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ABSTRACT

Fully distributed wireless sensor networks (WSNs) without fusion center have

advantages such as scalability in network size and energy efficiency in communications.

Each sensor shares its data only with neighbors and then achieves global consensus

quantities by in-network processing. This dissertation considers robust distributed

parameter estimation methods, seeking global consensus on parameters of adaptive

learning algorithms and statistical quantities.

Diffusion adaptation strategy with nonlinear transmission is proposed. The non-

linearity was motivated by the necessity for bounded transmit power, as sensors need

to iteratively communicate each other energy-efficiently. Despite the nonlinearity, it

is shown that the algorithm performs close to the linear case with the added advan-

tage of power savings. This dissertation also discusses convergence properties of the

algorithm in the mean and the mean-square sense.

Often, average is used to measure central tendency of sensed data over a net-

work. When there are outliers in the data, however, average can be highly biased.

Alternative choices of robust metrics against outliers are median, mode, and trimmed

mean. Quantiles generalize the median, and they also can be used for trimmed mean.

Consensus-based distributed quantile estimation algorithm is proposed and applied

for finding trimmed-mean, median, maximum or minimum values, and identification

of outliers through simulation. It is shown that the estimated quantities are asymp-

totically unbiased and converges toward the sample quantile in the mean-square sense.

Step-size sequences with proper decay rates are also discussed for convergence anal-

ysis.

Another measure of central tendency is a mode which represents the most probable

value and also be robust to outliers and other contaminations in data. The proposed

distributed mode estimation algorithm achieves a global mode by recursively shifting
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conditional mean of the measurement data until it converges to stationary points of

estimated density function. It is also possible to estimate the mode by utilizing grid

vector as well as kernel density estimator. The densities are estimated at each grid

point, while the points are updated until they converge to a global mode.
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Chapter 1

INTRODUCTION

1.1 Distributed Wireless Sensor Networks

A wireless sensor network (WSN) is a network of spatially distributed sensor

devices to monitor or measure physical phenomena observable over a certain region.

Sensor devices are typically small, inexpensive, memory-limited, and lightweight [1].

Sensors are deployed in difficult-to-access locations with limited battery power. A

radio is implemented for wireless communication, which is essential to transfer sensed

data for fusion or processing with the other collected data. Depending on applications

and type of sensors used, actuators may be incorporated in sensor devices [2], in order

to control or monitor the network of sensors and the sensors themselves. More general

overviews and surveys about WSNs can be found in [1–3].

It is also important to address how to fuse the sensing data gathered from sensor

networks. There are generally two types of sensor networks: centralized and dis-

tributed. In centralized networks, a fusion center is located in the network and all

the data observed by sensor nodes are transmitted to the fusion center. This type of

sensor fusion is easy to control and fast to obtain data processing outcomes. However,

if the sensor nodes are deployed in a large area with limited power resources, lifetime

of sensor nodes far from the fusion center can be shortened. On the other hand, when

there is no fusion center in distributed networks, each sensor node communicates only

with neighbors and probably in-network processing can be a viable solution because

data is processed by the local sensor nodes themselves.
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A traditional problem in distributed networks is to estimate an arithmetic mean

of measurement data by iteratively averaging the states with neighboring ones and

achieving consensus on the global average of the initial measurements [4, 5]. This

has influenced many distributed estimation applications due to the broad use of the

arithmetic mean in signal processing techniques. Consensus on linear system param-

eter estimation of adaptive learning algorithms (e.g., least-mean-square, LMS) can

be achieved by iteratively averaging intermediate states of the estimates with neigh-

boring ones, even in fully distributed networks [6]. However, the linear averaging

process can be impractical and inefficient when intermediate states are transmitted

to neighbors, and therefore constrained transmission may be needed. Consensus on

an average of measurement data can be used for a measure of central tendency of

the sensed data in monitoring applications. However, when the data distribution is

skewed or has even a small number of outliers, the average can be highly biased, and

robust metrics such as median (or quantiles for more general metric) and mode may

be needed.

This dissertation studies consensus-based estimation methods in fully distributed

wireless networks. When real-time data are observed at each node, individual nodes

can locally estimate system parameters using adaptive learning algorithms [7–11].

Collaboration with neighboring nodes during the adaptive learning process is benefi-

cial because all the nodes have a common objective - the system parameter estima-

tion, which can be obtained by achieving consensus on the estimates. Nonlinearity

is motivated by the necessity for bounded transmission power when the intermediate

estimates of parameters are averaged with neighbors.

Another use of consensus-based estimation is a robust measure of central tendency

in sensed data. An average consensus of data is achievable by distributed averaging

schemes [4, 12], and may be used to estimate central tendency of the data such as

2



average temperature over a network. However, an average can be highly sensitive to

outliers and skewness of the data distribution. Among the many statistical metrics

for central tendency, one can consider median which represents 50% of data. More

general metric than median is quantile that can be also used for outliers removal or

trimmed mean. Mode is another metric for a measure of central tendency. A mode

is obtained by searching the most densest region of data distribution. Arguably

the mode is the closest one to the intuitive understanding of the measure of central

tendency, as it represents the most probable value of sensed data. This dissertation

describes consensus-based quantile and mode estimation methods to measure the

central tendency of sensed data in fully distributed wireless networks.

In the remain of this chapter, we briefly review background knowledge relevant

to this dissertation. Graph theory and distributed network structure is explained,

and then related works are introduced by unifying various works based consensus

estimation approaches. Related applications are introduced and contributions of this

dissertation are addressed.

1.2 Notations and Conventions

Vectors and matrices are denoted by boldface lower-case and upper-case, respec-

tively. λn(L) denotes the n-th smallest eigenvalue of matrix L. The vector 1 denotes a

column vector of all ones and I denotes an identity matrix. The symbol ‖·‖ denotes the

l2 norm for real vectors and spectral norm for symmetric matrices. diag [a1, a2, . . . , aN ]

denotes a N ×N diagonal matrix A with the n-th element an. E [·] denotes the ex-

pectation operator. Sets are denoted by blackboard bold upper-case: for example, a

set of N nodes is denoted by N = {1, 2, . . . , N}. Calligraphic symbols denote distri-

bution: N represents normal (Gaussian) distribution and log-normal distribution is

3



denoted by lnN . Bold calligraphic symbols denote block matrices and vectors with

Kronecker product ⊗: for example, L , L ⊗ I where L, L, and I are NM × NM ,

N ×N , and M ×M respectively.

1.3 Background Review

1.3.1 Graph Theory and Distributed Network

Network graph theory is briefly summarized in this section. There is an undirected

graph G = (N,E) containing a set of nodes N = {1, . . . , N} and a set of edges E. The

neighbors of node n is denoted by Nn = {l| {l, n} ∈ E} where {n, l} is an edge between

the nodes n and l [13]. Each node communicates with neighbors via the edges. The

degree dn at node n denotes the number of neighbors at n, and dmax = maxn dn. It is

called that a graph is connected if there exists at least one path between every pair of

nodes. The graph structure is described by adjacency matrix B, which is an N ×N

symmetric matrix. The element bnl = 1 of B if {n, l} ∈ E. The diagonal matrix

D = diag [d1, d2, . . . , dN ] represents the degrees of all the nodes in the network. The

Laplacian matrix is given by L = D−B.

The graph Laplacian characterizes a number of useful properties of the graph.

The eigenvalues of L are non-negative and the number of zero eigenvalues denotes

the number of distinct components of the graph. When the graph is connected,

λ1(L) = 0, and λn(L) > 0, 2 ≤ n ≤ N , so that the rank of L for a connected graph

is N − 1. The vector 1 is the eigenvector of L associated with the eigenvalue 0, i.e.,

L1 = 0. The eigenvalue λ2(L) characterizes how densely the graph is connected and

the performance of consensus algorithms depend on this eigenvalue [14].

In this dissertation we consider connected networks where at least one path con-

necting any two arbitrary nodes exists. The nodes may be connected directly by an
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Figure 1.1: A Distributed Network Topology.

edge if they are neighbors, or they may be connected by a path that passes through

other intermediate nodes. Fig. 1.1 illustrates a graphical view of a connected network

with N nodes. The neighborhood is defined as the set of nodes that are connected

to it by edges, excluding the node itself. For example, the neighborhood at node 6

is defined as N6 = {3, 5, 7, 8} and the node 6 has degree |N6| = 4. Since the network

does not have a fusion center, the network is also called distributed network.

Each sensor node n observes a certain type of data in this network, and it shares

the observed data with its neighbors. The aim of sensing at each node n is to collect

and interpret the data in order to provide monitoring systems with desired informa-

tion. Thus, it is assumed that the nodes have a common goal, and they are expected

to cooperate for achieving the goal. One straightforward method to achieve the com-

mon goal is a flooding scheme. Each node maintains a table that is consists of the

sensed data collected from all nodes. At each iteration time instance, the nodes

exchange their own table information with their neighbors over the network. This

process is iteratively continued until every node obtains the entire sensed data. How-

ever, there is a distributed iteration method that can achieve more efficient and faster

computation because each node shares its own data only with neighbors. In such a

5



distributed process, every node seeks to consensus of desired information by iterative

communications.

Depending on consensus applications of interests, we may classify the observed

data into static or dynamic. Let x and y denote the static and dynamic real scalar

data, respectively. Let N denote the number of nodes in the network. With the static

data, each node observes xn, where n = 1, 2, . . . , N , initially and wishes to converge

to a function of all the values {xn}Nn=1 after a number of iterations. With the dynamic

data, on the other hand, each node observes yn(i), where n = 1, 2, . . . , N , at time i

and has ability to adapt and learn the network in response to changes in the statis-

tical properties of the data. Interestingly, learning a network parameter that is the

common goal of all the sensor nodes can be improved by cooperation over the network.

1.3.2 Distributed Average Consensus

Fully distributed sensor networks are scalable and energy efficient, as each node

shares its sensing data with neighboring nodes only. A traditional problem in this

domain is to estimate an average of measurements by iteratively averaging the states

with neighboring ones, and achieves a consensus on the global average of the ini-

tial measurements [4, 5, 15]. This influenced the problem of distributed estimations

because the broad use of the arithmetic mean in signal processing techniques.

Distributed average consensus algorithms asymptotically achieve an average of

the initial measurement data at sensors. As shown in Fig. 1.2, each node maintains

a sensor measurement, denoting xn(0) at node n time i = 0. In a connected graph

network, every node n transmits its measurement xn(i) at time i through the links

connected to its neighbors. After a number of iterations, as i → ∞, a consensus

on the global average of the initial measurements {xn(0)}Nn=1 is achieved. There are

6
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Figure 1.2: Consensus to an Average Value over the Network.

significant number of works based on this idea. We may unify some of the existing

works with the following scenarios.

• Fixed topologies without noisy links [4]

• Fixed topologies with noisy links [16–19]

• Random topologies without noisy links [14, 20–25]

• Random topologies with noisy links [26]

• Nonlinear bounded transmission for transmit power saving, whereas the above

scenarios are all linear [27]

The fixed topologies mean that the networks are fixed and do not change over

time. Reference [4] designed the optimal link weights for this type of network where

7



the links between nodes are noiseless. When the links between nodes are connected

via wireless communication channels, transmitted data is corrupted by random noise.

Refs [16–19,21] consider consensus algorithm for such fixed network and noisy links.

To achieve a consensus, decreasing weight sequences are used. The random noises

are assumed temporally white noise. The consensus is not the global average of

initial measurement data but a random variable. The network topologies can be

time-varying due to random link failure. When the network links fail at random but

they are noiseless, the impacts of network topologies on distributed average consensus

algorithms were studied in [14]. A sufficient condition for mean-square convergence

of the distributed average consensus algorithm is provided, in terms of a moment

of the network graph Laplacian matrix L. Random link failures but noiseless also

have been considered in [20, 22–25, 28]. Refs [20, 22, 28] assume an erasure model:

the network links fail independently in space and time. Refs [23, 25] study directed

topologies with only time i.i.d. link failure, but impose distributional assumptions

on the link formation process. In [24], the link failures are i.i.d. Laplacian matrices,

the graph is directed, and no distributional assumptions are made on the Laplacian

matrices. In time-varying links of network with additive random noise, [26] studies

the algorithm that forces the parameter α to decay to zero to guarantee the conver-

gence when there are random link failures and noisy links. In distributed systems,

it is often assumed that the power amplifiers used are perfectly linear over the en-

tire range of the sensed observations. In practice, however, the amplifiers exhibit

nonlinear behavior when the amplitude of the sensed data is relatively high [29, 30].

Thus, a distributed average consensus algorithm in which every sensor transmits with

bounded peak power is studied in [27]. Every sensor maps its observed data through a

bounded nonlinear function before transmission to constrain the peak transmit power.

Therefore the magnitude of the transmitted signal at every node in every iteration

8



is always bounded, making it ideal for resource-constrained wireless network topolo-

gies. Reference [27] considered the fixed topology and noisy link condition of network.

1.3.3 Distributed Parameter Estimation

In this dissertation we focus on distributed parameter estimation problems where

the distributed sensor nodes have their own measurement data in order to estimate

a global parameter from the measurement. The parameter estimation is performed

with distributed average consensus algorithms. These problems have been inten-

sively solved in terms of many deterministic and stochastic iterative algorithms in

a distributed parallel implementation. Multiple nodes perform local update, while

exchanging the states with a certain common goal. Early works for this problems

in terms of distributed asynchronous iterations in parallel stochastic application are

referred to [31–34]. A series of extensive works are referred to diffusion adaptation

that is summarized in the following subsection. Depending on data types and appli-

cations, there are other works that provide distributed parameter estimation based on

consensus approach. Reference [35] showed convergence analysis comparing vanishing

and non-vanishing step-sizes for seeking consensus in distributed network, based on

stochastic approximation theory. Reference [36] also showed distributed parameter

estimation problems seeking consensus with convergence analysis and two steps - con-

sensus and innovation where the innovation step is from observation of measurement

data. Reference [37] provides convergence analysis of the distributed parameter esti-

mation by consensus based stochastic approximation.

9



1.3.3.1 Diffusion Adaptation

When the common goal at each sensor node is to find an unknown parameter vec-

tor from measurements collected over a fully distributed network, algorithms where

every node conducts local computation based on their own measurement while ex-

changing the states with neighboring nodes can provide better estimation perfor-

mance. The measurement data types can lead to different algorithms and conver-

gence results. Reference [6] introduced diffusion least-means-square (LMS) algorithm

where the local measurement data is generated from a linear system (which is identi-

cal to every node) and real-time. As illustrated in Fig. 1.3, each node performs LMS

algorithm [6–9] to estimate the parameter vector in linear regression model. Since

the model is identical to every node over the network, exchanging the intermediate

estimates with neighboring nodes can improve the estimation performance in terms

of mean-square error (MSE) and adaptation speed. This algorithm is referred to

diffusion adaptation because the adaptation is from LMS adaptive filtering and the

diffusion is from exchanging the estimates.

As the measurements data are real-time and the parameter can be diffused over

the network, it can be applied for controlling the network itself or a flock of multi-

agent [38,39], detection of abnormal sensor nodes [40,41], and many other applications

(see, e.g. [42,43] and the references therein). The diffusion adaptation algorithm was

introduced in various scenarios such as noisy wireless communication environments

for the diffusion step [44–46] and nonlinearity of the algorithm [41, 47]. Compari-

son with consensus algorithms, performance analysis, and optimization formulation

are addressed in [48–54]. The diffusion adaptation algorithm is different with tradi-

tional consensus algorithms such as [15,31] in that the measurement data is real-time

which generates measurement random noise. Since the application is more focused

10
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Figure 1.3: Consensus to a Global Parameter over the Network.

on online learning and adaptability from the measurement data, the diffusion adapta-

tion algorithm uses constant step-sizes in order to have capability of adaptation. This

does not guarantee convergence to consensus, although the algorithm seeks consensus.

1.3.3.2 Quantile and Mode Estimation

Distributed average (i.e., arithmetic mean) consensus of sensor data can be used

in monitoring applications. One example would be to monitor average temperature

(or, some other statistical quantities) over a sensor network in remote area. Gener-

ally speaking, one might estimate the arithmetic mean of temperature because the

mean can represent central tendency of the data. However, arithmetic mean can be
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Figure 1.4: Consensus to a Global Quantile Value from Initial Measurement Data
over the Network.

vulnerable to skewness of the distribution. If there are outliers in the measurement

data, the mean can be highly biased.

Alternative statistics with less bias are the median and mode. The median repre-

sents the mid-point which divides the data into an equal number on either side. The

mode is the value that represents the peak of the given distribution. As a generalized

metric of median, quantiles divide the ranked measurement dataset into subsets of

nearly equal sizes. Quantiles are used in various applications. One straightforward

example is outliers detection. From a set of measurement data, one may want to

12



eliminate the values higher (or lower) than a certain percentage. With the empirical

cumulative distribution function (ECDF), a quantile consensus corresponding to the

given ratio p can be achieved. Fig. 1.4 illustrates a quantile consensus estimation.

From the initial measurement at each node, after a number iterations i, every node

achieves a common value of the quantile. The median can be considered as a special

case of quantiles when the sought value is 50% of the measurement data. Trimmed

mean is an average of a set of data within a certain range of percentage. Maximum

and minimum values can be another examples of quantiles in general point of view.

Quantile regression estimates the conditional quantiles, like the conditional mean, of

measurement data distribution where the statistics such as mean and variance can

change over time. This method has been used in a variety of machine learning [55]

as well as statistical applications [56] (and references therein).

The mode can be close to the intuitive understanding of a centrality measure in

that it represents the maximum probability of data, in other words, the most probable

value. For the past several decades the mode as a measure of central tendency has been

extensively used for data analysis in many applications such as bioinformatics [57–60]

because it is less biased than other metrics for outliers and contaminations [61, 62].

There are several practical methods to estimate the mode for continuous and discrete

data. The basic idea to estimate the mode for the continuous data is to find the dens-

est region of data distribution, which can be estimated by either non-parametric [60]

or parametric methods [63, 64] whose methods are evaluated in [65]. For the dis-

crete data, one can obtain the histogram first and then find the bin that contains the

most frequent value. But the estimated mode depends on the bin size. The existing

methods for the mode are based on centralized estimation where all the measure-

ment data need to be collected in a central location. However, the measured sensor

data are often unavailable to be transmitted to the central data center. Rather, it

13



�

� �

�

�

�

�

�

	

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

���

�
�

� � argmax
�

1

 � �

�


�, �
�

0 �
�

���

, ∀�,
where	�

�

⋅,⋅ 	is	the	Gaussian	kernel	with	bandwidth	#.


