
Mixture of Interaction Primitives for Multiple Agents

A Python framework

by

Ashish Kumar

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree

Master of Science

Approved July 2017 by the
Graduate Supervisory Committee:

Hani Ben Amor, Chair
Yu Zhang

Yezhou Yang

ARIZONA STATE UNIVERSITY

December 2017

c© 2017 Ashish Kumar
All Rights Reserved

ABSTRACT

In a collaborative environment where multiple robots and human beings are expected

to collaborate to perform a task, it becomes essential for a robot to be aware of mul-

tiple agents working in its work environment. A robot must also learn to adapt to

different agents in the workspace and conduct its interaction based on the presence

of these agents. A theoretical framework was introduced which performs interac-

tion learning from demonstrations in a two-agent work environment, and it is called

Interaction Primitives.

This document is an in-depth description of the new state of the art Python

Framework for Interaction Primitives between two agents in a single as well as mul-

tiple task work environment and extension of the original framework in a work envi-

ronment with multiple agents doing a single task. The original theory of Interaction

Primitives has been extended to create a framework which will capture correlation

between more than two agents while performing a single task. The new state of the

art Python framework is an intuitive, generic, easy to install and easy to use python

library which can be applied to use the Interaction Primitives framework in a work

environment. This library was tested in simulated environments and controlled lab-

oratory environment. The results and benchmarks of this library are available in the

related sections of this document.

i

ACKNOWLEDGMENTS

First of all, I would like to thank my thesis advisor Dr. Heni Ben Amor for

accepting me at the Interactive Robotics Lab. It was the most significant opportunity

offered to me during the span of my graduate studies at the Arizona State University.

Without the guidance, support, availability, and strictness of my advisor, my goal of

completing my thesis could not have been possible. His doors were always open to my

questions, plans or suggestions. Working at the Interactive Robotics Lab has been a

great learning experience for me, which may not have been possible otherwise.

I would also like to thank Joe Campbell, who is a colleague at the lab, for co-

advising my work and helping me recognize key problems in my approach and helping

me solve them. I would also like to thank my other colleagues at the lab, Kevin

Sebastian Luck, Yash Rathore, Simon Stepputtis and Trevor Barron for helping me

out with my theoretical or practical questions.

It was a mentally and emotionally strong decision for me to start my Masters

at Arizona State University USA which is far away from my homeland, India. This

dream of studying at a privileged International Institution could not have been real-

ized without the constant support from my parents, my wife, and my elder sister.

Lastly, I would like to thank my friends at the university for constantly supporting

me towards my goal to complete my thesis and helped in every way possible to stay

focused on my goals.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . v

LIST OF FIGURES . vi

CHAPTER

1 INTRODUCTION . 1

2 MOTIVATION . 3

3 INTERACTION PRIMITIVES . 4

3.1 Interaction ProMPs . 4

3.1.1 Basis Functions . 8

3.1.2 Time Scaling . 9

3.1.3 Prediction based on Interaction ProMPs 10

3.1.4 Phase Estimation . 11

3.2 Mixture of Interaction Primitives . 14

3.2.1 Gaussian Mixture Model . 14

3.2.2 Mixture of Probabilistic PCA . 17

3.2.3 Number of cluster determination . 19

3.3 Controlled arm halting at anomaly detection . 20

3.4 Mixture of Interaction Primitives for Multiple Agents 20

3.4.1 Learning one to one correlation . 21

3.4.2 Learning one to all correlation . 23

4 PYTHON FRAMEWORK . 25

4.1 Overview. 25

4.2 Design Pattern . 26

4.3 Libraries Used . 26

4.4 Usage . 26

iii

CHAPTER Page

4.4.1 Object Instantiation . 27

4.4.2 Data Fitting . 30

4.4.3 Clustering parameter . 32

4.4.4 Prediction . 33

4.4.5 Anomaly Detection . 34

5 EXPERIMENTS . 36

5.0.1 V Rep . 36

5.0.2 Kinect Version 2 . 37

5.0.3 Simulated Work Environments . 37

5.0.4 Human Robot Environment . 43

6 RESULTS and BENCHMARKS . 49

6.1 Benchmarks . 49

6.2 Tests Performed . 49

6.3 Results . 50

7 CONCLUSION . 55

8 FUTURE WORK . 56

REFERENCES . 57

iv

LIST OF TABLES

Table Page

6.1 Frequency Comparison. 50

v

LIST OF FIGURES

Figure Page

3.1 Gaussian Basis Functions . 5

3.2 Learning Of Weights For A Single DOF . 7

3.3 Multiple Demonstration At Different Interaction Points 8

3.4 Multiple Possibilities For The Controlled Agent . 12

3.5 Multiple Collaboration For A Mixture Of Interaction Primitives 15

3.6 Learning Interaction Primitives Between Interacting Pairs 22

3.7 Learning Interaction Primitives Between The Observed Agent And

Combined Controlled Agents. 24

5.1 Overview Of Training Data Collection . 38

5.2 Overview Of Testing Predictions Of The Interaction Primitives Library 39

5.3 Work Environment 1 . 41

5.4 Work Environment 2 . 42

5.5 Work Environment 3 . 44

5.6 Work Environment 4 . 45

5.7 Overview of Human Robot Experiment - Training . 47

5.8 Overview of Human Robot Experiment - Testing . 48

6.1 Euclidean Distance Vs Number Of Clusters . 51

6.2 Euclidean Distance Vs Number Of Gaussians . 51

6.3 Euclidean Distance Vs Number Of Training Samples 52

6.4 Success Ratio/Accuracy Vs Number Of Clusters . 52

6.5 Success Ratio/Accuracy Vs Number Of Gaussians . 53

6.6 Success Ratio/Accuracy Vs Number Of Training Samples 53

6.7 Performance Vs Number Of Clusters . 54

6.8 Performance Vs Number Of Gaussians. 54

vi

Chapter 1

INTRODUCTION

Robotics and artificial intelligence have found numerous applications including ap-

plications in medical science, automobile industry, domestic help, security, drone

technologies and others. In these scenarios, robots tend to interact with human

beings or other robotic agents. Existing Interaction Primitives framework based

Dynamic Movement Primitives by Heni Ben Amor (2014) and Interaction Primi-

tives framework based on Probabilistic Movement Primitives (Interaction ProMPs)

by Guilherme Maeda (2014) aims at creating a framework for learning interactions

between two agents for a single task. Interaction Primitives framework (ProMPs) by

Guilherme Maeda (2014) is an improvement over the original IP framework based

on DMP in a way that it is based on probabilistically modeling the interactions be-

tween two agents performing a single collaborative task where the movements of the

agents are encoded using ProMPs. It is a form of Interaction Learning where the

framework learns from demonstrations. This framework uses trajectories encoded

as probabilistic movement primitives to learn distribution of weights and generate

interaction primitives for the two agents to encode a correlation between the agents

in a single task work environment. The framework creates a model by learning a

prior of the weights from multiple demonstrations of both the agents and applies the

primitives to recognize intentions of the observed agent. This model then predicts a

trajectory for an unobserved agent.

A mixture of Interaction Primitives by Marco Ewerton and Maeda (2015) aims

at creating a framework to learn a mixture of interaction primitives for multiple

collaborative tasks between two agents. The framework aims at learning several

1

interaction patterns and on a certain observation of the observed agent, recognize

the action and then predict remaining trajectory for the unobserved agent. The

movement primitives are generated for the observed partial action.

