
 
 

Engineering PNIPAAm Biomaterial Scaffolds to Model Microenvironmental Regulation 

of Glioblastoma Stem-Like Cells  

by 

John Michael Heffernan 
 
 
 
 
 

A Dissertation Presented in Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 
 
 
 
 

Approved October 2017 by the  
Graduate Supervisory Committee 

 
Rachael W. Sirianni, Co-Chair 

Brent L. Vernon, Co-Chair 
Sarah Stabenfeldt 
Stephen Massia 
Shwetal Mehta 

 
 
 
 
 
 
 
 
 
 
 
 

ARIZONA STATE UNIVERSITY 
 

December 2017 



i 
 

ABSTRACT 

Following diagnosis of a glioblastoma (GBM) brain tumor, surgical resection, 

chemotherapy and radiation together yield a median patient survival of only 15 months. 

Importantly, standard treatments fail to address the dynamic regulation of the brain 

tumor microenvironment that actively supports tumor progression and treatment 

resistance. Moreover, specialized niches within the tumor microenvironment maintain a 

population of highly malignant glioblastoma stem-like cells (GSCs). GSCs are resistant to 

traditional chemotherapy and radiation therapy and are likely responsible for near 

universal rates of tumor recurrence and associated morbidity. Thus, disrupting 

microenvironmental support for GSCs could be critical to more effective GBM therapies. 

Three-dimensional (3D) culture models of the tumor microenvironment are powerful 

tools for identifying key biochemical and biophysical inputs that may support or inhibit 

malignant behaviors. Here, we developed synthetic poly(N-isopropylacrylamide-co-

Jeffamine M-1000® acrylamide) or PNJ copolymers as a model 3D system for culturing 

GBM cell lines and low-passage patient-derived GSCs in vitro. These temperature 

responsive scaffolds reversibly transition from soluble to insoluble in aqueous solution 

by heating from room temperature to body temperature, thereby enabling easy 

encapsulation and release of cells in a 3D scaffold. We also designed this system with the 

capacity for presenting the cell-adhesion peptide sequence RGD for adherent culture 

conditions. Using this system, we identified conditions that promoted GBM 

proliferation, invasion, GSC phenotypes, and radiation resistance. In particular, using 

two separate patient-derived GSC models, we observed that PNJ scaffolds regulated self-

renewal, provided protection from radiation induced cell death, and may promote stem 

cell plasticity in response to radiation. Furthermore, PNJ scaffolds produced de novo 

activation of the transcription factor HIF2α, which is critical to GSC tumorigenicity and 
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stem plasticity. All together, these studies establish the robust utility of PNJ biomaterials 

as in vitro models for studying microenvironmental regulation of GSC behaviors and 

treatment resistance. 
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PREFACE 

This dissertation includes original research articles previously published by the 

primary author. Chapter 2 describes the synthesis and characterization of synthetic 

temperature responsive PNIPAAm based scaffolds for culturing and passaging 

Glioblastoma cells in three-dimensional culture [1]. Chapter 3 describes the capacity of 

PNIPAAm based scaffolds to promote enrichment of Glioblastoma stem-like cells in 

three-dimensional culture [2]. The use of these previously published works was 

approved by all co-authors (Appendix A). 
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Introduction 

1.1. Glioblastoma  

Glioblastoma (GBM) is the most common and deadly pathological classification 

of malignant primary brain tumors. Epidemiological data collected for the United States 

between 2009-2013 indicate that GBM represents 46.6% of these diagnoses and 14.9% of 

all malignant and non-malignant primary brain tumor diagnoses [3]. Overall age 

adjusted incidence rates are 3.2 per 100,000, with a median age of diagnosis of 64.0 

years; risk rises with age [3]. Symptoms of a GBM vary widely depending on tumor 

location and size but may include severe headaches, seizures, vision and speech 

impairment, or loss of cognitive and motor functions. Standard treatment modalities 

include removal of the bulk tumor via surgical resection, followed by radiotherapy and 

concomitant chemotherapy. However, treatment is rarely curative, and the prognosis is 

poor.  Median survival remains stagnated at only 15 months [4], and the 5-year survival 

rate is reported between 4.7 – 5.5% [3,5].  

1.1.1. Barriers to Treatment 

From a clinical perspective, successful treatment of GBM remains challenging 

due to several factors. Complete surgical resection, while the best treatment for GBM, is 

often impossible as a result of tumor location, as well as the potential for irreparable 

damage to healthy brain tissue during surgery [6]. Radiation treatment can often be 

targeted to areas of the brain that would be otherwise difficult to access surgically. 

Although radiation is an effective means for killing remaining tumor cells, simultaneous 

damage incurred on surrounding healthy tissue limits tolerability and may worsen 

patient outcome. Treatment of GBM with chemotherapeutics is inhibited by the blood-

brain barrier, which segregates the brain from systemic circulation and prevents the vast 
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majority of drugs from effectively reaching malignant cells in the brain. The primary 

chemotherapeutic currently used in GBM treatment is the DNA alkylating agent 

temozolomide, which is administered orally, brain available and generally well tolerated, 

but imparts only a modest improvement in patient outcome [4]. Overall, current 

treatment options remain inadequate. 

One of the key biological features of GBM is that, unlike other tumor types 

tumors, it does not metastasize through the blood to peripheral organs; instead, 

individual cells invade healthy brain, preferentially migrating along white matter tracts 

and perivascular spaces [7].  These cells are responsible for initiating secondary tumors 

that most often arise within centimeters of the original tumor [8], but may manifest even 

on the contralateral side of the brain [9,10]. Invasive cells are undetectable by current 

imaging methods, and almost impossible to remove via surgical resection without 

damaging healthy brain. Radiation and chemotherapy fail to address invasive cells that 

are shielded by radio-sensitive healthy tissue and an intact blood-brain barrier. Thus, the 

invasive nature of GBM drives near universal rates of tumor recurrence as secondary 

tumors arise from seemingly healthy brain [5,8].   

A factor that further complicates the treatment landscape is that GBM tumors 

display a high degree of genetic, epigenetic, and cellular diversity. Presently, GBM are 

classified into 4 distinct subtypes: Proneural, Neural, Classical, and Mesenchymal; each 

of which corresponds to a common set of neoplastic genetic alterations [11]. However, 

individual subtype classifications may not be relevant to all cells found in a single tumor, 

as intratumoral heterogeneity is also a common feature of GBM [12]. This heterogeneity 

is a primary source of treatment resistance, whereby one tumor region that is sensitive to 

treatment is sustained or replaced by another region that is tolerant [13]. Tumor 



3 
 

heterogeneity is therefore an adaptive growth pattern that is challenging to address 

through monotherapy, even when targeted. 

1.2. GBM Tumor Microenvironment 

The tissue of the GBM tumor microenvironment contains cellular and non-

cellular components that collectively contribute to disease progression. The extracellular 

matrix (ECM) of the tumor microenvironment is primarily composed of the 

glycosaminoglycan hyaluronic acid (HA), and to a lesser degree, tenascin-C, collagen IV 

and V, fibronectin and laminin [9,14]. HA affects GBM growth and invasion via 

interaction with the cell surface receptor CD44, which is often overexpressed on GBM 

cells [9,15–19]; interactions with the other aforementioned ECM components promote 

GBM malignancy through a variety of biochemical pathways [14,20,21]. Additionally, 

the concentration of these non-cellular components is increased in the tumor 

microenvironment as GBM cells manufacture them to promote malignancy 

[9,17,19,21,22]. The increased density of the tumor ECM also contributes to increased 

mechanical stiffness of the microenvironment; stiffness is a well-characterized regulator 

of GBM proliferation and invasion [14,22–28]. Cells sense microenvironmental stiffness 

primarily through integrins and focal adhesion complexes in a process called 

mechanosensation [14]. Moreover, integrins that construct focal adhesion complexes with 

the tumor ECM play a significant role in GBM progression and have been proposed as a 

biomarker target for treatment [29–32]. 

The tumor-associated cells within the tumor microenvironment are key 

regulators of GBM growth and tumor vascularization. Cells that commonly provide 

support to GBM include tumor associated endothelial cells, pericytes, astrocytes, 

fibroblasts and infiltrating immune cells such as macrophages and microglia [33]. One of 
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the primary modes of support from tumor and tumor associated cells is secretion of 

soluble signaling factors that stimulate malignant phenotypes i.e. proliferation (EGF, 

FGF, IGF, HGF), angiogenesis (VEGF), and invasion (IGF, HGF, TGF-β) [34]. These 

secreted signaling factors may be sequestered within the dense network of ECM and 

serve as a depot for GBM cells [22,34]. Tumor vascularization is achieved in part by 

recruitment of vascular associated endothelial cells, pericytes, and astrocytes, to meet 

the nutrient demands of a growing tumor [33–35]. Specifically, endothelial cells are 

stimulated to proliferate and migrate toward tumor regions with poor oxygenation as a 

result of VEGF productions by hypoxic tumor cells [35].  However, the resulting tumor 

associated neovasculature is significantly different from healthy vessels as it forms a 

dense and disordered network of leaky vessels with necrosis developing in regions of 

severe chronic hypoxia (< 1% O2) [35,36].  

1.3. Glioblastoma Stem-like Cells  

Prior to 2003, GBM, like most solid tumors, was widely believed to be driven by a 

stochastic model of clonal evolution in which tumors were initiated via neoplastic 

transformation of glia. The identification and characterization of tumorigenic 

Glioblastoma stem-like cells (GSCs) within human brain tumors has since reshaped 

conventional wisdom over the architecture of GBM biology [37–40]. This discovery 

supports the hypothesis that cells within a tumor display a hierarchical order of 

tumorigenic potential that is maintained by cancer stem cells (CSCs) [41,42]. It is now 

widely recognized that within GBM tumors, GSCs are essential to tumor maintenance, 

drivers of heterogeneity, and also may represent the cell of origin [41,43].  

1.3.1. GSC Characteristics  

GSCs display many biological similarities to NSCs; they are capable of indefinite 

self-renewal and multipotent differentiation, and they express genes that promote neural 
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stem phenotypes such as NESTIN, SOX2, and OLIG2 [37–40,43–45]. Identification and 

enrichment of GSCs can be achieved by sorting tumor cells that express validated cell 

surface biomarkers (CD133 [38], SSEA-1 [46], Integrin α6 [29]) followed by functional 

analysis of stem behaviors [47]. Of the stem behaviors, none is more important to GSC 

tumorigenicity than self-renewal. This was demonstrated when GSCs were first isolated 

and were observed to form orthotopic xenograft tumors from as few as 100 cells. In 

comparison, non-stem GBM cells (NGSCs) from the same tumor sample were incapable 

of forming tumors from injections of 100,000 cells [39]. GSCs also display a capacity for 

multipotent differentiation into non-tumorigenic cancer associated cells, such as 

vascular cells, that provide critical support for tumor growth [48–51]. Multipotency 

contributes to cellular heterogeneity observed in primary GBM; this behavior has been 

recapitulated in experimental orthotopic xenograft tumor models [39].  

Ex vivo purification of GSCs requires a multi-step process that tests self-renewal, 

multipotency, and stem marker expression. Failure to test all three components often 

results in false positive identification [47]. Another method for identifying GSCs has 

been through the use of label retaining assays to identify quiescent or slow-cycling cells 

[52,53]. Using robust verification, long-term established GBM cell lines are found to lack 

fully functional GSCs, even in NSC culture conditions [44,47]. Thus to properly research 

GSC behaviors, experiments should ideally be performed on low-passage patient-derived 

cells that have been validated as a stem population. 

1.3.2. GSC Response to Treatment 

GSCs are highly treatment resistant, which is facilitated by their propensity to 

invade healthy brain [54], potential quiescence [55], and activation of molecular 

machinery that is protective against radiation [56] and cytotoxic insult [57]. Many of the 

invasive mechanisms utilized by GSCs mimic NSC motility along white matter tracts and 
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blood vessels [43]. Thus, GBM tumors characteristically display an infiltrative leading 

edge that disseminates into healthy tissue. GSC derived orthotopic xenograft tumors 

recapitulate this invasive behavior with GSCs concentrated at the tumor edge [58], 

whereas NGSCs from the same patient tumor sample are minimally invasive [54]. 

Resistance to both radiation [56] as well as many conventional chemotherapeutics, 

including temozolomide [55,57], has been reported in the GSC population. This 

resistance is ascribed to increased activation of DNA damage checkpoint and repair 

proteins [56], as well as increased expression of ATP-binding cassette (ABC) drug 

transporters, which contribute to increased drug efflux and chemoresistance [59]. 

Recurrent tumors are also enriched for GSCs compared to the primary tumor suggesting 

that GSCs evade conventional therapy and play a prominent role in the high rates of 

GBM relapse [57]. 

1.4. GSC Niche Microenvironments 

Similar to NSCs, which are primarily found in the subventricular zone and 

hippocampus of the adult brain, GSCs are also concentrated in niche microenvironments 

[43]. One notable difference is that GSC niche microenvironments appear to be 

mitogenic, encouraging growth, while NSCs are generally sustained in quiescence [51].  

These physical regions within the larger tumor microenvironment include a range of 

microenvironmental features that sustain and regulate GSC phenotypes through 

hypoxia, growth factor signaling, and adhesion to the ECM [51]. It is thus unsurprising 

that the microenvironment plays a role in provoking treatment resistance [21,60–64].  