��
�����
��������
���	��
��������

Figure 1.5: Consensus to a Global Mode of Initial Measurement Data over the
Network.

may require distributed calculation to estimate the global mode. Fig. 1.5 illustrates

the distributed mode estimation that finds the maximum value of probability den-

sity function (PDF) where the PDF is estimated by kernel density estimator (KDE)

with Gaussian kernel function. As iteration i increases, every node n achieves the

mode, which is the maximum of KDE. For example, consider sensors are deployed

in large remote area to monitor natural environment and we wish to estimate the

most probable value of precipitation in that area over a certain period of time. Since

the communication resources are limited, each sensor shares its own measurement of

precipitation with neighborhood. Then after a number of iterative in-network com-

munications, each sensor node converges to the same estimate for the most probable

value of precipitation in that area. Since the distribution of precipitation data are
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not necessarily symmetric, the mode can be considered as a robust measure of central

tendency.

1.4 Applications

Many applications for WSNs have been developed in military target tracking and

surveillance, natural disaster relief, biomedical health monitoring, and hazardous en-

vironment exploration, and seismic sensing [1, 2]. An intensive research has con-

tributed to the problems of reaching consensus among the sensor nodes or control

systems [5, 12, 66–75]. Graph network structure metrics such as degree distribution,

degree matrix, and network size are useful tools in network analyses and applications.

Often it is difficult to learn the graph network structure especially in fully distributed

networks [76]. Refs [77–79] studied degree distribution estimation methods for dis-

tributed network environments.

A monitoring application example using distributed consensus algorithm is pho-

tovoltaic (PV) array monitoring system that can be deployed in remote locations and

requires continuous monitoring to secure fault detection and efficient performance.

Sensor nodes are capable of monitoring solar arrays in real time to track several pa-

rameters including individual module voltage, current, temperature, and irradiance.

Continuous monitoring requires sensor connectivity at PV sites, and coordination

with the entire network [80–86]. Deployment cost can be reduced by using wireless

networked connectivity. PV array monitoring is achieved by sensors mounted on

each module, and the data collected from the array have to be aggregated before any

decisions are made. Due to the large areas occupied by the PV array, however, trans-

mitting all the data to a fusion center is impractical. In this case, a fully distributed

consensus based system can be a viable solution.
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1.5 Contributions

This dissertation explores robust distributed parameter estimation based on con-

sensus approach. From sensor measurement, we estimate a certain parameter that

is associated with the data. First, we study nonlinear diffusion adaptation scheme

with bounded transmission which allows a distributed sensor network to save energy

resource. In this work, we consider real-time sensor data and an adaptive learning

algorithm. At each iterative time instance, every node processes real-time data by

LMS algorithm while the processed data is diffused to its neighboring nodes. Sec-

ondly, we study distributed quantile estimation which can be used as a measure of

central tendency of sensed data such as trimmed mean, outliers removal, and median

as a special case. The measurement data is not real-time in this case but a set of

them is given over the network. This estimation method can be used for robust mea-

sure of central tendency of data, as the estimated quantile is robust again outliers.

Lastly, we study distributed mode estimation which is also used as a metric for cen-

tral tendency since it can represent the most probable value of data. Two approaches

are introduced for the mode estimation. One is mean-shift mode estimation scheme

that iteratively updates conditional mean of measurement data where the conditional

mean is determined by the measurement data and states of the mode estimates. The

other approach is based on kernel density estimator with iteratively updating a grid

vector until it converges to the mode. Contributions in more details are summarized

below:

• Nonlinear diffusion adaptation: we consider nonlinearity of diffusion adapta-

tion scheme in distributed sensor network with bounded transmission. We have

shown the nonlinear scheme with performance analysis. It shows that mean-

square-deviation (MSD), which represents estimation error from desired a pa-
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rameter, can be close to the linear case by controlling the nonlinear mapping

function parameter with power savings. Convergence in the mean as well as

stability for the nonlinear scheme are also provided.

• Distributed quantile estimation: we provide a distributed quantile estimation

algorithm which only uses local measurement data at each node. Without the

knowledge of empirical cumulative distribution function (ECDF) of measure-

ment data, a global quantile is estimated in a distributed way. The algorithm

recursively updates the states of estimation, consisting of two-steps at each iter-

ation: one is local update based on the measurement data and the current state,

and the other is averaging the updated states with neighboring nodes. We con-

sider the realistic case of communication links between nodes being corrupted

by independent random noise. It is shown that the estimated state sequence

is asymptotically unbiased and converges toward the true (sample) quantile in

mean-square sense. The two step-size sequences corresponding to the averag-

ing and local update steps result in a mixed-time scale algorithm with proper

conditions in order to achieve convergence. We also illustrate potential appli-

cations, including distributed estimation of trimmed mean and computation

of median, maximum, or minimum values as well as identification of outliers

through simulations.

• Distributed mode estimation I : we propose a distributed mode estimation method,

where each node communicates the states of conditional mean of measurement

data with neighboring nodes. The proposed method achieves the global mode

by recursively shifting the conditional mean until it converges to a stationary

point of the global density function. Simulation results show the robustness and

scalability of our approach. The distributed mode estimation is also compared
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with the results obtained by the centralized methods. As an application we

apply the mode estimation algorithm for finding the densest region of the net-

work. Given the geographic location information at each node, the algorithm

finds the densest region of sensor deployment using only local exchanges with

neighbors.

• Distributed mode estimation II : we also study another approach for distributed

mode estimation, which is based on kernel density estimator and a grid vector.

At each point on the grid vector, kernel densities are estimated after a certain

number of iterations. The grid points are updated by reducing the distance be-

tween the points, and are converged to a consensus after a number of iterations.

This method is useful even when the data distribution is spatially correlated in

the network. Numerical experiments are provided to demonstrate the method.

1.6 Outline of Dissertation

The outline of dissertation is following. In chapter 2, we propose a nonlinear diffu-

sion adaptation scheme using bounded transmission function that can lead to energy

efficient diffusion adaptation algorithm for wireless distributed sensor network. Chap-

ter 3 describes the distributed quantile estimation which shows convergence toward

a quantile value of empirical cumulative distribution function. In chapter 4 and 5,

we propose distributed mode estimation methods based on mean-shift algorithm and

grid vector scheme respectively. Finally we conclude this dissertation in chapter 6.
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Chapter 2

NONLINEAR DIFFUSION ADAPTATION WITH BOUNDED TRANSMISSION

Fully distributed networks, where nodes are connected only with their neighbors,

perform decentralized processing to achieve a global objective by relying on local in-

formation. One such objective is the identification of model parameters of physical

phenomena observable over the entire network. All nodes in the network have access

to their own observed data and wish to estimate the model common parameters, as

described in Fig. 2.1. When real-time data are observed at each node, it is possible for

individual nodes to locally learn and estimate the parameters using adaptive learning

algorithms [7–11]. Since the nodes have the common objective of parameter estima-

tion, cooperation with neighbors during the adaptive learning process is expected to

provide some benefits in fully distributed estimation.

Distributed adaptive estimation algorithms with such cooperative processing have

been developed by strategies that generally consist of two steps: diffusion and adap-

tation [6, 42, 46, 51]. Individual nodes communicate with neighbors to learn common

parameters by combining their local estimates with those of neighbors, while each

node performs least-mean-square (LMS) based adaptive learning. The diffusion step

is conducted by combining the local estimates. Linear diffusion LMS is formulated

and its performance is analyzed in [6]. The diffusion LMS of [6] is generalized in [51]

where measurement data are exchanged as well as parameter estimates. When the

linear diffusion is performed with wireless communications, noisy links are considered

in [46,52,53], and fading channels in [44]. Further variations of linear diffusion strate-

gies in different situations are introduced in [42] and references therein.
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Figure 2.1: Nonlinear Diffusion Update at Node 2 with Its Neighbors.

In this chapter, we consider nonlinearity in diffusion adaptation strategies. In [41],

an error nonlinearity in each node’s adaptation was applied due to impulsive measure-

ment noise. However, we are interested in nonlinearity of diffusion updates among

the nodes, which occurs when local intermediate estimates are diffused with those of

neighboring nodes through bounded transmissions. Fig. 2.1 illustrates a situation

where a node combines local estimates from its neighbors through nonlinear map-

ping functions. In practice, nonlinearities arise at transmit power amplifiers (PAs)

when the amplitude in the transmitter is relatively high [30, 87]. Moreover, if every

node maps its intermediate estimate through a bounded function to constrain the

peak transmit power, the magnitude of the transmitted signal is always bounded and

transmit power can be saved. We propose nonlinear diffusion strategies using sig-

moidal functions to model such bounded transmissions. We study the convergence

properties of nonlinear diffusion adaptation. Numerical results show that the pro-

posed algorithm can be close to the linear case in terms of the mean-square-deviation

(MSD), with the added benefits of power savings.

The rest of this chapter is organized as follows. Section 2.1 introduces the sys-

tem model and linear diffusion adaptation. In Section 2.2 nonlinear diffusion with

bounded transmission is proposed. Performance analysis is provided in Section 2.3.
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Numerical results in Section 2.4 support the contributions. Finally, concluding re-

marks are provided in Section 2.5.

2.1 System Model and Existing Solutions

Consider a distributed network that consists of a set of nodes N = {1, 2, . . . , N}.

We denote the set of neighbors of node n by Nn where k = 1, 2, . . . , N . Each node n

observes the temporal realization of zero-mean random processes {yn(i),xn(i)} where

yn(i) and xn(i) = [xn1(i), . . . , xnm(i), . . . , xnM(i)] are a real-valued scalar and a row

regression vector of size 1×M , respectively, at time instants i ≥ 0. The measurement

data sequence {yn(i),xn(i)}i≥0 are related linearly to an unknown real-valued M × 1

vector wo:

yn(i) = xn(i)wo + vn(i) (2.1)

where vn(i) denotes measurement noise which is a real-valued zero-mean Gaussian

random process with variance σ2
v,n. It is assumed the random variable vn(i) and vl(j)

are temporally and spatially independent for i 6= j and n 6= l .

The objective is to estimate the model parameter vector wo, which is unknown

initially, by distributed adaptive estimation. Since wo is assumed the same at every

node, local cooperation with neighbors becomes beneficial when there is no central-

ized control. Every node n continuously exchanges its intermediate estimate of wo

with neighboring nodes, while conducting an adaptive learning algorithm. Thus the

algorithm consists of two steps: diffusion and adaptation. The order of the steps

can be reversed. We focus on the diffusion step where we propose nonlinearity with

bounded transmission, while adopting LMS based algorithm with exchanging inter-

mediate estimate of wo for the adaptation step.
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We first review the linear case [42] to contrast it with our nonlinear approach.

Diffusion process is conducted by combining each node’s intermediate estimate with

its neighbor estimates. Let ωn(i) be the intermediate estimate of size M × 1 at node

n at time i. Let ψn(i) be the diffused estimate of ωn(i) and {ωl(i)}l∈Nn at i with

coefficients {anl}n 6=l,l∈Nn where anl denotes a combining weight from l to n. The linear

diffusion can be defined by

ψn(i) = annωn(i) +
∑
l∈Nn

anlωl(i) (2.2)

where ann, anl satisfy the following conditions [6, 42]:

anl ≥ 0, ∀n, l, ann +
∑
l∈Nn

anl = 1, and anl = 0 if l /∈ Nn. (2.3)

There are many well-known combining rules such as Laplacian [4,88], nearest neighbor

[68], Metropolis [4,89,90], and maximum-degree [15]. Finding the combining weights

is out of scope of this chapter. Instead, we follow the form derived for diffusion

adaptation strategies in [42,49,51]:

anl =


1− ηn

∑
l∈Nn

bnl, if l = n

ηnbnl, if l ∈ Nn

0, if l /∈ Nn

, (2.4)

where ηn is a parameter selected to satisfy the conditions in (2.3). By properly

selecting ηn and bnl, one can find the equivalent combining rules introduced above.

By substituting (2.4) into (2.2), the linear diffusion adaptation is expressed as

ψn(i) = ωn(i)− ηn
∑
l∈Nn

bnl
(
ωn(i)− ωl(i)

)
, (2.5)

ωn(i+ 1) = ψn(i) + µnx
T
n (i)

(
yn(i)− xn(i)ψn(i)

)
, (2.6)
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Figure 2.2: Linear (Unbounded) and Nonlinear (Bounded) Functions.

where µn is a step-size parameter at node n, ωn(0) = 0, and i ≥ 0. Note that yn(i)

and xn(i) are defined in (2.1). The two-step updates of (2.5) and (2.6) are called

the combine-then-adapt (CTA) algorithm [6]. The order of combine step in (2.5) and

adapt step in (2.6) can be reversed, which is given by

ψn(i) = ωn(i) + µnx
T
n (i)

(
yn(i)− xn(i)ωn(i)

)
, (2.7)

ωn(i+ 1) = ψn(i)− ηn
∑
l∈Nn

bnl
(
ψn(i)−ψl(i)

)
, (2.8)

where i ≥ 0. We primarily deal with CTA approach to propose the nonlinear diffusion

adaptation. However, the adapt-then-combine (ATC) approach [42,46,51] will be also

presented in numerical results to show that the nonlinearity does not affect the order

of the two-step updates shown in (2.5) and (2.6).

2.2 Nonlinear Diffusion with Bounded Transmission

Let each node l transmit its intermediate estimate ωl(i) by mapping it through a

function h(·) which can either be linear or nonlinear. The diffusion in (2.5) can be

modified as

ψn(i) = ωn(i)− ηn
∑
l∈Nn

bnl

[
h
(
ωn(i)

)
− h
(
ωl(i)

)]
(2.9)
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where the element-wise function h(·) can be nonlinear as in the following possible sce-

narios: when there is nonlinearity in power amplifier (PA) at transmitter of wireless

sensor nodes [30, 87]; when a maximum value of ωl(i) is enforced for energy-efficient

amplify-and-forward (AF) wireless sensor networks [27]. Sigmoidal functions, which

are smooth one-to-one mapping functions with finite upper and lower bounds, are

suitable for modeling the nonlinearities [27]. Typically, input-output power char-

acteristics in PA show that output power is saturated to an upper bound as input

power increases, whereas the amplifier performs linearly when input power is relatively

low [30, 87]. Moreover, such sigmoidal functions make the magnitude of each node’s

transmission bounded, expecting energy-efficiency of resource-constrained networks.

Fig. 2.2 illustrates both of linear and nonlinear transmit functions. We see that the

nonlinear functions are bounded, whereas the linear function can be unbounded. The

following assumption is made on the nonlinear function h(·):

Assumption 1 h(·) is a strictly increasing odd function satisfying |h(x)| ≤ κ|x| for

some κ > 0, and all x ∈ R.

When the transmission links are noisy, the transmitted values experience additive

random noise. We assume zero-mean Gaussian random noise is added onto the links.

Then the nonlinear diffusion in (2.9) can be extended for the noisy links:

ψn(i) = ωn(i)− ηn
∑
l∈Nn

bnl

[
h
(
ωn(i)

)
− h
(
ωl(i)

)
− ξnl(i)

]
(2.10)

where ξnl(i) is a Gaussian random vector of size M × 1.

The nonlinear diffusion adaptation algorithm with the bounded transmissions is

described in Algorithm 1 where LMS based adaptive learning algorithm is consid-

ered for the adaptation step. Algorithm 2 describes the ATC approach that was

implemented by reversing the order of nonlinear diffusion and adaptation in CTA

approach.
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Algorithm 1 Nonlinear Diffusion Adaptation with Bounded Transmission over a

Network (Nonlinear CTA)

Initialization: ωn(0), γn, βn, {anl}, µn, ∀n and l ∈ Nn.

for i ≥ 0 do

Bounded transmission: for every transmitting node l,

h(ωl(i)) = γl tanh
(
βlωl(i)

)
Nonlinear diffusion: with {anl} of (2.4), repeat ∀n

ψn(i) = ωn(i)− ηn
∑

l∈Nn
bnl

[
h
(
ωn(i)

)
− h
(
ωl(i)

)
− ξnl(i)

]
Adaptation: repeat ∀n

ωn(i+ 1) = ψn(i) + µnx
T
n (i)

(
yn(i)− xn(i)ψn(i)

)
Time instant update: i→ i+ 1.

end for

When ξnl(i) = 0, the link l to n is noise-free at time i.

Algorithm 2 Nonlinear Diffusion Adaptation with Bounded Transmission over a

Network (Nonlinear ATC)

Initialization: ωn(0), γn, βn, {anl}, µn, ∀n and l ∈ Nn.

for i ≥ 0 do

Adaptation: repeat ∀n

ψn(i) = ωn(i) + µnx
T
n (i)

(
yn(i)− xn(i)ωn(i)

)
Nonlinear diffusion: with {anl} of (2.4), repeat ∀n

ωn(i+ 1) = ψn(i)− ηn
∑

l∈Nn
bnl

[
h
(
ψn(i)

)
− h
(
ψl(i)

)
− ξnl(i)

]
Bounded transmission: for every transmitting node l,

h(ψl(i)) = γl tanh
(
βlψl(i)

)
Time instant update: i→ i+ 1.

end for

When ξnl(i) = 0, the link l to n is noise-free at time i.
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2.3 Performance Analysis

In this section we study convergence properties of the nonlinear diffusion adap-

tation comparing to the linear case. The conventional analysis of error recursion

[6, 8, 9, 42] provides a powerful tool for evaluating the convergence behavior of the

estimate. We show how the estimate ωn(i) approaches the common parameter ωo by

evaluating the evolution of error ω̃n(i) , ωo − ωn(i) over time i over the network.

Note that ω̃n(i) ≈ 0 means ωn(i) ≈ ωo. First, we derive an error recursion for the

nonlinear diffusion adaptation. Then we study the convergence properties of it in the

mean and the mean-square sense. We primarily deal with the case of noisy transmis-

sion links in Algorithm 1, but one can easily see the performance of the noise-free

case by setting ξnl(i) = 0 for all l, n, and i.