This new state of the art Python library implements the original Mixture of In-

teraction Primitives paper. This library aims at achieving benchmarks which will be

described in the later sections and has been tested on simulated experiments and in

a controlled experiment in a laboratory. This Python library has been developed on

the footprints of the theory of mixture of Interaction Primitives and the new theory

which allows the Interaction Primitives framework to be applied in a work environ-

ment with more than two agents. This report contains a description on how to use

this library in a later section. This library has been designed to be used in a real-time

scenario. In order to make it faster and more efficient, an approximation of integrals

and Bayesian inferences have been introduced. This library introduces an application

of Particle Filter for phase estimation. The original theory on Interaction Primitives

uses Dynamic Time Warping as a methodology to estimate a correct phase of the

movement of the agents. DTW is another elegant method to estimate phase, but

it’s application is limited to demonstrations with less variance. It’s application is

also limited to a single task work environment and not in a work environment where

multiple tasks are possible.

2

Chapter 2

MOTIVATION

Human-Robot Collaboration has been one of the topics of progressive discussion and

research in the field of robotics and artificial intelligence. With the growing demand

for industrial and commercial automation, a framework that assists in collaborative

task between multiple agents will be a blessing in disguise. A theoretical framework

already exists and will be explained in the next section. The absence of a state of

the art software framework which is open-source and can be easily used was one of

the key motivation for me to work on this project and take the existing theory a step

above to handle collaboration between more than two agents.

A demand of automation has already opened up windows of its application in var-

ious sectors like the food industry, assembling, manufacturing, health sector where

multiple agents (including human) are interacting, and the work environment is dy-

namic and stochastic. For example, let’s portray the work situation at a Coffee Shop.

A customer walks in the shop, places an order, the order is prepared by humans and

robotic arms in a collaborative way and the order is finally served to the customer.

Due to the involvement of a human agent, there will be a variation in the way a task

is repetitively done. This variation and correlation between the agents can be easily

captured by the Interaction Primitives framework. It’s exciting to know the scope of

this state of the art library in a world which is moving towards automation.

3

Chapter 3

INTERACTION PRIMITIVES

The original theory on Interaction Primitives Heni Ben Amor (2014) is based on

capturing the correlation of movements between observed degree of freedoms(DOFs)

and unobserved/controlled DOFs of a single or two agents. This theory can also be

applied to learning correlations between the movements of an observed agent and

an unobserved/controlled agent where the movements were captured using Dynamic

Movement Primitives.

3.1 Interaction ProMPs

Let, P be the total number of degrees of freedom of the observed agent and Q

be the total number of degrees of freedom of the controlled agent. Let, D be the

combined number of degree of freedom for the observed and the controlled agent. At

any time t, the position and velocity of these agents at a time step will be represented

as combined vectors where

Let, P be the total number of degrees of freedom of the observed agent and Q

be the total number of degrees of freedom of the controlled agent. Let, D be the

combined number of degree of freedom for the observed and the controlled agent. At

any time t, the position and velocity of these agents at a time step will represented

as combined vectors where, qt = [(q o)T , (q c)T]T ∈ IRD and q̇t = [(q̇o)T , (q̇c)T]T ∈

IRD, where (·)o and (·)c refer to observations of the observed and controlled agents,

respectively, and q and q̇ are position and velocity, respectively. Positions of these

agents in a time-series can be represented as a trajectory y = {q t}t=0..T ∈ IRD×T .

Observations for a single DOF of an agent can be encoded using the Probabilistic

4

Figure 3.1: Gaussian Basis Functions

Movement Primitives Alexandros Paraschos and Neumann (2013).

qt = φφφT
t w + εy (3.1)

where φφφt ∈ IRN is a time-dependent basis row vector of length N, where N is the

number of basis functions, and εy is a zero-mean i.i.d Gaussian noise represented by

εy ∼ N (0,ΣΣΣy) ∈ IR. The figure 3.1 shows Gaussian basis functions been centered at

a uniform distance and have the same height. If both the position and velocities have

to be encoded, φφφt becomes a N × 2 basis matrix. The weight w can be learned in a

least squares way. This library supports only single observation for a single degree

of movement. This means that this library can either support a time-series data of

only positions, joint angles, velocities, force, acceleration or any other metric. In my

experiments, I have captured only the joint angles of agents in a work environment.

Let’s define the cost function,

J(w) =
1

2

T∑
t=1

(φφφT
t w− qt)

2 (3.2)

5

The weight w for a single trajectory can either be learned using the Least Mean

Squares(LMS) Algorithm which uses gradient descent or can be calculated analytically

using the least squares method,

w = (ΦΦΦTΦΦΦ)−1ΦΦΦTy. (3.3)

where ΦΦΦ ∈ IRT×N is a matrix of column vectors formed by transpose of basis row

vectors, φφφT
t for each time step. Our Python library calculates weights for a trajectory

in the least squares sense. Weights for the all the DOF of agents can be represented

by a combined row vector w ∈ IRND. For an observed agent with P DOFs and a

controlled agent of Q DOFs, weight wd can be used to represent combined weights

for the d -th demonstrations.

wd =
{

[wT
1 , ...w

T
p , ...w

T
P]o, [wT

1 , ...w
T
q , ...w

T
Q]c
}

(3.4)

where wd is row vector with weights []o of observed agent and weights []c of controlled

agent. For a single demonstration, a single weight vector is learned. This weight

vector activates different basis functions at each time steps to a certain proportion.

The weighted sum of the basis functions is an approximating the observation at that

time step. For a single demonstration and for a single DOF, the learned weight vector

can be used to approximate the observed joint angles at any time step. As shown

in figure 3.2, a weight vector activates each of the Gaussian Basis function and the

weighted sum of the Gaussian Basis function is the approximate value of the observed

joint angle at that time step. In order to learn a distribution of the weight vector,

multiple varied demonstrations will be required. Figure number 3.3 shows how two

agents can interact at different Interaction Points for a single task or multiple tasks.

Trajectories of multiple varied demonstrations can now be recorded and a distribution

of the weights p(w ; θ) can then be learned from D different demonstrations. AS shown

6

Figure 3.2: Learning Of Weights For A Single DOF

in figure 3.3, multiple demonstrations vary in a sense that they may be performing

different tasks or the interaction points are varied even for a single task.

p(w; θ) ∼ N (w;µµµw,ΣΣΣw), (3.5)

µµµw = mean([w1, ...wd, ...wD]), (3.6)

ΣΣΣw = Cov([w1, ...wd, ...wD]) (3.7)

The weights can also be updated with each observation using on-line training in the

form

µµµ+
w = µµµ−

w + K(q∗t −HT
t µµµ

−
w) (3.8)

ΣΣΣ+
w = ΣΣΣ−

w −K(HT
t ΣΣΣ−

w) (3.9)

K = ΣΣΣ−
wHT

t (ΣΣΣ∗
q + HT

t ΣΣΣ−
wHt)

−1 (3.10)

Here, K ∈ IRND is the Kalman gain matrix, q∗t is the observed joint angles vector

for DOFs of all agents, ΣΣΣ∗
q ∈ IRD×D is the measurement noise matrix. ()+ and ()−

7

Figure 3.3: Multiple Demonstration At Different Interaction Points

represent new and old values.The observation matrix H T
t ∈ IRD×ND is generated for

each time step.

Ht =

(φφφot)
T
(1,1) 0

0 (φφφot)
T
(P,P)

0 0

0 0

0 0

0 0

(φφφct)(1,1) 0

0 (φφφct)(Q,Q)

(3.11)

where (φφφot)(p,p) is a column vector of length n which contains the n basis functions at

time step t.

3.1.1 Basis Functions

This python library can be configured to either use Gaussian basis functions, bGi ,

for rhythmic movements or Von-Mises basis functions, bVMi , for stroke-based moved.

