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ABSTRACT

Complex electronic systems include multiple power domains and drastically varying

dynamic power consumption patterns, requiring the use of multiple power conversion

and regulation units. High frequency switching converters have been gaining promi-

nence in the DC-DC converter market due to smaller solution size (higher power

density) and higher efficiency. As the filter components become smaller in value

and size, they are unfortunately also subject to higher process variations and worse

degradation profiles jeopardizing stable operation of the power supply.

This dissertation presents techniques to track changes in the dynamic loop charac-

teristics of the DC-DC converters without disturbing the normal mode of operation.

A digital pseudo-noise (PN) based stimulus is used to excite the DC-DC system at

various circuit nodes to calculate the corresponding closed-loop impulse response. The

test signal energy is spread over a wide bandwidth and the signal analysis is achieved

by correlating the PN input sequence with the disturbed output generated, thereby

accumulating the desired behavior over time. A mixed-signal cross-correlation circuit

is used to derive on-chip impulse responses, with smaller memory and lower compu-

tational requirement in comparison to a digital correlator approach. Model reference

based parametric and non-parametric techniques are discussed to analyze the impulse

response results in both time and frequency domain.

The proposed techniques can extract open-loop phase margin and closed-loop

unity-gain frequency within 5.2% and 4.1% error, respectively, for the load current

range of 30-200mA. Converter parameters such as natural frequency (ωn), quality

factor (Q), and center frequency (ωc) can be estimated within 3.6%, 4.7%, and 3.8%

error respectively, over load inductance of 4.7-10.3µH, and filter capacitance of 200-

400nF.

A 5-MHz switching frequency, 5-8.125V input voltage range, voltage-mode con-
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trolled DC-DC buck converter is designed for the proposed built-in self-test (BIST)

analysis. The converter output voltage range is 3.3-5V and the supported maximum

load current is 450mA. The peak efficiency of the converter is 87.93%. The proposed

converter is fabricated on a 0.6µm 6-layer-metal Silicon-On-Insulator (SOI) technol-

ogy with a die area of 9mm2. The area impact due to the system identification blocks

including related I/O structures is 3.8% and they consume 530µA quiescent current

during operation.
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CHAPTER 1

INTRODUCTION

Power management circuits are undoubtedly one of the most ubiquitous circuits

in the world of present day electronics. They can be found in applications requir-

ing power ranging from several hundred milliwatts to hundreds of megawatts. They

have helped in the move towards a more sustainable future by finding applications in

wind-turbines, solar farms, and voltage/current scaling using solid-state transformers.

They have also proved their utility in medium and low power application areas such as

battery operated electric vehicles, spacecrafts and rovers, computers, smart-phones,

and electronic lighting. In recent years, several new application areas encompassed

under the umbrella of Internet of Things (IOT) have emerged. These systems are

the backbone of the internet era infrastructure and are becoming increasingly com-

plex requiring highly reliable operation and effectively zero downtime. Any downtime

in these critical systems may result in disruption of daily life and loss of millions

of dollars. The compound annual growth rate (CAGR) of power management in-

tegrated circuits (PMIC) market is estimated to be 6.15%, priced at $46 billion in

2019 [1]. This valuation is expected to grow due to PMICs increasingly being used

in medical, industrial, and military sectors and in emerging novel applications such

as autonomous self-driving cars and virtual/augmented reality.

Based on the type of input and output power, power management systems can

be classified as DC-DC (switching converters and linear regulators), DC-AC (invert-

ers), AC-DC (rectifiers), and AC-AC (cycloconverters). The work presented in this

dissertation focuses specifically on the DC-DC switching converters.
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1.1 Research Background

DC-DC converters have been widely used as an integral part of PMICs and power

management units (PMUs) in computers, communications, and consumer electronics.

They are commonly used as an interfacing stage between the energy source and the

load. Usually, the load requires a constant supply voltage with minimal disturbance.

DC-DC converters control the flow of energy from the source to the load and main-

tain the desired output voltage level amidst the disturbances such as variable input

voltage and load current. Numerous such converters are used in present day PMICs

and PMUs instead of using a central converter. This power delivery architecture is

known as point-of-load (PoL) supply scheme. PoL schemes have several advantages.

First, power is supplied at high voltage (low current) directly up to the load where

it is converted to the desired voltage level by the PoL DC-DC converter. This re-

sults in reduced circuit area due to the decreased wiring required to achieve the same

level of conduction losses. Second, each load can be supplied with an independent

voltage at different voltage levels thus improving transient performance (tighter volt-

age regulation) by separating power domains with drastically varying dynamic power

consumption patterns and at the same time reducing noise coupling between vari-

ous circuits. Third, PoL scheme increases the reliability of these critical systems by

avoiding a single central point of failure.

DC-DC converters can be categorized into two major categories, namely switching

regulators and low dropout voltage regulator (LDO). LDOs, also known as linear

regulators, are advantageous as they have relatively small size and provide low-noise

output voltage but at the expense of reduced efficiency. Also, they can only provide

an output voltage lower than the input voltage. They are mostly used to power noise

sensitive analog and radio frequency (RF) circuits such as clock generators, envelope
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Figure 1.1: A DC-DC switching converter.

trackers, etc. On the other hand switching regulators are used in applications which

require high efficiency. Additionally, they can both step-up and step-down the supply

voltage and can provide negative (inverted) DC voltages. Even though the switching

regulators have higher complexity, noise, and area, they are the preferred regulator

of choice in battery based and high load current applications.

Figure 1.1 shows a basic diagram of a DC-DC switching converter [2]. It converts

a DC input voltage, VIN , to a DC output voltage, VOUT , for a certain range of load

current, ILOAD. The switching converter includes one (or several) switches in order

to control the output voltage. A constant output voltage is achieved by controlling

the on/off time of the switches. The frequency at which these switches are operated

is called the switching frequency (fSW ) of the converter. The turn on and turn off

time of the switches is controlled by the signal D, the duty cycle. The duty cycle

is defined as the percentage of time the signal is high to the total switching time

period (TSW = 1/fSW ). The controlled voltage passes through a junction of switches

called the switching node. The voltage at the switching node is filtered by using

inductor and capacitor based filters. Resistor based filters are avoided to obtain a

higher efficiency converter.

Several different topologies can be obtained by connecting the switches and filter

components in different ways. The most common method of classification of the
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topologies is based on the input and output voltage of the converter. They are: buck

(steps-down the input voltage), boost (steps-up the input voltage), and buck-boost

(both steps-up and steps-down the input voltage). More advanced topologies which

are widely used are Ćuk, SEPIC, forward, and flyback converters.

The converters can also be classified based on switch/diode use in power train

(synchronous and asynchronous), control types (analog or digital control), controller

type (voltage control, current control, hysteretic control, etc.), phase boost provided

by the controller (Type I, Type II, or Type III), number of phases (single-phase or

multi-phase) and if the topology is isolated or non-isolated. Detailed discussion of all

of these classifications are out of the scope of this dissertation, but a brief introduction

to a DC-DC buck converter is presented in the following section.

1.2 DC-DC Buck Converter

A DC-DC buck converter is used to convert a higher DC input voltage, VIN , to a

lower DC output voltage, VOUT . Figure 1.2 shows a buck converter with switches QP

and QN which are used to control the output voltage level. The junction node of QP

and QN is called the switching node and the voltage at this node is a square waveform

(VSW ). When QP is on (and thus QN is off), VSW is equal to VIN . Alternatively,

when QN is on (QP is off), VSW is equal to 0 (GND). The width of the pulse VSW is

Figure 1.2: Buck converter power stage.

4



decided by the duty cycle, D. The switching voltage is filtered using a second order

filter designed using an inductor (L) and a capacitor (CL) to minimize the ripple and

provide a DC voltage at the output node. This open loop circuit is part of a buck

converter and is referred to as the power stage of the converter.

In the illustrated diagram, QP is a p-type power FET used at the high-side while

QN is an n-type power FET used at low-side of the power train. The high-side p-type

switch can be replaced with an n-type switch for better speed and area efficiency but

at the cost of higher design complexity. The turn on/turn off of the switches then is

controlled by the complimentary signals D and D̄. Complimentary signals are used

to avoid turning on both the switches at the same time causing a short between VIN

and GND resulting in high current flow and damage to the switches.

Assuming ideal components with zero losses, the average input power (P̄IN) is

equal to the average output power (P̄OUT ) and hence theoretically a DC-DC con-

verter can achieve 100% efficiency. It is common for carefully designed practical

switching converters to have efficiencies reaching around 96% under suitable operat-

ing conditions. Furthermore, a relationship between VIN and VOUT can be calculated

by using volt-second balance across the filter inductor. This relationship is given by:

VOUT = D · VIN (1.1)

Consequentially, using the input/output power relationship and (1.1), during

steady state (defined as when output current is constant and VOUT has settled to

its final value) the relationship between average input current (ĪIN) and the output

current (IOUT ) of an ideal buck converter can be calculated as:

ĪIN = D · IOUT (1.2)

The converter provides a constant output voltage across a range of load currents.

5



Figure 1.3: Buck converter waveforms during steady state operation.

The load is usually modeled as a DC load current sink or a resistor of value RL =

VOUT/IOUT connected between VOUT and GND.

The steady state waveforms related to important converter voltages and currents

such as VL (voltage across the inductor), IL (current through the inductor), IC (ca-

pacitor current), etc. are shown in Figure 1.3.