Assuming the network has N nodes and each node estimates vector ωn(i) of size

M × 1, the updates for Algorithm 1 can be expressed in block vectors and matrices

simultaneously for all nodes:

ψ(i) = ω(i)− ηLTh
(
ω(i)

)
− η ξ(i), (2.11)

ω(i+ 1) = ψ(i) + µxT (i)
(
y(i)− x(i)ψ(i)

)
, (2.12)

where η and µ are assumed constants (η = ηn, µ = µn, ∀n), and
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ψ(i) ,
[
ψT

1 (i), . . . ,ψT
N(i)

]T
,

ω(i) ,
[
ωT1 (i), . . . ,ωTN(i)

]T
,

h
(
ω(i)

)
,
[
hT
(
ω1(i)

)
, . . . , hT

(
ωN(i)

)]T
,

ξ(i) =

[ ∑
l∈N1

bl1ξ
T
l1(i), ..,

∑
l∈NN

blNξ
T
lN(i)

]T
,

L , L⊗ IM = (D−B)⊗ IM ,

D , diag

{∑
l∈N1

bl1, . . . ,
∑
l∈NN

blN

}
,

x(i) , diag {x1(i), . . . ,xN(i)} ,

y(i) , [y1(i), . . . , yN(i)]T .

Note that ⊗ denotes Kronecker product, h(·) is an element-wise function, IM is an

identity matrix of size M × M , and bnl is an element of N × N matrix B. The

dimensions of block vectors and matrices are summarized in Table 2.1.

Table 2.1: Dimensions of Block Vectors and Matrices.

vectors and matrices dimensions

ψ(i), ω(i), h
(
ω(i)

)
, ξ(i), ω(o) MN × 1

L, I, R(i) MN ×MN

D N ×N

x(i) N ×MN

y(i) N × 1

Let ω(o) be a block vector of M × 1 vector ωo, defined as

ω(o) ,
[
ωoT , . . . ,ωoT

]T
. (2.13)
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By substituting ψ(i) of (2.11) into (2.12) and subtracting ω(o) from both sides of

(2.12), we obtain the error recursion for the nonlinear diffusion strategies:

ω̃(i+ 1) =
(
I − µR(i)

) (
ω̃(i)− ηLT h̃

(
ω(i)

))
+ η
(
I − µR(i)

)
ξ(i)− µ s(i) (2.14)

where

R(i) , xT (i)x(i),

ω̃(i) , ω(o) − ω(i),

h̃
(
ω(i)

)
, ω(o) − h

(
ω(i)

)
,

s(i) ,
[(

xT1 (i)v1(i)
)T
, . . . ,

(
xTN(i)vN(i)

)T]T
.

Based on the error recursion of (2.14) with fixed µ, η, and L, we utilize h(·) to

compare the convergence properties of the linear and the nonlinear diffusion adapta-

tion strategies. Linear approximation of h(·) makes the error recursion simple so that

we can easily compare the linear and the nonlinear cases in the same metric. For the

linear diffusion strategies, we assume that node n transmits ωn(i) through h
(
ωn(i)

)
=

κωn(i) at time i where κ is a positive constant. Let Q ,
(
I − µR(i)

) (
I − ηκLT

)
.

Noting that (I − ηLT )ω(o) = (I − ηκLT )ω(o) = ω(o), we simplify the error recursion

of (2.14) to the linear case:

ω̃(i+ 1) = Qω̃(i) + η
(
I − µR(i)

)
ξ(i)− µ s(i). (2.15)

The nonlinear element-wise bounded function can be expressed as

h
(
ωn(i)

)
= γ tanh

(
βωn(i)

)
, En(i)ωn(i) (2.16)

with an M ×M diagonal matrix En(i) , diag{εn1(i), ..., εnM(i)} such that εnm(i) ≤ κ

for all n, i, and m ∈ {1, . . . ,M}, according to Assumption 1. Define

P(i) , (I − µR(i))
(
I − ηLTE(i)

)
(2.17)
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where E(i) = En(i) ⊗ IN . Similar to (2.15), the error recursion of (2.14) for the

nonlinear case can be simplified as

ω̃(i+ 1) = P(i)ω̃(i) + η
(
I − µR(i)

)
ξ(i)− µ s(i) (2.18)

for i ≥ 0.

2.3.1 Convergence in the Mean

For the error estimate ω̃(i) to converge to zero, the error recursions of (2.15) and

(2.18) should be stable as i → ∞. We compare the stabilities of the two diffusion

adaptations in the mean sense. Taking expectation on both sides of (2.15), we have

E
[
ω̃(i+ 1)

]
= QE

[
ω̃(i)

]
(2.19)

where Q ,
(
I − µR(i)

) (
I − ηκLT

)
. We assumed spatial and temporal inde-

pendence R(i) and ω̃(i), as is common in traditional adaptive learning algorithms

[6, 8, 9, 42]. For the nonlinear case, however, such an assumption is not valid because

E(i) is dependent on ω̃(i). Instead, we utilize Assumption 1 of the bounded function

h(·). For the purpose of evaluation, we can select a positive constant κ′ such that

0 < εnm(i) ≤ κ′ ≤ κ, (2.20)

where n ∈ {1, . . . , N}, m ∈ {1, . . . ,M}, and i ≥ 0. When κ′ from (2.20) is substituted

for εnm(i) in P(i), taking expectation of both sides of (2.18), we have

E
[
ω̃(i+ 1)

]
= P ′(i)E

[
ω̃(i)

]
(2.21)

where P ′(i) =
(
I − µE

[
R(i)

]) (
I − ηκ′LT

)
. To be stable in the mean, all eigen-

values λ(·) of Q and P ′(i) must satisfy
∣∣λ(Q)

∣∣ < 1 and
∣∣λ(P ′(i))∣∣ < 1. When the

step-size µ is sufficiently small so that
∣∣∣λmax

(
I − µE

[
R(i)

])∣∣∣ < 1, and for the right
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stochastic matrices I − ηκLT and I − ηκ′LT , the recursions of (2.19) and (2.21) are

stable as i→∞ because

∣∣λmax(Q)
∣∣ ≤ ∣∣∣λmax

(
P ′(i)

)∣∣∣ ≤ ∣∣∣λmax

(
I − µE

[
R(i)

])∣∣∣ < 1 (2.22)

for all i ≥ 0. Moreover, for 0 < εnm(i) ≤ κ′, the spectral radius of P(i) such that∣∣∣λmax

(
P ′(i)

)∣∣∣ ≤ ∣∣∣λmax

(
P(i)

)∣∣∣ < ∣∣∣λmax

(
I − µE

[
R(i)

])∣∣∣ (2.23)

ensures the stability of (2.18) in the mean. Therefore, when the error recursion for the

linear diffusion adaptation is stable with µ and κ, the nonlinear diffusion adaptation

using bounded transmissions is also stable and its estimate ωn(i) converges to ωo in

the mean sense, as i→∞.

2.3.2 Mean-square Stability

To ensure the stability of the proposed algorithm, we need to further investigate

the mean-square stability because converging to ωo in the mean may cause large

variations around ωo. The error variance recursion can be derived from (2.18):

E
[∣∣∣∣ω̃(i+ 1)

∣∣∣∣2] = E
[∣∣∣∣P(i)ω̃(i)

∣∣∣∣2]+ η2E
[∣∣∣∣ (I − µR(i)) ξ(i)

∣∣∣∣2]+ µ2E
[∣∣∣∣s(i)

∣∣∣∣2]
(2.24)

where the cross-terms were canceled because of the independence assumption and

zero-mean Gaussian random noises. By substituting κ′ for εnm(i) in P(i) again,

the mean-square analysis is simplified. The sufficiently small step-size parameter µ

ensures the mean-square stability of (2.18) because of the stability that is given by

λmax(Q)2 ≤ λmax

(
P ′(i)

)2 ≤ λmax

(
I − µE

[
R(i)

])2

< 1. (2.25)

Since 0 < εnm(i) ≤ κ′ for all n, i, and m, the spectral radius of P(i)TP(i) such that

λmax

(
P ′(i)

)2 ≤ λmax

(
P(i)

)2
< λmax

(
I − µE

[
R(i)

])2

(2.26)
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Figure 2.3: Network Topology.

Figure 2.4: Generated Regression Data uuun,i Statistics: σ2
u,n and α2

n Denote the
Variance of uuun,i and Correlation Index at Node n Respectively; N = 7.

ensures the mean-square stability of (2.18).

However, the convergence rate of E
[∣∣∣∣ω̃(i)

∣∣∣∣2] towards its steady-state estimate

in the nonlinear case can be slower than (or equal to) the linear diffusion adaptation

strategies because the eigenmodes in the nonlinear error variance recursion of (2.24)

can be larger than (or equal to) those of the linear case when εnm(i) ≤ κ′ ≤ κ for all

n, i, and m.
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Figure 2.5: Mean-square-deviation (MSD) for CTA. Nonlinear Diffusion Adaptation
with Bounded Function Can Be Close to the Linear Case by Balancing the Parameter
γ and β, While the Peak Transmit Power γ2 is Always Bounded.

2.4 Simulation Results

For the simulation results, N = 7 nodes are considered. Each node estimates

an unknown vector ωo = [1, 1, 1, 1, 1]T/
√
M where M = 5. The regression data

xn(i) in (2.1) is generated by Gaussian 1-Markov process with its correlation function

rn(m) = σ2
x,nα

|m|
n , m = 0, . . . ,M − 1 where αn is the correlation index at node

n. Each node n obtains {yn(i), xn(i)} at time i where yn(i) is the output of linear

model in (2.1). Fig. 2.3 illustrates the network topology and the data statistics.

The measurement noise variances are set to σ2
v = 10−4 × [1, 3, 8, 2, 1, 7, 5]T . When

noisy links are considered, the noise variance σ2
ξ is set to 1× 10−4 for every link. The

Laplacian rule for (2.4) is used by setting the combining weights ηn = 1/(max. degree)

32



0 200 400 600 800 1000
−50

−40

−30

−20

−10

0

time instant i

M
S

D
(i)

 in
 d

B

 

 

noise−free

noisy
 γ=0.2, β=3

Linear Diffusion (κ=1)

Nonlinear Diffusion

ATC

Figure 2.6: Mean-square-deviation (MSD) for ATC. Nonlinear Diffusion Adaptation
with Bounded Function Can Be Close to the Linear Case by Balancing the Parameter
γ and β, While the Peak Transmit Power γ2 Is Always Bounded.

and bnl = 1 if l and n are linked, bnl = 0 otherwise. We use the nonlinear function

h(x) = γn tanh(βnx) with the parameters (γn, βn) = (0.4, 2.5) or (0.2, 3), setting

γn = γ, βn = β for all n. The step-size µ is set to 0.1 in the adaptation step. The

learning curves in Fig. 2.5 are obtained by ensemble average of independent 200 trials

where each trial has 1000 iterations.

Fig. 2.5 shows both of the linear and the nonlinear algorithms converging to ωo

with certain amount of error variances. Mean-square-deviation (MSD) is used for the

performance metric, defined as MSD(i) , 1
N
E
[∣∣∣∣ω̃(i)

∣∣∣∣2]. The convergence rate of

E
[∣∣∣∣ω̃(i)

∣∣∣∣2] for the nonlinear algorithm with h(x) = 0.2 tanh(3x) is slower than the

linear case (i.e. h(x) = x) because of εnm(i) << κ = 1 for all n, i, and m, as we
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analyzed in Section 2.3. However, it can be close to the linear case by controlling γ

and β in the nonlinear h(wn).

Bounding the peak transmissions can save transmit power, while it is close to the

linear case as shown in Fig. 2.5. Note that the peak power γ2 is always bounded

(i.e., γ < 1/
√
M for all n) in transmissions. When the transmission links are noisy,

it is obvious that MSDs are bigger than noise-free links as ξ(i) is in (2.24). However,

the MSDs can be reduced by controlling {anl} of (2.4): setting smaller η; or properly

selecting {anl} if noise variances are different at every node.

2.5 Conclusion

We have proposed nonlinear diffusion adaptation with bounded transmission.

Convergence properties of the proposed algorithms are studied in the mean and mean

square sense. For sufficiently small step-sizes and the combining weights of (2.4), the

nonlinear diffusion adaptation strategies are stable. However, the convergence rate

can be slower than (or equal to) the linear cases because of the bounded transmission.

The numerical results show that performance of the nonlinear diffusion adaptation

can be close to the linear case by balancing the peak transmission for power savings.
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Chapter 3

DISTRIBUTED QUANTILE ESTIMATION IN SENSOR NETWORKS

Distributed sensors measure physical phenomena observable over a certain region

and fuse the sensed information by communicating locally. This type of network is

scalable and energy efficient because each node shares its data only with its neighbors.

A traditional problem in this domain is to estimate an average of measurements by

iteratively averaging the states with neighboring ones, and achieve a consensus on

the global average of the initial measurements [4, 5, 15]. This has influenced many

distributed estimation applications due to the broad use of the arithmetic mean in

signal processing techniques.

Distributed average consensus of sensor measurement data can be used in moni-

toring applications. One example would be to monitor average temperature (or, other

statistical metrics) over a sensor network in remote areas. The arithmetic mean of

temperature data represents the central tendency of temperature. However, the mean

can be vulnerable, as a measure of central tendency, to the skewness of the distribu-

tion. Outliers can also cause bias to the sample mean. An alternative metric is the

median that represents the midpoint which divides the dataset into two subsets of

equal size. More generally quantiles are cutpoints below which random draws from

CDF fall with certain probabilities that correspond to the cutpoints. Beyond estimat-

ing the median, quantiles can be used in various applications such as outlier removal

and computation of robust statistics from a set of measurement data by eliminating

the values higher (or lower) than a certain cutpoint. One such roust statistics is the

trimmed mean which is an average of the data excluding outliers. Maximum and

minimum values can be viewed as extreme examples of quantiles. Quantile regres-

35



sion estimates the conditional quantiles of measurement data distribution where the

statistics such as mean and variance may change over time. This method has been

used in a variety of machine learning [55] as well as statistical applications [56].

In this chapter, we consider the quantiles estimation in a distributed way which

is necessary, if nodes in a network have local measurement data only but want to

know the quantile value without the global ECDF. The sensor network is assumed

to be fully distributed where there is no fusion center. Sensor measurement data are

unlabeled. Each node maintains its own data and state of estimate, and commu-

nicates the information only with neighboring nodes via noisy communication links

between nodes. Any knowledge of the network graph structure is inaccessible to every

node. The states of quantile estimates are recursively updated with two steps at each

iteration. The local update step is based on the individual measurement data and

the current state of quantile estimate. The updates are transfered to the neighboring

nodes by averaging the estimates. We analyze convergence behavior of the distributed

quantile estimation algorithm. We show that the estimated state sequence is asymp-

totically unbiased and converges toward the true quantile in mean-square sense. The

proposed algorithm is applicable for finding an ordered measurement in network such

as max-consensus [91], node selection [92], median, and trimmed mean.

This chapter consists of the following. In Section 3.1, we describe existing liter-

ature and define the notation used in the chapter. Section 3.2 and 3.3 describe the

system model and problem statements followed by the proposed algorithm in Section

3.4. Convergence analysis is provided in Section 3.5. We demonstrate the proposed

algorithm and convergence analysis with simulations in Section 3.6, discussing poten-

tial applications. Finally we describe conclusions in Section 3.7.
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3.1 Comparison with Related Works

3.1.1 Distributed Parameter Estimations Based on Consensus

There are significant number of works related to such a consensus-based dis-

tributed parameter estimation. See [31–33, 93] for the early works, which inspired

numerous applications. Distributed least-mean-square (LMS) algorithm is introduced

to estimate a linear system parameter in various scenarios [6, 35, 42, 47, 94]. In these

works, sensors observe random data at every iteration, generated by a linear system

with a parameter vector. In [36], the authors proposed the consensus plus innova-

tion scheme for distributed parameter estimation with single- and mixed-time scales.

They consider nonlinear as well as linear system models and show convergence anal-

ysis. They assume that the sensors observe random data at every iteration and

the observation model is continuous and invertible. In contrast, our model uses the

ECDF which is discontinuous and non-invertible. Our work can be considered as a

root finding problem which is similar with Robbins-Monro stochastic approximation

algorithm [95], but we consider a distributed graph network setup. Reference [37]

shows a performance analysis for Robbins-Monro algorithm in a distributed frame-

work, where they considered the asynchronous random gossip algorithms [96] with

random data observation of a continuous function at every iteration. However, our

work assumes that the size of measurement data is finite, utilizing ECDF which is

nonlinear, discontinuous, and non-invertible.

3.1.2 Distributed Selection Problem

For a limited size of measurement data in distributed networks, the work in this

dissertation can be considered as distributed node selection problem, which is to find

the n-th smallest measurement out of N data samples which can be related to n-th
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quantile. The references [92,97–99] are a few most closely related to this dissertation.

They are similar with this dissertation’s work in that each node maintains a piece of

the entire data set with quantile state information, wishing to identify n-th smallest

data. However, their main contributions are fundamentally different than this disser-

tation. Their focus is mainly on minimizing communication iterations, regardless of

mixed-time scale consideration. Moreover, their algorithms are based on the shout-

echo protocol [100] which consists of one broadcast and responses from all the other

nodes. In [92], a leader node is chosen to maintain candidates of quantiles at each

round of the gossip protocol, reducing the candidates until only a single candidate is

left. In [97], the authors provide a lower bound of communication time complexity to

reach the n-th smallest element on a connected graph network, assuming that every

node knows the network’s diameter which is defined as the length of the longest short-

est path between any two sensor nodes. However, their algorithm needs to maintain

a set of candidates for the n-th selection steadily reducing the set until it reaches

the desired element under a certain criterion. Reference [98] depends on guessing

and selection strategy to find the k-th smallest element. Their algorithm maintains

a set of control messages such as start, small, large, and stop where the messages are

transmitted to the entire network at every communication iteration. A distributed

selection algorithm in [99] performs on a graph network, but their algorithm is also

based on the shout-echo model and increases the number of message exchanges as the

network size becomes larger. In contrast, our algorithm is a fully distributed method

without any type of leading nodes or candidate sets. The algorithm is also scal-

able because any control messages are not transmitted to every node. Furthermore,

our work considers more realistic case of communication links between nodes being

corrupted by independent random noise, whereas the references above are based on

noiseless communication links.
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3.2 System Model

Consider N sensor nodes over a connected and undirected distributed network

G = (N,E) where there is no fusion center. Due to the connectedness, the eigenvalue

λ2 of the Laplacian matrix L is positive. Each node n has a scalar measurement

denoted by xn ∈ R, where n = 1, . . . , N , and {xn}Nn=1 constructs ECDF F̂ . Without

loss of generality, it can be assumed that the measurement set is sorted in ascending

order. Let x = [x1, . . . , xN ]T where x1 ≤ · · · ≤ xN . Each node maintains a real-valued

scalar state to be updated for quantile estimation. Let ωn(i) denote the state of node

n at time i. The state is transferred to neighboring nodes via wireless links in the

presence of random communication noise ξnl(i) from node l to n. Random noise on

the link from l to n is assumed independent and identically distributed (i.i.d.) random

process {ξnl(i)}i≥0 with zero mean and variance E [ξ2
nl(i)] where supn,l,iE [ξ2

nl(i)] <∞.

