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ABSTRACT

What makes living systems different than non-living ones? Unfortunately this

question is impossible to answer, at least currently. Instead, we must face computation-

ally tangible questions based on our current understanding of physics, computation,

information, and biology. Yet we have few insights into how living systems might

quantifiably differ from their non-living counterparts, as in a mathematical foundation

to explain away our observations of biological evolution, emergence, innovation, and

organization. The development of a theory of living systems, if at all possible, demands

a mathematical understanding of how data generated by complex biological systems

changes over time. In addition, this theory ought to be broad enough as to not be

constrained to an Earth-based biochemistry. In this dissertation, the philosophy of

studying living systems from the perspective of traditional physics is first explored as

a motivating discussion for subsequent research. Traditionally, we have often thought

of the physical world from a bottom-up approach: things happening on a smaller scale

aggregate into things happening on a larger scale. In addition, the laws of physics

are generally considered static over time. Research suggests that biological evolution

may follow dynamic laws that (at least in part) change as a function of the state of

the system. Of the three featured research projects, cellular automata (CA) are used

as a model to study certain aspects of living systems in two of them. These aspects

include self-reference, open-ended evolution, local physical universality, subjectivity,

and information processing. Open-ended evolution and local physical universality are

attributed to the vast amount of innovation observed throughout biological evolution.

Biological systems may distinguish themselves in terms of information processing and

storage, not outside the theory of computation. The final research project concretely

explores real-world phenomenon by means of mapping dominance hierarchies in the
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evolution of video game strategies. Though the main question of how life differs

from non-life remains unanswered, the mechanisms behind open-ended evolution and

physical universality are revealed.
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Chapter 1

THE ROAD MAP

1.1 PhD: Emphasis on Philosophy

Although finding reasonable answers to terribly difficult questions is the core

challenge of science, it is quietly accompanied by the super important task of forming

terribly difficult questions to answer. This includes things like identifying the right

from of reference to ask the question from, or identifying what knowledge is needed

in order to answer the question. It’s also important to understand what aspect the

question leaves out or what biases the question invokes.

The question that motivates this dissertation is “What makes living systems

different than non-living ones?” This question cannot be answered directly as-is

because of its biases, required prerequisite knowledge, and possibly because of the

unknown aspects of life that the question doesn’t cover. In order to answer this

question eventually, answerable questions must precede it (along with some answers

of course). The whole purpose of this dissertation is to attempt to answer one of these

preceding questions.

So how is an answerable question formed? Why not the original question of “What

makes living systems different than non-living ones?” Well if that were our starting

point, then how can you, as a living being, begin to think about a world where life

has never existed at all? Maybe imagining a rocky grey planet isn’t all that difficult,

but is it possible to identify parts of Earth that haven’t been mangled by life? There

1



is a vast number of planets and not all of them are grey and rocky so it would be

important to know what a planet completely devoid of life looks (and acts?) like.

Perhaps it would be easier to understand what life is instead of what life isn’t.

Suppose that we were able to define every living and dead organism here on Earth, it

is still unclear how it would help us identify life in other parts of the universe. After

all, it might not even be helpful in detecting life on planets where water and oxgen

aren’t present. The best we could hope for is an Earth-clone that contains all the same

chemistry as we know and love and look for aliens that use a similar biology. Given

that we don’t have any idea of what other forms life is capable of taking, the odds of

this happening are between 0% and 100%. It’s anyone’s guess and it all depends on

what one is willing to call “life” and in what environment1. Philosophically, this is not

unlike Plato’s Allegory of the Cave (Plato 1943) which explores the lack of education

and our ability to perceive the world. In this allegory, prisoners are chained to a wall

in a cave and have only ever seen shadows cast on the wall from figures on a wall

(Figure 1). Knowledge frees us from the cave and transforms our understanding of

reality. We recognize the shadows are not reality, but a manufactured version of it. In

the context of this dissertation, our understanding of living systems is limited by our

subjective understanding of what life is.

Would it be possible to generalize life beyond living systems here on Earth? In

the end, we ought to come up with a theory for life that is so broad, we wouldn’t

have to worry about life that doesn’t use our same chemistry. Imagine if, in 100 years

or so, we send scientists to study one of the planets in Tabby’s star (the star system

with the mysteriously dimming star, which is popularly thought to be a Dyson sphere

1For example, viruses are usually considered alive when procreating with a cell and not alive
when not (Villarreal 2008)
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Figure 1: Antrum Platonicum, or The Cave of Plato by Cornelis Cornelisz. van
Haarlem (printed by Jan Saenredam in 1604). In this engraving, two groups of
philosophers are separated by a wall. On top of the wall is a row of shadow-puppet
figures, including Cupid and Bacchus. Both groups of philosophers debate from a
different perspective (Haarlem 1604).

(“TRAPPIST-1” 2017)). The spaceship lands in a whirl of steam and dust. Wearily,

humans step off the ship onto the alien planet. There is no oxygen or water, yet

silicon is everywhere. Just below the surface, supercritical CO2 rivers gurgle between

super-pressurized layers on crust (see Magliocco, Glaser, and Kneafsey 2013 for more

on super-critical CO2). Is there life on this planet? We must know what life is like

independent of its manifestation here on Earth if we wish to know about living systems

outside of Earth. Could we describe all of life in a few simple mathematical equations

that abstract away the messy chemistry and environmental factors? Whether or not,
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the important thing is that each idea that is encountered must be carefully scrutinized

before moving forward. Otherwise the question might not be answerable, as in the

case of the main motivating question.

Therefore, the rest of this dissertation is dedicated to answering smaller, more

bite-sized questions that are carefully engineered to prod the “Big Question”: What

makes living systems different than non-living ones? The rest of this chapter (the

biggest chapter) explores some smaller questions to ask and which ones to avoid

asking. Since the Big Question is not a discipline-specific question (definitely up for

debate among many scientific communities), some aspects of relevant disciplines will

be explored. My hope is that before the reader reaches the main research in the next

five chapters, they will understand why all that research was done and if all those

mini-questions were useful in understanding the Big Question.

1.2 Why is the Big Question so hard?

So you’re a scientist and you’d like to make a measurement. Great! In order to

make a measurement, you’ll need to find something you can observe. If you want to

measure the temperature of your favorite latte, you’ll need to observe heat (or lack

thereof) making a change to a thermometer or your hand. So you put your hand on

the cup and feel that it is pretty warm. That is one measurement, albeit not very

accurate. Trying to be more precise, you stick the thermometer in your cup and it

reads 40◦C. Another measurement.

The problem with measuring anything comes from our ability to make observations.

We are currently limited by our bodies and the instruments we make. Without a

thermometer, it would be difficult to precisely measure the temperature of a latte and
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Figure 2: Once I worked as a busser in a cafe. One of the regular customers asked if I
could get him more coffee but he wanted it “Literally boiling hot”. So I poured him a
fresh cup and microwaved it until it boiled. He was very pleased and drank it right
up. Clearly, one’s idea of “too hot” varies greatly from person to person (image from
captainhowdy27 2016).

we would be back to using our skin as an indicator (not a safe idea). This is one of

the biggest barriers in tackling the Big Question, generally because it involves trying

to understand biology as a complex system.

It is unclear what part of a complex system to measure because the whole thing

is, well, so complex. A good example of this is how American politics changes over

time. What main factors account for the election of such-and-such person? Human

psychology, economic factors, means of communication, and global affairs are just some

of the countless factors that could potentially influence the dynamics of American

politics. So if we want to “measure” the likelihood of so-and-so getting elected, what

should we observe?

This is actually an old philosophical investigation. Alfred Whitehead studied

the relationship between measurements and observation in a series of lectures and
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books. He was particularly keen on how this affects our ability to understand living

systems. One of our setbacks, he argues, is that we sometimes merely try to invent

a model that fits our obeservations (Whitehead 1938 and Whitehead 1934). Merely

describing a system, called “positivity”, isn’t very helpful in describing how biological

systems function. Instead, we should try to understand the mechanisms that cause

our observations to occur.

However, making models is an important first step. Understanding the world in

terms of our own experiences may be essential into understanding what life is. In fact,

having perspective itself is an important feature in biology. According to Whitehead,

the world as described by science means hardly anything in terms of our day-to-day

experiences. This isn’t to say that scientific models are not useful, but they don’t

“mean” anything while we decide if its worth ordering Jimmy John’s for lunch.

Haldane also chimes in with this quote from Haldane 1947: “But to suppose that

one can describe life fully on these lines is to attempt to reduce it to mechanism,

which I believe to be impossible. On the other hand, to say that life does not consist

of chemical processes is to my mind as futile and untrue as to say that poetry does

not consist of words.” The term “meaning” is quite loaded because it could imply

“purpose”, which is unclear and muddled in biology2.

Aside from that, studying life as a phenomena is self-referential, at least philo-

sophically. Humans who observe biology are also biological, so they are also observing

themselves in some sense. Self-reference is a sticky-paradoxical function, such as

“This sentence is a lie.” In fact, Kurt Gödel showed that self-reference in simple

mathematics can lead to only two situations in Gödel 1931: Either a complete set of

2Understanding meaning in biological terms is an entirely separate thesis in itself. Thus, it is not
small enough to count as a mini-question for the Big Question
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mathematical axioms is inconsistent and paradoxical or a set of axoims is consistent

but incomplete3. Self-reference has also been studied in less abstract systems such as

language (Naoto Kataoka and Kunihiko Kaneko 2000 and N. Kataoka and K. Kaneko

2000 are examples). It is actually an important mechanism behind the construction

of new words and phrases within an existing dictionary (Levary et al. 2012). But

again, it is full of paradoxes and difficulties. Self-reference, along with formal rules

of language, allows systems to acquire meaning despite being made of “meaningless”

elements. It also can help explain what it means to communicate, how knowledge can

be represented and stored, and even what meaning itself means (Hofstadter 1979).

To solve the paradoxes of self-reference, Whitehead steps in again and insists that

entities exist on two levels in Whitehead 1928: the physical and the abstract. However,

the abstract is derived from its physical components, and this is famously known as

the ontological principle. Our very descriptions of the physical world are abstract,

even if built entirely from physical principles. So can biological abstractions such as

function and meaning be captured in terms of science (Bedau 1991)? Why are simple

models so successful in the sciences while really complex models (that reflect the real

world) are not? Is could be because they have a low effective dimensionality, meaning

only a few variables are really relevant for what we are trying to measure. We are

able to tweze simple models out from our incredibly complex world simply because

of the scale from which we make our observations (Transtrum et al. 2015). If we

tracked the position and velocity of all the air particles in the room, we could take the

average velocity and figure out the temperature. However, given that we don’t know

all this information about particles, we have to calculate the temperature some other

way by making observations on a scale that is much larger than that of tiny particles.

3For more reading, see Godel’s Incompleteness Theorems, as in Gödel 1931.
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Self-reference, paradoxes, scales, meaning, observations, measurements... Somehow

these things start to seem related in a mysterious way. Perhaps these are all essential

to answering the Big Question because they seem to play a role in biology.

1.3 Is life different from not-life?

Suppose it is inappropriate to ask if life is any different than regular forms of

matter4. Perhaps there is really no distinction between life and not-life except through

what we perceive; in other words, “life” could be an artifact of our own perception. But

already we have tripped ourselves up! We are exploring this problem with countless

preconceived notions affixed in the back of our minds. In fact, it is impossible to

remove these preconceived notions simply because we perceive the world in a particular

way. Is it possible for humans observers to avoid this self-referential trap?

I’ve always wondered what it would be like to see the world without human eyes or

any sort of sensing thing. What if I were a formless spirit floating about space, like in

The Black Cloud (Hoyle 1957). Would the color emerald mean anything to me? What

about avocados? Does a cat see the sunset the same way I do? Scientists generally

remove as many biases as possible by inventing instruments that more than one people

can use. Instead of measuring the temperature of a latte with the palm of your

hand, it is better to use a thermometer. This removes biases introduced by ambient

temperatures and personal heat tolerances (I think 90◦F is a perfect temperature

4At this point, I think it important to highlight the difference between “life” and “living” for
proper context. I refer to “life” as the general phenomenon captured by biology here on Earth, while
“living” is the opposite of dead. I’ve always thought of dead leaves. Obviously not alive themselves,
leaves are a clear indication of a nearby tree that was alive enough to make those leaves. Are both
life? Yes, the leaves were a part of a living tree which is definitely life. But what about half a leaf?
Sure. A single cell of a leaf? Also yes. What about half of the cell? Now how about one protein?
An amino acid? It’s tricky.
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while many would disagree). Thus, when many people measure consistent observations

using identical instruments of measurements (like properly calibrated thermometers),

we safely feel that we have sidestepped subjectivity.

But things aren’t sorted out just yet.

1.4 The number of uses for a screwdriver

I propose the following assumption: Life is a system. One could point to a plug

and shout “You’re not alive!” and the plug, where notions like dead and alive don’t

even apply, would just sit there. But the plug is a part of life. It was made by humans

for other humans and is a part of our living society, much like a termite mound.

Can this idea be applied to things like proteins and RNA? Perhaps proteins and

RNA were originally manufactured by life for life, or perhaps they were made by some

pre-life chemical system that ended up being life as we know it today. Amino acids

have been found on meteors several times (Koga and Naraoka 2017, Glavin et al. 1999,

and GLAVIN et al. 2010 are some examples) but can we say that these amino acids

are a part of an alien living system? No, though it is a possibility. However, if these

same amino acids were found on an ocean planet ruled by jellyfish-people then its

much easier to assume that these amino acids are a part of a living system. Note that

context is important.

A favorite thought experiment floating around these days is a story about a

screwdriver, adapted from a story told by Kauffman in Stuart A. Kauffman 2011 and

Stuart A Kauffman 2016. There was once a man whose grandfather passed away. As

a part of his inheritance, he received a complete set of sturdy, well-used tools that

were manufactured sometime during the 1850’s. The man’s TV antenna had a poor
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signal and he was too poor to afford a new one. Instead of purchasing an antenna,

the man fixed an old screwdriver atop of his TV, thus boosting its signal.

Try and count all the possible uses for a screwdriver when it belonged to the

grandfather and compare it to the number of uses it has for the grandson. Initially,

one might be temped to think the grandson has one more use for it, but actually

the number of uses for a screwdriver is totally undefined. In the 1850’s, there was

no concept of television antennae so the screwdriver could not have been used as

an antenna. But as time and technology progressed, the number of uses for the

screwdriver changed as well. In addition, technologies that were used in the 1850’s

were no longer around, which could have decreased the number of uses.

Components of life like proteins, amino acids, and RNA are a lot like this screw-

driver. Since proteins have very specific and context-dependent functions in biology,

they can confidently be called a part of life. But without the context of the rest of a

living system, proteins might not be considered a part of life if they were to sprout up

on their own, randomly. What are the number of uses (or functions) for some RNA

on Mars? What about amino acids found on asteroids? Of course, these questions

couldn’t possibly be answered now, but this is meant to emphasize the importance of

context.

Defining a universal life could be completely dependent on the context in which a

maybe-life is found. Since it’s nearly impossible to understand the function of basic

objects like screwdrivers without their context, it might be worth pausing that train

of thought and trying something else.

The screwdriver story has a second part. “What are the odds that we find a

screwdriver on Mars?” (Stuart A Kauffman 2016). What are the odds we find

amino acids on meteors? The whole idea of physics is based on the idea that some
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particular configurations of the universe (also called states) can transform into other

configurations of the universe according to some predictions. These human predictions

are our laws of physics invented to match our observations5. Not only is context

important for understanding amino acids, but also cleverly guessing the odds of them

existing. After all, matter has many possible states to choose from, so how did some

of it end up as amino acids?

There are several valid philosophies that stand behind probability models, but I

think the most relevant and useful one for this dissertation is the computational-based

one. Aside from quantum randomness (which the randomness can be calculated

deterministically), most of the laws of physics are deterministic and not random. The

most common image of probability, however, is not much different than someone

picking colored marbles out of a bag. If 80 our of 100 marbles are red, then the odds

of picking a red marble are 80% because the picker picks marbles randomly. But if

the laws of physics are deterministic, then where does randomness come into play

when we discuss the odds of finding amino acids? Computation theory takes care of

this for us!

Chalmers wrote about the computability of a rock in Chalmers 1996. A rock

sitting still deep in the Earth is one particular state the rock can have. If nothing

moves the rock, then it will continue to be in the same state. Under Newton’s Laws,

the rock continuously computes the same state it started in. In other words, given

some initial condition (like me winding up to toss a cat into the air with some velocity

v at some angle θ), the laws of physics will evolve the state (of the cat) over time

5Granted, I’m making a really bold statement here. This is prodding the old debate of whether
or not math is invented or discovered (there are hundreds of essays on this topic, such as Abbott
2013). I’m not going to go into it explicit, so I’ll simply assert that it is invented for now.
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Figure 3: Like rocks, cats can compute trajectories of motion given an initial state
and some laws of physics. But unlike rocks, cats shift the shape of their bodies midair
so that they land on their feet. The exact physics of cats falling is an interesting
research topic (Montgomery 1993).

accordingly (the cat will follow a nice trajectory s through the air as shown in Figure

3 and land on his feet... then run away).

Now the notion of probability has become “how does this state reach this other

state” instead of drawing marbles from a bag. Of course, the path from going between

certain states could be a random walk if the governing laws behave randomly, but

this frames living systems in a more physics-y sense. More importantly, the governing

laws of physics can be quantified in terms of what states they can (and cannot)

compute, at least in theory. By tossing everything complex about complex systems

into state-of-the-universe-A, state-of-the-universe-B, etc, we are able to tweeze out a

smaller number of important variables. This implies a loss of information about the

specific details of the universe, but it is now much easier to invent bite-sized questions

that can help understand the Big Question.

In terms of computers, the laws of physics as we currently know them are somewhat
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like software and the initial states are somewhat like data. Imagine a calculator: You

feed it an input 80+64, punch =, and the calculator runs the input through a program

and you get 144 as an output. But the backend of the calculator is doing something

much more intricate in terms of circuits. The circuits must be arranged properly to be

able to do math properly. The calculator is in a state that allows it to perform correct

mathematics, despite it being made of physical elements6. This physical elements

could easily be replaced by pegs and wheels and even rocks. With the laws of physics

as a computational program, what can possibly be computed here on Earth? It is

possible to give a rock all sorts of initial conditions: throw it, lick it, launch it into

space, sit on it. Every initial state we give a rock will result in some output. The

computability of a rock is practically immeasurable much like our screwdriver, simply

because it depends on the system that provides it initial conditions.

Then how did the laws of physics compute life with matter in the universe?

1.5 Emergence

Perhaps one of the most perplexing features of living systems is emergence. Ev-

eryone loves to use starlings, shown in Figure 4, as a visual example of emergence

because of their uncanny ability to make wonderful patterns as a group (Young et al.

2013). How do they move in such amazing ways? Each bird has its own set of rules,

something like “Follow the nearest three birds” and “try to fly parallel to the bird

on the right.” The rules don’t change over time, but do rely on the positions of

6This is one of the reasons why I think the laws of physics are invented and not found. Math-
ematical computations can be performed only in very specific physical configurations, which are
encoded physically in matter. Perhaps the same should be said about other computations, like the
laws of physics.
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Figure 4: Starling Dance, by Nir Smilga Smilga 2014.

neighboring birds. As a result, the entire group of birds seems to have a motion of

its own that emerges from the rules of individual birds. This sort of thing has been

reproduced in computer simulations of “boid” agents, originally termed in Reynolds

1987. Figure 5 shows a screenshot of a single timestep of one implementation of a

boid model.

However, given the rules of individual agents in a system, there is currently no way

to predict the emergent, collective behavior. Below are two more detailed examples of

emergence in living systems.

There’s a really great example of birds migrating south for the winter. During

the course of its trip, the bird loses many of its atoms and replaces them with new
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Figure 5: Boids + Perlin Noise Flow Field, by Nat. Nat 2010

ones. By the time the bird reaches its destination, almost all of its atoms have been

replaced. But is the bird a new bird? Yes and no. It is made of new atoms, but the

bird is still the same individual (see Mora et al. 2016 as an example of this idea).

The emergent macroscopic entity of the bird is unchanged even if its microstate (the

individual atoms) has (Vicsek et al. 1995).

The second example is one of a brilliant professor who did amazing research and

was loved by everyone, adapted from the essay in Zuboff 1982. The professor was

growing very old and it saddened the students and faculty that he was no longer

going to be with them. Instead of leaving the professor to natural causes, some grad

students came up with a wonderful plan. One afternoon, they drugged the professor

so he was knocked out. The took him to a very sophisticated lab and hooked him

up to a very intricate machine that covered his entire head and body. There was a
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large screen in front of his eyes, so when he woke up, he didn’t realize that he had

been stuck to a machine and went about his daily life, thinking he was continuing his

research and life was normal.

Things were going very well until one of his brain cells died. Carefully, without

the professor knowing, the grad students replaced that cell with a tiny machine that

performed the same function as the missing brain cell, and things went on happily.

This part was maintained by the graduate students, except that more and more cells

kept dying. But they were easily replaced by even more tiny machines that were

maintained by even more graduate students. About 50 years went by and the professor

was happier than ever, so excited that he was the longest living man in the modern

era– and so healthy feeling too! Suddenly, one of the millions of grad students who

helped maintained the professor noted that the professor was completely replaced

by machines! Not a single original cell remained of the professor. The grad student

wondered, “Is the professor really alive? If not, at what point did the professor cease

to be a living being?”

Understanding the phenomenon of emergence and how macrostates and microstates

relate may be one of the greatest barriers in answering the Big Question and other

related ideas, especially the mysterious origin of life.

1.6 Information, Computation, Thermodynamics, and Biology

What does a state of the universe look like anyways? There are countless ways

of describing the universe at any given time, depending on what is important to

measure. At least in the theory of computation, states have been traditionally reduced

to abstract sequences of 1’s and 0’s so theories can be developed easier. Though these
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Figure 6: An illustration of Zuboff’s professor from Zuboff 1982.

sequences don’t quite resemble much in the “real world”, they are a very useful analogy

of the universe changing according to some law (or computation or running program).

This leads us straight to information theory. The idea of real, measureable informa-

tion was first invented by Shannon in the 1940’s while working at Bell Communication

Labs (Shannon 1948). Shannon’s formulas for information were particularly useful in

understanding how humans send messages through communication channels, like a

telegram. By happy coincidence, Shannon’s mathematical expression for information

was equivalent to the common expression for entropy, with the small difference of a

minus sign (Shannon 1948). This got many people wondering how information and

thermodynamics could possibly be related (after all, these kinds of similarities hint at

some very deep connections).

In fact, computation was thrown into the mix too. In the meantime, Maxwell

propsed a thought experiment that baffled scientists for several decades after, better

known as Maxwell’s Demon (originally presented in a letterKnott 1911). In this
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Figure 7: An illustration of Maxwell’s Demon.

thought experiment, a sealed box is filled with regular air. The box is separated into

two rooms by a wall. On the wall is a little flap. Now, some little demon guy sits on

one side of the wall and only lets fast particles into one room, while keeping the slow

particles in the other. Pretty soon, one room is full of fast particles and the other is

filled with slow particles. One room is hot and the other is cold, creating a pressure

from the hot room, thus violating the second law of thermodynamics!

The solution to this problem lies within computation citerex:2017. The demon

must measure the velocity of particles headed for the flap and then makes a decision

on whether or not to open the flap. After the decision has been made, the demon

must erase that bit of information from its memory to make another measurement and

decision. After some calculating the minimal energy needed to compute a decision

and erase the bit of information, it turns out that the amount of heat produced from

the demon’s mind is exactly the same as the work gained from having separated hot

and cold particles! As a side note, this is the main reason computers produce heat
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(Rex 2017). Most of the heat is generated from erasing information from the memory

sticks rather than the battery or electrical box.

Although the relationship between computation and thermodynamics is fairly

clear, it is still horribly unclear how information and computation has a physical role

in the biological world, particularly in terms of heat production and energy. It is

certainly possible to calculate the minimum energy required to perform the smallest

possible computation (also known as Landauer’s limit) by consuming a single bit of

information (Landauer 1961). But it is unclear how these simple models apply to

real-world biological systems such as DNA transcription and translation. At any rate,

an apparent relationship is forming between theories: Information → Computation →

Thermodynamics → Biology. So far in this discussion, the second arrow is the most

established.

1.6.1 Algorithmic Information

In Zenil 2012, Zenil suggests that algorithmic information is a possible bridge

between connecting information, computation, thermodynamics, and biology. In

particular, some think that natural selection is actually the extraction of information

about an ever-changing environment and encoding it into genes (Vladar and Barton

2011). Although this makes intuitive sense, the actual physical mechanisms (especially

in terms of nice equations) of this information exchange are completely unknown.

While it may seems a step backwards, algorithmic information abandons Shannon’s idea

of information. Instead, this method uses a things-are-created-by-programs approach

which better connects the relationship between information and computation (the

first arrow).
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Algorithmic complexity is understood as something like this:

• Short, simple strings of 1’s and 0’s (like 101010) were most likely made from a

small, simple computer programs. These have low algorithmic information and

complexity because the program is small.

• Long, complicated strings (like 1001010111010101) were very unlikely made by

simple programs and were probably made by longer, more complex ones. These

have high algorithmic information.

• A string can only be as complex as the program that created it, never more

complex.

So if a string of 1’s and 0’s is truly totally random, then the size of the programs

that created it is absolutely no shorter than that string in terms of the numbers

of 1’s and 0’s the program contains. Probabilities are re-introduced in terms of a

marbles-in-a-bag-model. The same string of 0000 can be produced by several different

programs, but most of those are short and simple programs (if you are familiar with

programming, think of the number of ways you can print 0000). Of course there

really very complicated programs that can do the same thing, but they don’t occur as

frequently. This can be shown by generating every possible program of 1’s and 0’s

and running them on every possible initial conditions of 1’s and 0’s until they stop

(“The Online Algorithmic Complexity Calculator” 2017 has a wonderful interactive

online example)7.

It’s really abstract to think of programs and strings of data made of 1’s and 0’s,

but algorithmic information theory can be generalized to anything beyond 1’s and

0’s. Although this sounds like a fantastic way to measure the complexity of a DNA

7Though not possible, this can be done on very large and powerful computers up to programs
and states of a certain size to get a general sense of things.
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sequence and other biological wonders, the downside is that algorithmic information

can actually not be exactly measured. It can only be approximated (Lui et al. 2015)

due to that pesky halting problem posed most famously by Turing in Turing 1937.

The halting problem basically states that it is impossible to know how long a computer

program will run until it has stopped (halted). It may be possible to figure out what

that program will output before you run it, but it is currently impossible to know

how long it takes until after the program has finished running. So basically, for a real

biological system, the algorithmic information cannot be calculated.

Although the complexity/randomness of a thing might not be possible to capture

even approximately, Zenil and collaborators have already started to invent ways to

describe how the dynamics of a system can change over time (Zenil et al. 2017). This

proposed calculus suggests ways of intervening on a system to change its algorithmic

information. With this, it could be possible to understand (and eventually control)

a system’s dynamics by increasing or decreasing its algorithmic information content.

Perhaps with more development, dynamical systems including biological ones can be

understood in terms of computation.

1.6.2 Why Information?

What’s with the long discussion on information anyways? Biology is anything

but simple to us, yet science thrives on the idea of simple, toy models. Is it possible

to make simple models in biology? Of course, we already have excellent models of

predator-prey dynamics and insights from agent-based models (as in Fraczkowski and

Olsen 2014), and also mathematical models like the Lotka–Volterra equations (Lotka

1910 and Goel 1971), but there is a clear lack of unification of all biological processes.
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Is all of biology simply “just messy” and disorganized, or is there a small handful of

simply biological laws that can be applied to every aspect of biology? Researchers

from many different disciplines have found evidence that information is the key to

understanding biology in an elegent, simple way (Davies and Walker 2016 and Walker,

Davies, and Ellis 2017).

Biological randomness is not only an essential component of the intrinsic unpre-

dictability of life, due to the interaction between many levels of organization, but

also as a key component of stability. In fact, increasing organization invites growing

disorder and increases variability and differentiation (Buiatti and Longo 2013). But

how is randomness intrinsic to the system in question? I mean, assuming that all of

physics is governed by deterministic processes, perhaps randomness is simply lack of

a complete picture in the biological entity. Someone picking colored marbles out of

a bag experiences randomness from their perspective, but there is nothing random

happening from a larger, systemic level. The picker’s hand choosing a marble obeys

non-random laws of motion. Clearly randomness has a large affect on biological

processes but it is unclear how.

This is where information comes in. Biology is full of function and semantics,

which sounds like the perfect place for information theory. The role of information

in living systems should be taken seriously, especially when it comes to the origin

of life. Perhaps the transition from non-life to living systems was a direct result of

matter being able to utilize information (Walker and Davies 2013) in a way that has

a meaningful effect on that matter. In fact, information heirarchy deynamics are

currently replacing the model of evolution as a passive filter selecting for random

changes on the genetic level (Walker et al. 2013). This will help us understand how
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cells and organisms work (Nurse 2008), and likely many other levels of biological

organization.

John Wheeler also shares similar sentiments, but more specifically in terms of

quantum theory and information (Wheeler 1990). He discusses the idea “it from bit,”

which means that every physical quantity derives its ultimate significance from bits of

information, including its actual physical existence. Here, Wheeler uses the original

definition of bits of information: yes or no, 1 or 0. In other words, all of reality is

comprised of yes-no responses and this is the information that defines our reality. This

is another way of understanding how information might be instantiated physically, as

with biology.

A controversal topic in the information discussion is the role of maximizing entropy

in physical systems like biology. According to the principle of maximum entropy,

the most likely probability distribution of several evens happening corresponds to

the distribution with the maximum entropy, or most randomness/unknowability

associated with it. This notion is used in artificial intelligence models by means

of inference engines, which apply logical rules to the knowledge base to deduced

new knowledge Hayes-Roth, Waterman, and Lenat 1983. This is useful for gaining

inference from complete or incomplete information (Jaynes 2003). This perspective

may be interesting in understanding the mechanisms of biology, since each layer in a

multi-layered system processes incomplete information about the system as a whole.

Jaynes thought that probability theory was an extension of logic and has real physical

implications, particularly in thermodynamics. Thus, the physical thermodynamics

of a biological system can be understood in what each piece “knows” about, or how

much information about the whole system it contains.

Information is not a thing that happens in a single lone element of something
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floating along in space. Traditionally there are message senders and receivers and

a medium for the message to travel through. Both the sender and receiver filter

and distort the message in some way, which is further distorted through a medium.