1.4.1. Perivascular Niche 

A niche microenvironment has been identified in regions directly adjacent to 

blood vessels known as the vascular or perivascular niche [60,65]. Tumor vascularization 

is a requisite process to provide GBM tumors with adequate oxygen and nutrients that 
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sustain rapid growth. Bao et al. determined that GSCs initiate neovascularization by 

stimulating endothelial cell proliferation, migration, and tube formation through 

secretion of vascular endothelial growth factor (VEGF) and stromal-derived factor 1 

(SDF-1) [66,67]. In parallel, vascular endothelial cells promote GSC self-renewal and 

proliferation, through secretion of soluble signaling factors such as nitric oxide, as well 

as via activation of NOTCH signaling [65,68–70]. This support appears to be unique to 

endothelial cells. For example, Calabrese et al. determined that neither NGSCs, 

astrocytes, nor fibroblasts were able to produce comparable enrichment of GSCs in vitro 

[65]. Importantly, GSCs are also capable of transdifferentiation into tumor-derived 

vascular cells. In experimental tumor models, GSCs have been observed to differentiate 

into pericytes and endothelial cells that participate in the formation and maintenance of 

neovasculature  [48–51,71].  Therefore, interactions between endothelial cells and GSCs 

in the perivascular niche may create a self-sustaining paracrine signaling cycle that is 

critical for tumor maintenance and progression [71].  

1.4.2. Hypoxic Niche 

In juxtaposition to the nutrient-rich perivascular niche, GSCs are also found 

concentrated surrounding tumor regions that have limited access to blood vessels and 

are often necrotic [72]. The disorganized vasculature of GBM tumors leads to regional 

oxygen concentration gradients that have significant effects on GSC phenotypes. The 

primary molecular response to oxygen deprivation involves activation of the hypoxia 

inducible factor (HIF) family of transcription factors whose canonical downstream 

targets are proangiogenic [73]. As a result, the hypoxic niche may in some cases exist as a 

transitional microenvironment in which GSCs use proangiogenic factors such as VEGF to 

recruit blood vessels and establish a perivascular niche [41].  
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HIF activation has also been found to be a potent regulator of various GSC 

behaviors. HIF1α and HIF2α exhibit overlapping functions in both vasculogenesis and 

enriching stem phenotypes [72–77]. However, unique downstream target genes have 

also been identified particularly for HIF2α, which include stem markers Oct4, c-Myc, 

and Nanog  [72,74,78]. Importantly, Li et al. reported that while HIF1α is expressed in 

both NSC and GSC populations, HIF2α expression is restricted to GSCs and is required 

for GSC tumorigenicity in vivo [72].  HIF2α induction also promotes stem plasticity in 

the pool of NGSCs, which may be particularly important for repopulating the GSC pool 

in response to treatment [74]. HIF expression also appears to be regulated by distinct 

components of the microenvironment. HIF1α expressing cells are enriched in regions of 

chronic hypoxia (> 1% O2), while HIF2α expression is more sporadically identified in 

both hypoxic and normoxic regions surrounding blood vessels [36,72]. In addition, 

tumor acidity, a byproduct of overactive glycolytic energy production, increases HIF2α 

stabilization independent of oxygen concentration, and also promotes stem plasticity 

[79]. Thus, the hypoxic niche regulates GSC phenotypes primarily through HIF activity, 

which is essential to stem maintenance and tumorigenicity.  

1.4.3. Invasive Niche 

GSC populations have been identified at the leading edge of GBM tumors 

suggesting that this invasive front also contributes to GSC maintenance [44,51,54,80–

82]. Therefore, while an invasive niche has yet to be definitively established, 

microenvironmental interactions particularly with the ECM protein laminin have been 

identified that regulate both invasive behaviors and stem phenotypes. For example, 

laminin receptor integrins α6 and α7 have been proposed as biomarkers for functional 

GSCs [29,30], while GSC regulation has also been described through interactions with 

the laminin subunit α2 [21]. In healthy brain, laminin is primarily located on the outside 
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of blood vessels, which are primary routes of GBM invasion [9]. Moreover, the 

interactions with vascular associated laminins are an important factor for GSC regulation 

in the perivascular niche [21]. In vivo,  orthotopic GSC tumors recapitulate the invasive 

profile observed in patient tumors compared to NGSCs, which generally form 

noninvasive tumors [54]. Furthermore, recurrent tumors are enriched with GSCs 

indicating that these cells are likely responsible for infiltrative growth that is 

characteristic of GBM [57]. 

1.4.4. Therapeutic Challenges and Opportunities 

Along with regulatory inputs, niche microenvironments provide GSCs with 

protection from cytotoxic treatments [60]. The perivascular niche has been described as 

radio-protective for medulloblastoma tumors [83]. This resistance was initiated by 

signaling through the oncogenic PI3K/Akt pathway which is a downstream target of the 

epidermal growth factor receptor (EGFR). In relation to GBM biology, EGFR is one of 

the most important biomarkers for malignancy [11], and is critical to the maintenance of 

stem phenotypes in vitro [44]. Moreover, inhibiting EGFR has been observed to sensitize 

otherwise radioresistant GSCs to treatment [84]. Therefore, activation of this receptor in 

the nutrient-rich perivascular niche would conceivably negatively impact the efficacy of 

radiotherapy on GSCs. VEGF signaling, which is critical for tumor vascularization and 

establishment of the perivascular niche, has also been shown to enhance resistance to 

radiation [85]. Similarly, Notch signaling, which functions through direct cell-cell 

contact of transmembrane proteins, also supports radioresistant behaviors in GSCs and 

is an integral signaling pathway in the vascular niche [86].  

The hypoxic niche provides some of the best direct evidence of niche protection 

from chemotherapy and radiation. For both treatments, a common mode of action is 

through the generation of reactive oxygen species (ROS) induces double strand breaks in 
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DNA [87]. However, due to the relative lack of oxygen, ROS generation is attenuated 

thereby limiting this mechanism. Additionally, hypoxia is capable of promoting 

downstream activation of numerous survival pathways that may further limit treatment 

efficacy [87–89]. For example, GSCs identified in hypoxia have been observed to highly 

express MGMT, which functions to repair DNA and promotes resistance to TMZ [90].  

Targeting niche microenvironments may provide an opportunity to disrupt GSC 

regulation and increase GBM treatment efficacy. Recently, inhibition of vascular niche 

formation initially appeared to be a promising direction for the development of new 

treatments; in experimental tumors, GSCs were depleted and tumor growth retarded by 

the antiangiogenic therapy bevacizumab, which is a VEGF function blocking antibody 

[65,66]. However, bevacizumab was subsequently found to effect an increase invasion of 

GBM cells in response to increased hypoxia resulting from the inhibition of blood vessel 

formation [91,92]. In a phase III clinical trial this treatment failed as a first-line therapy, 

but remains an approved and viable option as a salvage treatment for increasing 

progression free survival in recurrent GBM [93]. Bevacizumab fails as a GBM treatment 

primarily as a result of the strong hypoxia response of these tumors, and thus any 

approach seeking to inhibit blood supply to GBM must consider molecular responses of 

cells to hypoxic environments. For example, HIF2α may present a potential co-

therapeutic target due to its specificity for GSCs, prominent role in GSC tumorigenicity, 

and regulation of responses to oxygen [72,79]. 

GSC niches are complex and diverse microenvironments that provide adaptive 

regulation of stem functions along with protective support against GBM treatments. The 

striking capacity of these cells to survive insults decreases the likelihood that any 

monotherapy will be significantly effective. Therefore, although clinical results have thus 
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far been disappointing, targeting and disrupting microenvironmental mechanisms of 

GSC regulation should remain a focus of novel treatment designs.  

1.5. GBM Research Models 

1.5.1. Cell Lines and In Vitro Culture 

In vitro cell culture models have been fundamental to GBM research since the 

first tumor cell lines were isolated and immortalized in the 1960s [94]. A variety of 

immortalized cell lines are now widely available for research, and provide a platform for 

disease research that ideally enables reproducible testing. Propagation in vitro is 

performed using a simplified two-dimensional (2D) isotropic plate (often poly(styrene)) 

that is treated to present a negative charge, or coated with poly-d-lysine, or ECM 

proteins to promote anchorage dependent cell growth. This 2D design is optimized for 

cells to experience consistency in their access to adhesion sites, nutrients, soluble 

signaling factors, and oxygen in culture [95]. These cultures enable biologically 

instructive assays that measure behaviors such as proliferation, migration, stem cell 

status, and drug sensitivity under a variety of discrete conditions [96,97].  

Although immortalized GBM cell lines have provided invaluable understanding 

of aspects of the disease process in GBM, their utility in generating new therapies for 

clinical application is limited. In vitro, cells are polarized and attach to the stiff culture 

substrate in a single plane that provides little to no resistance to proliferation or 

migration. In response, cells converge on a singular phenotype through a rapid loss of 

cellular heterogeneity, which is a fundamental feature of GBM [98]. Immortalized cell 

lines show significant differences in their molecular signature compared to primary GBM 

tissue, which is a direct result of prolonged propagation and genetic instability [98]. 

Another prominent issue with long-term cell lines is the potential for contamination with 

other cell lines that replace the original population. As an example, one of the most 
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widely used and first established in vitro models of GBM, the U-87 MG cell line, was 

originally isolated from a 44-year old female patient [94]. Recently, the genome of this 

line was compared to the original tumor sample, and was determined to be a GBM of 

male origin [99]. These problems, among others, illustrate that more representative 

disease models are necessary to overcome challenges in studying GBM biology. 

The use of low-passage primary cells derived from patient tissue provides an 

improvement in the biological relevance of in vitro models. These are established by 

mechanical and enzymatic digestion of tumor tissue, whereby the resulting 

heterogeneous cell-mix is cultured in vitro using standard culture conditions. GSC lines 

may also be established from primary tissue through culture in serum-free NSC 

optimized media with the mitogenic growth factors EGF and FGF [100]. These 

conditions maintain the GSC population such that cells preserve genotypic and 

phenotypic features of the original tumor, whereas serum-supplemented cultures 

promote selection of differentiated GBM phenotypes and the GSC pool is subsequently 

depleted [47,101]. 

Standard 2D cultures may also be modified to produce models that better 

represent native GBM biology.  For example, GBM has been co-cultured with a 

secondary cell type such as astrocytes [102,103] or endothelial cells [69] to promote 

malignant phenotypes. The most common method for establishing co-cultures is through 

a transwell or boyden chamber system. In these cultures, cells are separated by a semi-

permeable membrane that allows access to signaling factors secreted by the otherwise 

physically separated cell populations. Co-culture studies have indicated that supporting 

cells are well capable of directing the behavior of tumor cells, including provocation of 

invasion and treatment resistance [69,102,103]. 
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Similar to co-culture methods, three-dimensional (3D) cell cultures model 

aspects of the tumor microenvironment to elicit interactions that are generally absent 

from 2D cultures. Techniques such as hanging drop culture or culture on soft agar gels 

generates multicellular GBM spheroids that exhibit proliferation and invasion that better 

recapitulates in vivo scenarios [27,104,105]. Suspension culture, in which non-adherent 

cells are free-floating in media, is most often used to propagate GSCs where, similar to 

NSCs, stem-like cells form multicellular neurospheres (also called tumorspheres) 

[37,38,40,44,100,106]. Spheroid cultures can also be initiated as co-cultures in which 

GBM cells are combined with endothelial or glial cells and incorporated into spheroid 

structures [107]. Brain slice cultures further improve the relevance of the in vitro culture 

by enabling GBM cells to be analyzed in live brain tissue ex vivo. Here, viable brain slices 

are cultured and inoculated with tumor cells to enable tracking of GBM proliferation and 

invasion within a complete brain microenvironment. The primary drawbacks to brain 

slice culture include technical challenges with maintaining the tissue, reproducibility, 

and rapid cell death and/or alterations in the tissue during cultures [108,109]. Taken in 

sum, each of these approaches to culturing GBM have been valuable to isolate specific 

cellular responses under defined experimental conditions, although the degree to which 

neurosphere or hanging drop cultures can be engineered to capture essential aspects of 

the niche remain limited. 

1.5.2. Preclinical In Vivo Models 

In vivo models of GBM are the gold-standard for analyzing tumor growth and 

response to therapy within a physiologically relevant system. In vivo models are either 

syngeneic or xenograft. Syngeneic murine GBM models have been established via 

development of native GBM cell lines (e.g., through chemical insult) or genetic 

engineering that induces spontaneous and reproducible tumor formation [110]. Primary 
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advantages of syngeneic models include the ability to analyze tumors in the context of a 

fully functional immune system, and in genetic models, alterations in signaling pathways 

that are known to drive GBM malignancy (EGFR, PDGFR, Rb, Ras, Akt) [110,111]. 

Alternatively, xenograft models are established by the transplantation of human derived 

cell lines into an immunocompromised mouse host. The primary advantage of xenograft 

models is that they enable study of human GBM progression within a functional albeit 

immunodeficient brain.  

Human xenograft models may be established from long-term cell lines or from 

freshly isolated patient-derived GBM tissue. Tumors can be induced in either the flank or 

directly in the brain. Flank models enable rapid confirmation of tumorigenicity and 

rapid growth of tumor within an easy to access physical compartment, while also 

providing a more permissive paradigm for treatment studies due to the lack of a blood-

brain-barrier protecting the tumor. Orthotopic models on the other hand, are best suited 

for studying GBM behaviors in the context of the native brain tumor microenvironment. 

A variety of immortalized cell lines (U87, U118 etc.) have been used to produce 

aggressive orthotopic tumors with reproducible cellular architecture [110,111]. However, 

tumors generated through orthotopic transplant of immortalized cells often present 

significant genetic and histological variations from patient tumors thereby limiting their 

translational relevance [44,111]. For example, U87 tumors are highly vascularized, 

possess a relatively leaky blood-brain barrier, and do not exhibit the infiltrative behavior 

that is characteristic of patient GBM tissue [111]. The generation of noninvasive tumors 

is one of the primary drawbacks common to using immortalized cells in preclinical 

models. Conversely, low-passage patient-derived xenografts, particularly those 

established in serum-free culture or via direct in vivo inoculation, are characterized by 

their maintenance of parental tumor genotypes, an invasive leading edge, and minimal 
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disruption of the blood-brain barrier [39,40,43,44,106]. Thus patient-derived xenografts 

are presently considered the most biologically relevant research model of the human 

disease [110].  