As the communication iteratively continues, node n updates its own state ωn(i) based

on its own measurement xn and neighbors’ states {ωl(i)}l∈Nn where Nn denotes the

set of neighboring nodes of n.

Let p denote the ratio that corresponds to a quantile θp where 0 < p < 1. When

p = 0.5, the corresponding quantile θ0.5 is the median of x. When p = 0.75, the

corresponding θ0.75 indicates that 75% of measurement data is less than or equal to

θ0.75. Define the ECDF from measurement data x as

F̂ (ω; x) =
1

N

N∑
n=1

u(ω − xn) (3.1)

where the step function u(·) is given by

u(ω − xn) =

 1, if ω ≥ xn

0, otherwise
. (3.2)

Note that the ECDF F̂ (ω; x) in (3.1) is a stair-case function, and θp is the inverse of

the ECDF in some sense. More formally, for the ECDF F̂ (ω,x), the relation between
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p and θp can be defined [101] as

θp = inf
ω

{
ω : F̂ (ω; x) ≥ p

}
. (3.3)

The use of p in (3.3) results in two cases. One is p /∈ { 1
N
, 2
N
. . . , 1}. If N is known to

each node, a quantile θp corresponds to a measurement xn that is given by

θp , xn, for
n− 1

N
< p <

n

N
(3.4)

where n = 1, . . . , N . The other case is p = n
N

where a quantile could be found as

θp ∈ [xn, xn+1). However, we consider the first case (3.4) for the quantile definition

that is more strict than the second case and can be useful in various applications

because ω at every node converges toward a single value xn.

Quantiles may be centrally obtained by using the ECDF of (3.1) after collecting all

the measurement data x. Practically in distributed wireless sensor networks, however,

the centralized method is not directly applicable.

3.3 Problem Statement

Since each node has only the limited size of measurement data where we assume a

fixed real-valued scalar xn is given to node n, it may be impossible to know the global

ECDF F̂ (ω; x) in large-scale networks. In addition, it is difficult to synchronize the

local states of all nodes (i.e., having {ωn(i)}Nn=1 to be ω(i) for all n) at every iterative

update over the network. The centralized method may require transmission of the

measurement data x and the states {ωn(i)}Nn=1 from all nodes to a fusion center with

undesirable transmission power consumption. Also, all the information exchange is

corrupted by communication random noise. Despite the constraints mentioned above,

we want every node n to estimate the quantile θp for a given p as i→∞.

Suppose the ECDF of (3.1) in a fully distributed network G = (N,E). There is

no fusion center to collect the measurement data. Each node n communicates within
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neighborhood Nn via wireless communication channel corrupted by random noise, as

described in Section 3.2. Given xn and p /∈ { 1
N
, 2
N
. . . , 1} at node n, where N is known

at every node n, we want a distributed quantile estimation algorithm that generates

the state ωn(i) such that, as i→∞,

ωn(i)→ θp, ∀n (3.5)

with the definition of θp in (3.4). If p = n
N

where n = 1, . . . , N , as described in Section

3.2, an estimated quantile could be any value within an interval [xn, xn+1). In this

paper we consider p /∈ { 1
N
, 2
N
. . . , 1}.

3.4 Distributed Quantile Estimation

A consensus-based distributed algorithm is proposed where each node n locally

updates ωn(i) with approximation error due to the lack of full measurement x and

communication random noise, while combining ωn(i) for each n with its neighboring

ωl(i) where l ∈ Nn for a given p, as iteration i increases. Let ωn(i) and ψn(i) denote

respectively the state of quantile estimate and its intermediate state after locally

updating ωn(i) at node n at iteration i. Node n updates its state ωn(i) based on the

local measurement data xn for the given constant p. The local update step is given

by

ψn(i) = ωn(i)− α(i)
[
u
(
ωn(i)− xn

)
− p
]
, ∀n, i ≥ 0, (3.6)

where {α(i)}i≥0 is a deterministic step-size sequence that will be explained later in

detail. Instead of synchronizing {ωn(i)}Nn=1 at every iteration i, however, we consider

that the intermediate state ψn(i) at each n is averaged with its own neighboring states

ψl(i) where l ∈ Nn. The averaging step at node n is then performed by

ωn(i+ 1) = ψn(i)− η(i)
∑
l∈Nn

[
ψn(i)−

(
ψl(i) + ξnl(i)

)]
, ∀n, i ≥ 0, (3.7)
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where ψl(i) denotes the state transmitted from node l with being perturbed at node

n by communication random noise ξnl(i), Nn denotes the set of neighboring nodes,

and η(i) is the step-size that controls exchange rate of node n with neighboring nodes

at time i. We consider a deterministic sequence {η(i)}i≥0 that will be explained later

in more detail.

Let ω(i) = [ω1(i), . . . , ωN(i)]T and ψ(i) = [ψ1(i), . . . , ψN(i)]T . Laplacian matrix

L is described in Section II. The vector forms of (3.6) and (3.7) respectively can be

described as

ψ(i) = ω(i)− α(i)y(i), (3.8)

ω(i+ 1) =
(
I− η(i)L

)
ψ(i)− η(i)ξ(i), (3.9)

where

y(i) =
[
y1(i), . . . , yN(i)

]T
, (3.10)

yn(i) , u
(
ωn(i)− xn

)
− p, ∀n, (3.11)

ξ(i) = −

[∑
l∈N1

ξ1l(i), . . . ,
∑
l∈NN

ξNl(i)

]T
. (3.12)

Combining (3.8) and (3.9), we can express the distributed quantile estimation algo-

rithm as, for i ≥ 0,

ω(0) = x,

ω(i+ 1) =
(
I− η(i)L

)(
ω(i)− α(i)y(i)

)
− η(i)ξ(i). (3.13)

The step-sizes α(i) and η(i) satisfy the persistence condition:

α(i) > 0,
∞∑
i=0

α(i) =∞,
∞∑
i=0

α2(i) <∞, (3.14)

η(i) > 0,
∞∑
i=0

η(i) =∞,
∞∑
i=0

η2(i) <∞. (3.15)
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The conditions of (3.14) and (3.15) imply that decaying rates of the step-sizes are

fast but not too fast. This condition has been commonly used for convergence anal-

ysis, based on conventional stochastic approximation theory [102–104]. However, the

distributed quantile estimation algorithm (3.13) is a combined vector form of (3.8)

and (3.9), and results in a mixed-time scale for the iterative updates in (3.13). For

convergence, the step-size α(i) in (3.8) needs to decrease faster than η(i) in (3.9).

Rewriting the algorithm of (3.13) in the standard stochastic approximation form, we

have

ω(i+ 1) = ω(i)− η(i)

(
L
(
ω(i)− α(i)y(i)

)
+
α(i)

η(i)
y(i) + ξ(i)

)
. (3.16)

If α(i)
η(i)
→∞ as i→∞, the states in (3.16) never converge. Thus, we need condition

that α(i) decreases faster than η(i). Moreover, the larger the decaying rate of α(i) is

than η(i), the faster α(i)
η(i)

approaches zero. A convergence analysis for such a mixed-

time scale approach with appropriate choices of step-sizes was also used in [36].

We summarize the assumption for step-sizes that will be used for the convergence

behavior in Section 3.5.

Assumption 2 (Decreasing step-sizes) The step-size α(i) in (3.8) decreases faster

than η(i) in (3.9) with the forms:

α(i) =
α0

(i+ 1)τ1
and η(i) =

η0

(i+ 1)τ2
, for i = 0, 1, . . . , (3.17)

where τ1 and τ2 denote constant decaying rates of α(i) and η(i), respectively, α0 and

η0 are positive initial step-sizes, and 1 ≥ τ1 > τ2 > 0.5. Moreover, τ1 − τ2 is close to

0.5 but less than 0.5.

One example of the step-size choice that satisfies Assumption 2 is τ1 = 1 and τ2 =

0.505. As τ1 − τ2 decreases, difference between the decaying rates of α(i) and η(i)

also decreases, resulting in more slowly decreasing sequence α(i)
η(i)

in (3.16).
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3.5 Convergence Analysis

In this section we analyze convergence behavior of the distributed quantile esti-

mation algorithm (3.13). It is shown that the state sequence {ωn(i)}i≥0 at node n is

asymptotically unbiased in Theorem 3.5.3 and the estimated sequence converges to

the true mode in mean-square sense in Theorem 3.5.4. To achieve the above results,

we use some properties of real number sequences described in Lemma 3.5.1.

Lemma 3.5.1 Consider the sequences {r1(i)}i≥0 and {r2(i)}i≥0, with non-negative

constants a1 and a2, which are given by

r1(i) =
a1

(i+ 1)δ1
, r2(i) =

a2

(i+ 1)δ2
(3.18)

where 0 ≤ δ1 ≤ 1 and δ2 ≥ 0. If δ1 < δ2, then, for arbitrary fixed i0,

lim
i→∞

i−1∑
k=i0

[
i−1∏
l=k+1

(
1− r1(l)

)]
r2(k) = 0. (3.19)

Proof See Appendix A.

Lemma 3.5.2 (Boundedness) Define ωavg(i) , 1
N

1Tω(i) that is the average of ω(i)

at i. Given the measurement data x and ratio p, there is a decreasing sequence

{η(i)}i≥0 of (3.17) and we have

lim sup
i→∞

η(i)E
[
ωavg(i)− θp

]
= 0, (3.20)

lim sup
i→∞

η(i)E
[∣∣ωavg(i)− θp

∣∣2] = 0. (3.21)

Proof See Appendix B.
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We show in Theorem 1 that the quantile estimation is asymptotically unbiased,

as i→∞.

Theorem 3.5.3 (Asymptotic Unbiasedness) Consider that a constant ratio p is given

for estimating a certain quantile θp. Suppose Lemma 3.5.1 and 3.5.2 satisfy under

Assumptions 2. The state sequence {ωn(i)}i≥0 at node n is asymptotically unbiased:

lim
i→∞

E
[
ωn(i)

]
= θp for 1 ≤ n ≤ N. (3.22)

Proof It is shown that ‖E[ω(i)] − θp1‖ converges to 0, as i → ∞. Recall that

L · 1 = 0. By subtracting θp1 on both sides of (3.13), it can be rewritten as

ω(i+ 1)− θp1 =
(
I− η(i)L

)(
ω(i)− θp1

)
− α(i)

(
I− η(i)L

)
y(i)− η(i)ξ(i). (3.23)

Define a rank-1 matrix

G ,
1

N
11T . (3.24)

The average of ω(i) at i is expressed as

z(i) , Gω(i) = ωavg(i)1. (3.25)

With z(i)− θp1 = G
(
ω(i)− θp1

)
, (3.23) can be rewritten as

ω(i+ 1)− θp1 =
(
I− η(i)L− η(i)G

)(
ω(i)− θp1

)
− α(i)

(
I− η(i)L

)
y(i)

−η(i)ξ(i) + η(i)
(
z(i)− θp1

)
. (3.26)

Let R , L + G. Taking expectations on both sides of (3.26) leads to

E
[
ω(i+ 1)

]
− θp1 =

(
I− η(i)R

)(
E
[
ω(i)

]
− θp1

)
− α(i)

(
I− η(i)L

)
E
[
y(i)

]
+η(i)

(
E
[
z(i)

]
− θp1

)
(3.27)
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where the zero-mean random noise vector ξ(i) was canceled. The smallest eigenvalue

of Laplacian matrix L is equal to zero, and ‖I− η(i)L‖ = 1 for all i. Taking ‖ · ‖ of

both sides of (3.27), by triangle inequality, we have∥∥∥E[ω(i+ 1)
]
− θp1

∥∥∥ ≤ ∥∥∥I− η(i)R
∥∥∥∥∥∥E[ω(i)

]
− θp1

∥∥∥+ α(i)
∥∥∥E[y(i)

]∥∥∥
+η(i)

∥∥∥E[z(i)
]
− θp1

∥∥∥. (3.28)

There is a constant maximum eigenvalue λmax of matrix R. With the step-size η(i) <

1
λmax(R)

for sufficiently large i, we can obtain

∥∥I− η(i)R
∥∥ ≤ 1− η(i)λmax(R) < 1. (3.29)

We simplify the notation and define λ , λmax(R). By substituting (3.29) into (3.28)

and recursions from 0 up to i− 1, we obtain∥∥∥E[ω(i)
]
− θp1

∥∥∥ ≤ i−1∏
k=0

(
1− η(k)λ

)∥∥∥ω(0)− θp1
∥∥∥

+
i−1∑
k=0

[
i−1∏
l=k+1

(
1− η(l)λ

)]
α(k)

∥∥∥E[y(k)
]∥∥∥

+
i−1∑
k=0

[
i−1∏
l=k+1

(
1− η(l)λ

)]
η(k)

∥∥∥E[z(k)
]
− θp1

∥∥∥. (3.30)

We use the property 1 − z ≤ e−z for 0 ≤ z ≤ 1. For sufficiently large k ≥ i0 there

exists positive η(k)λ ≤ 1. Under Assumption 2, the first term of RHS in (3.30) goes

to zero as i→∞ because

lim
i→∞

i−1∏
k=i0

(
1− η(k)λ

)
≤ lim

i→∞
e−λ

∑i−1
k=i0

η(k) = 0. (3.31)

Since y(k) in (3.30) is bounded (i.e., −1 ≤ y(k) ≤ 1) for all k with the step function

u(·) and p defined in (3.11), we have
∥∥∥E[y(k)

]∥∥∥ ≤ √N . The second term of RHS in
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(3.30) has the following inequality:

i−1∑
k=0

[
i−1∏
l=k+1

(
1− η(l)λ

)]
α(k)

∥∥∥E[y(k)
]∥∥∥ ≤ i−1∑

k=0

[
i−1∏
l=k+1

(
1− η(l)λ

)]
α(k)
√
N.

(3.32)

Thus, we find that the second term of RHS in (3.30) falls onto the case of (3.19) in

Lemma 3.5.1 where the numerators a1 = η(1)λ and a2 = α(0)
√
N of r1(i) and r2(i)

in (3.18), respectively. Since τ2 < τ1, the second term goes to zero as i→∞.

By Lemma 3.5.2 the third term is bounded:
∥∥E[z(k)

]
− θp1

∥∥ =
∥∥E[ωavg(k)

]
−

θp1
∥∥ <∞. Then, the third term of RHS in (3.30) goes to zero as i→∞:

lim
i→∞

i−1∑
k=0

[
i−1∏
l=k+1

(
1− η(l)λ

)]
η(k)

∥∥∥E[z(k)
]
− θp1

∥∥∥ = 0, (3.33)

because, for small k, by Lemma 3.5.1,

lim
i→∞

i−1∏
l=k+1

(
1− η(l)λ

)
= 0, (3.34)

whereas for large k, by Lemma 3.5.2,

lim
k→∞

η(k)
∥∥∥E[z(k)

]
− θp1

∥∥∥ = 0. (3.35)

The theorem follows because limi→∞

∥∥∥E[ω(i)
]
− θp1

∥∥∥ = 0 in (3.30).

We show in Theorem 3.5.4 that the proposed algorithm converges toward the true

quantile θp in mean-square sense in the presence of communication noise variance and

goes to zero in the absence of noise. Note that if an estimator converges to the true

parameter in mean-square sense, it also converges in probability. The mean-square

convergence indicates stronger consistency than convergence in probability.

Theorem 3.5.4 (Mean-Square Convergence) Suppose Lemma 3.5.1 and Lemma 3.5.2

satisfy under Assumptions 2. The sequence generated by the distributed quantile esti-

mation algorithm (3.13), for a given ratio p, converges to θp in mean-square sense:

lim
i→∞

E
[∥∥ω(i)− θp1

∥∥2
]

= 0. (3.36)
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Proof Subtracting θp1 from both sides of (3.13), we have

ω(i+ 1)− θp1 =
(
I− η(i)L

)(
ω(i)− θp1

)
− α(i)

(
I− η(i)L

)
y(i)− η(i)ξ(i). (3.37)

Recall (3.24) and (3.25). We have the following relation:

z(i)− θp1 , G
(
ω(i)− θp1

)
= Gω(i)− θp1. (3.38)

Noting R = L + G, we can rewrite (3.37) as

ω(i+ 1)− θp1 =
(
I− η(i)R

)(
ω(i)− θp1

)
− α(i)

(
I− η(i)L

)
y(i)− η(i)ξ(i)

+η(i)
(
z(i)− θp1

)
. (3.39)

We use the property
∥∥I − η(i)L

∥∥ = 1 for Laplacian matrix L and ‖Ab‖ ≤ ‖A‖‖b‖

where A ∈ RN×N and b ∈ RN×1. From (3.39), we have∥∥∥ω(i+ 1)− θp1
∥∥∥2

≤
∥∥∥I− η(i)R

∥∥∥2∥∥∥ω(i)− θp1
∥∥∥2

+ α2(i)
∥∥y(i)

∥∥2
+ η2(i)

∥∥ξ(i)
∥∥2

+η2(i)
∥∥∥z(i)− θp1

∥∥∥2

− 2α(i)

[(
I− η(i)R

)(
ω(i)− θp1

)]T(
I− η(i)L

)
y(i)

+2η(i)

[(
I− η(i)R

)(
ω(i)− θp1

)]T(
z(i)− θp1

)
−2α(i)η(i)

[(
I− η(i)L

)
y(i)

]T(
z(i)− θp1

)
−2η(i)

[(
I− η(i)R

)(
ω(i)− θp1

)]T
ξ(i)

+2α(i)η(i)

[(
I− η(i)L

)
y(i)

]T
ξ(i)

−2η2(i)
(
z(i)− θp1

)T
ξ(i).