1.3 Motivation

Dynamic voltage scaling (DVS) DC-DC converters are an essential part of the

PMUs used in the state-of-the-art system-on-chips (SOCs). DVS DC-DC converters
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require fast transient response to reach the desired output voltage level quickly, to

meet strict power-performance criteria [3]. DVS is used to save power and further

increase the overall system efficiency. Also, these electronic systems use PoL sup-

ply scheme and contain multiple power domains. For example, Intels 6th generation

Core processor, Skylake, has 34 power domains supplied by several DC-DC switching

converters [4]. To improve the settling time and power density, these converters are

designed to operate at a high switching frequency, resulting in low inductor and ca-

pacitor values in their output filters [2]. However, small components suffer from larger

manufacturing variations and increased degradation over their operational lifetime [3],

[5], [6]. The component variations result in degradation of the dynamic performance

and stability of the DC-DC converter [7]. Additionally, control loop characteristics

are also affected by the variable load current, causing the loop dynamics to change,

resulting in variation of open-loop phase margin (PM) [7].

Figure 1.4 shows a DC-DC converter with typical variations associated with its

components. In [7], it has been shown that for a typical DC-DC converter, open loop

frequency response PM drops 13° caused by ±25% variation in the output filter and

load current. Variation in the power train and controller may reduce the PM even

further. To compensate for these high variations and to maintain operation in worst

case scenarios, the systems are often over-designed. Even then in many cases, the

converter can become unstable over time and may also cause reliability issues in the

systems powered by it.

As an example of typical variation, consider the output filter capacitor. In ad-

dition to manufacturing variations, the filter capacitor may degrade with respect to

time (aging), temperature, and voltage [8], [9]. Voltage variation across the capacitor

alone can cause a derating of up to 70% in capacitor value. Figure 1.5 shows capac-

itor variation for most used ceramic capacitors with respect to temperature, time,
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Figure 1.4: A DC-DC switching converter with typical variations associated with its

components.

and voltage [10]. When the filter capacitor of the switching converter degrades, the

transient performance of the converter is negatively affected. Figure 1.6 shows if the

filter capacitor is highly derated, then a sudden increase in load current will result in a

large undershoot which may result in memory reset in digital systems. Alternatively,

a sudden decrease in load current will result in large overshoot which may result in

electrical stresses in analog and digital circuits alike.

Hence, detecting the changes in loop dynamics and tracking performance degra-

dation of the DC-DC converter filter components during closed-loop operation is a

critical requirement for high reliability operation in automotive, aerospace, big-data

and cloud computing applications.

8



Figure 1.5: Typical variations associated with capacitors [8], [9].

Figure 1.6: Transient performance degradation due to capacitor derating.
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1.4 Dissertation Outline

This dissertation examines the techniques that can be used to diagnose and predict

the degradation of switching converters filter components before a converters complete

failure. Mathematical analysis and circuit implementation of such techniques are

covered in this study. The techniques are applied on a voltage mode buck converter

and experimentally verified. The document is organized as follows:

Chapter 1 provides a brief introduction to the DC-DC converters, explains their

utility in modern day electronics, and the importance of reliable operation of these

systems. This chapter thus introduces the research background and motivation be-

hind the present work. Chapter 2 covers the survey of relevant literature. Existing

techniques used for system identification of analog and digitally controlled converters

are reviewed. A comparison of previous works based on their advantages and disad-

vantages is presented and the relevance of the work done in this study is also compared

with them. Chapter 3 discusses the mathematical foundation of the suggested system

identification techniques and the analysis methods. Chapter 4 presents the system

architecture and the circuits used to implement the system identification method in

the integrated circuit (IC) environment. Chapter 5 demonstrates the measurement

results obtained using the designed IC. Chapter 6 summarizes the key findings of the

dissertation and provides a discussion on possible future work.
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CHAPTER 2

LITERATURE REVIEW AND PROPOSED APPROACH

This chapter provides a broader context of system identification and specific dis-

cussion on relevant prior work. Different techniques which have been used tradition-

ally for system identification are discussed. They are evaluated based on their merits

and ease of implementation and analysis. The signals which are used to perform

the system identification are also analyzed and their effectiveness is compared. Vari-

ous works have shown implementation of system identification techniques on DC-DC

switching converters. These works are compared with the solution proposed in this

dissertation.

2.1 System Identification

System identification techniques are classified as parametric and non-parametric

[11], [12]. In parametric identification methods, the system to be identified is pa-

rameterized into a known system model structure and excited using a stimulus. The

coefficients of this model are then estimated based on the observed response. On

the other hand, non-parametric identification methods do not assume any particular

structure. Instead, the system to be identified is excited using an appropriate stim-

ulus and time-domain and/or frequency-domain response data are obtained directly

from the observed response. In both cases, the results obtained can be compared to

the similar results from a reference model calculated at nominal/ideal operating con-

ditions using standardized testing methods [13]. This comparison indicates that the

system has changed due to the change in operating conditions, component drift, and

process-voltage-temperature (PVT) variation. When the observed response obtained

using parametric techniques is compared with the reference response, it is referred
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to as parametric model reference system identification method. Alternatively, when

the observed response obtained using non-parametric techniques is compared with

the reference response, it is referred to as non-parametric model reference system

identification method.

This dissertation focuses on DC-DC power converters, hence system identification

will be discussed from the perspective of application to electronic circuits.

2.1.1 Requirements for System Identification

System identification can be used to test a system or circuit during the product

manufacturing process. Although it is not sufficient to monitor and qualify the system

only during the manufacturing process as system performance and circuits can also

be affected at the customers end during field operation. Hence, the utility of system

identification will increase many-folds if it can be used during in-field operation.

Additionally, it is advantageous if the process can be used without disrupting the

normal operation of the systems and circuits. Here, in-field refers to the capability of

system identification process and circuitry to operate at the customer end. A system

being on-line means the system is operational and supplying the load without any

disruption or loss of regulation when system identification is performed on it.

An in-field system identification technique for measurement of loop characteristics

requires several qualities:

1. The system identification technique should have minimal effect on the output

voltage of the converter,

2. Loop measurements need to be conducted during closed loop operation, at the

operating point of the system,

3. System output response should have sufficient dynamic range,
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4. The measurement needs to present little to no computational overhead and

silicon die area.

2.2 Application of System Identification to DC-DC Switching Converters

System identification techniques have been applied to digitally controlled DC-

DC converters in [14]-[27], and to analog converters in [28]-[39]. The techniques

used in [14]-[19] and [28]-[33] qualify as parametric methods while [20]-[27] and [34]-

[39] use non-parametric methods for system identification. Non-parametric system

identification methods include transient response analyses such as impulse response

[20], step response [15], [16], cross-correlation [20]-[25], [39], and frequency response

using single tone sine-sweep [26], [36], [37] and multi-tone input [27], [35]. Limit-

cycle oscillations (LCOs) based techniques can be used for both parametric system

identification as in [17] and [32], or for non-parametric system identification as in [38].

In addition to non-parametric based identification, cross-correlation based techniques

have also been used for parametric system identification [14], [18], [19], [28].

2.3 Discussion on Relevant Prior Works and Techniques

A number of methods have been proposed to self-test DC-DC converters using

various test signals, as mentioned in section 2.2, to characterize the converters. Some

techniques require the converter to be in open-loop and thus cannot reliably supply

the connected load during testing, while others can be used in closed-loop, but are

only applicable to digitally controlled systems. Many of these techniques have high

hardware and computational requirements. The relevant techniques and architectures

used previously to characterize the DC-DC converter systems are discussed in the

following section.
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Figure 2.1: System characterization using frequency swept-sinusoidal method.

2.3.1 Frequency Swept-Sinusoidal Methods

The most basic method for system identification is to use a frequency-swept sinu-

soidal input to characterize the frequency response of the system [2]. Instruments such

as spectrum analyzers use a sweep of a wide range of frequencies to characterize the

input signal and produce a power spectral density analysis of the signal. Figure 2.1

shows the procedure to characterize the frequency response of the system-under-test

(SUT) using frequency swept-sinusoidal method. The SUT is excited using a range of

single or multi-tone sinusoidal signals. The output is passed through a band-pass filter

and the amplitude and phase response information of the system output is obtained

and thus the system behavior is characterized.

However, this approach is not suitable for on-line, closed-loop power system iden-

tification, and more so for an integrated circuit. To accurately obtain the frequency

response of the system, very fine change in the step size of the frequency of input

sinusoids is required. Thus, this method is hardware extensive and also requires

computationally intensive post-processing. Most importantly swept-sinusoidal tech-

niques result in significant tonal content concentrated at particular frequencies at

the regulator output which may interfere in proper operation of the loads and also
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result in electro-magnetic interference (EMI) problems. Even-though it is one of the

most accurate methods for system characterization, it is not a preferred choice for an

integrated built-in self-test (BIST) capable implementation of a DC-DC converter.

2.3.1.1 Single-Tone Excitation

A sweep of single-tone sinusoidal signals can be used to identify the frequency

response of a converter system as presented in [26]. The method uses a software

frequency response analyzer (SFRA). The software is loaded on the embedded digital

processor which is used to control the DC-DC converter loop digitally. This imple-

mentation disposes of the need for an external FPGA/DSP. The proposed approach

first measures the control-to-output transfer function to characterize the plant by

injecting the sinusoidal perturbation at the control node in open-loop. Measurement

of the loop transfer function can be subsequently done in closed-loop. As the plant

transfer function is known from open loop measurements, the compensator transfer

function can be extracted from the closed-loop measurements.

Although accurate, the single-tone sine sweep requires a long time for comple-

tion of the identification process. Additionally, it suffers from problems described in

Section 2.3.1.

