inequality for the paths in
Fig. F.1.
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Figure F.1: Computing the average Hausdorff distance between three discretized paths P, Q, and R. The
vertical direction is expanded for the purpose of illustration and does not represent actual separation; each
curve is imagined to lie on the same horizontal axis. Numbered points have a corresponding dashed line
representing their nearest neighbor (on the other path). The average Hausdorff distance is computed by
averaging the horizontal lengths of dashed lines of a given color and then averaging the two averages for a
given pair of paths. (A) Nearest neighbors depicted for P (green) and Q (cyan). (B) Nearest neighbors depicted
for P and R (gray).

F.2.2 Discrete average Fréchet violates the triangle inequality

The schematic in Fig. F.2 explicitly shows the links comprising the optimal couplings
between path pairs among P, Q, and R. As with the usual Fréchet distance, the discrete
average Fréchet distance, δ

avg
F , is sensitive to the ordering of points; arrows on the paths

indicate directionality. The illustration in Fig. F.2A depicts the sequence of links (i.e.,
coupling) with the minimal average link length; the distance between P and Q, δ

avg
F (P, Q),

is computed from the depicted coupling.
Procedure:

1. Begin at the starting (leftmost) points in P and Q connected by the first link.
2. Step along P only (staying at the initial point on Q) until the fifth link (shown in

magenta, which has zero length) is reached.
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3. Movement along P is completed; step along Q to its last point.
4. Compute the average link length—sum the lengths of all links (in the coupling) and

divide by the total number of links—to compute the discrete average Fréchet distance.

Averaging the link lengths explicitly, we have

δ
avg
F (P, Q) =

1
9
(2l + l + 2l + l + 0 + l + 2l + l + 2l) =

12
9

l. (F.15)

The distance between P and R is calculated from the coupling shown in Fig. F.2B; we remark
that the second, fourth, fifth, and eighth (vertical) links each have zero length since P, Q,
and R all lie on the same horizontal line:

δ
avg
F (P, R) =

1
9

(
l + 0 + l + 0 + 0 +

l
2
+

l
2
+ 0 + l

)
=

4
9

l. (F.16)

Again by symmetry, δ
avg
F (P, R) = δ

avg
F (Q, R), so we have the relationship

4
9

l +
4
9

l <
12
9

l (F.17)

δ
avg
F (P, R) + δ

avg
F (Q, R) < δ

avg
F (P, Q), (F.18)

which violates the triangle inequality.
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Figure F.2: Computing the discrete average Fréchet distance between three discretized paths P, Q, and R. The
vertical direction is expanded for the purpose of illustration and does not represent actual separation; each
curve is imagined to lie on the same horizontal axis. The (optimal) couplings producing the minimal average
link length (i.e., the discrete average Fréchet distance) are shown for P and Q (A), and P and R (B). Links
are represented by dashed lines, colored according to the path along which a step is taken, and numbered
sequentially for the given coupling; at step 5 in panel (A) and (B), the link length is zero, progress along P is
completed, and the remaining movement is solely along the other path.

F.2.3 Summary and additional considerations

Our analyses demonstrate that the average-type Hausdorff distance functions (Eq. F.3
and Eq. F.4), and the discrete average Fréchet distance (eqs. (F.5) to (F.7)), do not generally
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satisfy the triangle inequality and are therefore not proper path metrics. We note that there
may be some problems where the relaxed triangle inequality,

δ(A, C) ≤ κ [δ(A, B) + δ(B, C)] , (F.19)

which scales the upper bound on δ(A, C), normally set by the full triangle inequality, by a
finite constant κ, may be sufficient [487]. However, by modifying the paths in Fig. F.1 and
Fig. F.2 (by continually increasing the number of “zig-zags” in P, Q, and R), it can be shown
that κ becomes arbitrarily large (see Ch. 6 in [487])—the relaxed triangle inequality is also
violated by the path distance functions.

While neither PSA nor hierarchical clustering require the use of true metrics, the triangle
inequality is a useful property in that it is an intuitive extension of the transitive property.
That is, when two objects, A and B, in some metric space are close to a third object, C, in the
same space, then A can be considered close to B in the sense that their maximal separation
is bounded from above by the triangle inequality: d(A, B) ≤ d(A, C) + d(B, C). In order to
preserve commonsense intuition about the pairwise relationships between paths, the main
text discusses PSA exclusively in the context of metrics.