(3.40)
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Due to Cauchy-Schwarz inequality and x ≤ 1 + x2 for any x ∈ R, the fifth term of

(3.40) can be rewritten as

−2α(i)

[(
I− η(i)R

)(
ω(i)− θp1

)]T(
I− η(i)L

)
y(i)

≤ 2α(i)
∥∥∥I− η(i)R

∥∥∥∥∥∥ω(i)− θp1
∥∥∥∥∥∥y(i)

∥∥∥
≤ 2α(i)

[
1 +

∥∥∥I− η(i)R
∥∥∥2∥∥∥ω(i)− θp1

∥∥∥2
]∥∥∥y(i)

∥∥∥. (3.41)

Similarly the sixth and seventh terms, respectively, can be rewritten as

2η(i)

[(
I− η(i)R

)(
ω(i)− θp1

)]T(
z(i)− θp1

)
≤ 2η(i)

∥∥∥I− η(i)R
∥∥∥∥∥∥ω(i)− θp1

∥∥∥∥∥∥z(i)− θp1
∥∥∥

≤ 2η(i)

[
1 +

∥∥∥I− η(i)R
∥∥∥2∥∥∥ω(i)− θp1

∥∥∥2
]∥∥∥z(i)− θp1

∥∥∥ (3.42)

and

−2α(i)η(i)

[(
I− η(i)L

)
y(i)

]T(
z(i)− θp1

)
≤ 2α(i)η(i)

∥∥y(i)
∥∥∥∥z(i)− θp1

∥∥. (3.43)

Substituting (3.41), (3.42), and (3.43) into (3.40) and taking E[·] on both sides of
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(3.40), we obtain

E

[∥∥∥ω(i+ 1)− θp1
∥∥∥2
]
≤
∥∥∥I− η(i)R

∥∥∥2

E
[∥∥ω(i)− θp1

∥∥2
]

+ α2(i)E
[∥∥y(i)

∥∥2
]

+η2(i)E
[∥∥ξ(i)

∥∥2
]

+ η2(i)E
[∥∥z(i)− θp1

∥∥2
]

+ 2α(i)E
[∥∥y(i)

∥∥]
+2η(i)E

[∥∥z(i)− θp1
∥∥]+ 2α(i)

∥∥∥I− η(i)R
∥∥∥2

E
[∥∥ω(i)− θp1

∥∥2∥∥y(i)
∥∥]

+2η(i)
∥∥∥I− η(i)R

∥∥∥2

E
[∥∥ω(i)− θp1

∥∥2∥∥z(i)− θp1
∥∥]

+2α(i)η(i)E
[∥∥y(i)

∥∥∥∥z(i)− θp1
∥∥]

≤
(

1 + 2α(i)E
[∥∥y(i)

∥∥]+ 2η(i)E
[∥∥z(i)− θp1

∥∥])∥∥∥I− η(i)R
∥∥∥2

E
[∥∥ω(i)− θp1

∥∥2
]

+α2(i)E
[∥∥y(i)

∥∥2
]

+ η2(i)E
[∥∥ξ(i)

∥∥2
]

+ η2(i)E
[∥∥z(i)− θp1

∥∥2
]

+2α(i)E
[∥∥y(i)

∥∥]+ 2η(i)E
[∥∥z(i)− θp1

∥∥]
+2α(i)η(i)E

[∥∥y(i)
∥∥∥∥z(i)− θp1

∥∥]
≤
(

1 + 2α(i)
√
N + 2η(i)E

[∥∥z(i)− θp1
∥∥])∥∥∥I− η(i)R

∥∥∥2

E
[∥∥ω(i)− θp1

∥∥2
]

+α(i)
(
α(i)N + 2

√
N
)

+ η2(i)Nσ2
ξ + η2(i)E

[∥∥z(i)− θp1
∥∥2
]

+ 2η(i)E
[∥∥z(i)− θp1

∥∥]
+2α(i)η(i)

√
NE

[∥∥z(i)− θp1
∥∥]

(3.44)

where σ2
ξ denotes variance of ξnl(i) for all n, l, i and the last inequality is due to∥∥y(i)

∥∥ ≤ √N for all i (because each element of y(i) is bounded, i.e., −1 ≤ yn(i) ≤

1, ∀n, i). Recall (3.29) and
(
1 − η(k)λ

)2 ≤ 1 − η(k)λ. Let γ(i) , 2α(i)
√
N +
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2η(i)E
[∥∥z(i)− θp1

∥∥] in (3.44). After recursions of (3.44) from 0 up to i− 1, we have

E

[∥∥∥ω(i)−θp1
∥∥∥2
]
≤

i−1∏
k=0

(
1 + γ(k)

)(
1− η(k)λ

)∥∥ω(0)− θp1
∥∥2

+
i−1∑
k=0

[
i−1∏
l=k+1

(
1 + γ(l)

)(
1− η(l)λ

)]
α(k)

(
α(k)N + 2

√
N
)

+
i−1∑
k=0

[
i−1∏
l=k+1

(
1 + γ(l)

)(
1− η(l)λ

)]
η2(k)Nσ2

ξ

+
i−1∑
k=0

[
i−1∏
l=k+1

(
1 + γ(l)

)(
1− η(l)λ

)]
η2(k)E

[∥∥z(k)− θp1
∥∥2
]

+ 2
i−1∑
k=0

[
i−1∏
l=k+1

(
1 + γ(l)

)(
1− η(l)λ

)]
η(k)E

[∥∥z(k)− θp1
∥∥]

+ 2
i−1∑
k=0

[
i−1∏
l=k+1

(
1 + γ(l)

)(
1− η(l)λ

)]
α(k)η(k)

√
NE

[∥∥z(k)− θp1
∥∥].
(3.45)

For sufficiently large k there exists a positive constant c1:

(
1 + γ(k)

)(
1− η(k)λ

)
≤ 1− η(k)c1 < 1. (3.46)
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Substituting (3.46) into (3.45), we can rewrite (3.45) as

E
[∥∥ω(i)− θp1

∥∥2
]
≤

i−1∏
k=0

(
1− η(k)c1

)∥∥ω(0)− θp1
∥∥2

+
i−1∑
k=0

[
i−1∏
l=k+1

(
1− η(l)c1

)]
α(k)

(
α(k)N + 2

√
N
)

+
i−1∑
k=0

[
i−1∏
l=k+1

(
1− η(l)c1

)]
η2(k)Nσ2

ξ

+
i−1∑
k=0

[
i−1∏
l=k+1

(
1− η(l)c1

)]
η2(k)E

[∥∥z(k)− θp1
∥∥2
]

+ 2
i−1∑
k=0

[
i−1∏
l=k+1

(
1− η(l)c1

)]
η(k)E

[∥∥z(k)− θp1
∥∥]

+ 2
i−1∑
k=0

[
i−1∏
l=k+1

(
1− η(l)c1

)]
α(k)η(k)

√
NE

[∥∥z(k)− θp1
∥∥].
(3.47)

The first term of RHS in (3.47) converges to zero as i → ∞ for the same property

of (3.31). The other terms of RHS in (3.47), except for the fifth term, fall onto the

case of δ1 < δ2 in Lemma 3.5.1. Moreover, by Lemma 3.5.2, the fifth term of RHS in

(3.47) goes to zero as i→∞:

lim
i→∞

i−1∑
k=0

[
i−1∏
l=k+1

(
1− η(l)c1

)]
η(k)E

[∥∥z(k)− θp1
∥∥] = 0, (3.48)

because, for small k

lim
i→∞

i−1∏
l=k+1

(
1− η(l)c1

)
= 0, (3.49)

whereas for large k

lim
k→∞

η(k)E
[∥∥z(k)− θp1

∥∥] = 0. (3.50)

Therefore, the theorem provides (3.36).
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3.6 Simulations

In this section we demonstrate the distributed quantile estimation under various

conditions. Consider a distributed sensor network, illustrated in Fig. 3.1, which is

a connected graph with N = 50 where the graph’s connectivity is characterized by

λ2(L) = 2.2815. Each node n has a scalar measurement xn taken from a realization of

random variable X. Without loss of generality, we can assume that the measurement

data is distributed in ascending order: x1 ≤ x2 ≤ · · · ≤ xN . We consider two

distributions: discrete uniform and log-normal. The discrete uniform distribution is

normalized, and the actual values are ranging from 0 to (N−1)/N with 1/N increase

for each sample. The log-normal distribution is generated by X ∼ lnN (0, 0.25). We

take N realizations of random variable X whose ECDF is illustrated in Fig. 3.2. With

the set of measurement data {xn}Nn=1, also denoted by x in vector form, a quantile θp

of x is estimated for a desired ratio p in a distributed way. The states {ωn(i)}Nn=1 are

recursively updated by the algorithm (3.13), as i increases. The initial states ω(0)

are the nodes’ own measurement data x. Consider p = k−ε
N

for θp = xk defined in

(3.4), where ε = 0.5 and N is known to each node. Due to the choice of p = k−ε
N

, the

k-th smallest element in x is estimated by achieving ωn(i) = θp for all n, as i → ∞.

We evaluate mean-squared error for convergence of the estimation by the following

metric:

1

N
E
[∥∥ω(i)− θp1

∥∥2
]
, i ≥ 0, (3.51)

where 1
N

is due to normalization and E [·] can be approximated by ensemble averaging

over 200 realizations. According to Assumption 2, we can set τ1 = 1 and τ2 = 0.505.

We begin with α0 = 1 and η0 = 0.5/dmax for α(i) and η(i) respectively, where dmax

denotes the maximum degree in graph network.
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Figure 3.1: A graph for distributed sensor network (N = 50) where the graph’s
connectivity is characterized by λ2(L) = 2.2815. A node has a scalar sensor measure-
ment, denoted as xn where n = 1, . . . , N .

3.6.1 Distributed Quantile Estimation

Given the sensor network N = 50 and measurement data x, suppose that p =

0.99 is selected with k = 50 and ε = 0.5. Then the distributed algorithm (3.13)

estimates max(x1, . . . , xN), as i → ∞. Fig. 3.3 shows that all the states converge

toward θp=0.99 = 0.98, which is the maximum value of uniform x in the presence

of communication noise. Similarly, one can estimate the minimum by setting p =

1−0.5
50

= 0.01. More generally, the k-th smallest element can be estimated by setting

p = k−0.5
N

.

The algorithm (3.13) is evaluated for different noise variances σ2
ξ with the metric

(3.51). In Fig. 3.4, the quantile θ0.89 of uniform data was tested. One can see that

the estimated states converge toward the true quantile. Fig. 3.5 shows the squared
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Figure 3.2: Empirical CDF generated from {xn}Nn=1 where N = 50. 1) uniform
distribution and 2) log-normal distribution lnN (µ, σ2) where µ = 0 and σ = 0.5.

error convergence. We use the following metric, since there is no randomness in the

absence of communication noise.

1

N
‖ω(i)− θp1‖2, i ≥ 0. (3.52)

One can see that the sequence converges to the true quantile where we experimented

with θ0.01, θ0.49, and θ0.89. Note that the θ0.01 and θ0.49 are the minimum and median

of x respectively. The initial trajectories in Fig. 3.5 depends on the sensor network

structure and the measurement data contained at each node.

We experiment with the log-normal data for more practical sensor networks. The

distribution of data is illustrated in Fig. 3.2. The estimated states toward the mini-

mum value in the presence of communication noise is shown in Fig. 3.6. The desired

quantile θp is xk = 0.3098 for p = k−ε
N

= 0.01 where k = 1, ε = 0.5, and N = 50.
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Figure 3.3: Maximum value (θ0.99 = 0.98) estimation for the uniform data in the
presence of communication noise by setting p = 0.99.

Fig. 3.7 shows the estimated quantile sequences for the maximum in the presence

of communication noise. One can see that the states go toward the maximum value

θ0.99 = 2.8544 with the parameter α0 = 3.

3.6.2 Applications with Numerical Experiments

Outlier Identification and Trimmed Mean: As an application, our algorithm can

be used to determine whether individual node measures an outlier value or not. One

can judge that larger (or smaller) value than a quantile (e.g., 0.9 or 0.1) is assumed

to be outliers. This can be used for robust average consensus, as the estimated

mean is not biased by erroneous outliers. Removing outliers is often useful when

there exist malicious sensor measurements. If it is identified that the measurement
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Figure 3.4: Mean-squared convergence behavior under different communication
noise variances.

at node n is an outlier, then the node by itself is not averaged with neighboring

nodes so that the outliers can be removed when the global average is estimated. An

extended application would be the trimmed mean. We often want to average sensor

measurements only within the range of a% ∼ b% where 0 < a < b < 100. θa/100 and

θb/100 can be estimated by our algorithm and then individual node can be identified

whether they are within the range or not. Then, the trimmed mean is obtained by

the average consensus [4, 5] only with the nodes in [θa/100, θb/100].

Median Estimation: A useful metric to measure centrality of sensor measurement

data is median. When there are outliers or when the data distribution is skewed,

median can be used for a centrality measure of the data. When the data size N(≥ 2)
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Figure 3.5: Squared error convergence behavior of various quantiles in the absence
of communication noise.

is even, the median can be defined as a value between x0.5N and x0.5N+1. By setting

p = 0.5− ε/N , the algorithm (3.13) estimates x0.5N , and similarly x0.5N+1. When N

is odd, the median θp = xd0.5Ne is estimated by setting p = d0.5Ne−ε
N

where 0 < ε < 1.

Maximum and Minimum Estimation: We already showed some results of maxi-

mum and minimum value estimation for the uniform and log-normal data in Fig. 3.6

and Fig. 3.7. In the absence of communication noise, max- and min-consensus can

be achieved by setting p = N−ε
N

and p = 1−ε
N

, respectively, where 0 < ε < 1.

3.7 Conclusion

We have shown a consensus-based distributed quantile estimation algorithm using

empirical CDF with limited size of measurement data. States of a quantile estimation
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Figure 3.6: Minimum value estimation for log-normal data in the presence of com-
munication noise.

are recursively updated by the combination of local update and averaging steps in

the presence of communication noise. We analyzed convergence behaviors of the algo-

rithm based on mixed-time scale stochastic approximation where the averaging time

scale dominates the local update time scale. The estimated state sequence is asymp-

totically unbiased and converges toward the true quantile in mean-square sense. Also,

the quantile estimation achieves a consensus in the absence of communication noise.

We demonstrated the performance of algorithm with numerical experiments. Finally,

potential applications by using our algorithm were discussed. Maximum, minimum,

median, k-th smallest element selection out of N elements, outliers identification, and

trimmed mean can be obtained in fully distributed sensor networks.
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Figure 3.7: Maximum value estimation for log-normal data in the presence of com-
munication noise (α0 = 3).
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Chapter 4

DISTRIBUTED MEAN-SHIFT MODE ESTIMATION IN SENSOR NETWORKS

Distributed sensor networks have advantages such as scalability and energy ef-

ficient communications by allowing local individual nodes to share their data only

with neighboring nodes. Achieving consensus on an arithmetic mean of sensor data

is possible by distributed average consensus schemes [4, 12], which can be used in

many applications. One example would be to monitor average temperature over a

sensor network in a remote area. Generally one may choose an average because it can

represent a measure of central tendency of the data. However, the mean can be highly

sensitive to a small number of outliers. Also, the sample mean will not effectively

locate the densest region, for data coming from a skewed distribution. Among the

many statistical metrics such as median and other quantiles, the mode is arguably

the closest one to the intuitive understanding of central tendency in that it represents

the most probable value of sensor data. Moreover, when the data represents sensor

location information, the mode is a useful metric for the densest region of sensor

deployment.

For the past several decades, the mode as a measure of central tendency has been

extensively used for data analysis [57,59,60] because of its robustness to outliers and

other contaminations [61, 62]. The fundamental idea to estimate the mode is to find

the densest region of the data distribution, which can be estimated by either non-

parametric [60] or parametric methods [63–65]. The mode also can be obtained by

estimating the density function and finding the location that maximizes the density.

A well-known non-parametric method is Parzen’s kernel density estimator (KDE)

[105]. The kernel size may affect the accuracy of the mode estimation, and it can
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be selected using Silverman’s rule of thumb [106]. Practical approaches to mode

estimation are based on the Gaussian mean-shift (GMS) algorithm [107–111]. The

method recursively updates the gradient ascent of the KDE until the updated states

reach stationary points. However, the mentioned mode estimation methods presume

that all the data are analyzed in a centralized location.

When it comes to decentralized methods, we can relate our work to estimating

parameters of a Gaussian mixture model (GMM) in a distributed way because one of

the mixture components can represent the mode. Refs. [112] and [113] proposed the

distributed expectation-maximization (EM) algorithms to parametrically estimate

GMM parameters where the global sufficient statistics are computed by an incremen-

tal scheme [112] and consensus filters [113]. However, both methods require large

number of computations for the global statistics at every update of E- and M-steps.

Diffusion strategies for distributed EM applied to GMMs were proposed in [114,115],

which does not require such multiple iterations at every E- and M-steps. Such GMM-

based methods, however, are not suitable to estimate the mode when data distribution

does not consist of Gaussian mixtures or when the distribution is highly skewed.

In this chapter, we propose a distributed mode estimation method to find the

central tendency of measurement data in fully distributed wireless sensor networks.

The measurement data is assumed to have unimodal distribution, as we are interested

in finding the central tendency of the data. We take the GMS approach which is de-

scribed in the EM framework. The proposed scheme iteratively updates the state of

mode estimate from measurement data at each sensor node, while the intermediate

states at each iteration are diffused over the network. Each node generates a mean-

shift vector that is defined by current state and conditional mean of measurement

data. The mode is found by making the mean-shift vector converge to zero. As the

iteration continues, the states at individual nodes converge toward a consensus on the
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mode under the condition of decaying step sizes. Moreover, we consider wireless com-

munication links between local nodes in a distributed network. Information exchange

is corrupted by random noise. Simulation results show that the proposed algorithm

estimates a global mode which is close to the centralized mode estimates.

The rest of chapter consists of the following. In Section 4.1 and 4.2, we describe

the system model and problem statement for the distributed mode estimation. Stan-

dard EM algorithm to unify the GMM and GMS are summarized in Section 4.3, and

the details of the distributed mode estimation method is explained in Section 4.4.

Simulation results are shown in Section 4.4. Finally we provide conclusions of this

section in Section 4.5.

4.1 System Model

Consider N sensor nodes over a connected and undirected graph model of a dis-

tributed network where there is no fusion center. Each node n has M vector measure-

ments denoted by xnm ∈ RD, where n = 1, . . . , N and m = 1, . . . ,M . The vector xnm

was generated from a probability density function (PDF) that is unimodal but not

necessarily symmetric. Let f : RD → R be the kernel density estimator (KDE) [105]

of the PDF. We use an isotropic kernel, which is the commonly used kernel type in

practice. Also, we consider that the kernel function is identical for every node n and

measurement m. Then, the KDE with Gaussian kernel is given by

f(ω) =
1

N

N∑
n=1

fn(ω) =
1

N

N∑
n=1

[
1

M

M∑
m=1

1

Z
Kh (ω − xnm)

]
(4.1)

where h is the kernel size (bandwidth), Z is a normalization term that is dependent

on h that is Z =
√

2πh, and

Gaussian: Kh(x) = exp

(
− 1

2h2
‖x‖2

)
. (4.2)
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The choice of h can be suggested by Silverman’s rule of thumb [106]:

h =
( 4

D + 2

1

NM

) 1
D+4

σ (4.3)

where we used σ =
∑D

d=1 σd and σd is the standard deviation of the d-th element

of measurement vectors x. The sample standard deviation for σd as well as σ can

be obtained by the average consensus algorithms [4, 12]. The network size N can be

estimated at every node n by distributed node counting algorithm [116,117]. D and

M are known to every node.