Causality can be useful in understanding how information flows through a system of

senders and recievers. Recent results suggest that epigenetic (external) information

cannot be reduced to genetic (internal) information in biological systems. For example,

in individual organisms, development is the expression of information accumulated

during evolution and heredity is the transmission of this information (Griffiths 2017).

Information involves very long time scales and several intricate factors.

Many argue that causes differ in the degree to which they are “specific” to their

effects. Causal specificity (it’s called) can be measured but not without a probability

distribution over the states of whatever variable is expected to be the cause (Griffiths

et al. 2015). But it is also useful to have a theory of information expressed solely

in terms of which transformations of physical systems are possible and which are

impossible. Constuctor Theory (discussed later) of information regards information as

something whose nature and properties are determined by the laws of physics alone

(Deutsch and Marletto 2014), simply by understanding how one state of the universe

can transform into another. This is also heavily related to understanding what causes

what in physical systems, especially since the laws of physics must be expressed to be

consistent with all these notions of information.

Even though having a notion of information is important, meaning usually isn’t

included in the information-theoretic models of biological communication. Some

theories of biological information use functional responses as a replacement for proba-

bilistic descriptions of correlations between sent and received messages. This poses a

problem because it leads to potential paradoxes, such as having the most amount of
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information associated with a channel that creates completely wrong interpretations of

messages. To remedy this, inspirations were taken from the concept of duality of the

communicative sign stated by the swiss linguist Ferdinand de Saussure. This allows

for a complete description of the minimal system necessary to measure the amount of

information that is consistently decoded (Corominas-Murtra, Fortuny, and Solé 2014).

Within the quantum mechanics framework, things that leave behind a “trail of

information” do so by increasing or maintaining the same amount of entropy. Events

where the entropy actually decreased haven’t left behind any information about

that event, which is actually completely indistinguishable not having happened at

all. Therefore, physics cannot study those processes where entropy has decreased

(Maccone 2009), having some very real biological implications.

Of course, the efforts of understanding biology in terms of information has not

gone without criticism. In particular, a main criticism is that it encourages genetic

determinism and the application of these theories hinders the understanding of

organisms in the lab (Longo et al. 2012). This is a fair assessment since many current

information-and-biologically-relevant mathematical models do not have much direct

application in the lab. However, there have been several results from the lab suggesting

information may indeed play a vital role and that it should be understood clearly.

1.6.3 Results from the Lab

Information processing in biological organisms can probably be done with dif-

ferent qualities, ranging from these-mice-can’t-see-cats to these-mice-can-geo-track-

all-predators, but how can we measure it? Also, how do organisms improve their

information-processing throughout evolutionary processes or not (Nemenman 2012)?
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These are just some of the questions that biologists (and many others) are asking

pertaining to only one biological level of organization. The trouble with biology is

that there are many many layers of organization and interactions. It is difficult to

make generalized statements about biology as a whole without understanding the

smaller layers first.

On the level of an organism, organisms may have complex structures because they

need to be able to process information about their complex environments. As all

organisms in a biological system grow more complex, the environment, according to a

single organism, also becomes more complex because the environment also contains

complex organisms. Lots of complexity nested withing complexity! But what are the

energy costs in maintaining these structures capable of processing information, such

as brains or eyes? Surely this should relate to the energy costs of computation. Some

models suggest that the ability to accurately predict the environment outweighs this

energy cost (as in Seoane and Solé 2017) so processing information might actually be

energetically efficient in the long run.

In addition to these energy costs, organisms that are capable of regenerating their

body parts must be able to store blueprints and executing instructions in some way.

Planaria flatworms have been extensively studied for these reasons at the Levin lab

(a comprehensive paper on this is Lobo, Beane, and Levin 2012). By studying the

interactions between proteins that are present throughout the worm, regenerative

networks have been discovered as the “information storage centers” and “programs”

that allow the worms to regenerate their lost parts (Lobo and Levin 2015).

One way to test the role of information in living systems is to compare some aspect

of an organism to something that is random. When the gene regulatory network

of fission yeast is compared to a random network of the same size ( with the same
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Figure 8: Planaria flatworms are able to regenerate parts of their body that have been
lobbed off, including their head. How does the worm know how to do this? Somehow,
information about its entire structure is stored throughout its body. A network of
interacting proteins has been discovered via machine learning as a possible mechanism
for regeneration (Lobo and Levin 2015).
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number of conenctions), the biological network processed and store information while

the random networks did not (Sara Imari Walker 2015).

On a cellular level, studying information also leads to insights on cancer. Some

suggest cancer is the result of a system disorder of the algorithms that governs the

regulation of living cells (Levin 2012). These algorithms would normally control cell

activities in a way that is specific to their particular organs (Moore, Walker, and

Levin 2017). But cancerous cells could have defective programming that results in

selfish behavior. Zenil’s calculus could be applied to this system to understand how

algorithmic information can affect the behavior of certain cells (Zenil et al. 2017).

On a social level, such as baboon societies, language could have evolved from

the social knowledge of baboon relationships (Seyfarth, Cheney, and Bergman 2005).

These relationships are heirarchially structured. Typically in biological systems,

heirarchical structure imples some global transfer of information of who is more

dominant than another. Studies on zebra finches also have shown similar results (see

Ma, Maat, and Gahr 2017).

On an evolutionary level, Fisher information becomes the intrinsic metric of natural

selection and evolutionary dynamics. By maximizing the amount of Fisher information

about the environment, a population leads to Fisher’s fundamental theorem of natural

selection, as seen in Frank 2009. Regarding environments, making note of important

features and ignoring other features comes at a cost to an organism. If the organism

does not notice particular things, it could cost the organism energy when solving

difficult problems. However, maintaining sensory organs also comes at an energetic

cost. Which costs more? When errors are allowed in environmental senseing, very

efficient internal representations can be discovered by selecting the next most efficient

thing, one generation at a time. When the complexity of an environment increases,
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organisms that use efficient algorithms are able to detect the subtle distinctions in the

environment (Marzen and DeDeo 2017). Maximizing the amount of Fisher information

may be the most energetically efficient solution to this.

On a thermodynamic level, biology is a chemical and physical process. It is

important to understand it in traditional thermodynamical terms like energy costs.

As such, there is a need for some theory that can capture chemical information

processing in terms of energy constraints (Smith 2008). By using Landaur’s principle,

reaching the limits of the energy costs of chemical information flow is entirely possible,

even if the literal piece-by-piece assembly of the same system is not energetically

feasible. Real chemical reversible models of energy and information flow can be easily

achieved within ideal energy limits and are related to the fundamental operations of

computation simply by understanding the energy costs of information processing.

Finally, on a theoretical level, “consciousness” is hypothesized to be a measure of

how casually connected a network of elements is (see Tononi et al. 2016). This can

also be understood with the phrase “the whole is greater than the sum of the parts”.

The information processing of the entire network has a larger “consciousness” measure

if that of the sum of its parts has a smaller measure (Oizumi, Albantakis, and Tononi

2014). Of course, the interpretation of this measure and whether or not it can actually

be called “consciousness” is a hotly debated topic. Regardless, these methods have

brought some interesting insights into how biology processes information.

1.6.4 Machine Learning

Machine learning is also making contributions to the way we understand information

processing and biology. Most machine learning systems are biologically inspired,
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Figure 9: A simple cartoon representation of a neural network (image from Karpathy
2017). The input consists of some configuration (like 1’s and 0’s) in the input layer,
and this affects the states of the nodes in the hidden layers. The rules that determine
the states of the nodes besides the input nodes are determined by the states of the
previous nodes and the edges. Ultimately, the output layer is in some final state.

particularly neural networks like the one shown in Figure nn These networks were

designed to mimic the network of neurons in a brain (although nobody really knows

the full details of that either).

When the neural network receives some input from one side of the network, it is

fed through a series of “black-box-y” hidden layers to create an output. Usually the

neral network is terrible at outputting good answers at first, but it can be trained

by modifying its connections (for an in-depth overview of these methods, see books

such as Du and Swamy 2013). There is a huge variety of training techniques, but the

general idea is that the network is changed so that given an input, it gives an answer

that is closer to the desired output. Neural networks have been trained for a wide

variety of useful and interesting tasks, including mimicking real protein interactions

(Ling, Samarasinghe, and Kulasiri 2013).

Information theory has been making a more popular appearence in machine

learning, though it is not a new idea in the field. In 1999, Naftali Tishby and
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colleagues theorized that general learning occurs during an information “bottleneck”

across the neural network (Tishby, Pereira, and Bialek 1999). This is the same

concept as information loss, forgetting several irrelevant details and preserving only

the important ones. This is the entire basis of thermodynamics, commonly refered

to as “coarse-graining”, meaning the details are blurred into a smoother picture.

However, the actual notion of information processing wasn’t something that could

be measured in a quantitative way as a neural network is trained. But as of 2017,

models finally concretely support the idea of an actual information-bottleneck in

deep-learning machine learning (Shwartz-Ziv and Tishby 2017). This is an exciting

development for people outside of machine learning because it presents a concrete

example of information playing a critical role of an evolutionary (albeit artificial

evolution) process.

1.6.5 Constructor Theory

A discussion of information would not be complete without some words on con-

structor theory. Constructor theory is a new approach to formulating the fundamental

laws of physics so that they are general enough to include compuation and informa-

tion. Instead of describing the world in terms of trajectories, initial conditions, and

dynamical laws, constructor theory presents laws that include possible and impossible

physical transformations between states (Deutsch 2013). The laws of thermodynamics

can be recast in terms of a non-approximative, scale-independent distinction between

work and heat. This implies a relationship between information theory and the first

law of thermodynamics (Marletto 2016).

Constructor theory may be useful for understanding biological systems. Gene
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replication and natural selection can only occur (without the design of biological

evolution being directly encoded in the laws of physics) if the laws of physics have

certain other properties. The appearence of design in a no-design universe and

the logic of self-replication can be described under construction theory (Marletto

2015). These things can exist only if these laws allow information to be physically

instantiated. In addition, an accurate replicator must also be a “vehicle” that also

acts as a self-reproducer.

In quantum theory, particularly unitary quantum theory which is non-probabilitstic,

the unpredictability of measurement outcomes yields superinformation theories. This

is also true of the appearence in randomness in a finite amount of measurements.

Constructor theory corrects misconceptions about the standard methodology of sci-

entific testing that is inapplicable to Everettian quantum theory, hence the theory

is untestable. This is from misconceptions about probability and the logic of exper-

iments. Constructor theory eliminates everything probabilistic from fundamental

physics (stochastic processes) and from the methodology of testing (Deutsch 2016).

1.7 More on Computation

Most of us (probably) think of computation in terms of computers. The origin of

computers as we know them today is very closely related to the laws of physics in

terms of states and transformations between them. So, what is computation, beyond

the realm of computers? Is it possible to think of computation in terms of the laws

of physics? Actually, this is an extremely useful perspective for understanding how

our universe changes over time, outlined in Zenil 2013. But more importantly, it is

useful to think about how nature computes. Does nature use a computer program?
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How does it read that program and how does it read data into the program? In any

case, it goes to show that computation is an extension of information in the sense that

computation is the mechanism that utilizes information.

Computers are ultimately physical objects, made of electronic components and

circuits. We know them so well that we are able to reprogram computers in several

different ways. With the same computer, we can run Mac OSX, Windows, or Linux

and the same video game on all three (except if you have Mac OSX). We can use

the same electronic components for several purposes, like making radios or perhaps

some sneaky device that can actually turn down your neighbor’s super-loud 3am

speakers (see Gordon 2012) (disclaimer, that is illegal by the FCC, I checked!). It’s

even possible to forego the digital parts altogether and make simple computers out of

cardboard boxes. Charles Babbage even began designing these “engines” in the 1800’s

(Museum 2017) (shown in Figure 10) and their original conception was discussed in

the 1780’s in Müller 1786. In fact, the very first computers were made of gears, cogs,

and pegs and could be powered by turning a handle, like in Figure 11. So theoretically,

why couldn’t we re-program any and all bits of matter around us? Re-programming

is even more powerful than blunt transformations because computers are capable of

making those desired transformations on their own, without us needing to do more

than powering them and giving them a starting point.

Zenil argues in Zenil 2017 that we have already been doing this. 3D printers are

a nice example of how we reprogram plastic into little sculptures or paperweights.

If we are able to reprogram plastic, metal, and wood, then how long will it take

until this is extended to biological systems? We have already started doing this with

CRISPR gene editing (see Cong et al. 2013). Although one could argue that we’ve

33



Figure 10: Portion of Babbage’s difference engine, drawing by Charles Babbage in
1864 from Babbage 1864. Although Babbage’s different engine was designed in the
1800’s, it was never built until 1991 when it was finished in celebration for Babbage’s
200th birthday. The difference engine inspired Ada Lovelace to develop modern theory
of computation, which in turn inspired Alan Turing.
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Figure 11: The difference engine at the Computer History Museum is fully operational
(image from Briggs 2016). It can be used by punching some bottoms for input and
turning a lever until the answer is computed.

been trying to reprogram our own bodies for thousands of years before, simply by

trying to live longer and healthier. With the dawn of vaccines, we’ve been modifying

our bodies’ immune systems to overcome life-threatening diseases. But to ensure the

future success of reprogramming living systems such as ourselves, in hopes to cure

cancer and future epidemics, it is likely that understanding reprogramming matter in

a precise, mathematically theorized way will help.

To approach the idea of computation in terms of biology, it is important to think

about the following things (Mitchell 2011):
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• How is information represented in the system?

• How is information read and written by the system?

• How is it processed?

• How does this information acquire function (or “purpose,” or “meaning”)?

None of these ideas are very straightforwards because the idea of computation has

mostly been implemented in terms of computers. Yet in some way, cells and collections

of cells can be thought of in terms of little computers. Specifically, bacteria can be seen

as computers making computers, in reference to a Turing-complete system (Danchin

2009), meaning they are programs capable of replicating themselves over and over.

This discussion isn’t actually that far from the discussion of information, particularly

algorithmic complexity from earlier.

1.8 Levels of Biology

Biological systems appear to operate on multiple levels of organization, both

physically and informationally (Walker, Cisneros, and Davies 2012). Traditionally, we

have often thought of the physical world from a bottom-up approach: things happening

on the smaller scale compose things happening on the larger scale. While there is

nothing wrong with this, there may actually be a bigger picture, especially when it

comes to biological systems. One such approach is the top-down approach, where

the higher levels of organization actually affect the lower levels. Both bottom-up and

top-down flows of information seem to be important in understanding the dynamics of

biology (Sara Imari Walker 2014). Because life appears to be different than non-life, a

completely bottom-up approach to solving the mystery of life is inadequate (Sara I
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Walker 2015). Life may be more than just complex chemistry and physics interacting

in more and more complicated ways; it might be something totally different.

In may cases, the coarse-grained view is more “useful” than the microscopic view.

In other words, a good macro-view of a system contains all the relevant information

and very little or none of the irrelevant information. This way, the higher-levels

contain only useful information (Hoel 2017). But in this sense, “usefulness” is arbitrary

and depends on the observer.

Models of the heart indicate that top-down causation can be represented as the

influences of initial and boundary conditions differential equation solutions used to

represent the lower level processes (Noble 2012). From this, we can assume there is no

“best” level of causation to describe biology. In fact, there are many levels of causation,

and all are necessary to account for complex biological phenomenon.

Five different classes of top-down influence have been identified from real-world

observations by Ellis. They are: algorithmic top-down causation; top-down causation

via non-adaptive information control, top-down causation via adaptive selection, top-

down causation via adaptive information control and intelligent top-down causation

(the effect of the human mind on the physical world). An ongoing battle between

bottom-up and top-down approaches has important consequences for medical and

healthcare issues, as discussed in Ellis 2011.

Another example of where coarse-graining and top-down causation is necessary

is understanding how the power grid operates. Understanding the power grid as a

complex system requires several layers of how information is processed. On a base

level, there is the physical system itself, made of wires and transistors. Communication

is a second layer where agents act to maximize their own sources of power by receiving

information from their neighbors. Lastly, decisions as a whole system are made to find
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a stable coniguration (Kühnlenz and Nardelli 2016). The effectiveness of describing

these layers can be tested in an agent-based model, where the behavior of the system

as a whole is influenced by the size of the system.

1.9 Dissertation Outline

Where has all this discussion lead to? The entire point is to expose the motivating

ideas behind the research in the subsequent chapters. Without this prior discussion, the

research seems entirely unconnected to the Big Question at first glance. Video games,

universality, cellular automata, and repeating patterns are all bite-sized research topics

that are specifically engineered to guide the literature towards the Big Question. In

particular, Chapters 3, 4, and 6 are adapted from original research publications (A.

Adams et al. 2017, A. M. Adams et al. 2017, and Adams and Walker 2017 respectively).

I’ve added two additional chapters (Chapters 2 and 5) for more discussion that is

specific to their following research chapters. Then, of course, this dissertation is

concluded with a final chapter of speculative, wild-idea discussion (as if that hasn’t

been covered already).

1.10 All Models are Wrong

Finally, it’s important to reiterate the famous quote “all models are wrong, but

some are useful” from Box 1976. All math, physics, and notions learned from science

are models we use to describe the world that we observe. However, there’s a very

old and deep argument that asks whether math is invented or discovered. One way

of putting this is the following: Imagine humans are discovered by an alien race.
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Would they agree with our mathematics or simply view our math as a product of

our culture? I take the following stance: Models are tools invented by observers.

“Laws” can certainly change over time and may very well be different in other parts

of the universe. But in biology, laws are not static and change over time. Biology is

constantly rewriting its own rules, thus making it very difficult to write equations and

things for in the sense that we are familiar with. So, while reading these chapters,

keep in mind that these models are very limited in the sense that a single program

(algorithm) computes them. Their laws of physics and rules, ultimately, are static. In

this sense, they may all be fundamentally wrong.
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Chapter 2

PRIMER ON CELLULAR AUTOMATA

When I was about 7 or 8 years old, my parents bought a brand new Gateway

computer that ran Windows 95. It was glorious and included all kinds of exciting

new games. I enjoyed each of these games except for one: The Game of Life. It was

a horrible game. Basically it was a giant grid of colored squares that changed over

time and looked absolutely nothing like life. Figure 12 is an example of what I saw,

but with only two colors. There was no winning or losing or any indication of what

was even happening. I looked at the rules that were provided, but those just made

the game even more confusing because they were written in some coded computer

language. So I decided that a player lost when all squares turned the same color and

eventually forgot about this “awful game”.

It wasn’t until graduate school that I encountered The Game of Life again. It

turns out that this was not actually a game, but a scientific model for living systems

invented by John Conway (popularized in Gardner 1970). Quite an interesting thing

to include in a default operating system in 1995, but I digress8.

The Game of Life is a two-dimensional cellular automata (CA) model with a

very specific set of rules. CA were originally invented as a simple computer model

that mimics biological evolution through some rules, described in detail later. They

were first introduced by Ulam and Von Neumann in the 1940’s to understand how

biological evolution can produce regular or irregular behavior from simple rules (for a

8This could have been due to the rather large cult following it attracted since its invention in the
1970’s, see Rendell 2000
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Figure 12: One state in an implementation of Conway’s Game of Life (image taken
from Life 2017). Cells are either black or white (or 1 or 0, respectively) on a two-
dimensional grid. The color of each cell in the next time step will depend on the
current state of the cell and all its neighbors.

comprehensive history on cellular automata, see Schiff 2011). In fact, CA have also

been known to exhibit kinds of self-reproduction as in C. G. Langton 1984.

In the original Game of Life, a state consists of a two-dimensional grid of black

and white cells. A cell changes its color (or not) at the next time step depending on

the current colors of its neighbors. This is the basic idea behind a local update rule:

The color of every cell in a grid is determined by the current colors of other cells. The

Game of Life is a specific set of these rules, which results in all sorts of interesting little

patterns to emerge. There have been numerous studies on these patterns, ranging

from “glider” interactions and creations, to giant, stable oscillating structures.
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Figure 13: ECA rule 110 and its evolution from a single black cell in a space of white
cells (image Weisstein 2017).

2.1 Elementary Cellular Automata

Since cellular automata are very closely related the the ideas on computation in the

previous chapter, particularly rules, programs, states, and outputs, they have become

a very popular mode. Stephan Wolfram extensively studied CA on a one-dimensional

grid in his book A New Kind of Science, Wolfram 2002. One-dimensional CA have

been dubbed elementary cellular automata (ACE) because they are the simplest

symmetrical iteration of CA. ECA only use two colors, black and white, or 1 and 0

respectively. The color of each cell only depends on its own current state and the color

of its two closest neighbors. One example of an ECA rule and its implementation on

an initial state is shown in Figure 13.

In ECA, the rules are labeled by a number which represents its enumeration

of all the possible rules. Since there are two different colors and three cells in a
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neighborhood (the one cell and both of its neighboring cells), there are 23 = 8

neighborhood possibilities. Since there are two possible outcomes for the middle cell

in the neighborhood, that means there are 28 = 256 possible ECA local update rules.

In Figure 13, Rule 110 is represented by one of the 256 possible outcomes for the

outcome cells of the neighborhoods. Since these are 01101110, it is named Rule 110

because the binary translation of 01101110 is 07 + 16 + 15 + 04 + 13 + 12 + 11 + 00 = 110.

Likewise, if all these outcome cells were 00000000, then it would be named Rule 0.

Depending on the initial configuration of 1’s and 0’s and the local rule, ECA could

evolve into many types of patterns. In Figure 13, the initial one-dimensional state

consists of all 0’s and a single, middle 1. This is the row of cells at the top of the

image, with time going down. Many possible patterns were classified into four distinct

classes by Wolfram. Class 1 ECA rules are very simple and stay in a fixed attractor

state, meaning they find one configuration and stay there forever no matter the initial

state. Class 2 get stuck in simple repeating patterns for all initial states. Class 3 look

much more random, such as the famous Rule 30 (shown in Figure 14 with the same

initial state as from Figure 13). Finally, Class 4 are known to be complex, somewhere

between random and structured, depending on the initial state. Rule 110 is known to

be Class 4 and by analyzing many different initial states and resulting patterns, it was

found to be computationally universal. This means it is able to simulate any other

ECA rule given an infinite amount of time and an infinitely large initial condition,

proven in Cook 2004.

However, this classification scheme wasn’t rigorously defined and was introduced

more as general guidelines. Since then, many have tried to find a more precise

classification scheme for the ECA rules. One scheme uses an approximation of

Kolmogorov complexity, outlined in Zenil and Villarreal-Zapata 2013. Another is a
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Figure 14: 2000 time steps of Rule 30 from a single black cell in a space of white cells
(image from “PiAndWhippedCream” 2008).

compression-based investigation based on the sensitivity of the CA to initial states

(Zenil 2010). Applying transfer entropy (a measure of information processing) is also

a useful scheme for ECA (Borriello and Walker 2017) because it classifies rules based

on their ability to process and store information. These classification schemes allow

us to understand what each ECA rule is able to compute.

Besides classifying ECA rules, CA are studied for their original purpose: To

understand biological systems. This is an excellent implementation of some of the

ideas discussed in the previous chapter if used as an analogy for the emergence of

complex behavior (CA states and patterns) from simple interaction rules (laws of

physics). If the rules are well-understood, it is possible to measure the resulting

behavior of the CA.

For example, it is possible to measure CA sensitivity to changes in the initial state,

as measured by the Lyapunov exponent. The Lyapunov exponent can be approximated

by flipping the color of a single cell in the CA’s initial condition and then measuring
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how many cells have been altered from the original pattern as a consequence. Of

course, this is partially dependent on the exact cell that is changed, so all possible

initial cells should be changed and then the average outcome should be calculated

instead (Tisseur 2000).

2.1.1 A Few Variants

Cellular automata have been used in genetic algorithms to find specific, more

complicated rules that can solve particular tasks, known as the EvCA project (Group

2000 and Hordijk 2013). A genetic algorithm is a computational process inspired by

biological evolution as we currently understand it. Basically, using CA as an example,

a pool of random CA rules and initial conditions are generated and executed on

several initial states. The algorithm looks at the outputs and picks, say, the best 10%

according to some specific criteria, like the 10% most black outputs. Then it splices

and swaps those best rules much like in swapping genes in reproduction. This process

is repeated several times until a population of rules that is very good at solving the

specific task is reached.

Genetic algorithms are particularly good for CA that have so many rules that it

is impossible to test them all. In general, genetic algorithms are good for finding a

solution in any space that is to large to explore completely. Using a genetic algorithm

can help find a good solution to a problem without exploring every single possibility.

Although they can return good solutions, they certainly do not guaranetee optimal

solutions (Mitchell, Crutchfield, and Hraber 1994) but they are general enough to

solve a wide variety of problems (Lovinger et al. 2014 and Breukelaar and Bäck 2005).

The EvCA project was a major milestone in understanding how biology can select
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for advanced computational tasks by means of using simple local interaction rules

(Hordijk 2013), like those of the laws of physics. One of the tasks that was used is

called the density classification task. For an initial state of black and white cells, the

density classification task wants the systems to turn white if the initial condition was

mostly white, or black if the initial state was mostly black, as in Figure 15. In one

EvCA model, the bulk of computation was performed by interacting “particles” in

subsequent CA states. These particles are boundaries between uniform patterns on a

CA grid. The interactions of the boundaries facilitated the exchange of information

(Das, Mitchell, and Crutchfield 1994) and the density classification task was solved

effectively as a result. These results have demonstrated an example of information

transfer when a system is evolved to perform some sort of computation.

Genetic algorithms are also popular for creating digital art (see Figure 16 and

Draves 2017 as an example) and music. In fact, the internet radio website Pandora

uses a genetic algorithm to pick songs based on a user’s preferences (see Inc. 2017 for

a complete description). With every interaction from a user, the process that selects

the next song is generated by a new generation from the genetic algorithm.

There are several, practically countless CA variations that have been invented

to test some aspect of dynamical systems, whether its biology, geology, or political

voting. One final example in this discussion is HetCA. This CA variation allows

evolutionary progress to be measured with three criteria: the robustness, size, and

density of generated genotypes. The results show that the oldest genotypes in terms of

evolutionary time are frequently the most robust, and that newer genotypes correspond

to a much stronger phenotypic density (Medernach et al. 2015). In general, results
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Figure 15: Some results from the EvCA project. These panels are from a single genetic
algorithm run. The arrows in the upper left panel indicate five different generations in
the genetic algorithm, and examples of these generations are shown in the subsequent
panels.These five panels are space-time diagrams with time going down (image from
Group 2000)

from CA models are consistent with our observations of the real world and are excellent

tools for crafting analogies with biology.

Chapters 3 and 4 are centered around another version of CA that is tailored to

understand open-ended evolution. Using CA makes some questions answerable in

terms of a limited context, such as “Does self-reference lead to open-ended evolution”,

“How do reversible rules contribute to open-ended evolution”, and “How can open-ended

evolution be measured in a closed, dynamical system?”
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Figure 16: Artwork by Scott Draves and the Electric Sheep (Draves 2017).

2.2 A Model for Testing Open-Ended Evolution

Clearly, open-ended evolution (OEE) is the main theme of these questions. In a

very general sense, this is the ability for a system to continually adapt and innovate

without coming to a stopping or static point. However, OEE has been a very difficult

concept to define quantitatively. Twice so far, there have been workshops at the every-

other-year Artificial Life conference dedicated to OEE research and developments. At

the 2016 conference, one important point was raised: the subjectivity of part of a

whole system may be key to understanding biological evolution (Taylor et al. 2016).
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This is reminiscent to the discussions on information in the last chapter and it seems

to be a fruitful path of inquiry to explore.

However, it is difficult to think about biological OEE from our observations simply

because we cannot observe the entire timeline of biology. How do we know evolution

will never stop innovating? Though we have a pretty good fossil record, it is difficult

to determine if fossil diversity is indication of true open-ended evolution because it

relies on waiting to see what happens in the future. It’s been useful to label different

kinds of open-endedness to more precisely describe how our observations and studied

models fit together (Vladar, Santos, and Szathmáry 2017). But no matter the kind

of OEE, it must meet three key criteria as outlined in Banzhaf, Baumgaertner, and

Beslon 2016: Variation, innovation, and emergence.

In order to analytically study the fossil records in terms of measurable OEE in

Bedau et al. 1997, two measures were invented and were used to define long-term

evolutionary dynamics. These dynamics fall into three distinct classes, where adaptive

evolutionary activity is absent (class 1), bounded (class 2), or unbounded (class 3) (see

Bedau et al. 1997 for a complete description). As a result, the presence of evolutionary

activity has been proposed as a test for universal life (Bedau and Packard 1992).

A discussion about OEE would not be complete without including exciting vir-

tual evolutionary worlds such as Chromaria (Soros and Stanley 2014), pictured in

Figure 17. In Chromaria, four conditions for open-ended evolution were identified

in the simulations. Unless all four of the conditions were met, the Chromaria’s

evolution would stagnate and stop. According to this study, only a special type of

self-constructing, autonomous systems can implement open-ended evolution. This

comes from phenotype-genotype decoupling, which originates from a new kind of way
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Figure 17: Screenshot of the dynamic and colorful Chromaria (image from Soros
2016).

of physically organizing materials (Ruiz-Mirazo, Umerez, and Moreno 2008), which is

philosophically like the ontological principle described in Whitehead 1928.

Also, web activity (much like many other human activities) is known to exhibit

open-ended evolution. Assume uploded photos are phenotypes and the annotated

tags on the photos res genotypes. OEE is observed as a progressive occurence of

innovative photo tags in this case (Oka, Hashimoto, and Ikegami 2015). Using

phenotype-genotype analogies can be tricky and it is important to understand the

mapping between phenotype and genotype objects. In collective robotic dynamics,

where many robots interact with each other, OEE was observed when a “successful”

genotype was allowed to spread (Bianco and Nolfi 2004). The success of a genotype

depends on the phenotypic expression, such as having a genotype code that tells the

robot to charge itself when its battery is low. The presence of OEE was a direct result

of the genotype-phenotype map.
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Although novelties are common in our everyday lives, especially with the prevalent

role of the internet and technology, the mechanisms behind novelties in remain

pretty much a mystery. But the states-of-the-universe analogy from Chapter 1 helps,

especially when transitions between states (states) are represented as edges on a graph.

In this model, the topological structure of the graph seems to change with the onset

of innovation. It changes by continuously getting reshaped and expanded, resulting

in distinctions between the actual and the possible (Loreto, Servedio, and Strogatz

2016). This is probably one of the greatest challenges in understanding open-ended

evolution: Does biology evolve its states along a pre-defined set of possible states or

does it create its own possibilities as it evolves? If the latter, then how can un-coded

possible states be possible in a simple model like CA?