1.6. Tissue Engineering the GBM Tumor Microenvironment 

The reduction of microenvironmental complexity in 2D cell culture limits 

analysis of disease biology because the three-dimensional (3D) ECM regulates numerous 

essential cellular phenotypes [105]. Tissue engineering strategies address this gap in 

understanding by providing methods to model key components of the 3D tumor 

microenvironment such as insoluble ECM components, stiffness, matrix degradability, 

and soluble signaling factors. These tools are not a direct surrogate for the complex, 

anisotropic, and heterogeneous in vivo scenario; instead, they enable characterization of 

contributions from individual microenvironmental factors.  Here, we review how these 

approaches have been utilized to understand important features of GBM and GSC 

biology. 

1.6.1. Biomaterials in GBM Research 

Both natural and synthetic polymers have been used to study GBM response to 

the microenvironment (relevant studies are summarized in Table 1.1). Natural materials 

are bioactive, degradable by enzymatic or hydrolytic mechanisms, and cells interact with 

them directly through specific and established biochemical pathways. One potential 

challenge with using ECM biomaterials derived from live hosts or cell cultures, such as 

Matrigel®, is the lack of experimental reproducibility. These multicomponent materials 

exhibit variation in composition across batches (e.g., growth factor content, ECM protein 

concentration), which may adversely impact the interpretation of results due to changes 

in the constituent materials [105]. Juxtaposed to natural materials, synthetic 

biomaterials used in GBM cultures are derived from organic sources, which enables a 
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high degree of control over their physical and chemical properties. Of these, 

poly(ethylene glycol) is by far the most common. Its hydrophilicity and chemical 

structure enable cell encapsulation and functionalization reactions that can be 

performed in situ. Synthetic biomaterials can be either degradable or non-degradable, 

and in general, are expected to possess lower intrinsic bioactivity than natural materials, 

since they do not possess cellular adhesion sites that would be expected elicit biological 

responses. Cells are capable of interfacing with a purely synthetic polymer either through 

surface adsorbed proteins (vitronectin, laminin, etc.) or through non-specific charge 

interactions [112]. Grafting synthetic polymers with bioactive proteins or peptides (e.g. 

RGD) is a common approach to enable cellular adhesion or biodegradation (Table 1.1). 

This method of combining natural and/or synthetic components into a composite 

biomaterial is useful for leveraging advantages of both classifications. 

The majority of natural, synthetic, and composite scaffolds applied in GBM 

studies are hydrophilic hydrogels, which, like tissue, are composed of a high fraction of 

water and swell considerably in aqueous solution.  However, in some  instances 

hydrophobic polymers are also incorporated, often coated with hydrophilic ECM 

proteins [113–115]. Scaffolds of either classification can be further designed as porous, 

fibrous, anisotropic, or some combination, each with varying degrees of control of these 

physical properties dependent on the constituents. Chemical and physical crosslinking 

reactions are often necessary to increase the molecular weight of a biomaterial such that 

it forms an insoluble physical structure in aqueous solution. Strategies that do not 

negatively impact cell viability are particularly desirable. For chemically crosslinked 

biomaterials, click-chemistry, such as Michael addition [24,25,27,116–118], describes 

stepwise reactions that proceed efficiently at neutral pH, do not require biologically 

damaging solvents or reaction conditions, and do not produce any cytotoxic byproducts 
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[119]. Another common example of chemical crosslinking is UV free radical 

polymerization, which, unlike most free radical reactions, may utilize an aqueous 

compatible initiator that is photoreactive (e.g., Irgacure 2959). This method enables 

polymerization of reactive monomers such as terminal olefins (e.g. acrylates) [28,120–

124]. Alternatively, physical crosslinking proceeds without a chemical reaction; 

alterations in pH or temperature produce electrostatic interactions that result in 

polymerization and/or precipitation [125]; typical examples include collagen (pH 

stimulus) or poly(N-isopropylacrylamide) (temperature stimulus). It is well known that 

the degree of crosslinking (chemical or physical) for any given material will affect the 

porosity, density, and stiffness of the scaffold, which are each independently important 

considerations in GBM tissue engineering.  

1.6.2. 3D Culture Methods 

Biomaterial cultures are performed with cells or spheroids either seeded on the 

scaffold surface or encapsulated within the scaffold during crosslinking. Surface cultures 

enable measurement of cellular behaviors (motility, invasion, proliferation, viability, 

etc.) in response to the biophysical and biochemical material properties. They also 

provide a set initial location for cells, and do not necessarily require biodegradation of 

the material to allow for cell proliferation or motility, since cells are capable of moving 

across the surface. Encapsulation cultures offer a more physiologically relevant scenario, 

but require biocompatible crosslinking and matrix degradation for cell growth and 

motility. Both scenarios are regularly used to measure invasive capacity, which cannot be 

fully recapitulated in 2D in vitro systems.  

For both surface and encapsulation cultures, biological assays must be either 

performed in situ (e.g. immunofluorescence, cell tracking) or alternatively, on cells 

recovered from the scaffold (e.g. western blot, polymerase chain reaction (PCR), 
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fluorescence activated cell sorting (FACS)). Both culture approaches pose a variety of 

technical challenges to performing these assays that are specific to the biomaterial 

system; a significant consideration in designing a 3D culture format. For example, 

chemically crosslinked materials may require degradation or cell dissociation conditions 

that adversely affect cell viability or the presentation of surface proteins. Physical 

scaffolds, on the other hand, may offer reversible formation in response to mild 

environmental changes and thereby enable easy cell recovery for post-culture analysis.  

1.6.3. Biophysical and Biochemical Regulation of GBM Behaviors  

The in vivo tumor microenvironment provides critical regulatory functions for 

GBM tumors. As a result, there are many reports investigating how the physical 

microarchitecture and biochemical features of 3D biomaterials regulate or elicit specific 

GBM behaviors in vitro (summarized in detail in Table 1.1). Many of these studies have 

described the impact of matrix stiffness and topography (porosity, fibers, geometry) on 

altering malignant GBM phenotypes such as proliferation, migration, and invasion. 

Mechanosensation is a key component of GBM biology that mediates tumor growth and 

cell motility [14]. In considering how biochemical aspects of the microenvironment 

influence GBM biology, a variety of different scaffold components have been explored, 

one of the most prominent being hyaluronic acid (HA). Given that HA, as previously 

described, has many essential functions in GBM [9], it is unsurprising that HA hydrogels 

have been shown to regulate a wide variety of behaviors including proliferation, invasion, 

stem phenotypes, and treatment resistance. HA does not provide cellular adhesion sites, 

and as a result is regularly modified with cell adhesion peptides or combined with other 

biomaterials, such as collagen, that enable cell attachment. One of the more intriguing 

developments in 3D microenvironment models is the inclusion of fibers that mimic the 

structure of blood vessel mimicking and guide GBM invasion [114,115,126]. More 
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complex models have also been reported for developing high-throughput studies or co-

cultures with microenvironmental support cells within a single in vitro system. Together, 

the current body of work illustrates the breadth of understanding that has developed in 

response to implementing in vitro biomaterial cultures. However, this is not an 

exhaustive review, because these and other engineering approaches applied to the GBM 

tumor microenvironment are covered in great detail in a number of extensive and wide 

ranging reviews [14,108,127].  

1.7. Biomaterials for Probing GSC Biology 

1.7.1. Engineering the Stem Cell Microenvironment 

Engineering GSC instructive in vitro microenvironments is a relatively new 

approach derived from well-established tissue engineering research. Stem cells, are 

widely regarded for their potential to regenerate and establish functional tissues. Neural 

tissue engineering, which is most closely related to GBM tissue engineering, primarily 

focuses on developing novel techniques for directing NSC behaviors. In this field, 

biomaterials have been utilized to elucidate a variety of stem cell behaviors with a focus 

on understanding how biophysical and biochemical factors in 2D and 3D environments 

affect NSC maintenance, self-renewal, and differentiation mechanisms [128]. Through 

these studies, the mechanical stiffness of culture substrates and matrices has been 

identified as a potent regulator of NSC fate. Saha et al. reported that NSC differentiation 

could be directed with soft substrates (100-500 Pa) to promote neurogenesis, and stiff 

(>1000 Pa) matrices to promote gliogenesis [129]. In addition to matrix stiffness, Soen et 

al. and Nakajima et al. demonstrated that specific ECM components and growth factors 

were also capable of controlling stem cell fate and differentiation in culture [130,131]. 

Other cellular components of the NSC microenvironment, have been investigated as 

regulators of stem cell fate in vitro. For example, Shen et al. determined that endothelial 
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cells secrete soluble factors that promote and maintain stem phenotypes in NSC 

populations [132]. 

The regenerative capacity of NSCs has also been investigated in 3D 

microenvironment models with both matrix composition and stiffness again identified as 

key regulatory components. Here, Saha et al. described that very soft substrates (<100 

Pa) promoted quiescent NSC phenotypes, while stiffening these substrates (≥100 Pa) 

promoted expansion of the NSC pool [129]. The structure of the ECM is also important 

to NSC neural regenerative properties, as Yang et al. described scaffolds composed of 

aligned poly(L-lactic acid) nanofibers promoted neuronal phenotypes and neurite 

outgrowth along the fibers [133]. More biomimetic approaches have also been tested 

using ECM components of the in vivo NSC niche as well. To this end, Cheng et al. 

described that a laminin-derived IKVAV peptide-based hydrogel supported NSC 

neuronal differentiation and improved tissue regeneration in vivo following a traumatic 

brain injury [134].  In addition, we reported that a HA-laminin composite hydrogels 

increase the migratory response of NSCs a result of increased sensitivity to stromal cell-

derived factor 1α (SDF1α) both in vitro and in vivo [135,136].  

Similar regulatory mechanisms govern both GSC and NSC biology [43], and as 

such, these examples have direct relevance to understanding and predicting how model 

microenvironments may affect malignant GSC phenotypes. In applying these same tissue 

engineering approaches to GSCs, conditions under which these cells acquire or enhance 

stem phenotypes, prefer to initiate invasive mechanisms, or exhibit treatment resistance 

have been identified. These results provide better understanding of the underlying 

mechanisms that drive microenvironmental support for GSC populations. 
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1.7.2. GBM Stem Plasticity in 3D Culture 

GSCs and NGSCs are believed exist in a regulated state of plasticity where 

induction of differentiation is a bidirectional process regulated by the 

microenvironment, epigenetics, and response to treatment [74,137,138]. This stem-

plasticity has been investigated using immortalized GBM cell lines as a model of NGSCs.  

Although, as previously described, these cell lines do not offer a complete and accurate 

depiction of GBM biology, the mechanisms that are employed to acquire stem 

phenotypes may mimic GSC plasticity [101,111].  

Stem plasticity has been studied in GBM cell lines cultured in chitosan-based 

scaffolds; for example, Florczyk et al. developed a chitosan-HA composite scaffold that 

elucidated stem-like characteristics in U118 cells [139]. The authors reported that these 

scaffolds promoted sphere formation, expression of stem markers (NESTIN, Musashi-1, 

and CD44), and increased invasive capacity compared to traditional 2D cultures. In 

addition, scaffold-cultured cells displayed increased resistance to both TMZ and 

doxorubicin, coupled with increased expression of the ABCG2 drug efflux pump, 

suggesting a phenotypic switch toward a more GSC-like state [139]. In a follow-up study, 

Kievit et al. used a chitosan-alginate scaffold to also examine stem plasticity [140]. Using 

these models, U118 and U87 GBM cells again displayed increased stem protein and gene 

expression (CD133, NESTIN, CD44, Notch, among others) in scaffold environments, 

which was again a function of scaffold composition. Functionally, scaffold grown cells 

also exhibited increased tumorigenicity in a flank tumor model. Kieivit et al further 

optimized this approach by coating chitosan-alginate scaffolds with HA and establishing 

a 3D co-culture model of U87 and endothelial cells [141]. These conditions also increased 

expression of CD133, ID1, and CD44, but interestingly slowed the growth of spheroids. 
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Outside of GBM, Florczyk et al. employed this platform to enrich CD133 expression in 

prostate, breast, and liver cancer cells [142].  

Chitosan-based scaffolds are also not the only biomaterial platform that has been 

reported to drive stem plasticity, as Ma et al. also identified stem specific responses to 

3D electrospun polystyrene scaffolds coated with a library of 7 different isoforms of 

laminin [143]. The resulting behavior of U251 cells was, similar to the chitosan studies, 

contingent both on 3D context and matrix chemistry. Specifically, 3D scaffolds 

presenting the laminin isoforms 411, 421, 511 and 521 promoted an increase in 

expression of the GSC markers (including, for example, integrin α6, SOX2, and OLIG2) 

that coincided with an increase in clonogenicity of these cells [143]. 

Together, these works emphasize the significance of using engineered 

microenvironments to drive relevant GSC behaviors in culture. The use of immortalized 

cell lines provides some insight into how GBM cells exhibit plasticity in a shift from 

differentiated phenotypes to more stem-like behaviors.  