The choice of basis function is inspired from the work on Probabilistic Movement

Primitives byAlexandros Paraschos and Neumann (2013). If there are n basis func-

8

tions with centers c = {c1, ...ci, ...cn} ∈ IRN and height h ∈ IR,

bGi (qt) = exp

(
− (qt − ci)

2

2h

)
, (3.12)

bVMi (qt) = exp

(
cos(2π(qt − ci))

h

)
(3.13)

For a trajectory given by y = {q t}t=0..T , the probability of observing any trajectory

can then be calculated by

p(y|w) =
T∏
t=0

N (q t|φφφTt w,ΣΣΣy) (3.14)

The trajectory distribution can then be calculated by marginalizing out the weight.

p(y; θ) =

∫
p(y|w)p(w;θθθ)dw (3.15)

For a given set of D demonstrations, θ can be estimated as described in Equations

(3.6) and (3.7). It follows that,

p(y) =

∫
p(y|w)p(w)dw (3.16)

Once the Interaction primitives, µµµw and ΣΣΣw, have been learned by using this frame-

work on data from D demonstrations, these interactives can be used to predict the

trajectory of a controlled agent by observing an observed agent and this prediction can

be performed at each time step t using the updation method specified by equations

(3.9) and (3.10).

3.1.2 Time Scaling

Different agents can move at different speeds and the number of observations for

the agents will vary in a certain period of time. Due to the possibility of agents

executing movements at various speed, our system decouples the movement from the

time signal by introducing a phase variable τ , which varies from 0 to 1. This way,

movements executing at different speeds can be encoded between these phase values.

9

3.1.3 Prediction based on Interaction ProMPs

During the training phase and for a single demonstration d, an observation is cap-

tured at each phase value for all DOFs, qτ = {qoτ , qcτ}, where qoτ are the observations

of the joint angles of an observed agent and qcτ are the observations of the joint an-

gles of a controlled agent. Once training data has been collected and the Interaction

Primitives have been generated, this model can then be used to perform prediction of

the remaining trajectory of the controlled agent based on partial observation of the

observed agent, q∗oτ at each phase value τ . During the prediction phase, at each phase

value τ , a column vector q∗ to represent the combined joint angles of observed and

controlled agent is generated, where q∗ = {q∗o, 0Q,1}. The conditional distribution

p(w+|q∗τ) is also Gaussian and the new mean and covariance can be calculated by

µµµ+
w = µµµw + K(q∗τ −HT

τ µµµw) (3.17)

ΣΣΣ+
w = ΣΣΣw −K(HT

τ ΣΣΣw) (3.18)

K = ΣΣΣwHT
τ (Σ∗

q + HT
τ ΣΣΣwHτ)

−1 (3.19)

10

where,

q∗τ = [q∗ot ; 0Q,1], no observation for controlled agent. (3.20)

Ht =

(φφφoτ)
T
(1,1) 0

0 (φφφoτ)
T
(P,P)

0 0

0 0

0 0

0 0

(0cN,1)(1,1) 0

0 (0cN,1)(Q,Q)

(3.21)

ΣΣΣ∗
q =

α 0

0 α

0 0

0 0

0 0

0 0

β 0

0 β

(3.22)

where α is a small noise value which reflects our confidence in the observation and β

is a large noise value which reflects low confidence since there is no observation made

for the controlled agents. An important point to note here is that the Interaction

Primitives library generates a predicted trajectory for the controlled agent based on

the mean and covariance of the conditional distribution. As shown in figure number

3.4, there are still numerous possibilities for a controlled agent. These possibilities

can be harnessed by randomly choosing weight vectors from the normal distribution,

N (µµµ+
w ,ΣΣΣ

+
w).

3.1.4 Phase Estimation

Due to the decoupling of movements from the time signal and use of phase vari-

able τ , it is important to do a refined phase estimation for better accuracy in the

conditioning step. Our system uses Particle Filtering to estimate the phase of the

11

Figure 3.4: Multiple Possibilities For The Controlled Agent

observed agent for a correct conditioning. Particle Filters are based on Bayesian

Filters which is, in turn, views the latent state space as a Markov Chain. Let, τ1,

τ2,...,τt,...,τT be the different latent states(or phases) of a dynamic system made up

by work environment with multiple agents, where the system transitions from one

state to another depending on an observation made. Let, q1, q2,...,qt,...,qT be the set

of observation made at different time steps. As per the Markov Chain assumption,

the probability of the current hidden state of a system is only dependent on the last

state and conditionally independent of any previous states. The following derivation

is inspired from Turner (2013) That is,

p(τt|τ0:t−1) = p(τt|τt−1) (3.23)

Also, at any time step t, the observation qt only depends on the latent state τt at

that time step and is conditionally independent of any previous states. That is,

p(qt|τ0:t) = p(qt|τt) (3.24)

12

The distribution of the current state, given all observation can then be calculation

using marginal probability in the following way:

p(τ0:t|q0:t) = p(τ0:t−1|q0:t−1)
p(τt|τt − 1)p(qt|τt)

p(yt|y0:t−1)
(3.25)

p(τt|q0:t) =
p(τt|q0:t−1)p(qt|τt)

p(qt|q0:t−1)
(3.26)

p(τt|q0:t) = p(qt|τt)
∫

p(τt−1|q0:t−1)
p(τt|τt−1)

p(qt|q0:t−1)
dτt−1 (3.27)

where,

p(qt|q0:t−1) =

∫
p(qt|τt)

{∫
p(τt−1|q0:t−1)p(τt|τt−1)dτt−1

}
dτt (3.28)

In the above equations, it is not computationally tangible to calculate the integrals.

To make an approximate Bayesian inference, the concept of Importance Sampling is

used. This method of approximate Bayesian inference for the calculation of the prob-

ability of current state using Importance Sampling is called Particle Filters. In our

implementation, the Sequential Monte Carlo Algorithm has been used. An overview

of the algorithm is as follows:

(i) Sampling - Draw n samples τ0:t−1 from the previous set and generate n new

samples using the distribution: p(τt|τt−1).

(ii) Importance Sampling - Assign each sample an importance weight according

to the likelihood of the observation.

(iii) Re-Sampling - Multiply/Discard samples by drawing samples with replace-

ment according to the distribution defined through the importance weight.

13

In this implementation, the Re-Sampling Wheel Algorithm has been used for the

Re-Sampling step. This library performs importance sampling by calculation the

probability of current observation given the value of a particle. This probability is

calculated by fitting an observation in the normal distribution N (φTτφ
T
τφ
T
τwww,ΣyΣyΣy), where ΣyΣyΣy

is the covariance of the demonstration data given by, ΣyΣyΣy = HT
τ ΣΣΣwHτ . Probabilities

of each particles are calculated and are normalized. At the last observation, and after

importance sampling, the phase decided by choosing the value of the particle with

the highest weight.

3.2 Mixture of Interaction Primitives

Using a mixture of Interaction Primitives, interactions ranging over multiple tasks

between two agents can also be used to learn weights for these interactions. This arises

an intuition of a possible clustering in the weight space. A Gaussian Mixture Model

in the weight space is learned to capture the possibility of multiple clusters. With the

mixture of Interaction Primitives theory in place, it is now important to determine

the most probable action performed by the observed agent in a partial action and then

the generate the remaining trajectories of the controlled agent using conditioning over

the interaction primitives.

3.2.1 Gaussian Mixture Model

With the application of Interaction ProMPs on a set of observations, a distribution

of weights can be learned. In the case where training is done over multiple tasks or

highly varied tasks, it becomes intuitive to expect the presence of mixture models

in the learned distribution. The Gaussian Mixture Model Expectation-Maximization

algorithm can now be applied to learn the mixture parameters in the weight space.