2.2.1 Relation to Power Laws

Power laws may or may not have some clues for understanding OEE. Zipf postulated

that the distribution of word frequency in human language was a result of humans

trying to communicate most efficiently with the least amount of effort possible (Zipf

1949). The distribution of the frequency of these words looks a lot like a logarithm

distribution, otherwise known as a power-law distribution. Zipf’s Law is illustrated

in Figure 18 for several different different languages, which all follow a power law

distribution. It is still unclear whether or not humans structure word frequency

for the reason of communicating effectively, but there is mounting evidence that

information-centered behavior (including biological behavior) can be represented with

a power law distribution.

In the business world, and many other areas that use statistics, the power law
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Figure 18: Specifically, the first 10 million words were taken from 30 different
Wikipedias in October 2015. The frequency of the word is plotted on the y-axis
with the rank of its appearence is plotted on the x-axis (image from “SergioJimenez”
2015)

is also known as the 80-20 rule (Newman 2005). It is said that 80% of sales come

from 20% of customers, much like many other “ownable” assests in biological systems

(Newman 2005). This makes it surprisingly easy to test if a set of words or sounds

is a language or not. This is done by organizing the words/sounds according to how

frequent they appear during a conversation or a large body of text. All known real

languages follow the power law. This phemonenon has even been tested in other

species, like zebra finches (Ma, Maat, and Gahr 2017) and has been found to be true.

Could this be an easy way to test extraterrestrial signals in search of intelligent life?

The distributions of the sizes of cities, earthquakes, solar flares, moon craters,

wars and people’s personal fortunes all appear to follow power laws, but the origin of

this behavior is still a hotly debated topic (at the time of this dissertation anyways)
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Newman 2005. Many criticize the usefulness of power laws at all, stating that they

could be completely meaningless. Yet others claim they are the fingerprint of open-

ended systems, as in Corominas-Murtra, Seoane, and Solé 2016. In any case, the

presence of a power law may indicate whether or not a system is biological or not.

Before diving down the rabbit-hole of open-ended CA systems, I should also point

out that CA models which use self-reference and coarse-graining also exhibit power

laws (Pavlic et al. 2014). In Pavlic et al. 2014, a one-dimesional CA which uses

ECA rules is coarse-grained according to a particular mapping. This higher-level

coarse-grained CA is 8 cells long and its state is used to determine a new ECA rule

for the original CA to use for the next time step. This process is repeated at every

time step. It turns out, the number of coarse-grained CA state patterns follows a

power law distribution, shown in Figure 19. Either this implies coarse-graining and

self-reference can lead to biological-looking systems, or nothing at all. Either way, the

fact that most CA coarse-grained to a small subset of smaller CA is reminiceint of

observed cellular differentiation (Pavlic et al. 2014).
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Figure 19: A Zipf plot of the number of different macrostate patterns (executions)
observed in Pavlic et al. 2014. Open circles represent all macrostate executions observed
while the starred points represents the data where fixed macrostate executions are
removed.
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Chapter 3

FORMAL DEFINITIONS OF UNBOUNDED EVOLUTION AND INNOVATION

REVEAL UNIVERSAL MECHANISMS FOR OPEN-ENDED EVOLUTION IN

DYNAMICAL SYSTEMS

3.1 Abstract

Open-ended evolution (OEE) is relevant to a variety of biological, artificial and

technological systems, but has been challenging to reproduce in silico. Most theoretical

efforts focus on key aspects of open-ended evolution as it appears in biology. We recast

the problem as a more general one in dynamical systems theory, providing simple

criteria for open-ended evolution based on two hallmark features: unbounded evolution

and innovation. We define unbounded evolution as patterns that are non-repeating

within the expected Poincaré recurrence time of an equivalent isolated system, and

innovation as trajectories not observed in isolated systems. As a case study, we

implement novel variants of cellular automata (CA) in which the update rules are

allowed to vary with time in three alternative ways. Each is capable of generating

conditions for open-ended evolution, but vary in their ability to do so. We find

that state-dependent dynamics, widely regarded as a hallmark of life, statistically

out-performs other candidate mechanisms, and is the only mechanism to produce

open-ended evolution in a scalable manner, essential to the notion of ongoing evolution.

This analysis suggests a new framework for unifying mechanisms for generating OEE
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with features distinctive to life and its artifacts, with broad applicability to biological

and artificial systems9.

3.2 Public Summary

In this project, cellular automata (CA) were used to explore some of the mechanisms

that drive open-ended evolution (OEE). In particular, two interacting CA were

combined to create a system that is able to change its own laws over time. Traditional

physics has fixed laws, such as the fixed Newton’s Laws. They are the same with

respect to time. The same idea is implemented in traditional CA; The states update

according to some fixed rule (see Chapter 2 for more details on CA). Here, one of the

CA in the interacting system changes its law based on the state of the system as a

whole.

Figure 22 is an illustration of the interacting CA. A traditional elementary cellular

automata (ECA) is on the left and our system is on the right. In the system, two

separate CA interact in a few ways. One CA, called the “environment” (e), is a typical

ECA and does not change its laws (or rules, in this case). The other CA is the

“organism” (o) and it changes its rules based on its own current state and the current

state of the environment10.

We made the environment and organism interact three different ways:

9This chapter is adapted from it its original publication (A. Adams et al. 2017)

10Although they are called “environment” and “organism”, these CA are not specifically meant
to model environments and organisms (confusing, I know). Instead, they are an allegory for some
external space and an internal biological-like entity, whether it be a cell or organism or species.
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1. The organism changes its rule based on its own current state and the current

state of the environment (Case I CA)

2. The organism changes its rule based on the environment only (Case II CA), and

3. The organism changes its rule randomly and there is no environment (Case III

CA).

In these three different cases, we looked for organisms that displayed open-ended

evolution. In order to be open-ended, organisms much meet two required definitions,

Definitions 3.4.1 and 3.4.2. In short, these definitions state that the CA is not allowed

to repeat in the same time it would have repeated using a static rule (like in an ECA)

and that the CA cannot look exactly like an ECA. This ensures the organism CA is

displaying novel patterns that do not repeat.

As a result, some open-ended organisms were found in all three cases but only

open-ended organisms were found in Case I CA when the CA grew with size. In fact,

the most amount of open-ended organisms were found when the environment is the

biggest compared to the organism. As a visual example, some very large organisms

are pictured in Figure 20. These are too big to determine if they meet both definitions

and are indeed open-ended, but they show the idea behind innovation. Because no

ECA can reproduce these patterns, they at least satisfy Definition 3.4.2.

These results are intuitive of biological systems. Since biology uses self-reference

and interacting systems, it makes sense that the interacting CA model that utilizes

self-reference and interactions with a second, external CA would have the most open-

ended cases. While it is true that the system as a whole certainly does repeat within its

expected time, this study emphasizes that quantifying open-endeness on a subjective
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Figure 20: Some examples of large, possibly open-ended organisms.

scale (the scale of one of the CA parts) is more relevant to our understanding of

biology.

3.3 Introduction

Many real-world biological and technological systems display rich dynamics, often

leading to increasing complexity over time that is limited only by resource availability.

A prominent example is the evolution of biological complexity: the history of life

on Earth has displayed a trend of continual evolutionary adaptation and innovation,

giving rise to an apparent open-ended increase in the complexity of the biosphere

over its > 3.5 billion year history (Bedau et al. 1997). Other complex systems,

from the growth of cities (Bettencourt et al. 2007), to the evolution of language

(Seyfarth, Cheney, and Bergman 2005, culture (Buchanan, Packard, and Bedau 2011

58



and Skusa and Bedau 2002) and the Internet (Oka, Hashimoto, and Ikegami 2015)

appear to exhibit similar trends of innovation and open-ended dynamics. Producing

computational models that generate sustained patterns of innovation over time is

therefore an important goal in modeling complex systems as a necessary step on the

path to elucidating the fundamental mechanisms driving open-ended dynamics in

both natural and artificial systems. If successful, such models hold promise for new

insights in diverse fields ranging from biological evolution to artificial life and artificial

intelligence.

Despite the significance of realizing open-ended evolution in theoretical models,

progress in this direction has been hindered by lack of a universally accepted definition

for open-ended evolution (OEE). Although relevant to many fields, OEE is most

often discussed in the context of artificial life, where the problem is so fundamental

that it has been dubbed a “millennium prize problem” (Bedau et al. 2000). Many

working definitions exist, which can be classified into four hallmark categories as

outlined in Banzhaf, Baumgaertner, and Beslon 2016: (1) on-going innovation and

generation of novelty (T. J. Taylor 1999 and Ruiz-Mirazo, Umerez, and Moreno 2008);

(2) unbounded evolution (Bedau et al. 1997, and Bedau 1991, and Bedau and Packard

1992); (3) on-going production of complexity (Fernando, Kampis, and Szathmáry

2011, Ruiz-Mirazo and Moreno 2012, and Guttenberg and Goldenfeld 2008); (4) a

defining feature of life (Ruiz-Mirazo, Peretó, and Moreno 2004). Each of these faces its

own challenges, as each is cast in terms of equally ambiguous concepts. For example,

the concepts of “innovation” or “novelty”, “complexity” and “life” are all notoriously

difficult to formalize in their own right. It is also not apparent whether “unbounded

evolution” is physically possible since real systems are limited in their dynamics by

finite resources, finite time, and finite space. A further challenge is identifying whether
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the diverse concepts of OEE are driving at qualitatively different phenomena, or

whether they might be unified within a common conceptual framework. For example,

it has been suggested that increasing complexity might not itself be a hallmark of

OEE, but instead a consequence of it (T. J. Taylor 1999 and Ruiz-Mirazo, Peretó,

and Moreno 2004). Likewise, processes may appear unbounded, even within a finite

space, if they can continually produce novelty within observable dynamical timescales

(Taylor et al. 2016).

Given these limitations, it was unclear if OEE is a property unique to life, is

inclusive of its artifacts (such as technology), or if it is an even broader phenomenon

that could be a universal property of certain classes of dynamical systems. Many

approaches aimed at addressing the hallmarks of OEE have been inspired by biology

(Taylor et al. 2016), primarily because biological evolution is the best known example

of a real-world system with the potential to be truly open-ended (Bedau et al. 1997).

However, as stated, other examples of potentially open-ended complex systems do

exist, such as trends associated with cultural (Buchanan, Packard, and Bedau 2011 and

Skusa and Bedau 2002) and technological (Bettencourt et al. 2007 and Oka, Hashimoto,

and Ikegami 2015) growth, and other creative processes. Therefore, herein we set out

to develop a more general framework to seek links between the four aforementioned

hallmarks of OEE within dynamical systems, while remaining agnostic about their

precise implementation in biology. Our motivation is to discover universal mechanisms

that underlie OEE as it might occur both within and outside of biological evolution.

In dynamical systems theory there exists a natural bound on the complexity that

can be generated by a finite deterministic process, which is given by the Poincaré

recurrence time. Roughly, the Poincaré time is the maximal time after which any finite

system returns to its initial state and its dynamical trajectory repeats. Clearly, new
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dynamical patterns cannot occur past the Poincaré time if the system is isolated from

external perturbations. To cast the concept of unbounded evolution firmly within

dynamical systems theory, we introduce a formal minimal criteria for unbounded evo-

lution (where we stress that here we mean the broader concept of dynamical evolution,

not just evolution in the biological sense) in finite dynamical systems: minimally, an

unbounded system is one that does not repeat within the expected Poincaré time. A

key feature is that this definition automatically excludes finite deterministic systems

unless they are open to external perturbations in some way. That is, we contend

that unbounded evolution (and in turn OEE which depends on it) is only possible for

subsystem interacting with an external environment. To make better contact with

real-world systems, where the Poincaré time often cannot even in principle be observed,

we introduce a second criteria of innovation. Systems satisfying the minimal definition

of unbounded evolution must also satisfy a formal notion of innovation, where we

define innovation as dynamical trajectories not observed in isolated, unperturbed

systems. We identify innovation by comparison to counterfactual histories (those of

isolated systems). Like unbounded evolution, innovation is extrinsically defined and

requires interaction between at least two subsystems. A given subsystem can exhibit

OEE if only if it is both unbounded and innovative. As we will show, utilizing this

criteria for OEE allows us to evaluate candidate mechanisms for generating OEE in

simple toy model dynamical systems, ones that could carry over to more realistic

complex dynamical systems.

The utility of these definitions is that they provide a simple way to quantify

intuition regarding hallmarks (1) and (2) of OEE for systems of finite size, which is

applicable to any comparable dynamical system. They therefore provide a means to

quantitatively evaluate, and therefore directly compare, different potential mechanisms
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for generating OEE. We apply these definitions to test three new variants of cellular

automata (CA) for their capacity to generate OEE. A key feature of the new variants

introduced is their implementation of time-dependent update rules, which represents a

radical departure from more traditional approaches to dynamical systems where the

dynamical laws remain fixed. Each variant introduced differs in its relative openness to

an external environment. Of the variants tested, our results indicate that systems that

implement time-dependent rules that are a function of their state are statistically better

at satisfying the two criteria for OEE than dynamical systems with externally driven

time-dependence for their rules (that is where the rule evolution is not dependent on the

state of the subsystem of interest). We show that the state-dependent systems provide

a mechanism for generating OEE that includes the capacity for on-going production of

novelty by coupling to larger environments. This mechanism is also scales with system

size, meaning the amount of open-endedness that is generated does not drop off as

the system size increases. We then explore the complexity of state-dependent systems

in more depth, calculating general complexity measures including compressibility

(based on LZW in (Zenil 2010)) and Lyapunov exponents. Given that state-dependent

dynamics are often cited as a hallmark feature of life due to the role of self-reference

in biological processes (Walker and Davies 2013, Davies and Walker 2016, Goldenfeld

and Woese 2011, and Hofstadter 1979), our results provide a new connection between

hallmarks (1), (2) and (4) of OEE. Our results therefore connect several hallmarks of

OEE in a new framework that allows identification of mechanisms that might operate

in a diverse range of dynamical systems. The framework holds promise for providing

insights into universal mechanisms for generating OEE in dynamical systems, which

is applicable to both biological and artificial systems.
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3.4 Theory

Traditionally dynamical systems, like their physical counterparts, are modeled with

fixed dynamical laws – a legacy from the time of Newton. However, this framework may

not be the appropriate one for modeling biological complexity, where the dynamical

laws appear to be self-referential and evolve in time as a function of the states (Walker

and Davies 2013, Davies and Walker 2016, Goldenfeld and Woese 2011, and Hofstadter

1979). An explicit example is the feedback between genotype and phenotype within a

cell: genes are “read-out” to produce changes to the state of expressed proteins and

RNAs, and these in turn can feedback to turn individual genes on and off (Noble 2012).

Given this connection to biology, we are motivated in this work to focus explicitly

on time-dependent rules, where time-dependence is introduced by driving the rule

evolution through coupling to an external environment. Since open-ended evolution

has been challenging to characterize in traditional models with fixed dynamical rules,

implementing time-dependent rules could open new pathways to generating complexity.

In this study we therefore define open systems as those where the rule dynamically

evolves as a function of time, and we assume this is driven by interaction with an

environment. As we show, time-dependent rules allow novel trajectories to be realized

that have not been previously characterized in cellular automata models. To quantify

this novelty, we introduce a rigorous notion of OEE that relies on formalized definitions

of unbounded evolution and innovation. The definitions presented rely on utilizing

isolated systems evolved according to a fixed rule as a set of counterfactual systems

to compare to the novel dynamics driven by time-dependent rules.
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3.4.1 Formalizing Open-Ended Evolution as Unbounded Evolution and Innovation

A hypothetical example demonstrating the concepts of INN and UE in shown in

Figure 21. The possible set of states are S = {1, 2, 3, 4, 5, 6} and rules R = {α, β}.

For each panel, the example state trajectory s is initialized with starting state so = 3.

For panels c and d the rule trajectory r is also shown. Highlighted in bold is the first

iteration of the attractor for states (all panels) or rules (panel c and d only). For

a discrete deterministic system of six states, the Poincaré recurrence time is tP = 6.

Panel (a) shows the state transition diagram for hypothetical rule α where a trajectory

initialized at s(t0) = 3 visits two states. Panel (b) shows the state transition diagram

for hypothetical rule β where a trajectory initialized at s(t0) = 3 visits only one state.

Since the trajectories in (a) and (b) evolve according to a fixed rule (are isolated)

they do not display INN or UE and in general the recurrence time tr � tP . Panel (c)

demonstrates INN, where the trajectory shown cannot be fully described by rule α or

rule β alone. The state trajectory s and rule trajectory r both have a recurrence time

of tr = 5, which is less than tP so this example does not exhibit UE. Panel (d) exhibits

UE (and is also an example of INN). The trajectory shown cannot be described by

rule α or rule β alone. The recurrence time for the state trajectory is tr = 13, which

is greater than tP . The rule trajectory also satisfies the conditions for UE, with a

recurrence time in this example that is longer than that of the state trajectory due to

the fact that the state transition 2→ 5 could be driven by rule α or β depending on

the coupling to an external system.

A hallmark feature of open-ended evolutionary systems is that they appear un-

bounded in their dynamical evolution (Bedau et al. 1997, Bedau 1991, and Bedau and

Packard 1992). For finite systems, such as those we encounter in the real world, the
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Figure 21: State diagrams of a hypothetical example demonstrating the concepts of
INN and UE.
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concept of “unbounded” is not well-defined. In part this is because all finite systems

will eventually repeat, as captured by the well-known Poincaré recurrence theorem.

As stated in the theorem, finite systems are bounded by their Poincaré recurrence

time, which is the maximal time after which a system will start repeating its prior

evolution. The Poincaré recurrence time tP of a finite, closed deterministic dynamical

system therefore provides a natural bound on when one should expect such a system

to stop producing novelty. In other words, tp is an absolute upper-bound on when

such a system will terminate any appearance of open-endedness.

Potentially the Poincaré recurrence theorem can locally be violated by a subsystem

with open boundary conditions or if the subsystem is stochastic (although in the

latter case the system might still be expected to approximately repeat). We therefore

consider a definition of unbounded evolution applicable to any instance of a dynamical

system that can be decomposed into two interacting subsystems. Nominally, we

refer to these two interacting subsystems as the “organism” (o) and “environment”

(e). We note that our framework is sufficiently general to apply to systems outside

of biology: the concept of “organism” is meant only to stress that we expect this

subsystem to potentially exhibit the rich dynamics intuitively anticipated of OEE

when coupled to an environment (the environment, by contrast, is not expected

to produce OEE behavior). The purpose of the second “environment” subsystem

is to explicitly introduce external perturbations to the organism, where e is also

part of the larger system under investigation and modulates the rule of o in a time-

dependent manner. We therefore minimally define unbounded evolution (UE) as

occurring when a sub-partition of a dynamical system does not repeat within its

expected Poincaré recurrence time, giving the appearance of unbounded dynamics for

given finite resources:
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Definition 3.4.1. Unbounded evolution (UE): A system U that can be decom-

posed into two interacting subsystems o and e, exhibits unbounded evolution if there

exists a recurrence time such that the state-trajectory or the rule-trajectory of o is

non-repeating for tr > tP or t′r > tP respectively, where tr is the recurrence time of

the states, t′r the recurrence time of the rules, and tP is the Poincaré recurrence time

for an equivalent isolated (non-perturbed) system o.

Since we consider o where the states and rules evolve in time, unbounded evolution

can apply to the state or rule trajectory recurrence time and still satisfy Definition

3.4.1. That is, a dynamical system exhibits UE if and only if it can be partitioned such

that the sequence of one of its subsystems’ states or dynamical rules are non-repeating

within the expected Poincaré recurrence time tP of an equivalent isolated system. In

other words, unbounded evolution is only possible in a system that is partitioned

into at least two interacting subsystems. This way, one of the subsystems acts as an

external driver for the rule evolution of the other subsystem, which can then be pushed

past its expected maximal recurrence time, tP . We calculate the expected tP as that

of an equivalent isolated system. By equivalent isolated system, we mean the set of all

possible trajectories evolved from any initial state drawn from the same set possible

of states as for o, but generated with a fixed rule, which can be any possible fixed rule.

We will describe explicit examples using the Elementary Cellular Automata (ECA)

rule space in Section Model Implementation, where the relevant set of states are those

constructed from the binary alphabet {0, 1} and the set of rules for comparison are

the ECA rules. ECA are defined as 1-dimensional CA with nearest-neighbor update

rules: for an ECA of width w (number of cells across), equivalent isolated systems as

defined here include all trajectories evolved with any fixed ECA rule from any initial

state of width w, where tP is then tP = 2w and w = wo, where wo is the width of o.
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Implementing the above definition of UE necessarily depends on counterfactual

histories of isolated systems (e.g. of ECA in our examples). These counterfactual

systems cannot, by definition, generate conditions for UE. This suggests as a corol-

lary a natural definition for innovation in terms of comparison to the same set of

counterfactual histories:

Definition 3.4.2. Innovation (INN): A system U that can be decomposed into

two interacting subsystems o and e exhibits innovation if there exists a recurrence

time tr such that the state-trajectory is not contained in the set of all possible state

trajectories for an equivalent isolated (non-perturbed) system.

That is, a subsystem o exhibits INN by Definition 3.4.2 if its dynamics are not

contained within the set of all possible trajectories of equivalent isolated systems.

We note these definitions do not necessitate that the complexity of individual states

increase with time, thus one might observe INN without a corresponding rise in

complexity with time. Fig. 21 shows a conceptual illustration of both UE and INN,

as presented in Definitions 3.4.1 and 3.4.2.

A motivation for including both Definitions 3.4.1 and 3.4.2 is that they encompass

intuitive notions of “on-going production of novelty” (INN) and “unbounded evolution”

(UE), both of which are considered important hallmarks of OEE (Banzhaf, Baum-

gaertner, and Beslon 2016). UE can imply INN, but INN does not likewise imply UE.

It might therefore appear that UE is sufficient to characterize OEE without needing

to appeal to separately defining INN. The utility of including INN in our formalism is

that it allows generalization to both infinite systems where UE is not defined, and

to real-world systems where UE is not physically observable (since, for example, tP

could in principle be longer than the age of the universe). For the latter, INN can be

an approximation to UE, where higher values of INN indicate a system more likely to
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exhibit UE. Additionally, the combination of UE and INN can be used to exclude cases

that appear unbounded but are only trivially so. For example, a partition of a system

evolved according to a fixed dynamical rule could in principle locally satisfy UE, but

would not satisfy INN since its dynamics could be shown to be equivalent to those

generated from an appropriately constructed isolated system (e.g. a larger ECA in our

example). An example is the time evolution of ECA Rule 30 (Wolfram 2002), which

is known to be a ‘complex’ ECA rule that continually generates novel patterns under

open-boundary conditions. In cases such as this, it should be considered that it is the

complexity at the open boundary of the system that is generating continual novelty

and not a mechanism internal to the system itself. In other words, in such examples

the complexity is generated by the boundary conditions. Since our biosphere has

simple, relatively homogeneous boundary conditions (geochemical and radiative energy

sources) the complexity of the biosphere likely arises due to internal mechanisms and

is not trivially generated by the boundary conditions alone (Smith 2008. Since we aim

to understand the intrinsic mechanisms that might drive OEE in real, finite dynamical

systems, we therefore require both definitions to be satisfied for a dynamical system

to exhibit non-trivial OEE.

3.4.2 Model implementation

We evaluate different mechanisms for generating OEE against Definitions 3.4.1

and 3.4.2, utilizing the rule space of Elementary Cellular Automata (ECA) as a case

study. ECA are defined as nearest-neighbor 1-dimensional CA operating on the two-bit

alphabet {0, 1}. There are 256 possible ECA rules, and since the rule numbering is

arbitrary, we label them according to Wolfram’s heuristic designation (Wolfram 2002).
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Table 1: Table of terms and model parameters.

Parameter Definition

o Single organism execution
e Single environment execution
so state of o
ro rule of o
se state of e
wo width of o
we width of e
tP Poincaré recurrence time
tr Recurrence time of so
t′r Recurrence time of ro
I Innovation calculated as the normalized number of rule transitions
µ Mutation threshold of Case III variant µ = [0, 1)
ξ random noise for Case III variant, ξ = [0, 1)
C Compressibility
k Lyapunov exponent

Due to their relative simplicity, ECA represent some of the most widely-studied CA,

thus providing a well-characterized foundation for this study. Traditionally, ECA

evolve according to a fixed dynamical rule starting from a specified initial state. As

such, no isolated finite ECA can meet both of the criteria laid out in Definitions 3.4.1

and 3.4.2 as per our construction aimed at excluding trivial cases. An isolated ECA

of width w will repeat its pattern of states by the Poincaré time tP = 2w (violating

Definition 3.4.1). If we instead considered a CA of width w as a subsystem of a

larger ECA it would not necessarily repeat within 2w time steps, but it would not

be innovative (violating Definition 3.4.2). Thus, as stated, we can exclude trivial

examples such as ECA Rule 30, or other unbounded but non-innovative dynamical

processes, which repeatedly apply the same update rule. A list of model parameters

are summarized in Table 1.
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To exclude trivial unbounded cases, Definitions 3.4.1 and 3.4.2 are constructed to

require that the dynamical rules themselves evolve in time. As we will show, utilizing

the set of 256 possible ECA rules as the rule space for CA with time-dependent rules

makes both UE and INN possible. Rules can be stochastically or deterministically

evolved, and we explore both mechanisms here. We note that there exists a huge

number of possible variants one might consider. We therefore focus on three variants

that display important mechanisms implicated in generating OEE, including openness

to an environment (Ruiz-Mirazo, Umerez, and Moreno 2008) (of varying degrees in

all three variants), state-dependent dynamics (regarded as a hallmark feature of life

(Walker and Davies 2013, Goldenfeld and Woese 2011, and Hofstadter 1979)), and

stochasticity. Here openness to an environment is parameterized by the degree to

which the rule evolution of o depends on the state (or rule) of o, as compared to its

dependence on the state of e. Completely open systems are regarded as depending

only on external factors, such that the time-dependence of the rule evolution is only

a function of the environment. We also consider cases that are only partially open,

where the rule evolution depends on both extrinsic and intrinsic factors.

3.4.2.1 Case I CA

The first variant, Case I, implements state-dependent update rules, such that the

evolution of o depends on its own state and that of its environment. This is intended

to provide a model that captures the hypothesized self-referential dynamics underlying

biological systems (see e.g. Goldenfeld and Woese (Goldenfeld and Woese 2011))

while also being open to an environment (we do not consider closed self-referential

systems herein as treated in Pavlic et al since these do not permit the possibility of
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UE (Pavlic et al. 2014)). We consider two coupled subsystems o and e, where the

update rule of o is state-dependent and is a function the state and rule of o, and the

state of e at the same time t (thus being self-referential but also open to perturbations

from an external system). That is, the update rule of o takes on the functional form

ro(t+ 1) = f(so(t), ro(t), se(t)), where so and ro are the state and rule of the organism

respectively, and se is the state of the environment. We regard this case as only partly

open to an environment since the evolution of the rule of o depends on its own state

(and rule) in addition to the state of its environment. By contrast, the subsystem e

is closed to external perturbation and evolves according to a fixed rule (such that e

is an ECA ). Both o and e have periodic boundary conditions (o is only open in the

sense that its rule evolution is in part externally driven). A schematic illustration of

the time evolution of an ECA, and the coupling between subsystems in a Case I CA

is shown in Fig. 22.

To demonstrate how the organism in our example of a Case I CA changes its

update rule, we provide a simple illustrative example of the particular function

f(so(t), ro(t), se(t)) implemented in this work (see Fig. 23 and Supplement 1.1 in

Appendix B). Specifically, we utilize an update function that takes advantage of the

binary representation of ECA. An example of the structure of an ECA rule is shown

for Rule 30 in Fig. 22. ECA rules are structured such that each successive bit in the

binary representation of the rule is the output of one of the 23 possible ordered sets of

triplet states. The left panel of Fig. 23 shows an example of a few times steps of the

evolution of an organism o of width wo = 4 (right) coupled to an environment e with

width we = 6 (left), where o implemented rule 30 at t− 1. At each time-step t the

frequency of each of the 23 ordered triplet states (listed in the top row of Fig. 22) in

the state of o is compared to the frequency of the same ordered triplet in the state of
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Figure 22: Illustrations of the time evolution of a standard ECA (left) and of a Case I
state-dependent CA (right). ECA evolve according to a fixed update rule (here Rule
30), with the same rule implemented at each time step. In an ECA rule table, the cell
representation of all possible binary ordered triplets is shown in the top row, with the
cell representation of the corresponding mapping arising from Rule 30 shown below.
Rule 30 therefore has the binary representation 00011110. In a Case I CA (right), the
environment subsystem e evolves exactly like an ECA with a fixed rule. The organism
subsystem o, by contrast, updates its rule at each time-step depending on its rule at
the previous time-step, its own state (green arrows) and the state of e (red arrows).
The new rule for o is then implemented to update the state of o (blue arrows). The
rules are therefore time-dependent in a manner that is a function of the states of o
and e and the past history of o (through the dependence on the rule at the previous
time-step).

e. If the frequency in o meets or exceeds the frequency in e for a given triplet, the bit

corresponding to the output of that triplet in the rule of o is flipped from 0↔ 1. For

the example in the left panel of Fig. 23, the triplet frequencies are listed in the table

in the right panel of Fig. 23. We note that for our implementation, the frequency of a

triplet in o is calculated relative to the total number of possible triplets in so, which

is 4 in this example (and likewise for e, with 6 possible triplets in the current state).

We compare the frequency only for those triplets that appear in the state of o at time

t. In the table, only the triplet 101 is expressed more frequently in the organism o
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Figure 23: Example of the implementation of a Case I organism in our example.
Shown is an organism o of width wo = 4, coupled to an environment e with width
we = 6, where the rule of o at time step t is ro(t) = 30. (a) At each time step t, the
frequency of ordered triplets are compared in the state of the organism and that of
the environment, so and se respectively, and used to update ro(t)→ ro(t+ 1) (see text
for algorithm description). (b) Table of the calculated frequency of ordered triplets
in the state of the environment and in the state of the organism for time step t shown
in the left panel. (c) Update of ro from Rule 30 to Rule 62, based on the frequency of
triplets in the table (b).

than in the environment e. The interaction between o and e changes ro from Rule 30

at time-step t to Rule 62 at t+ 1, as shown in Fig. 23. The rule may change by more

than one bit in its binary representation in a single time step if multiple triplets meet

the criteria to change the organism’s update rule.
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We note that we do not expect the qualitative features of Case I CA reported here

to depend on the precise form of the state-dependent update rule as presented, so

long as the update of ro depends on the state and rule of o, and the state of e (that is,

o is self-referential and open – see Pavlic et al. (Pavlic et al. 2014) for an example of

non-open self-referencing CA that does not display UE). We explored some variants to

this rule-changing mechanism. None of our variants significantly changed the statistics

of the results, indicating that the qualitative features of the dynamics do not depend on

the exact (and somewhat parochial) details of the example presented herein. Instead,

we regard the important part to be the general feature of self-reference coupled to

openness to an environment that is driving the interesting features of the dynamics

observed, where we can focus on just one example in this study for computational

tractability in generating large ensemble statistics. The example implemented here was

chosen since it takes explicit advantage of the structure of ECA rules (by flipping bits

in the rule table) to provide a simple, open state-dependent mechanism for producing

interesting dynamics.

