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ABSTRACT 

 

Scaling of the Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET) 

towards shorter channel lengths, has lead to an increasing importance of quantum effects 

on the device performance. Until now, a semi-classical model based on Monte Carlo 

method for instance, has been sufficient to address these issues in silicon, and arrive at a 

reasonably good fit to experimental mobility data. But as the semiconductor world moves 

towards 10nm technology, many of the basic assumptions in this method, namely the 

very fundamental Fermi‟s golden rule come into question. The derivation of the Fermi‟s 

golden rule assumes that the scattering is infrequent (therefore the long time limit) and 

the collision duration time is zero. This thesis overcomes some of the limitations of the 

above approach by successfully developing a quantum mechanical simulator that can 

model the low-field inversion layer mobility in silicon MOS capacitors and other 

inversion layers as well. It solves for the scattering induced collisional broadening of the 

states by accounting for the various scattering mechanisms present in silicon through the 

non-equilibrium based near-equilibrium Green‟s Functions approach, which shall be 

referred to as near-equilibrium Green‟s Function (nEGF) in this work.  It adopts a two-

loop approach, where the outer loop solves for the self-consistency between the potential 

and the subband sheet charge density by solving the Poisson and the Schrödinger 

equations self-consistently. The inner loop solves for the nEGF (renormalization of the 

spectrum and the broadening of the states), self-consistently using the self-consistent 

Born approximation, which is then used to compute the mobility using the Green-Kubo 

Formalism. 
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CHAPTER 1. INTRODUCTION 

1.1. TRANSISTOR SCALING 

Everyday life today revolves around electronics - from phones, tablets, laptops to 

complicated and larger machinery like cars that require ultimate precision for its 

operation through the use of computers. The need for more computing power with greater 

accuracy and increased reliability was enabled by decreasing size of the semiconductor 

chips (Moore‟s Law‟s [1]). And this law has been the driving force of the semiconductor 

industry for the last few decades. With the advent of the present day technology, which is 

shifting more towards mobile computing for everyday communication, the need for 

reliable but accurate computing has become inevitable. Added to this, the increasing use 

of the internet and the internet based software on handheld devices demands a great 

performing hardware unit packed in dimensions less than the size of your palm. 

The history of semiconductors dates back to the end of the 20
th

 century when 

semiconductors were used as detectors in radios based on the not so reliable Schottky 

diode. Further research in the field, lead to devices better in reliability and performance 

such as the PN diode, the PNP point contact transistor and the BJT (Bipolar Junction 

Transistor). The BJTs ruled the semiconductor market until the 1970‟s, when the Metal-

Oxide-Semiconductor Field-Effect Transistor (MOSFET) technology proved to be more 

reliable in terms of scaling and power consumption.  

One of the major reasons for the shift to MOSFETs, specifically the Silicon (Si) based 

(due to its low power consumption) Complementary Metal-Oxide Semiconductor 

(CMOS) in the 70s and 80s was the ease of the fabrication process in scaling devices. 
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Specifically, in comparison to their then competition of BJTs, whose fabrication became 

increasingly difficult as the devices scaled down. This enabled the packing of a high 

density of logic functions on a single chip and made CMOS the most favored technology 

for VLSI chips for the past four decades.  

The process of scaling in the CMOS is becoming increasingly complex in the past 

decade after we have entered the sub-50 nm regime. Successful scaling of devices 

necessitates thinner gate oxides and higher doping concentrations to get better drive 

currents for the device. But managing device performance at these dimensions also 

requires us to do more in terms of finding new device structures to manage the heavy 

short channel effects, that includes quantum effects like space quantization, direct 

tunneling from polysilicon through the gate-oxide, tunneling from drain to body, 

tunneling from source to drain etc., to name a few.  

Alternative device technologies, namely strained Si, high-Κ based CMOS transistors 

overcome some of these limitations. However, they still prove to be a challenge not only 

in terms of device speed and power optimization, but also possess incredible challenges 

in changing the existing fabrication technology to maintain the maximum yield to enable 

mass chip production. And, as we get down to the current gate lengths of 22nm and 

below, the device technology for the predominantly CMOS based processor architecture 

has changed into an apparently new 3-D Tri-gate technology (FinFETs), in order to have 

better control over the channel. This also helps to overcome and avoid gate and substrate 

leakage issues and several other short channel effects mentioned above which manifest 

now on a much bigger scale.    



 

3 

 

But in spite of all of these device changes in terms of the device structure, fabrication 

and the architecture of the processors, the wafer for the processor scaling is still based 

primarily on the Si substrate (majorly because of the ease of fabrication of Si with higher 

yield, and its extremely good device characteristics). Mobility characterization in Si 

henceforth becomes really important in this scenario. And, as technology moves down to 

low power based devices like phones, and tablets, exploration of alternative materials like 

Germanium (Ge) and Gallium Arsenide (GaAs) etc., becomes undeniably interesting. 

 

Figure 1.1 : Transistor innovations for the technology generations – from Intel 22nm 

Announcement presentation.[2] 

Namely, Ge which lost the battle earlier to Si in the 70s, due to its low power and high 

leakage issues, is becoming a material of great interest as we go down in power 

consumption for these devices (where now people are ready to forego and manage with 

the loss through leakage for the gain through the low power advantage). This leads us to 
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an important conclusion that it is imperative for us to have a reliable model for 

characterizing the mobility in these devices (Si and Ge) in both the industrial and 

scientific community. 

 

1.2. TRANSPORT IN SEMICONDUCTORS 

1.2.1. OVERVIEW OF SEMICLASSICAL TRANSPORT 

Transport in semiconductor has been traditionally treated using a semiclassical 

perspective as opposed to using completely quantum viewpoint. Drift-diffusion 

simulations [3],[4], have been the standard initial choice for modeling devices in the past 

where the significant length scales were greater than 1 µm [5], and the diffusive regime 

was valid. This method solves a set of coupled non-linear partial differential equations 

iteratively using the Gummel‟s or Newton‟s method [6]. The model solves the set of the 

coupled equations iteratively for self-consistency (continuity equations for electrons and 

holes, the current density equation and the Poisson equation). This model has become 

increasingly difficult to account for high electric field effects like velocity saturation, 

velocity overshoot, etc., as the dimensions of the channel kept shrinking. Field-dependent 

mobility and diffusion coefficients were introduced ad hoc to account for the saturation 

of the carrier velocity at high electric fields. But this was still more of a correction factor 

(approximation) to the saturation velocity rather than a complete model that can handle 

these high-field effects accurately. 

Like the drift-diffusion model, the hydrodynamic model treats the propagation of 

electrons and/or holes in a semiconductor device as the flow of a charged incompressible 
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fluid. The hydrodynamic model accounts for hot carrier effects that are missing in the 

standard drift-diffusion model formulation. The classical hydrodynamic model has 

become a standard industrial simulation tool that incorporates important “hot electron” 

phenomena in submicron semiconductor devices. Hot electron effects are missing in the 

simpler drift-diffusion model, which assumes that the electron gas is always at ambient 

temperature. The hydrodynamic model consists of nonlinear hyperbolic conservation 

laws for particle number, momentum, and energy (with a heat conduction term), coupled 

to Poisson's equation for the electrostatic potential. In the momentum and energy 

conservation equations, charge carrier scattering by phonons is modeled by relaxation 

time approximations. As such the hydrodynamic model supports “velocity overshoot” in 

devices with channel lengths less than 200 nm in silicon. The hydrodynamic model can 

be extended to include quantum/tunneling effects by adding quantum corrections. This 

model is equivalent to the equation of the electro-gas dynamics.  Thus the Homogenous 

electron gas model (HEG) becomes applicable in modeling electrons as a gas with sound 

velocity and the flow can be either subsonic or supersonic. The transition from supersonic 

to subsonic can be modeled as a shock wave. This model is observed to hold well down 

to 50nm. Below 50 nm and high fields, it fails to give accurate values for the velocity 

overshoot as the energy relaxation time is calculated from bulk Monte Carlo simulations. 

As device dimensions shrink below 50nm, one must solve the conventional 

semiclassical BTE using particle based techniques like Monte Carlo method or other 

direct numerical techniques. The Monte Carlo approach till today‟s date is the most 

widely preferred method to solve the BTE (in the long-time limit). The method is popular 
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mainly because it has the advantage of an easier and intuitive treatment of the carriers 

(though this comes at the expense of larger computational time) [7][8][9]. The basic idea 

of the Monte Carlo approach is that the scattering events in devices are random. So, the 

particle motion is simulated as a free flight halted by a random, instantaneous scattering 

event. Thus, the computational model consists of stochastic models that generate random 

free-flight times for each particle, choose a specific scattering mechanism at the end of 

the free flight, and then compute the energy and momentum at the end of this cycle after 

scattering. This will then be repeated for the particle for the next free-flight/scattering all 

over again. The various physical quantities, like drift velocity, current, etc., can now be 

obtained from sampling particles at various times.  Time evolution of these physical 

variables of the device can therefore be modeled. 

A variant to the classical Monte Carlo Technique is the so-called Cellular Automaton 

(CA) method. The CA method consists of a regular grid of cells, each in one of a finite 

number of states. For each cell, a set of cells called its neighborhood is defined relative to 

the specified cell. An initial state (time 0t  ) is selected by assigning a state for each 

cell. A new generation is created (advancing t  by t  ), according to some fixed rule 

(generally, a mathematical function) that determines the new state of each cell in terms of 

the current state of the cell and the states of the cells in its neighborhood. Typically, the 

rule for updating the state of cells is the same for each cell and does not change over 

time, and is applied to the whole grid simultaneously, though exceptions are known, such 

as the stochastic cellular automaton. This procedure can be applied to solving the BTE by 

constructing cells made of momentum and real space units and giving state values to each 
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of the cells, indicating either empty or filled. The state of the cells will be updated in 

discrete time steps, and repeated according to the above algorithm [10][11]. 

The scattering matrix approach is also known as the response matrix approach. A 

scattering matrix of a given semiconductor substrate relates the out-going fluxes to the 

incident-fluxes, accounting for all of the scattering mechanisms and the electric fields 

inside the slab [12][13]. The flux here represents the distribution function of the carriers, 

and is discretized in momentum space. The other advantage of this method is that the 

solution of the BTE is easily computed by breaking up the device into a series of slabs 

and then cascading the scattering matrices of the slabs together. However, the 

disadvantage remains that, each slab needs a library of scattering matrices to be pre-

computed, which becomes computationally expensive [14].  

 

1.2.2. FAILURE OF THE BTE 

As the device dimensions now keep shrinking to sub-20 nm regime, we can start 

seeing that a purely semiclassical analysis proves to be inadequate in treating transport in 

these devices. To illustrate this point let us consider the Boltzmann Transport Equation 

(BTE) below, 

     
k '

1 k
(k) (k ',k) (k ') 1 (k) (k,k ') (k) 1 (k ')

k
k r

f d f
E f f f f f

t dt

 

 
         


          (1.1)  

The RHS of Eq. (1.1) represents the collision integral, which contains the summation 

over all scattering mechanisms over all final states k’. The function f(k,r,t) is the carrier 

distribution function which gives the density of particles with momentum k at the point r 



 

8 

 

at time t. Approximate solutions for the distribution function can be found by assuming 

the drifted-Maxwellian model for low field regime.  

In the semiclassical world of device transport, most presently used physical models 

are based of numerical solution of this BTE. The BTE is made on the assumption that 

particles obey classical Newtonian laws of motion during the free-flight under the field, 

thus making approximations like electrons occupy distinct momentum states k , and have 

almost free particle like behavior with an equivalent effective mass in those states. The 

stationary theory of electrons as stated above, treats scattering under two important 

assumptions, one that the scattering events are assumed to be independent and second, 

that they occur instantaneously in space and time, thus causing weak and infrequent 

scattering of the electrons among the momentum states {k}. Any applied electric field is 

now treated only as a weak perturbation (under adiabatic approximation, slowly varying 

fields) and the field is assumed to be responsible to only accelerate the carriers during 

free-flight between collisions, and does not interfere with the states themselves, or 

interfere with the scattering events as such. But this approximation needs further probing 

when device gate lengths reach sub-20 nm. 

To further examine this point on an intuitive level, consider the decreasing device 

channel dimensions. As device size gets close to the de Broglie wavelength of the carriers 

under effective mass approximation, their wave nature dominates. Thus, at these low 

device dimensions, the gate length is on the order of the phase coherence length of the 

carriers (phase coherence length is the distance over which the carriers retain their phase 

memory). Thus, carriers take lesser time between collisions, and the scattering events 

seem to have a shorter time scale. The collision time along with the mean free time 

between collisions now becomes finite - w.r.t transit timescales in the device. Thus, 

scattering may no longer be actually independent of the field or instantaneous anymore 
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and a re-examination of the approximations in the BTE becomes important.  

The limits of the Boltzmann transport theory as stated above can be overcome when a 

fully quantum mechanical viewpoint is used to explain the behavior of these devices. The 

effect of the above semiclassical approximations can further be examined by looking at 

Eq. (1.1). In Eq.(1.1), the transition rate probability based of the different scattering 

mechanisms is given by the Fermi‟s golden rule, 

 
2

'

' '

2 kk

k k s k kV


       


                                         (1.2) 

where, 
2

'kk

sV represents magnitude of the matrix element squared of the various 

scattering mechanisms included in the model. 

The Fermi‟s golden rule is derived from first-order time-dependent perturbation theory 

based on two fundamental assumptions:  

 It is assumed that the scattering is infrequent which allows us to impose the 

long time limit and arrive at the energy conserving delta function.  

 No initial state decay, 1nsC   (occupancy of the initial state is approximately 

1, which means that the state is not depleted). 

 It is assumed that the scattering is instantaneous, i.e., the collision duration 

time is assumed to be zero. 

Questioning the first assumption, that is when the scattering is not infrequent, there is 

not enough time in between the scattering events. Thus, if the time scale is comparable to 

the order of 
1

ns
, the energy conserving delta function may not be completely formed. 

Thus the long time limit cannot be directly imposed to arrive at the energy conserving 

delta-function represented in Fermi‟s golden rule (instead one might need to account for a 

modified energy conservation relationship between the initial and final states through a 
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Lorentzian function). Also, in reality the scattering events can no longer be assumed to be 

infrequent with certainty, as carriers constantly interact with the surroundings, such as the 

impurities, surface roughness, or the lattice vibrations (phonons). This now leads us to 

question the other assumption of no initial state decay. This requires that the initial state 

occupancy is treated as a function of time. As carriers scatter out of the initial state, state 

loses its population (which changes its occupation probability) and interacts with the 

other states leading to its own modification of the energy and population (accounted 

through the self-energy). This leads to collisional broadening of the States (CBS) and 

shift in the energy spectrum. Thus, the energy conserving delta function now expands 

into a Lorentzian function called spectral density function  ,nA k  . Examining when this 

CBS happens in silicon-based devices and what are the different parameters that it 

depends upon, is one of the major motivations of this work. 

Similarly, the scattering can no longer be considered instantaneous for the reasons that 

were discussed earlier, thus the effect of the field in accelerating the carriers during the 

collision event has to be considered. This is known as the intra-collisonal field effect 

(ICFE). Since in this work we are considering near-equilibrium condition, we do not 

consider intra-collisional field-effect in our model. 

To summarize, the state broadening is an important assumption as the device lengths 

scale to dimensions on the order of sub-20nm and a comprehensive treatment of 

scattering in Si devices from a QM viewpoint becomes important. The spectral density 

function can no longer be approximated as a simple energy conserving delta function and 

the finite momentum state lifetime, due to the state broadening, has to be accounted for 

when one solves for the transport in these device dimensions. 