One may further investigate a kernel size matrix H that is not isotropic. Then, the

Gaussian kernel in (4.2) can be rewritten as KH(x) = exp
(
−0.5xTH−1x

)
. However,

selection of kernel size matrix H is beyond the scope of this chapter. We focus on

the mode estimation in distributed networks using the simplest and practical choice

H = h2I. There are other types of kernels than the Gaussian. One example is

Epanechnikov kernel, which is also isotropic.

Epanechnikov: Kh(x) =

 1− ‖x‖
2

h2
, ‖x‖2

h2
≤ 1

0, otherwise
. (4.4)

A global mode of KDE f(ω) with the Gaussian kernel in (4.2) can be found by

seeking stationary points ω such that

∇ωf(ω) =
N∑
n=1

M∑
m=1

Kh (ω − xnm) (ω − xnm) = 0 (4.5)

for positive h, N , M , and Z. There are several methods to find the stationary

points of (4.5) such as fixed-point iteration, gradient ascent, or Newton’s method

that iteratively searches the maximum point of f(ω). We consider Newton’s method

in this paper. Let ω(i) denote the state vector at time i. The state update rule is

given by

ω(i+ 1) = ω(i)− α
[
∇2

ωf(ω(i))
]−1∇ωf(ω(i)) (4.6)
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where α is a small step size. The next state ω(i + 1) is a function of ω(i), and re-

cursively updated as i → ∞ with the Hessian matrix and the gradient vector at the

state ω(i).

4.2 Problem Statement in Distributed WSNs

In order for (4.6) to work in distributed networks, the state update from ω(i) to

ω(i + 1) requires the access to all local measurement data. As an another scenario,

each node n maintains only the state ωn(i) and the measurement dataset {xnm}Mm=1.

Then, ωn(i),∀n, are synchronized to a common ω(i) at every iteration i. However,

both methods may be impossible in large-scale networks. It is difficult for every

node to access all measurement data or to synchronize the local states at every iter-

ation i of (4.6) over the network. Also, all the information exchange is corrupted by

communication random noise due to wireless channel. One could consider a central-

ized method that requires transmission of the measurement data from all nodes to

a fusion center and then executes a search algorithm to find a mode. However, this

requires undesirable transmission power consumption in large-scale networks. One

could also consider the traditional distributed average consensus algorithm [4] (i.e.,

γ̂ = 1
N

∑N
n=1 γ̂n). Once every node independently estimates the local mode γ̂n from

M measurement data. The algorithm iteratively averages the states {γ̂n(i)}Nn=1 until

they converge to γ̂ as i→∞. However, this scheme may not achieve the global mode

θ̂ because average of modes γ̂n = argmaxγ fn(γ) for all n does not necessarily repre-

sent the global mode γ̂ = argmaxγ
1
N

∑N
n=1 fn(γ). Moreover, this approach requires

sufficiently large M at every node across the network, which is impractical in large

scale sensor networks.
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Despite the constraints mentioned above, in a distributed sensor network, we want

every node n to estimate the mode γ ∈ RD as i→∞:

ωn(i)→ γ, ∀n, (4.7)

where γ = argmaxω f(ω).

4.3 Expectation Maximization (EM) Algorithm

In this section we briefly explain the standard Expectation-Maximization (EM)

algorithm [118] and describe how the EM can be applied to unify Gaussian Mixture

Model (GMM) and Gaussian Mean-Shift (GMS). EM algorithm is an iterative method

to find maximum likelihood estimates of parameters in statistical models which gen-

erally involve unobserved variables as well as observed data and unknown parameters.

The unobserved variables can be considered as various forms in general. They could

be missing values among the data or could be memberships with which the observed

variables are associated. As an example of the latter, one can consider a mixture

model where each observed data sample has a series of likelihood memberships. Each

membership corresponds to one of the mixture components in the statistical model.

The EM algorithm iteratively updates the maximum likelihood of the model param-

eters with two-steps. Expectation of the (log)-likelihood function of the parameter,

with respect to the posterior distribution of the unobserved variable conditioned on

the observed data and the current state of parameter estimate, is evaluated in the

(E)xpectation step. Then, in the (M)aximization step, the algorithm updates the

state estimate of the parameter in a way that the updated state maximizes the ex-

pectation quantity which was with the previous state of the parameter.
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Let q(x|θ) be a statistical model with an unknown parameter θ. A set of vector

observed data {xk}Nk=1 was generated from the model q(x|θ). Let zk ∈ {1, . . . ,M} be

a discrete unobserved variable where k = 1, . . . , N . The log-likelihood function of θ

with the complete (or extended) data {xk, zk} is given by

N∑
k=1

Lk(θ) =
N∑
k=1

log q(xk, zk|θ) (4.8)

where q(xk, zk|θ) indicates the likelihood when the observed data xk is associated with

the unobserved variable zk under the unknown parameter θ. The maximum likelihood

of the unknown θ can be obtained by the marginal likelihood of the observed data.

In the E-step, the EM algorithm computes the expected value of log-likelihood with

respect to the distribution of unobserved variable zk conditioned on the observed data

xk and the current state of the parameter estimate at iteration i:

E-step: Q(θ|θ(i)) =
N∑
k=1

Eq(zk|xk,θ(i))
[
Lk(θ)

]
=

N∑
k=1

M∑
zk=1

q(zk|xk, θ(i)) log q(xk, zk|θ). (4.9)

In the M-step, the algorithm finds the next state θ(i+1) that maximizes the expected

value Q(θ|θ(i)) which was with the previous state θ(i) of the parameter estimate. This

step can be expressed as

M-step: θ(i+ 1) = argmax
θ

Q(θ|θ(i)) (4.10)

where θ(i + 1) can be obtained by equating the gradient of Q with respect to θ to

zero: ∂
∂θ
Q(θ|θ(i)) = 0.
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4.3.1 Gaussian Mixture Model (GMM) with EM Algorithm

GMM parameters can be estimated by the EM algorithm. Let θ denote one of

GMM parameters:

θ ∈ {pm,µm,Σm}Mm=1 (4.11)

where pm is the mixing probability of m-th component, µm and Σm denote D × 1

mean vector and D ×D covariance matrix of m-th component that we consider as a

Gaussian model. Typically the statistical model can be expressed as

q
(
x|{pm,µm,Σm}Mm=1

)
=

M∑
m=1

pm p(x|m) (4.12)

where x ∈ RD, with the normalization Z =
√

(2π)D |Σm|,

p(x|m) =
1

Z
exp

(
−1

2
(x− µm)TΣ−1

m (x− µm)

)
. (4.13)

Suppose a dataset {xk}Nk=1 is drawn from the mixture model q
(
x|{pm,µm,Σm}Mm=1

)
.

The unobserved variable zk ∈ {1, . . . ,M} represents membership in one of M mix-

ture components. q(xk, zk|θ) indicates the likelihood of a parameter θ for the data

sample xk and its membership zk. The EM algorithm iteratively finds the maximum

likelihood of θ with the E- and M-step of (4.9) and (4.10) respectively. As θ denotes

one of GMM parameters, the EM algorithms repeats for {pm,µm,Σm}Mm=1.

4.3.2 Gaussian Mean-Shift (GMS) with EM Algorithm

GMS is an iterative algorithm to find modes, which can be obtained by seeking

stationary points of nonparametric kernel density estimator (KDE) f(x). With the

isotropic Gaussian kernel, the KDE can be described as

f(x) =
1

M

M∑
m=1

1

Z
Kh(x− xm) (4.14)
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where Z =
√

2πh is the normalization term and Kh(x − xm) is the Gaussian kernel

centered at xm with the kernel size h:

Kh(x− xm) = exp

(
− 1

2h2
‖x− xm‖2

)
. (4.15)

The stationary points of f(x) can be obtained by equating the gradient of f with

respect to x to zero. The gradient of f with the Gaussian kernel Kh(x− xm) can be

given by

∇xf(x) =
1

M

M∑
m=1

1

Z
Kh(x− xm)

1

h2

(
x− xm

)
= 0. (4.16)

Solving (4.16) leads to ∑M
m=1Kh(x− xm)xm∑M
m′=1 Kh(x− x′m)

− x = 0 (4.17)

where the first term on the LHS indicates the conditional mean of {xm}Mm=1 given x.

Iterative methods to update x may be listed as fixed-point iteration scheme, gradient

ascent, or Newton’s method. The fixed-point iteration scheme iteratively updates x,

starting from arbitrary value of x, until (4.16) is satisfied. x(i+ 1) can be defined as

a function of x(i) at iteration i:

x(i+ 1) =

∑M
m=1 Kh(x(i)− xm)xm∑M
m′=1Kh(x(i)− xm′)

. (4.18)

The conditional mean on the RHS in (4.18) is iteratively shifted until it converges to

a mode that is a stationary point of f(x).

The GMS can be described in the framework of EM algorithm [111] by consider-

ing f(x) in (4.14) as a mixture model q
(
x| 1

M
, {xm}Mm=1, h

)
with M components. In

this case, the mixture model parameters {pm,µm,Σm}Mm=1 in (4.11) are reduced to

{ 1
M
, {xm}Mm=1, h}. Suppose that the mixture model parameters are fixed. The mean

vector µm (center of the m-th component) corresponds to xm. The mixing probability
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pm and covariance matrix Σm are simplified to 1
M

and h respectively. The whole mix-

ture components can be shifted by varying a displacement vector ω, when redefining

the m-th component center xm as xm − ω. To describe GMS in EM framework, a

conditional density model with the parameter ω is introduced:

g(yk|ω) =
1

M

M∑
m=1

1

Z
Kh

(
yk −

(
xm − ω

))
(4.19)

where yk denotes an observed data among N samples in the EM algorithm. For the

Gaussian kernel in (4.2), it is true that

Kh

(
yk −

(
xm − ω

))
= Kh

((
ω + yk

)
− xm

)
. (4.20)

The log-likelihood function with the complete data {yk, zt} becomes

N∑
k=1

Lk(ω) =
N∑
k=1

log g(yk, zk|ω) (4.21)

where g(yk, zk|ω) indicates the likelihood of ω for the observed data yk and its mem-

bership zk ∈ {1, . . . ,M} in the mixture model g(yk|ω). We can select the observed

data as the origin, i.e. N = 1 and y1 = 0, and rename zk as m. Note that if y1 = 0,

then g(0|ω) = f(ω). More generally, due to the kernel (4.20), it can be also viewed

as

g(yk|ω) = f(ω + yk). (4.22)

The EM algorithm finds the maximum likelihood estimate of ω with the statistical

model g(yk|ω). This is equivalent with seeking the stationary point of KDE f(ω+yk).

In the E-step, q(zk|xk, θ(i)) and q(xk, zk|θ) in (4.9) are replaced with g(m|y1,ω(i))

and g(y1,m|ω) respectively. The M-step for (4.10) updates the state ω(i) such that

Q(ω|ω(i + 1)) ≥ Q(ω|ω(i)) at iteration i. A mean-shift vector is derived from

∇ωQ(ω|ω(i)) = 0. Updating ω(i) in the M-step results in making the mean-shift

vector zero.
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4.4 Distributed Mode Estimation

The EM-based GMS algorithm for the centralized mode estimation is extended

to distributed networks. Consider that every node n maintains the complete data

{ynt, znt}Tt=1, state vector ωn(i), and the fixed set of measurements {xnm}Mm=1. The

unobserved variable znt ∈ {1, . . . ,M} denotes the mixture component at node n,

considering the given data {xnm}Mm=1 as centers of M mixture components. The

expectation step is limited with those local measurement data, but the maximization

step with Newton’s method is extended to 1) local update and 2) averaging steps for

in-network processing. Similar with EM-based GMS algorithm, the whole mixture

components at each n are shifted by varying a displacement vector ωn. A conditional

density model with ωn at node n will be used, which is given by

gn(ynt|ωn) =
1

M

M∑
m=1

gn(ynt|m,ωn) (4.23)

=
1

M

M∑
m=1

1

Z
Kh

(
ynt −

(
xnm − ωn

))
. (4.24)

where ynt denotes an observed data at node n.

4.4.1 Expectation

Node n calculates the expectation of the log-likelihood function with respect to

the posterior distribution of znt, given the observed data ynt and the current estimate

of ωn(i). The expectation step at each n can be expressed as

Qn

(
ω|ωn(i)

)
=

T∑
t=1

Egn(znt|ynt,ωn(i))

[
Lnt(ω)

]
=

T∑
t=1

M∑
znt=1

gn
(
znt|ynt,ωn(i)

)
log gn(ynt, znt|ω). (4.25)
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Since gn(ynt, znt|ω) = gn(znt|ω)gn(ynt|znt,ω) and gn(znt|ω) = 1
M

, it follows that

Qn

(
ω|ωn(i)

)
=

T∑
t=1

M∑
znt=1

[
gn
(
znt|ynt,ωn(i)

)
log gn(ynt|znt,ω)

]
+ C, ∀n, (4.26)

where C = −
∑T

t=1

∑M
znt=1 gn

(
znt|ynt,ωn(i)

)
logM is independent of ω, and does not

affect the maximization of Qn

(
ω|ωn(i)

)
.

4.4.2 Maximization - Local Update and Averaging Steps

Qn

(
ω|ωn(i)

)
in (4.26) is not associated with the neighboring Ql

(
ω|ωl(i)

)
, where

l ∈ Nn, at node n. We consider distributed optimization for collaboration of node

n and Nn. Similar method was also implemented in diffusion adaptation algorithms

such as [51,114,119]. The following global objective function is maximized:

Qglob(ω|ω(i)) ,
N∑
n=1

Qn(ω|ωn(i))

= Qn(ω|ωn(i)) +
∑
l 6=n

Ql(ω|ωl(i)) (4.27)

where Ql(ω|ωl(i)) is second-order differentiable and it is assumed there exists a ω∗l

that maximizes Ql(ω|ω(i)) at node l. By a second-order Taylor series expansion

around ω∗l , Ql(ω|ωl(i)) can be approximated as

Ql(ω|ωl(i)) ≈ Ql(ω
∗
l |ωl(i)) +∇ωQl(ω

∗
l |ωl(i))T (ω − ω∗l )

+
1

2
(ω − ω∗l )T∇2

ωQl(ω
∗
l |ωl(i))(ω − ω∗l )

=
∥∥ω − ω∗l ∥∥2

Γl
+Ql(ω

∗
l |ωl(i)) (4.28)

where Γl = 1
2
∇2

ωQl(ω
∗
l |ωl(i)). The second term was canceled because∇ωQl(ω

∗
l |ωl(i)) =

0. Note that Ql(ω
∗
l |ωl(i)) is independent of ω and can be considered as a constant.

The global objective function Qglob(ω|ω(i)) in (4.27) can be rewritten as

Qglob′(ω|ω(i)) = Qn(ω|ωn(i)) +
∑
l 6=n

∥∥ω − ω∗l ∥∥2

Γl
. (4.29)
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Optimization of Qglob′(ω|ω(i)) still requires that every node n has to access the global

information ω∗l and Γl for all l 6= n. The diffusion strategies have been admitted to

approximate Qglob′(ω|ωl(i)) [51, 114, 119] for distributed implementation. First, the

approximation confines the sum in (4.29) to be processed in neighborhood of node n.

The distributed version of objective function becomes

Qdist
n (ω|ωn(i)) = Qn(ω|ωn(i)) +

∑
l∈Nn

∥∥ω − ω∗l ∥∥2

Γl
. (4.30)

where Nn denotes the set of neighboring nodes of n excluding n itself. Note that

the first term of RHS in (4.30) is the expectation at node n defined in (4.26) and

the second term is associated with neighboring nodes Nn. Second, the approximation

replaces the unknown ω∗l with an intermediate estimate ωl at node l. Then, the

distributed objective function in (4.30) can be rewritten as

Qdist′

n (ω|ωn(i)) = Qn(ω|ωn(i)) +
∑
l∈Nn

∥∥ω − ωl∥∥2

Γl
. (4.31)

The maximization step utilizes Newton’s method with the gradient vector and the

Hessian matrix of Qdist′

n (ω|ωn(i)) which are given by respectively

∇ωQ
dist′

n (ω|ωn(i)) = ∇ωQn(ω|ωn(i)) +
∑
l∈Nn

∇2
ωQl

(
ωl|ωl(i)

)(
ω − ωl

)
, (4.32)

∇2
ωQ

dist′

n (ω|ωn(i)) = ∇2
ωQn(ω|ωn(i)) +

∑
l∈Nn

∇2
ωQl

(
ωl|ωl(i)

)
. (4.33)

Consider the density model gn(ynt|znt,ω) in (4.26) as a Gaussian function of ω with

mean vector xnznt − ynt and covariance h2I given the unobserved membership znt

of mixture model. We can replace znt with index m ∈ {1, . . . ,M} indicating m-th

mixture component, and have equivalently

gn(ynt|znt,ω) = gn(ynt|m,ω). (4.34)
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With the density model (4.34) in (4.23)-(4.24) and the Gaussian kernel of (4.2), we

have

∇ω log gn(ynt|m,ω) = ∇ω log

[
1

Z
Kh (xnm − ynt − ω)

]
=

1

h2

(
xnm − ynt − ω

)
. (4.35)

From (4.26) and (4.35), the gradient vector and Hessian matrix of Qn(ω|ωn(i)) is

given by respectively

∇ωQn(ω|ωn(i)) =
T∑
t=1

M∑
m=1

[
gn(m|ynt,ωn(i))

1

h2

(
xnm − ynt − ω

)]
, (4.36)

∇2
ωQn(ω|ωn(i)) = −

T∑
t=1

M∑
m=1

gn(m|ynt,ωn(i))
1

h2
. (4.37)

The recursive update equation for Newton’s method can be written as

ωn(i+ 1) = ωn(i)− α
[
∇2

ωQ
dist′

n (ωn(i)|ωn(i))
]−1∇ωQ

dist′

n (ωn(i)|ωn(i)) (4.38)

where α denotes a small step-size for Newton’s method. We assume that the Hessian

matrices ∇2
ωQn(ω|ωn(i)) for all n are not significantly different. This assumption is

reasonable because at every iteration i all the nodes combine their estimate ωn(i)

with neighboring estimates and the density model gn was induced from the same

distribution. Thus, the gradient vector and the Hessian matrix in (4.32) and (4.33)

respectively can be approximated as

∇ωQ
dist′

n (ω|ωn(i)) ≈ ∇ωQn(ω|ωn(i)) +∇2
ωQn

(
ω|ωn(i)

)∑
l∈Nn

(
ω − ωl

)
, (4.39)

∇2
ωQ

dist′

n (ω|ωn(i)) ≈
(
|Nn|+ 1

)
∇2

ωQn(ω|ωn(i)) (4.40)

where
∣∣Nn

∣∣ denotes the size of neighboring nodes at n. Substituting (4.39) and (4.40)
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into (4.38), we have

ωn(i+ 1) = ωn(i)− α

|Nn + 1|

[
∇2

ωQn

(
ωn(i)|ωn(i)

)]−1

∇ωQn

(
ωn(i)|ωn(i)

)
− α

|Nn + 1|
∑
l∈Nn

(
ωn(i)− ωl

)
. (4.41)

4.4.3 Distributed Mean-Shift Algorithm

Now we describe a two-steps algorithm for (4.41). Define qn(i) as

qn(i) ,
[
∇2
ωQn(ωn(i)|ωn(i))

]−1∇ωQn(ωn(i)|ωn(i)). (4.42)

Also, replace ωl in (4.41) with ψl(i) that is an intermediate estimate available at

node l at iteration i. Moreover, for convergence of the estimated state sequences

{ωn(i)}i≥0∀n, consider decreasing step sizes α(i) and η(i) replacing α
|Nn+1| in (4.41).