3.4.2.2 Case II CA

We introduce a second variant of CA, Case II, that is similarly composed of two

spatially segregated, fixed-width, 1-dimensional CA: an organism o and an environment

e. As with Case I, the environment e is an execution of an ECA, and is evolved

according to a fixed rule drawn from the set of 256 possible ECA rules. The key

difference between Case I and Case II CA is that for Case II, the the update rule

of the subsystem o depends only on the state of the external environment e and is

therefore independent of the current state or rule of o – that is, o is not self-referential
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in this example. Case II CA emulate systems where the rules for dynamical evolution

are modulated exclusively by the time evolution of an external system. We consider o

in this example to be more open to its environment than for Case I, since the rule

evolution of o depends only on e. The functional form of Case II rule evolution may

be written as ro(t+ 1) = f(se(t)), where ro is the rule of o and se is the state of the

environment (see Supplement 1.2 in Appendix B). For the example presented here,

we implement a map f that takes se(t) → ro(t) that is 1 : 1 from the state of e to

the binary representation of the rule of o (determined according to Wolfram’s binary

classification scheme). Therefore for the implementation of Case II in our example

the environment must be of width we = 8.

3.4.2.3 Case III CA

The final variant, Case III, is composed of a single, fixed-width, 1-dimensional CA

with periodic boundary conditions, which is identified as the organism o. Like with

Case II, the rule evolution of Case III is driven externally and does not depend on o.

However, here the external environment e is stochastic noise and not an ECA. The

subsystem o has a time-dependent rule where each bit in the rule table is flipped with

a probability µ (“mutation rate”) at each time step. In functional form, the subsystem

o updates its rule such that ro(t+ 1) = f(ro(t), ξ), where ro is the rule of o, and ξ is

a random number drawn from the interval [0, 1) (see Supplement 1.3 in Appendix

B). At each time step, for each bit in the rule table, a random number ξ is drawn,

and if ξ is above a threshold µ, that bit is flipped 0 ↔ 1 at that time step. This

implements a diffusive-random walk through ECA rule space. Since the rule of o at

time t+ 1, ro(t+ 1), depends on the rule at time t, ro(t), the dynamics of Case III
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Table 2: Table of cellular automata variants, and the functional form of the rule
evolution of o.

CA Variant Organism Rule Evolution Environment, e
Case I ro(t+ 1) = f(so(t), ro(t), se(t)) ECA, varied we
Case II ro(t+ 1) = f(se(t)) ECA, we = 8
Case III ro(t+ 1) = f(ro(t), ξ) Heat bath
ECA (Isolated) ro(t+ 1) = ro(t) None

CA are history-dependent in a similar manner to Case I (both rely on flipping bits in

ro(t), where Case I do so deterministically as a function of so and se, and Case III do

so stochastically). In this example, o is also more open to its environment than in

Case I since the organism’s rule does not depend on so, but it is less open than Case

II since the rule does depend on the previous organism rule used.

All three variants are summarized in Table 2 (see Supplement 1 in Appendix B),

where the functional dependencies of the rule evolution in each example are explicitly

compared. Since we restrict the rule space for Cases I–III to that of ECA rules only,

the trajectories of ECA with periodic boundary conditions provides a well-defined set

of isolated counterfactual trajectories with which to evaluate Definitions 3.4.1 and

3.4.2. For comparison to isolated systems, we evaluate all ECA of width wo, where wo

is the width of the “organism” subsystem o. We test the capacity for each of the three

cases presented to generate OEE against Definitions 3.4.1 and 3.4.2 in a statistically

rigorous manner, and compare the efficacy of the different mechanisms implemented

in each case.
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3.4.2.4 Experimental Methods

For Cases I - III, we evolve o with periodic boundary conditions (such that

interaction with the environment is only through the rule evolution). For Cases I

and II, e is also a CA with periodic boundary conditions. For Case I, where we must

also be specified, we consider systems with we = 1/2wo, wo, 3/2wo, 2wo and 5/2wo ,

where wo is the width o. For Case II, we = 8 for all simulations, since this permits

a 1:1 map from the possible states of e to the rule space of ECA. Results for Case

III are given for organism rule mutation rate µ = 0.5, such that each outcome bit in

the rule evolution has a 50% probability of flipping at every time step for ξ drawn

from the interval [0, 1) (a bit flips when µ > ξ). Other values of µ were explored, with

qualitatively similar results (see Supplement Fig. S4 in Appendix B).

The number of possible executions grows exponentially large with width wo,

limiting the computational tractability of statistically rigorous sampling. We therefore

explored small CA with wo = 3, 4, . . . 7 and sampled a representative subspace of

each (see Supplement 2 in Appendix B). For each system sampled, we measured the

recurrence times of the rule (t′r) and state (tr) trajectories for o. For Case III CA,

which are stochastic, all simulations eventually terminated as a random oscillation

between the all ‘0‘ state and the all ‘1‘ state. We therefore used the timescale of

reaching this oscillatory attractor as a proxy for the state recurrence time tr. In cases

where tr > tP or t′r > tP , where tP = 2wo for isolated ECA (Definition 3.4.1), and the

state trajectory was not produced by any ECA execution of width wo (Definition

3.4.2), the system is considered to exhibit OEE.

We measured the complexity of the resulting interactions by calculating relative

compressibility, C, and by the system’s sensitivity based upon Lyapunov exponents,
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k (Tisseur 2000) (see Supplement 8 in Appendix B). Large values of C indicate low

Kolmogorov-Chaitin complexity, meaning the output can be produced by a simple

(short) program. Large values of k indicate complex dynamics, with trajectories

that rapidly diverge for small perturbations such as occurs in deterministic chaos

(Tisseur 2000). These values are compared to those of ECA. Additionally, ECA rules

are often categorized in terms of four Wolfram complexity classes, I - IV (Wolfram

2002). Class I and II are considered simple because all initial patterns evolve quickly

into a stable or oscillating, homogeneous state. Class III and IV rules are viewed

as generating more complex dynamics. We use the complexity classes of the rules

utilized in time-dependent rule evolution to determine whether the complexity of

time-dependent CAs is a product of the ECA rules implemented, or if it is generated

through the mechanism of time-dependence.

3.5 Results

The vast majority of executions sampled from all three CA variants were innovative

by Definition 3.4.2, with > 99% of Case II and Case III CAs displaying INN. For Case

I CA, the percentage of INN cases increased as a function of both wo and we, ranging

from ∼ 30% for the smallest CA explored to > 99% for larger systems (see Supplement

5 in Appendix B). This is intuitive, since the majority of organisms with changing

updates rules should be expected to exhibit different state-trajectories than ECA. The

fact that > 99% of organisms are innovative in our examples may seem to indicate

that INN is trivial. However, we note that INN conceptually becomes more significant

when considering infinite systems (where UE is not defined) or large systems where

tP is not measurable (and thus UE cannot be calculated). We show below that INN
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Table 3: Percentage of sampled cases displaying OEE for each CA variant. Rows are
organism width and columns correspond to the three different CA variants and ECA
statistics.

wo ECA Case I (wo = we) Case II Case III
3 0 0.02 42.47 7.42
4 0 0.38 11.54 1.05
5 0 3.41 10.43 2.76
6 0 0.03 0.27 5.2× 10−3

7 0 1.06 0.7 4.7× 10−4

scales with recurrence time, and the amount of innovation is a good proxy for UE.

INN is therefore useful to the analysis of large or infinite systems where the methods

implemented here to detail candidate mechanisms are not directly applicable to test

UE. INN is also necessary to exclude trivial OEE. We also note that for computational

tractability we compare the time evolution of o only to ECA, but in practice one could

(and perhaps should) compare o to dynamical systems evolved according to any fixed

rule (e.g. regardless of neighborhood size, which for ECA is n = 3), in which case we

might expect the number of INN cases to decrease and therefore INN would be more

non-trivial even for small systems.

By contrast to cases exhibiting INN, OEE cases are much rarer, even for our highly

simplified examples, due to the fact that the number of UE cases is much smaller,

typically representing < 5% of all the sampled trajectories in the examples studied

here. We therefore focus discussion primarily on sampled executions meeting the

criteria for OEE, i.e. those that satisfied Definitions 3.4.1, before returning to how

INN might approximate UE.
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Figure 24: Examples of Case I CA exhibiting OEE. In each panel the environment e
is shown on the left, and organism o on the right. For each o, the Poincaré recurrence
time (tP ) for an isolated system is highlighted in blue, and the recurrence time of the
states of o, tr, is highlighted in red.

3.5.1 Open-Ended Evolution in CA variants.

The percentage of sampled cases for each CA variant that satisfy Definitions 3.4.1

for UE are shown in Table 3, where for purposes of more direct comparison Case

I CA statistics are shown only for wo = we. Case I CA statistics for other relative

values of wo and we are shown in Table 4. Examples of Case I CA exhibiting OEE

are shown in Fig. 24, demonstrating the innovative patterns that can emerge due to

time dependent rules. Box plots of the distribution of measured recurrence times for

each CA variant are shown in Fig. 25 and Fig. 26. All UE cases presented here are

also INN, and thus exhibit OEE. We therefore refer to UE and OEE interchangeably

(without explicitly referencing OEE as cases exhibiting UE and INN separately).
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To compare the capacity for OEE across the different CA variants tested, it is

useful to define a notion of scalability (Taylor et al. 2016). Here we define scalable

systems as ones where the number of observed OEE cases can increase without the

need to either (1) change the rule-updating mechanism of o or (2) significantly change

the statistics of sampled cases. By this definition, the two primary mechanisms for

increasing the number of OEE cases in a scalable manner are by changing wo, or

depending on the nature of the coupling between o and e, changing we (with the

constraint that the rule-updating mechanism cannot change).

As expected (by definition), isolated ECA do not exhibit any OEE cases and

the majority of ECA have recurrence times tr � tp. However, all three CA variants

with time-dependent rules do exhibit examples of OEE, but differ in the percentage

of sampled cases and their scalability. Case III exhibits the simplest dynamics,

where trajectories follow a diffusive random walk through rule space until the system

converges on a random oscillation between the all- ′0′ and all-′1′ states (where tr is

approximated by this convergence time). The frequency of state recurrence times tr

of the organism decreases exponentially (see Supplement Fig. S4 in Appendix B),

such that the o with the longest recurrence times are exponentially rare. Since so few

examples were found for organisms of size wo = 7, we also tested wo = 8 and found no

examples of OEE. In general, the exponential decline observed is steeper for increasing

wo. Observing more OEE cases therefore requires exponentially increasing the number

of sampled trajectories for increasing wo. The capacity for Case III CA to demonstrate

OEE is therefore not scalable with system size (violating condition 2) in our definition

above). An additional limitation of Case III CA is that their the long-term dynamics

are relatively simple once the system settles into the oscillatory attractor, thus the
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Table 4: Percentage of sampled cases displaying OEE for Case I, with varying
environment sizes.

wo
1
2
wo wo

3
2
wo 2wo

5
2
wo

3 0 0.02 6.52 10.81 28.14
4 0 0.38 2.28 2.94 9.65
5 0 3.41 7.04 7.5 8.64
6 0 0.03 2.15 2.64 5.82
7 0 1.06 2.95 4.39 5.34

majority of observations of Case III CA would not yield interesting dynamics (e.g. if

the observation time were much greater than the start time tobs � to).

For Case II, we also observed a steep decline in the number of OEE cases observed

for increasing wo (Table 3). This is reflected by a steady decrease in the mean of

the recurrence times for increasing wo, as shown in Fig. 26. We also tested a large

statistical sample of organisms of size wo ≥ 8 for Case II CA (not shown) and found

no examples of OEE cases. This is not wholly unexpected. For Case II with wo = 8,

the environment and organism are the same size (we = wo). Therefore e and o share

the same Poincaré time tP = 2wo . The subsystem e is a traditional ECA, therefore

the majority of e will exhibit recurrence times � tP (see e.g. trend in Fig. 26). Since

the rule of o is determined by a 1:1 map from the state of e, the rule recurrence time

of o will also be much less than the Poincaré time, such that t′r � tP . It is the rule

evolution that drives novelty in the state evolution, we therefore also see that the state

recurrence time is similarly limited such that tr � tP also holds. To get around this

limitation one could increase the size of the environment such that we > wo. However,

since the rule for o is a 1:1 map from the state of e, this would require changing

the updating rule scheme for o. That is, the organism o would have to change how

it evolves in time as a function of its environment (violating 1) in our definition of

scalability above. By our definition of scalability, this is not a scalable mechanism for
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generating OEE since o must change the function for its updating rule and therefore

would represent a different o.

We can compare the statistics of sampled OEE cases for Case I where wo = we

to those of Case II and Case III, as in Table 3. While Case II and Case III CA see

a steep drop-off in the percentage of sampled cases exhibiting OEE with increasing

organism size wo, the Case I CA exhibit a flatter trend. We determined whether this

trend holds for varying we by also analyzing statistics for Case I CA where we = 1
2
wo,

wo, 3
2
wo, 2wo and 5

2
wo. The statistics of OEE cases sampled are shown in Table 4 and

box plots of the distribution of recurrence times are shown in Fig. 25. For each fixed

environment size explored (we, columns in Table 4), we observe that the statistics do

not decrease dramatically as the size of the organism increases (increasing wo). For

fixed organism size (wo, rows in Table 4), we observe that the number of OEE cases

increases with increasing environment size. These trends are also reflected in the

means of the distributions shown in Fig. 25. Case I represents a scalable mechanism

for OEE as o can be coupled to larger environments and will produce more OEE cases.

Case I and Case II can be contrasted to gain insights into scalability. The key

difference between the two variants is that for Case II the update rule of o is a 1:1

map with the state of e, whereas for Case I the map is self-referencing and is many :1.

Case I therefore uses a coarse-grained representation of the environment for updating

the rule of o and because the dynamics are self-referential, the same pattern in the

environment can lead to different rule transitions in o, depending on the previous state

and rule of o. Thus, although both Case I and Case II exhibit trends of increasing

OEE as we is increased relative to wo, the degree to which the size of the environment

can impact the time evolution of the organism is different for the two cases. For a

comparable size environment in Case I and Case II CA, the pattern relevant to the
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update of o may have a longer recurrence time than the actual states of e for Case

I CA (due to the coarse-graining), whereas for Case II CA this pattern is strictly

limited by the environment’s recurrence time. Additionally, due to the coarse-graining

of the environment in Case I CA, the update rule of o is not dependent on the size of

e: the same exact function for updating the rule of o may be applied independent of

the environment size. This is not true for Case II, where the function for updating

the rule of o must change in order to accommodate larger environments.

3.5.2 INN as a proxy for UE

We have presented examples of small dynamical systems to perform rigorous

statistical testing of INN and UE to evaluate candidate mechanisms for generating

OEE. An important question is how the results might apply to larger dynamical

systems that could depend on different mechanisms than those testable in simple,

discrete systems. While an approximation of INN is in principle measurable for

large or infinite dynamical systems, UE is not measurable or not well-defined. We

therefore aimed to determine if INN can be utilized as a proxy for UE. To do so, we

defined a new parameter nr, which quantifies the number of times that an organism

changed its update rule between two successive time steps in its dynamical evolution.

We normalized to determine the relative innovation of an organism I = nr

2w
to

generate a standardized measure for comparing across example organisms in our study.

Statistically representative results for Case I and Case II organisms are shown in Fig.

27, where I is plotted against the organism’s state recurrence time (Case III results

are not included since the recurrence time is not well-defined). For both Case I and
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Figure 25: Distribution of recurrence times tr for the state trajectory of o for Case
I CA. From top to bottom are distributions for we = 1wo, wo, 3wo, 2wo and 5wo,
respectively. In all panels the black horizontal line indicates where tr/tP = 1 (shown
on a log scale). Sampled trajectories displaying UE occur for tr/tP > 1.
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Figure 26: Distribution of recurrence times tr for the state trajectory of o for ECA
(top left), Case II (top right), and Case III CA (bottom). In all panels the black
horizontal line indicates where tr/tP = 1 (shown on a log scale). Sampled trajectories
displaying UE occur for tr/tP > 1.
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Case II a clear trend is apparent where innovation is positively (and nearly linearly)

correlated with recurrence time. For a given recurrence time, OEE cases (highlighted

in red) are the most innovative. Comparing the two panels, it is evident that Case I

CA exhibit higher innovation and therefore achieve longer recurrence times than Case

II CA. From these results we can conclude that a statistical measure sampling the

number of observed rule transitions could be used as a proxy for UE, which we leave

as a subject for future work.

Figure 27: Relative innovation as a function of recurrence times for Case I (left) and
Case II (right) CA. Highlighted in red are cases exhibiting OEE.

3.5.3 On-going Generation of Complexity in Case I

We also considered the complexity of Case I CA, relative to isolated ECA, as a

further test of their scalability and potential to generate complex and novel dynamics.

We characterized the complexity of Case I using two standard complexity measures,

compressibility (C) and Lyapunov exponent (k). The trends demonstrate that in

general C decreases with increasing organisms width wo, but increases with increasing
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Figure 28: Heat maps of compression C (left) and Lyapunov exponent values k (right)
for all state trajectories of sampled o for Case I CA. From top to bottom wo = 3, 4, 5, 6
and 7, with distributions shown for we = 1/2wo, wo, 3/2wo, 2wo and 5/2wo (from top
to bottom in each panel, respectively) for each wo. Distributions are normalized to
the total size of sampled trajectories for each wo and we (see statistics in Table S3).

environment size we (left panel, Fig. 28), indicative of increasing complexity with

organism width wo. Similar trends are observed for the Lyapunov exponent, as shown

in the right panel of Fig. 28, where it is evident that increasing wo or we leads to an

increasing number of cases with higher Lyapunov exponent k. OEE cases tend to have

the highest k values (see Supplement Fig. S12 in Appendix B). As C is normalized

relative to ECA (see Supplement 8 in Appendix B), we conclude that Case I CA are

generally more complex than ECA evolved according to fixed dynamical rules, and

this is especially true for OEE cases.

We also analyzed the ECA rules implemented in sampled Case I trajectories

relative to the Wolfram Rule complexity classes. We find that Case I CA, on average,

implement more Class I and II rules than Class III or IV, as shown in the frequency
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Figure 29: Rank ordered frequency distributions of rules implemented in the attrac-
tor dynamics of o for all sampled Case I CA (top) and OEE cases only (bottom).
Highlighted are Wolfram Class III (light blue) and IV rules (dark blue).

distribution of Fig. 29 for Case I CA with wo = we (see Supplement Fig. 5 and 6 in

Appendix B). Thus, we can conclude that the complexity generated by Case I CA is

intrinsic to the state-dependent mechanism, and is not attributable to Class III and

Class IV ECA rules dominating the rule evolution of o.

3.6 Discussion

We have provided formal definitions of unbounded evolution (UE) and innovation

(INN) that can be evaluated in any finite dynamical system, provided it can be

decomposed into two interacting subsystems o and e. Systems satisfying both UE and

INN we expect to minimally represent mechanisms capable OEE. Testing the criteria

for UE and INN against three different CA models with time-dependent rules reveals
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what we believe to be quite general mechanisms applicable to a broad class of OEE

systems.

3.6.1 Mechanisms for OEE

Our analysis indicates that there are potentially many time-dependent mechanisms

that can produce OEE in a subsystem o embedded within a larger dynamical system,

but that some may be more interesting than others. An externally driven time-

dependence for the rules of o (Case II), while producing the highest statistics of

OEE cases sampled for small o, does not provide a scalable mechanism for producing

OEE with increasing system size, unless the structure of o itself is fundamentally

altered (such that the rule space changes). Stochastically driven rule evolution displays

rich transient dynamics, but ultimately subsystems converge on dynamics with low

complexity (Case III). An alternative is to introduce stochasticity to the states, rather

than the rules, which would avert this issue. This has the drawback that the mechanism

for OEE is then not as clearly mappable to biological processes (or other mechanisms

internal to the system), where the genotype (rules) evolve due to random mutations

that then dictate the phenotype (states).

We regard Case I as the most interesting mechanism explored herein for generating

conditions favoring OEE: it is scalable and the dynamics generated are novel. We note

that the state-dependent mechanism represents a departure from more traditional

approaches to modeling dynamical systems, e.g. as occurs in the physical sciences,

where the dynamical rule is usually assumed to be fixed. In particular, it represents an

explicit form of top-down causation, often regarded as a key mechanism in emergence

(Walker and Davies 2013 and Ellis 2011) that could also play an important role in

91



driving major evolutionary transitions (Walker, Cisneros, and Davies 2012). The

state-dependent mechanism is also consistent with an important hallmark of biology –

that biological systems appear to implement self-referential dynamics such that the

“laws” in biology are a function of the states (Walker and Davies 2013, Goldenfeld and

Woese 2011, and Hofstadter 1979), a feature that also appears to be characteristic

of the evolution of language (Levary et al. 2012 and Naoto Kataoka and Kunihiko

Kaneko 2000).

3.6.2 Applicability to Other Dynamical Systems

We have independently explored openness to an environment, stochasticity and

state-dependent dynamics as we expect these to be general and apply to a wide-range

of dynamical systems that might similarly display OEE by satisfying Definitions 3.4.1

and 3.4.2. An important feature of these definitions is that UE and INN must be driven

by extrinsic factors (an environment) (T. Taylor 2004), although the mechanisms

driving the dynamics characteristic of OEE should be intrinsic to the subsystem of

interest. OEE can therefore only be a property of a subsystem. We have not explored

the case of feedback from o to e that might drive further open-ended dynamics, as

characteristic of the biosphere, for example in niche construction (Laubichler and

Renn 2015), but expect even richer dynamics to be observed in such cases. For large

or infinite dynamical systems INN is an effective proxy for UE, and we expect highly

innovative systems to be the most likely candidates for open-ended evolution.
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3.7 Conclusions

Our results demonstrate that OEE is a general property of dynamical systems

with time-dependent rules. This represents a radical departure from more traditional

approaches to dynamics where the “laws” remain fixed. Our results suggest that

uncovering the principles governing open-ended evolution and innovation in biological

and technological systems may require removing the segregation of states and fixed

dynamic laws characteristic of the physical sciences for the last 300 years. In particular,

state-dependent dynamics have been shown to out-perform other candidate mechanisms

in terms of scalability, suggestive of paths forward for understanding OEE. Our analysis

connects all four hallmarks of OEE and provides a mechanism for producing OEE that

is consistent with the self-referential nature of living systems. By casting the formalism

of OEE within the broader context of dynamical systems theory, the proof-of-principle

approach presented opens up the possibility of finding unifying principles of OEE that

encompass both biological and artificial systems.
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Chapter 4

PHYSICAL UNIVERSALITY, STATE-DEPENDENT DYNAMICAL LAWS AND

OPEN-ENDED NOVELTY

4.1 Abstract

A major conceptual step forward in understanding the logical architecture of

living systems was advanced by von Neumann with his universal constructor, a

physical device capable of self-reproduction. A necessary condition for a universal

constructor to exist is that the laws of physics permit physical universality, such that

any transformation (consistent with the laws of physics and availability of resources)

can be caused to occur. While physical universality has been demonstrated in simple

cellular automata models, so far these have not displayed a requisite feature of life –

namely open-ended evolution – the explanation of which was also a prime motivator in

von Neumann’s formulation of a universal constructor. Current examples of physical

universality rely on reversible dynamical laws, whereas it is well-known that living

processes are dissipative. Here we show that physical universality and open-ended

dynamics should both be possible in irreversible dynamical systems if one entertains

the possibility of state-dependent laws. We demonstrate with simple toy models

how the accessibility of state space can yield open-ended trajectories, defined as

trajectories that do not repeat within the expected Poincaré recurrence time and

are not reproducible by an isolated system. We discuss implications for physical
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universality, or an approximation to it, as a foundational framework for developing a

physics for life11.

4.2 Public Summary

The model from the last section could be extended to explore other things. In

particular, we wanted to see how reversible rules affect the interacting CA system.

Most classic laws of physics are reversible and if biological evolution is a non-reversible

process, how do the laws of physics contribute to open-ended-non-repeating-and-non-

reversible evolution? We answered this question in part by using only reversible ECA

rules in our previous model. The reversibility of ECA rules is a different level of

reversibility of the non-repeating system. This is our analogy to the reversibility of

physics on the micro-level (atoms and particles and such) and the non-reversibility

of biology. The reversible ECA rules represent how the laws of physics themselves

are reverible. Biology, which is instantiated in these laws of physics, is a dissipative,

non-reversible process. So how do the laws of physics contribute to open-ended

evolution and this irreversibility? Is it possible to bridge this conceptual gap between

these two types of reversibilities?

It turns out that reversible ECA rules are surprisingly good at perpetuating

open-ended organisms. When organism and environment CAs are restricted to only

using reversible rules, they are much better at contributing to open-endedness and

non-reversibility on the level of the organism12. This is likely because reversible rules

11This chapter is adapted from it its original publication (A. M. Adams et al. 2017)

12Of course the organism will repeat eventually, as does the entire system, but it the organism
does not repeat within its Poincaré recurrence time. This is rooted in our original definition of
open-ended evolution (A. Adams et al. 2017)
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do not lose any information in the states, meaning the states under a reversible rule

will never go to all 0’s or all 1’s. Reversible rules maintain the same complexity in the

states over time, instead of decreasing the complexity, like non-reversible ECA rules.

So if an initial state has a high amount of complexity, then it is likely to contribute to

open-endedness in an organism that changes its reversible rules over time.

The biggest insight from this project is understanding how changing laws grants

access to new states. We consider biology as something able to change the number

of states it has access to over time, rather than evolving through a pre-defined state

space. This model is capable of doing the same thing. As an organism gets a new

rule, it changes which states it is able to reach in the next few time steps. Reversible

rules ensure that the number of accessible states doesn’t decrease over time. From

this result, we were able to define local universality and provide a mechanism capable

of maintaining it.

4.3 Introduction

Schrödinger’s seminal 1943 lectures titled “What is life?” (Schrödinger, E. “What

is life?” 1944) laid out a compelling challenge for physicists to explain the properties

of living matter from what we know of physics. Based on logic and consideration

of constraints imposed by physical laws (e.g. the second law of thermodynamics)

Schrödinger was able to accurately predict that the genetic material should be “an

aperiodic crystal” i.e. a stable molecule with a non-repeating pattern, which was only

later discovered to be DNA. He conceded towards the end of his book that “living

matter while not eluding the ‘laws of physics’ as established up to date, is likely to
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involve ‘other laws of physics’ hitherto unknown”13. The challenge, as Schrödinger saw

it, was to understand the function of the genetic material in purely physical terms:

that is, how matter can both direct the transformations necessary for development of

an organism and also how it can reliably transmit the capacity to perform those same

transformations to future states of an organism (exhibiting stability) and its progeny

(through self-reproduction).

Around the same time, von Neumann set out to determine the architecture of

natural and artificial self-reproducing automata based again on logic combined with

consideration of simple physical constraints (such as the finiteness of available resources

and available time) (Von Neumann 1966). He showed that self-reproduction is logically

possible for a constructor, which he defined as a machine capable of being programed

to perform physical transformations, including transforming available resources to

produce a copy of itself. To guarantee that self-reproduction is possible, von Neumann

hypothesized the existence of a universal constructor : a physical system capable

of being programmed to perform any possible physical transformation. If universal

construction is possible under a given set of dynamical laws, self-reproduction is

necessarily also be possible (being just one class of physical transformations). One

motivation for taking this conceptual leap is to explain how biological processes could

be open-ended: life on Earth is characterized by continual adaptation and innovation,

giving rise to an apparent open-ended increase in the complexity of the biosphere over

its several billion year history. A self-reproducing constructor is limited in its ability to

reproduce by two important physical constraints14: the physical transformations it can

13Arriving at this conclusion was in fact a motivator for Schrödinger to write the book in the first
place.

14These are in addition to more obvious universal limitations including the availability of resources
and the laws of physics.
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perform and the number of programs containing its specification 15. For a universal

constructor only the latter is a limiting factor, since it can perform any physical

transformation (viz reading any possible program). Therefore, at least in principle,

a universal constructor should have the maximal capacity of any physical device

for open-ended evolution, with important implications for understanding biological

evolution (Ruiz-Mirazo, Umerez, and Moreno 2008). By focusing on the logical

structure of a such a system, von Neumann was able to solve part of the problem

posed by Schrödinger. But he stopped short of solving the harder problem of how

such a device could follow from physical principles (this harder problem was recently

advanced by Marletto in (Marletto 2015) within the formalism of Constructor theory).

We do not know whether a universal constructor is itself physically possible in

our universe (The Beginning of Infinitiy: Explanations That Transform the World

2011), or if such an entity is necessary for open-ended evolution in a dynamical system

(only that it is sufficient). One necessary condition for a universal constructor to be

possible is physical universality, defined as the property that any possible physical

transformation can be performed on a given system, provided sufficient resources are

available to do so and subject to the requirement the transformation(s) do(es) not

violate any laws of physics (e.g. one could not build a perpetual motion machine even

with a universal constructor). If physical universality can be cast as a principle of

nature it could provide a promising candidate framework for arriving at the ’other

laws’ Schrödinger hoped might one day be uncovered. It would also likely provide new

insights into the structure of physical reality, e.g. as is being pursued in Constructor

theory, which takes as its foundation describing what transformations are possible and

15This includes specifications of constructors close enough to the original to permit semantic
closure under mutation, see e.g. Clark2017 for discussion.
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why (Deutsch 2013). The key distinction between physical universality and the related,

more widely discussed concept of computational universality, is that for the former

computation (more aptly construction) is performed directly on the physical system,

rather than emergent patterns (such that transformations are on states). A formal

definition of physical universality was proposed by Janzig, where a dynamical system

(as described by a Hamiltonian or cellular automaton) is physically universal if any

transformation whatsoever can be implemented on any finite region (Janzing 2010),

given sufficient resources to do so. So far three examples of physical universality have

been proven in cellular automata (CA), which satisfy Janzing’s definition: two classical

(Schaeffer 2015 and Salo and Törmä 2017) and one quantum (Schaeffer 2015). But

the proof of physically universality in each of these cases involves evolving the system

to an inactive state, implying that the dynamics cannot be open-ended. Whether

or not physical universality permits open-ended dynamics (such that a universal

constructor, if instantiated, could exhibit open-ended evolution) remains an important

open problem.