F.3 Methods comparison using average-type distance functions

Although it was shown above that average Hausdorff and discrete average Fréchet are
not metrics, they may still prove to be useful distance functions. We generated heat map
dendrograms for the path-sampling methods comparison (using the definitions in Eq. F.4
and Eq. F.7) to get a feel for their behavior under familiar circumstances.

F.3.1 Weighted average Hausdorff

Average Hausdorff distances substantially smaller than conventional Hausdorff
(Fig. F.3A), with the largest average Hausdorff distance (2.84 Å) being about 1.5 Å smaller
than the largest Hausdorff distance (4.67 Å). In terms of clustering, the primary differences
were that both GOdMD and ANMP clustered with the rest of the dynamical methods.
The MENM methods formed their own cluster, which was in turn grouped with iENM.
DIMS, rTMD-S, MDdMD, and FRODA clustered very similarly to Hausdorff; this was
also the case with the rTMD-F, Morph, MAP and LinInt cluster, although Morph groups
with MAP instead of rTMD-F in the average Hausdorff heat map. In Fig. F.3B, points fall
noticeably below the diagonal (of unity slope), indicating that the magnitudes of average
Hausdorff distances are both bounded from above by the conventional Hausdorff distance.
The Pearson correlation was also weaker (0.868 versus 0.977) and the average Hausdorff
distance distribution, though qualitatively similar to that of conventional Hausdorff, is
skewed toward smaller values.

F.3.2 Discrete average Fréchet

On the other hand, discrete average Fréchet generates a different clustering (Fig. F.4A)
than the other distance functions and, on the whole, exhibits much smaller distances.
GOdMD clustered with the rest of the dynamical methods (with the exception of TMD-F),
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Figure F.3: (A) Path-sampling methods comparison for AdK closed→ open transition of (weighted) average
Hausdorff distances using Ward linkage. (B) Correlation and joint distributions between Hausdorff and
(weighted) average Hausdorff distances (in Å RMSD) for the AdK closed → open methods comparison.
Reasonably strong linear correlation indicated by the scatter plot, with a Pearson correlation coefficient close to
unity.

while all of the elastic network models were grouped along with the cluster of TMD-F,
Morph, and LinInt; this is the reverse of what was produced by both Hausdorff distance
functions and conventional Fréchet, where GOdMD ended up with the ENMs and the
TMD-F, Morph, and LinInt cluster was grouped with the dynamical methods. The majority
of points in Fig. F.4B fall substantially below the diagonal and are more scattered compared
with Fig. F.3B; the marginal distribution of discrete average Fréchet closely resembles the
distribution produced by average Hausdorff, though the Pearson correlation was slightly
stronger (0.892 versus 0.868).

F.3.3 Discussion

From a qualitative standpoint, Fig. F.3A and Fig. F.4A are satisfactory in distinguishing
between the most obvious patterns among the path-sampling methods. In particular, both
clusterings generate one group containing DIMS, FRODA, MDdMD, and TMD-S, another
group with MENM-SD/SP, iENM, and ANMP, and a third group with MAP, Morph, TMD-F,
and LinInt. The clustering within each of these groups are also quite similar, with the second
and third MENM and iENM paths being closer than the first paths. Interestingly, ANMP
clusters with the methods based on dynamical algorithms when using average Hausdorff,
whereas average Fréchet places it with the other ENM-based approaches. Meanwhile,
the average Hausdorff and discrete average Fréchet distances from the GOdMD paths
and MAP(3), to paths from other methods, are substantially smaller than those generated
by conventional Hausdorff and Fréchet; the average Hausdorff distances of MAP(3) also
correspond to a relatively light band, although it is less pronounced than in the average
Fréchet heat map.