2.3.1.2 Multi-Tone Excitation

The detection of degradation using digitized multi-sine perturbations injected at

the control node of the converter is demonstrated in [27]. A multi-tone signal has

a faster sweep time in comparison to successive single-tone excitation methods as

several frequencies are injected into the system at once. Figure 2.2 shows the sys-

tem architecture of the multi-tone excitation based approach, which can be used in

the closed-loop condition. In this approach, a weighted recursive least-square algo-
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Figure 2.2: System characterization using multi-tone sinusoidal excitation [27].

rithm is used to minimize the relative error with respect to a parametric model and

approximate the system model in frequency domain.

Usually, the amplitude response of the systems to be identified is not constant for

the complete range of frequencies of the injected test signals. To maintain a constant

signal-to-noise ratio (SNR) across the desired detection frequency range or to avoid

saturation of internal nodes, degraded performance, and increased ripple at the output
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of the converter, the amplitude of the test signal should be different at various fre-

quencies. This requires some prior knowledge of the system to be identified, defeating

the purpose of system identification. Multi-tone excitations also introduce multiple

tones in the frequency response of the output, which is an undesirable attribute.

Additionally, averaging the output voltage to nullify the effect of noise and re-

quirement of a high-speed, high resolution analog-to-digital converter (ADC) results

in making this approach unsuitable for system identification of integrated DC-DC

converters.

2.3.1.3 Limit Cycle Oscillation Based Excitation

Auto-tuning of a digitally controlled DC-DC power converter using LCOs is pre-

sented in [17]. The system is designed to intentionally introduce oscillations by re-

ducing the digital pulse-width modulator (DPWM) resolution. When the identifi-

cation/tuning mode is turned on, LCOs are introduced into the system, changing

the digital code generated by the digital proportional-integral-derivative (PID) com-

pensator. The steady state code just preceding the identification mode is captured

by the steady state capture block as shown in Figure 2.3. The LCO is forced to

be a symmetric signal by introducing an offset in the reference voltage to the con-

verter. The change in duty cycle, as compared to the steady state duty cycle, is used

for tuning the PID compensator. The approach uses a look-up table to update the

programmable coefficients and the calibration works during closed-loop operation.

The approach provides a novel method of auto-tuning a digitally controlled DC-

DC converter. The approach cannot be applied to analog controlled converters and

requires high speed, high bandwidth ADC. Additionally, introducing LCO in a system

is usually undesirable as it negatively affects both the voltage regulation and the

frequency content of output voltage.
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Figure 2.3: System characterization using limit cycle oscillation measurement [17].

2.3.2 Transient Signal Excitation Based Methods

Signals such as impulse and step can be used to excite and characterize an SUT.

Important system parameters such as settling time, rise time, undershoot/overshoot,

etc., can be calculated using these tests. The results obtained from the tests can also

be converted from time-domain and analyzed in frequency-domain.
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Figure 2.4: System characterization and tuning using impulse based excitation

method [20].

2.3.2.1 Impulse Based Excitation

Use of impulse based excitation for system characterization is investigated in [20].

The technique is applied to a closed-loop digitally controlled system. The main

goal of the proposed solution is to tune the digital controller coefficients to improve

the transient response of the converter. The auto-tuning algorithm minimizes the

difference in impulse response energy compared to a reference derived from the desired

dynamic performance. The impulse is injected into the digital DC-DC converter

system in the form of a narrow duty cycle pulse at the output of the PID controller

as shown in Figure 2.4 . The response is observed and processed at the input of

DPWM.

As an impulse by definition is a narrow signal (in time domain), the time required
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to collect the relevant data to characterize and tune the system using this method is

small. However, due to the requirement of obtaining an observable signal with high

SNR, this technique produces non-negligible output voltage deviation. Additionally,

digitally controlled systems are inherently limited by low transient response due to

the delay in data conversion blocks in the feedback signal path and hence are not the

most suited design choice for high speed DVS systems. Also, digital systems require

high resolution, high bandwidth ADC to sample the output voltage and perform the

cross-correlation in digital domain which results in high computational and storage

requirements.

2.3.2.2 Step Based Excitation

In [15] and [16], a step based excitation is used to perform parametric system

identification on the plant (FETs and filter stage) of a digitally controlled DC-DC

converter in open-loop. The method identifies the control-to-output transfer function

by injecting a step signal at the gate of the power FETs. The step input and the

output of the converter is sampled using an ADC and the Steigliz and McBride

algorithm proposed in [40] is used to fit the converter model in the digital equivalent

of an analog 2 pole, 2 zero transfer function. Even though averaging is used to

improve the SNR of the sampled data, it does not result in too high of an increase

in computational workload due to the signal processing directly applied to the time-

domain data.

The proposed technique can be applied to analog controlled DC-DC converters and

can be modified to be used during closed-loop converter operation. The step applied

at the gate should be much longer than the settling time of the system. However,

it is not desirable to keep the power FETs in the system on for prolonged intervals.

Additionally, the continuous change in output voltage level due to application of the
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Figure 2.5: Mixed-signal implicit functional testing [41].

step test signal may result in reliability/degradation problems in the connected load.

2.3.3 Noise Based Excitation Techniques

In addition to sinusoidal signals and impulse/step based excitations, noise based

signals also provide a way to perform identification on a system. Most commonly,

white noise is used due to its several advantageous properties over other noise based

signals. White noise is usually approximated using pseudo random binary sequence

(PRBS). The mathematical aspects and justification of use of these signals is discussed

in Chapter 3. The following section presents a summary of some relevant previous

works which have used PRBS as an excitation signal for system identification.

2.3.3.1 Mixed-Signal BIST

A noise based BIST technique which can be applied to analog and mixed-signal

systems is proposed in [41] based on the concepts presented in [42] and [43]. The

technique is characterized as an implicit functional testing method, as it does not

observe/measure the output response directly to determine the performance parame-

ters are within the expected range, which is the case with explicit functional testing.
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Instead, the performance of the system is estimated based on a signature set in a

transformed performance space. When the calculated signature samples fall out of

the boundaries of a predetermined constrained signature set, it can be inferred that

the system has drifted from its optimal performance space.

Figure 2.5 shows the system architecture presented in [41] for mixed-signal implicit

functional testing. Here, an analog test problem has been transformed into the digital

domain. The method is primarily applied to low-pass (LP) and band-pass (BP) filters.

The signature space is created using the amplitude of the cross-correlated samples of

the impulse response.

This method ends up at a disadvantage as the transformation of an analog prob-

lem to digital domain results in the use of a digital-to-analog converter (DAC) and

ADC pair which introduce additional hardware complexity. The performance of this

technique will depend on the speed and resolution of the DAC and the ADC. Addition-

ally, the calculation of cross-correlation in the digital domain will result in significant

signal processing overhead.

2.3.3.2 PRBS Based Open-Loop Testing of DC-DC Converters

An open-loop, control-to-output system identification technique using pseudo-

random input stimulus is proposed in [21] and further developed in [22]-[24]. Fig-

ure 2.6 shows the system architecture of this technique. The PRBS signal is used

to modulate the control bits supplied to the DPWM which in turn modulates the

duty-cycle pulse. The output of the converter is then sampled using an ADC and

cross-correlated with the modulating PRBS to give the impulse response of the sys-

tem. The frequency response of the system is obtained from the impulse response.

This technique uses a complex algorithm called Walsh-Hadamard, which is used

to simplify more complex cross-correlation function calculations. The system archi-
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Figure 2.6: System characterization using PRBS method in open-loop [21].

tecture is designed primarily for application to digitally controlled converters. The

cross-correlation calculation algorithm requires in the order of O(N ∗ 2N) additions,

which will impose a large hardware penalty if used in analog controlled systems. Here,

N is the number of bits of PRBS. Additionally, a high speed, high resolution ADC

will also be required to digitize the output voltage to calculate the cross-correlation

in the digital domain. Also, due to its open loop mode requirement, this technique is

not suitable for on-line characterization of DC-DC converters.

2.3.3.3 Closed-Loop BIST for Digital DC-DC Converters

This technique works on the same principles as discussed in Section 2.3.2.1. How-

ever, instead of using a duty cycle impulse at the output of the digital compensator,

the modulation of the duty cycle is achieved using white noise approximated by PRBS

as shown in Figure 2.7. The tuning of the digital compensator to optimize the loop
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Figure 2.7: System characterization and tuning using PRBS based excitation method

[20].

performance is done based on minimizing the difference in impulse response energy

compared to a pre-calculated reference [20]. The technique operates in closed-loop but

is designed primarily for digitally controlled systems, thus incurring usual complex

hardware such as high speed, high resolution ADC, DPWM typical in digital DC-DC

converters and high signal processing and memory overhead required for calculating

cross-correlation in digital domain.

2.3.3.4 Multi-Level Multi-Period PRBS BIST

A multi-period maximum-length pseudo-random binary sequence (ML-PRBS)

technique is used as the excitation signal in [39]. The transfer functions are iden-

tified from the measurement data using the circular cross-correlation method. The
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Figure 2.8: System characterization using circular PRBS and DAQ.

technique proves the effectiveness of using circular cross-correlation instead of lin-

ear cross-correlation as being more effective (less noisy). The technique also tries to

address the effect of aliasing in the pulse-width modulation (PWM) converter due

to PRBS injection in the system. However, to achieve reduced aliasing effects, this

technique uses digital low pass filtered ML-PRBS, making it a multi-level analog ex-

citation. Therefore, this technique requires a digital-to-analog converter (DAC) to

generate the ML-PRBS and a transformer to couple the signal to the regulator out-

put, making it unsuitable for fully integrated implementation due to the hardware

complexity. Additionally, an increase in signal processing overhead is also incurred in

this approach due to the use of multi-period ML-PRBS, which is used to reduce the

effect of noise artifacts that occur in practical systems.