In this paper we focus on the more fundamental concept of physical universality, as

a necessary prerequisite condition on the physics underlying von Neumann’s universal

constructor architecture (UCA). We address whether a notion of physical universality

exists that is compatible with open-ended evolution, and what circumstances a system

could be both physically universal and open-ended. Although our work is motivated

by evolution in the biological sense, the term “evolution” intended here is broader and

refers to the capacity for dynamical systems to change in time: it therefore applies

both to prebiotic systems and the subsequent architectures of physical systems that

have supported various stages of biological evolution. That is, we aim to address the

physical architectures that permit open-ended novelty to be possible. To do so, we
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investigate a new variant of cellular automata, introduced by us in (A. Adams et al.

2017 and Pavlic et al. 2014) in which the dynamics are permitted to be state-dependent.

We show how state-dependent dynamics can enable both physical universality and

open-ended evolution at the same time, by increasing the number of transformations

possible in a deterministic system. In what follows, we first review the relevant

properties of known physically universal CA, and explain the key differences in the

model proposed herein. We then implement simple examples with state-dependent

architecture to demonstrate properties of the underlying state-transition diagram

which could enable physical universality and open-ended evolution. A limitation of

Janzig’s definition as applied to biosystems is that it necessitates dynamical laws that

are reversible (such that it is possible to run them backwards in time), otherwise

information in the initial state would be lost and could not be recovered by running

the dynamics in reverse (that is, not every state would be accessible to the dynamics).

We introduce a relaxed definition of physical universality, local physical universality,

that applies to subsets of transformations, rather than all possible transformations.

We show reversibility is necessary for physical universality (or its approximation) only

if the dynamical laws do not evolve in time, permitting the possibility of physical

universality in irreversible dynamical systems. Since dissipation is ubiquitous in

biology, and effective descriptions of living systems are in-general state-dependent,

our model provides a more appropriate starting point for understanding physical

universality as it might underlie living processes, as we discuss in the conclusion.
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4.4 Physical Universality and Local Physical Universality

CA are widely studied due to their simplicity and their ability to capture two

key features of many real physical systems: they evolve according to a local, uniform

deterministic rule, and can exhibit rich emergent behavior even from very simple

rules (see e.g. (Israeli and Goldenfeld 2006; Hooft 2014; Wolfram 2002; Margolus

1984; Toffoli 1984; C. Langton 1990; Crutchfield 1994; Borriello and Walker 2017).16.

For example, several CA are known to include patterns supporting computational

universality (e.g. are Turing machines). Two well-known examples are Conway’s Game

of Life (Conway 1970) and ECA rule 110 (Cook 2004). In these examples, an input

tape (the CA’s initial state) must be formatted and typically consists of emergent

spatiotemporal patterns such as gliders, particles, spaceships etc.. A limitation of

this kind of universality is that it requires a programmer, or agent, to decide what

patterns are doing the computation and how they will do it. Janzing’s introduction

of physical universality removes the agency in specifying computational degrees of

freedom by introducing a concept of computation that can be performed arbitrarily

on all patterns and not just the carefully constructed ones. A CA is physically

universal if it can implement any transformation whatsoever on any finite region

of the CA’s state in finite time. Of note, von Neumann’s original CA model of a

universal constructor was not physically universal, but instead operated on patterns

as in models of computational universality (first implemented by Nobili and Pesavento

(Nobili and Pesavento 1994)).

16The physical laws governing our universe may not be completely deterministic (for example,
under collapse interpretations of quantum theory) nor is reality necessarily discrete. However, by
demonstrating a proof-of-principle for the more conservative and conceptually easier case of discrete
deterministic systems it can be expected that at least some aspects will be sufficiently general to
apply to physical laws as they might describe our real universe, under relaxed assumptions.
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Rule 110 Rule 240

Figure 30: Examples of state-transition diagrams for w = 6 ECA with periodic
boundary conditions. Shown are the rule table and state-transition diagram for ECA
rules 110 (left) and 240 (right). Garden of Eden states are highlighted in red. Rule
240 has no garden of Eden states and is logically reversible. Each loop in the state
transition diagram of rule 240 represents a set Γ of configurations that is locally
physically universal (see text), whereas this property does not hold for rule 110.

Janzing’s interest in developing a framework for physical universality was to

provide the foundations for a physical model of control where the boundary between a

controller and the physical system it controls can be shifted, and there is no difference

in the physics of the controlling and controlled systems. His definition specifies two

regions of the CA: a finite region (the controlled system) and the complement of the

region (the surrounding cells, forming a ’controller’, which is a potentially infinite

resource). With this setup, physical universality is possible when any transformation

of the controlled region can be implemented through the autonomous evolution of

the system after the surrounding controller has been initialized in an appropriate

way. (Roughly, the controlled and controller regions could be considered as data and

program, respectively). More formally (adopting the slightly modified but equivalent
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definition from Schaeffer 2015, and following his notation), we can define a CA where

each cell has a state in the finite set Σ, with cells positioned at integer points Zd

in d dimensions (in this work we focus on explicit examples of Elementary Cellular

Automata with d = 1, but consider the most general definition here). Defining Ω := Zd

as the set of all cells, for a set X ⊆ Ω the compliment of X in Ω is X̄ := Ω \ X

(the set of cells that do not belong to X in Ω). A configuration of a subset of cells

X ⊆ Ω is a map assigning each cell in X a state in Σ, such that ΣX denotes the set

of all possible configurations of X. The transformation of a configuration γ ∈ ΣΩ

into another configuration γ′ ∈ ΣΩ after one time-step is denoted γ → γ′. With this

notation, physical universality is defined as:

Definition 4.4.1. Physical Universality: Let X, Y ⊆ Ω be finite sets. Let f be an

arbitrary function that maps ΣX → ΣY , then a configuration φ ∈ ΣX̄ implements the

transformation f in time T if for any configuration x ∈ ΣX there exists a configuration

ψ ∈ ΣȲ such that x⊕ φT→ψ ⊕ f(x), where ⊕ is the direct sum.

A cellular automaton is physically universal if for any finite input region X ⊆ Ω,

output region Y ⊆ Ω, and transformation f , there exists a configuration φ of X̄

such that φ implements f in finite time. In other words, if a configuration φ of the

compliment region X̄ (the controller) can implement any transformation f on an input

x in the region of interest, evolving it in a finite number T of steps to a configuration

f(x) ∈ Y , then the CA is physically universal.

Physical universality as defined by Janzing places strict constraints on the properties

of CA (or the laws of physics in the real universe). One troublesome aspect is

the controller, which cannot be an emergent property of the dynamics in Janzig’s

formulation. Instead the controller is merely defined away as ’the rest of the universe’

and can, in essence, be reduce to the laws of physics operating on an appropriate
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initial state, which is not explanatory of life (see e.g. Sara Imari Walker 2015 for

related discussion). Assuming fixed dynamical laws, one necessary (but not sufficient)

condition for physical universality is reversible laws. In CA reversibility corresponds

to rules that yield bijective state-transition maps from γ → γ′: every state maps

to exactly one other state, such that there are no “Garden of Eden” states (states

that can only be an initial state). If this were not so, the CA could evolve to a

configuration where no output is possible (halting the computation). Below we

focus on Elementary Cellular Automata (ECA, described in Section 4.7) as the rule

space for our state-dependent CA. Two examples of the state-transition diagrams

for an irreversible and a reversible ECA rule for rules 110 and 240 (using Wolfram’s

numbering scheme in Wolfram 2002), respectively, are shown in Fig. 30 for six-bit CA

(|Ω| = 6) with periodic boundaries 17. Computationally universal CA, such as rule

110, are often not reversible (an exception is Margolus’s CA model of the billiard ball

model of computation from Fredkin and Toffoli in Margolus 1984). Thus, even though

a computationally universal CA may be able to compute any possible computable

function (is computationally universal) it may not be capable of producing any possible

output of cells (required for physical universality).Universal computation and universal

construction are discussed by Deutsch as two separate possible principles of nature

(the computability and constructibility of nature, respectively), both of which remain

to be proven, see (The Beginning of Infinitiy: Explanations That Transform the World

2011.

Since the laws of physics are normally microscopically reversible, physical uni-

versality is at first pass compatible with known physics. However, in our universe

17It should be noted that for arbitrary CA specified on a Moore neighborhood (each cell is updated
based on its current state and the state of its nearest neighbors) whether a CA is reversible (Myhill
1963).
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there are cases where reversibility doesn’t precisely hold, for example in CP viola-

tion in weak interactions. More relevant to life is the fact that, in microscopic and

macroscopic physical systems, the effective laws of physics are very often irreversible,

on account of the fact that they are dissipative. Irreversibility is likely essential to

emergent properties in biological systems, for example, it is a requirement of formal

definitions of causal emergence (Hoel 2017). Since the emergence of an arrow of time

is essential to life, the question arises: can a principle of physical universality be made

compatible with a universe where irreversibility exists (if not microscopically at least

as an emergent property)?

The requirement of physical universality that every transformation be possible in

a finite region is too stringent for us to make progress. However, we can consider a

weaker situation in which there exist subset(s) of configurations with the property

of inter-accessibility (that any transformation is possible within a given subset). We

introduce the concept of local physical universality for this weaker case, using the

following definition, directly adopted from the definition of physical universality:

Definition 4.4.2. Local Physical Universality: Let X, Y ⊆ Ω be finite sets.

Let g be an arbitrary function that maps Γ → Γ′, where Γ ⊂ ΣX and Γ′ ⊂ ΣY .

Then, a configuration φ ∈ ΣX̄ implements the transformation g in time T if for any

configuration x ∈ Γ there exists a configuration ψ ∈ ΣȲ such that x⊕ φT→ψ ⊕ g(x).

A cellular automaton is locally physically universal if for any finite input region

X ⊆ Ω, output region Y ⊆ Ω and transformation g, there exists a configuration of φ

on X̄ such that φ implements g in finite time.

That is, a system is locally physically universal if for any finite region X ⊂ Σ all

transformations are possible within a given subset of configurations Γ. Locality here is

meant to indicate the connectivity of the underlying state-transition map: in a locally
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physically universal cellular automata the state-transition map will contain connected

components where there exists a directed path between all ordered pairs of states,

defining a local neighborhood in configuration space where one can traverse a path

from any state to any other state. In this sense the closed loops in the state-transition

diagram of rule 240 in Fig. 30 are locally physically universal. All reversible fixed

dynamical laws exhibit local physical universality. In the limit Γ→ 0, local physical

universality is trivial (arbitrarily small subsets of states can be locally physically

universal). In the limit Γ→ ΣX local physical universality converges to a principle

of physical universality that holds over all transformations among all configurations.

The utility of this definition is that it permits discussion of varying degrees of physical

universality, and the possibility for the universality of a system to vary (e.g. as has

been the case in the transition from prebiotic to biological evolution).

Schaeffer was the first to introduce an example of a physically universal CA

satisfying Definition ??. Schaeffer’s CA has a local update rule that operates on a

2-by-2 block (Margolus neighborhood) in d = 2. The CA behaves like a diffusive

gas: time evolution of a bounded region results in particles diffusing outside of that

region, such that a finite region will converge to an inactive state for long times.

The advantage of this is that it permits all information about what happens within

a box to be intercepted as particles diffuse outside it, allowing reconstruction of

what happens inside the box. Schaeffer leveraged this property to prove any possible

transformation of particles inside a box can be programed (physical universality is

possible) by suitably preparing the state of the system outside the box. Subsequently,

Schaeffer demonstrated a quantum version (Schaeffer 2015) and Salo and Törma

(Salo and Törmä 2017) demonstrated a one-dimensional version. Proof of physical

universality for these examples follows similar logic (see Schaeffer 2015 for discussion)
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and relies on tracking states backwards in time from dynamics that converge to an

inactive state. Since the physically universal region in these CA terminates in a

quiescent state, the physically universal region cannot exhibit another key property of

life: open-ended dynamics.

4.5 State-dependent dynamical systems

We aim to show that physical universality is possible in state-dependent CA,

and that for these systems open-ended evolution is also possible. State-dependent

dynamical systems are ones where update rules are not fixed as a function of time,

but rather change as a function of the current state of the system (for example, in

biological systems when the level of gene expression in turn dictates the turning on

and off of genes), such that laws and states co-evolve (Naoto Kataoka and Kunihiko

Kaneko 2000, Kataoka and Kunihiko 2001, and Pavlic et al. 2014). State-dependent

dynamics are frequently discussed as a hallmark feature of life (Hofstadter 1979

and Davies and Walker 2016), and provide one possible conceptual framework for

understanding emergent properties in living systems in terms of physical principles

(Goldenfeld and Woese 2011). In a state-dependent dynamical system, information

encoded in the states determines what transformations can occur (Walker and Davies

2013). State-dependent dynamical systems therefore provide an intriguing framework

for understanding physical universality in the case where some transformations are

enabled by the particular information-processing architecture of physical systems.

In Adams et al. we showed that the co-evolution of laws and states permits

greater range in the dynamical trajectories accessible to a system than what is possible

with a fixed dynamical rule (A. Adams et al. 2017). The number of paths through
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configuration space accessible to a system increases, since information encoded in

the states enables transitions between different trajectories allowed by fixed dynamic

laws (e.g. between the disconnected components in Fig. 30)(Pavlic et al. 2014). The

minimal requirement for physical universality is that all states are a possible output of

the dynamics, that is that the number of possible outputs is equivalent to the number

of possible inputs of the dynamics, yielding the requirement of a bijective map for

fixed rules. Because many different rules can govern transitions in a state-dependent

system, the requirement is relaxed to dynamics that are surjective. This relaxed

condition makes it possible, at least in principle, for a system with state-dependent

rules to exhibit physical universality, even if its dynamics are irreversible (a surjective

map is in general not reversible since it can be many-to-one or many-to-many or

one-to-many).

We postulate physical universality is possible with state-dependent rules and

that it can occur even in cases with irreversibility, so long as the state-transition

diagram is surjective. To explore this we adapt a state-dependent cellular automaton

introduced by us in (A. Adams et al. 2017) and show examples of systems that are

locally physically universal, excluding states that contain no information (all-’0’ and

all-’1’ states). Our original model included two interacting CA: an “organism CA” and

“environment CA”. To bring this abstract model in closer contact with the structure of

a physical device necessary to implement such dynamics, we here recast the organism

CA and environment CA as the system to be controlled and a resource (program),

respectively. Our formulation does not map directly to the universal constructor

architecture (UCA) proposed by von Neumann, as we are focused on the related but

distinct problem of physical universality and, as noted in the introduction, do not
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address the problem of biological evolution in our model (instead focusing on the

prerequisite conditions for physical universality).

In von Neumann’s formulation, self-reproduction of a constructor requires a physical

device to store a program, which specifies the instructions for the assembly of a new

copy of the constructor. Since no physical device can store the infinite amount

of information necessary to specify a constructor’s progeny, and all its subsequent

descendants ad infinitum (pending available resources) a self-reproducing constructor

must necessarily carry a control system – termed a supervisory unit – telling the

constructor when to produce a copy of its program (or more precisely, when to assemble

a duplicate of the physical system storing the program) versus when to read it. That is,

the supervisory unit must decide when the instruction set is to be treated as software

to be read and when it is merely hardware to be blindly copied. Drawing an analogy

with this architecture, the controller (analogous to the rule of the supervisory unit)

in our model is the function that specifies the interaction between the system and

resource, the system plays the role of the constructor and the resource plays the role

of the program or tape.

A schematic of our system is shown in Fig. 44a and a CA implementation in

Fig. 44b. Both the system and resource implement ECA rules and may therefore

be considered to implement the same ’physics’, e.g. the same set of local rules. The

distinction between the two emerges due to their interaction: the system’s update

rule is state-dependent and changes in time as a function of the system’s state and the

state of the resource CA (under direction of the meta-rule). As a concrete example

of when such a setup might occur, one can consider a chemical reaction where it

is desired for a particular chemical species to be transformed into another. The

controller in this case could be catalyst (an example of a constructor discussed in
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Deutsch 2013 and the resource is other substrates necessary for the reaction). Different

transformations can be performed on the same substrate, if in contact with different

catalysts and/or different resources. We additionally note the architecture we impose

is consistent with other physical models of information dynamics: for example, modern

incarnations of Maxwell’s demon are structured such that a device is coupled to an

external tape or program (see e.g. Mandal and Jarzynski 2012). In these models, the

tape and device are not in general constrained to obey the same dynamical laws, but

the thermodynamics are well defined within the context of the model (see Boyd and

Crutchfield 2016 for example where demon and system obey the same dynamics). Here

we do not address the thermodynamics of our devices, but within the rule structure

of CA we do enforce that system and resource obey the same set of physical laws.

Janzing required that the controller and controlled system have the same physics,

and that the boundary between the two systems be arbitrary. Physical universality can

be demonstrated for a finite region (the controlled system) by suitably programming

the initial state of its complement. The structure of our CA is different in two key

aspects. The first is that the role of the controller is played by a ’metarule’ that

dictates the interaction between the two interacting subsystem CAs. (Note that

this metarule should be constrained to obey the same laws of physics as the CA, to

conform to Janzing’s definition of physical universality.) We additionally define hard

boundaries around the system and the resource, noting that boundaries are often

discussed a fundamental to life (see e.g. Friston 2013). Boundaries are implemented

by isolating the states of each CA with periodic boundary conditions. However,

as in Janzing’s case the size of the region to be programmed (the system) can be

specified arbitrarily, and the only requirement is that the region be specified prior

to determining if it is physically universal. Our motivation for implementing the
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hard boundary is to focus on the role of state-dependent rules in enabling physical

universality and open-ended evolution: we construct our system such that the only

external interaction is through the controller’s regulation of the update rule. The

controller does not control the boundary of the states in our case. Because our system

has closed boundary conditions, configurations containing no information – the all-‘0’

or all-‘1’ states – are cut-off from the rest of configuration space: once a system lands

in one of these states it cannot escape as there is no ECA rule that can transform

states outside the set of two homogeneous states. Therefore it is not possible for our

system to display true physical universality; nonetheless we do show that local physical

universality is possible among all other states. We expect that in cases where our

devices are permitted to have boundaries that interact with other systems, physical

universality will be readily possible, as in other examples of physical universality

where open boundaries are necessary (such that information can flow through the

boundary).

4.6 Open-ended evolution

In Adams et al. (A. Adams et al. 2017) we proposed formal definitions of unbounded

evolution and innovation applicable to any instance of a dynamical system U that can

be decomposed into two interacting subsystems S and P (such that S,P ⊆ U). These

definitions are constructed to satisfy two of the four criterion for a system capable

of open-ended innovation as presented by Banzhaf, Baumgaertner, and Beslon 2016,

including: (1) on-going innovation and generation of novelty, (2) unbounded evolution,

(3) on-going production of complexity, (4) a defining feature of life. Based criteria (1)

and (2) we defined a minimal criterion for open-ended evolution: a region X ⊆ U is
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open-ended if it satisfies the requirements for unbounded evolution and innovation

(A. Adams et al. 2017), defined below. As we showed in A. Adams et al. 2017 the other

two criteria emerge naturally as a consequence of the state-dependent framework.

Unbounded evolution (UE) can be formalized by comparing the dynamics of a

system to the expected Poincaré recurrence time tP . For any finite, deterministic

dynamical system, the Poincaré recurrence time provides a natural bound on its

dynamics and is defined as the timescale at which the system’s dynamics should repeat

if it were isolated. Unbounded evolution is therefore minimally defined as occurring

only in cases where the recurrence time locally exceeds this bound.

Definition 4.6.1. Unbounded evolution (UE): A system U composed of at least

two interacting subsystems X ,Y ⊆ U interacting according to an arbitrary function

F , exhibits unbounded evolution if there exists a recurrence time tr such that the

state trajectory x1F→x2F→x3F→ . . .F→xr for xn ∈ X is non-repeating for tr > tP

and tP is the Poincaré recurrence time tp = |ΣX̂ | of a finite region X̂ . X̂ is an isolated

equivalent of X without the interaction with Y under F .18

That is, a system exhibits UE if its recurrence time tr is greater than the Poincaré

recurrence time expected for an equivalent isolated system, denoted tP . By this

definition, a system can exhibit UE if and only if it is interacting with an external

system. Implementing this definition necessarily depends on knowledge of counter-

factual histories of isolated systems (e.g. for systems implementing ECA rules, these

counterfactual histories are of ECA executed with no external interaction, see (A.

18In (A. Adams et al. 2017 we included rule trajectories non-repeating in tP in our definition of
UE. For simplicity, since we only consider state-trajectories in the present work we do not include
rule trajectories in the definition here.
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Adams et al. 2017). We additionally define innovation relative to counter factual

histories of isolated systems as:

Definition 4.6.2. Innovation (INN): A system U composed of at least two in-

teracting subsystems X ,Y ⊆ U interacting according to an arbitrary function F ,

exhibits innovation if there exists a recurrence time tr such that the state trajectory

x1F→x2F→x3F→ . . .F→xr for xn ∈ X is not contained in the set of all possible

state-trajectories for a finite region X̂ in isolation.

That is, a subsystem X exhibits innovation if and only if its dynamics are not

contained within the set of all possible trajectories of equivalent isolated systems. For

the case of CA, this implies that a finite region is innovative if its state trajectory

cannot be reproduced by any static-rule CA with the same width w under the same

rule space (here constrained to the set of ECA rules). We note that the Poincaré

recurrence time for most real physical systems (including life) is much longer than the

age of the universe: the utility of our definition is that it is precise and permits asking

quantifiable questions about the kinds of dynamical systems that could, at least in

principle, exceed this bound.

A motivation for including both Definitions 3.4.1 and 3.4.2 is that they encompass

intuitive notions of “on-going production of novelty” (INN) and “unbounded evolution”

(UE), both of which are considered important hallmarks of OEE, as outlined in

Banzhaf, Baumgaertner, and Beslon 2016. The combination of both definitions

excludes cases that continually produce complexity but are intuitively not open-ended,

such as trajectories produced by ECA Rule 30, which is known to generate complex

dynamics that continually create novel patterns under open-boundary conditions

(Wolfram 2002). In this case, it is the open boundaries which generate the continual

novelty rather than an internal mechanism of Rule 30. Since we aim to understand
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Figure 31: A state-dependent cellular automaton composed of two spatially segregated
interacting parts: a system (S) is coupled to a resource program (P ) through a
‘metarule’ M that controls the interaction. The metarule is a function that maps the
states of the systems S and P to a new update rule for S.

the intrinsic mechanisms that might drive OEE in real, finite dynamical systems, we

require that both definitions are satisfied for a dynamical system to qualify as being

capable of non-trivial OEE.

Our goal here is to determine if a subsystem S can be open-ended and physically

universal, or minimally at least open-ended and locally physically universal. We next

introduce a more detailed description of our setup and toy model implementation and

show how the capacity of state-dependent CA to satisfy the formal requirements for

OEE depends on the topology of their underlying state transition diagram, focusing

on whether there are regions of configuration space that are locally universal.
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4.7 Methodology

Following our setup in Adams et al (A. Adams et al. 2017), we study a CA

composed of two coupled subsystems, each using local update rules drawn from the

set of Elementary Cellular Automata (ECA). ECA have d = 1, with nearest neighbor

update rules that operate on the alphabet Σ = {0, 1} (Wolfram 2002). They are

popular models for studying the behavioral complexity of discrete dynamical systems.

A schematic of our setup is shown in Fig. 44a and a CA implementation in Fig. 44b.

The model includes the following parts:

Resource: The resource P is a CA of finite width w evolving according to constant

function f = rP , where rP ∈ RP and RP ⊆ ECA is a subset of ECA rules (e.g. P is

an ECA). (sets Rp used in this study are described below.)

System: The system S is a CA of finite width w evolving according a state-

dependent map f = rS(t), where rS(t + 1) = M(γS(t), γP (t), rS(t)) and γS(t) and

γP (t) are the configuration of S and P at time t, respectively, and rS(t) is the rule

implemented by the system at time t. As with the resource rS ∈ RP and RP ⊆ ECA

is a subset of ECA rules (here the system implements an update rule drawn from the

same set of rules governing the resource to ensure both obey the same “laws”).

Controller: In the definition of the system, the controller M is an arbitrary

function mapping the rule of the system at time t to that at t+ 1, such that the rules

of S evolve in time in addition to the configurations. We regard the ’metarule’M as

the controller for the interaction between P and S. For the results presented hereM

is defined as follows:

M(t) = Round[rS(t− 1) + wγS(t) + wγP (t)] (4.1)
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where Round chooses the nearest upper rule r in the set of RP , w is the width of each

CA, and γS and γP are the configuration of S and P as before, respectively (these

are converted from binary representation to decimal). If the expression evaluates to

a value > 255 (outside the index range of ECA rules), then the evaluated value is

depreciated by 255.

We studied this setup using a variety of interaction rulesM, with similar qualitative

results achieved in each case. The only critical constraint on M is that it is be a

function of rS(t), γS(t) and γP (t), such that the update rule of S depends on the

previous state of the system and resource. In this way, our setup is somewhat akin to

the structure of a Turing machine (or von Neumann’s UCA) where the each step in a

computation depends both on the internal state of the machine and the on the state

of the tape (program) being read (Turing 1937) (that is, our system is self-referential).

Because we are interested in the possibility of physical universality and open-ended

dynamics in S we do not explicitly implement a CA instantiation ofM here. However,

we note to study physical universality (and open-endedness) as an emergent property

of the dynamics one would need to explicitly implementM with the same sets of laws

as S and P. The emergence of feedback control is one of the most challenging open

problems in the origins of life (Walker and Davies 2013 and Nghe et al. 2015), the

exploration of which in state-dependent CA we leave as a subject of future work.

For the results presented here, both the resource and the system are implemented

with periodic boundary conditions and a stationary size w (the width of the CA).

As stated above, because we impose periodic boundary conditions, the examples

presented cannot represent true physical universality - once an empty configuration

(all ’0’s or all ’1’s) is achieved the system has no ability to generate new behavior

and becomes inactive. This is also a constraint on reversible CA in the standard
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approaches to physical universality, including the examples of Schaeffer and Salo

and Törma (Schaeffer 2015, and Salo and Törmä 2017). It is resolved by assuming

the compliment region can be made arbitrarily large, potentially requiring infinite

resources. In our setup a similar solution of coupling to an arbitrarily large resource

could be implemented, by permitting our system to have open boundaries (rather

than periodic) in direct contact with the resource, which could be made arbitrarily

large. Since our primary motivation is to isolate how state-dependent rule evolution

might enable physical universality and open-ended evolution, we do not include the

additional complexity of coupling the state of our system directly to the state of

the resource (through a shared boundary), which will be a subject of future work.

Exclusive of this constraint we do observe systems able to explore the majority of

their state space, providing insights into how adopting a state-dependent framework

might open new paths to understanding the ability of biological systems to explore

their configuration space, in turn providing new frameworks for explaining physical

universality.

4.7.1 Classifying ECA rules by reversibility

In A. Adams et al. 2017 we considered a scenario where the coupled system had

access to any ECA rule for the update function of S. Here, we classify ECA rules

by the fraction of all possible inputs they can produce as an output – which may

roughly be considered as their irreversibility – and implement state-dependent CA

with access to rules that share similar irreversibility. This amounts to merging the

state-transition diagrams of CA with similar irreversibility to generate variants of our

setup in Fig. 44b with different topologies for the underlying state-transition diagram
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of S. This permits constructing state-dependent systems with varying capacity to

support the possibility of local physical universality and varying ability to support

open-ended evolution. Define O and I as the set of all possible output and input

states, respectively. Then, we define the “degree of irreversibility” Rr,w of an ECA

rule r for a given CA width w as the ratio of the number of unique outputs |O| that

rule can produce (given all possible inputs |I|) to all possible inputs |I|, for a single

time step t:

Rr,w =
|O|
|I| . (4.2)

For R = 1, a rule is fully reversible, preserving information about its past state(s).

For all other values the rule is irreversible, quantified on a sliding scale by how much

information the rule destroys about past states. For R→ 0 the system is completely

irreversible and looses maximal information (e.g. ECA rules 0 and 255 which map all

states to the all-’0’ or all-’1’ state, respectively). We calculated R for all ECA rules

and partitioned the rules by rounding Rr,w to the nearest 0.1, thereby identifying 11

sets RP for each width. The relative size of each set RP is plotted in Fig. 32 as a

function of w.

By merging rules within a given reversibility class, we construct state-dependent

state-transition diagrams where we can control the accessibility of states. We con-

structed the composition of all state-transition graphs for a given Rp, which we label

as Rp(w) for a given width w. Examples are shown in Fig. 33 and Fig. 34. In these

diagrams, nodes represent CA states and directed edges represents a rule r ∈ Rp that

allows a transition between the connected states. The interaction functionM and the

state of the program (resource) CA together determine the realized trajectories through

the state-transition diagram (and are external to this graph). For state-transition
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Figure 32: The relative size of all Rp sets (as percentages here) for ECA widths
w = 3, 4, 5, 6, 7. Different w are denoted by concentric circles, where colors indicate
separate Rp sets.

diagrams generated from all Rp = 1 rules, we know all states are accessible a priori.

Rp = 1 is therefore a good candidate for studying how (local) physical universality

could enable open-ended dynamics. Conversely, for Rp = 0 we know almost no

states are accessible to the dynamics (and therefore OEE and physical universality

are impossible). We expect the likelihood of open-endedness will depend in part on

the topology of the state transition diagram19. We analyzed the structure of the

state-transition diagrams using several common topological measures, including: mean

in-degree, the average number of inputs for each state; .mean out-degree, the average

number of outputs from each state; average shortest path, the average smallest number

of transformations (steps) to move between any directed pair of states; and betweeness

centrality, the number of shortest paths passing through a given state (shown in Fig.

19There is also a resource dependence, where the recurrence time of the system in general scales
linearly with that of the resource, see A. Adams et al. 2017)
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33 and Fig. 34). We also determined the number of connected components and the

size of the largest connected component, where a connected component is a region

of the state-transition diagram where any two states are connected to each other by

some (undirected) set of transformations, and which is connected to no additional

states in the state-transition diagram. We equate the accessibility of state-space with

physical universality if all states in a graph can be reached from any other state, the

system is physically universal. If this is only true for a subset of configurations (a

connected component) that set is locally physically universal. We next study the

dynamics and likelihoods of generating OEE for state-transition diagrams constructed

for each Rp class of a given width to determine how accessibility of the state space

(topology) constrains or enables open-ended evolution.