The above stated reasons further iterate the emphasis on the onset of the failure of the 

BTE approach and Fermi‟s golden rule in these device structures. The Monte Carlo 
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technique, though robust, is still reliant on the BTE (in all its approximations) to handle 

the scattering and thus suffers from all of the above limitations. Therefore, one has to 

either radically modify the BTE or start with theory that is more ab-initio. That is, the 

system (or parts of the system of interest) needs to be modeled from a many-body 

viewpoint to treat the interactions where some/many of the above semi-classical 

assumptions do not hold anymore. Namely, the correlations (in space and time) between 

the particles have to be considered if one wishes to solve for the CBS or the ICFE. Thus, 

we need to build a more fundamental quantum transport formalism, where we can use 

suitable semi-classical approximations when needed to reduce complexity of our 

calculations, thus enabling us to include these above neglected effects. 

 

1.2.3. QUANTUM TRANSPORT - AN OVERVIEW 

Quantum transport is the most fundamental of all transport models, as it starts from 

the Schrödinger wave equations (both time dependent (TDSWE) and time independent 

(TISWE)) and uses statistical mechanics to model the physics of the device, thus arriving 

at a set of the so-called quantum kinetic equations. But unlike solving a simple closed 

system like a 1-D potential barrier, actual semiconductor devices most often represent an 

open system, with continuous influx/outflow of charges (current) across the terminals that 

are far from equilibrium. In the case of semiclassical models, this can be accounted with 

Ohmic or Schottky contact based boundary conditions for the various transport 

differential equations. But in the case of a quantum open system, one has to go through 

several un-normalizable scattering states with open boundaries, and a many-body 

situation where the electron interacts with the system and itself. Hence, one needs to find 
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the best approach to solve the set of one-body/many-body TDSWE to get the values of 

the different observables. This has its own challenge in how the boundary conditions are 

handled in the quantum approach and is treated differently based on each approach within 

the quantum view. 

Many of the quantum effects can be classified into two types, static and dynamic. The 

static quantum effects namely are tunneling through the gate oxide, and the energy 

quantization in the inversion layer of a MOSFET. The tunneling happens in case of very 

thin gate oxides where there is gate leakage via direct tunneling. The size-quantization 

happens due to inversion charge induced by the gate, thus forming the triangular potential 

well, leading to the formation of spatially localized subbands. To solve these static 

effects, one might find it relatively easier as it involves solving only the one-body 

TISWE.  

The real complication in the quantum approach arises when one tries to model the 

dynamic quantum effects like, collisional broadening of the states due to scattering, intra-

collisional field effect, electron-electron scattering, dynamical screening from charged 

carriers, and other many-body effects. Density Matrix Method, Wigner Function Method, 

and the Green’s Functions Formalism are the methods suitable for addressing some, or 

all of the above-mentioned issues. 

The Density Matrix method [15] and the Wigner function approaches [16] use the full 

scattering potential (non-local), and compute the interaction of the electron with the 

scattering event and the field in full form. But the main issue is that the Density Matrix 

Method is real-space based and the Wigner function is phase-space based. This makes it 
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increasingly hard when one wants to compute correlations in time, to get the screening 

wave vector, polarization or calculate the conductivity – which now requires an 

interaction of two-particles and the system (scattering, external field etc.). Thus, solving 

for the CB of the states, lifetime of the electrons, or the ICFE is very hard. 

This is when the Green‟s function technique becomes tremendously useful. The 

technique essentially is based on the integration of the quantum field theory with 

statistical mechanics to obtain a very solid approach. This approach can be approximated 

to various degrees of freedom (orders of the perturbations series in the scattering kernel) 

to get the required observables out of the system. Therein lies one of its biggest 

advantages of this method over other non-equilibrium quantum transport formalisms.  

Green‟s functions are basically impulse (Linear) responses of the TDSWE system 

under consideration. Thus, in general, a Green‟s function for a 1-electron SWE at 

equilibrium is given by, 

    oĤ( ) G ( , ',t,t')  - ' t - t'
t

i  
 
  

 
r r r r r  (1.3) 

Where the bare one-electron Green‟s function 0G is given by, 

      o oG , ',t t' θ t t' K , ',t t'   r r r r  (1.4)  

 The quantum-field theoretical methods in non-equilibrium statistical mechanics 

were developed by Martin and Schwinger [17][18], Kadanoff and Baym[19], and were 

further developed by Keldysh. Later, Ferry and Barker, extended the non-equilibrium 

Green‟s function (NEGF)  formalism to semiconductor device modeling in 1980 [20]. All 

these works laid down the foundation of the NEGF theory that we are going to discuss 
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below briefly, before discussing in more details in Chapter 3.  

The transport in the non-equilibrium situation can be broadly divided into 2 cases as 

below, 

 For near-equilibrium situations, one assumes that the distribution function 

only slightly deviates from the Fermi-Dirac distribution function. Also, low 

temperatures ensure that the interaction remains weak as the electrons couple 

weakly especially to the phonons, so that the potential is slowly-varying and 

the effective mass and single band approximations still holds. For high 

temperatures, one could solve for higher orders of interaction in the included 

scattering mechanisms, thus increasing the accuracy of the result and 

bypassing the initial assumption of independent and instantaneous scattering 

for the first Born approximation. 

 For high electric fields and strongly non-equilibrium transport across the 

channel, the above approximations fail, and one must solve for the distribution 

function directly by using the quantum kinetic equations in the NEGF 

approach.  

A diagram that describes the usability of Green‟s functions approaches for both low-field 

and high-field conditions, and for bulk systems and devices, is shown in Figure 1.2 

approaches in modeling carrier transport in bulk systems, inversion layers and devices 

under low and high applied electric field. In here, RGFA stands for recursive Green‟s 

function approach, and CBR stands for contact block reduction method. 
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Figure 1.2 : Green‟s function based approaches 

I. LOW FIELD TRANSPORT 

Low-field transport in devices is based on the fact that the devices operate in near-

equilibrium conditions. Thus, some of the fundamental assumptions of adiabatic variation 

of the field, effective mass approximation, the single band model of the electrons, and the 

self-consistent Born approximation, can still be valid in this regime. The following will 

be a short recapture of the framework developed by [21], which has been extended in this 

work. 

The Green‟s function technique uses the interaction representation, where both the 

state vectors and the operators depend on time. The advantage of the interaction picture is 

that the operators are governed by the “easily” computable unperturbed Hamiltonian of 

the system, and the state evolution is dependent on the perturbed Hamiltonian (interaction 

Hamiltonian), which is typically assumed to be small. 
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The various Keldysh Green‟s function can be defined as follows. The 

retarded/advanced Green‟s function (or correlation function) is defined as: 

  

 
 

 

1 2 1 2 1 2

1 2 2 1 1 2

ˆ ˆ( , ) ( ) ( ), ( )

ˆ ˆ( , ) ( ) ( ), ( )

r

a

i
G x x t t x x

i
G x x t t x x









    

   





 (1.5) 

where the brackets denote ensemble average over available states. 

For complex Hamiltonians, one applies the perturbation approach of the time-ordered 

Green‟s function 

 

 1 2 1 2
ˆ ˆ( , ) ( ) ( )G x x i T x x    

 
 , (1.6) 

where T is a time-ordering operator. 

The other Green‟s functions to be defined during non-equilibrium situations are less-

than and greater-than Green‟s functions:  

 
1 2 2 1

1 2 1 2

ˆ ˆ( , ) ( ) ( )

ˆ ˆ( , ) ( ) ( )

i
G x x x x

i
G x x x x

 

 

  

   





 (1.7) 

Looking at the expression for less than Green‟s function one can “easily” identify that 

they denote some physical observables; namely at 1 2x x , it becomes the particle density, 

and for the same time average becomes the particle density matrix. Similarly the greater 

than Green‟s function denotes the hole density and the hole density matrix, respectively, 

for the same time. 

Now, based on Eq.(1.6), we can define time-ordering operators on different branches 
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of the contour. Then: 

 

 
1 2 1 2 1 2 2 1 1 2( , ) ( , ) ( , ) ( , ) ( , )t r aG x x t t G x x t t G x x G G G G           (1.8) 

and the anti-time ordered Green‟s function becomes 

 

 
1 2 2 1 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) ( , )t r aG x x t t G x x t t G x x G G G G           (1.9) 

The function     ( t1, t2)  is defined on the contour with time ordered property. From Eq. 

(1.8) we now have the following identities: 

 
       

   †

r a

a r

G G G G

G G

   

 

   


 (1.10) 

From the assumption that the fluctuation-dissipation theorem is still valid, in near-

equilibrium we have, 

      G if A    , (1.11) 

where  f   represents the Fermi-Dirac distribution function. Also, from the retarded 

Green‟s function one can obtain the spectral density function as, 

 

      r aA i G G       (1.12) 

Thus, from Eq.(1.10), (1.11), (1.12) one needs to have only one independent Green‟s 

function, say the retarded Green‟s function, to compute the rest of the observable 

physical quantities like collisional broadening of states, renormalization of the spectrum 

and the charge density. 

For the high-field regime the fluctuation dissipation theorem will no longer be valid 

making the requirement of calculating at least two independent Green‟s functions 
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mandatory. For example, following the work of Kadanoff and Baym, and using Feynman 

rule to expand the perturbation of the contour ordered Green‟s function according to 

Wick‟s theorem, we can arrive at the Dyson equation for the retarded/advanced Green‟s 

function as, 

 

 
, , , , ,

o o

r a r a r a r a r aG G G G    . (1.13) 

The equations of motion (Keldysh equation) for the greater-than and less-than 

Green‟s functions are, 

 

    , , ,1 1r r o a a r aG G G G G G            (1.14) 

These two equations form a coupled set of equations which when solved can give the 

required transport properties in the non-equilibrium condition. 

For the low-field case, under the investigation in this work, it is only needed to solve 

the Dyson equation for the retarded Green‟s function which will then be used to calculate 

the spectral density of states, which after integration over the momentum states gives the 

density of states. Thus, under the fluctuation-dissipation theorem, the quantum charge 

density can be computed. 

   

II. HIGH-FIELD TRANSPORT -  BULK SYSTEMS (AIRY TRANSFORMS) 

 

In this formalism, the author has adopted a new method to solve the Dyson equation 

for the retarded Green‟s function, coupled with the Keldysh equation. The model allows a 

non-perturbative description of the effects of an external high electric field on electron-
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phonon scattering, which is treated under the first-Born approximation within the 

Kadanoff-Baym-Keldysh nonequilibrium Green‟s-function approach.  

Based on the exact solutions (which happens to be Airy functions) of the Schrodinger 

equation for a scalar potential along the direction of motion /field, one solves the Dyson's 

equation for the single-particle retarded Green's function. Recognizing that high fields 

break the translational symmetry of the system and that momentum is no longer a good 

quantum number, Airy transforms have been used to handle the position dependence 

parallel to the applied high field. The spectral density function  ,A k  is then computed, 

and CB and ICFE are investigated.  

A weak scattering regime is assumed, with effective mass approximation in the field 

direction. The nonpolar optical phonon scattering is the only scattering mechanism 

included in the model, and the field is restricted to a constant electric field in space and 

time along the direction of the motion (bulk material). 

 

III. STATE-OF-THE-ART IN HIGH FIELD TRANSPORT – BALLISTIC + 

SCATTERING REGIME – RECURSIVE GREEN‟S FUNCTION METHOD 

(RGFM) 

 

Very brief overview of the model is as follows. The Hamiltonian in the TISWE is 

changed corresponding to the tight-binding limit. Then the corresponding retarded and 

less-than Green‟s function are introduced. To start with, the Dyson equation for the 

retarded Green‟s function is solved. To solve this equation, the system is broken down 
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into an internal region and the external leads. The Dyson equation is used to calculate the 

Green‟s function for each of these regions. 

Now the Green‟s function for the total region is calculated using the Dyson‟s 

equation, and the effect of contact, the potential, etc., is accounted through the self-

energy into the equation for the whole system. Once the Green‟s function is computed by 

solving the Dyson equation with the Keldysh equations, one can find the value of the 

electron density, which can then be used to compute the effective potential self-

consistently by solving the Poisson equation. 

 

IV. HIGH FIELD TRANSPORT – CONTACT BLOCK REDUCTION METHOD 

(CBR) – BALLISTIC REGIME 

 

The CBR method allows one to calculate 2-D or 3-D ballistic transport properties in a 

device that may have arbitrary shape, potential profile, and most importantly, any number 

of leads. In this method, quantities like the transmission function and the charge density 

of an open system can be obtained from the eigenstates of the corresponding closed 

system defined as 0H     that need to be calculated only once, and the solution 

of a very small linear algebraic system for every energy step E . The retarded Green‟s 

function  R EG  can then be calculated via the Dyson equation through a Hermitian 

Hamiltonian 0H  of a closed system, 

      1 ,R E E E 0G A G   (1.15) 

where  0 EG  is the retarded Green‟s function for the closed system (decoupled device). 

The total numerical cost of the method can be estimated as 



 

21 

 

 

2 2
n r eigen E eigen gridsN N N N N  , where EN  is number of energy steps , eigenN  is the 

number of eigenstates to be used, and gridsN  is the number of grid points in real-space. 

Note the absence of large terms like .E gridsN N  

1.3. SUMARY 

A low-field mobility solver for quasi-two dimensional electron gas system has been 

implemented, that involves  self-consistent coupling of a 1-D Schrödinger-Poisson solver 

(SCHRED V2.0) with near-equilibrium Green‟s function (nEGF) solver. The nEGF part 

solves self-consistently the Dyson equation for the retarded Green‟s function using the 

self-consistent Born approximation for the self-energies. The collisional broadening of 

the states and the renormalization of the spectrum are then used to calculate the real 

density of states (DOS). This is done by solving the Dyson‟s equation for the retarded 

Green‟s function [22].  

The scattering mechanisms included in the model are Coulomb scattering from the 

depletion layer and interface/oxide charges, surface-roughness scattering, zero- and first-

order intervalley optical phonon scattering processes, and acoustic phonon scattering. 

Screening of the Coulomb scattering potential is taken into account within the Random 

Phase Approximation (RPA). For the temperature-dependent RPA polarizability function 

we use the result given in [23] which is valid for general Fermi-Dirac statistics. For 

intervalley scattering, which is the dominant scattering mechanism in many-valley 

semiconductors such as Si and Ge, we follow an approach due to Price [24] and Ridley 

[25]. We use the same phonon energies and coupling constants in the inter-subband 

scattering as those in intervalley scattering in bulk Si [26], which is shown to give 

excellent results for transport in Si devices [27]. The anisotropy of the deformation 
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potential interaction is treated as described in Refs. [28][29]. Also, the intervalley 

scattering is solved self-consistently within the self-consistent Born approximation. This 

is one of the extended features of this work that hasn‟t been done before in Si systems 

characterized at near equilibrium. 

We divide the solver into 2 parts, an outer loop that consists of the 1-D Schrödinger-

Poisson solver, and the inner one that consists of the nEGF solver. The nEGF solver 

calculates the real DOS, which is then used to calculate the new quantum sheet charge 

density based on Fermi-Dirac statistics.  

The Schrödinger-Poisson outer loop ensures that there is proper treatments of the 

following short channel effects: space quantization, device transconductance degradation, 

the finite value of the inversion-layer capacitance (average distance of the carriers in 

quantum treatment peaks away from the Si-SiO2 interface, leading to decreased gate 

capacitance, and decreased inversion charge, thus leading to increased threshold voltage), 

the impact of polysilicon gate depletion.  

In Chapter 2, the treatment of various scattering mechanism is presented, and the 

overlap integrals are closely examined. In Chapter 3, an overview of the Green‟s function 

formalism is given – that will include the general description, followed by the description 

of the Dyson‟s equation for the retarded Green‟s function. Chapter 4 will explain how 

screening and conductivity is handled in the nEGF approach in this work. This is 

followed by a short Chapter 5 that explains the design and the implementation of the 

software. A discussion of the simulation results for the mobility and the DOS is given in 

Chapter 6. Conclusions from the work accomplished and Future directions of research 

will be discussed in Chapter 7 and Chapter 8, respectively. 
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CHAPTER 2. GREEN’S FUNCTION FORMALISM 

2.1. REVIEW OF THE FORMALISM – AN INTRODUCTION 

In this chapter, the real-time Non-Equilibrium Green‟s Function (NEGF) technique for 

modeling transport phenomena in semiconductor devices is briefly outlined. Following 

which, a brief review of its adoption to near-equilibrium (nEGF) case is discussed. 