1.7.3. Biomaterials Promoting GSC Expansion and Enrichment 

Engineered tumor microenvironments have also been designed to assay 

conditions under which patient-derived GSCs may be enriched in vitro. GSCs are 

typically maintained in nonadherent neurosphere conditions [38] or in adherent cultures 

on laminin [97], with the desired condition often selected based on cellular affinity. In 

general, neurosphere conditions are most common as sphere forming capacity is 

regularly accompanied by a broader array of GSC specific phenotypes (self-renewal, 

multipotency, stem-marker expression) [100]. However, neurosphere culture has well-

characterized drawbacks. Specifically, as spheres increase in size, the constituent cells 

experience differential access to oxygen and soluble signaling factors as a result of 

diffusion limitations [95]. This problem is amplified by variations in rates of cell 
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proliferation and fusion of adjacent spheres. As a result, a single neurosphere may 

contain a heterogeneous mixture of clonogenic, differentiated, apoptotic, and necrotic 

cells [95,97,144,145].  

A number of biomaterials have been described as useful tools for addressing 

problems associated with neurosphere aggregation. For example, Yang et al. reported 

that gelatin foam scaffolds maintained GSC protein expression, while also increasing 

HIF1α and VEGF signaling to provide a GSC supportive microenvironment [146]. In a 

separate study, Oh et al. reported that GSCs encapsulated in an alginate-PEG hydrogel 

formed neurospheres with relative uniformity in size, which may improve nutrient and 

oxygen access [147]. Li et al. used a similar approach to expand patient-derived GSCs in 

a temperature-responsive PNIPAAm-based scaffold [148]. In this context, cells were 

capable of high density culture without aggregating, thus overcoming a key drawback to 

traditional neurosphere cultures. This system subsequently enabled improved cellular 

yield from GSC cultures while maintaining multipotency and stem marker expression.  

Beyond GSC expansion, conditions under which GSC phenotypes are actively 

enriched have also been explored in 3D culture. Chitosan-HA scaffolds were recently 

applied to patient-derived GSCs by Wang et al., and were found to increase stem gene 

expression (SOX2, TAZ, NANOG), invasion gene expression (TWIST1, TWIST2, SNAIL1, 

SNAIL2, ZEB2), and expression of genes that drive drug resistance (MGMT, HIF1A, 

SOD1) compared to cells cultured as a 2D monolayer [149]. GSCs cultured in these 

scaffolds also exhibited higher tolerance to the chemotherapeutics TMZ, carmustin 

(BCNU), and lomustine (CCNU). Similarly, we recently reported another set of 3D 

culture conditions that promote GSC enrichment utilizing temperature responsive 

PNIPAAm-co-Jeffamine (PNJ) scaffolds [2]. This culture platform increased self-

renewal capacity, expression of the stem marker NESTIN, and EGFR expression while 
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maintaining cellular multipotency in two genetically distinct models of GBM. In 

addition, we observed that PNJ cultured cells also exhibited increased resistance to 

clinical dosages of radiation following 3D culture.  

In total, these studies suggest that there are a diverse set of biomaterials capable 

of maintaining GSCs cultures, and a subset of these materials are useful for actively 

enriching GSC specific phenotypes. Considering the differences in scaffold composition, 

it is also likely that GSCs are regulated via distinct mechanisms in the described culture 

systems.   

1.7.4. In vitro Models of GSC Invasion  

Invasion of neoplastic cells into healthy brain tissue has and continues to be 

considered the most clinically significant issue inhibiting effective GBM treatment [150]. 

Considering the role GSCs play in tumor recurrence and invasion, understanding how 

these cells respond to specific microenvironmental cues to promote invasive behaviors is 

of particular importance. In the seminal work of Cheng et al., GSC’s were determined to 

exhibit a heightened propensity for invasion [54]. This characteristic was first identified 

in vitro, using a 3D Matrigel-transwell invasion assay, and was subsequently confirmed 

in vivo when compared to NGSCs from a matched tumor sample [54]. This description 

provided a foundation for employing in vitro microenvironments to determine how the 

biochemical, biophysical, and cellular components of the tumor microenvironment affect 

GSC invasion.  

Biochemical input signals from the tumor microenvironment ECM influence GSC 

propensity for invasion, and this hypothesis has been supported in a variety of different 

in vitro paradigms. Using a library of Matrigel, collagen, and HA-collagen matrices, 

Herrera-Perez et al. determined that modes of GSC invasion were directly dependent on 

ECM chemistry [126]. These matrices accurately modeled the stiffness of healthy brain 
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tissue, and different preparations of collagen were used to separate the effects of matrix 

stiffness and collagen concentration. As a result, this study identified an interplay 

between matrix stiffness and chemistry that influenced invasion distance and velocity. 

Interestingly, soluble HA (non-immobilized) decreased GSC invasion in HA-collagen 

matrices, and Matrigel coated microfibers, mimicking the structure of blood vessels, 

encouraged directional strand motility reminiscent of white-matter tract invasion 

tendencies in vivo [126].  

Identification of biochemical pathways that promote or inhibit GSC invasion is 

necessary for complete characterization of these behaviors, but is often underreported; a 

limitation of many 3D culture studies. As an example, Cha et al. explored a similar 

paradigm to Herrera-Perez et al. by measuring GSC invasion through collagen matrices 

that included soluble HA and PCL fibers to model blood vessels [115]. Yet, in apparent 

contrast to the prior study, Cha et al. reported that soluble HA increased GSC invasion in 

collagen matrices, while also exhibiting increased expression of CD44, and HA synthase  

[115]. In addition, treatment with an HA synthase inhibitor decreased invasion and 

effected an increase in FAK and MMP2 expression [115]. While the functional results of 

these studies (i.e. invasion) appear contradictory, it is important to recognize differences 

in methodology which include the source of patient-derived cells, and the concentrations 

of collagen and HA in the model systems. Therefore, molecular level descriptions may 

improve cross-study comparisons and allow for more robust descriptions of GSC 

invasive mechanisms. 

From analysis of the in vivo tumor microenvironment, it is clear that non-GBM 

cells, such as endothelial cells, are capable of regulating GSC phenotypes and promoting 

invasion. This behavior was studied by Chonan et al. in which a 3D collagen gel was 

applied to separate a murine GSC line from endothelial cells in an engineered 
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microfluidic invasion model [151]. Here, endothelial cells stimulated increased invasion 

of NESTIN expressing cells through the 3D microenvironment. These GSCs also 

exhibited increased expression of integrin α2 and β3 in response to co-culture, 

suggesting a potential mechanistic role for endothelial cells in promoting motility of 

GSCs in this model. Meanwhile, cells expressing the neuronal differentiation marker 

tubulin β3 were less invasive, which agrees with prior reports of increased GSC invasive 

capacity versus NGSCs [54].  

As previously stated, microenvironmental stiffness regulates the invasive capacity 

of GBM cell lines via mechanosensation mechanisms [24,25,27,28,152]. While the 

stiffness of healthy brain is generally characterized between 100 and 1,000 Pa, GBM 

tumors can present significantly increased stiffness due to their high cellularity and 

dense ECM [129,153–155]. At present, reports investigating the effects of matrix stiffness 

on GSC motility in both 2D and 3D paradigms describe a complex relationship  

[32,126,156,157]. Ruiz-Ontañon et al. reported that GSCs harvested from different tumor 

regions (peritumoral vs. bulk tumor) display invasive tendencies and sensitivity to 

microenvironmental stiffness that was a function of their regional origin [32]. 

Unsurprisingly, peritumoral GSCs were observed to have a heightened invasive capacity. 

These behaviors were modeled on 2D laminin functionalized polyacrylamide matrices, 

within 3D Matrigel and collagen I hydrogels, as well as in chicken embryo and mouse 

xenografts. Moreover, peritumoral invasion was insensitive to stiffness as a result of Rac 

and RhoA signaling activation, and integrin αVβ3, an RGD peptide binding integrin, was 

identified as a key regulator of GSC invasion and potential target for therapy [32]. 

Similarly, Wong et al. also reported that GSCs exhibited an insensitivity to matrix 

stiffness on 2D laminin coated polyacrylamide matrices [156]. Here, matrix stiffness 

ranging from 80 Pa to 119 kPa produced no effect on cellular migration. However, in 
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contrast to the previous study, activation of myosin II signaling via genetic constitutive 

activation of RhoA, ROCK, or MLCK sensitized cells to matrix stiffness and effected a 

decrease in motility on soft matrices.  

Together these studies suggest that GSCs employ diverse invasion strategies that 

may be cell-type specific. This hypothesis was supported by Grundy et al. who suggested 

that a GSC subtype-specific relationship exists between invasive behavior and sensitivity 

to microenvironmental stiffness [157]. In this study, migration and invasion were 

measured on 2D Matrigel coated polyacrylamide matrices with varying stiffness (200 Pa 

– 50 kPa) and also within soft (~400 Pa) 3D Matrigel hydrogels. With this platform, the 

invasive behavior of neural subtype GSCs were observed to be insensitive to stiffness, 

while mesenchymal subtype GSCs exhibited stiffness dependent motility. The authors 

surmise that the cell of origin (neural GSCs - neuronal lineage; mesenchymal GSCs – 

astrocytic lineage)  may be a primary factor influencing GSC motility in response to 

microenvironmental stiffness [157]. This hypothesis also draws relevance back to the 

NSC paradigm, in which neuronal phenotypes manifest on soft matrices while astrocytic 

phenotypes dominate on stiff substrates [129].  

These 3D invasion studies provide unique opportunities to isolate specific 

microenvironmental features (chemistry, stiffness, architecture, cellular support, etc.), 

and may be instrumental in identifying targets for therapy to address GSC invasion at 

the clinical level. However, the wide range of reported results indicate that a more 

comprehensive picture of subtype specific and context specific molecular mechanisms of 

invasion may be necessary to develop predictive hypotheses.   

1.7.5. Modeling Treatment Resistance and the Influence of Tumor Heterogeneity 

Tumors generated through orthotopic transplant of human GSCs display 

treatment resistance that is supported by the tumor microenvironment [62]. Yet, similar 
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to challenges faced in studying GBM invasion, direct identification of specific resistance 

promoting factors remains challenging in vivo; the mechanisms underlying 

microenvironmental contributions to treatment resistance can be efficiently modeled in 

vitro. For example, Fernandez-Fuente et al. proposed that resistance to sunitinib 

induced receptor tyrosine kinase (RTK) inhibition is mediated by interactions specific to 

a 3D microenvironment [158]. Using a number of different GSC, NGSC, and established 

GBM cell lines, the authors determined that GSCs were comparatively insensitive to RTK 

inhibition in 3D collagen gels versus standard 2D conditions and 2D collagen coated 

polyacrylamide. The observed resistance was abrogated via chemical inhibition of the 

PI3K/Akt and MEK/ERK signaling pathways leading the authors to hypothesize that 

focal adhesions in 3D were responsible for promoting RTK resistance. Notably, changes 

in collagen content, stiffness (2D and 3D), and soluble HA inclusion in 3D collagen gels 

did not produce a measurable effect on drug sensitivity.  

The biochemical response to matrix bound HA has also been identified as a 

regulator of GSC resistance to chemotherapy in 3D culture.  In a recent study by Pedron 

et al., the EGFR inhibitor erlotinib produced little GSC cytotoxicity in gelatin hydrogels, 

and its effects were predictably dependent on basal EGFR status (EGFRwt, EGFR+, and 

the GBM specific constitutively active form EGFRVIII) [122]. In addition, incorporation of 

HA within the gelatin hydrogels increased erlotinib resistance in EGFRVIII cells, while 

inhibition of EGFR and CD44 increased cytotoxic effects in EGFRwt and EGFR+ cells.  

This study provides evidence for EGFR-CD44 signaling interactions that promote GSC 

resistance to RTK inhibition dependent on the microenvironment and molecular profile 

of the GBM cells. Considering the clinical importance of EGFR in GBM, this mechanism 

may be highly relevant designing novel inhibition strategies for GSCs. Moreover, 
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measuring divergent responses as a function of EGFR signaling provides an example of 

how tumor heterogeneity may negatively impact treatment. 

The development of tumor heterogeneity diminishes sensitivity to treatment as a 

result of divergent phenotypes (proliferative vs. quiescent, invasive vs. stationary, 

protein expression, etc.). Hubert et al. modeled this process by culturing GSCs in 

Matrigel coupled with continuous mechanical agitation [159]. This model generated 

large GBM organoids with hypoxic cores that were composed of populations of GSCs and 

NGSCs. GSCs were primarily located at the organoid rim, but were also sporadically 

identified in regions of hypoxia. Moreover, the GSC populations within the organoids 

displayed resistance to apoptosis following radiation treatment, while NGSCs were 

observed to be sensitive to treatment. This test demonstrates a prevailing GSC theory 

that conventional modes of treatment may effectively target NGSCs but leave GSCs 

relatively unharmed. Finally, organoid cultures were orthotopically implanted and 

formed tumor architecture and single-cell invasive patterns that were a better 

representation of the parent tumor than matched cells in neurosphere culture [159].  

Thus, developing models that can recapitulate tumor heterogeneity may provide avenues 

for determining patient-specific drug responses via personalized medicine. 

1.8. Overview and Specific Aims 

Although GBM is aggressively treated, recurrence is nearly inevitable. Radiation 

provides the most effective post-surgical treatment method, but is characteristically 

resisted by the GSC subpopulation. This opens opportunities for GSCs to drive tumor 

recurrence and mediate disease progression. The GBM microenvironment is broadly 

protective to a variety of tumor and tumor associated cells, and specialized niches 

therein provide critical functions for maintaining GSCs. Furthermore, there is a growing 

body of evidence that suggests that these microenvironments directly support treatment 



30 
 

resistance and induction of stem plasticity through a diverse set of dynamic interactions. 

This is evidenced, for example, by the clinical failure of bevacizumab, which successfully 

inhibited GBM vasculogenesis but produced hypoxic microenvironments that promote 

compensatory malignant responses. Therefore, better understanding of the regulatory 

mechanisms that govern GSCs in the microenvironment may precede new methods of 

niche disruption.  