The algorithm to calculate the parameters has already been explained in the original

14

Figure 3.5: Multiple Collaboration For A Mixture Of Interaction Primitives

work on Mixture of Interaction Primitives by Heni et al 2015. The following algorithm

has been taken from the original work:

The integration in the inference step is complex and in order to efficiently perform

this integration, I have used an approximation for this Integration. The approxima-

tion works by fitting a partial observation into a normal distribution of the approx-

imated trajectory from the mean of weights of a mixture and the covariance of the

trajectories. That is, for a partial observation y∗ up to a certain phase value τ0,

p(D|k) =

∫
p(D|w̄)p(w̄|k)dw̄ (3.36)

p(D|k) ≈
τ0∑
τ=0

N (qτ ;φφφ
T
τ µkµkµk,ΣyΣyΣy) (3.37)

where,

ΣyΣyΣy = HT
τ ΣΣΣwHτ (3.38)

15

Algorithm 1 Training

1) Parameterize demonstrated trajectories: Find vector of weights w̄̄w̄w for each

trajectory, such that qt ≈ φφφT
t w̄̄w̄w.

2) Find GMM in parameter space, using EM: Initialize GMM parameters α1:K ,

µ1:K and Σ1:K with k-means clustering.

repeat

E step

rik = p(k|w̄iw̄iw̄i) =
N (w̄iw̄iw̄i;µkµkµk,ΣkΣkΣk)αk∑K
l=1 αlN (w̄iw̄iw̄i;µlµlµl,ΣlΣlΣl)

(3.29)

M step

nk =
n∑
i=1

rik, α =
nk
n

(3.30)

µkµkµk =

∑n
i=1 rikw̄iw̄iw̄i
nk

(3.31)

ΣkΣkΣk =
1

nk

(
n∑
i=1

(w̄iw̄iw̄i − µkµkµk)(w̄iw̄iw̄i − µkµkµk)T
)

(3.32)

until p(w̄i;α1:K ;µ1:K ; Σ1:Kw̄i;α1:K ;µ1:K ; Σ1:Kw̄i;α1:K ;µ1:K ; Σ1:K) converges.

Algorithm 2 Inference

1) Find most probable cluster given observation:

p(k|D) ∝ p(D|k)p(k) (3.33)

k∗ = arg max
x

p(k|D) (3.34)

2) Condition on observation, using cluster k∗:

p(q1:T |D) =

∫
p(q1:T |w̄̄w̄w)p(w̄̄w̄w|k∗, D)dw̄̄w̄w (3.35)

16

3.2.2 Mixture of Probabilistic PCA

This library further extends the formation of mixture models, as suggested in the

original research, in a way that it also provides the ability to select the Mixture of

Probabilistic Principal Component Analysis for the mixture model parameter calcu-

lation. This implementation of a mixture of PPCA has been done on the guidelines

of the original research by Tipping and Bishop (1999).

Latent Variable Model

Let’s first define a latent variable l ∈ IRL which has a dimension L < D. Let’s also

define a function f(;) of the latent variable with parameters p. This new function f(;)

serves the purpose of reconstruction from a latent space to weight space.

w = f(l;p) + ε

where, ε is an isotropic reconstruction error, that is, ε ∼ N (0, σ2I).

Factor Analysis

The theory on statistical factor analysis by Bartholomew (1987) can be used to define

a linear reconstruction function in the following way,

w = Wl + µµµw + ε (3.39)

where, the latent variables l have a normal distribution with zero-mean and unit

variance, that is, l ∼ N (0, I). The noise has a normal distribution given by ε ∼

N (0, σ2I). The weight matrix has to be approximated using parameterized learning

in case of probabilistic PCA, as will be shown in later section. The weight vector has

a normal distribution, given the above formulation and is given by w ∼ N (µµµw,ΣΣΣw).

17

Probabilistic PCA

As can be seen in the statistical factor analysis model, reconstruction from the latent

space to the weight space an Gaussian error associated with it. This gives rise to the

existence of a probability distribution over the weight space given the latent variable l.

The equation (3.39) can be used to establish this conditional probability distribution

and is given by,

p(w|l) = (2πσ2)−D/2exp
{
− 1

2σ2
||w−Wl− µµµ||2

}
(3.40)

Since, l ∼ N (0, I). Hence by marginalization,

p(w) =

∫
p(w|l)p(l)dl (3.41)

or, p(w) = (2π)−D/2|ΣΣΣw|−1/2exp

{
− 1

2
(w− µµµ)TΣΣΣ−1

w (w− µµµ)

}
(3.42)

The sample covariance matrix S and µµµof the weights can be calculated using max-

imum likelihood from the set of weights generated for D demonstrations using the

equation (3.6) and the following formula,

S =
1

D

D∑
d=1

(wd − µµµw)(wd − µµµw)T (3.43)

It is also shown in the original work that,

WML = UL(ΛΛΛL − σ2I)1/2R (3.44)

where, the matrix UL contains the first L Eigen vectors of S. ΛΛΛL is a L× L diagonal

matrix with the L Eigen values. R is an arbitrary rotation matrix. σ2 can also be

estimated using maximum likelihood as described in the original research,

σ2
ML =

1

D − L

D∑
j=L+1

λj (3.45)

where,
∑D

j=L+1 λj is the sum of the smallest Eigen values of S.

18

Mixture of PPCA

As discussed earlier, it’s only intuitive that a mixture model exists in the weight

space when the weights are learned for multiple tasks or highly varied tasks. The

original theory of a mixture PPCA suggests a different approach to the formulation

of mixture models and their parameter calculation. An iterative EM algorithm for

the calculation of the calculation of the model parameters α1:K , µµµ1:K , W1:K , Σ1:K and

σ1:K is as follows:

Algorithm 3 EM Algorithm for Mixture of PPCA

Initialize the parameters αk and µµµk using K-means clustering.

E step

rik =
p(wi|k)αk
p(wi)

(3.46)

M step

αk =
1

N

D∑
i=1

rik (3.47)

µkµkµk =

∑D
i=1 rikwi∑D
i=1 rik

(3.48)

Sk =
1

αkD

D∑
i=1

rik(wi − µµµk)(wi − µµµk)T (3.49)

ΣΣΣk = σ2
i I + WiW

T
i (3.50)

σ2
i and Wi are calculated using equations (3.44) and (3.45).

3.2.3 Number of cluster determination

One of the key parameters in any approach towards mixture model/clustering is

to determine the parameter K, the number of clusters, as correctly as possible. One

of the approach suggested in Marco Ewerton and Maeda (2015) is to use K-Fold

19

cross validation to determine a decent value of K. Although, this method gives fairly

good results, it is a time-complex approach and can sometimes be computationally

very expensive. A faster approximation of the value K can be done by applying the

G-Means Algorithm suggested in Hamerly and Elkan (1999).

3.3 Controlled arm halting at anomaly detection

The original framework has been extended to make the controlled arm halt at its

current joint angles whenever it detects an anomaly with the position of a tool/object

in the work environment. This feature is advised to be only used when there is a pres-

ence of a tool/object in the work space. The framework captures multiple trajectories

τττ o = {τττ o1, τττ o2, ..., τττ ot , ..., τττ oT}. The framework then learns a normal distribution of these

trajectories, N (µo,Σoµo,Σoµo,Σo). The framework then fits a prediction of the object/tool joint

angles in this normal distribution and if the probability is less than a threshold γ,

the controlled arm halts.

3.4 Mixture of Interaction Primitives for Multiple Agents

My framework extends the original theory of Mixture of Interaction primitives for

more than two agents. The framework adopts two approaches towards to handle the

case of more than two agents:

(i) Learning one to one correlation - This framework defines the approach

towards learning correlations or Interaction Primitives between two pairs of

agents. In either approach, there is a single observed agent and multiple con-

trolled agents. Upon a partial observation of the observed agent, the trajectories

of the controlled agents are predicted.