The conditions for α(i) and η(i) will be described later in this section. The distributed

mode estimation algorithm at every node n can be expressed as

ψn(i) = ωn(i)− α(i)qn(i) (4.43)

ωn(i+ 1) = ψn(i)− η(i)
∑
l∈Nn

(
ψn(i)−ψl(i)

)
. (4.44)

In wireless sensor networks, the intermediate state vector ψn(i) in (4.44) is per-

turbed by communication random noise. In the presence of wireless communication

noise, the mode estimation method (4.43) - (4.44) can be rewritten as

ψn(i) = ωn(i)− α(i)qn(i) (4.45)

ωn(i+ 1) = ψn(i)− η(i)
∑
l∈Nn

[
ψn(i)−ψl(i)− ξnl(i)

]
(4.46)
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where ξnl(i) denotes random noise in the communication link from node l to n at

time i, assuming its distribution is zero-mean Gaussian. The step-sizes α(i) and η(i)

decrease to zero, as the iteration i goes to infinity. However, the decaying rate should

not be too fast. Moreover, α(i) decreases faster than η(i) so that a consensus can be

achieved. Similar methods for those step-sizes were used in [36] for a mixed-time scale

stochastic approximation. Assumption 1 describes conditions for such step-sizes. The

step-sizes can be in the following forms:

α(i) =
α0

(i+ 1)τ1
and η(i) =

η0

(i+ 1)τ2
, (4.47)

where 0.5 < τ1, τ2 ≤ 1 and 0 < τ1− τ2 < 0.5 for i = 0, 1, . . . and positive constants α0

and η0. The step-sizes in (4.47) satisfy the persistence condition, which is given by

α(i) > 0,
∞∑
i=0

α(i) =∞,
∞∑
i=0

α2(i) <∞, (4.48)

η(i) > 0,
∞∑
i=0

η(i) =∞,
∞∑
i=0

η2(i) <∞. (4.49)

4.4.4 Mean-Shift Vector −qn(i)

Substituting (4.36) and (4.37) into (4.42), we can describe the vector qn(i) of the

distributed scheme in (4.43) as

qn(i) =

∑T
t=1

∑M
m=1 gn(m|ynt,ωn(i))

(
ωn(i)− xnm + ynt

)∑T
t′=1

∑M
m′=1 gn(m′|ynt′ ,ωn(i))

. (4.50)

Recall that gn(m|ynt,ωn(i)) is the posterior probability for the m-th mixture com-

ponent, given ynt and ωn(i). By selecting the dataset {ynt}Tt=1 as the origin (i.e.,

ynt = 0 and T = 1), we have the equivalent form:

gn(m|ynt = 0,ωn(i)) =
Kh(ωn(i)− xnm)∑M

m′=1 Kh(ωn(i)− xnm′)
(4.51)
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where the derivation of (4.51) is available in the Appendix C. Substituting (4.51) into

(4.50) with setting ynt = 0 and T = 1, we can further simplify qn(i) as

qn(i) = ωn(i)−
∑M

m=1Kh

(
ωn(i)− xnm

)
xnm∑M

m′=1 Kh

(
ωn(i)− xnm′

) . (4.52)

Consider the second term of RHS in (4.52) as conditional mean of {xnm}Mm=1, where

the weight for xnm is determined by distance between ωn(i) and xnm at time i. We

can call −qn(i) of (4.52) a mean-shift vector at time i.

In summary, the distributed mode estimation schemes are described in Algorithm

I. When ξnl(i) = 0 for all n, l, i, the algorithm is in the absence of communication

noise. Thus, the step size η(i) can be set to a positive constant η0.

Algorithm 3 Distributed Man-shift Algorithm

Initialization: ωn(0), qn(0), h, α(0), τ1, η(0), and τ2 ∀n.

for i ≥ 1 do

Mean-shift vector: each node n computes qn(i) in (4.52).

Local update step: each node n calculates

ψn(i) = ωn(i)− α(i)qn(i)

Averaging step: each node n calculates

ωn(i+ 1) = ψn(i)− η(i)
∑

l∈Nn

[
ψn(i)−ψl(i)− ξnl(i)

]
Time instant update: i→ i+ 1.

end for

When ξnl(i) = 0, the link from l to n is noise-free at i.

4.5 Numerical Experiments

In this section we demonstrate the distributed mode estimation algorithm. Con-

sider a distributed sensor network, illustrated in Fig. 4.1, which is a connected graph

with N = 50 where the graph’s connectivity is characterized by λ2,L = 2.2815. Each
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node n has M measurements {xnm}Mm=1, where D = 1, taken from log-normal dis-

tribution lnN (1, 0.25). The total number of measurements is MN from all nodes.

Kernel size h was selected by (4.3). Fig. 4.2 is a realization of MN measurement

from the lognormal distributed data and its centralized KDE with the properly se-

lected kernel size h. One can observe that the mode γ = 2.4992 for the measurement

data and the average as a centralized measure of data should be biased because of

the right heavy-tail of the distribution. For the step sizes α(i) and η(i) in (4.47), we

considered τ1 = 1 and τ2 = 0.505. The initial step sizes α0 and η0 are respectively set

to 1 and 0.5/dmax where dmax denotes the maximum degree of graph network. The

noise in wireless communication links is assumed to be Gaussian random variables

with zero mean and different values of variance σ2
ξ for evaluation. Let ω(i) be a vector

of size ND × 1 for the Algorithm 3, i.e. ω(i) =
[
ω1(i)T , . . . ,ωN(i)T

]T
. If D = 1,

ω(i) =
[
ω1(i), . . . , ωN(i)

]T
. The initial state ω(0) are randomly selected at each node

n. In Fig. 4.3 and Fig. 4.4, we can observe that all the states at nodes converge

toward a single estimate of mode in the presence and absence of communication noise,

respectively.

The kernel density estimator (KDE) of (4.1) could be used to estimate the mode

if MN measurements were available in a centralized location. We compare the mean-

square-deviation (MSD) between the mode estimations of Algorithm I and the cen-

tralized method. The MSD is defined as

MSD(i) =
1

ND
E
[∥∥ω(i)− γ1

∥∥2
]

(4.53)

where γ is obtained by the centralized KDE of (4.1) and 1 denotes a ND × 1 vector

with 1 of all elements. We assume the centralized method experiences noisy communi-

cation, when data are transmitted from individual nodes and the centralized location.

After receiving all the measurements, the GMS algorithm [107–109] is processed at
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Figure 4.1: A Graph for Distributed Sensor Network (N = 50) Where the Graph’s
Connectivity Is Characterized by λ2(L) = 2.2815.

the center. The expectation is evaluated over 200 realizations of the measurement

and communication noise (but the PDFs are fixed). The mode γ was obtained by the

KDE of (4.1) with the kernel size h by (4.3).

In the absence of communication noise (i.e. ξnl(i) = 0 for all n, l, and i), we can

adopt a constant step size η(i) = η0 for all i. Fig. 4.5 compares the MSDs of different

values for the step-size α(i), when the other step size η(i) is fixed as 1
2dmax

for all i.

When we adopt the decaying step size α(i) with τ1 = 0.505, it is expected that the

MSD converges toward zero as i→∞. We can also observe that if the constant step

size α(i) becomes smaller (from 0.1 to 0.05), the MSD also decreases at the cost of

slower convergence rate rate.

Figure 4.6 compares the MSD performance between the distributed mean-shift

algorithm and centralized GMM fitted by EM algorithm in the absence of commu-
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Figure 4.2: An Example of KDE from Log-normal Distribution with µ = 1 and
σ = 0.5. The Kernel Size h = 0.9746 by Silverman’s Rule of Thumb (4.3). N = 50
and M = 20.

nication noise. The data distribution is lognormal with mean µ = 1 and variance

σ2 = 0.25. After the centralized GMM is estimated by EM algorithm with speci-

fied number of Gaussian mixture components, the closest component to the mode

was used to compute MSD metric. Among four scenarios - from 1 to 4 components,

GMM with 1 component was the worst to estimate the mode because of skewed distri-

bution, but GMM with 2 components show the best MSD performance for the given

lognormal distributed data. The distributed mean-shift algorithm also converges to

the best MSD, as iteration i increases. Not that the proposed method only needs to

estimate a single parameter, whereas the centralized GMM requires three parameters

for each component - mixing probability, mean vector, and covariance matrix.
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Figure 4.3: Distributed Mode Estimation in the Presence of Communication Noise
(σξ = 0.5). The Mode Is γ = 2.5591 Obtained by the KDE (4.1).

In Fig. 4.8, we evaluate the MSD for various values of measurement size M in

the presence communication noise where σξ = 0.5. For each case of M , the kernel

size h is computed by (4.3). As M increases, h is reduced. With larger number of

measurement data, MSD can be reduced due to statistical sufficiency for building

the KDE f . However, too large M results in too small h. The latter case may not

be desirable because KDE itself has large variance for the mode estimation with too

small h. On contrary, too large h is responsible for large bias of KDE.

Figure 4.7 compares the MSD between Algorithm 3 (distributed) and the cen-

tralized method. It shows that MSDs of the centralized method have different levels

at σξ = 1 and σξ = 0.1 due to the noisy transmission. For the larger noise vari-
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Figure 4.4: Distributed Mode Estimation in the Absence of Communication Noise.
γ = 2.4226 Is the Mode Obtained by the KDE (4.1).

ance in communication links, the centralized GMS also results in larger MSDs when

i is sufficiently large. Note that the received measurement data at the center were

already corrupted by communication noise. Thus the noise variance is responsible

for the different levels of MSDs in Fig. 4.7. We can also observe that MSDs of the

distributed Algorithm 3 decrease, as i → ∞. The decaying step size (i.e. α(i) → 0)

is responsible for mitigating the communication noise, as iteration i increases.

4.6 Application to Finding Densest Deployment

We apply the Algorithm 3 to the problem of the estimation of densest sensor

deployment. One may have a question: ”Where is the densest location over a sensor
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Figure 4.5: MSD for Comparison Between (Distributed) Algorithm I and Central-
ized GMS Algorithm with Various Step-sizes α(I) in the Absence of Communication
Noise.

network?” The mode estimation algorithm can answer this question. Suppose there

are N sensor nodes deployed in arbitrary location. Each node maintains its own

location information by GPS. Let xn be the vector of node n’s 2D location information

(it can be easily extended to 3D):

xn =
[
x(1)
n , x(2)

n

]T
(4.54)

where M = 1 is assumed because each node only maintains its own location measure-

ment. In Fig. 4.9, there are N = 50 sensors in 2D space. The location for x(1) and x(2)

axes were generated by lognormal distributions lnN (0, 0.49) and lnN (0, 0.25) respec-

tively, and then normalized by max(x(1)) and max(x(2)) for each axis. The contour in

Fig. 4.9 was generated by KDE of (4.1) with setting M = 1, in order to visualize the

density location. Each node n randomly initializes its state ωn(0). Fig. 4.9 shows
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Figure 4.6: MSD for Comparison Between (distributed) Algorithm 3 and Centralized
GMM Fitted by EM Algorithm in the Absence of Communication Noise.

that five different trajectories (i.e. ωn(i), n = 2, 14, 26, 38, 50) approach the densest

location of sensor deployment, as iteration i increases. The kernel size h = 0.1125

was selected by (4.3). For the step sizes α(i) and η(i) in (4.47), we used α(0) = 0.05,

τ1 = 1, η(0) = 0.5/dmax, and τ2 = 0.505. In the presence of communication noise,

σξ = 0.5 was considered in the simulation.

4.7 Conclusion

We have shown a distributed mode estimation scheme based on algorithms of

Gaussian mean-shift (GMS) and distributed extension of Expectation-Maximization
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Figure 4.7: MSD for Comparison Between (Distributed) Algorithm I and Central-
ized GMS Algorithm in the Presence of Communication Noise.

(EM). This scheme estimates a mode, as a central tendency of unimodal data dis-

tribution regardless of skewness, in distributed wireless sensor networks. While each

node maintains the expectation step based on local information, distributed coopera-

tion is performed over the network, which results in updating mean-shift vector. The

mean-shift mode estimation method consists of two steps - local update and averaging

steps, as described in Algorithm 3. Simulation results demonstrate that the estimated

states converge toward a consensus of the mode estimation in the presence and ab-

sence of communication noise. We compared performance between the distributed

and centralized scenarios. The proposed algorithm was also compared with the cen-

tralized GMM to estimate a mode of skewed data distribution. Different conditions

such as step-sizes and measurement size M were also evaluated in the presence and

absence of communication noise.
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Chapter 5

DISTRIBUTED DENSITY ESTIMATION FOR MODE CONSENSUS

In this chapter, we present distributed density estimation methods to achieve

mode consensus in wireless sensor networks. This chapter is different with Chapter

4 in that here we estimate densities of a set of grid points, whereas in Chapter 4 the

mean-shift algorithm was considered.

5.1 Mode as a Measure of Central Tendency

There are several mode estimation methods presuming that all the data are an-

alyzed in a centralized location. Half-sample mode (HSM) method iteratively finds

the shortest interval that contains the half number of samples from the data. As the

number of iterations increases, the interval is reduced. And finally only two samples

are remained representing the mean of them is the estimated mode. This method

may provide the estimate close to the mode because minimizing the interval widths

with a constant number of data samples is equivalent with maximizing the empirical

density [65]. Similar method is the half-range mode (HRM) method that iteratively

finds modal intervals selecting the half-interval that contains the larger number of

samples [65]. Several other methods are proposed in [59,60,64,65]. The fundamental

idea of these estimators is to find the densest region of data distribution. Of course

the mode can be estimated by obtaining the density function and finding the loca-

tion that maximizes the density. The well-known nonparametric method is parzen’s

kernel density estimator [105]. Since the kernel size may affect the accuracy of the

mode estimation, it can be decided by Silverman’s rule [106]. These methods for the
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mode estimate have been widely applied in modern science for data analysis [57–59].

Asymptotic convergence is analyzed with the kernel density estimator [105, 120, 121]

where the mode estimator is shown as a consistent estimator. The more general and

practical approach for multiple modes is the mean-shift algorithms [107–111]. These

methods seek multiple modes, although every sample converges to one of the multiple

modes, by recursively updating the gradient ascent of the kernel density estimator

which is required to be smooth to ascend. The mean-shift is useful for clustering al-

gorithms because each mode represents different clusters. But it is difficult to analyze

whether the estimated modes are consistent with the true modes or not.

When it comes to decentralized methods, there are not many works for directly

related to the distributed estimation of the mode. Some of the related works are to

estimate the density function from data in a distributed way. Reference [112] proposed

the distributed expectation-maximization (EM) algorithm to parametrically estimate

the density function with Gaussian mixture model (GMM). Reference [113] used the

average consensus filter to estimate the parametric density function. However, the

parametric methods may not be suitable to estimate the mode when data distribution

does not consist of Gaussian mixtures or when the distribution is highly skewed.

5.2 System Model

Consider a distributed sensor network with N nodes each with M measurements

{xnm}Mm=1, where xnm is a scalar and n = 1, 2, . . . , N , M ≥ 1, drawn from a distribu-

tion. The graph nodes are sensors and the undirected edges are communication links.

It is assumed that the M measurements data for each n are drawn from independent

and identical distribution. Every sensor node wishes to estimate the central tendency

of data over the entire sensor network, although each node maintains only limited

size of measurements.
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The nonparametric Parzen’s kernel density estimator f can be described as

f(z) =
1

N

N∑
n=1

[
1

M

M∑
m=1

1

Z
Kh (z − xnm)

]

,
1

N

N∑
n=1

ynz (5.1)

where ynz denotes the locally estimated density that depends on the distance between

z and {xnm}Mm=1 at node n and the kernel Kh(·) is assumed the commonly used

Gaussian kernel:

Kh(x) = exp

(
− 1

2h2
|x|2
)

(5.2)

with the normalization term Z =
√

2πh where h denotes the size (a.k.a. bandwidth)

of the kernel. We assume that the network size N is fixed and known to every node.

The link connections between nodes are static and noiseless. It is also assumed that

the density function f is bounded and twice continuously differentiable. Also note

that the Gaussian kernel function in (5.2) is bounded, symmetric and translation

invariant (a.k.a. shift invariant) satisfying∫
κh(u)du = 1 and

∫
u2κh(u)du > 0. (5.3)

5.3 Problem Statement

We wish to find the location of continuous variable z (denoting as θ) that maxi-

mizes the global density estimator f(z), which can be defined by

θ = argmax
−∞<z<∞

f(z). (5.4)

To obtain θ, one can simply collect all the sets of measurements {xnm}Mm=1 at a fusion

center and repeatedly examine −∞ < z < ∞ whether f(z) is the maximum or not.