In vitro studies utilizing three-dimensional (3D) scaffolds are powerful for 

identifying and isolating microenvironmental regulatory mechanisms of malignant 

behaviors. In this work, we aim to develop models of the GBM microenvironment that 

facilitate understanding of niche regulation of key GSC phenotypes. Our central 

hypothesis is that GSC phenotypes are sensitive to regulation by model niche 

microenvironments, and that this regulation will enable analysis of stem maintenance 

and radioresistance. We addressed this hypothesis through testing these specific aims: 

1.8.1. Specific Aim 1 

Design a tunable 3D biomaterial model of the GBM tumor microenvironment 

that enables recollection of live cells under mild conditions. 

1.8.2. Specific Aim 2 

Identify microenvironmental conditions that support and enrich GSC phenotypes 

in vitro. 

1.8.3. Specific Aim 3 

Define the regulatory capacity of in vitro GSC niche models, and determine 

biological mechanisms that support GSC maintenance and radioresistance. 
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1.9. Figures and Tables 

Table 1.1: Review of biomaterial models of the GBM tumor microenvironment.  

Scaffold Components References 

Hyaluronic Acid 
[120–124,160,116,27,115,25,117,24,118,161,139,149, 
141,158,126,114,162,163]  

Collagen 
[20,27,28,32,114–116,120–124,126,139,146,151,156, 
158,160,162,164–167]  

Matrigel [32,54,114,126,151,157,159,161,168] 
Poly(ethylene glycol) [27,28,116,120,124,147,163,169] 
Chitosan [139–142,149,170] 
Alginate [140,141,147] 
Poly(N-isopropylacrylamide) [1,2,32,148] 
Polyacrylamide [23,26,32,118,152,156–158] 
Polycaprolactone [115,114,140,141] 
Polystyrene [113,140] 
Bioactive Peptide/Protein [1,20,23–26,32,113,117,118,124,156,162,163,168] 
Complex 3D Models [26,114,115,117,121,126,151,169,171,172]  
 
Biophysical Properties 

 
 

Stiffness 
[1,2,23–28,114,115,117,118,120,121,123,124,126,139, 
156–158,160,163–165,167] 

Porosity 
[24,26,28,113–115,126,139–141,146,149,160,163,164, 
167,169] 

Microchannels [26,121,151,169] 
Fibers/Alignment [113–115,126,160,164,165,167] 
 
GBM Cell Lines 

 
 

U87 
[24,25,27,28,116,118,120,121,124,140,141,158,161,163,
166,167,169] 

U118 [1,27,139,140] 
U251 [20,113,123,161] 
U373 [23–26,117,118,156,161,165] 
U138 [166,168] 
U178 [20] 
T98 [158] 
LN229 [166,168] 
LN18 [168] 
A172 [158,166,168] 
Genetically Modified GBM [25,27,120,121] 
Co-culture [32,124,141,151] 
Murine Model [116,151,159,162,164] 
Patient-Derived [2,32,114–116,122,126,146,147,149,156–160,166] 
 
Biological Behaviors 

 
 

2D Migration [24–26,32,114,118,151,156–158,161,166,167] 

3D Invasion 
[20,24,25,27,32,54,115,118,123,126,139,151,156,157, 
160–162,164–168] 
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Proliferation 
[1,23,24,27,28,32,113,115,116,120–123,139–141,146, 
149,156,159,162–164,166] 

Malignancy Markers 
[2,20,23,25,28,32,54,113–117,120–123,126,139–141, 
146,149,151,156,158,159,161,163,166–168] 

Stem Phenotypes 
[2,32,54,113,115,122,126,139–141,146,149,151,156–
159] 

In Vivo Characteristics [32,54,116,122,140,146,156,159] 
 
Treatment Response 

 
 

Chemotherapy [23,26,115,116,118,122,139,146,149,158,166,167,169] 
Radiation [2,116,159,166,168] 
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Temperature Responsive Hydrogels Enable Transient Three-Dimensional 

Tumor Cultures via Rapid Cell Recovery 

2.1. Abstract  

Recovery of live cells from three-dimensional (3D) culture would improve 

analysis of cell behaviors in tissue engineered microenvironments.  In this work, we 

developed a temperature responsive hydrogel to enable transient 3D culture of human 

glioblastoma (GBM) cells. N-isopropylacrylamide was copolymerized with hydrophilic 

grafts and functionalized with the cell adhesion peptide RGD to yield the novel 

copolymer poly(N-isopropylacrylamide-co-Jeffamine® M-1000 acrylamide-co-

hydroxyethylmethacrylate-RGD), or PNJ-RGD. This copolymer reversibly gels in 

aqueous solutions when heated under normal cell culture conditions (37°C). Moreover, 

these gels redissolve within 70 seconds when cooled to room temperature without the 

addition of any agents to degrade the synthetic scaffold, thereby enabling rapid 

recollection of viable cells after 3D culture. We tested the efficiency of cell recovery 

following extended 3D culture and were able to recover more than 50% of viable GBM 

cells after up to 7 days in culture. These data demonstrate the utility of physically 

crosslinked PNJ-RGD hydrogels as a platform for culture and recollection of cells in 3D. 

2.2. Introduction 

In vitro cell culture is a key component of biomedical research. Standard cell 

culture methods utilize plastic surfaces that facilitate cell adhesion and growth across a 

single, two-dimensional (2D) plane. However, 2D conditions do not fully recapitulate the 

mechanical and biophysical features of the three-dimensional (3D) microenvironment to 

which cells are exposed in vivo [173–175]. This is of particular concern in cancer 

research, where interactions between neoplastic cells and the 3D tumor 
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microenvironment drive tumor expansion and malignancy [33,176,177]. As a result, 3D 

biomaterial scaffolds and extracellular matrix (ECM) mimics (for example, Matrigel® 

[178], collagen [177], hyaluronic acid [24], and polyethylene glycol (PEG) [163]) have 

become popular tools for developing more relevant cancer cell culture methods. 

However, one key limitation of many biomaterials commonly used in these applications 

is that recovery of viable cells for post-culture analysis can be challenging. These 

insoluble hydrogel networks may require prohibitive environmental alterations (pH, 

temperature), the addition of harsh chemical or enzymatic agents, and/or long time 

periods to dissolve. 

The goal of this work was to develop a physically crosslinked scaffold that would 

enable transient 3D cell culture via rapid recollection of cells under mild conditions. 

Poly(N-isopropylacrylamide) (PNIPAAm) exhibits a lower critical solution temperature 

(LCST) near 30°C in aqueous solution, which enables reversible physical crosslinking 

where the polymer is soluble at room temperature and gels at 37°C [179]. In the gelled 

state, PNIPAAm gels undergo notable phase separation and shrinking due to 

hydrophobic interactions between polymer chains. The equilibrium polymer 

concentration in a PNIPAAm hydrogel is approximately 50 wt% for gels initially formed 

at 5-20 wt% [179,180]. This low equilibrium water content prevents fast dissolution 

when gels are cooled below the LCST and would also inhibit any recovery of live cells 

cultured therein. We have reported that the phase separation of PNIPAAm is decreased 

by the incorporation of Jeffamine® M-1000 acrylamide (JAAm) as a graft comonomer 

[180,181], which opens the possibility of developing a fast-dissolving PNIPAAm 

copolymer scaffold for cell culture.   

Other groups have demonstrated the ability to functionalize PNIPAAm with cell 

adhesion peptides such as RGD for the purpose facilitating 3D cell culture [182–187]. 
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PNIPAAm has also been used to facilitate the formation and subsequent detachment of 

cellular monolayers and sheets primarily for the purpose of tissue engineering [188–

192]. However, to our knowledge, none have developed a fast-dissolving PNIPAAm-RGD 

hydrogel and demonstrated recovery of live cells grown in a 3D scaffold. To this end, we 

describe the development of the novel temperature responsive graft copolymer poly(N-

isopropylacrylamide-co-Jeffamine® M-1000 acrylamide-co-hydroxyethylmethacrylate-

RGD), or PNJ-RGD, that we characterized in transient 3D cell culture. This platform was 

applied to studying in vitro cultures of human glioblastoma (GBM) brain tumor cells. 

GBM is the most malignant and aggressive primary brain tumor and is associated with 

poor median survival (12-15 months) and substantial morbidities [193]. Previously, we 

reported that PNIPAAm-hydroxyethylmethacrylate copolymers (PNIPAAm-co-HEMA) 

can be made thiol-reactive following post-polymerization acrylation of hydroxyls [194]. 

We utilized this approach along with methods reported by Shu et al. [195] to graft a 

cysteine containing RGD peptide to acrylated poly(NIPAAm-co-JAAm-co-HEMA) via 

Michael addition. The resulting PNJ-RGD copolymer formed a physically crosslinked 

hydrogel that was rapidly reversible when cooled below the LCST. These hydrogels 

supported physiological behaviors and recollection of viable GBM cells maintained in an 

adherent 3D culture. 

2.3. Methods 

 Materials.  

All chemicals were reagent grade and purchased from Sigma-Aldrich unless 

otherwise stated.  N-isopropylacrylamide (NIPAAm; Tokyo Chemical Industry Co., 

Portland, OR, USA) was recrystallized from hexane, and 2,2′-Azobisisobutyronitrile 

(AIBN) was recrystallized from methanol. Tetrahydrofuran (THF) used in polymer 

synthesis and gel permeation chromatography was HPLC grade. Jeffamine® M-1000 
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was generously donated by Huntsman Corporation (Salt Lake City, UT, USA). The 

CGRGDS peptide (63.5% purity, 954 Da MW) was purchased from American Peptide 

Company (Sunnyvale, CA, USA). All cell culture reagents were purchased from 

Invitrogen (Carlsbad, CA, USA) or Fisher Scientific (Anthem, AZ, USA) unless otherwise 

stated. 

 Synthesis of Temperature Responsive PNIPAAm Copolymers. 

Jeffamine® M-1000 acrylamide (JAAm) was synthesized from Jeffamine® M-

1000 and acryloyl chloride as described previously [181]. PNIPAAm copolymers were 

synthesized by free radical polymerization of NIPAAm, JAAm, and 

hydroxyethylmethacrylate (HEMA) monomers to yield poly(NIPAAm-co-JAAm-co-

HEMA), or PNJH.  NIPAAm (9 g), JAAm (1 g), and HEMA (200 mg) were dissolved in 

100 mL of anhydrous benzene in a dried flask and heated to 65°C. After bubbling with 

nitrogen for 20 minutes, AIBN (95 mg) was added to initiate polymerization, and the 

reaction proceeded under positive nitrogen pressure for 18 hr. PNJH polymer 

precipitated during the reaction and was redissolved in an equal volume of acetone, 

precipitated in cold diethyl ether, collected by filtration, and vacuum dried overnight. 

For the purpose of evaluating the effect of JAAm content on polymer properties, 

poly(NIPAAm-co-JAAm) copolymers were synthesized through the same method with a 

100:0, 95:5, or 90:10 ratio of NIPAAm: JAAm by weight in the feed [180]. These 

copolymers are abbreviated as PNIPAAm, PNJ5, and PNJ10, respectively. 

Poly(NIPAAm-co-JAAm-co-HEMA-acrylate), or PNJHAc, was synthesized by 

reacting PNJH with acryloyl chloride to convert hydroxyl groups to pendent acrylates 

[194]. The polymer was dried by heating to 60°C overnight under vacuum and dissolved 

at 15 wt% in THF with 5 molar equivalents of triethylamine relative to HEMA repeat 

units. Acryloyl chloride predissolved in THF was added dropwise to the stirring solution 
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on ice and under nitrogen to achieve a final polymer concentration of 10 wt%. After 6 hr, 

TEA-HCl salts were removed by filtration and the copolymer was precipitated in ether, 

filtered, and vacuum dried. The product was purified by dialysis against deionized water 

at 4°C with a 3500 MWCO membrane for 3 days. Polymer was lyophilized for storage at -

20°C.  

 Conjugation of Integrin Adhesion Peptide. 

Poly(NIPAAm-co-JAAm-co-HEMA-RGD), or PNJ-RGD, was formed by Michael 

addition of an RGD peptide containing a terminal cysteine residue onto the acrylates of 

the polymer. PNJHAc was dissolved at 3 wt% in chilled PBS and Cys-Gly-Arg-Gly-Asp-

Ser (CGRGDS) TFA salt was added in a 3-fold molar excess of the available acrylate 

groups. The solution was titrated to pH 8 and stirred for 24-48 hr at 4°C.  The polymer 

was then purified by dialysis (3,500 Da MWCO) against deionized water at 4°C for 1 

week and lyophilized to obtain PNJ-RGD. Dry polymers were sterilized by ethylene oxide 

gas. 

 1H NMR Characterization. 

1H NMR spectroscopy (Varian Inova, 400 MHz) was used to determine the 

chemical composition of all polymers following each synthesis. All polymer samples were 

prepared at a concentration of 10 mg/mL in D2O. NIPAAm repeat units were calculated 

by integration of the peak associated with the lone isopropyl proton [δ = 3.84, 1H, 

(CH3)2-CH-NHCO] in reference to peaks associated with oxyethylene protons in JAAm [δ 

= 3.63, 76H, CH2CH2O], methylene protons in HEMA [δ = 4.09, 4H, HO-CH2CH2-

OCO], and methylene protons in HEMA-acrylate [δ = 4.09, δ = 4.38, 4H, CH2=CH-COO-

CH2CH2-OCO].[180,194] Peaks corresponding to the terminal olefin protons in HEMA-

acrylate, [δ = 5.97, δ = 6.18, δ = 6.41, 3H, OCO-CH=CH2], were integrated in respect to 

the other monomer peaks to determine the degree of acrylation to be ~88% of the HEMA 
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groups (1H NMR spectrum provided in Figure 2.6). Addition of the CGRGDS peptide to 

the PNJHAc polymer by Michael addition was confirmed by characteristic shifts from 

the methylene protons in aspartic acid [δ = 2.58, 2H, OHCO-CH2-CH], methylene 

protons in serine [δ = 3.86, 2H, OH-CH2-CH], and methylene protons in arginine [δ = 

3.09, 2H, NH2CNHNH-CH2-CH2] [196]. Peptide concentration was calculated to be 

approximately 140 µmoles of RGD per gram of PNJ-RGD copolymer (1H NMR spectra 

provided in Figure 2.7). 