2.4 Proposed Integrated System Identification Approach

In view of the discussion on prior works in Section 2.3, no technique available

in literature is suitable for integrated analog controlled DC-DC converters. Most of

the techniques operate in open-loop during the identification phase, resulting in an
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unregulated output voltage. As such, they cannot be used during in-field operation of

the DVS systems. Additionally, most of the DVS systems are analog controlled due

to their requirement of very fast transient response. These concerns and requirements

are summarized here. Solutions to address them effectively in an integrated environ-

ment with reduced signal processing are proposed below and are further developed,

implemented, and tested for their effectiveness in subsequent sections.

� In-field operational capability

– A system identification technique is more useful if it not only has the

capability to be used during the production and testing phase of product

manufacturing, but also when the product is in-field and in use by the cus-

tomer. Hence, it is of paramount importance that the diagnosis technique

be able to operate without affecting the normal operation of the product.

For a DC-DC converter this entitles that a regulated steady state voltage

is always available to the load being supplied. Thus, the proposed solution

operates during the closed-loop operation of the converter as against the

open-loop testing techniques.

� Background operation

– Even if the technique is capable of in-field operation, such that the

DC-DC converter can be operated in closed-loop during the testing phase,

the identification signals used should not affect the proper operation of

the converter negatively. Additionally, the technique should not interfere

with the proper operation of the load being supplied nor should it have

EMI concerns. Hence, the test signal used should be such that the test

signal energy is spread across the frequency spectrum and should not be
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concentrated at one (or more) frequencies. Hence, PRBS is used as the

test signal of choice as against using frequency-swept sinusoidal methods.

� Minimum effect on output noise and settling behavior of the system

– In addition to minimizing the effect of system identification on the fre-

quency spectrum, preserving the integrity of output voltage is also impor-

tant. The technique should not introduce an unwanted ripple larger than

that permitted during the identification phase. When impulse/step are

used as test signals, they violate this requirement by introducing transient

behavior at the converter output, which results in larger output voltage

ripple, thus introducing stress on the connected load by supplying it with

under/over voltage rather than a tightly regulated voltage. Hence, PRBS

with a small amplitude is used as a test input signal in the proposed ap-

proach so that it only results in similar (or slightly larger) output deviation

compared to its small steady state ripple.

� High accuracy system characterization and identification

– Accuracy is another important characteristic required of a system iden-

tification process. The proposed approach uses PRBS to excite the system

and cross-correlation to recover the information embedded in the output

generated. The approach using which cross-correlation is calculated af-

fects the accuracy of the overall results obtained. Either of linear cross-

correlation or circular cross-correlation can be used. As shown in [39],

circular cross-correlation provides more accurate results without relying

on advanced post-processing techniques which require additional resources

for signal processing. Hence, the proposed method in this dissertation uses
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circular cross-correlation to extract the signal information.

� Suitability for IC level implementation

– Due to the complexity of generating complex test signals on-chip, a simple

stimulus which can be generated without complex implementation would

be the most suitable for IC implementation. Thus, a single bit PRBS is

used among other available options such as multi-bit or multi-level PRBS.

Figure 2.9: ADC bandwidth requirements for analog and digital correlation approach.

� Minimize associated hardware overhead

– To reduce the complexity of processing the signals obtained from the

system identification process, instead of first sampling the output voltage

using a high-bandwidth, high-accuracy ADC and then cross-correlating,

the signal will be cross-correlated first and then sampled. As shown in

Figure 2.9, this approach relaxes the specifications of the required ADC.

Here, fS is the sampling frequency.
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– To aid in relaxing the ADC specifications, for low storage and com-

putational memory requirements, and suitability for an analog controlled

DC-DC converter; the cross-correlation is performed using a proposed ana-

log cross-correlator.

– Processing the correlation in the analog domain using an analog corre-

lator instead of the digital domain, results in less ADCs than required in

digitally controlled DC-DC converters.

– To reduce the post-processing required for curve fitting and calculation of

FFT of the generated impulse samples, limited number of impulse response

samples are used.

– Finally, the performance related parameters are identified such that only

amplitude response monitoring is required to diagnose the degradation

of the filter stage of the converter. This eliminates the signal processing

required to calculate the phase response and further decreases the hardware

overhead associated with post-processing.

As reasoned above, PRBS based techniques often satisfy the challenging require-

ments described in Section 2.1.1 [44], [45]. Hence, ML-PRBS is chosen as the signal

of choice used for the implementation of system identification in this dissertation.

Additional justification and clarification of choices made in the above discussion will

be examined in more detail in subsequent sections.
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CHAPTER 3

SYSTEM IDENTIFICATION AND MATHEMATICAL ANALYSIS

This chapter presents the mathematical analysis of impulse response calculation

using white noise excitation of the SUT and the techniques which can be used to

analyze the obtained impulse response. As mentioned in Section 2.3.3, PRBS is

used to approximate white noise albeit band-limited and used as an excitation signal

to perform system identification. Both parametric and non-parametric methods are

discussed in the following sections.

3.1 Correlation

Correlation is the measure of similarity between two signals as a function of time

lag between them. If both the signals are different, the correlation between them

is called cross-correlation, while if both the signals are the same, it is called auto-

correlation. The correlation operator is represented as �.

3.2 White Noise

White noise is a random signal which has equal intensity at all frequencies, thus

having a constant power spectral density (PSD) throughout the frequency domain.

White noise is non-deterministic and statistically uncorrelated in time. In discreet

sense, white noise is a zero mean signal but has finite variance. In temporal domain,

white noise is the differentiation of Brownian motion [46]. Mathematically, integral

of white noise can be described by the Weiner process.

Having an equal PSD at all the frequencies implies that the power of such a signal

is infinite. Hence, an infinite BW white noise signal is purely a theoretical concept. A

white noise sample has a relation only with itself and does not statistically correlate
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Figure 3.1: Relationship between Delta function and white noise.

Figure 3.2: PSD of Delta function and white noise.

with other samples at any time. Thus, white noise is equal to itself only at that instant

(at the moment of observation, say at t = 0). Hence, the correlation of white noise

with itself is a Delta function at t = 0 (theoretically, infinite energy concentrated

at a single instant of time), as shown in Figure 3.1. Since, the PSD of the Delta

function consists of all the frequencies, similar to the PSD of white noise, both the

Delta function and white noise are considered to be spectrally equal, as shown in

Figure 3.2.
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3.3 Impulse Response Calculation Using White Noise

A switching power converter can be approximated as a linear time-invariant discrete-

time system for small-signal disturbances during the steady-state operation [2]. A

linear time-invariant sampled system can be described by the following equation:

y[n] =
∞∑
k=1

h[k]x[n− k] + v[n] (3.1)

where y[n] is the sampled output signal, x[n] is the sampled input signal (PRBS in-

jected at the reference or control node), h[k] is the corresponding discrete-time system

impulse response and v[n] represents the unwanted disturbances in the system, such

as switching noise, quantization noise, etc. The cross-correlation of x[n] and y[n] is

given by:

Rxy[m] =

∞∑
n=1

x[n]y[n+m] (3.2)

=

∞∑
n=1

x[n−m]y[n] (3.3)

=

∞∑
n=1

h[n]Rxx[m− n] +Rxv[m] (3.4)

where Rxy[m] is the cross-correlation of x[n] and y[n], Rxx[m] is the auto-correlation

of x[n] and Rxv[m] is the cross-correlation of x[n] and v[n] [11]. If x[n] and v[n] are

independent, then Rxv[m] is a constant [47]. Additionally, if x[n], v[n], or both are

zero mean signals, then:
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Rxv[m] = 0 (3.5)

If x[n] is white noise with variance σ2, then:

Rxx[m] = σ2δ[m] (3.6)

and the cross-correlation gives the impulse response of the system,

Rxy[m] = σ2h[m] (3.7)

where δ[m] is an ideal Delta function.

In practical systems, to satisfy the properties presented by equations 3.5 and 3.6,

the most commonly used signal to approximate the white noise signal is a PRBS

generated as a maximum-length sequence (MLS). The PRBS is periodic and deter-

ministic, and the data length of the N -bit ML-PRBS is given by M = 2N − 1.

Auto-correlation of white noise is an ideal Delta function. However, for PRBS, an

auto-correlation function is a mix of a Delta function at m = 0 and low amplitude

components at m 6= 0 [39]. As seen in Figure 3.3, in case of normalized circular

auto-correlation of PRBS, the amplitude of the Delta function at m = 0 is 1 and the

amplitude of components at m 6= 0 is −1/M . In case the logic level 1 (HIGH) of

PRBS has a voltage amplitude equal to +e and the logic level 0 (LOW) has a voltage

amplitude equal to −e, the amplitude of the Delta function at m = 0 is +e2 and the

amplitude of components at m 6= 0 are −e2/M .

Similar to the components at m 6= 0 not being equal to zero, the cross-correlation

of PRBS with system disturbances v[n] is also not zero. Hence, the cross-correlation,

Rxy, of the input PRBS with the output signal has undesired noise terms in addition

to the system impulse response due to the non-ideality in Rxx and Rxv. The choice
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Figure 3.3: Normalized circular auto-correlation of 9-bit PRBS.

of the number of PRBS bits (N) and PRBS frequency (CLKPN) affect these non-

idealities and the accuracy of system identification. These considerations are further

discussed in Section 3.6.

3.4 AC Small-Signal Model and Transfer Functions of Voltage Controlled Buck Con-

verter

Figure 3.4 shows the small-signal model of the designed DC-DC buck converter.