(ii) Learning one to all correlation - In this approach, a single correlation or

20

Interaction Primitives is generated between the DOFs of the observed agent

and the combined DOFs of all the controlled agent.

3.4.1 Learning one to one correlation

Let’s assume there are m agents given A = {A1,A2, ...,Am}. In this approach we

aim at learning (m - 1) interaction primitives between each two pairs of interacting

agents. The first agent, A1, is the primary observed agent. The goal is to generate

predicted trajectories for the remaining (m - 1), {A2,A3, ...,Am}, controlled agents

on a partial observation of A1 at each value of phase. Let, P be the total DOFs of

A1 and {Q1, Q2,..,QM−1} be the DOFs of each of {A2,A3, ...,Am}. Let, D be the

total number of combined DOFs. For a single demonstration and for a single phase

value, the joint angles of the agents can be represented by a combined vector qt. This

vector is created in the same way as created in the case of two-agents by combining the

observation. An entire demonstration can be captured using a matrix, y = {q τ}τ=0..1

∈ IRD×T . Interaction primitives between two agents can then be learned by learning

individual primitives between each interacting pair. This is illustrated in the figure

number 3.6. During learning the primitives for an interacting pair, one of the agent is

made the observed agent and the other is made a controlled agent. The theory defined

in section (3.1) can then be used to learn (m -1) different interaction primitives given

by, {(µ1
w,Σ

1
w), (µ2

w,Σ
2
w),..., (µm

w ,Σ
m
w)}.

During the prediction phase, upon a partial observation, q∗A1
τ of the primary

observed agent, predicted trajectories of the controlled agents are calculated. This is

performed by chaining the prediction step and using the predicted trajectory of the

last step as an observation for the next step.

21

Algorithm 4 Learning one to one correlation

(i) Collection training demonstrations and learning IP between each interaction

pair (A1, A2), (A2, A3),...,((A1, A2), (Am−1, Am)).

(ii) These interaction primitives can be represented by {(µ1
w,Σ

1
w), (µ2

w,Σ
2
w),...,

(µm
w ,Σ

m
w)}.

(iii) During prediction phase, chain the predictions. Let,q∗A1
τ be the observation of

the agent, A1. The IPs learned for the pair (A1, A2) can be used to predict

trajectory for A2. Let the predicted trajectory be q∗A2
t . This predicted trajec-

tory can be used as an observation for the IPs for the second pair (A2, A3) to

generated a predicted trajectory q∗A3
t for the agent, A3.

(iv) Perform this chaining for all the remaining agents.

(v) Perform step(iii) and step(iv) for all remaining phase values.

Figure 3.6: Learning Interaction Primitives Between Interacting Pairs

22

3.4.2 Learning one to all correlation

Under this approach, the underlying assumptions about the agents and interac-

tions are the same. The difference lies in the fact that in this approach a single

Interaction Primitive is learned. Under this approach, the first agent is the observed

agent and the degrees of freedoms for all the controlled agents is treated in a com-

bined way. That is, for a single demonstration and for a single time step, qτ = [(q oτ)
T ,

(q cτ)
T]T , where (q cτ) is the combined observation vector for all the controlled agents.

Also for each demonstration d, the learned weight vector is given by,

wd = {[wT
1 , ...w

T
p , ...w

T
P]o, [wT

1 , ...w
T
q2
, ...wT

Q2
]c2 , ..., [wT

1 , ...w
T
qm , ...w

T
Qm

]cm} (3.51)

where cj represents a controlled agent Aj. This is illustrated in the figure number

3.7.

During the prediction phase, on a partial observation (q oτ) of the observed agent,

a predicted trajectory of all the controlled agent is generated at once.

The major difference between the two approaches is primarily based on how the

approaches handle space-time complexity. The first approach performs matrix op-

erations on (m - 1) smaller matrices as compared to a big correlation matrix when

all the controlled agents are treated in a combined way. The first approach is ideal

when a faster speed is required but each agent has high values of DOFs. The second

approach is ideal when a fast speed is required given that agents have a small value

of DOFs.

23

Figure 3.7: Learning Interaction Primitives Between The Observed Agent And Com-

bined Controlled Agents

24

Chapter 4

PYTHON FRAMEWORK

4.1 Overview

The Interaction Primitives Python library created for the theoretical framework of

the Mixture of Interaction Primitives for multiple agents is a state of the art Python

library than can be applied to a work environment where there is a collaboration

between multiple agents. This framework is an open-source library and is developed

completely on Python 2.7. This library has been tested on Windows 10 platform as

well as Ubuntu 14.04 platform, and no other platforms. Some salient features of this

library are as follows:

(i) Open Source - This software library can be used free of charge and is currently

licensed under the MIT Open Source Initiative.

(ii) Easy to Install and Use - There are two core files of this library and other

extended files which can be used on a need basis. Importing the core files is

fairly easy and will be explained in the later section.

(iii) Fast - This library uses several forms of Bayesian approximation and approxi-

mation of big integrals to speed up the library in general.

(iv) Customizable - The library provides various ways to customize the core frame-

work as well as several functionalities related to this library.

(v) Well Tested - This library has been well-tested in different simulated environ-

ments and one human experiment.

25

4.2 Design Pattern

The framework has been created using object-oriented programming and follows

guidelines of object-oriented programming. The library has been developed using Fac-

tory - Creational design pattern, Chain of Responsibility - Behavioral design pattern

and Decorator - Structural design pattern.

4.3 Libraries Used

In order to create this library, several python libraries has been used to make it

robust and efficient. The list of python libraries used are:

(i) Numpy.

(ii) Scipy.

(iii) Scikit-Learn.

(iv) Matplotlib

(v) StatsModels

4.4 Usage

The library can be used to either be applied in a two-agent work environment

or a more-than-two-agent work environment. The core system of this library has

two classes InteractionPrimitives and InteractionPrimitivesMulti, which can be used

either in a two-agent setup or multiple agents set up. The library has an inbuilt

implementation of the G-Means clustering algorithm which can be used to calculate

an approximate number of clusters based on the G-Means algorithm. The software

package has various examples of calculating the number of clusters using different

testing methods for K-Fold cross-validation.

26

4.4.1 Object Instantiation

This step creates an appropriate core object to perform data fitting, clustering

and prediction for Mixture of Interaction Primitives. The core classes have similar

APIs for these tasks and are described more in the later sections.

(i) Two Agent Work Environment. The design patterns used by the library pro-

vides a decent level of abstraction from the background programming done to

create the main objects which allow generating Interaction Primitives. For a

two-agent work environment, the following factory method can be used to cre-

ate an instance of the InteractionPrimitives class. An example usage of the

instantiation step,

1 dof_observed_agent = x #x is the number of DOFs of an observed

agent

2 dof_controlled_agent = y #y is the number of DOFs of a controlled

agent

3 dof_agents = [dof_observed_agent, dof_controlled_agent]

4 number_of_gaussians = n #n is the number of basis functions

5 number_of_cluster = c #if known, else should be -1

6 noise_error_value = e #e is the gaussian noise

7 environment_type = ’single’ #the other allowed value is multi

8

9 #Following are some optional parameters than can be used to

enable/disable optional features and can also be used to

customize a model.

10 disable_log = False # to disable any form of logging,

11 other allowed value is True

12 disable_plot = False # to disable/enable the plotting of the

weights after performing a dimensionality reduction using PCA.

13 basis_function_type = "Gaussian" #the other possible value is

27

Von-Mises

14 ip = InteractionPrimitivesFactory.get instance(dof_agents,

environment_type, gaussians, number_of_cluster,

noise_error_value, disable_log, disable_plot,

basis_function_type)}

In the above snippet, InteractionPrimitivesFactory class is used to get an in-

stance of the InteractionPrimitives class. The InteractionPrimitivesFactory

class has a function, getInstance, which acts as a factory function and can

either return either an object of the InteractionPrimitives class or an object of

the InteractionPrimitivesMulti class. In the above code snippet, the first argu-

ment of the getInstance function is an array containing the number of DOFs

of the two agents. As shown in the code snippet below, this array contains the

number of DOFs of all the agents in a multi-agents work environment.