Green‟s functions [34] are response functions (propagators) that tell us how an excitation 

propagates through the system. 

To study the time evolution of a many-particle quantum system, Kadanoff and 

Baym [19] formulated the NEGF technique. The Green‟s functions are defined as the 

expectation value of certain field operators over the available states of the system. The 

simplest Green‟s function of applicability is the one-particle Green‟s function that 

contains information on how one particle (an electron or a hole) propagates through the 

system of all other electrons or holes respectively. In this way it provides us with details 

on the equilibrium related properties of the system (carrier lifetime, broadening of the 

states, renormalization of the spectrum, etc.). The solution of the equation of motion for 

the 1-particle Green‟s function (that couples it to the two-particle Green‟s function) is 

used to calculate the one-particle properties of the system.  

 

2.2. THE MANY BODY PROBLEM  

The complete knowledge of an N-body system that has interactions between the 

particles (pairs of particles or more) requires the computation of N-particle quantities. 

This is a many-body problem.  In such many-body problem, when we derive the equation 
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of motion of the 1-particle Green‟s function, we do not get a closed equation and we are 

led to a higher particle quantity. Seeking the equation of motion of the higher particle 

quantity will lead to even higher particle quantities. This hierarchy of equations, which 

ends at the full N-particle quantity is called the BBGKY (Bogoliubov-Born Green 

Kirkwood Yvon) hierarchy.  

The purpose of the Green‟s function hierarchy of equations is to present us with a 

hierarchy of correlations. Then, assuming that many-particle correlations are weaker, the 

hierarchy can be truncated. Applying the BBGKY hierarchy to Green‟s function allows 

us to make approximations based on correlations. 

  Thus, the equation of motion for an n-particle Green‟s function (in the integral 

form) can be represented in terms of a functional of non-interacting Green‟s functions 

and the perturbing potential. One can then solve the above equation iteratively which 

results in a perturbative series to the lowest order possible to explain the system 

adequately. However even for the lowest order, this perturbation series becomes 

complicated to be solved directly due to the higher order derivatives. So under a 

perturbative approach for near equilibrium conditions, Wick‟s Theorem [35] is used to 

reduce this to a combination of time ordered operators. The numerous terms can now be 

represented in a graphical manner using Feynman diagrams [36]. This enables one to 

compute the Green‟s function with relative ease, by summation of the terms that are 

inferred from the graphs. This, in essence is the Non-Equilibrium Green‟s function 

formalism. 
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The complexity of the diagrams and hence the integrals (summation of terms) 

increases as „n‟ increases in the n-particle Green‟s function. This forces us to make 

judicial use of the method, to the lowest possible order required to define the system 

studied adequately. Thus, after solving for the one-particle function, the two-particle 

function needs to be solved.  

The two-particle Green‟s function represents the pairs of excitations that 

propagate through the system of electrons. For example, in the electron-phonon 

interaction, the electron interacts with the quantized phonon modes, resulting in an 

electron-hole bubble that is handled via the creation and annihilation phonon operators. 

This collective excitation results in a cloud that shields the electrons and gives rise to 

screening. Similarly, the fluctuations in this collective excitation can be computed via the 

current correlation function (which is a two-particle Green‟s function), and thus calculate 

the conductivity. The NEGF technique, hence, provides a very powerful and robust 

technique at the perturbative level for evaluating properties of many-particle systems 

under various limits. The disadvantage is that it is time and resource consuming.  

 

2.3. GREEN‟S FUNCTION FORMALISM  

Different formalisms of the Green‟s function exist depending on how the 

averaging of the field operators is done over the states. The zero-temperature formalism 

averages over the ground state at equilibrium, the finite-temperature formalisms averages 

over all possible states at equilibrium. The real-time Green‟s function (Non-equilibrium 

Green‟s Function at finite temperatures) averages over all the available states when the 
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system is driven out of equilibrium. Thus, one can compute the Green‟s function at 

thermodynamic equilibrium, as well as in non-equilibrium situations. In this work, we 

limit our study to systems under a near equilibrium condition. 

Another exciting distinction in this formalism is that, from these evaluated 

Green‟s functions, the expectation value of any observable can be found. This meaning 

that the Green‟s functions contain any and all the information about the system under 

consideration.  

As stated earlier, using a perturbative approach, one can deduce the proper 

Green‟s functions by approximating the self-energy terms. In this work the quasi-two-

dimensional electron gas (Q2DEG) in a MOS capacitor is treated under a near-

equilibrium condition. The second quantization approach is used to model the interaction 

between the electrons and the various scattering fields (that are quantized and represented 

in terms of operators in the occupation number formalism) and are included in the proper 

self-energy term while solving for the proper Green‟s function.  

As device are getting into the nano-scale regime, the semi-classical limits come 

into question and there is a growing importance of quantum effects and tunneling at these 

length-scales. Thus, the basic approach developed in the early 1970s for the NEGF 

formalism has become increasingly popular during recent years to model transport in 

mesoscopic devices.  The present work adopts this theory which is based on the works of 

Vasileska et al. [23] to near-equilibrium scenario, and adds more features to her model to 

efficiently model the effect of collisional broadening of the states on density of states, 

and the mobility of Si based devices under low-field conditions. 
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2.4. HAMILTONIAN AND SECOND QUANTIZATION 

The total Hamiltonian for the complete system is given by, 

 H e ph e phH H H      (2.1) 

where eH   is the Hamiltonian of non-interacting electrons, phH   is the Hamiltonian of 

free phonons, and e phH   is the electron-phonon interaction Hamiltonian.  

The eH is given by, 

  †( ) ( ) ( ) ( )eH dr r T r U r r     (2.2) 

where ( )T r  is the one-electron kinetic energy operator and ( )U r  is the self-consistent 

electrostatic potential energy. The kinetic energy operator is obtained from the effective 

mass approximation, as we consider the transport in the conduction band of silicon where 

we use parabolic, ellipsoidal energy band structure. 

The interaction of the quantum states shown above in eH   are with a classical 

field ( )U r , and this is referred to as first quantization. But in the case of the electron-

phonon Hamiltonian, the electron quantum states now interact with the quantized 

harmonic modes of vibrations of phonons, thus leading to a second level of quantization. 

Hence it becomes convenient to describe the system, in terms of second-quantized 

operators that operate in occupation number space.  

The field operators operating on the space are defined by, 
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  (2.3) 

where the operator kc  annihilates the particle in state k  , and the operator †

kc  creates the 

particle in state  k . The wavefunctions ( )ku r  form a complete set of single-particle 

eingen-functions with quantum number k . Therefore, the filed operator ( )r  removes a 

particle from state at r  and the field operator †( )r  creates a particle at state at r . The 

operators †

k kc and c  satisfy the commutation relations, 

 
 

†

'

† †

' '

, δ  ,

, , =0 ,     

k k kk

k k k k

c c

c c c c



 
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   

  (2.4) 

where [ , ] , [ , ]A B AB BA A B AB BA      , 'δkk  denotes the Kronecker delta, and the 

plus sign refers to Fermions and the minus sign refers to Bosons. The field operators 

( )r and †( )r  also satisfy their respective commutation relations. 

The Hamiltonian operator for the phonons is given by 

 
† 1

2
p q q q

q

H a a  



 

  
 

   (2.5) 

where  †, ,q q qa a    are the angular frequency, the creation operator and the annihilation 

operator for mode   and wavevector q , respectively.  

Then, e phH   is given by 
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  (2.6) 

where V is the volume of the sample, 
qM   is the electron-phonon matrix element that 

depends on the deformation potential tensor. 

 

2.5. GREEN‟S FUNCTION 

In this section, we briefly introduce the contour-ordered Green function, its perturbation 

expansion, followed by the Dyson equation for the Green function. 

 

2.5.1. TIME EVOLUTION PICTURES 

The Schrödinger, interaction, and Heisenberg pictures in quantum mechanics will 

be used interchangeably to represent the contour-ordered Green function. Consider a 

general Hamiltonian represented as, 

 0 1H H H   (2.7) 

where 
0Ĥ  is the non-interacting part, 

1Ĥ  is the interacting part such as the electron-

phonon interaction, impurity scattering, surface roughness scattering etc. 

In the Schrödinger picture, the state vectors are time dependent whereas the 

operators are time-independent,  

      S o 1 S S S 0 S S(t)  H H (t)      O O =O           O 0
t t

i t t i
 
     

 
 (2.8) 
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 The interaction picture says that both the state vectors and operators are time-

dependant, 

    o o
I 1 I I S I I o

H t H t
(t)  H t (t)      O (t) e O e   O (t) O ,H

t t

i i
i i
  
    

 
 (2.9) 

The Heisenberg picture says that the state vectors are time-independent and the 

operators are time dependant, meaning 

  H H S H H 1

Ht Htˆ(t)  0 ; O (t) e O e ; O (t) O ,H
t t

i ii i
     
 

 (2.10) 

The above different representations are suitably adopted in solitary or in 

combination, depending on the requirement of the situation to help in obtaining the 

solution. For example, in treating most of the electron-phonon interactions in this work, 

interaction representation is best suited to solve for the time evolution of both the 

operators and the state-vectors while a Heisenberg representation is adopted for the 

perturbing field. Thus, it becomes easier to create a unitary operator that determines the 

state vector‟s time evolution at time t  in terms of the state vector at time 0  and solve for 

it, i.e. 

  I I I(t)  U t,0 (0) ; HU U
t

i


   


 (2.11) 

2.5.2. CONTOUR-ORDERED GREEN‟S FUNCTIONS  

Green's functions are thermodynamic averages of the products of field operators 

( )r  and 
† '( )r , that represent the impulse response of the quantum system under 

consideration as stated earlier .  

The contour ordered Green‟s function in terms of its field operators is given by, 
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  ' '(r, r ) (r) (r )
k kc cG i T       (2.12) 

where kc  is the contour and 
kcT  is the contour-ordering operator. The above equation can 

be expanded to a perturbative form using the method as explained in detail by Kadanoff 

and Baym, or use the equivalent procedure based on the Wick's theorem. One could also 

use the Feynman rules, which result from the application of the Wick‟s decomposition to 

a perturbation expansion. The Feynman rules are essentially a graphical approach to 

represent the different terms of the Wick‟s perturbative series, to arrive at the final set of 

terms for the lowest order required. 

If we define the unperturbed electron Green‟s function as, 

  ' '

0(r, r ) (r) (r )c I IG i T       (2.13) 

and phonon Green‟s function as, 

  ' 'D(r, r ) (r) (r )c I IT     (2.14) 

Now, Eq. (2.12) can be written as (after perturbative expansion)  

 0 1 1 2 2 0 1 1 2 2 2( , ') ( , ') ( , ) ( , ) ( , ')
C C

G r r G r r dt dx dt dx G r r r r G r r        (2.15) 

The above is the integral form of the Dyson equation within the self-consistent 

Born approximation. 1 2( , )r r  is the irreducible self-energy for the contour-ordered Green 

function. Under the self-consistent Born approximation, the corresponding Feynman 

diagram leads to  

  1 2 1 2 1 2( , ) ( , )D ,r r G r r r r    (2.16) 

One can further define different Green‟s function based on the different 
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conditions under which these operators are averaged. The retarded and advanced Green‟s 

functions are defined as below, 

  †

1 2 1 2 1 2( , ) ( ) ( ), ( )r

i
G r r t t r r    


 (2.17) 

  †

1 2 2 1 1 2( , ) ( ) ( ), ( )a

i
G r r t t r r   


 (2.18) 

respectively. 2 1( )t t  is the step function. Note that the retarded function can be nonzero 

only if 1 2t t  whereas the advanced functions can be nonzero only for 1 2t t . Also note 

that the coordinate term 1r , 2r , are four-dimensional quantities for the 3-D space co-

ordinates and the time. And the above expression can be averaged over the ground state 

in equilibrium (zero-temperature), or over all possible states of the system under thermal 

equilibrium (finite temperature), or averaging over available states of the system (non-

equilibrium condition).  

In addition to the above retarded and advanced Green‟s function, in non-

equilibrium situations, one also needs additional correlation functions, such as the less-

than 

 †

1 2 2 1( , ) ( ) ( )
i

G r r r r   


 (2.19) 

and greater-than 

 †

1 2 1 2( , ) ( ) ( )
i

G r r r r    


 (2.20) 

correlation functions. The above four Green‟s functions are enough to describe most of 

the required non-equilibrium characteristics of the system, under consideration. 
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Additionally, one can also define time-ordered functions in terms of the earlier defined 

Green‟s functions as,   

 
t r aG G G G G      (2.21) 

and anti-time-ordered 

 
t r aG G G G G      (2.22) 

Green‟s functions. 1 2( , )t t  are the contour functions which are defined according to time 

order of 1t  and  2t . 

By observing the above expressions for the G
 for 1 2r r   (and at equal times), it 

can be observed that it resembles the number operator, which essentially is the single 

particle density. Similarly, one could argue that G
 may be seen as corresponding to the 

hole particle density, namely the Fourier transformed, 

 

 

 

( ; ) 4 , ;
2

p( ; ) 4 , ;
2

i
n r E G r r E

i
r E G r r E









  

 

  (2.23) 

Thus, the retarded and advanced Green‟s functions contain the spectral properties of the 

system, i.e., the density of states and the renormalized energy spectrum.  

In equilibrium situations, where the fluctuation dissipation theorem is valid, one 

would require only one independent Green‟s functions (see Eqs. (2.17), (2.18), (2.21)) as 

the rest of the other three correlation functions can be calculated from this. In non-

equilibrium however, the fluctuation dissipation theorem is not valid and we require at 

least 2 independent Green‟s functions to proceed with their calculations with respective 



 

34 

 

equations of motions.  

The above equations are assumed for fermions, similar type equations for bosons 

(namely for phonons – where the commutator operators (boson fields) maintain the sign) 

exist as follows, 

 1 2 1 2(r , r ) ( ) ( )e ph e phD i H r H r

    (2.24) 

 
1 2 2 1

ˆ ˆ( , ) ( ) ( )e ph e phD r r i H r H r

    (2.25) 

 1 2 1 2 1 2 2 1 1 2( , ) ( , ) ( , ) ( , ) ( , )tD r r t t D r r t t D r r     (2.26) 

 
1 2 2 1 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) ( , )tD r r t t D r r t t D r r     (2.27) 

  1 2 1 2( , ) ( , )r t tD r r D D D D t t D D          (2.28) 

  1 2 2 1( , ) ( , )a t tD r r D D D D t t D D          (2.29) 

where ˆ ( )e phH x  is the second quantized form of the perturbation due to the electron-

phonon interaction, 

  q qq r

q q -q

q

ˆ ˆ ˆ( )
i t i ti

e phH x M e a e a e  

  

 

    (2.30) 

The creation and annihilation operators of the greater than and lesser than Green 

functions, can be reduced to that of the phonon occupation numbers for the given mode 

of phonons  . That is,
 q q q

ˆa a N  

 


.  

   q 1 2 q 1 2 1 2
2 ( ) ( ) q (r r )

1 2 q q q

q

( , ) 1
i t t i t t iD r r i M N e N e e  

  

         
   (2.31) 

   q 1 2 q 1 2 1 2
2 ( ) ( ) q (r r )

1 2 q q q

q

( , ) 1
i t t i t t iD r r i M N e N e e  

  

         
   (2.32) 
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The equilibrium form of the retarded phonon Green‟s function is,  

  1 2
2

q (r r )

1 2 1 2 q q 1 2

q

( , ) 2 ( ) sini

rD r r t t M e t t           (2.33) 

2.6. EQUATIONS OF MOTION FOR THE GREEN‟S FUNCTION 

Continuing from the previous section, the expression for the contour ordered 

Green‟s function is,  

 C 1 2G ( , ) t

t

G G
r r

G G





 
  
 

  (2.34) 

The Keldysh Green‟s function is of the form 

 
1 2G ( , )

0

r K

K

a

G G
r r

G

 
  
 

 (2.35) 

where 
KG G G    is the so-called Keldysh Green‟s function [38]. The Keldysh form 

of the Green‟s function is simply the integral form of Dyson‟s equations written in real 

time upon the application of Langreth‟s theorem (involving series multiplication). 