 Molecular Weight and Polydispersity Determination. 

The molecular weight and polydispersity of the PNIPAAm copolymers were 

determined by gel permeation chromatography (GPC) using refractive index detection 

(Shimadzu) in conjunction with static light scattering (MiniDawn, Wyatt Tech. Corp.). 

Samples were run through two columns in series (Waters Styragel HR 4 and 6) to 

separate polymer chains by size exclusion. Measurements were made using HPLC grade 

THF as the mobile phase running at a flow rate of 1 mL per minute.  

 LCST Determination.  

The LCST was evaluated by cloud point measurement and rheometry. For cloud 

point assays, PNIPAAm copolymers (n = 3) were dissolved at 0.1 wt% in PBS at pH 7.4 in 

cuvettes and heated in a water bath from 20 to 40°C in 1°C increments and 40 to 55°C in 

5°C increments. Samples remained at each temperature for at least 120 s prior to each 

measurement. Absorbance readings in the visible range (450 nm) were recorded with a 

UV/Vis spectrometer (Pharmacia Biotech Ultrospec 3000). The maximum absorbance 

was defined as the highest absorbance prior to polymer precipitation (determined by 

first measurement at which absorbance decreased). The LCST was defined as the 

temperature at which 50% of the relative maximum absorbance was recorded during the 

assay. For rheometry, PNIPAAm copolymer solutions were prepared at 16.7 wt% in 150 
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mM PBS (pH 7.4) and placed on a parallel plate rheometer (MCR-101, Anton-Paar) that 

provided real-time temperature control over the measurement stage. In all tests, an 

oscillatory 0.5% shear strain deformation was applied at 1 Hz frequency without normal 

force control to measure the sample storage (G’) and loss modulus (G’’). Polymer 

solutions were allowed to equilibrate to 4°C on the rheometer and were then measured 

during controlled heating (0.5°C/min) to 37°C to induce gelation transition. 

 Viscoelastic Characterization.  

Rheometry was performed to measure the viscoelastic properties of the PNJ-

RGD copolymer over a range of concentrations during heating and cooling. Solutions 

were prepared by dissolving PNJ-RGD at 4.2, 8.3, or 16.7 wt% in PBS. Concentrations 

were selected starting at the maximum concentration that permitted solution flow and 

decreasing by a factor of 2 until the solution did not gel. The storage and loss modulus in 

the solution and gel states were assessed by a multistep temperature controlled protocol. 

In all tests, an oscillatory 0.5% shear strain deformation was applied at 1 Hz frequency, 

and normal force control was used at temperatures above the LCST to maintain 

consistent contact between the gel and rotating head. Polymer solutions were allowed to 

equilibrate to 4°C on the rheometer and were measured during controlled (0.5°C/min) 

and sustained heating (37°C for 1 hr) followed by rapid and sustained cooling (4°C for 1 

hr).  

 Cell and Tumor Spheroid Culture.  

The human GBM cell line U118 and U118 cells expressing green fluorescent 

protein (U118-GFP) were generously gifted by colleagues at the Translational Genomics 

Institute (TGen, Phoenix, AZ, USA). Cells were cultured in antibiotic free DMEM + 10% 

FBS. Multicellular GBM spheroids (5000 cells/spheroid) were formed in 4 days by a 

hanging drop culture [104]. 
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 Cytocompatibility of PNJ-RGD Hydrogels. 

PNJ-RGD was dissolved in culture media at 8.3 wt% with U118 cells dispersed 

uniformly throughout the mixture (400,000 cells per mL polymer solution). Samples 

were plated in approximately 70 µL aliquots (n = 6 per time point) in a 96 well plate. 

After incubating overnight at 37°C, an equal volume of cell culture media was added to 

each sample and exchanged for fresh media every 2-3 days. Cells were stained with 

fluorescent calcein AM (2 µM; 488 nm excitation / 535 nm emission) and ethidium 

homodimer-1 (4 µM; 528 nm excitation / 617 nm emission) using a Live/Dead assay kit 

(Invitrogen) at 1, 3, and 14 days. Live and dead cells were quantified through 

fluorescence detection via fluorescence confocal microscopy. 3D stacks of images were 

collected through 300 µm with a step size of 10 µm. Cells within the images were 

quantified using an automated cell counting algorithm described in our previous work 

[27]. 

 Three Dimensional (3D) Cell Culture.  

PNJ10 and PNJ-RGD were dissolved at 16.7 wt% in cell culture media overnight 

at 4°C. The elastic strength of gels at this concentration is similar to hydrogels that we 

have previously observed to promote proliferation and invasion of this cell line [27]. The 

polymer solution was transferred in approximately 70 µL aliquots (n = 6) to a 96-well 

tissue culture plate and incubated at 37°C to form hydrogels. A single multicellular U118-

GFP spheroid was seeded on top of the gel in each well and incubated overnight to allow 

for attachment. An equal volume of cell culture media was added to each well and 

exchanged with fresh media every 2-3 days. Cellular behavior was analyzed using 3D 

fluorescence confocal microscopy (Leica SPE II) of live cells. Prior to imaging, samples 

were cooled to room temperature (making the gels transparent), and images were 

captured through a depth of 500 µm with a step size of 10 µm. Each individual spheroid 
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was tracked separately to allow for analysis of behaviors observed over the culture 

period. 

 Recollection of 3D Cultured Cells.  

PNJ-RGD samples were prepared as for the Live/Dead assay and seeded 

uniformly with U118-GFP cells at low (86,000 cells/mL), medium (186,000 cells/mL), 

or high (357,000 cells/mL) densities. The experiment was replicated in 3 separate 

assays. Samples were transferred in 70 µL aliquots (n = 6 per time point) into a 96-well 

tissue culture plate and incubated at 37°C. Cells were recollected from the hydrogels 

after 1, 2, 3, and 7 days of 3D culture. Only cells seeded at the medium density were 

collected at 7 days. To recollect cells, the plate was first cooled to room temperature to 

liquefy the hydrogels and allow removal from the well plate. The samples were diluted in 

2 mL of media, mixed with a micropipette, and centrifuged at 1,100 RPM for 5 minutes 

at 4°C. The pellet was resuspended in 2 mL of 0.25% trypsin-EDTA. This solution was 

cycled between the gel (37°C) and soluble (4°C) states for 5 minutes to improve activity 

and penetration of the enzyme into the copolymer network. The solution was diluted in 

media and passed through a 100 µm cell strainer (Fisher Scientific). Cell viability was 

quantified in the liquid media fraction for the recollected cells and in the gel fraction for 

the gel encapsulated cells using CellTiter-Glo (Promega) with luminescence measured in 

a microplate reader (Tecan).  

2.4. Results 

 Polymer Synthesis and Characterization.  

PNIPAAm copolymers with varying amounts of JAAm, HEMA, and RGD were 

synthesized as outlined in Figure 2.1. Characterization data is summarized in Table 1 and 

described in detail below. The incorporation of the constituent monomers and the RGD 

peptide was confirmed by 1H NMR analysis (spectra provided in Supplementary Figures 
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2.1 and 2.2). Quantification of peaks corresponding to the amino acid sequence indicated 

that PNDJ-RGD was functionalized with 140 µmoles RGD per gram of polymer. 

Molecular weight determination indicated that all copolymers exhibited MW greater than 

500,000 Da. The molecular weight of PNJ-RGD was not measured by GPC due to poor 

solubility in THF.  

From cloud point data (Figure 2.2A), PNIPAAm homopolymer displayed the 

lowest LCST (26.5°C), and the addition of JAAm increased the LCST in PNJ5 (27°C) and 

PNJ10 (28.5°C) proportional to the incorporation of the hydrophilic monomer. 

Conversely, the addition of hydrophobic pendant acrylate groups in PNJHAc resulted in 

a slight decrease in LCST (27.5°C). PNJ-RGD exhibited the highest LCST (31.3°C), which 

is attributed to increased hydrophilicity of the copolymer imparted by the RGD peptide. 

The phase transition was also studied by measuring the shear storage (G’) and loss 

moduli (G”) of PNIPAAm copolymer gels at high concentration (16.7 wt%) during 

temperature ramp (Figure 2.2B). The LCST was determined to be the temperature at 

which the storage and loss moduli exponentially increase and invert, i.e. G’ > G”. This 

inversion was observed as expected in the PNJ5, PNJ10, and PNJ-RGD formulations. 

However, G’ remained greater than G’’ for PNIPAAm homopolymer and PNJHAc even 

below the LCST, indicating that these solutions behaved like viscous gels at all 

temperatures. Therefore, the LCST was defined for these samples as the temperature of 

at least two-fold increase in the shear storage modulus.  The copolymers showed the 

same trend in LCST transition as measured by cloud point, with PNIPAAm having the 

lowest LCST (22.6°C) and LCST increasing with JAAm content for PNJ5 (23.6°C) and 

PNJ10 (28.1°C). PNJHAc again had a lower LCST (26.6°C) than PNJ10, and PNJ-RGD 

displayed the highest transition point (29.1°C). 
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Dissolution kinetics were evaluated by rheology while rapidly cooling hydrogels 

below the LCST (samples were maintained at 37°C for one hour and then rapidly brought 

to 4°C) (Figure 2.3A). In general, copolymers with greater hydrophilic content re-

dissolved more quickly upon cooling.  However, PNIPAAm, PNJ5, PNJHAc, and PNJ10 

showed poor dissolution, maintaining viscoelastic solid behavior (G’ > G”) and exhibiting 

shear storage moduli that exceeded 900 Pa for 30 minutes after cooling. This indicates 

that water was unable to effectively penetrate the gel structure and solvate the polymer. 

PNIPAAm gels did not return to solution when cooled and, interestingly, exhibited signs 

of stiffening, as evidenced by a brief increase in storage modulus (Figure 2.3A). 

Conversely, PNJ-RGD showed much improved dissolution kinetics, returning to a 

predominantly liquid state (G” > G’) within 70 seconds of cooling below the LCST. 

Collectively, these data demonstrate that increasing the hydrophilic content of NIPAAm 

copolymers enables complete phase reversal and rapid dissolution upon cooling below 

the LCST.  

To further evaluate the mechanical changes induced during the phase transition, 

PNJ-RGD gels were subjected to multi-stage rheological measurements at various 

concentrations with controlled heating and cooling cycles (Figure 2.3B). Data were 

collected for 4.1, 8.3, and 16.7 wt% samples heated from 4°C to 37°C (0.5°C/min) to 

estimate LCST and gel strength. Samples were then maintained at 37°C to allow the gel 

to equilibrate, and then cooled rapidly to 4°C to estimate dissolution time. The LCST was 

consistent between the samples and viscoelastic strength, measured by the storage and 

loss modulus, increased with concentration. At 37°C, the hydrogels formed viscoelastic 

solids with storage moduli (G’) ranging from 40 Pa (4.1 wt%) to 3 kPa (16.7 wt%). Most 

importantly however, all PNJ-RGD gels were capable of rapid (~70 seconds) phase 

reversal to a soluble state when cooled below the LCST following prolonged (1 hr) 
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gelation. Thus, unlike PNIPAAm homopolymer, PNJ-RGD exhibits tunable mechanical 

properties through a rapidly reversible phase transition. These data motivated us to 

further evaluate PNJ-RGD as a platform for recollection of live cells cultured in 3D.  

 3D Scaffolds for Transient Cell Culture.  

The primary goal of these experiments was to evaluate if PNJ-RGD hydrogels 

could promote cell viability and physiological behavior while also enabling the recovery 

viable cells from the culture. To examine material cytocompatibility, U118 GBM cells 

were dispersed uniformly in PNJ-RGD hydrogels. A fluorescent live/dead assay was 

performed within the gel to analyze cell viability through 3D space with fluorescence 

confocal microscopy. 3D stacks of live/dead confocal images were collected after 1, 3, and 

14 days of culture (Figure 2.4A). These images were analyzed by a previously developed 

automated image processing method to identify and count the number of live and dead 

cells [27]. Over 14 days in culture, the hydrogels were found to consistently support a 

viable fraction of cells that was greater than 85% of the total number of cells counted 

(Figure 2.5A). Elongated cell morphologies were observed in PNJ-RGD, confirming that 

pendent RGD sites on the polymer allowed for cell attachment (Figure 2.4A). 

Proliferative and invasive behaviors of GFP-expressing GBM cells within PNJ10 

and PNJ-RGD hydrogels were assayed by 3D fluorescence confocal microscopy. 