In conclusion, the path distance functions based on simple averages (rather than max-
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Figure F.4: (A) Path-sampling methods comparison for AdK closed → open transition of discrete average
Fréchet distances using Ward linkage. (B) Correlation and joint distributions between Fréchet and (weighted)
average Fréchet distances (in Å RMSD) for the AdK closed→ open methods comparison. Noticeably weaker
linear correlation is indicated by the Pearson correlation and the scatter points show that discrete average
Fréchet produces distances substantially smaller than conventional discrete Fréchet.

ima) considered in this supplement are not true metrics as they violate the triangle inequality.
We acknowledge that there may be other path metrics based on measures of central tendency,
or at least more robust against outlier points, that would be worth exploring in the future.
Furthermore, we did not examine whether the triangle inequality was (or would likely
to be) satisfied for a typical path comparison where one may be dealing with a restricted
class of curves. Situations may arise where average-type path distance functions behave as
metrics for a specific problem. PSA is also not limited to the use of proper path (and point)
metrics and it was seen in Fig. F.3A and Fig. F.4A that our average-type Hausdorff and
Fréchet distance functions both generated qualitatively acceptable distance measurements.
In light of these results, our main study focuses exclusively on the conventional Hausdorff
and (discrete) Fréchet metrics because they are satisfactory measures of path similarity that
also respect common intuitions about notions of closeness or dissimilarity.
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APPENDIX G

STOCHASTIC ELEMENTS IN HERMESHD
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Accounting for microscopic thermal fluctuations in numerical simulations of fluids
necessitates the inclusion of stochastic forcing terms when modeling microscale or
nanoscale flows. The Landau-Lifschitz Navier-Stokes equations, a well known exten-
sion to the Navier-Stokes equations, incorporate stochastic flux terms in the form of
a stochastic stress tensor (in the momentum and energy equations) and a stochas-
tic heat flux vector (in the energy equation). In this appendix, a brief overview of
the stochastic stress tensor provides an intuitive feel for how hydrodynamic fluctu-
ations are incorporated in HERMESHD, the FHD simulation code developed by the
author for the Blue Waters Graduate Fellowship project.

G.1 Hydrodynamic fluctuations

The study of fluctuations in microscale and nanoscale fluids is important for describing
such processes as droplet breakup in liquid nanojets [488, 489], molecular motors [490,
491] and diffusion enhancement in cells [471, 492], hydrodynamic instabilities [493–495],
and many other nanoscale flows [405, 406]. The macroscopic Navier-Stokes equations
describe ordinary linear hydrodynamics by supplementing the conservation equations
for mass, momentum, and energy with empirical constitutive relations connecting the
gradients of the conserved quantities with linear responses in their corresponding fluxes;
the linear transport coefficients are the proportionality constants defined by these relations.
The macroscopic hydrodynamic equations provide a surprisingly effective model of fluid
systems down to about ten molecular diameters and only an order of magnitude above
the kinetic time scale of molecular collisions (about 30 collision times) [388]. Although
the macroscopic, linear Navier-Stokes equations model quite well average flows down to,
perhaps surprisingly, the nanoscale, the modeling of a dense fluid (i.e. liquids) at truly
molecular distance scales requires properly accounting for the fluctuations that naturally
arise when taking averages over small numbers of particles.

G.2 Stochastic shear stresses

To give a general sense of how hydrodynamic fluctuations enter the picture, it suffices
to illustrate the case of thermal fluctuations in the fluid stress (i.e., the fluid momentum
density).* These fluctuations take the form of spatiotemporally delta-correlated stochastic
stresses with zero mean, which are elements of a random stress tensor, S . For small-
amplitude fluctuations, one can use linear fluctuation-dissipation theory to derive the
correlations of the components of the random stress tensor [366, 407]. Including the bulk
viscosity, the covariances are given by〈
Sij(x, t)Skl(x

′, t′)
〉
= 2kBT

[
η
(
δilδjk + δikδjl

)
+

(
ζ − 2

3
η

)
δijδkl

]
δ(x− x′)δ(t− t′), (G.1)

where ζ is the bulk viscosity, η is the dynamic shear viscosity, and the indices i, j, k, and
l run independently over the three spatial directions. It is clear from the delta functions,

*For a complete discussion of both the stochastic stresses and heat fluxes, see Landau and Lifschitz [366]; a
succinct description of the 1D LLNS equations is also provided by J. B. Bell, Garcia, and Williams [405].
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δ(x− x′) and δ(t− t′), that S is spatiotemporally delta-correlated—in a numerical FHD
simulation, S should be independently sampled at every timestep in each grid cell.