Under the assumption that these field operators for the above Green‟s functions 

are based upon wave-functions that satisfy the Schrödinger equation, one can calculate 

the equations of motion for the various Green‟s functions. Thus, the non-interacting 

(bare) ground state Green‟s function is given by,   

 

     0

1 1 1 2 1 2

1

G ( , ) ( , )Io Ki H x V x r r r r
t






 
   

 
  (2.36) 

     0

1 1 1 2 1 2

1

G ( , ) ( , )Io Ki H x V x r r r r
t






 
    
 

  (2.37) 
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where I is the identity matrix. ( )V x  here is the single-point potential, which corresponds 

to the potential energy term and not the two-point potential energy operator for particle 

interactions. These operators represent the plain addition of electrons to the system, 

without considering any interaction terms.  

In this study, as a real device is in a near-equilibrium condition, one needs to consider 

the driving field and the dissipation processes like Coulomb and phonon scattering into 

this model. Thus the, equation gets modified on the RHS to include two-point potential 

terms and higher order Green‟s functions (two-particle, three-particle Green‟s function 

etc) at the ground state. These can further be reduced to a concise form, known as the 

self-energy term. This is done by using Feynman diagram to expand the perturbative 

series of the Green‟s function (in terms of the basic blocks such as the non-interacting 

Green‟s function) according to Wick‟s theorem. What remains as the irreducible part is 

the self-energy. It can be thought of as the change in the particle‟s energy due to its 

interaction with the surrounding system under consideration. In treating transport in our 

system, the electron‟s interaction with the ionized impurity, surface roughness and the 

phonons can be accounted through the self-energy terms. The equations of motion for the 

full Green‟s function (dressed Green‟s function) as 

    1 1 1 2 1 2 3 1 3 3 2

1

G ( , ) ( , )I ( , )G ( , )o K K Ki H x V x r r r r dx r r r r
t






 
     

 
  (2.38) 

    1 1 1 2 1 2 3 1 3 3 2

1

G ( , ) ( , )I G ( , ) ( , )o K K Ki H x V x r r r r dx r r r r
t






 
      
 

  (2.39) 

where the self-energy matrix is given by Keldysh, 
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0

r K

K

a

  
   

 
 (2.40) 

The self-energy terms account for both one-point and two-point potentials. The 

one-point potentials represent scattering from say a fixed localized potential like 

Coulomb scattering (thus a single time argument), and the two-point potentials represents 

particle-particle interaction potentials, like in the case of electron-phonon interaction, 

where electron interacts with a quantized phonon field. 

 The corresponding Dyson's equations for the Keldysh matrix Green‟s function, 

given in (2.40), (2.39) are 

 0 0G  G G GK K K K K    (2.41) 

 0 0G  G G GK K K K K    (2.42) 

The equations of motion for the less-than and greater-than Green‟s functions are 

    , , ,1 1r r o a a r aG G G G G G            (2.43) 

The retarded and advanced Green‟s functions satisfy the Dyson equation 

 
, , , , ,

o o

r a r a r a r a r aG G G G    (2.44) 

Notice that G
 and the Dyson equations are coupled together, in non-equilibrium 

one needs to find the solution of G
, so that one can calculate non-equilibrium properties 

like number operators, current density, etc. In the present work, as we treat near-

equilibrium condition, we need to solve only the Dyson equation for the retarded Green‟s 

function (to get equilibrium properties like Density of states –DOS) to account for the 

collisional broadening of the states due to scattering. That is, one calculates the spectral 
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density function, ( )r aA i G G  , and then integrates it over the momentum states to get 

the density of the states (DOS) function. 

 

2.7. EVALUATION OF GREEN‟S FUNCTIONS 

In the preceding section, the equations of motion for the Green‟s functions 

(specifically for the retarded Green‟s functions) were specified in a generic non-

equilibrium picture. In this section a brief recap will be given on how these Green‟s 

functions are evaluated based on the work of Vasileska[21][23], who has adopted the 

NEGF approach to a near-equilibrium condition, which we shall refer to as near-

equilibrium Gren‟s functions (nEGF) from hereinafter. Thus, one can learn how to obtain 

the one-electron properties, namely the density of states function within this picture. 

As stated earlier, all of the one-electron properties to describe the system under 

consideration can be obtained directly from the one-electron Green‟s function (by taking 

expectation values of any observables required). Thus, to solve Eq. (2.44), one needs to 

evaluate the non-interacting bare retarded Green‟s function and then calculate the self-

energy terms from the scattering matrices for the different mechanisms, and then solve 

iteratively for the interacting retarded Green‟s function. Once one obtains the Green‟s 

functions, the expectation value of any observable of the system can be calculated.  

The equation of motion for the bare Green‟s function (non-interacting) using Eq. 

(2.38), is obtained by having both (r)V  and  equal to zero, i.e. 

    (R) (R,R ', ') R R ' 'o

oi H G t t t t
t


 



 
     

 
  (2.45) 
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where  RoH  is the equilibrium Hamiltonian of the system. Thus, the non-interacting 

Green‟s function in momentum space is given by, 

 * *

k

1
( , ',k, ) ( ') ( ) (k, ) ( ') ( )o

n n on n n

n n n

G z z z z g z z     
  

 
 

 


 (2.46) 

Here,  k,ong   is the Fourier transform of the unperturbed subband Green‟s 

function (r r', ')ong t t  . The unperturbed retarded (advanced) Green‟s functions are then 

obtained by, 

 
0

( , ',k, ) ( , ',k, )o o

r aG z z G z z i


  


   (2.47) 

where  is the convergence factor. Once the unperturbed retarded and advanced Green‟s 

functions are known, one can calculate the corresponding spectral density function (SDF) 

from 

  (k, ) 2 Im (k, )r

on ona g    (2.48) 

and density of states (DOS) function 

  
*

2
,k

1
( ) (k, )o on k n

n n

m
a      

 
     


 (2.49) 

The full Green‟s function is now calculated in the self-consistent Born 

approximation (graphically shown in Figure 2.1, for the impurity scattering case) and the 

broadening of the electronic states is calculated self-consistently. The approximation is 

just a restatement of the assumption that in a weak scattering regime, where the incident 

field is much larger than the scattering field, one can assume that the scattering potential 

does not significantly alter the wavefunction. That is the total field can be replaced with 
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the incident field. Once this approximation is used, one gets a first-order value for the 

retarded subband Green‟s function for the initial guess value. That is when looking at 

(2.44), one notices that the retarded subband self-energy occurs on both the RHS and 

LHS of the equation, thus a first-order approximation is required for the self-energy (and 

the RG ) before one can proceed to solve the equation self-consistently. The above is 

referred to as Self-Consistent Born Approximation. 

Extending Eq.(2.46) to full Green's function in the assumption it has the same 

form under the diagonal approximation,  

 *(R,R ', ') ( ') ( ) (r, r ', ')r

r n n n

n

G t t z z g t t     (2.50) 

Though the above equation looks like a diagonal one, the self-energy when 

properly expressed, consists of the various scattering matrix elements, and thus accounts 

for the different off-diagonal elements corresponding to the different subband indices. 

From the above equation, using the diagonal approximation on the Full Green‟s 

function (the coupled Dyson equation), and using the value of unperturbed Green‟s 

function, the subband retarded Green‟s function is calculated as,  

                                      
k

1
(k, )

(k, )

r

n r

n n

g 
   


  

                           (2.51) 

and the corresponding retarded subband self-energy is given by, 

 *

1 1 1(k, ) ( ) ( , , k, ) ( )r

n n r ndzdz z z z z         (2.52) 
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Figure 2.1 : Feynman‟s diagram: 

(a) Eq. (2.44) : Dyson‟s equation for the retarded Green‟s function. Thin 

line represents the non-interacting Green‟s function and the thick 

line represents the interacting/full Green‟s function. 

(b) Eq. (2.53) : Self-consistent Born approximation for scattering from 

impurities. 

 

In silicon, where scattering is considered to be weak (and hence independent), the 

above integral over the self-energy can be split into separate contributions from each of 

the scattering mechanisms. Also, applying the self-consistent Born Approximation, the 

self-energy is calculated in terms of the scattering matrix elements as, 

    
2

q

(k, ) q k q,r i r

n nm m

m i

U g     (2.53) 

The matrix elements that appear in (2.53) are given in Chapter 3. The summation 

over i is for the different scattering processes under consideration over m subbbands.  

The retarded Green‟s function is always of the form,  

 
k

1
(k, )

(k, ) (k, )

r

n

n n n

g
R i


    


    

 (2.54) 

where (k, )nR   gives the shift in the subband energies, and (k, )n   is proportional to 
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the inverse of the lifetime of the n-th state ( )n ,  where, 

   
2

2

2

1
(k, ) (q, ) k q

2 (2 )

i

n m nm

m i

d q
a U 


     (2.55) 

  
2

2 q

22 2

q

(q, )
(k, ) k q

(2 ) (q, ) (q, )

m mi

n nm

m i
m m m

Rd q
R U

R

   


     

  
 

     

 



 (2.56) 

(k, )n   denotes the broadening of the electronic states of the n-th subband and 

(k, )nR   denotes the energy renormalization term (the shift in the subband energy for the 

peak of the Lorentzian SDF ), where  (k, ) 2 Im (k, )r

on ona g     

From Eqn. (2.55), the self-energy terms explicitly link the scattering over the 

different subbands, thus requiring a self-consistent solution of the  function (self-

energy‟s imaginary term). The DOS function then, as explained previously for the non-

interacting Green‟s function, is calculated as a summation over the momentum states of 

this spectral density function. 

The following chapters will give a short review of the approach followed to 

calculate the screening and conductivity using the Green-Kubo Approach followed by the 

implementation details of the nEGF solver and its coupling with SCHREDV2.0. 
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CHAPTER 3. REVIEW ON SCHRED AND SCATTERING MECHANISMS IN 

SILICON 

3.1. SCHRED - RECAP 

SCHRED V2.0 is a generalized Schrödinger Poisson Solver, that can treat a multi-

valley (user-defined number of conduction bands) semiconductor and specific 

crystallographic directions (Silicon specific) [39]. The tool has several unique features, 

namely, the ability to treat strain in silicon, and to treat any other semiconductor capacitor 

structures made of a material that can be represented using a three CB valley system. This 

chapter aims to give a brief overview of the SCHRED V2.0 and its capabilities. 

 

3.1.1. MODELS AND FEATURES  

In a general case, electrons respond to applied fields with an effective mass that 

depends on this crystallographic orientation of the field. Hence, in common cubic 

semiconductors, the dispersion relation in the parabolic band approximation is given by, 

 
2 2

2

2

l t
k

l t

k k
E

m m 

 
  

 
   (3.1) 

Eq. (3.1) describes a band with ellipsoidal constant energy surfaces. The effective 

mass is a diagonal tensor with different longitudinal and transverse effective masses, lm  

 and tm , respectively. Eq. (3.1) is referred to as parabolic band approximation.  SCHRED 

V2.0 employs the above bandstructure method for Silicon. It also employs a coordinate 

transformation method for a homogenous semiconductor, that uses the given principal 

effective masses (ellipsoidal effective masses), and a specific given crystallographic 
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direction (transport, width and wafer directions), to calculate its respective masses in the 

device coordinate system.  

 

Figure 3.1 :  Schematic description of the three orthogonal coordinate systems: device 

coordinate system (DCS), crystal coordinate system (CCS), and ellipse coordinate system 

(ECS). From Lundstrom and co-workers, with permission. 

A homogenous semiconductor can be modeled using SCHRED V2.0 by 

considering the general structure of the substrate material. In general, the conduction 

band valley of the material has three valley pairs, which, in turn, have different effective 

masses along the chosen crystallographic directions. Thus, for a general conduction band 

ellipsoid (assuming 3 valleys) in the ellipse coordinate system (ECS), 
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2 2 2 2 2 2
|| 1 2

1 2 32 2 2

k k k
E

m m m

   
  

 . (3.2) 

In Eq.(3.2), the k-space origin is translated to the conduction-band minima, which 

serves as the reference for the electronic energy. In compact vector notation, Eq. (3.2) can 

be written as 

  
2

1

2

T

E E EE k M k


  , (3.3) 

where  TE kkkk 21||   consists of the components of an arbitrary wave vector in the ECS 

and the inverse 1

EM  is a 3×3 diagonal matrix with 111 ,, 

ttl mmm  along the diagonal. For 

a given channel material and for a given conduction band ellipsoid, the directions of the 

unit basis vectors 21|| ,,  kkk   relative to the crystal coordinate system (CCS) are known, 

thus allowing one to write the 3×3 rotation matrix CER  , which transforms the 

components of an arbitrary  vector  T

C kkkk )..( '

3

'

2

'

1  defined in the CCS, to its 

components in the ECS, i.e. 

 E E C Ck R k   . (3.4) 

A similar rotation matrix DCR   transforms a wavevector T

D kkkk )..( 321  in the device 

coordinate system (DCS) to Ck  in the CCS as 

 C C D Dk R k   . (3.5) 

Combining Eq. (3.4) and (3.5) we obtain  

 E E D Dk R k  , (3.6) 

where the rotation matrix is defined as DCCEDE RRR   . Thus  
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  
2

1

2

T

D D DE k M k


 , (3.7) 

where the inverse effective mass in the DCS is  

    1 1T

D E D E E DM R M R 

    . (3.8) 

The different co-ordinate system transformation can be understood from   

Schematic description of the three orthogonal coordinate systems: device coordinate 

system (DCS), crystal coordinate system (CCS), and ellipse coordinate system (ECS). 

From Lundstrom and co-workers, with permission.. Thus, any homogenous 

semiconductor, with a specific crystallographic direction (only certain ones) can be 

represented in the above manner to compute its effective masses along particular high-

symmetry crystallographic directions. 

Another important feature of the present SCHRED V2.0 code is its ability to solve 

for conduction band valleys with different offsets. The main effect of strain in tensile 

strained-Si (that leads to enhanced electron low-field mobility), occurs in the energy band 

structure. There is a splitting of the two-fold degenerate heavy and light hole bands, 

which leads to corresponding modifications of the hole effective masses in the valence 

band.  In addition, the six-fold-degenerate conduction-band valleys split into two separate 

sets of bands: a two-fold degenerate, perpendicular 2-band and a four-fold degenerate, 

in-plane 4-band. To first order, the ellipsoidal shape of each band in k-space is not 

deformed, so unlike the valence band case, the effective mass of the conduction band 

remains unchanged. However, the relative energies of each conduction band do shift. 
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Sometimes, the 2 and 4 bands energy splitting is as large as 0.3 eV, which is one order 

of magnitude larger than the thermal energy, even at room temperature.  

2-band

Regular Silicon

Biaxial tension

Strained Silicon


00’+
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
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’

 

Figure 3.2: Subband structure in the inversion layer of regular and surface-channel 

strained-Si layer. 

This wide splitting suppresses intervalley phonon scattering of electrons from lower 

valleys to upper valleys, and therefore, reduces the intervalley phonon scattering rate 

compared with that of the unstrained Si. In the lowered valleys, electrons show the 

smaller transverse mass in the transport parallel to the interface. These two factors are 

considered to be the main mechanisms for the observed high mobilities and high 

transconductances in devices that employ strained-Si layers.  

In present day MOS capacitors several modifications to the device structures have 

been done in order to overcome the high-field effects, specifically the increasing 

transistor gate leakage current from the ever-thinning oxides. The thinner the oxides, 
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more quantum mechanical tunneling happens between the gate and the substrate through 

the oxide layer at high electric fields. Thus, adding the High-K dielectric layer to the 

existing SiO2 is a method by which the physical thickness of the gate oxide is increased 

(by approximately the ratio of the old/new permittivity) without increasing the electrical 

thickness of the gate (maintaining the electric field at the Si-SiO2 interface), enabling 

reduction in the gate leakage current, especially at higher gate fields. SCHREDV2.0 can 

model this extra layer of high-Κ dielectric quite effectively by including an extra layer of 

oxide with a different permittivity. 