GC is the transfer function of the loop controller, GPWM is the PWM converter

transfer function, GPS is the duty cycle to output transfer function of the power

stage, GXC is the analog correlator transfer function, and H is the feedback gain

factor. The signal v̂ref = vref ± eref is the reference voltage and v̂c = vc ± ec is the

control voltage. eref and ec are the amplitudes of the PRBS induced disturbances

injected at the reference input node and the control voltage node, respectively. These

disturbances are disabled during the normal mode of operation of the converter.
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Figure 3.4: AC small-signal model of the proposed converter loop with online built-in

self-test.

The loop gain in s-domain is given by [2],

L(s) = H ·GC(s) ·GPWM(s) ·GPS(s) (3.8)

To diagnose the changes in the system dynamics of the converter, the reference

node and the control voltage node are chosen as the stimulus points and the output

voltage node is chosen as the observation point for the respective loops. The closed-

loop reference-to-output transfer function is given by:

Tro =
v̂out(s)

v̂ref (s)
|ec=0 =

1

H

L(s)

1 + L(s)
(3.9)

and the control node disturbance rejection transfer function is given by:

Teco =
v̂out(s)

ec(s)
|eref=0 =

GPWM(s) ·GPS(s)

1 + L(s)
(3.10)

In the proposed system identification methodology, the loops under characteri-

zation are driven using a single-bit digital PRBS generator through corresponding

nodes in the DC-DC converter (e.g., the reference input node and the control voltage

node). The scaled down output of the loop filter (at the feedback node) is correlated
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with the binary PRBS data using the circular cross-correlation technique. Cross-

correlation of each MLS generates one corresponding point of the sampled impulse

response. After calculating each impulse point, the MLS is circularly shifted and the

process of cross-correlation of the complete sequence is repeated to calculate the next

point of the sampled impulse response. The characterized loop responses are then

analyzed to determine important system parameters. The parameters associated with

the reference-to-output transfer function that can be tracked using this technique are

the damping factor (ζ), PM, natural frequency (ωn), CL-UGF, and quality factor (Q-

factor). For the control node disturbance rejection transfer function the parameter

that can be tracked is the peak gain frequency in bandpass shaped characteristics

referred to as the center frequency (ωc). The variation in these parameters can be ob-

served over time for tracking the system characteristics and degradation, specifically

due to the output filter derating and Iload change. The analysis of the generated im-

pulse response can be performed in the time-domain or frequency domain, described

as follows.

3.5 Impulse Response Analysis in Time-Domain

Although time-domain analysis of the dynamic loop characteristics of higher order

systems (3rd order or more) is a non-trivial problem, the theory for 1st and 2nd order

systems is already developed [48]. In [14], the closed-loop DC-DC converter response

is parametrically identified as a first-order system with time delay and unity gain. In

the present work, the closed-loop system is parametrically equated to a second order

system. If in a system, ||L(s)|| approaches the unity gain with a -20 dB/decade slope,

then the closed-loop reference-to-output transfer function can be approximated near

the crossover frequency by the following function [2]:
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L(s)

1 + L(s)
=

ω2
n

s2 +
ωns

Q
+ ω2

n

(3.11)

where Q is the quality factor given by,

Q =
1

2ζ
(3.12)

For a moderately damped system (0.2 < ζ < 1.2), as is the case with most of

the DC-DC converter loops, the time domain impulse response can be directly used

to calculate ζ and in turn the open-loop PM. Furthermore, for smaller values of ζ,

the resonant frequency, ωr, is approximately equal to ωn. For a constant ωn, the

change in Q-factor correlates with the changing stability conditions of the system.

As ωn is relatively constant with respect to the change in the load current Iload of

the buck converter (for Rload � {DCR,ESR}), the change in the Q-factor can be

used to diagnose the stability of the DC-DC converter for varying loading conditions.

Here, Rload is the effective load resistance corresponding to the load current Iload,

DCR is the DC resistance of the load inductance L, and ESR is the equivalent series

resistance of the filter capacitor CL.

Figure 3.5 shows the impulse response of a moderately damped second order sys-

tem. The damping factor can be calculated from the impulse response as follows [49]:

R =
hI
hM

(3.13)

where, hM is the maximum height of the impulse and hI is the height at the inflection

point after point M.

The damping factor is given by:
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Figure 3.5: Impulse response of a moderately damped second order system.

ζ =
0.25

1−R
+ 0.50R− 0.32 (3.14)

The phase margin can then be calculated using the following relation [2]:

PM = tan−1

√
1 +

√
1 + 4Q4

2Q4
(3.15)

3.6 Impulse Response Analysis in Frequency-Domain

Frequency-domain analysis of the system-loop under test can be used to observe

parameters such as ωn and ωc with respect to change in L and CL. The frequency

response can be calculated by taking the FFT of the discrete time impulse response

generated using the cross-correlation method.

Rxy[m]
FFT−−−→ H[jω] (3.16)
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As FFT is applied directly to the impulse points, the process is characterized

as non-parametric system identification. Following the FFT, if the calculated fre-

quency response is compared to a parametric model, the method will then be called

parametric system identification. In either case, the calculated frequency response

(non-parametric system identification) or frequency domain parameters correspond-

ing to a parameterized model (parametric system identification) can be compared to

a model response/parameters. The model response is calculated at nominal operating

conditions, to diagnose any degradation or change in the response/parameters of the

DC-DC converter with respect to aging or PVT variation.

3.7 Factors Affecting the Accuracy of System Identification Using PRBS Method

3.7.1 Resolution of the Generated Frequency Response

One of the factors affecting the accuracy of the frequency response obtained us-

ing the proposed system identification method is the selection of PRBS parameters

such as M and CLKPN . The frequency resolution (RFFT ) obtained using the PRBS

method is given by:

RFFT =
CLKPN

M
(3.17)

3.7.2 Accuracy of the Generated Frequency Response

For an accurate calculation of the impulse response the time-period of the PRBS

should be much larger than the slowest time constant in the impulse response to

be characterized [21]. This can be achieved by ensuring that the length M of the

PRBS is sufficiently higher than the impulse response to be calculated, so that the

complete impulse response is contained within the PRBS. In frequency domain, this
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Figure 3.6: PSD of PRBS.

translates to the requirement of having a constant PSD throughout the frequency

range of identification. PRBS approximates band limited white noise. The PSD of

PRBS is given by:

φPRBS =
e2(M + 1)

M2

sin2(πfT/M)

(πfT/M)2
(3.18)

where, φPRBS is the PSD of PRBS, f is the frequency, and T is the total time period

of the ML-PRBS.

In case PSD is not constant throughout the frequency range of identification as is

the case with PSD of the PRBS as shown in Figure 3.6, the SNR will be different at

different frequencies thus affecting the identification accuracy. Hence, a large enough

N should be chosen such that the PSD is flat enough to obtain the required accuracy

in the calculated results.
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Figure 3.7: Aliasing in PWM converter.

3.7.3 Aliasing in PWM Due to PRBS

The PWM comparator acts as a sampling block in the feedback loop operating

at a frequency fsw, making the DC-DC converter a sampled-data system [50]. Thus,

to prevent aliasing, CLKPN should be higher than the frequency-band of interest,

but low enough to avoid noise aliasing in the PWM converter [18], [39]. Figure 3.7

shows how choosing a PRBS frequency greater than the Nyquist frequency (fsw/2)

results in aliasing and thus causes degradation of the identification accuracy at the

interfering frequencies. Although, in cases where identification of system response at

greater than Nyquist frequency is required, techniques such as delayed output voltage

sampling, windowing of measured cross-correlation, and correction for the non-ideal

zero order hold (ZOH) and input PRBS spectrum can be used [25].

3.7.4 Linear vs Circular Correlation

For calculating the correlation between the signals, either linear or circular corre-

lation can be used. During the calculation of correlation between finite length signals

41



Figure 3.8: Normalized linear auto-correlation of 9-bit PRBS.

using the linear method, zeroes are padded at the beginning or the end (depending

on the direction of the shift) of the signal after every shift operation to keep the

signal lengths equal. Replacing the signal value with zero causes loss of information,

resulting in additional noise in the calculated correlation [39]. This can be seen in Fig-

ure 3.8 for the auto-correlation of 9-bit PRBS sequence. The effect of this non-ideality

can be reduced by using circular correlation where the effect of zero padded ends of

the linear correlation procedure is reduced by circulating the two data sequences and

multiplying the corresponding bits [39]. The improvement in the correlation function

calculated using circular method can be seen in Figure 3.3.

3.7.5 Averaging vs Truncation of the Impulse Response

As discussed in Section 3.3, Rxv 6= 0 due to the PRBS not being completely uncor-

related with the noise in the system. To reduce the effect of this non-ideality, methods
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such as averaging the sampled output multiple times, oversampling and performing

running average, and using multi-period PRBS and averaging the sampled output are

used. These methods result in an increase in post-processing requirements. In lieu of

using these methods, impulse response truncation can be used to reduce the effect of

measurement noise on the frequency response without the need for computationally

extensive signal processing and large storage [51]-[53]. In fact, signal truncation re-

sults in even lesser storage and signal processing requirement than required to process

one set of the sequence of the sampled signal. Further discussion on use of impulse

response truncation can be found in Chapter 5.
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CHAPTER 4

SYSTEM IDENTIFICATION OF VOLTAGE MODE DC-DC BUCK

CONVERTER

System architecture and circuit implementation to provide an integrated solution

for BIST of a voltage mode analog controlled DC-DC buck converter is presented in

this chapter. Along with the circuit diagrams, operation of the circuits is discussed

and related circuit waveforms are also provided.