The structure of S can be seen more clearly by extracting from Eq. G.1 explicit repre-
sentations of the correlations between various combinations of the random stress tensor
components (assuming a given time, t, and point in space, x). In particular, each individual
matrix element, Sij, may be written in terms of a zero-mean (stationary) Gaussian process,
which conceptually simplifies numerical sampling. First, the off-diagonal components in,
say, the upper triangle of the random stress matrix, are mutually uncorrelated, so

〈S12S13〉 = 〈S13S23〉 = 〈S23S12〉 = 0. (G.2)

The same conditions hold for the lower triangle. Second, the off-diagonal components are
correlated with themselves and their symmetric partners,〈

SijSij
〉
=
〈
SijSji

〉
= 2ηkBT, (G.3)

for i 6= j. Furthermore, given that the diagonal components are uncorrelated with respect
to the off-diagonal stresses, a total of three stochastic samples are needed to completely
capture off-diagonal contributions. Finally, for the deviatoric stresses (neglecting the
diagonal contribution from the bulk viscosity), it can be seen that there are non-vanishing
correlations among the diagonal components,

〈
SiiSjj

〉
=

{
+ 8

3 ηkBT i = j,
− 4

3 ηkBT i 6= j,
(G.4)

which, together, effectively contribute two independent stochastic terms. Combined with
the three stochastic terms needed for the off-diagonal elements, a minimum of five inde-
pendent stochastic samples would be needed, in principle, to generate the random stress
components at each point in space and time; however, to satisfy the traceless condition, six
samples are taken per timestep per grid cell as shown in the subsequent section.

G.3 Numerical sampling of stochastic terms

In order to sample the random stresses at each point in space at a given timestep, six
Gaussian samples are taken in HERMESHD. Say we have a delta-correlated stationary
Gaussian process with zero mean so that

〈R(t)〉 = 0 (G.5)〈
R(t)R(t′)

〉
= δ(t− t′). (G.6)

We seek a form for the random stress tensor such that its components, Sij, may be written
in terms of R(t); such a construction would allow one to sample S in the numerical code by
only taking several samples of a zero-mean Gaussian distribution, R(t).

Let us first generalize R(t) so that we have a 3× 3 matrix, Rij(t), of nine independent
Gaussian-distributed random variables, where Rij(t) = R(t) is an independent and identi-
cally distributed delta-correlated Gaussian process with zero mean specified by Eq. G.5.
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For a given timestep, ∆t, and (Cartesian) spatial discretization, ∆V = ∆x∆y∆z, the random
stress components may then be written as

Sij(t) =

√
2kBT
∆t∆V

(√
2η Gij(t) +

√
ζ

D
Rkk(t)

)
, (G.7)

where Rkk(t) is the trace of Gij(t) is a traceless symmetric matrix constructed from Rij(t),

Gij(t) =
1
2

(
Rij(t) + Rji(t)

)
− 1

D
δijRkk(t), (G.8)

and D is the number of spatial dimensions [496–499]. Note that the factor of
√

2 in Eq. G.7
compensates for the reduction in variance due to the averaging in Eq. G.8 of Rij(t) and
Rji(t) [498]. It can be easily verified that, at each time t, Gij(t) is identically traceless and
symmetric:

Gij(t) = Gji(t) (G.9)

Gii(t) = 0. (G.10)

Although Eq. G.7 may be used to construct the stochastic stress tensor with the correct
correlations (Eq. G.1) using Eq. G.8, nine pseudorandom numbers must be generated.
To reduce the number of generated pseudorandom numbers per grid cell per timestep
to six, it is possible to generate only three pseudorandom numbers for the off-diagonal
components in the upper (lower) triangle and exploit the symmetry of Gij(t) to get the
corresponding components in the lower (upper) triangle; then, without the averaging, the
factor of

√
2 can be dropped and the diagonal components—including the contribution

from bulk viscosity—can be generated separately with three additional pseudorandom
numbers.
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