 

3.1.2. THE POISSON EQUATION 

In order to solve for the potential in the device, one has to solve the 1-Dimensional 

Poisson‟s equation, 

  
 

 
x

x x
x x


 
 

  
  

 , (3.9) 

Where  x  is the spatially varying potential,  x  is the spatially varying 

permittivity,  is the total charge density.  

The Poisson equation is discretized on a finite-difference mesh, for a generalized 

non-uniform permittivity case. By discretizing the Poisson equation on a general non-

uniform mesh without requiring specific boundary conditions, one can effectively solve 

Poisson equation for any material by varying the permittivity matrix (including the 

uniform permittivity case, where the matrix reduces to single constant value). Also it is 

quite easier now to model different layers of materials, as the permittivity takes care of 
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the boundaries between the layers of different material and does not need any specific 

boundary conditions for the interface on the Poisson equation mesh. 

The normalized form of the Poisson equation is given by.  
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 (3.10) 

where, the new complete coefficients are 
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 (3.11) 

Where 0R is the forcing function. 

The finite difference discretization of the 1D Poisson‟s equation leads to tridiagonal 

matrix. That is, the Poisson equation can now be represented as, 

     F   (3.12) 

Where F is the forcing function (which is essentially the RHS of Equation (3.12) 

The lower-upper triangular matrix (LU) decomposition technique is used to solve the 

Poisson equation of the above form     F  . In this method the matrix   is broken 
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down into upper and lower triangular matrices.    is then solved by forward and 

backward substitution. 

 

3.1.3. TIME INDEPENDENT SCHRӦDINGER WAVE EQUATION 

The Schrödinger equation is also discretized on a finite difference mesh as well. Thus, 

        

2 2 2 2

1 1

1 1 1 1 1 1

i i i i

i i i i i i i i i i i i

i i

V
m x x x m x x x m x x x m x x x

E

  



    

     

 
     

     



   

 (3.13) 

The above equation is of the form of an eigenvalue problem,  

 x x   (3.14) 

One way to solve the above problem is to use the online eigenvalue solver libraries 

like EISPACK (EISPACK is a FORTRAN90 library which calculates the eigenvalues 

and eigenvectors of a matrix). EISPACK routines, however, require A  to be a symmetric 

matrix. Examining the coefficients of Eq.(3.13), the 1 1,i i   have 1,i ix x  terms in the 

denominator that make the matrix asymmetric. Thus, a symmetrization technique has to 

be employed [40].  

The number of eigenvalues and the fact that smallest eigenvalues are to be determined 

is also specified through an input variable. The output of this program is a new matrix 

with the required number of eigenvalues in ascending order as specified. 

The eigenvalues are then fed as an input to the eigenvector solver. The eigenvector 

subroutine finds those eigenvectors of a tri-diagonal symmetric matrix corresponding to 
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specified eigenvalues, using inverse iteration. The calculated eigenvalues represent the 

subband energy and their corresponding eigenvectors represent the wavefunction of the 

carriers in the quantum well.  

Thus, by solving the above eigenvalue problem, we get the values of the subband 

energy and the corresponding eigenvectors given the wavefunction in that subband 

energy level. Once this information is obtained, then the quantum sheet charge density is 

computed by summing for all the subband contributions. 

 

3.1.4. 2D SHEET CHARGE DENSITY AND TOTAL CHARGE DENSITY 

The population of the various subbands is described by the sheet electron density nN  

(no of carriers per unit area) by, 

    2

0

D

nN E f E dE


    (3.15) 

Where  2D E  is the 2D density of states function (This will get replaced by the 

scattering based real DOS once we combine the nEGF solver - will output the broadened 

DOS function),  f E is the Fermi-Dirac distribution function. 

Evaluating integral given by Eq.(3.15) gives, 
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 (3.16) 
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Where BK  is the Boltzmann constant, T  is the temperature, nE  is the subband energy, 

FE  is the Fermi energy.  The electron density is then calculated over all the subbands to 

get, 

    2

n n

n

n z N z  . (3.17) 

 

3.1.5. FLOW CHART OF THE SCHREDV2.0 PROGRAM 

As shown in the flowchart in Figure 3.3 :  Flow Chart of SCHREDV2.0, the Schrödinger 

equation solver is coupled with the Poisson‟s equation solver and is iterated until a self-

consistent solution is found. The Poisson‟s equation gives the value of the new potential 

based on which the Schrödinger equation is solved to obtain new values of subband 

energies and their wavefunctions. This, in turn, is used to calculate the new sheet charge 

density and, therefore, the total charge density, which is again used to calculate the new 

value of the potential by solving the Poisson‟s equation. The process is repeated until 

error value of the potential reaches a certain threshold. This process is repeated for the 

given voltage range. Note that if quantum confinement is not established, the charge is 

calculated classically for the next iteration step. 

This Schrödinger-Poisson solver part forms the outer loop of the self-consistent 

calculation for the subband structure. The inner loop consists of the nEGF solver that 

solves self-consistently under the self-consistent Born Approximation of the value of the 

real DOS is obtained.  
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Figure 3.3 :  Flow Chart of SCHREDV2.0 . 
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3.2. SCATTERING IN SILICON – DIFFUSIVE TRANSPORT 

In semiconductor transport different scattering mechanisms play a fundamental 

role in limiting the carrier mobility under various bias conditions. In the following, we 

review treatment of the relevant scattering mechanisms based on the work of [23], 

namely the Coulomb scattering (from the depletion and the interface charges), electron-

phonon scattering and the surface-roughness scattering, all of which play important roles 

under low applied fields in limiting the mobility of the carriers in the device. The 

expressions for the Matrix elements for Coulomb interaction, for scattering between 

subbands n and m, are given in section 3.2.1. Surface-roughness scattering is described in 

section 3.2.2, and in section 3.2.3 we briefly go through the theory of electron-phonon 

scattering. 

 

3.2.1. COULOMB SCATTERING 

Coulomb scattering in 2-Dimensional Electron Gas (2-DEG) can be from the 

depletion charges, interface charges or the oxide trapped charges. Thus, at low sheet 

electron densities (low screening) in the inversion layer, we expect Coulomb scattering 

due to ionized impurities to be important in limiting the mobility. 

The matrix element for scattering between n and m subbands for Coulomb 

scattering is given by [42], 

 

2
22 2

2 2( ) (q) ( ) ( , )
2

depl depl

nm depl nm i nm i

o

e
n U q m U N A q dz O q z

q


 

   
 

  (3.18) 

where deplN  is the depletion charge density, iz  is the location of an arbitrary charge 
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center in the depletion region , q is the wavevector and ( )nmA q  and ( , )nm iO q z  are the 

form factors in the quantized direction, where, 

 
0

( ) ( ) ( )qz

nm n mA q dz z e z 


   (3.19) 

and, 
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 (3.20) 

where  ( )

0

( , ) ( ) ( )
iz

qz

nm i n ma q z dz z e z    . 

In (3.20), q is a wavevector in the plane parallel to the interface (xy-plane in our case). 

Similarly, scattering from interface trapped charges is given by, 

 

2 222 2
2( )

(q) (q)
2

iqzit it nm
nm it

A qe
n U m U N e

q

   
     

  
 (3.21) 

where, itN  is the interface charge density located at a distance of iz . 

The matrix element for scattering from the oxide charge, with charge density oxN , 

is given by, 

 

2 2 222 2 ( ) 1
(q) (q)

2 2

oxqd
ox ox nm

nm ox

A qe e
n U m U N

q q

    
     

  
 (3.22) 

where oxd  is the oxide thickness. 
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3.2.2. SURFACE-ROUGHNESS SCATTERING 

Surface-roughness (SR) scattering is the elastic scattering of a charged particle 

from the imperfect Si/SiO2 interface. The roughness of the interface depends upon wafer 

processing conditions. Thus, the degree of roughness of the interface depends on the 

various processing parameters such as the oxidation and annealing temperatures. There 

are two components to interface-roughness: (1) fluctuation in the subband energy due to 

the fluctuation of the oxide thickness, which can be interpreted as fluctuating scattering 

potential leading to a change in the confining potential of the triangular well, and (2) 

modification of the wavefunction due to the modification of the well thickness and the 

penetration of the wavefunction in the oxide. The scattering potential causes scattering of 

the confined carriers, and can be treated perturbatively. 

In this work, we use the same approach as used by [23][43], which follows the 

above idea. The power spectrum (power spectral density), which is a measure of 

roughness, is generally modeled as a Gaussian function given by, 

 
2 2

2 2( ) exp
4

G

q
S q


 

 
   

 
 (3.23)

   

. 
 

Parameters   and   characterize the rms height of the bumps on the surface and 

the roughness correlation length, respectively. The rms height of the bumps gives an 

indication of how rough the surface is, and the roughness correlation length gives us an 

idea of how close these imperfections are. Goodnick and co-workers [43] suggested 

exponential model for the roughness power spectral density after their experimental 
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measurements proved to be better fit with this model. The power spectral density of the 

exponential model is given by, 

 

 

2 2

3 2
2 2

( )
1 2

ES q
q
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





 (3.24) 

Extending this exponential to a higher powers one can obtain a more generalized 

form of the power spectrum, know as self-affine roughness correlation function, that is 

given by the following expression, 

 

 

2 2

1
2 2

( )
1 4

SA n
S q

q n

 








 (3.25)

 

 

 

where, n>0 describes high-q falloff of the distribution. It reduces to exponential 

correlation for n=0.5 (Figure 3.4, Figure 3.5).  

Following [23], the matrix element for scattering between subbands n and m for 

this scattering mechanism is of the form 

 
2

2(q) ( ) ( )sr

nmn U m S q q   (3.26)  

Where nm  is the matrix elements computed for surface roughness scattering 

matrix elements computed for surface roughness scattering between subbands n  and m .  

In order to estimate the value of nm , we use the results of Matsumoto and 

Uemura, who calculated that in the electronic quantum limit, (0)

nm aveE  , where 

 1
2av s deplE N N  . This is known as the MU [44] definition for SR scattering 
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Within the MU model, the scattering rate, (0)

nm , is given by, 
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 (3.27)
. 

 

Figure 3.4 : Normalized magnitudes for Gaussian(red) and exponential(blue) models for 

roughness parameters 1.5 nm   and 0.243L nm . 

 

This result was further corrected by Ando [45] to account for image charge, to get 

  
2

(0) 1
( ) ( ) ( )

2

sc ox
nm nm nm depl s i ii

isc sc ox

e
q A q N N N A q

 

  

  
      

  
  (3.28) 

where 
(0)

nm  is given by (3.27), Ndepl is the depletion charge density, Ns is the total sheet 

charge density, Ni is the sheet charge density for subband i and Anm(q) and Aii(q) are 

overlap integrals. The complete Ando model for the surface-roughness matrix element is 

employed in this work alongside with the exponential model for the roughness power 

spectral density. 
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(a) 

 

(b) 

Figure 3.5 : 3D surface roughness model for the power spectrum – (a) Gaussian spectral 

model, (b) exponential spectral model for  1.5 nm   and 0.243L nm  

 

3.2.3. ELECTRON-PHONON INTERACTION 

Phonons being quantized units of lattice vibrations, interact with the electrons in 

silicon primarily in three different ways, depending upon their modes of vibration – 

broadly classified as acoustic or optical. Firstly, an electron interacting with a low energy 

acoustic phonon results in an elastic acoustic phonon scattering process. Second, the 

electron interacts with the high energy low momentum phonons, thus transitioning 

between states in a valley, referred to as intravalley scattering (inelastic process). The 

third one is where an electron interacts with high-energy high momentum acoustic/optical 

phonon thus transitioning between states of the same and different valleys, known as 

intervalley phonon scattering – which is an inelastic process. Thus, as this is a high 

energy process, they become important when electrons get hot or if the lattice 

temperature gets high enough to have enough number of optical phonons to cause 
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significant interaction [28]. A short review of the final equations used in this work will be 

stated below.  

The interaction Hamiltonian is given by, 

  q r

q q q

q

ˆ ˆ(r) i

e phH M e a a  

 

    (3.29) 

where, 
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 (3.30) 

where MN V , and  is the density of the solid and G is the set of all the reciprocal 

lattice vectors of the solid,  ˆ ˆ
q qa a 

  are phonon annihilation, creation operators 

corresponding to a wavevector q, and phonon branch  . 

The exact form of the matrix elements for acoustic and nonpolar-optical phonon 

scattering used in our calculations, are given in sections 2.3.1 and 2.3.2, respectively.  

 

3.2.4. DEFORMATION POTENTIAL SCATTERING 

The crystal potential of a semiconductor determines its bandstructure, and this 

potential is dependent upon the lattice spacing of the constituent atoms. Thus, when a 

mechanical stress is applied, this induces perturbation in the lattice constant which leads 

to changes in its crystal potential, which shows up as deformations or gratings in the 

bands (bandstructure). The potential by which it deforms is dependent on the lattice 

constant and is referred as deformed potential. These changes in bandstructure potential 

however are assumed to be small enough so that it does not change the curvature of the 
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bands, thus the effective mass of the bands remains unchanged. 

Thus, lattice vibrations (acoustic phonons) can be thought of a similar strain wave 

that produces changes in the lattice constant, leading to its respective deformation 

potential, which are basically the perturbation energy of the bands. These deformation 

potentials can be deduced from experiments for almost all common semiconductors.   

Now this elastic wave can be modeled in a continuum description, which is valid 

as we consider only long-wavelength phonons for intravalley scattering. Thus, for the 

isotropic case, we see that deformation potential for acoustic phonons becomes a constant 

denoted by   (it gives the shift of the band edge per unit elastic strain). 

The matrix element, QM   simplifies to, 
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 
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 (3.31)  

where ' 'q sv q   , where sv   is the sound velocity, and 'q  is the phonon frequency 

(both of which correspond to wavevector Q and phonon branch  ). Also, as transverse 

acoustic phonons (TA) do not contribute to the matrix element the only contribution to 

deformation potential in the isotropic case, comes from long-wavelength longitudinal 

acoustic phonons (LA). 

For anisotropic semiconductors such as silicon, the deformation potential constant 

becomes a tensor due to the anisotropy of the bandstructure. So a couple of assumptions 

can be made in deriving the final expression for the matrix element. Firstly, from 

experiments it was found that it is a good approximation to use a single energy-dependant 



 

62 

 

scattering rate for the acoustic and longitudinal phonons. Thus, an effective deformation 

potential 
eff

LA , can be used for the LA phonons instead of the tensor. 

Also, under the condition that the lattice wavefunctions are essentially harmonic 

oscillator wavefunctions and the electron wavefunctions are Bloch functions, one can see 

that the action of the operators 
qâ 

 , qâ  is to raise and lower energy state of the particular 

harmonic oscillator mode, thus they reduce to qN   and q 1N   , respectively. For 

equilibrium phonons, the qN   is given by the Bose-Einstein distribution. 

 In the elastic and equipartition approximation, the final expression for matrix 

elements for acoustic phonon scattering between subbands n and m is given by, 
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The effective deformation potential constant is calculated from, 
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where the form factor is defined as, 
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and the angle 'q  is between the wavevector 'q  of the emitted (absorbed) phonon and the 

longitudinal axis of the valley. Also, the form factor above indicates that the lower 

subband energy electrons will contribute a greater change in the deformation potential for 

their change of kinetic energy. This can be attributed to the fact that they will have more 
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momentum change as they are fixed in a direction.  