4.1 System Architecture

Figure 4.1 shows the system architecture of the designed DC-DC buck converter

with the proposed integrated system identification circuitry. The converter has two

operating modes: the normal operating (regulation) mode and the system identifica-

tion mode. When the converter is powered on, a resistor divider senses the output

voltage (VOUT ) and generates the feedback voltage (VFB). The reference voltage

(VREF ), which is equal to VREF,E during the normal regulation mode, is compared

with VFB and a corresponding control voltage (VC) is generated by the analog PID

compensator. This VC is compared with the saw-tooth waveform, of frequency fSW ,

generated by the PWM converter and a corresponding duty cycle pulse signal (D)

is generated. The duty cycle pulse is processed by the level-shifter and dead-time

generator and then used to drive the power FETs to generate the switching-node

voltage (VSW ). As both high-side and low-side FETs of the power train are NMOS

for reduced die area and higher efficiency, a bootstrapping scheme is used to drive

the high side power FET. The switching node voltage VSW is filtered by the external

LC filter to generate the regulated VOUT .

The system identification mode can be turned on when the regulator is at its steady

state. During this mode, the PRBS clock generator in the digital core divides the

44



Figure 4.1: System level architecture of the proposed DC-DC buck converter IC with

integrated system identification modules.

switching frequency fSW by 6 to generate CLKPN for the generation of linear (PNL)

and circular (PNC) ML-PRBS. Frequency of CLKPN is chosen to be fSW/6 due to the

aliasing concerns discussed in Section 3.7.5. The node selector block in the digital core

is used to generate the enable signals to select the system-loop to be characterized

i.e. either ENSI,REF to select VREF node, for reference-to-output or ENSI,V C to

select VC node, for control node disturbance rejection loop characterization. Once the
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PRBS starts to modulate the selected node, the feedback voltage VFB of the converter

is circularly cross-correlated with the excitation signal using the switched-capacitor

analog integrator/correlator to generate discrete-time impulse response hDT [n] of the

SUT. hDT [n] is sampled at the end of each accumulation cycle using an ADC to

obtain the system impulse response h[n]. Impulse response h[n] is then parametrically

compared to a 2nd-order moderately damped system response to estimate ζ and Q-

factor. Finally, Q-factor is used to calculate the PM. Furthermore, FFT analysis

is performed to estimate the frequency response H(ω) of the DC-DC converter and

calculate CL-UGF, ωn, and ωc.

4.2 Circuit Implementation

4.2.1 Generation of Linear and Circular PRBS

The proposed approach uses circular cross-correlation to improve the accuracy

of the calculated impulse and frequency response. Thus, the designed system uses

both linear and circular PRBS. Linear PRBS is used to modulate the reference and

control nodes while circular PRBS is used in the analog correlator to calculate circular

cross-correlation. Linear PRBS is generated by using a linear feedback shift-register

approach as shown in Figure 4.2(a). In the designed system, a 9-bit PRBS is used

to generate a ML-PRBS of length M = 511. Thus, the output of the 9th flip-flop is

XORed with the output of the 4th flip-flop to generate the MLS.

Delaying the complete PRBS after calculation of each sample point of impulse

response or storing the sequence to achieve the effect of a circular shift will result

in an inefficient and hardware intensive implementation. Hence, an efficient way to

generate circularly shifted ML-PRBS is developed. Figure 4.2(b) shows the logic

diagram of the proposed implementation. A 9-bit counter is used to gate the clock of
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(a)

(b)

Figure 4.2: Linear and circular ML-PRBS generation. (a) Linear feedback shift reg-

ister based generation of linear ML-PRBS. (b) Proposed logic scheme for

generation of circular ML-PRBS.

the shift register at the end of generation of the ML-PRBS of length 511 for one clock

cycle. This causes the last value of the shift register to be stored for an additional

cycle, effectively causing a circular shift with respect to the linear PRBS generator.
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The counter which is used to gate the clock signal is reset after the count reaches 510.

Thus, at the next clock cycle it again starts to count starting from 0 and generates

another shift with respect to the linear PRBS at the end of the count of 510. Thus, a

circular shifted ML-PRBS can be generated with a very low hardware overhead and

power penalty.

4.2.2 Reference Node Modulation

Figure 4.3(a) shows the unbuffered segmented resistive string DAC that is used

to modulate the VREF node to calculate the reference-to-output loop characteristics.

It is a modified form of DAC presented in [54]. A string of resistors R1, R, and R2

provide the coarse resolution or the most significant bits (MSBs), while resistors R3,

R4, and R5 provide the fine resolution or the least significant bits (LSBs) of the DAC

resolution. The proposed structure intentionally uses unequal resistors to center the

VREF,SI node at 1.1 V and to achieve equal positive and negative modulation around

this voltage.

Figure 4.3(b) shows the circuit waveforms during the identification mode. When

PRBS is HIGH, switches S1 and S4 are on, while when PRBS is LOW, switches S2

and S3 are on. When S1 and S4 are turned on, the resistors in the LSB string appear

in parallel to the resistor in the MSB string and loads it. This drops the voltage across

the MSB resistor, increasing the voltage of VREF,SI by 11.8 mV. Similarly, when S2

and S3 are turned on, the voltage is decreased around VREF,SI by 11.8 mV. Thus, a

modulation of 11.8 mV around 1.1 V reference voltage is achieved using this scheme.

4.2.3 Control Node Modulation

Control node modulation is achieved indirectly by modulating the slope of the

ramp in the saw-tooth ramp generator. Figure 4.4(a) and (b) shows the circuit
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(a)

(b)

Figure 4.3: Unbuffered segmented resistive string DAC for reference node modula-

tion. (a) Circuit implementation. (b) Modulation waveform around 1.1

V VREF,SI .

implementation of the proposed saw-tooth ramp generator with the modulation cir-

cuitry and the circuit waveforms, respectively. The current sources and the switches

are realized using pFETs. During normal operation, the switch controlled by signal

ENSI,V C [0] is off while ENSI,V C [1] is on. Thus, two current sources I1 and I2 charge

the ramp capacitor CR. CR is reset using switch RESETR after each switching clock
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cycle to generate a saw-tooth of frequency fSW .

(a)

(b)

Figure 4.4: Saw-tooth ramp generator with PRBS injector for control node pulse-

width modulation. (a) Circuit implementation of the PWM converter.

(b) Pulse-width modulation waveforms.

When system identification is turned on to characterize the loop Teco, PRBS con-

trols the charging/discharging of the ramp capacitor (CR). When PRBS is HIGH,

both the switches controlled by ENSI,V C [0] and ENSI,V C [1] are off, thus the current

charging the capacitor is smaller than required to generate the nominal slope. This
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causes the slope of the ramp to decrease and the comparison of VC occurs with a

slight delay, which corresponds to an increase in the duty cycle width, thus achieving

the VC node modulation. Similarly, when PRBS is LOW, both switches controlled by

ENSI,V C [0] and ENSI,V C [1] are on, resulting in CR being charged by a larger current

and therefore, decreasing the effective width of the duty cycle. The ramp voltage

when PRBS is LOW is limited to VG + |Vthp|, where VG is the gate bias voltage and

Vthp is the threshold voltage of the pFET. I0 and I1 are sized relative to I2 such that

a modulation of 5% is generated.

It is important to note that this implementation of VC node modulation does not

take any extra power compared to the normal mode of operation. As, PRBS is a zero-

mean signal, the average current consumed during the system identification mode is

the same as the normal regulation mode when system identification is disabled.

4.2.4 Switched-Capacitor Analog Correlator*

To perform the circular cross-correlation in the analog domain, a switched ca-

pacitor integrator based correlator is proposed. In comparison to digital domain

cross-correlation where complex algorithms (e.g., Walsh-Hadamard) are used, analog

domain correlation offers significant savings in memory and processing requirements

as correlation is performed in real-time. Additionally, it reduces the ADC bandwidth

requirements. This is because as discussed in Section 2.4 and shown in Figure 2.9,

instead of sampling the DC-DC converters output voltage at PN frequency CLKPN

before correlation, the ADC is used to sample the analog correlator output at fre-

quency CLKPN/(2
N − 1).

Figures 4.5 and 4.6 show the flowchart and block diagram of the operation of

*This circuit was implemented by V. N. K. Malladi for this project. For more details, refer to

[55].
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Figure 4.5: Flowchart of the operation of proposed switch capacitor based analog

correlator.

the proposed switch capacitor based analog correlator, respectively. The correlator

is a resettable integrator capable of performing both inverting and non-inverting in-

tegration. The decision to perform inverting or non-inverting integration during the
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Figure 4.6: Block diagram of the operation of proposed switch capacitor based analog

correlator.

clock cycle is decided by the logic level of the PRBS. Figure 4.7(a) shows the circuit

diagram of the designed analog correlator. PNC is the circular version of the PRBS

received by the correlator. The switched-capacitor correlator can be implemented by

controlling the switches directly using PNC , however, this increases the number of

switches in the analog signal path, thereby increasing the noise in the output of the

correlator. Instead, the overall number of switches are decreased by using PNC and

PNC as select signals of the multiplexers, allowing them to control the switches.