4.8 Results

4.8.1 Likelihood of open-ended evolution

Fig. 35 shows the distributions of measured recurrence times for trajectories

sampled from state-dependent CA evolved with sets of rules from each Rp classes

described in Section 4.7.1, for widths w = 3, 4, 5, 6, 7 for S and P with wS = wP . All

trajectories included in Fig. 35 are innovative, and cannot be reproduced by a static

ECA rule. Trajectories above the line tr/tP = 1 in each panel are open-ended by

Definitions 3.4.1 and 3.4.2. As expected, no systems with Rp = 0 exhibit OEE (since

all information is erased and the system immediately converges to a homogeneous

state). In some cases Rp = 1 generates the largest fraction of open-ended cases,
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(a) w = 3 (b) w = 4

(c) w = 5 (d) w = 7

Figure 33: State transition diagrams for Rp = 1.0 for various w. Node size is weighted
by out-degree and colors indicate betweenness centrality (high values are warm, low
values cool tones). Each connected component is locally physically universal.
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(a) Rp = 0 (b) Rp = 20

(c) Rp = 40 (d) Rp = 50

(e) Rp = 70 (f) Rp = 80

Figure 34: State transition diagrams for with w = 5 with various Rp. Node size is
weighted by out-degree and colors indicate betweenness centrality (high values are
warm, low values cool tones).
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such as for w = 5 and w = 7. However, in other cases it is the state-transition

diagrams generated from merging rules with intermediate irreversibility which exhibit

the greatest capacity for producing open-ended trajectories.

4.8.2 Topology of the state-transition diagram

To better understand the patterns observed in the dynamics of state-dependent

systems across different Rp classes shown in Fig. 35, we analyzed the topology of the

underlying state-transition diagram for each Rp(w). Analyses are shown in Table 5,

including: Nrules, the number of rules in the class Rp (shown in Fig. 32); Nedges

the number of edges in the state-transition graph; NCC, the number of connected

components; SLCC the size of the largest connected component (LCC); 〈kin〉, the

mean in-degree of states (same as 〈kout〉); 〈lS〉, the average shortest path length

between ordered pairs of states in the LCC; whether or not OEE cases were found (Y

or N, respectively), and whether or not the largest connected component is locally

physically universal (Y or N, respectively). Cases of interest are highlighted in red

and blue, where blue denotes cases that exhibit local physical universality for the

largest connected component and red denotes cases that exhibit OEE but are not

locally physically universal.

If there is one component and it is locally physically universal the CA is physically

universal, and any transformation is possible by suitably preparing the resource and

the controller. We do not observe any such cases here for reasons stated above (states

containing no information are sinks for the dynamics). However, we do see many cases

of local physical universality for large connected components, which dominate the

configuration space. For Rp = 1 all graphs are locally universal (for all fixed rules r
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Figure 35: Distributions of recurrence times (relative to the Poincaré recurrence time,
y-axis) of sampled systems S with state trajectories that are innovative, meaning they
are not reproducible by any static-rule ECA. Trivial state-trajectories consisting of all
1’s or 0’s were removed. Distributions are shown for all Rp sets (x-axis) of a given CA
widths w (panels). The horizontal line represents where tr = tP . State-trajectories
above this line are classified as open-ended.
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and all w if Rr,w = 1 the graph is locally physically universal, so merging graphs always

will yield composite graphs that are also locally universal). In some cases, as with

w = 3, 5, 7 merging individual rule graphs with Rr,w = 1 yields graphs with a single

large connected component (excluding only the two homogeneous states), whereas in

other cases the merged graph remains fragmented with many disconnected regions,

e.g. for w = 4, 620. OEE occurs for the former case but not the later, indicating that

the larger the locally universal region in configuration space, the higher the propensity

for exhibiting OEE. For other Rp, the graphs in general have a single connected

component that includes all possible states, but these are not locally universal (in

all cases this is in part because the all-’0’ and all-’1’ state are included in the graph,

which are sinks for the dynamics). Nonetheless OEE is still observed in these systems.

In general, more edges in the graph (more rules in the state-dependent algorithm) –

corresponding to a higher mean degree and lower shortest path – are required to yield

OEE for graphs that are not locally universal. That is, if the rules are not reversible,

a controller must in general have a greater repertoire of rules to generate OEE than if

it uses exclusively reversible rules. For two cases we see local physical universality as

an emergent property of the merged graphs (Rp = 0.9, w = 6 and Rp = 0.7, w = 7),

but these examples do not exhibit OEE. In both cases the graphs contain a large

connected component, meaning that connectivity and the size of the connected region

in configuration space together are not sufficient for OEE. None of our topological

analyses identify distinctive features of these graphs. Presumably the lack of OEE

in these two cases arises due to external constraints: for example resources P that

20Here, whether a merged graph composed of reversible rules is connected or not is determined
by whether the CA is odd or even width, respectively, due to the structure of ECA rules and the
periodic boundary conditions and is directly related to the number of rules in the set of reversible
ones. For other CA, predicting whether the CA will support OEE or not will in general not be so
straight forward.
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terminate in fixed point attractors and thus cannot drive longer recurrence times for

S.

To further explore the relationship between topology, local universality and OEE,

we also calculated the distributions of in-degree (kin) and out-degree (kout) for all states,

where the in-degree and out-degree quantify how many transformations converge on a

state or emanate from it, respectively. We also computed the shortest path lS between

all ordered pairs of states in the largest connected component, to determine the number

of transformations necessary to move between any two states (for those with a path

between them). Results are shown for state-transition diagrams for w = 5, w = 6 and

w = 7 systems in Figs. 36 and 37. In general, we observe that topologies supporting

open-ended evolution exhibit a long tail in the out-degree distribution, whereas those

where no open-ended cases are observed exhibit a long tail in the in-degree distribution.

It is difficult to be conclusive given the small networks implemented in our study, but

the general trends suggest that nodes with a high in-degree act as dynamic “sinks”

and those with high out-degree as “sources”. In these networks high kout is associated

with high betweenness centrality (see e.g. Fig. 33 and Fig. 34, statistics not shown),

which measures how many shortest paths pass through a given state. The correlation

of betweeness centrality with out-degree supports the hypothesis that high-out degree

states are sources for the dynamics, enabling more “short-cuts” for transformations

between states. State-transition diagrams with many sources can be described as

information-generating: due to their interaction with the resource more future paths

are possible. By contrast sinks loose information. Physical universality requires a

dynamical system where it is possible to move from any state to any other state.

Our results show that a few nodes with high out-degree provide short-cuts in the

dynamics and therefore may play an important role in enabling physical universality
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Rp, w Nrules Nedges NCC SLCC 〈kin〉 〈lS〉 OEE LULCC
Rp = 0, w = 5 2 64 1 100% 13 0.65 N N
Rp = 0.2, w = 5 8 204 1 100% 41 1.35 N N
Rp = 0.3, w = 5 30 524 1 100% 105 1.42 Y N
Rp = 0.4, w = 5 8 164 1 100% 33 0.94 N N
Rp = 0.5, w = 5 66 644 1 100% 129 1.3 Y N
Rp = 0.7, w = 5 106 624 1 100% 125 1.32 Y N
Rp = 0.8, w = 5 20 344 1 100% 69 1.65 Y N
Rp = 1.0, w = 5 16 444 2 94% 89 1.48 Y Y
Rp = 0, w = 6 2 128 1 100% 21 0.66 N N
Rp = 0.2, w = 6 8 428 1 100% 71 1.41 N N
Rp = 0.3, w = 6 36 1368 1 100% 228 1.52 N N
Rp = 0.4, w = 6 8 420 1 100% 70 1.72 N N
Rp = 0.5, w = 6 72 1848 1 100% 308 1.48 N N
Rp = 0.6, w = 6 72 1548 1 100% 258 1.57 Y N
Rp = 0.7, w = 6 36 1088 1 100% 181 1.76 N N
Rp = 0.8, w = 6 8 428 2 97% 71 2.34 N N
Rp = 0.9, w = 6 8 428 3 84% 71 2.46 N Y
Rp = 1.0, w = 6 6 368 8 18% 61 1.58 N Y
Rp = 0, w = 7 2 256 1 100% 36 0.66 N N
Rp = 0.1, w = 7 8 900 1 100% 129 1.72 N N
Rp = 0.2, w = 7 28 2524 1 100% 361 2.35 N N
Rp = 0.3, w = 7 8 956 1 100% 137 1.85 N N
Rp = 0.4, w = 7 40 3280 1 100% 469 2.14 N N
Rp = 0.5, w = 7 26 2440 1 100% 349 2.25 Y N
Rp = 0.6, w = 7 100 4960 1 100% 709 1.87 Y N
Rp = 0.7, w = 7 20 1964 2 98% 281 2.26 N Y
Rp = 0.8, w = 7 8 900 2 98% 129 3.11 Y N
Rp = 1.0, w = 7 16 1908 2 98% 273 2.43 Y Y

Table 5: Statistics of the topology for state-transition diagrams for S of widths
w = 5, 6, 7. Shaded rows indicate state-transition graphs that permit OEE (red) or
are that have a largest connected component that is locally universal (blue, includes
open-ended cases). Included are: Nrules, the number of rules in the class Rp; Nedges

the number of edges in the state-transition graph; NCC , the number of connected
components of the graph; SLCC the size of the largest connected component (LCC);
the mean in-degree of states, the average shortest path length between directed pairs
of states in the LCC; whether or not OEE cases were found (Y or N, respectively),
and whether or not the largest connected component is locally physically universal (Y
or N, respectively).
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and open-ended evolution. Future work will determine if such networks display small

world properties, as is characteristic of many real-world systems (Watts and Strogatz

1998.

4.9 Conclusions

It is unknown whether physical universality is a property of our universe. Here

we demonstrated a weaker form of physical universality, which we call local physical

universality, to provide a framework for understanding cases where true physical

universality is not possible or only approximately holds. This may be the case,

for example, if the state space cannot be predefined, as proposed by Kauffman S.

Kauffman 2000. In a system that is locally physically universal, there exists a subset

of configurations among which all transformations in the set are possible. Cellular life

is often described as an example of a universal constructor (see e.g. Danchin 2009;

Hickinbotham and Stepney 2016). This kind of universality is most appropriately cast

as a local one. The “universal constructor” (often approximated as the ribosome (see

Walker and Davies 2013 for discussion) operates on a finite set of materials – including

amino and nucleic acids among others. An example of a set of configurations which

is approximately locally physically universal because of the information-processing

architecture of life is the set of proteins composed of the 20 (or so) genetically encoded

amino acids: in principle, given sufficient resources a biological system should be

able to construct any such protein (or to convert resources from one to another).

This example highlights how, when it comes to real physical systems, such as life,
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Figure 36: Frequency distribution of the in-degree (kin, left) and out-degree (kout,
right) for state-transition diagrams for varying Rp for widths w = 5 (top row), w = 6
(middle row) and w = 7 (bottom row). State-transition diagrams with sampled
trajectories exhibiting open-ended dynamics are shown in red, while those where no
open-ended cases were confirmed are shown on a gray scale.
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Figure 37: Shortest path (lS) for state-transition diagrams for varying Rp for widths
w = 5 (top left), w = 6 (top right) and w = 7 (bottom). State-transition diagrams
with sampled trajectories exhibiting open-ended dynamics are shown in red, while
those where no open-ended cases were confirmed are shown on a grey scale.
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approximations to the principle of physical universality (or its local version) may be

what is physically realized.

Our model demonstrates that state-dependent CA can exhibit local physical

universality and that these systems can meet the minimal requirements of a formal

definition of open-ended evolution. Local physical universality emerges as a result

of the connectivity of the underlying state space. Our analysis shows for ECA rule

networks, that this property is associated with heterogeneity in the in-degree and out-

degree of states. It is interesting to speculate how this property relates to real living

systems, which are known to exhibit highly heterogenous degree distributions across a

variety of systems and scales. One pertinent example is biochemical reaction networks,

which exhibit heavy tail degree distributions, with a few hubs dominating network

structure (Jeong 2000). A hub in a biochemical network, such as H2O, is hub because

it can undergo many chemical transformations. It is possible heterogenous networks

emerge not only because of their robustness properties as frequently hypothesized,

but also due to their ability to access many configurations. This second hypothesis is

consistent with evidence of an increased propensity to innovate due to the structure of

gene networks and their ability to quickly traverse phenotype space with relatively few

mutations (defined in terms of what reactions are possible) (wagner:2007; Wagner

2014).

Local physical universality is always a property of reversible rules. However the

size of the subset of configuration space that has this property may be small or large

depending on the particular dynamical laws (the particular CA rule). In our model,

connectivity enabling large regions of configuration space to be locally physically

universal can be an emergent property of the state-dependent system (as occurs for

irreversible rules), which arises because of the multiplicity of the rules it can access
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(e.g. the transformations it is programmable to perform). In particular, we equate this

property with the particular informational structure of living systems. The advantage

of defining local physical universality is that it permits studying systems of varying

degrees of universality, and in particular to discuss cases where the ability of systems to

increase their repertoire of possible transformations might change in time, as through

biological evolution. One could speculate that the biosphere as a whole has trended

toward increased connectivity among the possible configurations of material that

make up the Earth-system (Sara Imari Walker 2015), corresponding to better and

better approximations to local physical universality. This occurs through evolutionary

processes that enable an increasing number of transformations to be mediated by life

and its artifacts (such as technology): although the raw materials have always existed

on Earth to construct satellites, it is only recently that information processing systems

have evolved the capacity to transform those materials into machines and to launch

them into space. The framework presented here attempts to explain some of these

properties starting from the assumption that the effective laws of physics governing

life are state-dependent.
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Chapter 5

DATA FROM TECHNOLOGY

Technology in today’s (respectively more) globalized society has been providing us

with an overabundance of data (“Big Data” 2015). More than ever, human activity

can be tracked with finer and finer resolution through things like pictures and text.

It is quite simple to write a script that tracks the number of Twitter users who are

interested in digital humanities over time. A snapshot of a group of Twitter users is

illustrated in Figure 38.

We can even track things like the changes made to George W. Bush’s Wikipedia

page over the course of a few years (DeDeo 2011). Because of such technological data,

we are able to see large-scale biological processes in terms of innovative technological

and social systems, from the evolution of patents (Chalmers et al. 2010 and Buchanan,

Packard, and Bedau 2011) to the evolution of online social systems (DeDeo 2011, Oka

and Ikegami 2013, and Oka, Hashimoto, and Ikegami 2015).

Technological data represents human behavior, which is arguably centered entirely

on sense and experience, two very difficult things to quantify reliably. If the goal is to

answer the Big Question, it’s important to understand living systems across all levels

of organization (microstates and macrostates, both smaller and larger). Analyzing

this data could be used as a surrogate for other biological levels under appropriate

abstractions. What can Facebook data tell us about the behavior of cells?

Data generated by humans is probably the best known example of open-endedness

since its development is driven by human innovation and creativity (Taylor et al.

2016 and Banzhaf, Baumgaertner, and Beslon 2016). For this reason, modern data
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Figure 38: Twitter relationships between 1400 digital humanities researchers, engineers,
and enthusiasts as of 2014. Nodes represent Twitter profiles and edges represent
“following” (from Grandjean 2017).

sets make excellent case studies for living systems. Since these sets are made of

living entities (humans) and elements constructed by living entities (computers, the

Internet, hardware, etc.), it is one of many levels of biological organization. Perhaps

understanding general properties about this higher level of organization could be

useful for understanding lower levels of biology. At worst, properly analyzing the

abundance of technological data could provide a highly detailed assessment of one
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level of biological organization, which could have many useful implications for society

and industry in particular.

To find these generalizations, some level of abstraction is necessary while also

dropping “unimportant” information. In the next chapter (Chapter 6), data about a

video game is abstracted into a quantifiable analysis. Many other representations of

the game are equally as valid, depending on which aspects of the game are highlighted

and studied. Once a system is described with some chosen variables based off relevant

observables, the system can be tracked within a mapped space that is defined (even

infinitely). However, in the case of Chapter 6 and many other complex systems

represented by modern data, the possible states are undefined. As discussed in

Chapter 1, biological states may not evolve according to a pre-defined set of states.

There may be no knowing the number of possible species evolution can produce

because biology might re-define its own state space as it evolves over time.

Furthermore, it is impossible to the complete state of a real-life system anyways.

Knowing the state of even a video game requires one to know the state of every player

and every game developer, including their mind and thoughts. This is simply not

possible. It is only possible to know what data has been collected about the game

over time, including the evolution of the base code. Therefore, we are once again

restricted to what we are able to measure about a system by what we are able to

observe. Knowledge about what players feel–such as when their in-game characters

die–has been lost and yet could be a crucial part of the game’s overall dynamics.

Although this example is specific to one particular video game, similar problems are

present in almost every set of modern technological data.
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5.1 Data as Insights

In 2013, 90% of the world’s current data had been created in the previous two years

from uploaded videos, social media, cell phone data, and many other used technologies.

At that rate, 2.5 quintillion bytes (literally a billion-billion bytes) of data were created

per day (“Big Data” 2015). Since then, more people have been using technology and

data is being created at an even faster rate. In 2016, the following estimations were

made about data creation per minute on the worldwide internet (according to Schultz

2016):

• Over 350,000 Twitter posts

• Almost 400 hours of YouTube videos

• 2.5 million Instagram likes

• Over 3 million Facebook posts

• Almost 4 million Facebook post likes

• 4 million text messages sent

As of the writing of this dissertation, it is unclear how much this data-creation-rate

has increased since 2016, but it is safe to say that is probably still increasing and is

likely to continue to increase. Much of the data is unsorted, meaning it is sitting in

internet-space without being organized into a scientifically-usable format. Although

there is a huge surge in the amount of data that is created, hardly any of it is in an

analyzable format (this is the biggest current motivation for the sudden demand of

data scientists).

In attempts to skirt this massively problematic big data problem, some simply

search for correlations in the data. The more data the better; no need for underlying

theories since the data will speak for itself (Calude and Longo 2016). However, this is
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Figure 39: One example of spurious correlations from big data (from Vigen 2017).

a common pitfall in modern big data analytics. Correlation does not equal casuation

and we still need underlying theories to interpret data correctly. There are several

amusing graphics that illustrate where this failure can lead us, such as the correlation

between the number of people drowning in a pool and the number of films Nicholas

Cage appeared in (many more of these can be found at Vigen 2017).

Companies will often hire data scientists and ask for correlations in the data,

particularly for useful and actionable busness insights (Hansen 2016). But without a

clear understanding of the mechanisms that drive the data and how to interpret the

measurements on the data (read: causation), this endeavor is likely to be fruitless. In

fact, correlations can always be found in large data sets, even if the data is completely

random (Calude and Longo 2016). This means that most correlations are actually

meaningless. This has been known for quite some time in mathematics, in particular

from ergodic theory, Ramsey theory, and algorithmic information theory (Calude and

Longo 2016).

So what are we to do with so much data then? Work to find new theories that allow

us to understand it, of course! Goldenfeld and Woese expect a dramatic tranformation
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in the near future with this onslaught of data in Goldenfeld and Woese 2007. The

way we understand the world is totally transformed when we acquire a new body of

data so it is natural to assume that with this data, we can expect new theories to

emerge. But this is no easy task, particularly because this transformation relies on

building a theory of complex systems and biology-related-things. Yet, it may be easier

to start with some homogeneous sets of data, such as data from a single video game

or data from the publicly-available patent records.

Because human populations are biological, it is actually very useful to compare

society-wide phenomena to traditional biological evolutionary phenomena. In particu-

lar, understanding cultural evolution is useful in terms of adaptive creativity because

the same statistical tools can be used. The evolution of the patent records over time is

a useful analogy to biological systems evolving under some environmental pressure (in

this case, technological advances) (Skusa and Bedau 2002). By analyzing the internet

dynamics of web searches and social media posts, most-used keywords (words that

exclude “the” and “and” etc.) were found to act a source of information. Infrequent

keywords act as a source “sink” for information, or places where information stops

flowing (Oka and Ikegami 2013). Therefore, it is hypothesized that these frequent

information-holding key words form the core activity for the internet, as sources of

information for social media’s infrequent word activity. Information flow is usually

a bit easier to understand in terms of human communication because that’s where

our original understanding of information came from anyways (Shannon 1948). But

as we will see, information is actually much more difficult to understand in different

contexts.
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5.1.1 League of Legends Data

One of my personal favorite data sets is from the video game League of Legends

(League). This is mainly because I’m familiar with the game’s dynamics and subtleties21

but also because it is a very complete data set. Massive amounts of information about

every single game played around the world over the last 6 years has been recorded

and stored, ready for user consumption. In addition, data about game updates, player

behavior, and server technology changes has been stored as well.

League data has previously been used to study the psychology of players (Hsu 2015),

particularly on what game changes can mitiage negative player behaviour towards

other players (League of Legends is notorious for its negative player community). It

was found that displaying positive gameplay tips (such as “Be nice to your teammates!”)

in blue and negative gameplay tips (such as “Don’t be a jerk to teammates!”) in red

found to descrease negative plater interactions. However, switching or randomizing

the red and blue colors had no effect in player behavior (Hsu 2015).

The game was created and is maintained by the game company Riot Games. As

of 2016, League of Legends had a staggering 100 million monthly players as reported

in Tassi 2016. On top of that, it has a very large eSports presence and holds several

worldwide professional tournaments and competitions. Top players from around the

world join professional teams to compete for money and fame by playing League.

From an evolutionary standpoint, this could be an interesting set of data to see how

strategies evolve and are successful, especially at the professional level.

Collecting data from Riot Games’ API servers has beome very simple and stream-

lined since their lastest Developer Version 3 update (Games 2017). This is as simple

21I do indeed play way too much League of Legends in my spare time.
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as making a Python url request. After a request is made, the API returns Python-

readable json-formatted data. Prior to the Developer Version 3 update, it was simpler

to use Cassiopeia, a Python library to get Riot’s API data into Python objects

(“Cassiopeia” 2017). However, using Cassiopeia is no longer necessary. As with almost

any big-data project, a relational database is necessary to organize the data into an

easy-to-analyze format. Ideally, SQL is best for this job. However, Datreant is a

Python-based relational database system that is useful for smaller amounts of data and

is attactive for those looking to stick to Python-only solutions (“Datreant: Persistent,

pythonic trees for heterogeneous data” 2017).

Riot Games is a game software developer company that strives to put players and

quality games first. Their big claim-to-fame is that they strive to put players first and

are very actively involved in the player community (“Riot Manifesto” 2017). Riot’s

developers respond to player’s requests and feedback about gameplay and interact

with the players on a daily basis. As a result, this adds to the evolution of the game

in an interesting double-feedback way. Both the players and the game developers

interact and change according to each others’ behavior. A full description of a League

data analysis is included in Chapter 6.

5.2 Networks for Data Analysis

One of the largest research projects specifically aimed at understanding how

large social networks change over time is called the Copenhagen Networks Study

(Stopczynski et al. 2014). Networks have been a very popular way to analyze and

visualize a large amount of interactions between things. In social networks, nodes are

often people and edges are often relationships between two people.
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Once a network (also called a graph) is modeled after a real system, it can be

measured in several ways. One of the more difficult aspects of network analysis is

how they change over time. Many current network analyses revolve around a static

snapshot of the network at some point in time and comparing it to another snapshot

at a different time. While this has been pretty useful, it remains unclear how making

these snapshots affects our ability to understand the underlying dynamics of the system

in question. This problem only gets worse because a single system can actually be

represented by several different graphs. It all depends on what is being measured, and

from what perspective. So sometimes measures on graphs are actually artifacts of how

a system is being represented (Zenil, Kiani, and Tegnér 2017). Many networks that

represent real social systems have communities where each and every node belongs to

more than one group. As a consequence, the global hierarchy of nodes does not reflect

relationships within individual groups (Ahn, Bagrow, and Lehmann 2010). Regardless

though, network analysis does provides a lot of insight into biological systems that

would otherwise not have been realized (Rosen 1981).

There is a huge number of network measures, each invented specifically with

answering a specific question in mind. Some of these include perterbation centrality,

where nodes with high values of this measure were found to be crucial in group-to-

group communication (Szalay and Csermely 2013), time-ordered reachability and

betweenness (Kontoleon, Falzon, and Pattison 2013), and other entropy measures.

Google and other web search services (but who uses the others anyways?) uses some

secret modified version of page rank to sort search results (Austin 2017). Page rank

can be understood in terms of how much social power a person has in their network of

friends, loosely. Imagine two people, each with five different friends. The first person’s

friends are Barack Obama, Mark Zuckerberg, The Cubes (Mark Cuban, of course),
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Will Ferrell, and B.O.B. The second person’s friends have literally no other friends and

don’t leave their house. Therefore, even though both people have the same amount of

friends, the first person has a much higher “page rank” because their friends are very

well-connected.

These measures are used to probe a large variety of questions about biological

networks, particularly about the difference between biological networks and non-

biological ones. For examples, what does it mean for a network to be robust? Not

only is this an interesting question for biology, but it is a critical question in terms of

cyber security as a defense against internet attacks. An analysis of the affected nodes

during attacks are only half the story. Instead, we also must consider what happens

to the unaffected nodes, as stated in Tejedor et al. 2017. In fact, the dynamics of

both affected and unaffected sub-networks within the whole network gives a more

complete picture of what it means to be robust. In these dynamics, nodes re-rank in

surprising ways, and this affects the overall dynamics of the whole network.

Regarding gene regulatory networks, which represent how genetic material and

proteins interact in known ways, there are several ways to model them: network parts

lists, network topology models, network control logic models, and dynamic models

(Schlitt and Brazma 2007). The biological networks in one study were found to process

more information than random networks (Kim, Davies, and Walker 2015). Biological

networks also exhibit a scaling relation in information transferred between nodes and

the most biologically distinct regime of this scaling relation is associated with a subset

of nodes that regulate the dynamics and function of the networks. This subset of

nodes is known as the control kernel, pictured as the red nodes in Figure 40. A control

kernel nodes, when held to fixed states, evolve the rest of the network towards its most

likely behavior. One interpretation is that the control kernel contains the “program”
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Figure 40: A network representing the protein-protein interactions in the cell-cycle
regulation mechanism of S. Pombe fission yeast (from Kim, Davies, and Walker 2015).
Red nodes indicate the control kernel.

of the whole network. Every network has a control kernel, however in randomly

generated networks the control kernel is usually the entire network. Control kernels

in biological networks are much smaller, which might imply a kind of “robustness”.

Therefore, information processing in biological networks is an emergent property of

topology (causal structure) and dynamics (function) (Kim, Davies, and Walker 2015).

In the Copenhagen Networks Study of complex and densely connected social

networks, fluid gatherings are organized through a stable core of individuals, which

represents a social context in Sekara, Stopczynski, and Lehmann 2016. At least this

way, large social network dynamics can be greatly simplified in terms of smaller social

contexts. But how do these networks form in the first place? Aside from being

artificial representations, they still have a good causal representation of the underlying

dynamics of overall system dynamics. The evolution of complex systems may be

attributed to regulation networks and niche construction in addition to path-dependent

evolutionary change (Laubichler and Renn 2015). Evolving a network topology by

increasing the number of connections active nodes have and decreasing the connections
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that non-active nodes have could generate self-organization in natural complex systems

(Bornholdt and Rohlf 2000).

Lastly, networks are also useful in understanding causality, which relates back to

information and entropy from a different angle. The structure of the universe and our

ability to perceive it could be actually be explainable in terms of fundamental physics

(Sara Imari Walker 2015) and network theory. On a causal graph where nodes are

states of the universe and are connected by possible causal transitions, some local

regions have a high probability of states that contain information. These states are

the most highly connected to other states, thus the underlying causal structure of

reality may be a simple explanation of how living systems are able to perceive the

universe and make sense of it (Sara Imari Walker 2015).
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Chapter 6

REAL-WORLD OPEN-ENDED EVOLUTION: A LEAGUE OF LEGENDS

ADVENTURE

6.1 Abstract

A prominent feature of life on Earth is the evolution of biological complexity: over

evolutionary history the biosphere has displayed continual adaptation and innovation,

giving rise to an apparent open-ended increases in complexity. The capacity for open-

ended evolution has been cited as a hallmark feature of life, and also characterizes

human and technological systems. Yet, the underlying drivers of open-ended evolution

remain poorly understood. League of Legends (League) is an online team-based

strategy game that has become immensely popular over the last six years. Because

new characters (called “champions”) are regularly added and the game is updated

every few weeks by the game’s developer Riot Games, the game never settles into an

equilibrium distribution of player strategies. Innovative strategies are required for

players to succeed, just as innovation is required to outcompete other organisms in

open-ended biological systems. Although understanding open-endedness is crucial

to understanding how living systems operate, it is often difficult or impossible to

collect sufficient data to study the mechanisms driving open-ended evolution in natural

systems. Online social systems, particularly games, offer ideal laboratories for studying

open-ended evolutionary dynamics because of the rich data archived on statistics

of users and their interactions. We focus on using data from North America’s top

200 players to determine how dominance hierarchies emerge from player strategies
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and how they evolve in time after an external perturbation. This is a microcosm

for studying, in detail, how external and internal mechanisms can drive a real-world

open-ended system. Our goal is to provide general insights that can be applied to a

wide range of fields, including astrobiology and evolutionary systems22.

6.2 Introduction

As stated throughout this dissertation, the exact mechanisms underlying open-

ended evolution (OEE) are unknown. We lack a general enough model that describes

all levels of biology and its open-ended and emergent properties. But since today’s

technology is providing us with an overabundance of data, recent work on open-ended

evolution has shifted towards studying innovative technological and social systems,

such as the evolution of patents (Chalmers et al. 2010 and Buchanan, Packard, and

Bedau 2011) and online social systems (DeDeo 2011, Oka and Ikegami 2013, and Oka,

Hashimoto, and Ikegami 2015). Online video games have rich dynamics as well, with

high-resolution data available on player statistics and strategies.

In this chapter, data of the best North American players in the online video game

League of Legends (League) is analyzed as a tractable model for studying a real-world

open-ended system. League is an online community of players where millions of

players play with and against each other on a virtual battlefield, pitting 140+ in-game

characters against one-another in team battles. The game is developed by Riot Games

and is regularly modified (through the game’s base code) every week or two. The

interactions between players within the game and external interventions by Riot

Games lead to a dynamical system where player strategies never achieve a fixed, stable

22This chapter is adapted from it its original publication Adams and Walker 2017)
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state. Because of this, the entire system of League (Riot Games + players + League

software + hardware) has many ‘life-like’ properties that resemble features seen in

other biological systems.