Multicellular spheroids tracked during culture showed markedly different behaviors on 

gels with RGD versus gels without RGD (Figure 2.4B). Cultures on PNJ-RGD showed 

increased cellular invasion, altered morphologies, and increasing spheroid size at 

successive time points. In contrast, spheroids in the PNJ10 hydrogels exhibited minimal 

changes in size and morphology and also did not produce invasive cells over the times 

measured here. 
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Recollection of live cells from PNJ-RGD cultures was enabled by the rapid gel 

dissolution after cooling. In preliminary experiments (results not shown), we attempted 

to remove live cells from hydrogels by simply cooling gels below the LCST with no 

further treatment. However, we observed that cells cultured for any extended period of 

time (> 18 hrs) secreted extracellular matrix proteins that prevented their complete 

release from the gel. To improve cellular detachment from the matrix, the hydrogels 

were treated with trypsin. Recovered cells and those that remained attached to the gel 

were quantified with a luminescence viability assay to determine the recollection 

efficiency (Figure 2.5B). Using this method, live cells were successfully recovered from 

the hydrogels after 1 to 7 days in culture. Recollected cells maintained normal 

proliferation and morphology when reintroduced to standard 2D culture (results not 

shown). Cells cultured for 1 day in PNJ-RGD were recollected with the highest efficiency, 

with approximately 79% of the live cells composing the recollected fraction. As culture 

times increased, the combined collection efficiency declined but remained above 50% 

after up to 7 days in culture. High initial cell seeding densities were also observed to have 

a slight negative effect on recollection efficiency compared to the lower initial cell 

numbers (Figure 2.8).  

2.5. Discussion 

Standard 2D tissue culture plastic provides reproducible, simplistic conditions 

for growing cells in vitro. However, 2D cultures limit important biological behaviors 

such as matrix remodeling and invasion, which can be observed in even the most basic 

3D substrates such as Matrigel® and collagen [197]. Yet the majority of 3D cultures are 

designed as endpoint assays that do not allow for cells to be cultured transiently in the 

scaffold and then recollected. To this end, we aimed to develop a temperature responsive 

biomaterial that would enable recollection of live cells and improve investigation of GBM 
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cancer cell biology in a controlled microenvironment. PNIPAAm hydrogels are both 

cytocompatible and temperature responsive, but their slow gel-sol transition and lack of 

cell adhesion sites limits their utility in this application. To overcome these limitations, 

we copolymerized NIPAAm with hydrophilic JAAm at a relatively low molar fraction 

(<0.9 mol%) of the copolymer to increase the equilibrium water content of the hydrogels 

while maintaining the LCST within the physiological range [198–201]. HEMA was also 

incorporated as a comonomer to provide an active site for functionalizing the polymer 

with the cell adhesion peptide RGD. Our characterization and analysis of the resulting 

PNJ-RGD copolymer indicates that PNJ-RGD forms a robust temperature responsive 

scaffold that is well suited as a platform for transient 3D cell culture. 

All of the synthesized polymers exhibited a favorable LCST for 3D culture in that 

polymers were soluble at room temperature and gelled at body temperature. However, 

the transition temperature measured by cloud point (Figure 2.2A) was consistently 

higher than when measured by rheology (Figure 2.2B) for each material. Cloud point 

measurements were taken at low concentrations (0.1 wt%) to observe the phase 

transition (i.e., collapse of polymer chains) that produces precipitation. Rheology 

measurements were made at higher concentrations (16.7 wt%) in parallel to observe 

subtle changes in mechanical properties during physical crosslinking (i.e., increase in gel 

strength) that do not require complete phase transition. Thus, these data highlight that 

increased strength precedes complete polymer precipitation, as expected. Ultimately, 

both measures demonstrate that hydrophobic HEMA-acrylate decreased the LCST and 

hydrophilic JAAm had a small increasing effect on LCST, which is consistent with our 

previous reports [180,194]. The inclusion of both monomers along with the hydrophilic 

RGD peptide caused a modest LCST increase over PNIPAAm homopolymer. Therefore, 
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the measured LCST was consistently a function of the hydrophobic versus hydrophilic 

content of NIPAAm copolymers.  

One of the primary obstacles with using PNIPAAm hydrogels for transient cell 

culture is the extended time required to solubilize the gel when cooled below the LCST. 

This is primarily caused by the phase separation of the precipitated polymer and can be 

mitigated by the addition of hydrophilic comonomers. This is supported by rheological 

measurements of hydrogel dissolution (Figure 2.3A) which indicate that PNJ-RGD is 

capable of rapid and complete phase reversal following physical crosslinking. The 

remaining formulations displayed incomplete phase reversal that was proportional to 

hydrophilic monomer content. Moreover, measurements of the mechanical properties of 

PNJ-RGD (Figure 2.3B) showed that the physical gelation was tunable over almost two 

orders of magnitude (40 Pa – 3 kPa) by simply varying polymer-solution concentration. 

Hydrogels formed with PNJ10 and PNJ-RGD copolymers displayed suitable 

properties for 3D cell culture, including LCST between room and body temperature, high 

equilibrium water content, and high gel-state viscoelasticity. We compared these two 

gels as scaffolds for transiently culturing a GBM cell line (U118) that spreads and 

proliferates rapidly in adherent conditions [27,94]. In 3D cultures, PNJ-RGD hydrogels 

facilitated U118 cell viability, attachment, and invasion (Figure 2.4) which are all 

behaviors that are responsible for the overwhelming morbidity associated with GBM. 

More importantly however, PNJ-RGD enabled rapid recovery of live cells from 3D 

culture under mild conditions (Figure 2.5B). From 1 to 7 days in culture, a high fraction 

(> 50%) of viable cells were extracted from the hydrogel scaffolds with the potential to be 

used in subsequent assays. 

Many conventional biomaterials available for 3D cell culture (e.g. Matrigel®, 

collagen, hyaluronic acid) may require may require harsh conditions, such as prolonged 
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enzymatic digestion, to dissolve the substrate. One of the primary goals of this work was 

to engineer a synthetic cell culture scaffold that presented a bioactive ligand and could be 

dissolved without the use of enzymes; i.e., by a mild drop in temperature. The developed 

PNJ-RGD material is thermally reversible and liquefies completely in response to 

reduced temperature (Figure 2.3). However, in cell culture we observed that dissolution 

of the synthetic hydrogel did not enable complete release of cells from PNJ-RGD 

scaffolds. Additionally, longer cultures and increased cell densities correlated negatively 

with cell recollection efficiency (Figure 2.3). We hypothesized that this incomplete 

recollection was due to cellular attachment to RGD binding sites and protein deposition. 

This hypothesis was supported by the observation that brief (5 min.) treatment of PNJ-

RGD gels with trypsin enabled release of the cells albeit incomplete during extended 

cultures. Importantly, this enzymatic treatment does not affect the synthetic hydrogel, 

and was used only to release cells from RGD binding sites and to degrade proteins 

deposited by cells within the gel.  

 To our knowledge, this is the first report of a 3D PNIPAAm-RGD based platform 

that enables transient 3D culture through rapid recovery of live cells under mild 

conditions. This material offers several distinct advantages as a cell culture biomaterial. 

First, the 3D format allows for observation and measurement of interactions between 

cells and their surrounding microenvironment, an approach that is becoming 

increasingly valuable in the fields of cancer biology and regenerative medicine. Second, 

by engineering the scaffold to enable easy recovery of live cells, this platform could be 

used to study a variety of relevant cell behaviors and to perform analysis of transient 

biomarkers (e.g., measurement of protein expression in live cells via fluorescence 

activated cell sorting (FACS)) that could not be studied using other scaffolds. Finally, the 

thiol-reactivity of the PNJHAc copolymer intermediate allows allowing for other thiol-
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containing molecules of interest to be interchangeably immobilized to the scaffold. In 

summary, this work shows that PNJ-RGD is a suitable material for maintaining and 

passaging malignant cells in 3D culture, and it presents an opportunity for studying 

long-term, progressive responses of cells to their microenvironment in future studies. 

2.6. Conclusions 

Temperature responsive PNIPAAm copolymers were successfully synthesized 

with and without RGD for cell adhesion as a platform for transient 3D culture. PNJ-RGD 

solutions formed a mechanically tunable viscoelastic gel when heated above 29°C and 

displayed rapid phase reversal when cooled. In cell culture assays, the hydrophilicity of 

the hydrogel structure and presence of the RGD peptide promoted viability of an 

adherent cancer cell line over 14 days in culture. Additionally, invasive phenotypes were 

observed in 3D cultures, indicating that PNJ-RGD gels were capable of elucidating 

physiological phenotypes important to cancer research. Finally, recollection of live cells 

was achieved from the hydrogels from 1 to 7 days in culture. In all, these findings 

indicate that this hydrogel is an effective in vitro biomaterial platform for maintaining 

and affecting the biology of adherent tumor cells in a transient 3D culture.  
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2.7. Tables and Figures 

Table 2.1: Characterization of PNIPAAm copolymers. 
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Figure 2.1:  Three step synthesis of PNJ-RGD. (1) PNJH is synthesized through free 

radical polymerization. (2) Acrylation of the HEMA side chain to form PNJHAc. (3) 

Conjugation of the CGRGDS peptide through Michael addition of the thiol-containing 

cysteine residue to form PNJ-RGD. 
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Figure 2.2: LCST determination for PNIPAAm copolymers by (A) cloudpoint and (B) 

rheology. (A) Cloudpoint measurements are reported as the absorbance at 450 nm 

relative to the maximal absorbance for 0.1 wt% polymer solutions at increasing 

temperatures. Room temperature is marked at 25°C and body temperature is marked at 

37°C. The LCST is defined as 50% relative absorbance. Error bars represent standard 

deviation. (B) Rheology measurements of the storage (G’) and loss modulus (G’’) were 

collected for 16.7 wt% polymer solutions under controlled heating (0.5°C/min). The 

LCST is defined at the point of G’ and G’’ inversion or exponential increase. 

A 
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Figure 2.3: Viscoelastic characterization of PNIPAAm copolymers by temperature 

controlled rheology. (A) Storage (G’) and loss modulus (G’’) measurements were made 

on 16.7 wt% polymer samples heated to 37°C for 1 hr and rapidly cooled to 4°C. The 

degree of hydrogel dissolution is measured by the decay in G’ and G’’. (B) Mechanical 

properties of PNJ-RGD hydrogels at 3 concentrations during controlled heating and 

rapid cooling. Hydrogel viscoelasticity is dependent on polymer concentration, but all 

samples displayed reversible gelation kinetics at the LCST. Temperature is displayed on 

the right axis. 
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Figure 2.4: Cell viability and behavior assays. (A) Live/Dead assay results showing that 

U118 cells maintain a high viable fraction (green to red) over 14 days in culture. (B) 

U118-GFP proliferation and invasion was imaged over 6 days in PNJ10 and PNJ-RGD 

hydrogels. The presence of the RGD peptide allowed for cells to both proliferate and 

invade into the matrix, while cells in PNJ10 did not appreciably exhibit these behaviors. 

Images of cells are 2D maximum intensity projections of 3D stacks of images (Scale bars 

= 200 µm). 
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Figure 2.5: Quantification of results from 3D cell culture assays. (A) Fraction of live cells 

compared to total cells counted via automated image processing. (B) Quantification of cell 

recollection efficiency. Fraction of cells recollected out of PNJ-RGD hydrogels compared 

to the fraction remaining encapsulated in the gel after 1 to 7 days in culture. Error bars 

represent standard deviation. 
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Figure 2.6: 1H NMR spectra collected for PNJHAc. Chemical shifts for NIPAAm [δ = 

3.84, 1H, (CH3)2-CH-NHCO], JAAm [δ = 3.63, 76H, CH2CH2O], HEMA [δ = 4.09-4.38, 

4H, CH2=CH-COO-CH2CH2-OCO], Acrylates [δ = 5.97, δ = 6.18, δ = 6.41, 3H, OCO-

CH=CH2]. 
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Figure 2.7: 1H NMR spectra collected for PNJ-RGD. Chemical shifts for NIPAAm [δ = 

3.77, 1H, (CH3)2-CH-NHCO], JAAm [δ = 3.58, 76H, CH2CH2O], HEMA [δ = 3.87, 2H, 

CH2=CH-COO-CH2-CH2OCO], Aspartic acid [δ = 2.58, 2H, OHCO-CH2-CH], Serine [δ = 

3.87, 2H, OH-CH2-CH], Arginine [δ = 3.09, 2H, NH2CNHNH-CH2-CH2]. 
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Figure 2.8: Fraction of cells recollected from PNJ-RGD hydrogels stratified by initial 

seeding density (high, medium, and low). Increasing density has a slight negative effect 

on recollection efficiency. Error bars represent standard deviation. 
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PNIPAAm-co-Jeffamine® (PNJ) Scaffolds as In Vitro Models for Niche 

Enrichment of Glioblastoma Stem-Like Cells 

3.1. Abstract 

Glioblastoma (GBM) is the most common adult primary brain tumor, and the 5-

year survival rate is less than 5%. GBM malignancy is driven in part by a population of 

GBM stem-like cells (GSCs) that exhibit indefinite self-renewal capacity, multipotent 

differentiation, expression of neural stem cell markers, and resistance to conventional 

treatments. GSCs are enriched in specialized niche microenvironments that regulate 

stem phenotypes and support GSC radioresistance. Therefore, identifying GSC-niche 

interactions that regulate stem phenotypes may present a unique target for disrupting 

the maintenance and persistence of this treatment resistant population. In this work, we 

engineered 3D scaffolds from temperature responsive poly(N-isopropylacrylamide-co-

Jeffamine M-1000® acrylamide), or PNJ copolymers, as a platform for enriching stem-

specific phenotypes in two molecularly distinct human patient-derived GSC cell lines. 

Notably, we observed that, compared to conventional neurosphere cultures, PNJ 

cultured GSCs maintained multipotency and exhibited enhanced self-renewal capacity. 