The second argument of the getInstance function is a String literal, which can

either take the value single for a two-agent work environment or the value multi

for a multi-agent work environment.

The third argument of the getInstance function is an integer having the value

as the total number of basis functions to be used for the regression. In our

example, we are using Gaussian basis functions and this argument defines the

total number of Gaussian basis function to be used.

If the number of clusters is known in advance, by K-Fold cross validation or any

other method, the fourth argument can be used to specify that. Otherwise, it

can be specified later on.

Since our library uses Probabilistic Movement Primitives, it becomes important

to specify a value for the Gaussian noise. This can be specified using the fifth

28

argument.

In the above code snippet, rest of the arguments are optional and intuitive.

The sixth argument is used to enable/disable logs. The library has a feature

which can be used to perform a plot of the learned weights in a 3-D space and

this dimensionality reduction is performed using PCA. The seventh argument

is used to enable/disable plotting.

As mentioned in the section (3.1), the framework supports two types of basis

functions: Gaussian and Von-Mises. The eighth argument is used to specify

the type of basis function to be used.

(ii) More than two agent work environment. The core InteractionPrimitivesMulti

object can be fetched using the factory class using a similar way described above,

1 dof_observed_agent = x #x is the number of DOFs of an observed

agent

2 dof_controlled_agent1 = y1 #y is the number of DOFs of first

controlled agent

3 dof_controlled_agent2 = y2 #y is the number of DOFs of second

controlled agent

4 ...

5

6 dof_controlled_agentn = yn #y is the number of DOFs of nth agent

7 dof_agents = [dof_observed_agent,

dof_controlled_agent1,..dof_controlled_agentn]

8 number_of_gaussians = n #n is the number of basis functions

9 number_of_cluster = c #if known, else should be -1

10 noise_error_value = #e is the gaussian noise

11 environment_type = ’multi’

12

13 #optional parameters

29

14 method = ’oto’ #should only be used in case of multi, other

allowed value is ’all’

15 disable_log = False # to disable any form of

16 logging, other allowed value is True

17 disable_plot = False # to disable/enable the plotting

18 basis_function_type = "Gaussian" #the other possible value is

Von-Mises

19 of the weights after performing a dimensionality reduction using

PCA.

20

21 ip = InteractionPrimitivesFactory.get instance(dof_agents,

environment_type, gaussians, number_of_cluster,

noise_error_value, disable_log, disable_plot,

basis_function_type, method)

The above code snippet is similar to the code snippet for the instantiation of

the InteractionPrimitives class, except that the first argument is now an array

containing the number of DOFs for the multiple agents in the work environment.

The ninth argument is used to specify the type of algorithm to be used for the

multi-agent case. The type can either be ”ono” or ”all”, which represent the

one to one and the one to all algorithms, resp

4.4.2 Data Fitting

This step is used to learn the weights of the demonstration data and the algo-

rithm learns the weight in a least-squared sense as shown in the equation (3.3). The

abstraction designed as a part of this library makes the data fitting step similar for

both the scenarios.

1 data_dir_prefix = ’a path to the folder with data files’

30

2 file_prefix = ’data files must have and numbers following’

3 start_index = i # start index of numbering

4 num_demo = j # total number of demonstrations

5 ip.fit(data_dir_prefix, file_prefix, start_index, num_demo)

The above code snippet is a demonstration for the two-agent work environment and

multiple-agent work environment scenario, with method specified as all.

The first argument to the fit function is an absolute or a relative path to the folder

containing the data file.

The library expects a standard way of structuring the data files themselves and

their naming inside the given folder. The data files must have a common prefix and

they must be numbered continuously. For example, if the prefix of the files is “join-

tAngles” and there are three data files, they must be named as, “jointAngles0.txt”,

“jointAngles1.txt”, and “jointAngles2.txt”. In this example, the second argument of

the fit function will be a String literal “jointAngles”. Regarding the internal structure

of the data files, each row of the data file should be a combined column vectors of the

position/joint angles of all the DOFs of all the agents. In granular terms, a datafile

must be structured as a numpy matrix so that it can be imported using the loadtxt

function of numpy.

The third argument is the start index of data files, which in the current example

will be 0. The fourth argument is the total number of data files, which in our current

example will be 3.

For the multiple agent work environment with method specified as ota, the start

and end indices of the combined weights of the agents must be specified in the data

file. Also, the weights in the data files must be arranged linearly to one after another

depending on how the interactions are taking place. For example, if there are 3 agents

with 6 DOFs each, then the total number of columns present in the data file must be

31

18. Let’s assume that these agents are {A1, A2, A3} where interacting pairs are (A1,

A2) and (A2, A3). In that case, the first 6 columns should have the joint angles of

the agent A1, the next 6 columns should have the joint angles of A2 and so on.

In the below code snippet, the start index df and end index df are used to specify

the span of the indices of the columns for an interacting pair. This means that for

(A1, A2), start index df will be 0 and end index df be 11.

1 data_dir_prefix = ’a path to the folder with data files’

2 file_prefix = ’data files must have and numbers following’

3 start_index = i # start index of numbering

4 num_demo = j # total number of demonstrations

5 start_index_df = k # start index of combined weights

6 end_index_df = l # end index of combined weights

7 ip.fit(data_dir_prefix, file_prefix, start_index, num_demo,

start_index_df, end_index_df)

4.4.3 Clustering parameter

To determine the number of clusters, various examples in the test files can be

referred to which are primarily based on K-Fold cross validation. If the number of

clusters has to be calculated on the fly, the G-Means algorithm can be used in the

following way:

1 ipc = InteractionPrimitivesClustering(ip.weights.T)

2 sig_level = s #value which represents the significant level or

confidence. Higher value means higher confidence and less number of

clusters.

3 K = ipc.learn k by g means(sig_level)

The mixture parameters can then be calculated using,

32

1 method = ’gmm’ # the other allowed value is ppca

2 ip.calculate mixture parameters(number_of_cluster, method)

4.4.4 Prediction

The most important step is to perform the prediction as described in the origi-

nal Mixture of Interaction Primitives framework. The software package has several

examples on how to perform the predictions. In a nutshell, the following steps are

required,

1 t = index #index of the current reading

2 test_data = [’2D array of observations’]

3 phase = z # phase value for the current reading, if phase value is -1,

the phase will be calculated using particle filter

4 ip.assign cluster(test_data[0:t,:], phase) #if the phase value is -1,

the programs calculates the phase based on measurements. Returns

phase value

5

6 # next step is to calculate predicted trajectory till the phase that

has already passed.

7 ip.predict till phase(test_data[0:t,:], phase, number_of_samples) #if

the phase value is -1, the programs calculates the phase based on

measurements. Return an array of joint_angles and phase value

8

9 #subsequently, the prediction can be performed at each time step.

10 reading = r # reading of the observed agent

11 ip.predict at phase(phase, reading) #if the phase value is -1, the

programs calculates the phase based on measurements.

In the above code snippet, the first step performed is to perform a cluster assignment

of the partial observation. This step must be done before prediction as it determines

33

the cluster to use for performing predictions.

Since, the prediction may start at a phase value, τ0 0, it becomes evident to

move the controlled agent to match the partial observation of the observed agent. In

order to achieve this task, the predict till phase function is used. This function takes

an argument an array of joint angles of the observed agent, the current phase, and

number of samples of data required to control the controlled agent. After this stage,

predictions can take place at each time step using the predict at phase function.