However, such a centralized search requires all the sensor nodes to transmit their
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local measurements to a fusion center, which may be impractical because of trans-

mit power consumption and scalability. Instead, we consider distributed estimation

method where each node communicates only with its neighbors in the network. More

specifically, every node iteratively averages its intermediate estimate with neighbor’s

estimates for a certain period of time. We need to define a set of grid points at which

each sensor combines the density estimates with the neighbor’s. The grid points are

updated until all the points approach to the mode.

5.4 Distributed Density Estimation and Mode Consensus

We average the locally estimated density ynz in a distributed way, updating the

grid points at which ynz is combined with neighborhood. Since the global mode θ

in (5.4) can be found by examining f(z) with z, the distributed averaging process is

repeated with a grid (row) vector at each node n

zn = [zn1, . . . , znq, . . . , znQ] , (5.5)

updating zn under a certain rule. We assume the size of zn is fixed but the elements of

the vector are updated to find the maximum f(znq) in (5.1). The range of ωnQ− ωn1

is repeatedly reduced, and ωn finally converges to the mode θ.

We define the local density vector yn that is obtained by substituting the grid

points {znq}Qq=1:

yn = [yn1, . . . , ynQ] (5.6)

where each element yqn is defined by

ynq ,
1

M

M∑
m=1

1

Z
Kh (znq − xnm) . (5.7)

The local density vector yn is averaged up to ı̂ iterations at grid vector zn for all n.

Then, the averaging procedure is repeated p̂ times, updating zn for all n. Let ypnq(0)
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denote the initial state (i.e. i = 0) of the local density in the p-th repeat at node n’s

grid point q. The distributed average consensus algorithm [4] of the p-th repeat is

described as

ypnq(i+ 1) = ypnq(i)− α
∑
l∈Nn

(
ypnq(i)− y

p
lq(i)

)
(5.8)

where Nn denotes the neighborhood of node n (excluding n) and α is the step-size

that can be determined by 0 < α < 2/λN(L) [4], n = 1, 2, . . . , N , and i = 0, 1, . . . , ı̂.

Let Y =
[
yT1 , . . . ,y

T
N

]T
. The matrix form of (5.8) becomes

Yp(i+ 1) = W ·Yp(i) (5.9)

where W is a doubly stochastic matrix satisfying

W = W T , W1 = 1, and W = I − αL (5.10)

where L = D − A is Laplacian matrix and defined by degree and adjacent matrices

D and A. With a proper selection of α [4], the spectral norm satisfies

ρ

(
W − 1

N
11T

)
< 1 (5.11)

where ρ(·) is the spectral radius.

Since the grid points in zn at every node should be consistent in order to average

the local densities of elements in the vector yn at the same grid point q, we need to

specify update rules for the grid points. Essentially the grid points are updated by

searching the location zq that maximizes the estimated density f(zq). The updates

are based on the divide-and-conquer technique where the range of grid vector zn is

reduced by a constant factor (e.g. half) at each repeat.
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5.4.1 Minimum Point Update Rule (mPUR)

The mode can be found by making the minimum grid point zn1 in zn converge to

θ for all n. At the p-th repeat, zpn1 can be updated as below:

zp+1
n1 = zpn1 +

V

2p
u

(
ωpn −

Q

2

)
, p ≥ 1, (5.12)

where V denotes a range of interest assuming the desired mode is within the range,

u (·) is defined by

u(a) =

 0 if a < 0

1 if a ≥ 0
, (5.13)

and the index ωpn is obtained by

ωpn = argmax
q

ypnq (̂ı+ 1) (5.14)

where ypnq (̂ı+ 1) is obtained by (5.8) after ı̂ iterations. Then, every node updates the

grid points at each p-th repeat under the following rule:

zpnq = zpn1 +
V

2p−1

q − 1

Q
, p ≥ 1, q = 1, 2, . . . , Q, ∀n, (5.15)

where Q denotes the size of grid points between zpn1 and zpn1 + V/2p−1. The grid

points at different nodes can be unmatched, if ωpn 6= ωpl for n 6= l in (5.14). We will

analyze the required number of iterations ı̂ for a certain level of error probability.

The distributed mode consensus updating zpn1 is summarized in Algorithm 4.

5.4.2 Maximum Point Update Rule (MPUR)

An alternative method is to update the maximum grid point znQ in zn for con-

verging to θ for all n. This can be applied when all the nodes know the maximum
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Algorithm 4 Distributed Mode Search by mPUR

Initialization: set V , Q, α, zpn1 = zpn1 + V
2p−1

q−1
Q

for p = 1, q = 1, . . . , Q, and all n.

for p ≤ p̂ do

for i ≤ ı̂ do

run (5.8) with ypnq, ∀n. For i = 0, defined in (5.7).

i← i+ 1.

end for

update zpn1 by (5.12).

update zpn by (5.15).

p← p+ 1.

end for

point and the range of interest V , assuming that the desired mode is located between

znQ − V and znQ. At the p-th repeat, zpnQ is updated as below:

zp+1
nQ = zpnQ −

V

2p
u

(
Q

2
− ωpn

)
, p ≥ 1, (5.16)

where u (Q/2− ωpn) is defined by (5.13) and ωpn in (5.14). Then, every node updates

the grid point vector at each p-th repeat under the following rule:

zpnq = zpnQ −
V

2p−1

(
1− q − 1

Q

)
, p ≥ 1, q = 1, . . . , Q, ∀n, (5.17)

where Q is the size of grid points between zpnQ − V/2p−1 and zpnQ. The distributed

mode search method updating zpnQ is summarized in Algorithm 5.

5.4.3 Central Point Update Rule (CPUR)

We may not know whether the maximum (or minimum) grid point is larger (or

smaller) than the potential mode location. The central grid point znc in zn is updated

93



Algorithm 5 Distributed Mode Search by MPUR

Initialization: set V , Q, α, zpnq = zpnQ− V
2p−1

(
1− q−1

Q

)
for p = 1, q = 1, . . . , Q, and

all n.

for p ≤ p̂ do

for i ≤ ı̂ do

run (5.8) with ypnq, ∀n. For i = 0, defined in (5.7).

i← i+ 1.

end for

update zpnQ by (5.16).

update zpn by (5.17).

p← p+ 1.

end for

in order to make it converge to θ for all n without such an initial guess. At p-th repeat,

zpnc is updated as below:

zp+1
nc = zp

n,ωpn
, p ≥ 1, (5.18)

where ωpn is defined by (5.14). Then, every node updates the grid point vector at each

p-th repeat under the following rule:

zpnq = zpnc +
V

2p−1

(
q

Q
− 0.5

)
, p ≥ 1, q = 1, . . . , Q, ∀n, (5.19)

where Q is the size of grid vector between znc − V/2p−2 and znc + V/2p−2. The

distributed mode search method updating zpnc is summarized in Algorithm 6.

5.5 Numerical Experiments

There are N = 70 sensors in a fully distributed network. Each sensor node has

M = 100 samples. 70% of the nodes, m = 1, 2, . . . , 49, observe the data distributed
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Algorithm 6 Distributed Mode Search by CPUR

Initialization: set V , Q, α, zpnq = zpnc + V
2p−1

(
q
Q
− 0.5

)
for p = 1, q = 1, . . . , Q, and

all n.

for p ≤ p̂ do

for i ≤ ı̂ do

run (5.8) with ypnq, ∀n. For i = 0, defined in (5.7).

i← i+ 1.

end for

update zpnc by (5.18).

update zpn by (5.19).

p← p+ 1.

end for
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Figure 5.1: Network Graph Model. Two Different Distributions Were Generated.
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Figure 5.2: Local Density Estimates (PMFs) with Initial Grid.

as N (0, 1), and 30% of the nodes, m = 49, . . . , 70, observe N (3, 1), as illustrated in

Fig. 5.1. Each group of nodes has relatively dense connectivity, whereas inter-group

is sparsely connected. The grid size at every node is Q = 10. The range of the grid

points are minznq = −2 and maxznq = 5 for all n. The kernel size h = 0.1, but it

could be tested with another sizes.

Figure 5.2 shows local density estimates at each node with the initial grid points.

Each node observes limited number of data samples M and estimates the local density

at Q = 10 grid points. Fig. 5.3 shows the estimated density at the grid points after

running the distributed average consensus algorithm (5.8). With the finite ı̂, the

densities are approximation of true PDF. However, Fig. 5.4 shows that all the density

estimates converge to the true PDF, as ı̂→∞. Although the estimated densities are
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Figure 5.3: Density Estimates with Initial Grid after Running (5.8).

not true PDF but approximation of it, Fig. 5.5 shows that updating grid points can

provide the mode consensus.

5.6 Concluding Remarks and Future Works

In this chapter, we have presented distributed density estimation algorithms with

updating grid points, in order to achieve mode consensus. The grid points estimate

densities of data by distributed average consensus algorithm with finite number of

iterations ı̂. Since the mode represents the most density regions, updating the grid

points and running the distributed average consensus algorithm between the updates

of grid points can achieve the mode consensus. We have described three update

rules for the grid points, and then shown numerical experiments to evaluate the
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Figure 5.4: Consensus Can Be Achieved, As ı̂→∞. The Grid Point q = 10.
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mode consensus by the proposed methods. The mode estimation algorithm utilizes

parzen’s kernel density estimator where there is a free parameter - kernel size h.

Thus, the estimated mode is not necessarily the true mode. As a future work we may

design the kernel size which can be varied with the total number of measurement

data. Moreover, we assumed the finite number of iterations of distributed average

consensus algorithm between the updates of grid points. Another future work is to

obtain the trade-off between the iterations ı̂ and the measurement data size M .

5.6.1 Kernel Size h Design

Recall that the local density estimates ynz for all n at arbitrary location z ∈ R

depend on the kernel size h as shown in (5.1). Generally h is a free-parameter that is

empirically determined by the size of samples (i.e., N and M) [106]. with a certain

criterion such as mean-squared error (MSE), we may obtain a guideline how to select

h as a function of ı̂ as well as NM .

5.6.2 Trade-off between ı̂ and M

As [4] described, the step-size α in the weight matrix W = I − αL in (5.9)

affects the convergence rate of averaging. Thus, we can obtain an upper bound of the

averaging time, which is a function of the spectral radius defined in (5.11), and then

find the achievable averaging time by selection of α. It may be shown that the upper

bound on the averaging time of ı̂ depends on the number of local measurements M .
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Chapter 6

CONCLUSIONS

We have studied consensus-based schemes in distributed networks where there is

no fusion center but every node achieves a sensor fusion by in-network processing.

We proposed nonlinear diffusion adaptation scheme with bounded transmission for

distributed sensor networks. The nonlinear scheme was motivated by transmit power

savings and nonlinearity of power amplifiers. We have shown the proposed nonlinear

diffusion adaptation algorithm can estimate a global parameter that is associated

with real-time measurement data. Every sensor node can estimate the parameter

with convergence in the mean and stability. The mean-square-deviation (MSD) and

mean-square-error (MSE) were evaluated for performance of the proposed scheme.

We have also shown the nonlinear algorithm can be close to the linear case with

enhanced power savings in distributed sensor networks.

Next, we have proposed an algorithm for distributed quantile estimation where

quantiles of measurement sensor data are obtained in a distributed way. Intuitively,

given a set of measurement data, a quantile can be obtained by using empirical

cumulative distribution function (ECDF) after collecting all the measurement data

available from every node. In a fully distributed network, however, each node has

only limited information of the global measurement data. The proposed algorithm

estimates a quantile by in-network processing. States of a quantile estimation are

recursively updated by the combination of local update and averaging steps in the

presence of communication noise. We analyzed convergence behaviors of the algo-

rithm based on mixed-time scale stochastic approximation where the averaging time

scale dominates the local update time scale. The estimated state sequence is asymp-
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totically unbiased and converges toward the true quantile in mean-square sense. By

using the proposed algorithm, various statistical quantities can be estimated such

as maximum, minimum, median, n-th smallest element selection out of N elements,

outliers identification, and trimmed mean in fully distributed sensor networks.

Distributed mean-shift mode finding scheme was described. As a measure of cen-

tral tendency of sensor data, we can use a mode that represents the most probable

value of the data. Parzen’s kernel density estimator can be used for centralized case

after all the measurement data are collected from every node. However, in a fully dis-

tributed network, it is difficult to share the local measurement data over the network

and hard to synchronize the states of mode estimates. We have proposed a mode

estimation algorithm based on algorithms of Gaussian mean-shift and distributed

extension of expectation-maximization. While each node maintains the expectation

step based on local information, distributed cooperation is performed over the net-

work, which results in updating mean-shift vector. Simulation results demonstrate

that the estimated states converge toward a consensus of the mode estimation in the

presence and absence of communication noise. We compared performance between

the distributed and centralized scenarios. The proposed method was also compared

with the centralized GMM to estimate a mode of skewed data distribution. Differ-

ent conditions such as step-sizes and measurement size M were also evaluated in the

presence and absence of communication noise.

Finally, this dissertation has described a distributed density estimation method

with updating grid vectors to find a global mode of data. At each update of the grid,

distributed average consensus algorithm is run with a finite number of iterations.

The estimated density at each grid approaches the global mode, as the grid vector

is updated. We have presented three update rules for the grid vector. As the kernel

size is a free parameter of kernel density estimator, as a future work, we can design
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the kernel size parameter to estimate the true mode of distribution. The proposed

methods are based on finite number of iterations between updates of grid vector.

This leads us to investigate relation between the number of iterations for the average

consensus algorithm and the measurement data size. As either the iteration number

or the local measurement data size increases, we can have more accurate estimate

results. It was shown that the parameters affect communication cost and memory

usage at local sensor nodes.
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The proof refers to Lemma 25 in [36]. Consider large enough i0 such that

r1(i) ≤ 1, ∀i ≥ i0. (A.1)

Since 1− z ≤ e−z for 0 ≤ z ≤ 1, and from (3.18), we have

i−1∏
l=k+1

(
1− r1(l)

)
≤ e−

∑i−1
l=k+1 r1(l)

= e
−

∑i−1
l=k+1

a1

(i+1)δ1

≤ e
−

∫ i+1
k+2

a1

tδ1
dt

= e
− a1

1−δ1 [(i+1)1−δ1−(k+2)1−δ1 ] (A.2)

where the inequality of third line is because of the properties of Riemann integral.
We thus have
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where A1 , e
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. For sufficiently large i0, by Riemann integration properties,
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From (A.3) and (A.4), we have
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By the partial integration theorem from calculus,
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Substituting (A.6) into (A.5), we have
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Now we have the claims. 1) If δ1 = δ2, then,
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As i→∞, we have
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On the other hand, 2) if δ1 < δ2, as i→∞, the second term of RHS in (A.7) goes to
zero because the denominator increases faster than the numerator. Thus,
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Recall the distributed quantile estimation algorithm (3.13). Multiplying both
sides of (3.13) by 1

N
1T results in

ωavg(i+ 1) = ωavg(i)− α(i)yavg(i)− η(i)ξavg(i) (B.1)

where ξavg(i) , 1
N

1Tξ(i) and from (3.11)
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∣∣∣∣ ≤ 1. (B.2)

After iteration i, we have the following stochastic difference equation:
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α(j)yavg(j)−
i∑

j=0

η(j)ξavg(j). (B.3)

Since the sequence {ξavg} is time independent and E
[
ξavg(i)

]
= 0 for all i, we can

obtain

E
[
ωavg(i)− θp

]
≤ ωavg(0)− θp +

i−1∑
j=0

α(j), (B.4)

E
[∣∣ωavg(i)− θp

∣∣2]
≤
(
ωavg(0)− θp

)2
+ 3

i−1∑
j=0

α2(j) + 2
(
ωavg(0)− θp

) i−1∑
j=0

α(j) + σ2
ξavg

i−1∑
j=0

η2(j) (B.5)

where σ2
ξavg

, E
[
ξ2

avg(i)
]

for all i and we use the inequality of (B.2).

Due to (3.14) and (3.15),
∑i−1

j=0 α
2(j) and

∑i−1
j=0 η

2(j) are bounded, as i → ∞.

Also, there exists a decreasing sequence η(i) in the form of (3.17) such that lim supi→∞
η(i)

∑i−1
j=0 α(j) = 0. For example, when η(i) = 1

(i+1)τ2
and α(i) = 1

(i+1)
for τ1 = 1 and

0.5 < τ2 < 1, there exists 1
(i+1)τ2

∑i−1
j=0

1
j+1

< 1
(i+1)τ2

∑i−1
j=0

1
(j+1)

(i+1)ε

(j+1)ε
= 1

(i+1)τ2−ε

∑i−1
j=0

1
(j+1)1+ε

for all i > 1 and 0 < ε < 1− τ2 < 0.5. From Assumption 2, we have

lim
i→∞

1

(i+ 1)τ2−ε
= 0, lim

i→∞

i−1∑
j=0

1

(j + 1)1+ε
<∞. (B.6)

Then we can obtain lim supi→∞ η(i)
∑i−1

j=0 α(j) = 0 for τ1 = 1 and 0 < ε < 1−τ2 < 0.5.
Therefore,

lim sup
i→∞

η(i)E
[
ωavg(i)− θp

]
= 0, lim sup

i→∞
η(i)E

[∣∣ωavg(i)− θp
∣∣2] = 0. (B.7)
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APPENDIX C

DERIVATION OF (4.51)
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The conditional density model gn(m|ynt,ωn(i)) in (4.51) can be written as

gn
(
m|ynt,ωn(i)

)
=
gn
(
m,ynt|ωn(i)

)
gn
(
ynt|ωn(i)

)
=
gn
(
m|ωn(i)

)
gn
(
ynt|m,ωn(i)

)
gn
(
ynt|ωn(i)

) (C.1)

where gn
(
m|ωn(i)

)
= 1

M
, gn
(
ynt|m,ωn(i)

)
= 1

Z
Kh

(
ynt−(xnm−ωn(i))

)
, and gn

(
ynt|ωn(i)

)
is defined in (4.24). Then, it follows that

gn
(
m|ynt,ωn(i)

)
=

Kh

(
ynt −

(
xnm − ωn(i)

))
∑M

m′=1 Kh

(
ynt −

(
xnm′ − ωn(i)

)) (C.2)

When we set ynt = 0 for all t, we obtain

gn
(
m|ynt = 0,ωn(i)

)
=

Kh

(
ωn(i)− xnm

)∑M
m′=1 Kh

(
ωn(i)− xnm′

) . (C.3)

Eq. (C.3) is the posterior probability of component m, given the current state ωn(i).
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