As a system, League updates itself according to its own history and its current

state, making it a self-referential system. Memory of the past is somehow stored in the

game’s current state. The system of League can most simply be partitioned into two

interacting subsystems: the players and the game developers. Both these subsystems

influence each others behavior much like an organism (game) and its environment

(developer) interact in a highly non-linear way. The game as a whole does not evolve

in time according to a pre-defined state space. Since the game developers are not

limited in the number of changes they can make to the game, the game evolves in an

open-ended way.

6.3 League of Legends is Open-Ended

League of Legends is an online team-based strategy game that has become popular

over the last seven years and is currently the most popular game of its type (Games

2016a). In every instance of a single match, ten players are randomly partitioned into

two teams of five, the “Blue” and “Red” team. The two teams battle against each

other on a virtual battlefield, shown in Figure 41. Each player picks a single in-game

character (“champion”) to play on the map throughout the entire match. Three

examples of champions are shown in Figure 42. Players use their chosen champions to

compete against the enemy team for resources on the map.

Two instances of the same champion are not allowed in a single match. Resources
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Figure 41: League of Legends’ most popular virtual battlefield, Summoner’s Rift.
Team bases are located on the opposite corners of the map. Player champions spawn
at their respective teams’ locations. There are three main spatial “lanes” where players
generally battle: Top, Mid, and Bottom lane. For scale, the champion “Teemo” is
shown in Mid lane.

Figure 42: Three of the 140+ example champions players can choose from: “Talon”,
“Teemo”, and “Thresh”.
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are used to upgrade champions to level them up throughout the duration of the match.

These are collected around the map and can be earned by killing enemy champions or

other objectives on the map. The main goal of the game is for one team to destroy

the other team’s base. This requires a high level of cooperation and trust within

individual teams of players. The more matches a single player wins over time, the

higher the player climbs up in skill ranking.

Riot Games, the game’s developer, updates the game every 1-3 weeks. They add

new champions, update old champions, change properties of the map, and change

other aspects of the game via code updates. Most of these changes are aimed at

making the game more fun for the players (“Riot Manifesto” 2017); listening to player

needs/wants to make the best accommodations possible. Thus the majority of Riot

Games’ changes are based on feedback from the players, and reflect the current state

of the game.

Figure 45 shows a schematic of the players explorating possible game as constrained

by the game’s code, changed by Riot Games. The possible number of game strategies

is undefined because it depends on the number of possible changes Riot Games can

implement in the game code. The game’s code depends on several unaccounted factors

such as technology that is implemented, creativity, and even the economy. In this

sense, the game as a whole (players, platform and Riot Games) is open-ended, since its

evolution will never repeat (Banzhaf, Baumgaertner, and Beslon 2016, Ruiz-Mirazo,

Peretó, and Moreno 2004, and A. Adams et al. 2017).

However, in a single implementation of the game’s code, the players have a finite

number of strategies to choose from in this undefined state space. By defining a

constant, unchanging constraint on the strategy space, the dynamics are guaranteed

to repeat and open-ended evolution is not possible due to the Poincaré recurrence
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Figure 43: A cartoon representation of how players explore the possible strategy state
space over time. The game state space represents all the possible strategies players
can choose from, constrained by the current game’s code. A current player state
represents what distribution of strategies are being used at some given time.

theorem (A. Adams et al. 2017). Changing these constraints often and drastically

on a regular basis guarantees that player strategies do not repeat, thus the player

dynamics are open-ended as long as the constraints are changing (A. Adams et al.

2017).

In Figure 44, the state-analogy is illustrated along with the double-feedback

mechanism between players and Riot Games. As players explore strategies within the

game’s constraints, Riot Games “measures” the strategies by making an observation

and changing the game’s code as a result. This affects the players by changing the

number of strategies available to them. It is unclear how a signal is translated into an
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Figure 44: Left: At some point in time, Riot Games measures the current distribution
of player strategies. Right: Riot Games responds by updating the game’s code, thus
changing the space of possible strategies players can use.

act on the game’s current constraint, and Riot Games might not use a single function

to determine it. This analogy makes it easy to compare it League to biological systems.

6.3.1 Collecting Relevant Data

League is a very complicated and layered game in its own right. There are three

maps, seven match modes, and eight tiers of player skill. For this analysis, we only

collected data from players that have the highest skill ranking on the North American

server. League’s skill ranking system is crowned with the Challenger tier: Only the

top 200 players on each server occupy this skill tier. If a player is in the Challenger

tier, they are most likely a professional player and stream their matches on Twitch

(an online streaming service) for money. Several tournament players are in Challenger

tier as well.

In League’s player community, Challenger players often set gameplay trends. Since

they are the best-of-the-best players, lower-level players often imitate their strategies
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and gameplay styles in hopes of climbing the skill ranks themselves. Hence, we assume

that Challenger players are the players’ main strategy trend-setters. That there are

other aspects of lower-skill gameplay that are not addressed in this chapter. The main

point of this study is not to determine if this system evolves in an open-ended way,

nor does it explore what drives the open-endedness. Rather, the point is to determine

how this system evolves mechanistically and if these mechanisms can be generalized

to other levels of biological organization.

We also only consider matches that were played on League’s most popular map,

Summoner’s Rift. Since we want to ensure these players are playing their best (because

players can purposefully play bad games to entertain an audience), we only consider

Ranked matches. Ranked matches determine if a player stays in Challenger tier or is

demoted to a lower skill tier and are therefore taken more seriously by the players.

Here, we consider two consecutive game “patches”, or when the game code is

changed by Riot Games. Between the times that the game is patched, the game’s

constraints remain unchanged and constant. As a starting point, it will be easier

to assess two separate time periods in the data where the game constraints remain

unperturbed by developer intervention. These patches, named 7.2 and 7.3 by Riot

Games, were used 6 Jan 2017 to 7 Feb 2017 and 9 Feb 2017 to 22 Feb 2017, respectively.

One day between the two patches was discarded since the patch 7.3 was deployed that

day.

6.3.2 Methods

All game data is made freely available to the public by Riot Games, and can

be downloaded thorough Riot Games’ server API (Games 2016b). To save time,
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we used a pre-written Python 3.X package called Cassiopeia (“Cassiopeia” 2017) as

an interface to connect to the API. Datreant (“Datreant: Persistent, pythonic trees

for heterogeneous data” 2017) was also employed for fast and easy data sorting and

exploration.

6.3.3 Internal Mechanisms

Challenger tier players generate data by playing matches (ranked matches on

Summoner’s Rift). Between patches, the game is fixed in the sense that it has a static

code underlying the game and a pre-defined state space of strategies; there are only so

many different things players are able to do with the game’s current code. In physics,

systems typically evolve under a pre-defined state space. This makes them easier to

understand conceptually. Equations are used to quantify how systems move through

and explore the pre-defined state space. For this reason, this part of the data is the

best place to start with the intention of understanding the game’s dynamics as a

whole. In other words, we begin our analysis by using player-generated data between

Riot Games’ game changes, where the game’s code is unchanged and the constraints

that the players experience are constant.

How are the players moving through the strategy space? Presumably, players

want to win matches and are picking strategies to help them achieve that goal. So is

the players’ trajectory their way of discovering optimal strategies to win the game?

There is a subtle conceptual pitfall here based on what the data represents. Despite

Riot Games’ attempts to make all of its champions equally competitive, there is no

reason to assume there is a pre-existing optimal champion or strategy to use. All

knowledge about how players explore strategies (including Riot Games’ knowledge) is
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based solely on player data. There are only a finite number of possible states the data

can be in at any given time. There is also no explicit “best” strategy that is optimal

at any given time. However, players supposedly seek a type of optimum by exploring

possible strategies and using the ones that win the most games. This could be an

analogy for biology since organisms and species evolve by exploring the possibility

space of phenotypes and use the ones that are the most “successful” at a particular

time.

There are several different ways to quantify how the players explore possible

strategies and evolve the current “metagame.” The term “metagame” is akin to the set

of most successful strategies being used at a given time. In an attempt to quantify the

metagame, which champion beats what other champions will be the main definition of

a successful strategy.

Champion selection is a core mechanic of selecting a strategy. If a player sees the

enemy team picks the champion “Teemo”, the player is likely going to pick a champion

that can beat “Teemo,” such as “Talon.” This decision is guided by knowledge from

past experiences. In previous games, the player was successful in beating “Teemo” with

“Talon” (or perhaps participated in games where they observed this interaction between

other players) several times. In other words, players have some general knowledge

about the current metagame and how to leverage it towards their advantage.

Since there is no explicit optimal strategy, only player-generated data is available

to determine which champion beats who. Let’s say champions A, B, C, D, and E are

used on Blue team, and champions V, W, X, Y, and Z are used on the Red team for a

single match. Blue team wins the match. We say that in this match, champion A beat

all Red team’s champions (V, W, X, Y, and Z), W beat all Blue team’s champions

(A, B, C, D, and E), etc. This is a generalization of high-level play, since all players

154



Figure 45: The champion “Teemo” beat the enemy champion “Tristana”. On a graph,
this is represented by an arrow going from “Teemo” to “Tristana”.

on Red team interact with all players on Blue team frequently during a single match.

This also simplifies the analysis.

This can be represented as a network, where if the character Teemo beat the

champion Tristana, the interaction is represented by a directed edge from node

“Teemo” into node “Tristana”, as shown in Figure 3.

For an aggregate of matches, edges have weights to represent exactly how badly

“Teemo” beats “Tristana” during those matches. These weights are quantified in the

next section.

6.3.4 Meta Strategy Trends

When League was first released in 2009, any champion was played on any spatial

location on the map by the players. As time passed, players decided that having

certain types of champions on certain locations of the map was preferred. Since the

community made this decision, a team’s general spatial organization has not changed
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for over 6 years. In some sense, players reached a consensus on a firm “meta”, the

player-community term for a persistent and uniquely identifiable strategy trend.

Within this firm meta, metagames are regularly explored. For example, high-

damage characters might be very popular during one patch. After some time, the

champions that easily beat the sub-meta champions (tough champions that do not

take damage) become popular, simply because they counter the current metagame.

Thus, the counter metagame becomes the new metagame. This minor metagame

rotation is reminiscent of negative frequency-dependent selection in biology (Allen and

Clarke 1984). An agent-based model could be used to further explore these metagame

dynamics as emergent strategy dynamics among players.

Since players respond to current metagame by finding counter-strategies within the

firm meta, the system retains a type of memory. There is an underlying mechanism

that causes new metagames to emerge while allowing the firm meta to persist, even if

a better firm meta may exist.

6.4 Constructing Networks

To represent the players’ internal dynamics under constant constraints (during

a single patch, when the games’ code is unchanged), a champion counter network

is created to see how champion “power” changes over time. In this context, power

is used to describe how dominant a champion is over other champions, given a set

of match data. This is a simple way to represent player strategies. Dominant or

powerful champions are often more likely able to win games, regardless of the rest

of the team’s performance. Players often consider these champions to be powerful,
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while other characters could be considered under-powered (“Who would ever play that

champion?” a player might remark).

At any given minute throughout the day, anywhere from 10 to 100 matches are

being played by challenger-tier players. Matches can last anywhere from 20 to 60

minutes (a hard minimum of 20 and a rough higher estimate on the 60). It is unclear

if the game has a natural time scale, which makes it difficult to identify individual

time steps. All matches were binned into days according to their start times. This is

arbitrary, but since Riot Games’ changes occur anywhere between 1 and 3 weeks, it

seems like a reasonable time unit for network analysis.

Edge weights between champions i and j are constructed for a given day:

wi→j = popularity × winrate

wi→j = matcheswithivsj
totalmatches

× numberofmatcheswhereibeatj
matcheswithivsj

=
Ni→j

M

Since edge weights change on a daily basis, the network is dynamic with respect to

time.

6.4.1 Power

For this analysis, eigenvector centrality (EVC) is used as a representation of a

node’s power. For a weighted adjacency matrix W with EVC values xi, eigenvector

centrality is defined as:

Wx = λx

x = 1
λ
Wx

xi = EV Ci = 1∑nj = 1wi→jxj

Google uses a modified version of EVC to determine the webpage rank as the result

of a Google search (Austin 2017). Colloquially, EVC represents how much influence a
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Figure 46: The rank-ordered EVC distributions of champion nodes over patch 7.2.
The blue line is the distribution over the entire patch and the green dashed line is the
distribution over the last half of the patch.

node has in a network, as described earlier. It not only considers how many in-degrees

or out-degrees a node has, but the degree of nodes it is connected to as well. A node

with 5 connections has a higher EVC value when the nodes it is connected to are also

highly connected. With this metric, we are interested in two questions to understand

how a champion power hierarchy is formed and maintained. (1) What happens to the

power over time in champions that were changed in the last patch? (2) What happens

to the power over time in champions that are going to be changed during the next

patch?

To gain a general sense of the distribution of power in the game, all data for a

single patch was aggregated into a single network. The distribution in Figure 46 shows

the EVC ranking of champions over patch 7.2. This represents a larger time scale

than individual days.
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Figure 47: Left: The rank-ordered EVC distribution of champion nodes for the first
day of patch 2.7. Points on the upper and lower half of the distribution are colored
blue and red respectively. Colors simply correspond to their rank position on the first
day of the patch as the top 50% and bottom 50%. Left: Without changing the colors
of the nodes, the distribution of EVC is shown for the last day of the patch.

The same analysis was completed for individual days, but each individual day had

an approximately linear distribution. Since the distribution over the whole patch is

non-linear, this indicates that points on the linear daily distribution move up and

down the distribution day by day (Figure 47). This figure shows the same ranking of

EVC values, but on the time scale of individual days. This distribution is linear, as

opposed to the non-linear distribution for the larger time scale.

The majority of champions on the upper half of the distribution continue to remain

on the upper half from day to day. The non-linear distribution on a larger time

scale and the linear distribution on a smaller time scale remained largely invariant

for their respective time scales. However, the non-linear distribution from the larger

time scale suggests there may be an underlying dynamic on how the linear daily

distributions change point ranking. This phenomenon may indicate a type of dynamic

equilibrium in the game’s dynamics, which is characterized on a larger time scale by a

non-linear distribution. The EVC values for individual nodes over time were analyzed
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to address this phenomenon. No clear trends were found for the accumulation of

nodes (champions), so it was more fruitful to analyze specific champions, particularly

ones that were changed during the two patches (Figure 48).

From Figure 48, it is unclear whether Riot Games’ patches were beneficial to the

“power-balance” of the corresponding champions. In other words, it is unclear whether

Riot Games’ patches accomplished the goal of adjusting the champions towards a

more equal distribution of power. In Figure 48a, “Akali” was buffed (made better

in some way) and “Graves” was nerfed (made weaker). Their EVC values after the

patch 7.2 changes seem to suggest the opposite. Only a few champions seemed to

have benefited from their changes. Figure 49 suggests a better indication of what

champions need future changes for the majority of champions, though these changes

still missed the mark on champions like “Rengar” and “LeBlanc” since their EVC

values decrease over time, yet they are nerfed anyways.

Since champion power levels depend on each other in a very intricate way, buffing

or nerfing a particular champion doesn’t seem to have the desired effect on that given

champion. For example, if champion A beats champion B, nerfing champion A is an

indirect buff to champion B. Since this system is highly connected, making changes to

the game can perturb the network in unforeseen ways. A deeper understanding of how

elements of the system (such as champions in this context) affect each other rather than

analyzing the element dynamics themselves seems to be a more insightful direction

of inquiry than a network approach. Although networks are useful in understand

the direct relationships between entities, an agent-based-modeling approach might be

more useful in understanding how these entities interact in a complex system.

For example, we could model agents who randomly select champions based on a
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Figure 48: The EVC values for select champions (colored lines) over time. Dotted
lines indicate champions that were “nerfed” (made weaker in some way) and solid lines
indicate champions that were “buffed” (make stronger in some way). The top panel
shows the champions that were buffed or nerfed at the deployment of patch 7.2. The
bottom panel shows the champions that were buffed or nerfed at the deployment of
patch 7.3.
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Figure 49: The EVC values for select champions (colored lines) over time. Dotted
lines indicate champions that were “nerfed” (made weaker in some way) and solid lines
indicate champions that were “buffed” (make stronger in some way). These champions
were buffed or nerfed at the deployment of patch 7.3.

distribution derived from the data. Match outcomes could be decided on factors such

as the agent’s skill and data-based outcomes on which characters win against which

other characters. From such a model, are the same EVC distributions produced over

the rank of champions? We could also incorporate feedback, updating the champion-

selection distribution based on the resulting EVC distribution. Such a model will be

explored in the near future.

6.4.2 Player Perspectives

Are players aware of the entire network’s structure at any given time? Players

only observe interactions between 10 nodes per match, so it is unlikely they observe

interactions that include all the 140+ champions every day. Players observe a smaller

network from only the matches they participated in. If their goal as a player is to
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win, are they increasing the EVC value on their champions’ nodes in their smaller

network of observed interactions? How do the EVC values of these smaller networks

compare to the EVC values of the whole network?

In addition to these questions, it’s important to highlight the two different kinds

of League players. There are players who mainly stick to playing a single champion,

and players who play whatever they think will help them win matches. We denote

these players as Type 1 and Type 2, respectively. Type 1 players who stick to a

single champion over time have more influence on a node. They actively maintain

the state of a node and its connecting edges. In some sense, this is a lot like a

system’s stability. Type 2 players who only play certain champions to win and the

player who are more exploratory and perhaps even more innovative. Their presence

contributes to nodes that are likely more powerful. In another sense, they’re a system’s

innovation-apparatus.

6.5 Wrap-Up

So far, we’ve only considered a few components of League’s dynamics. Instead of

using EVC as a metric, it could be fruitful to explore perturbation centrality measures

(as in Szalay and Csermely 2013), since game changes occur frequently. Our next

immediate goal is to explore other ways of quantifying the players’ dynamics besides

using a network, such as the agent-based models discussed previously. In addition, the

idea of smaller player-observed networks described in the last section can be studied

for practical purposes. Do players have unique “personal network” unique to their

own match history or is the network topology similar for any given Type 1 player?

It could be possible that if players have personal networks, cheaters can be detected.
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The most common form of cheating is when players purchase high skill-level accounts

to use them as their own. Another is using external code to artificially improve a

player’s skill. Cheating could be flagged by tracking sudden topological changes in a

player’s personal network.

Understanding the rest of Figure 2 is beyond the scope of this paper, but can

be addressed in future studies. In particular, what signal is Riot Games gathering

from the players’ dynamics? How is this signal processed and translated into game

updates? How do the game’s constraints on the players evolve? Finally, how do all

these dynamics interact and aggregate to evolve the entire game as a whole? One

could argue this data could be a useful compared to population dynamics data—both

measured from real systems and generated from computer models. In League however,

this data exists on the boundary between real and computer-generated: real human

players are using computers to interact with each other through software and the

Internet. The game encompasses both types of data used in population dynamics

studies. Returning to the negative-frequency dependence selection analogy to describe

player strategy dynamics, it would be useful to see how League data compares to both

real data and purely computer-generated data.

Physical laws as we currently understand them are insufficient to describe biological

phenomenon such as heredity, adaptability, and the number of global tweets per minute.

If we were to somehow rewind the universe to the point of the Big Bang, is the presence

of life somewhere in the universe inevitable? Perhaps the reason this quest is so difficult

is our lack of a fundamental understanding of biological data, although this is certainly

up for speculation.
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Chapter 7

FINAL REMARKS

So what is to gain from this dissertation? Mainly, it is not simple to analyze data

that represents complex and/or living systems. This is largely because data is merely

an abstract representation of a collection of real things, which is perhaps the reason

why its analysis has not yet yielded to a comprehensive theory of living systems. Of

course, this could be due to the fact that we simply need to do more data analysis– a

lot more– although this approach comes with its own set of problems as well (Calude

and Longo 2016 and Buiatti and Longo 2013). In short, given multiple large sets of

numbers (multiple sets of data), correlations are always guaranteed to appear (Calude

and Longo 2016), even if they are, for all practical purposes, absurd (Vigen 2017).

In this concluding chapter, I explore a new approach to representing the world so

that better data (more encompassing data for real living systems) can be collected.

This is by no means rigidly mathematical, nor founded on solid theory. Instead, this

is simply an exercise in simplifying what has been discussed so far in a way that is

deliverable in less words and could serve as a starting point for future, more rigid

mathematical discussions on living systems.

There seems to be a general agreement that living systems need at least three

components to exist: (1) A physical substrate to exist in, like molecules and atoms, (2)

a way to process information in some way through sensing, (3) and a meta-rule that

governs how information processing should change over time, e.g. evolution. However,

the exact relationship between these three ideas remains largely unclear, particularly

how information processing and its meta-rule emerges from matter. Are the laws of
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nature somehow embedded within current mathematical models? This is likely not

the case. Consider the quantum description of a hydrogen atom. It is highly unlikely

that using the same description for the Krebs cycle, if even at all attainable, would be

of any use for understanding the aerobic processes of a cell.

7.0.1 Physical Substrates

Coulomb’s law does not exist where there are no charges23. Therefore it may be

impossible to find the laws of life in systems that are not living. A single bacteria

in a petri dish may not actually be a living system even though it is, in fact, alive.

There should be a strict distinction in our awareness of “life” and “alive”. Although a

single molecule may not be considered alive, such as RNA, it is considered by most be

an essential part of life. The current search for extraterrestrial life is focused mainly

on the detection of biosignatures, which may not be alive themselves but are an

indication that life is present. Without life, those biosignatures would not be present,

whatever they may be. A mahogany table, which is also not considered alive, would

be considered a biosignature of life since it is unlikely to be found where life is not

present. Yet, biosignatures are significant to the environment of living systems (think

of your own home). On a cellular level, if we are prepared to say an RNA is life

although itself is not alive, then we must be prepared to accept entities produced and

used by life as a part of life. That is to say, a mahogany table is certainly a part of a

living system since it has been generated by life and is used by life.

It is therefore too difficult to delineate the boundary between life and its envi-

23This is a deep, deep philosophical argument, but here I am strictly asserting a claim on this
side of the argument.

167



ronment. This is my first preposition: that we should move away from drawing a

boundary around life and its environment. There should only be physical pieces of

reality, whatever those may be, whether or not we can sense them.

7.0.2 Information

For humans, reality is defined by what we sense. Even though there is a strong

assertion to announce that objective reality exists, we can only attribute this to the

agreement of common observations between people. This consistency, although useful

for constructing theories about reality, is not reality itself because it only exists within

observers.

Sense is the capturing of information. Information, in some way, can be colloquially

understood as “a difference that makes a difference” (Brender 2012). As far as this

can be understood using the theories of computation and information, this includes

necessary things like memory, state, and some sort of interactions between entities.

Living systems have this ability to sense and to perceive information about internal

or external things. Being able to collect this information greatly depends on the

observer’s ability to sense and perceive, which could be attributed to the current state

of the observer.

7.0.2.1 Memory

Within physical states (or configurations/arrangements of matter), the notion

of memory is embedded. In computational theory, memory is the preservation of

past states through the current configuration of bits in a current state. A system
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has memory if it retains properties about its previous configurations in its current

configuration. However, the movement from bits to the real physical world is difficult,

since it moves from an abstract realm to one laden with specific details. In the physical

world, bits are understood by human notions of yes or no, up or down, left or right.

If I lay the popcorn bag this-side-down then it is distinguishable from laying the

popcorn bag this-side-up. The world outside computers preserves our understanding

of memory in the way that if a person changes something, then that change can be

seen for some amount of time. If I change the facing of my popcorn bag, then that

action is transcribed in the world by the bag’s facing24. In this sense, a person’s

memory is no longer limited to their own brain. A human’s physical interactions with

the world ensures that memory is preserved in the world in some way.

As living systems change external properties about the world (the arrangement

of things within a room, for example), cause-and-effect are greatly entwined with

the idea of recovering the past from physically inscribed memory. Imagine a banana

taped to a ceiling of a kitchen. How did it get there? Clearly, there must be some

cause for the effect to having a banana affixed to the ceiling. The number of causes

is also relatively large, even on a macroscopic scale; who put it where, rather than

what arrangement of individual atoms put it there. This loss of information relevant

to an individual observer has been postulated as the origin for the arrow of time

(Maccone 2009). This phenomenon is most commonly studied in thermodynamics and

statistical mechanics: Given a current state s ∈ S, where we can assume S is finite,

albeit unimaginably large if the universe is finite (otherwise we assume S is infinite),

the number of possible causes |C| from the point of view of an observer o ∈ O is

24This is also the purpose of keeping a notebook. By changing the properties of the physical world
(writing in a notebook), the mind’s thoughts are stored elsewhere than the mind itself. A person can
access the notebook (physical memory) instead of preserving the thoughts within the mind.
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greater than 1.

|C|o > 1 | s (7.1)

7.0.2.2 Perception

Complexity theory is so far constrained to our own perception and measurements

of a system that we ourselves are embedded in. Knowledge can only be constructed

by our observations, which are constrained by our physical senses. As first-order

observers, we may not be in a position to provide an observation of complex systems

that has enough information to construct a consistent theory. If only we could become

second-order observers and gain a bird’s-eye view of a complex system then we might

be able to gain more information to explain away what is currently unexplainable.

Imagine an event that occurs within view of multiple observers. Do all observers

perceive the same things? Unless each one of those observers is in exactly the same

physical state (location and molecular configuration) then the answer is no. Yet we,

as humans, assert there is consistency between us in various ways. The sky is blue,

concrete hurts when fallen upon, and Nickleback is a terrible band. Even though we

all receive different information about our world, we are able to use language that

excludes minute differences to come to an agreement in perception.

This is the strength of the scientific method. It provides a set of requirements that

multiple observations must meet in order to make a statement about the world. This

is the basis that theories emerge. Newton’s First Law is the language used to describe

many many observations made under similar constraints. It is under this assumption

that the word “theory” can be used to describe an agreement among observers about

an event, or set of events, in a general sense. Within this context, observations refer
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to the ability to perceive information about something, internally or externally to an

observer, which depends on the current state of the observer and the ability for the

observer to perceive. In other words, perception can be an attribute of the state of an

observer, which is a physical entity.

7.0.3 Observers

The observer is a physical entity made of physical components. The fact that it

can “make observations” is attributed to the fact that it can be physically manipulated

by external factors, much like a hard drive can perform read/write functions given a

command. In this example, a hard drive is certainly an observer, since it perceives

commands from a computer’s user to change some aspect about itself. An observer

could therefore be defined as a physical entity that undergoes differences when it

receives a signal that prompts it to do so. However, this depends entirely on the signal

as it does the current state of the observer. More on this later.

However, this implies that there is no differentiation between data and programs,

or states and laws. And why should there be? Although it would be a positivist

approach to assert that the laws of a system are the state of the system itself, this is

not unlike many current theories in science. Coulomb’s law does not exist where there

are no charges, after all. Although this approach is insufficient to explain phenomena

about the teleological nature of living organisms, it is at least consistent to appropriate

the laws of nature as observed properties of nature itself. One approach in biology is

that the structure of a molecule is most likely its function (Abbot 1916); if a protein

looks like a turbine, it most likely is a turbine. For macromolecules and smaller (at the

very least), their physical attributes are enough to explain how they will interact with
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other entities of the exact same type. Even of interactions with entities of different

types, such as ribosomes interacting with cholesterols, the rules of their interaction

depends entirely on both entities’ physical states without external perturbations. In

the absence of external forces, both entities dictate how each entity will evolve to a

future state.

However, it is completely absurd to discuss entities in vacuums, devoid of any

interactions and messy, multi-leveled perturbations with the goal of understanding life.

Rather, the world is full of observers on many levels of organization where elements

of one observer may also be an element of another observer on the same or different

scale. Thus the boundary around observers is not well-defined. For this reason, it

is even more difficult to bound an observer from an environment. Instead, we must

either retreat from the notion of observer, or understand the observer in terms of an

emergent sense. In the latter case, it may in fact be true that observers have blurry or

non-existent boundaries on many levels. For the former case, it is difficult to justify a

world without observers. Although this description of the world may be useful, we as

humans consider ourselves to be observers and it would be too difficult to traverse a

path towards that agreement.

7.0.4 Emergence

To summarize the discussion so far:

• Living systems are composed of physical things and entities,

• Memory, the ability to sense/perceive, and information are attributes of physical

configurations (states) of physical matter,

• Observers are composed of physical substrates and have the ability to sense, and
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• The boundary defining an observers is not well-defined on many levels of scale and

organization, along with the boundary between an observer and its environment,

and

Under the existence of physical entities, information can be understood as the

physical configurations of those entities and how those entities interact. Yet, we are

still missing the third component of living systems: How do information-processing

rules change over time? In other words, how does emergence in the most general sense

(emergence of levels of organization, functions, processes, etc) happen in a physical

system?

Since we are no longer assuming any explicit boundaries between entities and

their environments, as well as boundaries between multiple observers, we are left with

entities themselves. For completeness, all entities should be defined as sets of entities:

e = {e} (7.2)

and all the states of entities are laws that dictate their evolution:

se = fe. (7.3)

The interaction between two entities (ei and ej) is defined by the combination of both

their functions:

ei ↔ ej := fei+ej = (fei + fej). (7.4)

Since an observer o is also an entity, we can define it as

oi := ej | fei+ej(sei) = s′ei 6= sei , where i can equal j, (7.5)

which reads “an observer is an entity that, given an interaction with another entity,

changes its state.” The existence of an observer becomes a question of the property of
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an entity’s state: an entity’s state must be posed to be altered by the state of another

entity in some way via an interaction. I was explicit in making sure an observer is

allowed to interact with itself, which intuitively includes things like the observer as a

whole being an internal process, although this is certainly up for debate. In addition,

an entity e = e1 ∪ e2 ∪ ...en can interact with the entities it is composed of, such as

e1. This framework allows for any entity, made of entities, to interact with any other

entity, made of entities.

For fun, let’s explore the limits of such entities:

lim
|e|→∞

{e} = Universe, (7.6)

that is to say, the largest possible entity is the Universe. Furthermore, the state of

the Universe dictates how it changes. In the other direction:

lim
|e|→0
{e} = 0, (7.7)

meaning an entity composed of no entities is non-existent, an empty set.

Although this exercise has been in no means rigorous, it serves as a mental road

map for thinking about the world in a way that allows the emergence of living things.

Notions such as observers, levels of organization, boundaries, individuals, etc could

be expressed using a self-referential framework. It could be worth pursuing the

development of such a model to see if emergent functions like experience, meaning,

and cooperation are possible. However, it still remains unclear that these properties

of everyday life could be captured in such a model because of its tractability. How is

it possible to model an entity on a mammalian level with this framework? Given our

current implementation of programs and data in the context of computers, this may

not be possible to explore using modern technology. Because modern computers are

rooted in the idea of applying programs to sets of data rather than fusing programs
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and data together within the same physical state, living systems may quite simply

impossible to understand under our current computational framework.