4.4.5 Anomaly Detection

This library includes a safety feature which lets the controlled arm detect an

anomaly. The library has a two functions for this safety measure, the first function

is learn weights for tool which takes as an argument a prefix of the directory where

the data files are kept, prefix of the file name, an array of indices of the columns

which contain tool positions, start index number for the data file and total num-

ber of demonstrations. This function learns weights for the trajectory of an object

and returns mean and covariance of the distribution. The second function is the

test anamoly which takes as an argument, the current position, mean and covariance

of the distribution, threshold value, and the current phase value. It either returns

True or False.

1 directory_prefix = ’directory where data files are kept’

2 file_name_prefix = ’prefix_file_names’

3 indices = [0, 1, 2]

4 start_index = 0

5 total_demonstrations = 200

6

7 mu, cov = ip.learn weights for tool(directory_prefix, file_name_prefix,

indices, start_index, total_demonstrations)

34

8

9 # at each time step, an anomaly detection can be done

10 anomaly = ip.test anamoly(current_position, mu, cov, threshold, phase)

35

Chapter 5

EXPERIMENTS

For testing this Python library, four simulated work environments were created on

the V-Rep simulator tool. Out of these four work environments, three were created

to the test this library in a two-agent work environment, and one of them was set up

to test the multi-agent capabilities of this library. This library was also tested in a

controlled laboratory environment. More details about these work environments and

the architecture of the project will follow up in the later sections.

5.0.1 V Rep

V Rep is a software tool which is used to created simulated work environments or

scenes. A simulated work environment can be set up on V Rep using many available

robots, physical objects, infrastructure objects, people, and vehicles. A scene is cus-

tomizable because of various choices of robots, choices of different types of physical

objects; choice on how to mock a real-world environment and adjusting dynamical

properties, which can include weight, gravity, light, etc., of a scene, are also customiz-

able. V Rep supports Lua as an internal scripting language to add programming

features to a scene. Most of the scenes in my experiments have been programmed

using Lua. V Rep has an extensive API for its scripting language and can be used

to control a scene and fetch information about a scene dynamically. V Rep has an

inbuilt TCP(Transmission Control Protocol) server which is used to connect to V Rep

over TCP using the supported programming language. Since this library has been

developed entirely using Python, the software package has programs which connect

to the V Rep using its Python API.

36

5.0.2 Kinect Version 2

Kinect is a motion sensor which can be used to capture depth as well as color

images. In my experiment, I have used a Kinect version 2 sensor for skeleton tracking.

To capture skeleton tracking data, I have used the J4K(Java for Kinect) library.

5.0.3 Simulated Work Environments

Programs in the Python scripting language were written to apply this Python

library on different Simulated environments. An overview of the architecture of the

testing programs follows in the next two sections. Python programs for these work

environments have been programmed to collect training data at ∼ 50 Hz. The choice

of data collection rate is not due to any scientific or technical constraint, but this

allowed me to keep the number of observations in a single trajectory at a decent

number to allow faster computations.

Training Phase

During the collection of training data, Python programs for each of these simulated

environments connect to the V Rep API and make the appropriate API calls to

collect the joint angles of the DOFs of each agent. Since this framework is based on

interaction learning and learning by demonstration, it requires a decent number of

sample to perform accurate prediction. The minimum number of sample needed for

testing is decided by how varied the task(s) are. An overview of the training phase

can be seen in the figure number 5.1.

37

Figure 5.1: Overview Of Training Data Collection

Testing Phase

The testing phase is when this Python library is applied to predict trajectories of

a controlled after partially observing trajectory of an observed agent. To perform

prediction, data files are used to learn the interaction primitives. Once the primitives

have been generated, they can be used to perform predictions at each time step. The

figure number 5.2 and algorithm 5 will give an intuitive overview of the testing phase.

Work Environment 1

The first work environment is shown in figure number 5.3. This simulated work

environment has two UR10 robotic arms mounted on two cubicle stands. The agent

on the left-hand side is an observed agent and the agent on the right-hand side is a

controlled agent. The interaction between these two agents is limited to handing over

a tool on the rack on left by the observed agent to the controlled agent. Ultimately,

38

Algorithm 5 Testing predictions from the Interaction Primitives Python library

(i) Observe a partial trajectory of an observed agent till a phase value, τ = τ0. The

accuracy of cluster assignment improves as the value of τ0 increases since more

observation leads to more data and better cluster assignment.

(ii) Use the Interaction Primitives library to learn weights and cluster parameters.

(iii) Use the prediction capabilities of this library to predict the trajectory for the

controlled agent up to the current phase value, τ = τ0.

(iv) Now, at each time step, a single observation of the joint angles of the DOFs of

observed is made and each time step, a predicted trajectory for the controlled

agent is generated.

Figure 5.2: Overview Of Testing Predictions Of The Interaction Primitives Library

39

the controlled agent places this tool on the rack on right. This is an example of

high variation in a single task. The demonstrations vary from each other in a way

that the interaction point is randomly chosen from a uniform distribution of points

inside a unit hemisphere. For the demonstrations, the joint angles of the 6 DOFs of

both the UR10 robots are recorded. During the prediction phase, a partial trajectory

comprising of joint angles of the observed agent is recorded and used for cluster

assignment and conditioning.

Work Environment 2

The first work environment is shown in figure number 5.4. This simulated work

environment has two UR10 robotic arms mounted on two cubicle stands, and they are

performing multiple tasks. The multiple tasks are defined by handing over multiple

tools as shown in the simulated V Rep scene. The rack on the left has two tools, and

the table on the left has a single tool kept on top of it. The agent on the right is the

controlled agent, and the agent behind it on the left is the observed agent. Variation in

the demonstrations is achieved by randomizing the interaction point. The interaction

points for the three tasks are far apart, but for each of these tasks, training data

is collected from interactions at uniformly random points inside a semi-unit sphere.

Training and prediction data is same as for the work environment number 1.

Work Environment 3

The purpose of the third work environment shown in figure number 5.5 is to test

this library on a mobile robot. The simulated work environment has two YouBots.

The YouBot on the backsides is the observed agent, which picks up a tool from the

platform on the back and meets a random position with the controlled agent for an

interaction. The controlled agent then picks up this tool from the platform of the

40

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.3: Work Environment 1

41

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.4: Work Environment 2

42

observed YouBot and moves towards the platform in front on the left and places the

tool on top of the platform. Multiple demonstrations are captured by randomizing

the interaction point. The interaction points are chosen at uniformly random points

from a circle of radius 1.5 meters. During training, joint angles of the arms of both the

YouBots are captured, the state of the gripper for both the YouBots are captured. The

movement of the YouBots is controlled through motion planning. The destinations

of the YouBots are also captured at each time steps.

Work Environment 4

The fourth work environment is shown in figure number 5.6. This simulated work

environment was created to test the library in a multi-agent work environment. The

goal of this work environment is to mock a bucket brigade. Instead of a bucket, this

simulated scene has several YouBots working in collaboration to pick up a tool from

the platform on the left and ultimately place it on the top of the platform on the

right. Interactions take place in a way that one YouBot places the tool on the top

of its platform and the other YouBot picks up the tool and then places the tool on

its own platform. The next YouBot then picks up the tool and chain continues till

the last robot places the tool at the destination. During the training phase, multiple

demonstrations are created by randomizing the location of the platform on the left.

This leads chain forming at different locations in each demonstration. As for the

training data, the joint angles of all the DOFs of a YouBot’s arm, it’s gripper state

and the location of its destination is captured at each time step.