When PNC is logic low, the correlator acts as an inverting integrator (subtractor)

while when PNC is logic high, it acts as a non-inverting integrator (adder). Thus,

the designed circuit implements signed multiplication and accumulation (MAC) op-

erations required for correlation. The transfer function of the correlator during the

inverting operation is given by,

GXC,i(z) =
−1

1− z−1
(4.1)

and during the non-inverting operation is given by:

GXC,i(z) =
z−1/2

1− z−1
(4.2)

53



(a)

(b)

Figure 4.7: Proposed switch capacitor based analog correlator. (a) Circuit implemen-

tation of the analog correlator. (b) Timing diagram and analog accumu-

lation of impulse response sample.
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Although the output in the case of GC,i(z) is available a half cycle before GXC,ni(z),

the output in both cases is considered valid only at the end of each phase of PNC

for either of the logic levels, thereby making both the inverting and non-inverting

transfer functions differ only in sign. The MAC operation finishes in the last phase of

PNC , PN<510>, during which the output of the correlator is sampled at the pulse

CLK ′ and the integrator output is reset by the pulse CLK ′d. Each accumulation cycle

results in one sample of the impulse response. Hence, after sampling and resetting,

the integration process is again repeated with the circularly shifted PRBS to generate

the next impulse response sample. Figure 4.7(b) shows the timing diagram and the

generation of impulse samples using MAC operation at the correlator output.

To reduce the effect of non-idealities on the output of the correlator, bottom

plate sampling is used. This reduces the effect of signal dependent charge injection.

Additionally, to decrease the charge redistribution based charge injection during the

transition of the switches between on and off states, half-size dummy switches are used

in series with the actual switches. Although the offset of the operational amplifier

does not affect the accuracy of the calculated impulse, it results in a DC shift at

the output, thereby limiting the dynamic range of the integrated impulse response

samples. To reduce this effect, correlated double sampling (CDS) is implemented in

the designed correlator [56].

4.2.5 Level Shifted High-Side Driver

The designed DC-DC buck converter uses power NMOS for both high-side and

low-side FETs of the power train. An inverted and level shifted duty cycle is therefore

required to drive the high-side power switch. Due to the limitation of voltage levels

available and lack of high voltage devices in the process, the high-side power FETs
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cannot be driven directly using direct gate drive circuits. Thus, the drive of high-side

FET is accomplished using a bootstrapping scheme [57], [58].

In the bootstrapping scheme, the driver of the high-side power FET is referred to

the source of the FET, i.e. the switching node instead of GND. The power required

to run the drive circuit is supplied by the bootstrap capacitor (CBOOT ) also referred

to the switching node. The charge on CBOOT is replenished by connecting it to the

normal supply voltage (V DD) through a diode, as shown in Figure 4.1. This supply

voltage is the same at which other circuit blocks are operating. The voltage at the

supply of driver swings between the normal and level-shifted voltage together with

the switching node. However, as the difference between the floating bias and the

switching node is equal to V DD (minus the diode drop), high voltage devices are not

required to implement the driver stage.

The Silicon-On-Insulator (SOI) process used for fabrication of the proposed IC

has devices with a very strict safe operating voltage (SOV) range. Hence, a level

shifter which provided reliable level shifting without violating the safe operating re-

gion (SOR) of the circuit components is designed to drive the high side power nFET

using the bootstrapping scheme.

The signal propagation delay induced by the power stage driver at the rising and

falling edge of the duty cycle causes high levels of voltage stress in the FET devices of

the level-shifter during bootstrapping. The standard n-type and p-type FETs in the

fabrication process used are rated for a maximum of 5.5 V. Laterally diffused MOS

(LDMOS) are available in n-type with a higher voltage rating of VDS = 16 V when

VGS = 0 V. All other voltage ratings of the LDMOS are the same as the standard

FETs. Due to the unavailability of the p-type LDMOS, conventional cross-coupled

level shifters in [59], [60] will encounter reliability concerns. The level shifter proposed

in [61] is feasible for driving only very small capacitive loads. Hence, a high drive
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Figure 4.8: Proposed high reliability level shifter.

capability level shifter design using the available devices is proposed to alleviate these

reliability concerns.

Figure 4.8 shows the proposed high reliability level shifter. INLOW receives the

duty cycle D from the PWM converter. SUPPLYHIGH is the bootstrapping node

and OUTHIGH is the level shifter output. Except for M2, M3, and M4, which are

LDMOS devices, all other FET devices are standard FETs. When INLOW is logic

high, M2 and M4 are turned off. The gate of the pass device, M3, is charged through

the resistor, R6. When M3 turns on, the voltage at OUTHIGH becomes equal to

VSUPPLY,HIGH −VTH,LDMOS driving the first inverter (P3 and M6) of the power stage

driver and producing the bootstrapping effect. Here, VSUPPLY,HIGH is the voltage at

node SUPPLYHIGH and VTH,LDMOS is the threshold voltage of LDMOS M3. The

low strength keeper inverter (P2 and M5) then pulls the node voltage at OUTHIGH
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Figure 4.9: Comparison of simulated output waveforms of level shifters.

to VSUPPLY,HIGH thus increasing the drive strength. The keeper circuit also prevents

the breakdown of the gate-oxide of M6 due to a violation of SOV caused by the delay

between OUTHIGH turning logic high and the charging of the switching node to VIN .

The size of R6 and M3 also control the slew rate at OUTHIGH . Resistance R7, chosen

such that the gate voltage of M3 is smaller than VTH,LDMOS when M2 is on, is used to

decrease the leakage current through R6. Resistance R8 is used to avoid a direct path

between the switching node and the ground node when M4 is on, otherwise resulting

in a short circuit when VSW = VIN . Figure 4.9 shows the simulated level-shifter

output waveforms.
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CHAPTER 5

VOLTAGE MODE BUCK CONVERTER MEASUREMENT RESULTS

To experimentally verify the proposed system identification techniques for de-

tecting changes in the load current, output filter components, and overall DC-DC

converter transfer functions, the converter is tested for various ILOAD, L, and CL

values. Different ILOAD values signify changing loading conditions while different L

and CL values signify the degradation in the filter components due to aging and PVT

variation. To detect changes and degradation, the results calculated are compared to

the similar results obtained for a nominal load and component values at nominal/ideal

operating conditions using standardized testing methods. During testing, the closed-

loop reference-to-output impulse function, control node disturbance rejection impulse

function, and related frequency responses are generated. Then the parameters PM,

CL-UGF, ωn, Q-factor, and ωc are calculated. The standard frequency-swept sinu-

soidal method is also used to calculate the same parameters and establish the accuracy

of results calculated using the proposed identification method. To perform the sinu-

soidal sweep, multiple frequencies of single tone sinusoidal perturbation are applied at

the reference node for reference-to-output transfer function generation and at the con-

trol node through capacitive coupling for control node disturbance rejection transfer

function calculation.

The proposed converter is designed and fabricated with a 0.6 µm 6 layer-metal

SOI technology with a die area of 9 mm2. Figure 5.1 shows the die micrograph of the

DC-DC buck converter with integrated system identification capabilities described in

Section 4. Figure 5.2 and 5.3 demonstrates the test board and test setup used for

testing the designed IC. The converter operates at fSW = 5 MHz and supports an

input voltage (VIN) range of 5 V to 8.125 V and output voltage range of 3.3 V to 5
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Figure 5.1: Die Micrograph.

V. Although the maximum load current supported by the converter is 450 mA, the

nominal operating load current range at 3.3 V output is from 30 mA to 200 mA and

at 5 V output is from 30 mA to 90 mA. A nominal VIN = 6.5 V and VOUT = 3.3

V has been used for testing purposes. The output filter inductor value used during

the nominal operation of the converter is 10.3 µH. The inductor has a DCR of 60.8

mW. The nominal filter capacitor is 400 nF with an ESR of 50 mW. The PRBS noise

frequency used is 833.33 kHz, providing an observable bandwidth (BW) of 416.65 kHz.

The 9-bit MLS has a length of 511 codes which provides a frequency identification
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Figure 5.2: Test board used for testing the designed IC.

Figure 5.3: Test setup used for testing the designed IC.
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(a)

(b)

Figure 5.4: Spectral density of VOUT with and without PRBS noise injection. (a)

Injection at the reference node. (b) Injection at the control node.

resolution of 1.63 kHz.

Figure 5.4 shows the spectral density plot of VOUT of the designed buck converter
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Figure 5.5: VOUT and unsampled analog correlator output with and without PRBS

injection at control node.

with and without PRBS noise injections at the reference and control nodes. Unlike

frequency-swept sinusoidal or LCO based testing methods, PRBS is a spread spectrum

signal, hence the test signal energy is spread across the spectrum without any tonal

content concentrated at a single frequency. The comparison demonstrates that the

PRBS signal energy almost completely dissipates above the PRBS frequency.

Figure 5.5 displays the VOUT ripple performance and analog correlator output

captured on an oscilloscope for PRBS disturbance injection at the control node. A

±5% change in the slope of the saw-tooth generator causes a VOUT modulation ripple

constrained to 87 mVpp during the identification process. The nominal VOUT ripple,
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(a)

(b)

Figure 5.6: Output voltage ripple. (a) During nominal operating conditions. (b)

During control node modulation.
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Figure 5.7: Sampled reference-to-output impulse response and curve fit.

when system identification is off, is 22 mVpp. Figure 5.6 shows the enlarged view of

the VOUT ripple during nominal and control node modulation operating conditions.

During the modulation of the VREF node, the VOUT ripple generated is 71 mVpp.

When system identification is on, the converter is required to be in a steady state

condition at the same operating point. Many DVS systems have prolonged standby

modes during which the load is constant. Also, in most high reliability applications,

load conditions are relatively stable at steady state operation. Thus, system identifi-

cation can be operated during these intervals. Additionally, the identification process

is designed to operate in closed-loop, hence, in the event of a load transient during

the identification process, the converter will supply the load without the loss of reg-

ulation. The impulse samples obtained during the event of a load transient can be

discarded and the system identification process can be run again when the steady

state is reached or the DVS system returns back to its sleep state. Next, for further

processing, the impulse response generated by the analog correlator is sampled by a

10-bit ADC every 613.2 µs. The post-processing of the impulse response samples is

65



performed using MATLAB, although instead a DSP can also be used for complete

embedded implementation.