 

3.2.5. NONPOLAR OPTICAL PHONON SCATTERING 

Silicon being a nonpolar semiconductor has another significant electron-phonon 

interaction, specifically the nonpolar optical phonon scattering. Unlike the polar 

compound semiconductors where there is an added electrostatic interaction due to the 

change of the dipole moment due to the lattice constant perturbation, one can neglect this 

in nonpolar semiconductors like silicon. The optical phonons (specifically at the zone 

center) have a high energy and become important in modeling intra-subband and 

intervalley scattering. For example, in the case of silicon, the treatment of intervalley 

transitions due to scattering between the minima of the conduction bands becomes 

important when one considers the dependence of the scattering rate at high fields. Thus, 

higher order terms of the optical phonon-electron interaction have to be accounted for 

when deriving the matrix element for the scattering. However, in this work, we treat the 

device under a near-equilibrium condition, and as the aim of the work is not to solve for 

the transport parameters like drift velocity at high fields and current, we limit ourselves 

thus to the zero-order term in the intervalley phonon scattering treatment.  

The squared matrix element for nonpolar optical phonon scattering used in this 

work is given by, 
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Where o  is the frequency of the relevant phonon mode independent of the phonon 
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wave-vector, D  is the deformation field for that branch of mode  , nmF  is the form 

factor for the interaction. 

In the scattering among the equivalent valleys, there are two types of phonons that 

might be involved in the process, the g-phonons and the f-phonons (see Figure 3.6: ). The 

g-phonon couples the two valleys along opposite ends of the same axis, i.e. 100  to 

100 . The f-phonons couple the 100  valley with 010 , 001 , etc. Degeneracy 

factors ( rg ) for transition between unprimed (=1) and primed (=2) set of subbands, for 

both g- (r=1) and f-phonons (r=2) are summarized in Table 3.1 : Degeneracy factors for 

transition between unprimed and primed subbands, for both g- and f-phonons. 

The above scattering matrix elements for the various scattering mechanisms 

(including the inelastic intervalley scattering) is included into the retarded self-energy 

expression, and self-consistently solved on an uniform energy mesh to yield the retarded 

Green‟s function for the various subbands. From this retarded subband Green‟s function, 

one can calculate the broadening of the states, the density of states function and the 

mobility. More specifically, the intervalley optical phonon scattering has been accounted 

for in the phonon self-energy, and it is self-consistently solved for within the self-

consistent Born Approximation for the first time in this work. This will be explained in 

detail in the following chapter, where the fundamentals of the Green‟s function will be 

first reviewed. 
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Figure 3.6: g-type and f-type phonons transitions 

Table 3.1 : Degeneracy factors for transition between unprimed and primed subbands, for 

both g- and f-phonons. 

Initial Valley/Final Valley =1 =2 

=1 
g

1
=1;   g

2
=0  g

1
=0;   g

2
=4  

=2 
g

1
=0;   g

2
=2  g

1
=1;   g

2
=2  
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CHAPTER 4. MANY-BODY EFFECTS AND CONDUCTIVITY 

4.1. REVIEW ON MANY-BODY EFFECTS 

Scattering in mesoscopic systems, has traditionally been treated in a semi-

classical manner. But the importance of treating screening adequately has always been 

the priority considering its direct influence on the scattering events (especially in the 

inversion charge region and temperature variations). Coulomb and surface-roughness 

scattering have long been known to dominate the low-field mobility at the low and high 

inversion charge densities, respectively. Thus, in order to treat scattering of these two 

mechanisms in its entirety, screening from these inversion charges has to be accounted 

for within a solid framework into our QM model. 

The solution of the two-electron Green‟s function (the density-density correlation 

function) propagator gives an idea of how the two-particle excitation (plasma) 

propagates. This “plasma” of charge, now forms a screening potential as seen by the 

moving electron, and alters the scattering radius. This accounts for the screened scattering 

matrix elements that can then be included in the Green‟s function calculation. 

On a similar argument the conductivity can also be estimated by calculating the 

corresponding two particle Green‟s function propagator for current-current correlations. 

The above work has been studied extensively by Vasileska and co-workers [23]. In this 

chapter we will just give a recap of the important results Vasileska and co-workers have 

derived to account for screening for these two scattering mechanisms and the calculation 

of the mobility using two particle Green‟s function propagator. 
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4.1.1. SCREENING UNDER RANDOM PHASE APPROXIMATION  

Scattering of the inversion layer electrons is significantly affected by the 

screening from the inversion layer charges. In this work, the traditionally well established  

Random Phase Approximation (RPA) aka the mean-field approximation is used to model 

the modified dielectric function response. The RPA treats the Hartree potential under a 

self-consistent field of the external charge and the potential from the electron gas. This 

accounts for a good approximation of the (Lindhard) dielectric function. One could also 

view the RPA as a method that yields the dielectric function from a total electron 

potential whose oscillation averages out at a certain wavevector q, hence random phase. 

It can be noted that the exchange and correlation effects are not treated in the RPA. These 

are accounted through a density-functional formalism in the one-electron Hamiltonian 

through the Hartfree-Fock theory. This has been included in the SCREDV2.0 while 

solving for the self-consistent potential.  

The real-time Green‟s function formalism is used to derive the expression for the 

screened matrix elements, the polarizability function, and the corresponding 

susceptibility sensor. The dielectric function (density-density response function) 

corresponding to the bare polariziability function in Q2D systems is called the Lindhard 

dielectric function. This function is then obtained through analytic continuation of the 

dielectric tensor in 2D. This is then included in the retarded subband screened self-energy 

calculations stated in the previous chapter (through the screened interaction matrix 

elements). 
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= + + + . . .+ =

1
   

=

effective or 
screened interaction

bare  
interaction

 

Figure 4.1: Feynman Diagram for the effective screened interaction (polarization 

diagram) 

The above figure represents the perturbative expansion of the screened interaction 

under the Random Phase Approximation (without the exchange interaction within the 

particle-hole pair bubble). The shaded loop bubble represents the electron-hole pair 

interaction. It represents how the particle interacts with itself through the particle-hole 

bubble. These density fluctuations can be modeled as collective excitations that propagate 

through the medium using the two-particle Green‟s function propagator, also known as 

the density-correlation or polarization propagator.  

In this above expansion the bubble-pair represented is the free polarization 

propagator. This represents the irreducible polarization part which cannot be broken 

down further as it does not account for any interaction within the bubble. This is the main 

assumption of RPA, in that the exchange interaction within the bubble is ignored and one 

proceeds to calculate the screened interaction as a perturbation series based upon the bare 

bubble-pair. This is valid assumption, since the exchange interaction within the 

polarization medium is much lesser than the direct interaction. Thus, the direct 
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interaction, leads to polarization of the medium, which, in turn, shields the main 

interaction making a weaker effective interaction. 

 Looking at Figure 4.1, one can see that the perturbation series resembles very 

closely the Dyson‟s equations; thus, the screened interaction can be finally written as,   

 (0)

1 2 1 1 2 2( , ') ( , ') ( , ) ( , ) ( , ')W x x V x x dx dx V x x P x x W x x      (4.1) 

The diagrammatic representation of the same is given by, 

= +=
x x' x x'

x

x'

x1

x2

W

W

V

V

P
( 0)

 

Figure 4.2 :  Dyson‟s equation for the screened interaction in diagrammatical view 

For the Coulomb scattering one assumes a locally varying static potential. Then the 

screened matrix elements for Coulomb interaction are of the form 

 
,

,

1
(q, ) (q) (q) (q, ) (q, )eff bare s eff

ij ij ij nm nm nm

m n

W V F q W
q

       (4.2) 

where (q)bare

ijV  is the unscreened matrix between subbands i and j, and (q, )eff

ijW   

represents the effective screened matrix element, s

nmq  is the screening wavevector. The 

matrix elements are screened under RPA, in this work, only for the Coulomb scattering. 

This is due to the fact that surface-roughness is modeled in a method that is closer to a 
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deformation model of the potential rather than that of an electrostatic interaction based 

Coulombic model. 

 

Figure 4.3: Screening wavevector qs vs q vector. E1 is a sample subband energy level, EF 

is the Fermi level.  

In Figure 4.3, a plot of the screening wavevector for the degenerate and the non-

degenerate conditions is shown. From the plot, it is obvious that the screening 

wavevector has a larger value, thus resulting in a stronger screening effect for the 

degenerate limit.  

 

4.1.2. THE EXCHANGE AND CORRELATION EFFECTS IN HARTREE THEORY 

The Density Functional Theorem (DFT), states that  
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 3[ ] [ ] (r) (r)extE n F n d rV n    (4.3) 

i.e. the ground state energy of the system is a function of its charge density ( )n r , and that 

the total energy of the system has to be equal to the sum of the minimum ground state 

energy of the system and the rest of the energy coming off the external interaction with 

the external potential.  

One can derive the exchange correlation potential using the above theoretical 

assumptions, and under the Local-Density Approximation (LDA), valid for slowly 

varying potentials one has that, 

 
( ( )) ( )

(r) ( )xc xc
xc xc

d n n d n
V n n

dn dn

 
    (4.4) 

Thus, the effective Hartree potential now becomes  

 ( ) ( ) ( )eff H xcV z V z V z   (4.5) 

This potential now modifies the potential profile of the Poisson solver, which goes into 

the Time –Independent Schrödinger Wave equation. The solution of which then modifies 

the subband structure and the wavefunctions, which now alter the RPA screened matrix 

elements. Thus, exchange and correlation are accounted for in the screening implicitly 

through the Hamiltonian instead of an explicit involvement directly in the screening 

bubble. This is a valid approximation as long as the exchange-correlation energies are 

significantly less than the scattering potentials. 
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4.2. REVIEW ON CONDUCTIVITY 

The two-particle Green‟s function is essentially correlation functions of two sets of 

field operators, hence two-particle functions. In other words, it represents the propagation 

of a pair of excitations (excitations here simply refer to holes and electrons: electron – 

addition of particles and holes - removal of the particles).   Thus when these two-particle 

operators dealt with are the density operators (density-density correlation functions as a 

special case of the two-particle Green‟s function) , one calculates the density fluctuations 

that result in polarizing the medium, creating a cloud of shielding “charge” that screens 

the external scattering potential. This was explained in the previous section to account for 

the screening effects. 

In this section, similarly, one tries to calculate the related current-current correlation 

function using the less-than Green‟s function to calculate the corresponding polarization 

function to estimate the conductivity (the various moments of the less than Green‟s 

function gives the particle density, current density, etc.). This less-than Green‟s function 

can later be used either to solve the quantum BTE directly (analogous to the semi-

classical BTE but built on the lesser-than Green‟s function and the lesser-than self-

energy) and obtain the conductivity from the solution of that equation, OR one could 

follow the integrated Green-Kubo approach to calculate these transport coefficients 

which is also based of ways to find the lesser-than Green‟s function. The former method 

is more of a general approach that includes far from equilibrium transport to model high 

electric field conditions. The equations of motion based on the lesser than Green‟s 



 

73 

 

function basically reduce to the equations given by the Green-Kubo approach under near 

equilibrium conditions. 

 

4.2.1. LINEAR RESPONSE THEORY 

In this work, as we deal with near equilibrium conditions on the device, we adopt the 

use of the results derived based upon the Green-Kubo relations. The Kubo approach is 

based on the assumption of Linear Response Theory (LRT).  The LRT assumes that if the 

perturbation is small enough, the response of the system should be proportional to the 

perturbation. It also assumes that the dissipation-fluctuation theorem is valid at near 

equilibrium conditions. That is, there exists a general relationship between the random 

fluctuations of an equilibrium system and response of the same system-dissipation- to an 

external small perturbation, as they share the same origin of the force.  

According to the LRT, for a given electric field one can deduce the corresponding 

current or the current-current correlation function (moments of the lesser-than Green‟s 

function). And this correlation function (which is the random fluctuation response) can be 

related to Spectral density function (which results from a dissipative response to the 

scattering) using the fluctuation dissipation theorem. This forms the overall basis of the 

Green-Kubo formalism. 

The less-than Green‟s function (two particle Green‟s function) is first perturbatively 

expanded using the S-matrix operator in terms of the field operators. This follows a 

similar approach as done in the earlier sections. The Wick‟s theorem is used to express 

the two-particle Green‟s functions in terms of the product of one-particle functions, 
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followed by time ordering of the products of operators using a contour expansion. One 

then calculates the corresponding expectation value of the current-density operator 

(which will be in terms of these less-than Green‟s response functions), from which the 

corresponding a.c. conductivity (as the conductivity is now a function of frequency and 

q ) is obtained. From this, imposing the limits 0  (and the differential of the 

distribution function becomes a delta function at zero temperature at the Fermi surface 

Fk ), we get the d.c. conductivity 
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Observing the above equation, it is easy to notice that it represents the two-particle 

Green‟s function as a product of the one-particle retarded and advanced Green‟s function 

in the ground state. Thus, it corresponds to the lowest order expansion of the two-particle 

Green‟s function indicating the “bare” interaction between the single Green‟s function 

and the impurity potential. The above equation is also called as the Drude conductivity 

(also referred to as the d.c form of the a.c conductivity 2D in its zero-frequency limit) 

corresponding to the lowest order expansion of the interaction.  

The additional contribution comes from the higher order interaction of the impurity 

scattering event with the exact two-particle Green‟s function. This can be obtained by 

using Wick‟s theorem for the two-particle Green‟s function, and writing as the time-

ordered product of two one-particle Green‟s function using the S-matrix operator. Thus, 
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this product of two one-particle Green‟s functions (which is the polarization function) is 

averaged over all the states instead of just the ground state. This represents the interaction 

between the impurity potentials and its connection to both the one-particle Green‟s 

functions.  

The above interaction can be represented as follows. The one-particle Green‟s 

functions can be written as a perturbation series using the Dyson‟s equation. Thus, 

represented by diagram as, 

= +

= + + + ...
 

Figure 4.4 :  Dyson‟s equation for retarded/advance Green‟s function 

Now taking the product of two one-particle Green‟s function would result in a 

perturbation series that looks like a ladder as shown below in Figure 4.5. 

+ + . . .

k k'

k k' k k'' k'

k k'' k'

k k'' k'k'''

k k'' k'k'''

+D   =

 

Figure 4.5 :  Ladder diagram for the interaction between the Green‟s function(solid lines) 

and the (impurity) scattering event (dashed lines) that contribute to conductivity 
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Hence the two-particle Green‟s function‟s full perturbative expansion (that includes all of 

the interaction within the higher order terms) can now be represented by a ladder 

diagram. 

This electron-hole ladder series represents the correction factor to the earlier stated 

Drude conductivity model, which now includes the higher order interactions. Also, an 

important assumption here is that the interaction is only due to the impurity scattering, 

and one takes the Dyson‟s equation for the impurity scattering for the one-particle 

Green‟s function. The dissipative effect of electron-phonon interaction is not considered 

as a contribution to the conductivity and thus the matrix element in the Dyson‟s equation, 

comes only from the impurity and surface-roughness scattering. The polarization function 

(which is the product (q, ) (q, )r a

om omg g  
averaged over the different impurity positions) 

satisfies the Bethe-Selpeter equation, 
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The conductivity is now given by, 
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 (4.8) 

Taking the first order of eq.(4.7) for the polarization function, and neglecting the 

second part of Eq. (4.8) (as we consider only impurity and surface roughness, for which 
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the scattering potential becomes a delta function), we get the d.c, conductivity and 

polarization as,  
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Thus the final conductivity expression becomes,  
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Where, 
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The above conductivity expression is again for the case of the Fermi‟s distribution 

function reducing to a delta function at the zero-temperature limit. 

The correction factor to this Drude model is given by, 
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Thus, overall conductivity is given by, 
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which is the expression for D.C conductivity used in this work.  
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CHAPTER 5. SCHRED INTEGRATION AND IMPLEMENTATION OF 

PARALLEL GF CORE 

5.1. COUPLING OF THE nEGF SOLVER TO THE SCHRED V2.0 SOLVER 

The Schrödinger-Poisson solver uses the density of states to compute the sheet 

density in various subbands, and therefore the total QM charge density in the device. This 

is where the nEGF solver comes into play, and gives an option of calculating the CBS in 

the Density of states function. Thus, for every iteration of the outer Schrödinger-Poisson 

loop, the nEGF solver solves for the retarded subband Green‟s function self-consistently, 

and calculates the corresponding self-energy, giving the value of the “real” DOS. This 

forms the inner loop of the simulator. 