7.1 Towards a New Model of the World

We currently have few insights into how living systems might quantifiably differ

from their non-living counterparts, as in a mathematical foundation to explain away

our observations of evolution, emergence, innovation, and organization. Development

of a theory of living systems, if at all possible, demands mathematical understanding

of how data is generated, collected, and changes over time, not unlike current well-

established scientific disciplines. After all, living systems are comprised of physical

elements: atoms, charges, and masses. It seems that it is only a matter of time

before someone comes along and fits a mathematical model that bridges the gap

between our observations of living systems and current scientific models. Given a

collection of observations on some level of scale–chemical, quantum, astronomical–a

mathematical model is invented to explain and, more importantly, predict those

observations. Through this process, most scientific disciplines are formed.

According to many philosophers who agree with Alfred N. Whitehead, the folly of

these various (largely) disconnected scientific disciplines is the omission of perfectly

valid observations and measurements in order to satisfy a rigid mathematical approach.

Human thoughts such as “What do yellow tulips mean?” and “What was I thinking

when I ordered that nasty taco” have no place in current mathematical models.

Although Fourier transformations can be easily applied to classical music in order

to analyze which frequencies are most common, it lends no understanding to how it

makes a person feel or what thoughts it elicits to the listener. The elimination of such
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details (details that are common and entirely vital in living systems) is hindering our

understanding of what life is and what not-life is. As Whitehead is so insistent about,

the mere observation of facts as positivists is a nonsensical approach to understanding

Nature. Why should scientists only be concerned with plain descriptions of Nature

without probing their underlying meanings? Common criticisms to this claim include

using teleology, or giving ‘will’ or meaning to objects. Here, it is important to draw a

boundary where ‘meaning’ is being applied: Studying meaning does not imply that

all objects have a ‘meaning’, such as the ‘meaning of an electron moving through a

magnetic field.’ Instead, the idea of ‘meaning’ is given to living entities, much like we

humans draw meaning from printed symbols. An RNA molecule has a well-defined

function in the appropriate context of a cell, which is not to exclude ‘meaning of the

RNA to the cell’. Subjectivity, rather than pure objectivity, of the laws of

nature should be emphasized.

Current mathematical models that describe the precession of physical entities thor-

ough space-time, or any combination of such entities, are not sufficient to understand

the phenomenon that are more common to experiencing everyday life as humans

(Whitehead 1927, Whitehead 1928, and Whitehead 1934). And yet, we remain largely

ignorant to the importance of experience and sensing. I want to stress that although

these terms are generally used to describe the human experience, it should not exclude

the most general notions of experience and sense as possible. For example, how does

a cell ‘sense’ RNA? Because of this failure, and perhaps others, we currently lack a

coherent theory general enough to encompass important aspects of life, which are the

crux of commonplace thoughts and feelings among humans that drive our societal,

and possible other biological, processes.
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ABSTRACT

Supporting information and techincal details for the manuscript Formal Definitions of Unbounded Evolution and Innovation
Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems.

1 Description of Implementations of Time-Dependent Cellular Automata Variants
We consider three new variants of cellular automata (CA) to identify mechanism(s) that can produce conditions necessary for
open-ended evolution (OEE) in bounded regions, subject to the formal criteria for OEE laid out in Definitions 1 and 2 in the
main text. We consider definitions of unbounded evolution (UE) and innovation (INN) that are applicable to any instance of
a dynamical system u that can be decomposed into two interacting subsystems o and e. Each CA variant implements time-
dependent rules for o, with different functional forms f for this time-dependence. Here we describe in detail the implementation
of each variant considered.

1.1 Case I: Deterministic State-Dependent Rules in Subsystem o
The first variant, Case I, implements state-dependent update rules. Case I CA are composed of two spatially separate, fixed-
width, 1-dimensional CA: an “organism” o and an environment e. Both o and e are implemented with periodic boundary
conditions, and utilize the alphabet {0,1}. The environment e is an execution of an ECA, and is evolved according to a fixed
rule drawn from the set of 256 possible ECA rules, with periodic boundary conditions.

The subsystem o updates its rule according to a function f such that ro(t +1) = f (so(t),ro(t),se(t)), where so and ro are
the state and rule of the organism and se is the state of the environment. It is evolved with periodic boundary conditions.
The expressed ECA rule of o at time t, ro(t), is represented by the eight-bit binary representation of its rule table1, e.g. an o
implementing Rule 30 at time t will have ro(t) = [0,0,0,1,1,1,1,0] (see main text Fig. 3). We refer to individual bits within
the rule by the index i such that ro(t)[1] = 0, ro(t)[2] = 0, ro(t)[3] = 0, ro(t)[4] = 1 etc. for an o implementing Rule 30 at time
t. The binary representation of ECA rules are structured such that each successive bit i iterated in this manner represents the
output of application of the rule to the ordered set of triplet states S3 = [111,110,101,100,011,010,001,000].

The function f for our example implementation of state-dependent CA is constructed such that at each time-step t it
compares the normalized frequency of each triplet i in S3 in the state of o and e, so(t) and se(t), respectively, and flips the
corresponding bit i in ro(t) if i is expressed in so and the normalized frequency of the triplet in so(t) meets or exceeds the
normalized frequency in se(t) (where the frequency is normalized relative to the number of possible triplets in the state). That
is, at each time-step t, a bit i in ro(t) will flip 0↔ 1 if ni(so(t))≥ ni(se(t)), where ni counts the relative frequency of triplet i.
Formally,
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ro(t +1)[i] =

{
ro(t)[i] if ni(so(t))≥ ni(se(t))
ro(t)[i] if ni(so(t))< ni(se(t))

(1)

where the overbar represents logical negation.
An example implementation of this update function is shown in Fig. 4 in the main text, where an “organism” o with wo = 4

is coupled to an environment e with we = 6, and ro(t) = [0,0,0,1,1,1,1,0]. In the example, only for i = 3, corresponding to
the triplet {1,0,1}, is n3(so(t))≥ n3(se(t)). Therefore, ro(t +1)[3] = ro(t)[3] = 0̄ = 1, as shown schematically in Fig. 5 in the
main text. In this example, the interaction of o and e under f changes ro from Rule 30 at time-step t to Rule 62 at t +1.

1.2 Case II: Deterministic Time-Dependent Rules in Subsystem o
The second variant, Case II, is similarly composed of two spatially separate, fixed-width, 1-dimensional CA: an “organism”
o and an environment e. As with Case I, both o and e are implemented with periodic boundary conditions, and utilize the
alphabet {0,1}. The environment e is an execution of an ECA, and is evolved according to a fixed rule drawn from the set of
256 possible ECA rules, just as in Case I.

The key difference between Case I and Case II CA is that for Case II, the subsystem o updates its rule according to a
function f such that ro(t +1) = f (se(t)). That is, for Case II the update rule of o depends only on the state of the external
environment se and is independent of the current state or rule of o (that is, o is not self-referential). Formally,

ro(t +1)[i] = se(t)[i] (2)

Here ro(t) is determined uniquely by se(t), such that the binary representation of each possible state of the environment uniquely
maps to one ECA rule according to Wolfram’s binary classification scheme1. For this implementation the environment must be
of width we = 8 to mediate a bijective map between {se} and {ro}. Case II CA emulate systems where the rules for dynamical
evolution are modulated exclusively by the time evolution of an external system.

1.3 Case III: Stochastic Time-Dependent Rules in Subsystem o
The final variant, Case III, is composed of a single, fixed-width, 1-dimensional CA: the “organism” o. Like Case II, the rule
evolution of Case III is driven externally and does not depend on so. However, here the external environment e is stochastic noise
and not an ECA. In Case III CA, the subsystem o updates its rule according to a function f such that ro(t +1) = f (ro(t),ξ ),
where ξ introduces random fluctuations in the implemented rule of o by stochastically flipping bits in ro. Formally,

ro(t +1)[i] =

{
ro(t)[i] if ξ < µ
ro(t)[i] if ξ ≥ µ

(3)

where µ is a fixed threshold for flipping between [0,1), and ξ is a random number drawn from the interval [0,1). This
implements a diffusive-random walk through ECA rule space. Since the rule of o at time t +1, ro(t +1), depends on the rule at
time t, ro(t), the dynamics of Case III CA are path-dependent in a similar manner to Case I (both rely on flipping bits in ro(t),
where Case I do so deterministically as a function of so and se, and Case III do so stochastically).

2 Experimental Methods
The number of possible executions grows exponentially large with wo, limiting the computational tractability of statistically
rigorous sampling of the dynamics of each CA variant and of generating the set of counterfactual isolated ECA trajectories.
We therefore explored small CA with wo = 3,4, . . .7 and sampled a representative subset of all possible trajectories for each
wo (see Section 9 for examples of larger CA). We then generated statistics on the number of sampled trajectories satisfying
Definitions 1 and 2 for unbounded evolution and innovation, respectively.

2.1 Case I Experiments
For Case I, we must be specified in addition to wo. We consider systems with we =

1
2 wo, wo, 3

2 wo, 2wo and 5
2 wo . For

comparison to Case II and Case III CA, we = wo statistics are used. For each wo and we, the initial state of o, so(0), the initial
state of e, se(0), the initial rule of o, ro(0) and the rule of e, re, are drawn at random. For r0(0) and re, we only consider the
88 non-equivalent ECA rules, which dramatically reduces the number of possible cases, but still covers the full spectrum of
complexity in initial configurations. We then permit ro to evolve into any of the 256 possible ECA rules. We also ensure that no
two cases sampled are initialized with the same tuple {so(0),se(0),ro(0),re}.

2/20
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Table 1. The size of the randomly sampled subspace for Case I CA for each wo and we explored.

CA Variant wo #u % Explored CA Variant wo #u % Explored
Case I:
we =

1
2 wo

3 2.1×106 1.25
Case I:
we = 2wo

3 3.36×107 6.92×10−2

4 4.19×106 1.25 4 2.68×108 1.73×10−2

5 1.68×107 0.62 5 2.15×109 4.69×10−3

6 3.36×107 0.62 6 1.72×1010 3.16×10−4

7 1.34×108 0.31 7 1.37×1011 7.75×10−5

Case I:
we = wo

3 4.19×106 0.63
Case I:
we =

5
2 wo

3 6.71×107 3.91×10−2

4 1.68×107 0.31 4 1.074×109 4.88×10−2

5 6.71×107 0.16 5 8.59×108 1.22×10−3

6 2.68×108 7.81×10−2 6 1.37×1011 1.53×10−4

7 1.07×109 3.91×10−2 7 1.1×1012 3.81×10−5

Case I:
we =

3
2 wo

3 8.34×106 0.28

4 6.71×107 6.92×10−2

5 2.68×108 3.75×10−2

6 2.15×109 2.52×10−3

7 8.59×109 1.24×10−3

The space of all possible Case I CA executions is too large to explore the full space computationally. Since each e and o are
each initiated with a state and a rule, the number of possible executions is:

NU = N2
R×NSe ×NSo = 882×28we ×28wo (4)

where NR is the number of sampled initial rules for o and e, NSe is the number of sampled initial states for e, and NSo is the
number of sampled initial states for o. For wo = we = 3 and wo = we = 4, exploring the full space of all possible initial
conditions is computationally tractable, and verifies that the statistics reported herein for executions of o that display UE and
INN are characteristic of the full computational space for the smaller sample sizes implemented in this study. The number of
randomly sampled cases for Case I CA included herein is given in Table 1.

2.2 Case II Experiments
For Case II, we = 8 for all simulations, since this permits a bijective map from {se} to the rule space of ECA and thus the set of
rules {ro}. As with Case I CA, executions are initialized with a randomized tuple {so(0),se(0),ro(0),re}, ensuring that no two
experiments are initialized with the same tuple. We restrict attention only to we = 8 for Case II experiments in this study to
directly compare to our Case I and Case III CA. The number of randomly sampled cases for Case II CA is given in Table 2.

Table 2. The size of the randomly sampled subspace for Case II CA for each wo explored.

CA Variant wo #u % Explored
Case II:
we = 8 3 1.34×108 2.31×10−2

4 2.68×108 2.1×10−2

5 5.37×108 2.1×10−2

6 1.07×109 2.1×10−2

7 2.15×109 1.98×10−2

2.3 Case III Experiments
For Case III, a threshold µ for stochastic flipping of the bits in the rule table of o must be set. Results for Case III are given
for µ = 0.5 in the main paper, such that each outcome bit in the rule table at every time step ro(t) has a 50% probability of
flipping. Results for other values are reported in Section 5. Since we evolve only the subsystem o for Case III CA, executions
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are initialized with a random tuple {so(0),ro(0)}. We do not restrict sampled executions to unique tuples, since a different
random seed is set for each execution. The number of randomly sampled cases for Case III CA is given in Table 3.

Table 3. The size of the randomly sampled subspace for Case III CA for each wo explored.

CA Variant wo #u % Explored
Case III:
Random 3 5.24×105 10

4 1.05×106 5
5 2.1×106 5
6 4.19×106 5
7 8.39×106 5

3 Calculating Recurrence Time, Compressibility and Lyapunov Exponent
Recurrence times for the state- and rule-trajectory of o were calculated to identify cases exhibiting UE and thus OEE. The
complexity of the state trajectory {so(0),so(1), . . .so(tr)} was measured by means of its compressibility (C), and calculation of
the Lyapunov exponent (k).

3.1 Recurrence Time
For Cases I and II,we measured the recurrence times t ′r and tr for o, for both the rule evolution {ro(t1),ro(t2),ro(t3) . . .ro(t ′r)}
and the state evolution {so(t1),so(t2),so(t3) . . .so(tr)}, respectively. Recurrence times were calculated by determining the time
tr or t ′r when the sequence of states or rules of o, respectively, repeated. In general, tr and t ′r for o are not the same as for the full
system u (or as each other, such that often tr 6= t ′r, see Fig. 1 in the main text). We therefore first determined when u repeated
the tuple {so,se,ro} such that {so(t ′),se(t ′),ro(t ′)} = {so(t),se(t),ro(t)}, where t < t ′. We then determined the tr such that
{so(tr),so(tr +1), . . .so(t ′)}= {so(ti),so(ti +1), . . .so(tr)} for ti < tr (and likewise for t ′r with the replacement ro for so). The
time step ti is identified as initiation of the attractor dynamics for o. In many cases, we find attractors that are unbounded and
innovative by Definitions 1 and 2, in addition to full trajectories up to recurrence. An example illustrating the expected Poincaré
time for o, tP, its recurrence time for the state trajectory tr and the attractor size for the full system u, ta (up to the recurrence
time t ′ for the full system) is shown in Fig. 1.

Figure 1. Relevant timescales for describing the dynamics of o embedded in u. Shown are the Poincaré recurrence time tP
(blue) for an isolated ECA of the same width wo as o, the state-trajectory recurrence time tr of o (red), and attractor size of the
full system u, ta (green).

Since Case III CA are stochastically evolved, their dynamics do not repeat with a unique recurrence time tr for o. However,
all executions sampled eventually terminated in an oscillation between the two homogeneous states (all-‘0’s or all-‘1’s). These
states are attractors for every fixed rule ECA evolved under periodic boundary conditions, so once a Case III CA evolves to
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either homogeneous state, no heterogeneity will ever be produced (the dynamics behave somewhat like dissipation of the
heterogeneity in the initial state). We therefore consider it more meaningful to calculate the number of time steps before
convergence to this oscillatory attractor in place of the recurrence time tr, which we denote by tr for consistency of notation with
other cases explored. We therefore capture the timescale of relevance for all interesting (and potentially complex) dynamics,
which occur in the transient before converging to this attractor.

3.2 Compressibility
The Kolmogorov-Chaitin complexity of string s is defined as the size of the shortest computer program p running on a universal
Turing machine U that produces the string s (here s is the sequence of states of o):

KU (s) = min{|p|,U(p) = s} . (5)

Although it cannot be computed exactly, it is lower semi-computable and can be approximated by using a general lossless
compression algorithm L2. This upper-bound approximation of the Kolmogorov-Chaitin complexity is normalized according to
a normalized compression measure C:

C(s) =
L(s)

max(Ci(s), length(s))
. (6)

Throughout this paper Ci is output of the Compress algorithm based on the LZW algorithm2. It can be replaced by the output
of any other compression algorithm. The measure is therefore a family of possible indexes approximating K. We use C as
measure over the state-trajectory of the organism o for each execution u, as an approximation of the characteristic complexity
of o in the limit of large times t→ ∞.

Large values of C indicate low Kolmogorov-Chaitin complexity, meaning the output can be produced by a simple (short)
program p. The normalization constant max(C(s), length(s)) was calculated by measuring the number of bits resulting from
a generalized compression algorithm for the Poincaré recurrence time of the entire system u, not an isolated organism. This
allows normalizing the observed C to its maximum possible value for an organism coupled to an environment. This closely
approximates an upper limit in C for the longest possible non-repeating trajectory for any given o.

In order to ensure the normalization constant for an organism of width wo is a close approximation to the maximal value,
Ci(s) was calculated for 107 randomly generated ECA of width wo, evolved with a fixed rule for 22w time steps, where w is
the width of u, such that w = wo +we. The maximum of this set was used as the normalization constant max(Ci(s), length(s)).
Thus, all C values are normalized relative to the maximal complexity of a CA evolved according to a fixed dynamical rule.

3.3 Lyapunov Exponent
The Lyapunov exponent k captures the speed at which a perturbation moves through a system3, thereby quantifying sensitivity
to initial conditions. In CA, k can be, in general, measured by perturbing a single bit in the initial condition, and counting how
many bits differ compared to the unperturbed time evolution in each time step:

y(t) = Hio[si(t),so(t)] (7)

where Hio is the Hamming distance between the state of the perturbed system i and the original organism o, which is evaluated
at each time step t. The resulting time series of y(t) values can be approximated as an exponential function, y(t) = ekt , where k
is estimated numerically. High values of k indicate sensitivity to perturbations, which is typically associated with complex
dynamical systems, such as those that occur in deterministic chaos.

4 Statistics of Sampled Trajectories Displaying Innovation (INN)
Tables 4 and 5 show the resulting statistics for sampled o that were found to be innovative (INN) according to Definition 2.
Table 4 includes all three CA variants as well as ECA counterfactual trajectories used as a control. Table 5 shows results for
state-dependent Case I CA as a function of varying environment size we. Innovative o were identified as having a state-trajectory
that cannot be reproduced by any closed, fixed rule ECA of equivalent width w = wo.

5 Recurrence time frequency distributions
The frequency distribution of tr observed for sampled state trajectories of o in Case I, Case II and Case III CA are shown in
Figures 2,3 and 4, respectively. Comparing the three cases reveals that for equivalently sized ensembles of sampled trajectories
for Case I, Case II, and Case III CA, the Case I CA generate OEE cases with higher statistical certainty than either the Case II or
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Table 4. Percentage of sampled cases displaying INN for each CA variant.

wo ECA Case I (wo = we) Case II Case III
3 0 54.62 99.98 99.82
4 0 74.66 99.97 99.87
5 0 92.56 99.97 99.92
6 0 88.14 99.97 99.94
7 0 97.14 99.97 99.97

Table 5. Percentage of sampled cases displaying INN for Case I, with varying environment size we.

wo we =
1
2 wo we = wo we =

3
2 wo we = 2wo we =

5
2 wo

3 30.72 54.62 70.10 86.04 93.29
4 33.32 74.66 86.57 95.52 97.47
5 32.42 92.56 96.22 98.32 98.72
6 35.64 88.14 97.03 98.91 99.29
7 52.92 97.14 97.43 99.51 99.63

Case III CA for most parameters explored. This is especially true for cases where we > wo in Case I simulations. From Figure 2
it is evident that larger environments yield more UE cases with tr > tP and in general result in longer observed recurrence times.

Case II CA yield fewer OEE cases as wo increases, as evident in Figure 3. As discussed in the main text, Case II is not
scalable as it would require changing the structure of the rules of the organism o.

Case III CA generate fewer OEE cases than Case I as the width of o increases, with no cases observed in our statistical
sample for wo > 7 for µ = 0.5 (Figure 2 bottom panel, leftmost column). The frequency distribution of recurrence times for
Case III CA with µ = 0.01, µ = 0.1 and µ = 0.5 are shown in Figure 2. For smaller values of µ OEE cases are observed for
larger wo. In the context of biological evolution, the mechanism for increasing the number of OEE cases under Case III would
therefore be for systems to evolve toward slower mutation rates over time. However, because the distributions are exponentially
distributed, the number of OEE cases is always exponentially suppressed, representing only a small tail of the distribution. A
fixed width wo execution could always be found in a large enough statistical sample that such that the observed tr would be
greater than the maximum recurrence time observed in a Case I CA with an equivalent organism width wo. However, in general
due to the exponential suppression of cases with larger tr for Case III variants (Figure 4), the ensemble size of sampled cases
will necessarily be much larger for Case III CA than for Case I CA. That is, for a sufficiently large ensemble size one could
chose a value of µ and generate a trajectory in a width wo organism with a given recurrence time tr, but would always be able
to find an example trajectory of the same tr for a smaller sized ensemble of Case I CA for some environment width we. Due
to the exponential suppression, OEE cases are much rarer for Case III than Case I CA. Additionally, once Case III reach the
terminal attractor their dynamics are not complexity, whereas Case I CA will repeat an attractor state that is in general complex
and is often times open-ended (such that the attractor itself satisfies Definitions 1 and 2). We therefore regard Case III to not be
scalable.
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6 ECA Rule Complexity of Case I CA
To determine if the complexity observed in Case I CA is intrinsic to the state-dependent mechanism, or is an artifact of a
selection-effect favoring complex rules, we determined the frequency of rules implemented in Case I CA utilizing the Wolfram
classification scheme for Elementary Cellular Automata1. There are four Wolfram Classes: Class I and II are regarded as the
least complex, often generating simple repeating patterns. Class III rules are more complex displaying random patterns, and
Class IV are regarded as the most complex, displaying rich dynamical structure (for example, ECA Rule 110, which is known
to be Turing Universal4 is a Class IV ECA). We analyze the complexity of ECA rules implemented in the rule trajectories
of Case I CA by considering the frequency of implementation of rules from each class to determine if the complexity of the
observed dynamics is an artifact of the ECA rules or intrinsic to f .

The resulting rank ordered frequency distribution of rules is shown in Figure 5 for all sampled Case I CA of a given
organism width wo, and separately for the OEE cases in Figure 6. Since this data includes statistics for the entire sample of o of
a given width wo included in our study, we call these distributions “metagenomes” to indicate that they represent bulk statistics
over many instances of “organisms” o. The resulting distributions indicate that Case I CA primarily implement Class I and II
rules, indicative that the complexity observed is intrinsic to the state-dependent mechanism and not an artifact of selective use
of ‘complex’ Class III and IV ECA rules. This is true for statistics sampled over all Case I CA (Figure 5), as well as isolating
only OEE cases (Figure 6).
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7 Distributions of Attractor Sizes
Figures 7 - 8 show box-whisker plots of the attractor sizes for the subsystem o for each ECA and for Case I and Case II CA
(Case III CA terminate in a random, oscillatory attractor and the statistics are therefore not included here, see Section 3.1
for discussion). In each figure, the black horizontal line indicates where tr/tP = 1, where ta is the attractor size and tP is the
expected Poincaré time of an equivalent isolated system (an ECA). Sampled attractors exhibiting unbounded evolution (UE)
have ta/tP > 1 and therefore fall above the black solid line - these are examples of OEE attractors.
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8 Compressibility and Lyapunov Exponent Values for Case I and II CA
8.1 Compressibility and Lyapunov exponent for OEE trajectories sampled from Case I CA
Calculated values for compressibility (C) and Lyapunov exponent (k), as defined in Section 3, are shown in Figure 10 for the
state trajectory of o for all sampled OEE executions for Case I CA. Comparison of the left panel of Figure 10 with the left
panel of Figure 2 in the main text reveals that the observed C for all OEE cases tends to be lower than that calculated over all
sampled o for Case I: that is, the OEE cases exhibit lower C, consistent with intuition that systems with longer recurrence times
should be ’more complex’. As wo increases, more OEE cases tend to have lower C values, such that larger “organisms” are
more complex.

Likewise, comparing the right panel of Figure 10 with the right panel of Figure 2 in the main text indicates that OEE cases
also tend to have much higher k values than that calculated over all sampled o for Case I, indicative of greater sensitivity to
perturbations in OEE systems. Large values of wo lead to larger k, on average, such that larger OEE “organisms” are more
sensitive to perturbations and therefore display richer, more complex dynamics.
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8.2 Comparison of compressibility and Lyapunov exponent for Case I and Case II CA
Calculated values for compressibility (C) and Lyapunov exponent (k), as defined in Section 3, are compared for Case I and Case
II CA in Figures 11 and 12. Case III is not considered as the long-term dynamics display low complexity for the oscillatory
attractor of the homogenous all-’0’ and all-’1’ states. For both Case I and Case II CA variants, increasing wo yields more OEE
cases with lower C values, such that larger “organisms” are more complex (Figure 11).

Case II CA yield lower C values than Case I for the data shown as a result of the difference in the normalization implemented
in Eq. 6, which for Case II CA is lower since the the width of u is w = wo +8 for all wo explored, whereas for Case I CA the
width of u is w = 2∗wo (for we = wo as shown). Additionally, as noted Case I is scalable as we can be increased to generate
higher complexity (lower C) cases. The Lyapunov exponent for Case II is in general higher than for Case I, indicating greater
sensitivity to perturbations in the initial condition for Case II CA than Case I. For both CA variants, k increases with increasing
organism size k, such that larger organisms are more complex.
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9 Larger Systems
Figure 13 shows example executions of Case I state-dependent CA for large organisms of width wo = 101, which visually
demonstrate that the novelty of the dynamics reported herein scale to large system sizes.
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Figure 2. Frequency distributions of recurrence times tr for Case I CA with we = wo (leftmost column), we =
3
2 wo (left

middle), we = 2wo (right middle) and we =
5
2 wo (rightmost column). For rows from top to bottom, wo = 3,4,5,6 and 7

respectively. The Poincaré recurrence time tP of an isolated ECA of width wo is highlighted by the black vertical line in each
panel.
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Figure 3. Frequency distributions of recurrence times tr for Case II CA. From top to bottom, wo = 3,4,5,6 and 7 respectively.
The Poincaré recurrence time tP of an isolated ECA of width wo is highlighted by the black vertical line in each panel.
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Figure 4. Frequency distributions of tr for Case III CA with µ = 0.01 (left), µ = 0.1 (middle) and µ = 0.5 (right). From top
to bottom, wo = 3,4,5,6 and 7 respectively. The Poincaré recurrence time tP of an isolated ECA of width wo is highlighted by
the black vertical line in each panel.
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Figure 5. Rank ordered frequency distributions of rules (“metagenomes”) implemented by o in its attractor. From top to
bottom we =

1
2 wo, wo, 3

2 wo, 2wo and 5
2 wo, respectively. Highlighted in blue are the frequencies of Class I and II rules (left),

Class III rules (middle) and Class IV rules (right).
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Figure 6. Rank ordered frequency distributions of rules (“metagenomes”) implemented by o in its attractor for OEE cases
only. From top to bottom we =

1
2 wo, wo, 3

2 wo, 2wo and 5
2 wo, respectively. Highlighted in blue are the frequencies of Class I and

II rules (left), Class III rules (middle) and Class IV rules (right).

Figure 7. Distribution of attractor sizes ta for the state trajectory of for all 88 non-equivalent ECA rules, evolved from all
possible initial conditions of width wo. Attractor sizes are normalized to the Poincaré time tP = 2wo for an isolated ECA, where
the black horizontal line indicates where tr/tP = 1 (shown on a log scale).
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Figure 8. Distribution of attractor sizes ta for the state trajectory of o, for Case II CA. Attractor sizes are normalized to the
Poincaré time tP = 2wo for an isolated ECA. The black horizontal line indicates where ta/tP = 1 (shown on a log scale).
Sample trajectories displaying unbounded evolution (UE) occur for ta/tP > 1.
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Figure 9. Distribution of attractor sizes ta for the state trajectory of o for Case I CA. Shown from top to bottom are
distributions for we =

1
2 wo, wo, 3

2 wo, 2wo and 5
2 wo, respectively. Attractor sizes are normalized to the Poincaré time tP = 2wo

for an isolated ECA. The black horizontal line indicates where ta/tP = 1 (shown on a log scale). Sampled trajectories
displaying UE occur for tr/tP > 1.
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Figure 10. Heat maps of compression C (left) and Lyapunov exponent values k (right) for sampled OEE trajectories for the
states of o for Case I CA. From top to bottom wo = 3,4,5,6 and 7, with distributions shown for we =

1
2 wo, wo, 3

2 wo, 2wo and
5
2 wo (from top to bottom, respectively) for each wo. Distributions are normalized to the total size of sampled trajectories for
each wo and we (see statistics in Table 1).

Figure 11. Heat maps of compression C for all sampled trajectories of the states of o (left), and for OEE trajectories only
(right) shown for Case I and Case II CA. From top to bottom wo = 3,4,5,6 and 7. For each wo shown are the distributions of C
for Case I CA for we = wo (top row in each panel) and for Case II CA with we = 8 (bottom row in each panel). Distributions
are normalized to the total size of sampled trajectories for each wo and we for each CA variant (see statistics in Tables 1 and 2).
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Figure 12. Heat maps of Lyapunov exponent k for all sampled trajectories of the states of o (left), and for OEE trajectories
only (right) shown for Case I and Case II CA. From top to bottom wo = 3,4,5,6 and 7. For each wo shown are the distributions
of k for Case I CA for we = wo (top row in each panel) and for Case II CA with we = 8 (bottom row in each panel).
Distributions are normalized to the total size of sampled trajectories for each wo and we for each CA variant (see statistics in
Tables 1 and 2).

Figure 13. Example executions of the state trajectory of o for Case I CA for large system size wo = 101, with we = wo.

20/20

216


	Table of Contents
	List of Tables
	List of Figures
	Chapter
	1 The Road Map
	2 Primer on Cellular Automata
	3 Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems
	4 Physical Universality, State-Dependent Dynamical Laws and Open-Ended Novelty
	5 Data from Technology
	6 Real-World Open-Ended Evolution: A League of Legends Adventure
	7 Final Remarks
	References

	Appendix
	A Statement of Co-Author Permissions
	B Supporting Information: Formal Definitions of Unbounded Evolution and Innovation Reveal Universal Mechanisms for Open-Ended Evolution in Dynamical Systems