5.0.4 Human Robot Environment

This controlled laboratory environment was setup to test the Interaction Primi-

tives library in a real-world environment. In this setup, a human subject performs a

43

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5.5: Work Environment 3

44

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Figure 5.6: Work Environment 4

45

high-five with a UR5 robot. The joint angles of the UR5 robot is captured by com-

municating with its TCP API. The movement of the human subject is captured using

a Kinect Version 2 sensor which captures the skeleton data of the subject. One of

the challenges faced for capturing the skeleton data is an absence of a decent Python

library that works with Kinect Version 2. In order to overcome this challenge, a Java

Project was developed which uses the J4K(Java for Kinect) library to capture the

skeleton data and sends position data of the human right hand on a UDP port. The

J4K library is developed to capture the data at 30Hz and that’s the speed of the Java

UDP server. With the presence of a TCP server which sends the UR5 movement data

and a Java UDP server which sends the movement data of a human hand, Python

scripts were written to collect training data and test the library by controlling the

UR5 arm on observations of the human subject. The training data was recorded at

30Hz due to a bottleneck of the J4K library and the testing is also performed at 30Hz.

Architecture

The figures 5.7 and 5.8 show overall architecture of the human-robot experiments.

Description of the stages are specified in the respective figures.

46

Figure 5.7: Overview of Human Robot Experiment - Training

47

Interaction

Primitives

Library

Python Program

for training

Java UDP server

for Kinect hand

movement data

Hard Disk

1) Read each data file

from the disk one by one.

2) Send joint angles to

learn weights.

3) This set up is assumed

to have a single cluster.

4) Observe movement of

human arm.

5) Apply the prediction

capabilities of the library

to generate trajectory for

the robotic arm.

6) Send the predicted joint

angles to move the UR5 arm.

Figure 5.8: Overview of Human Robot Experiment - Testing

48

Chapter 6

RESULTS AND BENCHMARKS

6.1 Benchmarks

The benchmarks laid down for the Python library so that it is well suited to be used

in real world scenarios with multiple robots and multiple sensors are as follows:

(a) This library should have a performance to enable posterior prediction within 20

Hz.

(b) This library needs to be accurate in the predictions.

(c) This library should give accurate results on small training data.

(d) This library needs to be efficient.

6.2 Tests Performed

The following tests were done to check if the benchmarks were meet and the

behavior of the library for other scenarios mentioned below:

(a) The library can meet the benchmark of 20 Hz.

(b) Euclidean distance between the predicted and the actual trajectories.

(c) Success rate of tool pickup.

(d) Performance vs number of clusters.

(e) Accuracy vs number of clusters.

(f) Accuracy vs number of training data.

49

6.3 Results

(a) The library met the benchmarks for frequency. While interacting with VRep,

the library could meet at frequency of approximately 19Hz on an average.

Whereas, when not interacting with VRep, the library attained a frequency

of 3554 Hz on an average. Table 6.1 shows a detailed analysis.

Table 6.1: Frequency Comparison.

With VRep Without VRep

Average 19.4Hz 3553.5Hz

Median 18.27Hz 352.4Hz

(b) Different plots for the variation of Euclidean distances can be seen in figures

6.1, 6.2 and 6.3. These diagrams show how the euclidean distance between

the predicted trajectory and actual trajectory varied by varying the number of

clusters, number of gaussians and number of training samples, respectively.

(c) Success rate was determined by calculating the percentage of successful tool

handover over all the testing data. The overall success rate was 51%. Changes in

the value of success rate by varying the number of clusters, number of gaussians

and number of training samples, respectively, can be seen in figures 6.4, 6.5 and

6.6.

(d) One of a computationally intensive step in the overall flow of the library is the

cluster assignment step. This step was chosen as an indicator of the performance

of the library. The way the performance varies with change in the number

of clusters and the number of gaussians, can be seen in figures 6.7 and 6.8,

respectively.

50

Figure 6.1: Euclidean Distance Vs Number Of Clusters

Figure 6.2: Euclidean Distance Vs Number Of Gaussians

51

Figure 6.3: Euclidean Distance Vs Number Of Training Samples

Figure 6.4: Success Ratio/Accuracy Vs Number Of Clusters

52

Figure 6.5: Success Ratio/Accuracy Vs Number Of Gaussians

Figure 6.6: Success Ratio/Accuracy Vs Number Of Training Samples

53

Figure 6.7: Performance Vs Number Of Clusters

Figure 6.8: Performance Vs Number Of Gaussians

54

Chapter 7

CONCLUSION

The objective of my thesis work is to develop a state of the art Python library

which is based on the Interaction Primitives framework and achieves the benchmarks

laid down for the library. This library can be used in both a two-agent and a multi-

agent setup and shows good results for a single task or multi task set up in a two

agent work environment, and a single task set up in a multi-agent work environment.

My experiments and the library documentation documents show this library is

easy to use and easy to be deployed and has been developed on tight guideline laid

down in the original research work on the theory of Interaction Primitives. To achieve

better results with the framework, there are some considerations which can be made

while working in a new setup.

1. Number of training sample: Although this library gives good results with a

small number of training data, the accuracy increases with larger training data.

This has been shown in the results.

2. Number of clusters: Carefully choosing the number of clusters is important for

better results. This parameter should not be very small, which may lead to

different tasks being grouped in a common cluster, and should not be too large

which could make computation slower.

3. Examples: The software package has several test files, which can be used as a

starting point before starting a new project. Some examples are also available

in the Appendix section.

55

Chapter 8

FUTURE WORK

This state of the art Python library has desirable qualities and has excellent bench-

marks for a two-agent multi-task work environment and a multi-agent single-task work

environment. This library has been tested on both real-world as well as simulated

experiments. Even with good results, this library has a scope for further research and

work.

1. Phase Estimation: The Interaction Primitives library uses the theory behind

Particle Filtering for phase estimation. Although this library shows good re-

sults for a two-agent setup, the phase estimation is not accurate in multi-agent

multi-task setup. Also, as the number of particles is increased, it makes the

computation slower. A framework which performs phase estimation as a part

of the Interaction Primitives conditioning is highly desirable.

2. Cluster Parametric Estimation and Assignment: Determining the best value

for the number of clusters (considering computation) was one of the challenges.

This framework suggests two possible ways for the number of cluster determi-

nation. Research can still be done in finding a framework to determine the best

number of clusters.

3. Collision Detection: This framework has been developed for a stochastic work

environment. Although the framework has an anomaly detection feature, it still

lacks a collision detection feature. Collision detection will have to be externally

programmed if required.

56

REFERENCES

Alexandros Paraschos, J. P., Christian Daniel and G. Neumann, “Probabilistic move-
ment primitives”, in “Advances in Neural Information Processing Systems 26 (NIPS
2013)”, (2013).

Bartholomew, D. J., “Latent variable models and factor analysis”, (1987).

Guilherme Maeda, R. L. H. B. A. J. P. G. N., Marco Ewerton, “Learning interaction
for collaborative tasks with probabilistic movement primitives”, in “Proceedings of
the International Conference on Humanoid Robots (HUMANOIDS)”, (2014).

Hamerly, G. and C. Elkan, “Learning the k in k-means”, (1999).

Heni Ben Amor, S. K. O. K. J. P., Gerhard Neumann, “Interaction primitives for
human-robot cooperation tasks”, in “Proceedings of 2014 IEEE International Con-
ference on Robotics and Automation (ICRA)”, (2014).

Marco Ewerton, R. L. H. B. A. J. P., Gerhard Neumann and G. Maeda, “Learning
multiple collaborative tasks with a mixture of interaction primitives”, in “Proceed-
ings of 2015 IEEE International Conference on Robotics and Automation (ICRA)”,
(2015).

Tipping, M. E. and C. M. Bishop, “Mixtures of probabilistic principal component
analysers”, (1999).

Turner, L., “An introduction to particle filtering”, (2013).

57