While coupling the two, care has to be taken to model the valleys properly. SCHRED 

considers a three conduction band valley pair model, and thus the nEGF solver has to be 

updated from a two-valley pair model to that of a three-CB valley pair model. The 

masses, wavefunctions are passed to the various scattering subroutines, overlap integrals, 

screening routines. Once the real DOS is solved, the control passes to the outer loop of 

Schrödinger-Poisson, and the process repeats until the Schrödinger-Poisson threshold 

value for error is reached for a self-consistent value of the potential. 

 

5.2. MPI – PARALLELIZATION OF THE nEGF ENERGY INTEGRATION 
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n n n       (5.3) 

where k is wavevector,  is the FE energy value, n represents the subbands. Also note 

that in our computations, the ,k   vectors are converted into their respective energy 

vectors ( ,k FE E ) and the integration is done over energy range rather than momentum 

values. 

Looking at the equations for the collisional broadening of the states we see that self-

consistent solution is established by starting the iteration with an initial guess value for 

(k, )n  , according to the first-Born approximation. n  values have to be computed for 

all the values of  k  (no. of points on the Ek energy axis),   (no. of points on the EF 

energy axis ), n  (no. of subbands), l  (no. of valleys) by solving the coupled integral 

equations.  For example, for k =1000,   =300, n =2, l =3 the problem requires 

61000 300 2 3 1.8 10      times evaluation of the integral equation. This is very 

computationally expensive. (Note that the 1D Schrödinger-Poisson solver takes 

negligible amount of time) 
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But if one looks carefully into the expressions for the Γ-function evaluation, it is 

independent of    integration. In other words, if 1 2, , , r       are r points on the FE  

energy scale, then evaluation of 2(k, )n   does not depend upon 

1 3 4(k, ) (k, ) (k, ) ,...... (k, )n n n n nor or       . Hence, this part of the integration over 

FE points can be parallelized.  

Assuming we have 102 points on the FE  scale, and we could run in parallel these 

102 
FE  integrations on each of the 102 cores available on the local supercomputer, we 

could technically speed up the computation process significantly. 

 

Figure 5.1 : Speedup obtained per iteration of the inner nEGF loop 

 

In Figure 5.1, the speedup is computed based on a reference scale set with the time 

taken by a single core (serial) for the convergence of the code for a single iteration of the 

inner GF loop. This process was repeated 3 times in order to get an average value based 
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on the kernel and cluster variations of the nodes/cores assigned each time. The number of 

mesh points for each scale is as follows, k =500,   =102, n =2, l =3. Looking at the 

figure we observe a maximum speed up of up to 12 times, the time taken by the serial 

execution of the code on a single core. This apparent speedup can be explained by further 

looking at the differences within the execution time for different parts of the code on the 

CPU. 

In Error! Reference source not found. one notices that the parallelizable part of the 

code is about 75% of the entire design. Thus, a maximum efficiency of 12 times seems to 

be consistent with Amdahl‟s law. This can also be explained by the fact that saturation in 

speedup is reached beyond a certain point as the transfer of data between the different 

CPUs/RAM units – memory and IO bandwidth requirements - starts dragging down the 

speedup increase from increased number of processors.  

No. 
of 
cores 

Total 
CPU 
time 
(sec) 

GF 
Loo
p 
total 
(sec) 

GF  
parallel 
module 
(sec) 

Mobility 
module 
(sec) 

GF parallel 
time/ Total 
CPU time 
(%) 

34 612 577 435 16 74.4 

1 3041 2887 2282 106 75.05 

Table 5.1 : Simulation time 

 

In this work, the Message Passing Interface (MPI) has been used to make the above 

parallelization possible. MPI is short for message passing protocol – an open source 

software package developed by a wide variety of people (from industry and academia) 
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over the last few decades. The motivation is to make it possible to run a set of processes 

(threads/cores) in parallel on a cluster of nodes. MPI is compatible with most 

programming languages like C, C++, FORTRAN, Java etc. There is also another 

variation of the message passing package called as open MP. The difference between 

MPI and open MP is that, MPI runs the code parallel on different processor cores with a 

distributed memory - generally many big supercomputing clusters have separate memory 

for each processor, thus a distributed memory. But open MP on the other hand is mainly 

for running parallel on a cluster with a shared (cache) memory - an example is the cores 

on a single processor chip that share the same RAM through a cache memory. The 

supercomputing cluster at ASU (specifically for large no of cores like >128) uses 

distributed memory.  Thus, the MPI is the preferred package. 

So, in MPI, the same version of the code is run in parallel, at the same time on all the 

number of assigned cores. This is done by modifying the command given to compile and 

execute the source code, to include the MPI function and other details. That is, 

information such as the output file name, the number of cores required, the specific 

processor preferred to run on (different processors may have different number of cores 

such as 8,16,32 and also their speeds maybe different based on how old they are, etc) can 

be stated. Once this is stated in the startup script file, then we can edit the source code to 

actually implement the integration in parallel on the given number of processor cores.  

A set of MPI commands can be used to do the following, where we can do several 

things like letting the core know that the MPI part of the execution has started, make the 

core hold the execution of the process on that line, and several other commands that help 
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share data between the cores. Giving the detail for each of this, however, seems 

unnecessary and only the major details of the parallelization will be explained below.  

Let us assume we have “NGRID” points on the FE scale, and available cores are 

given my “NUMPROCS”, the number of grid points for each core is given by, 

 
NGRID

NDELP
NUMPROCS

  (5.4) 

The above is important as, as it is not always possible to run say 256 FE points on 256 

processor threads/cores, due to the unavailability of the required cores on the cluster at 

the given time. Thus, grouping a set of FE points together on a given core becomes the 

next best level in getting the speedup we want, which this approach attempts to do. 

If “myid” is the ID number of that processor core, the starting point of FE point of 

integration for that core is given by, 

 _MYDEL START NDELP myid   (5.5) 

Now inside the  loop for FE integration, we start with the above “mydel_start” and go 

up to NDELP.  

Thus the FE  integration is now split among the NUMPROCS number of cores. And, 

when this is evaluated, we issue another MPI command to hold the execution on that core 

until all other cores reach the same line of execution. After this is done, the calculated   

values are sent back from the slave cores (say 1,2…numprocs-1) to the master core „0‟. 

Thus the „0‟ core collects the  value for all the FE  points.  
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This   value is now broadcasted using an MPI command back to the rest of the 

“slave” cores, from where all the slave cores resume their regular execution again. Thus, 

each core now calculates the error value for itself and checks to see if it is less than the 

threshold value. If it is not, then the integration loop repeats again with the new 

(k, )n  values. This process repeats until error value gets lesser than the tolerance value 

of 65 10  eV. This ensures maximal efficiency as the error is calculated simultaneously 

by all cores in tandem, and the only time spent idle by the slave cores, is during the 

collection and re-distribution of the complete set of  array values by the master core. 

A point to note is that in order to solve for each EF point on the energy scale we need 

the previous set of  values corresponding to different energies. This is done by the use 

of the uniform energy mesh on EF axis. The q  energy value is divided by the ∆EF 

value to find the index by which it is shifted, and thus use that corresponding value of   

at that   point. Thus, the solver requires the use of a very fine uniform energy mesh that 

increases computational complexity leading to the use of parallelization explained in this 

section 

  

5.3. ELECTRON-PHONON SELF-ENERGY IMPLEMENTATION  

Most of the elastic scattering mechanisms included in the nEGF solver require no 

special treatment, as they are completely accounted for by their scattering matrix 

elements (as a summation of the square of different scattering matrix elements) included 

directly into the self-energy matrix for the retarded subband self-energy. But in the case 

of electron-phonon scattering for the non-polar optical phonons (as is the case with 
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silicon), calculation of the retarded self-energy for electron-phonon interactions is more 

complicated as the scattering now becomes inelastic and the self-energy treatment above 

based on the scattering matrix elements (on a single-point external potential) is not 

applicable. One needs to consider the quantized phonon field or in other words, the 

phonon Green‟s function in conjunction with the electron Green‟s function for 

accounting the interaction, and thus the self-energy.  

Under the self-consistent Born approximation (as reviewed in chapter 3), the self-

energy function due to electron-phonon interaction is given by, 

 , , ,

1 2 1 2 1 2( , ) ( , ) ( , )x x iG x x D x x        (5.6) 

where 
,D 

 are the phonon Green‟s functions. And, the retarded/advanced self-energy 

functions for the electron-phonon interaction are given by, 

 
1 2 1 2 1 2 1 2 1 2( , ) ( , ) ( , ) ( , ) ( , )r a r a r ax x iG x x D x x iG x x D x x     (5.7) 

and this follows under the assumptions that, the phonon bath that the electron is 

interacting with, is assumed to be at thermal equilibrium; and secondly, we consider only 

one-phonon interacting with an electron (one-phonon process) while deriving the self-

energy. 

The above equation can be further simplified so that the phonon self-energy can 

be solved self-consistently under the Born approximation. Hence, assuming reasonably 

small electron densities, the G
<
 term can be neglected, and thus the retarded/advanced 

self-energy functions simplifies to, 

 1 2 1 2 1 2( , ) ( , ) ( , )r a r ax x iG x x D x x   (5.8) 
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  The retarded subband self-energy for the phonons is now given by (under 

diagonal approximation for the retarded Greens function), 

     
2

, Q q Q q

q

(k, ) (q) 1 k q, k q,r i r r

n nm m m

m i

U N g N g                
 

 (5.9) 

Gr

D


x1x2  

Figure 5.2 :  Self-consistent Born approximation for electron-phonon interaction. 

Looking at Eq. (5.9), the first term corresponds to phonon emission, and the 

second term corresponds to phonon absorption. This self-energy thus accounts for the 

sum of all contributions from the different electron-phonon interactions included through 

the scattering matrix element.    

 The final expressions for the broadening of the electronic states (k, )n   and the 

renormalization factor (k, )nR   for the subband energies corresponding the self-energy 

in Eq.(5.9) now will become 
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 (5.11) 

Considering acoustic phonon scattering, being a low energy elastic scattering 

mechanism, these equations would reduce to the Eqs (3.5),(3.51), similar to the inclusion 

of sum of square of the matrix elements inside the self-energy term for the Coulomb, 

surface-roughness and interface-trap scattering mechanisms under Self-consistent Born 

approximation. Thus, the contribution from the acoustic phonon scattering is added to the 

square of the matrix elements and fed into the same expression as in (3.5), along with the 

other elastic scattering mechanisms. 

But the elastic approximation is not valid for the higher energy optical phonons, 

thus requires a self-consistent treatment of the phonon self-energy. In order to do this, an 

uniform energy mesh was taken (with an energy mesh spacing less than 0 ) and the 

initial value for the proper self-energy for the phonons is obtained from the first Born 
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approximation of (5.10), (5.11), which under first-order Born approximation becomes, 
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 (5.12) 

And (k, )nR   will be 0 as (k, ) 0n   for first-order Born approximation. 

This value of the self-energy will be now used as the initial guess value for the 

proper self-energy iteration loop in Eq. (5.10) . Thus, the total contribution to the self-

energy‟s imaginary term (broadening of the states n ) is now the sum of the contribution 

from the above electron-phonon interaction term for n  and the contribution from the 

rest of the elastic scattering mechanisms to n  included earlier. This now forms the total 

contribution to the  n  function (corresponding to the dressed/full interacting Green‟s 

function). This will be used again during the next iteration as the initial guess value for 

the n  function (instead of the first-order Born approximation value used in the first loop 

iteration), and iterated until the tolerance value is reached. This accounts for the self-

consistent solution of the corresponding full Green‟s function accounting for the electron-

phonon interaction explicitly. 

 

5.4. FLOWCHART OF THE OVERALL PROGRAM  

The overall program is detailed in the flowchart below. As shown in Figure 5.3, the 

Schrödinger-Poisson‟s solver forms the outer loop of the master iteration, and inside 
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which runs the nEGF solver – that solves self-consistently, through another loop the 

value of the real DOS by solving the Dyson‟s equation for the retarded subband self-

energy. Thus, the broadening of the states and the energy renormalization of the spectrum 

is evaluated.  

The initial, first iteration solution of the Poisson equation based on the doping gives a 

guess potential value based on which the Schrödinger eigenvalue (EISPACK) solver 

gives the values of the subband wavefunctions. Using the new potential, wavefunction 

values for the different subbands, and the Ef energy mesh, the inner nEGF loop is iterated 

until it gives a self-consistent value for broadening of states – Gamma function. Based on 

this Gamma function, it calculates the value of the real DOS, and thus the sheet charge 

density.  

The Poisson‟s equation now gives the value of the new potential based on the 

calculated sheet density (based on the above nEGF solved real DOS). The Schrödinger 

equation uses the new potential and gives the new values of subband energies and their 

wavefunctions. This now becomes the input into the nEGF solver. And the process 

repeats until a self-consistent solution of the Poisson potential is established for the real 

DOS. In other words, the process is repeated until error value of the potential reaches a 

certain threshold tolerance for self-consistency. 

Also before the start of the solver there is possibility to choose the semi-classical or 

quantum simulation mode based on either a hardcoded flag value or through the voltage 

range (by calculating the first iteration value of the Poisson surface position). In the semi-

classical mode, the nEGF solver is completely skipped and only the Poisson solver runs 
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and the semi-classical charge is calculated based on the ideal DOS. In this case a flag can 

be set to denote semi-classical approximation for the SDF (as the delta function) under 

first Born approximation, so that one can calculate the ideal DOS based mobility value. 

Or it could be reset so that one can calculate the mobility for ideal DOS but with self-

consistent born approximation instead of just the first Born approximation.  

Once the value of the sheet density and potential is calculated, the conductivity is 

calculated through the Green-Kubo approach. If the ideal DOS flag is set, then an 

approximation for the value of the SDF is set as a Dirac-delta function while evaluating 

the polarization equation for the conductivity and the first Born result of the Gamma 

function is used. If not, the solver runs through the self-consistent calculation for the 

Gamma function (for the last one iteration of this final, self-consistent potential). And 

then, the conductivity is calculated as before using the self-consistent solution of the 

polarizability function (lambda function). Following this, the mobility is evaluated based 

on this conductivity over the EF energy range established earlier. 

Figure 5.4 explains in detail the nEGF solver‟s flow. The MPI calls are made at the 

start of the routine to get the core IDs, calculation of the respective EF grid points, and 

establish the array (sub-array slices of EF grid points) sizes for the Gamma function based 

on the grid point distribution among the cores. 

After this each core runs through the following sequence in parallel. It first calculates 

the bare overlap factors (matrix elements) for the Coulomb and surface-roughness 

scattering mechanisms based on the subband wavefunctions, and the Schrödinger-

Poisson‟s potential. Then the acoustic phonons scattering matrix elements are evaluated.  
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Figure 5.3 : Overall Program 
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Figure 5.4 : nEGF loop solver - with the MPI core for calculating the Ef integration 



 

94 

 

The first-Born approximation for the Gamma function is then estimated to provide for the 

initial guess for the self-consistent Gamma loop that is to follow. 

The energy EF mesh now runs for the given core‟s grid range, and the corresponding 

slice of the Gamma function (slice meaning the respective slice of the total Gamma 

function matrix, corresponding to the EF range of the Gamma function on that core) is 

calculated on each core in tandem. 

This gamma function has a two contributions, first comes from the intervalley phonons 

(inelastic, so on a uniform energy mesh the phonon energy difference can be accounted 

for using a number of EF grid points). Next part is the elastic contribution through the rest 

of scattering mechanisms – Coulomb, surface-roughness, acoustic phonons – which go 

directly into the matrix elements, which are then squared and summed as a net 

contribution.  