The sampled reference-to-output impulse response for nominal L and CL values

calculated for ILOAD = 80 mA is shown in Figure 5.7. The correlator generates 511

samples for a full impulse response. However, for the designed system, significant

impulse response information is contained within 20 samples starting at the peak of

the response, which are sufficient for full characterization. Hence, impulse response

truncation technique is applied and the rest of the samples are replaced with the DC

voltage as they consist of noise around the DC level. This improves the noise and dis-

tortion immunity of the obtained results, thus reducing the computational resources

required by averaging and for the calculation of FFT. The sampled response can be

curve fitted to a 3rd order Fourier function so that the time domain analysis method

explained in Section III can be used to directly calculate the relevant parameters.

Additionally, FFT of the truncated impulse response samples collected directly from

the analog correlator can be calculated for obtaining the frequency response of the

characterized system loop for further analysis.

Figure 5.8(a) shows the comparison between the frequency response of reference-

to-output transfer function calculated using PRBS and the frequency-swept sine wave

method while Figure 5.8(b) shows the comparison for the frequency response of the

control node disturbance rejection transfer function. The PRBS based measurement

accurately tracks the sine-wave based measurement response.

The reference-to-output transfer function is used to detect the change in steady-

state loading conditions of the converter. Figure 5.9 shows the measured transfer

function for ILOAD = 50 mA, 80 mA, and 150 mA. Both time domain and frequency

domain analysis are used to diagnose the change in stability conditions of the converter

due to loading effects. PM and CL-UGF are calculated and the results obtained are
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(a)

(b)

Figure 5.8: Comparison of frequency responses obtained using the PRBS method with

frequency-swept sine wave method. (a) Reference-to-output frequency

response. (b) Control node disturbance rejection frequency response.
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Figure 5.9: Reference-to-output transfer function frequency response measurements

obtained for various ILOAD using PRBS method.

compared with those obtained using the frequency-swept sine wave method.

Figures 5.10 and 5.11 show the results close to the frequencies of interest (near ωn

and ωc) obtained using the PRBS method for various L and CL values for reference-

to-output and control node disturbance rejection transfer function measurements,

respectively. The values of L used are 4.7 µH, 6.0 µH, 8.0 µH, and 10.3 µH and

CL are 200 nF, 300 nF, and 400 nF. Using these transfer functions, parameters ωn,

Q-factor, and ωc are calculated. The results obtained are compared to the model re-

sults calculated for nominal component values at ideal operating conditions, enabling

diagnosis of the degradation/change in converter filter components.

The results in Figure 5.12 are calculated when both L and CL values are changed

simultaneously for identification purposes. This more accurately approximates the

degradation of the converter filter components where more than one component ex-

periences stress and derates during operation. Figure 5.12(a) shows the ωn measured

from the reference-to-output transfer function and Figure 5.12(b) shows ωc measured
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(a)

(b)

Figure 5.10: Reference-to-output transfer function frequency response measurements

obtained using PRBS method. (a) Measurements for various L. (b)

Measurements for various CL
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(a)

(b)

Figure 5.11: Control node disturbance rejection transfer function frequency response

measurements obtained using PRBS method. (a) Measurements for var-

ious L. (b) Measurements for various CL.
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(a)

(b)

Figure 5.12: Results obtained using PRBS method for simultaneous change in L and

CL. (a) ωn obtained from reference-to-output transfer function. (b) ωc

obtained from control node disturbance rejection transfer function.
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(a) (b) (c)

Figure 5.13: Comparison of measurement errors of various parameters calculated us-

ing frequency-swept sine wave method and proposed PRBS method.

Measurement errors against change in (a) ILOAD (b) L (c) CL.

from the control node disturbance rejection transfer function for various L and CL

values.

Figure 5.13 shows the errors in the calculation of the parameters calculated using

the proposed PRBS method compared to the standard frequency-swept sine wave

method, summarizing the results of Figure 5.9 - 5.11. The PM was calculated directly

from the curve-fitted time domain impulse response while the parameters CL-UGF,

ωn, Q-factor, and ωc were calculated from the frequency response obtained by taking

the FFT of the truncated impulse response samples collected directly from the analog

correlator. The proposed PRBS method can extract PM and CL-UGF within 5.2%

and 4.1% error margin, respectively, over changes in ILOAD. Additionally, converter
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Figure 5.14: Measured efficiency of the DC-DC converter for different output voltages

at nominal input voltage during normal regulation mode.

parameters such as ωn, Q-factor, and ωc can be estimated within 3.6%, 4.7%, and

3.8% error margin, respectively, over changes in L and CL.

The current consumption of the regulation circuitry of the designed DC-DC buck

converter during nominal operation conditions is 490 µA. The efficiency of the con-

verter during normal mode of operation for VOUT = 3.3 V and 5 V is shown in

Figure 5.14. The system identification circuitry takes an additional 530 µA for 12.3

ms (typical, for 20 impulse samples) / 313.35 ms (max., for 511 impulse samples)

when operated. As the system identification circuitry is turned on occasionally, the

overall power impact on system efficiency is minimal. Also, the designed identification

circuity has low hardware impact. The area impact due to the system identification

blocks including related pads and ESD structures is 3.8%. TABLE 5.1 summarizes

the IC specifications and performance.
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Table 5.1: PERFORMANCE SUMMARY

DC-DC Converter Parameters

Technology JAZZ 0.6 µm SOI

VIN 5 V - 8.125 V (6.5 V typical)

VOUT 3.3 V - 5 V

Max. load current 450 mA

BIST @ ILOAD 30 mA - 200 mA @ 3.3 V, 30 mA - 90 mA @ 5 V

Output voltage ripple ≤ 25 mV

Switching frequency 5 MHz

Off-chip nominal filter capacitor (CL) 400 nF

ESR of CL 50 mW

Off-chip nominal filter inductor (L) 10 µH

DCR of L 60.8 mW

Efficiency

ILOAD [30 mA - 450 mA] @ VIN = 6.5 V, VOUT = 3.3 V 61.41% ≤ η ≤ 83.82%

ILOAD [30 mA - 450 mA] @ VIN = 6.5 V, VOUT = 5 V 67.91% ≤ η ≤ 87.93%

BIST Performance

Phase margin detection over ILOAD change 5.2% max.

Unity gain frequency detection over ILOAD change 4.1% max.

Natural frequency detection over L/CL change 3.6% max.

Q-factor detection over L/CL change 4.7% max.

Center frequency detection over L/CL change 3.8% max.

Chip Area

Die 3 mm x 3 mm

BIST Circuitry 3.8% of Die Area

Quiescent Current Consumption

BIST circuitry 530 µA for 12.3 ms (typical) / 313.35 ms (max.)

Normal regulation circuitry 490 µA
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CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

A model reference based on-line BIST technique to track changes in the dy-

namic loop characteristics of analog-controlled DC-DC converters without affecting

the normal mode of operation is presented. The proposed technique uses a digi-

tal PRBS based excitation and cross-correlation based measurement. The presented

techniques are suitable for state-of-the-art high frequency DC-DC buck converters

used in DVS applications, which have smaller footprint as they experience higher

process/manufacturing variations jeopardizing their stable operation range. The pre-

sented techniques track dynamic parameters such as PM, CL-UGF, ωn, Q-factor, and

ωc enabling diagnosis of degradation in advance and preventing system instability

and failure. PRBS based white-noise disturbance is applied at the reference voltage

and control input of the converter with test signal energy being spread across the

spectrum. Circuit level implementation of circular PRBS, and reference and control

node modulation are presented. The cross-correlation function to generate impulse

response is also calculated on-chip using an analog correlator, which has lower com-

putational complexity and storage requirements in comparison to digital correlation

implementations.

A 5 V - 8.125 V input voltage range, 5 MHz switching frequency, analog-controlled

voltage-mode DC-DC buck converter is designed for experimental verification of the

proposed techniques. The results calculated using the PRBS based method are com-

pared with a high accuracy frequency-swept sinusoidal method and are found to

be in close agreement. The system identification circuitry has a small area impact

with the designed circuitry consuming 3.8% die area (including related pads and ESD
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structures) in a 0.6 µm 6 layer-metal SOI process. During operation, the system iden-

tification circuitry consumes 530 µA, thus having a minimal impact on the overall

efficiency of the DC-DC converter.

6.2 Future Work

The presented work can be further refined and extensions to it can be made in

the following areas:

� In the presented work, the data obtained by sampling the on-chip correlator

output was transferred to a PC for further computation and post-processing in

MATLAB. For a complete embedded implementation and online BIST; curve

fitting, FFT, and diagnosis algorithms can be implemented in FPGA/DSP.

� The parameters such as PM, CL-UGF, ωn, Q-factor, and ωc give important

information about the degradation of the converter circuit. Additional further

work to extract individual parameters is performed in [62], where the output

filter inductor identification is performed. Although a non-trivial task, simi-

lar identification techniques could be developed to individually identify other

converter parameters, most notably the output filter capacitor.

� The information obtained by the proposed techniques could be used to im-

prove the performance of the degrading circuits. Auto-tuning of the analog

controller/filter could be implemented using field programmable analog arrays

(FPAAs) proposed in [63] and [64].

� The presented technique for system identification is independent of the con-

verter class. Hence, the technique can be modified and implemented for other

DC-DC switching converters such as boost, buck-boost, forward, flyback, and
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multiphase converters. The implementation of the technique has also been

demonstrated by system level modeling in [55] for LDOs. The model can be

further refined and a fully integrated implementation can be developed for BIST

of LDOs.
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