At the end of this, an MPI call ensures all cores reach this point, at which the gamma 

function slices are collected from “slave” cores to the “master” core „0‟. The master core 

now combines the slices of the matrix (EF sub-array matrices) into the total Gamma 

function matrix (which now is a function of the 4 variables, the entire EF range, Eq range, 

subband and valleys). This complete matrix is then redistributed back to the slave cores, 

which then calculates the error, and if it is greater than the tolerance value, continues to 

repeat the loop using the new value of the evaluated gamma function. Thus, one solves 

for the real DOS, which is then used to calculate the new sheet charge density and 

therefore the total quantum charge density.  
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This inner nEGF loop repeats for each iteration of the outer Schrödinger -Poisson‟s 

loop, giving the final self-consistent value of the potential based on the broadening of the 

states and the corresponding quantum charge density. The mobility then is calculated, 

after which the process is repeated for the next voltage value.   
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CHAPTER 6. SIMULATION RESULTS  

The simulation results presented in this section were run including the self-

consistency of the phonons and parallelizing the code while solving for the broadening of 

the states.  

 

6.1.  SCATTERING RATES IN THE FIRST BORN APPROXIMATION 

Figure 6.1 compares the scattering rates of the different scattering mechanisms within 

the first Born approximation, included in the model individually. This helps us determine 

qualitatively how the different scattering mechanisms affect the mobility under different 

transverse electric field conditions. The simulations are carried out at 7.7×10
17

 m
-3

 

doping, at a bias voltage of VG = 5V, at T= 300K, that leads to 1.2×10
6
 V/cm transverse 

electric field. The roughness correlation length used in these simulations is 15 Å, the 

RMS height of the bumps is 3 Å. Three sets of simulations were run, each simulation 

with one of the three scattering mechanism included – surface roughness (SR), Coulomb, 

acoustic phonon (AP). 

Each curve corresponds to individual subband/valleys of that set of simulation. 

Namely, “SR-11”, indicates surface-roughness scattering only for subband „1‟ and valley 

„1‟.  The blue lines indicate the different subband energies for the subband/valleys. The 

increase (step) in the scattering rate for each curve corresponds to the occurrence of the 

corresponding subband energy. Looking at the [11] curves for each scattering 

mechanism, SR is the dominant one, followed by acoustic phonon and the Coulomb 

scattering. This can be explained by our assumption of the simulation, which is run at 

https://en.wikipedia.org/wiki/%C3%85
https://en.wikipedia.org/wiki/%C3%85
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1.2×10
6
 V/cm electric field. This field corresponds to high transverse field regime where 

the surface roughness dominates. 
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Figure 6.1 :  First Born approximation scattering rates 

For the subband 2 in valley 1, we notice that the SR curve moves up, while the curves 

for the AP and Coulomb scattering move down. This increase of SR scattering can also 

be explained by the high transverse field. 

 

6.1.1. BROADENING OF THE STATES ACROSS MOSFET GENERATIONS 

The DOS in a Q2D system is traditionally treated to be independent of the scattering and 

considered as a step function.  This research accounts for the scattering induced 

broadening in the density of states. The figure below (Figure 6.2) shows the broadening 

of  
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Figure 6.2 :  Left panel NA= 10
17

cm
-3

, Right panel NA= 10
18

cm
-
3. First row panels: 

Effective(real) DOS of the lowest 3 subbands. The energy values indicate the 

corresponding subband energies in the order of subbands – 11, 12, 21. Second Row 

panels: Simulation without Coulomb scattering. “DOS.nC” denotes the real DOS 

function without Coulomb scattering in comparison to the real DOS with Coulomb 

scattering denoted by “DOS”. Third Row panels: Simulation without Coulomb scattering 

and without surface roughness scattering. “DOS.nC.nSR” denotes the real DOS function 

without Coulomb scattering and surface roughness scattering in comparison to the real 

DOS without Coulomb scattering only denoted by “DOS.nC”. Fourth Row panel: 

Simulation run for 2 sheet charge densities, “DOS.1e12” - 1×10
12

cm
-2

, “DOS.5e12” - 

5×10
12 

cm
-2

. 

 54.67 meV          97.19 meV        103.99 meV                
 

110.53 meV      195.47 meV       207.42 meV 
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the states across different doping generations, as well as across the different subbands and 

valleys. The left panels in Figure 6.2 describe the DOS results corresponding to substrate 

doping density of 10
17 

cm
-3

 and the right panels to substrate doping density of 10
18 

cm
-3

. 

The sheet electron density is 10
12 

cm 
-3

. The Renormalization of the spectrum is not taken 

into account in these simulations. The first row corresponds to the case when all 

scattering mechanisms are incorporated in the model. It describes the effective (real) 

DOS of the lowest three subbands (2 from unprimed ladder of subbands (11 and 21) and 

1 from primed ladder of subbands (12)). The subband energies for the respective 

subbands are also indicated. The lines denote the ideal DOS step-function. We can 

observe that the broadening of the states induced by the scattering leads to spreading of 

the DOS function around this energy value for a given subband.  

The second row results correspond to a case when Coulomb scattering is omitted and 

the bottom panel results correspond to the case when both Coulomb and surface 

roughness scattering are not included in the theoretical model. One can immediately 

conclude by the comparison of the results for the DOS function that for the case of 

substrate doping density of 10
17 

cm
-3

, Coulomb and surface-roughness scattering are not 

that significant when compared to phonon scattering as the DOS function shape does not 

change significantly. This can be reasoned by in the following manner. Although both 

Coulomb and interface roughness scattering potentials are higher, the subband separation 

increases and the intersubband scattering reduces due to the smaller overlap of the 

wavefunctions; thus leading to smaller overlap factors.  
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The situation is a little different for a substrate doping density of 10
18 

cm
-3

. Here, 

although the subband separation is higher, the strength of both Coulomb and surface-

roughness potentials increases considerably, thus dominating phonon scattering even at 

sheet electron density of 10
12 

cm
-2

. Such doping densities roughly correspond to substrate 

doping densities of the 32 nm and 22 nm technology nodes.  

In the bottom row, we show a plot of the DOS function for two sheet charge 

densities: 1×10
12 

cm
-2

 and 5×10
12 

cm
-2

. It can be observed that as the doping density 

increases, the subband energies and their separation increases which leads to more energy 

shift between the DOS function corresponding to the different subbands. Also noted is 

that the second
 
subband of the first valley has the highest broadening. This can be 

explained by looking at the second and third panel for the 1×10
18 

cm
-3

 doping densities. 

The DOS function corresponding to this second subband rises much faster to unity 

(approaching the ideal DOS) when the surface-roughness scattering and Coulomb 

scattering is absent (third panel), compared to the case when only Coulomb scattering is 

absent (second panel). This can be attributed to the increased surface-roughness 

scattering that now dominates the inter-subband scattering, as previously stated.  

The Coulomb scattering does not seem as significant in this case. This is also in 

accordance with our expectation that Coulomb scattering should dominate at lower sheet 

charge densities. This is further asserted from the second panel data, which shows the 

increase of the slope in the DOS functions corresponding to the first subband from valley 

1 and valley 2 when Coulomb scattering is absent. 
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6.2. RESULTS OF THE SCHRED-nEGF CODE 

In this section we present the results obtained with the integrated code that couples in 

a self-consistent manner the 1-D Poisson-Schrödinger solver with the nEGF core 

discussed in the previous section. This was accomplished to make the solver more robust 

- because of the self-consistent solution of the coupled Poisson-Schrödinger equation, 

where the Poisson equation is solved on a generic non-uniform mesh using direct LU 

decomposition method and the Schrödinger equation is solved using the Eigenvalue 

solver from EISPACK. Also, by doing this we can expand the feature capability of the 

nEGF solver, as SCHRED V2.0 can model strain in silicon, high-K dielectric, and give us 

more data like the inversion layer capacitance, subband sheet charge density etc. 

SCHRED V2.0 is easily adoptable to implement newer devices due to the generic non-

uniform mesh adopted while solving for the Poisson and the Schrödinger equation. 

 When obtaining the simulation results shown in Figure 6.3, we assume transverse 

electric field of 1.0×10
6
 V/cm. The system is a three conduction band valley pairs system 

with two subbands per valley.  Figure 6.3 shows the DOS simulation for different doping 

concentrations, at 2.0×10
16

 m
-3

 , 7.7×10
17

 m
-3

 , 2.4×10
18

 m
-3

 doping.  

The curve “2e16-subband-11” corresponds to a doping level of  2.0×10
16

 m
-3

, and „-

11‟ indicates the first subband of the first valley ([nn,kk] – where „nn‟ is the subband and 

„kk‟ is the valley). The 11,21,12,22[subband/valley] curves denote the primed subbands 

for the Δ4 bands and the 13,23 curves correspond to the unprimed subband ladder of the 

Δ2 bands. 
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6.2.1. The real DOS – Collisional Broadening of the States 
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Figure 6.3 : Real DOS vs energy for different doping concentrations 

Observing the curves for the three different doping levels, for subband =1, valley = 3,  

one can easily deduce that the scattering induced collisional broadening of the states is 

most significantly affecting the 2.4×10
18

 m
-3

 doping concentration. A similar argument 

can be made for the remaining curves as well. It is also seen that scattering induces a 

much broader variation specifically in the 21,22 curves more so than others. A probable 

reason is the one stated in the previous section - The scattering potential of surface 

roughness is now strong enough (higher transverse field) to overcome the weak overlap 

of the wavefunctions due to the increased subband separation. 

From this and the previous section analysis of the results we might conclude that 

collisional broadening of the states is more significant in smaller device structures with 
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very high doping densities due to the Coulomb scattering being increased by two orders 

of magnitude and interface roughness dominating the intra-subband scattering in this 

structure at very high doping densities. 

6.2.2. DOS for Self-consistent phonon calculation 

 

Figure 6.4 : DOS comparison between ideal DOS (black solid lines), DOS without 

phonon self-consistency (no-ph), and DOS with self-consistent inclusion of phonon 

scattering (ph). 

 

In Figure 6.4, the DOS - with and without the self-consistent inclusion of intervalley 

phonon scattering is studied. Also shown is the 2-D ideal DOS step function denoted by 

the solid black lines. The ideal DOS is a step function and is represented by the solid 

vertical black lines, thus indicating no broadening of the DOS. Figure 6.4 is plotted for a 

substrate doping concentration of 2.4×10
18

 cm
-
3, at an electric field of 1MV/cm. It can be 
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observed that „ph‟ curves for the different subbands have significantly higher broadening 

of the states, with lowered DOS value as opposed to the „no-ph‟ curves. This concurs 

with our expectation of increased state broadening from the proper inclusion of 

intervalley phonon scattering within the self-consistent Born approximation. Also, in both 

of these cases the broadening of the states is quite large as opposed to the case of ideal 

DOS (black solid line). This can be explained by the higher doping value used in the 

current simulation dataset. 

 

6.2.3. MOBILITY PLOT 

In Figure 6.5, we see that a really good match of the mobility is achieved across all 

the three doping generations. „exp 2.0×10
16

 cm
-3

‟, „exp 7.7×10
17

 
 
cm

-3
‟, „exp 2.4×10

18
 
 

cm
-3

‟,  are the experimental results for 2.0×10
16

 cm
-3 

, 7.7×10
17

 cm
-3

, 2.4×10
18

 cm
-3 

doping concentrations respectively [49]. Similarly „sim 2.0×10
16

  cm
-3

‟, „sim 7.7x10
17

cm
-

3
‟, „sim 2.4x10

18
cm

-3
‟, are our simulation results of this present work , for 2.0×10

16
 cm

-3 
, 

7.7×10
17

 cm
-3

, 2.4×10
18

 cm
-3 

doping concentrations respectively. All the scattering 

mechanisms are included in the simulation, namely surface roughness (unscreened), 

Coulomb (screened), Interface trap (screened), acoustic phonon and the intervalley 

optical phonons scattering. The same set of data for this simulation set is analyzed in the 

following sections. 

A very close agreement between experiment and theory is achieved over the three 

doping generations for the composite mobility curves. We can see that the universal 
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mobility curve is especially well justified as the SR dominant high field regime brings the 

different doping curves to a single one. 

 

Figure 6.5 : Mobility Vs electric field in silicon for different doping generations.       [exp 

– Experimental  
[49]

 ; sim – Simulation (Real DOS) ] 

 

A very good fit is observed for both doping concentrations of 7.7×10
17

 cm
-3

, 2.4×10
18

 

cm
-3 

in this region. A very good match is also observed over the relatively lower field 

values ( for instance 5.0×10
5
 V/cm for 2.0×10

16
 cm

-3 
 ) for all the doping densities as 

well. In this low field region, as the inversion charges decrease, Coulomb scattering 

begins to increase and thus brings down the mobility.   



 

106 

 

A similar match in mobility is observed for the lower doping densities as shown in 

Figure 6.5, for the cases of 3.5×10
15

 cm
-3

, 7.2×10
16

 cm
-3

 as well.  

In Figure 6.6, one can see the comparison between mobility for real and ideal DOS. 

The real DOS based mobility is calculated with the self-consistent inclusion of all the 

relevant scattering mechanisms including the intervalley phonon scattering and thus 

computing the collisional broadening of the states (CBS). 

 

Figure 6.6 : Mobility Vs electric field comparison between the real DOS with collisional 

broadening of states (CBS) and the ideal DOS without CBS 
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The ideal DOS based mobility on the other hand, is computed based only on the ideal 

DOS, within the first-Born approximation (without self-consistently solving for CBS). As 

one would expect, the inclusion of scattering decreases the mobility of the carriers. This 

can be observed in the SR dominant high-field regime for all the doping concentrations.  
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CHAPTER 7. CONCLUSION AND FUTURE WORK  

This thesis has successfully created a fully quantum mechanical nano-device simulator 

that can model the low-field inversion layer mobility in silicon MOS capacitors. It solves 

for the scattering induced collisional broadening of the states by accounting for the 

various scattering mechanisms present in silicon through the nEGF (near-equilibrium  

Green‟s function) approach. The novel feature in this work is the inclusion of the 

inelastic intervalley phonon scattering self-consistently while solving for the nEGF. In 

addition, this work also includes the acoustic phonon scattering, interface trap, Coulomb 

and surface roughness scattering to solve for the DOS and the mobility. Specifically, the 

Coulomb scattering (screened) and surface roughness model implemented in this work 

result in a very close match to the experimental mobility values for all the doping 

generations. 

It also adopts a two-loop approach, where the outer loop solves for the self-

consistency between the potential and the subband sheet charge density by solving the 

Poisson and the Schrödinger equation, respectively. This constitutes what we could refer 

to as the “macro ecosystem” of the device, where some semi-classical approximations 

can be made to reduce the complexity of the computation, as long as it is found 

reasonable to do so under the specific device conditions. For instance, as our device is 

considered to be in near-equilibrium, the effective mass approximation is considered to 

be valid. 

The inner loop now solves for the nEGF (renormalization of the spectrum and the 

broadening of the states) self-consistently under the self-consistent Born approximation. 
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This results in new DOS that determines the new sheet charge density. This part involves 

a more precise and complete quantum mechanical treatment of the inversion layer 

physics on a more fundamental level. This two loop approach results in the economical 

way for the convergence to be achieved, instead of running two parallel loops. 

The self-consistent inclusion of the inelastic intervalley phonon scattering is achieved 

in this inner loop by implementing a uniform energy mesh for the computation of the 

nEGF. This resulted in a time disadvantage, as the nEGF now had to be integrated 

throughout the entire energy mesh. Thus, the work employed a MPI parallelization 

technique that enables the user to save precious time, if enough resources are available to 

run the code in parallel. The unique nature of the nEGF integral equations make them 

extremely parallelizable. This results in a speedup of almost up to 10 times as noted by 

the author. 

The inclusion of SCHREDV2.0 further extends the scope of the performance 

capabilities of the simulator. For example, it is now possible to adapt the code to different 

device structures like strain in silicon, different orientations in silicon and high-K 

devices. In addition one can also model Poly gate depletion, uniform/non-uniform 

doping, user defined number of valleys, partial/complete ionization of carriers and 

several other features. Future work could be extended to new materials like Germanium 

(Ge) and/or model silicon nanowires 
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