Concurrent increases in expression of proteins known to regulate self-renewal, invasion, 

and stem maintenance in GSCs (NESTIN, EGFR, CD44) suggest that PNJ scaffolds 

effectively enrich the GSC population.  We further observed that PNJ cultured GSCs 

exhibited increased resistance to radiation treatment compared to GSCs cultured in 

standard neurosphere conditions. GSC radioresistance is supported in vivo by niche 

microenvironments, and this remains a significant barrier to effectively treating these 

highly tumorigenic cells. Taken in sum, these data indicate that the microenvironment 

created by synthetic PNJ scaffolds models niche enrichment of GSCs in patient-derived 
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GBM cell lines, and presents tissue engineering opportunities for studying clinically 

important behaviors such as radioresistance in vitro. 

3.2. Introduction 

Glioblastoma (GBM), the most common primary brain tumor in adults, has a 

devastatingly low 4.7% 5-year survival rate with a median survival of only 15 months 

[4,5]. Standard treatments, including surgical tumor resection, radiation, and 

chemotherapy, provide little long-term benefit, and relapse is nearly universal.  GBMs 

are heterogeneous tumors composed of neoplastic cells that exhibit a hierarchy of 

tumorigenic potential. In accordance with the cancer stem cell hypothesis, this hierarchy 

is directed by a small population of cancer stem cells that exhibit the greatest capacity for 

tumor formation [41]. These GBM stem-like cells (GSCs) display many similarities to 

normal adult neural stem cells (NSCs), including a capacity for indefinite self-renewal, 

multipotent differentiation, and expression of NSC marker proteins [37,38,40,43]. GSCs 

are also highly tumorigenic [39], invasive [54], and resistant to both radiation [56] and 

chemotherapy [202,203]. GSCs that evade and survive treatment are hypothesized to 

play a prominent role in tumor recurrence [41].     

In vivo, GSCs are concentrated in specialized niches that regulate stem 

phenotypes [51,60]. In the absence of essential niche regulation in vitro, GSCs can be 

maintained and propagated in NSC culture conditions as multicellular neurospheres 

[44]. However, neurosphere cultures can hinder effective enrichment of GSCs. Diffusion 

of nutrients and signaling factors that are essential for stem maintenance is limited by 

the size and number of cells within multicellular neurospheres [95]. The resulting intra-

sphere nutrient gradients lead to growth of a poorly controlled population of stem, non-

stem, apoptotic, and necrotic cells [97,144,145]. GSCs are commonly enriched and 

purified from these cultures by fluorescence activated cell sorting (FACS) for cell-surface 
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biomarkers (including CD133 [38,39], SSEA-1/CD15 [46], Integrin α6 [29]), which is 

typically paired with functional analysis of stem cell behaviors [100]. However, the use of 

cell-surface markers alone contributes to high false positive rates of GSC identification 

[47]. Therefore, it is essential to analyze GSC populations at the functional level, to 

identify stem cell behaviors such as multipotency and self-renewal.  

Although neurosphere culture conditions provide a pseudo three-dimensional 

(3D) context for cell growth, this format present limited opportunities for controlling 

and studying microenvironmental influences on stem cell behavior. Microenvironmental 

regulation of stem-specific behaviors has been investigated extensively in regenerative 

medicine by utilizing 3D biomaterials, but comparably few examples exist in GSC 

research. Acquisition of selected stem characteristics has been reported for U87 and 

U251 GBM cell lines cultured in 3D scaffolds [113,139–141]. However, serum cultured 

long-term established GBM cell lines like U87 and U251 do not maintain the functional 

stem characteristics of primary GSCs, nor do they provide an accurate representation of 

GBM biology [43,40,44,101]. This severely limits the relevance of using immortalized 

cells to study either GBM or GSC biology. Recently, Li et al. reported that multipotent 

patient-derived GBM cells could be maintained in Mebiol® Gel (Cosmo Bio USA), a 

temperature responsive poly(N-isopropylacrylamide) (PNIPAAm) based hydrogel 

scaffold [148]. In addition, Hubert et al. described the development of large 

heterogeneous GBM organoids from patient-derived GSCs cultured in Matrigel® [159]. 

These prior works emphasize the significance of using biomaterials to study GSCs, but 

3D culture conditions that actively enrich the full complement of GSC functional 

phenotypes (e.g., multipotency, self-renewal, treatment resistance) have not been 

defined in vitro. 
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In this study, we engineered poly(N-isopropylacrylamide-co-Jeffamine® M-1000 

acrylamide) (PNJ) copolymers as tunable scaffolds for 3D GSC culture. PNJ copolymers 

exhibit a lower critical solution temperature (LCST) phase transition when heated in 

aqueous solution [1,180,181]. As a result, these materials encapsulate cells in physically 

crosslinked viscoelastic scaffolds at body temperature and easily release the cells by 

cooling to room temperature. We have previously reported the utility of this platform for 

enabling serial expansion of immortalized GBM cell lines in 3D [1]. Here, we describe 

conditions under which two patient-derived GBM lines are cultured in PNJ scaffolds to 

actively enrich GSC phenotypes, as measured by the full diversity of stem cell behaviors 

expected to drive tumor malignancy; this analysis includes multipotency, self-renewal 

capacity, expression of stem cell markers, and radiation resistance. For the purpose of 

these studies, we focus on self-renewal capacity, as measured by the in vitro limiting 

dilution assay, as the most direct approach for evaluation of relative GSC fractions under 

distinct culture conditions. We postulate that PNJ scaffolds may function similar to the 

native niche by serving as a depot for growth factors that maintain the GSC population 

[60]. The broader significance of these findings is that radioresistance, which is hallmark 

feature of GSC biology, is supported in vivo by microenvironmental factors that may be 

deficient or completely absent from standard cultures. Therefore, by defining 

microenvironmental mechanisms that drive GSC enrichment and radioresistance, 3D 

PNJ cultures may improve the accuracy and understanding of GSC responses to 

radiation in vitro.  

3.3. Methods 

 Materials 

All chemicals were reagent grade and purchased from Sigma Aldrich (St. Louis, 

MO, USA) unless otherwise stated. All cell culture reagents were purchased from Thermo 
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Fisher Scientific (Waltham, MA, USA) unless otherwise stated. N-isopropylacrylamide 

(NIPAAm) purchased from Tokyo Chemical Company (Portland, OR, USA) was purified 

by recrystallization from hexane. 2,2’-Azobisisobutyronitrile (AIBN) was purified by 

recrystallization from methanol. Jeffamine® M-1000 was generously donated by the 

Huntsman Corporation (Salt Lake City, UT, USA). Jeffamine® M-1000 acrylamide 

(JAAm) was synthesized as previously reported [180,181].  

 Polymer Synthesis 

Poly(N-isopropylacrylamide-co-Jeffamine® M-1000 acrylamide) or PNJ 

copolymers were synthesized as previously described [1,180].  Briefly, radical 

polymerization of NIPAAm and JAAm monomers was initiated with AIBN (7 mmol 

AIBN/mol monomer) in anhydrous benzene. Copolymer feed ratios of NIPAAm:JAAm 

by mass were 90:10 (PNJ10), 85:15 (PNJ15), or 80:20 (PNJ20). All PNJ copolymers 

were purified by dialysis (3,500 MWCO) against diH2O at 4°C and sterilized with 

ethylene oxide. Chemical compositions were analyzed by 1H NMR in D2O (400 MHz 

Varian Inova, Agilent Technologies, Santa Clara, CA, USA).  

 Rheology 

The mechanical properties of PNJ scaffolds were measured at various 

concentrations by rheology. PNJ solutions were prepared at 5, 7.5, and 10 wt% in PBS at 

room temperature and placed on a parallel plate rheometer with a temperature 

controlled stage (MCR-101, Anton Paar, Ashland, VA, USA). Samples were rapidly 

heated to 37°C and subjected to a frequency sweep (0.1 - 10 Hz) with 0.5% shear strain 

deformation and normal force control (50 mN) to determine the storage (G’) and loss 

(G’’) modulus.  
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 Patient-Derived Primary GSC Culture 

Patient tissue samples were acquired from the Biobank Core Facility at St. 

Joseph’s Hospital and Medical Center and Barrow Neurological Institute (BNI) 

(Phoenix, AZ, USA). All samples were collected and transmitted according to the 

Biobank Institutional Review Board’s approved protocol. In our previous work, two 

patient-derived GSC cell lines, GB3 [204,205] and GB7 [204], were established from 

primary GBM tumors surgically resected at BNI and characterized as human GSC 

models. GB3, classified as a proneural GBM subtype, was characterized through in vitro 

testing of stem behaviors, and in vivo via orthotopic transplantation. GB7 was classified 

as a classical GBM subtype through in vitro characterization of stem behaviors. GSCs 

were propagated in cell culture as non-adherent neurospheres grown in GSC media 

(DMEM/F12 media supplemented with B27, N2 and penicillin/streptomycin) in low-

attachment poly(hydroxyethylmethacrylate) (polyHEMA) coated plates. Cultures were 

supplemented with 20 ng/mL of epidermal growth factor (EGF) and basic fibroblast 

growth factor (bFGF) (Merk Millipore, Billerica, MA, USA) every 2-3 days.  

 GSC Culture in PNJ Scaffolds 

PNJ copolymers were dissolved at 5 wt% in GSC media overnight at 4°C. GSCs 

were dissociated with Accutase to a single cell suspension, counted (Cellometer Mini, 

Nexcelom, Lawrence, MA, USA), and resuspended in PNJ-media solution at room 

temperature (350k cells/mL). Cultures were then incubated at 37° C to crosslink PNJ 

scaffolds and encapsulate cells in 3D culture. After 48 hours, an equal volume of warm 

culture media was added above the scaffold. Every 2-3 days, scaffolds were 

supplemented with EGF and FGF (20 ng/mL) after being solubilized at room 

temperature to allow for distribution of nutrients. Upon warming the cultures back to 

37°C, the scaffolds were reformed and encapsulated the freshly added growth factors. At 
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confluence (7 - 14 days for GB7; 14 - 21 days for GB3), PNJ scaffolds were cooled to room 

temperature, diluted in PBS, and centrifuged to recover live cells.  In all experiments, 

PNJ cultures were compared with neurosphere cultures described in section 2.4. 

 Analysis of Neurosphere Area 

GSCs cultured in PNJ scaffolds and in standard neurosphere conditions were 

imaged using brightfield microscopy (Zeiss Axio Observer A1) over the duration of the 

culture period. The area of GSC spheres (n > 225 spheres per condition per day) was 

measured using ImageJ (NIH) and compared across culture conditions. 

 GSC Multipotent Differentiation 

GSC spheres were dissociated with Accutase to a single cell suspension. Cells 

were differentiated by culturing GSCs in serum supplemented media (DMEM + 10% FBS 

+ 1% penicillin/streptomycin) on glass coverslips coated with poly-d-lysine. Media was 

replaced every 2-3 days for 14 days, after which cells were immunostained for markers of 

differentiation into astrocytes (GFAP), oligodendrocytes (GALC), and neurons 

(TUBULIN βIII). Cells were fixed with 4% PFA for 10 minutes, permeabilized and 

blocked for 30-60 minutes in PBST + 5% goat serum, and incubated in primary 

antibodies (Table 3.1) diluted in blocking buffer at 4°C overnight. Cells were stained with 

fluorescent secondary antibodies (Table 3.1) diluted in blocking buffer at 37°C for 30 

minutes, counterstained with DAPI (3 ng/mL) for 10 minutes, and mounted on slides 

prior imaging with an inverted fluorescence confocal microscope (Zeiss LSM 710 Axio 

Observer Z1). 

 Limiting Dilution Assay 

GSCs were dissociated with Accutase and cultured at low initial densities (1 – 50 

cells) in polyHEMA coated 96 well plates. After 7 days, wells were imaged with 

brightfield microscopy (Zeiss Axio Observer A1) to determine sphere formation at each 
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initial density. Wells negative for sphere formation (% nonresponsive) were counted. 

This experiment was replicated 4 times with at least n = 12 samples for each initial cell 

density. 

 Western Blot Analysis 

To prepare protein lysates, GSCs were lysed in ice cold RIPA buffer supplemented 

with fresh protease and phosphatase inhibitors. Protein concentration was measured 

using a standard Bradford assay. Western blots were run with 40 µg samples separated 

by gel electrophoresis on a 10% bisacrylamide gel (Bio-Rad, Hercules, CA, USA). 

Proteins were transferred to a polyvinylidene difluoride (PVDF) membrane at 4°C (Bio-

Rad, USA). Membranes were blocked in 5% milk TBST and incubated with primary 

antibodies diluted in blocking solution shaking overnight at 4°C. Membranes were then 

incubated with fluorescent secondary antibodies diluted in blocking solution at room 

temperature. Blots were analyzed using a fluorescence reader (LiCor Odyssey CLx). 

Protein expression data is represented as the mean of n = 4 independent experiments. 

 Radiation Sensitivity 

GSCs were irradiated (RAD Source 2000, RAD Source) in PNJ scaffolds or in 

neurosphere conditions with 2, or 10 Gy ionizing radiation. Immediately following 

treatment, cells were recovered from cultures, counted, and re-plated as single cells at 

equivalent densities in neurosphere growth conditions. Cell viability was measured with 

Cell Titer Glo (Promega) in comparison to a matched non-treated control 48 hours after 

radiation.  

 Statistical Testing 

Statistical tests for neurosphere size data (Section 2.6) were performed in Prism 5 

(GraphPad). Neurosphere size data was analyzed using a one-way ANOVA test with 

Bonferroni post-test. Statistical testing for limiting dilution data (Section 2.8) was 
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performed using a chisquare test through the extreme limiting dilution analysis (ELDA) 

software previously published by Hu and Smyth [206]. Statistical significance is reported 

for p < 0.05.  

3.4. Results 

 PNJ Scaffolds 

Three formulations of PNJ copolymers (Figure 3.1A) were synthesized by varying 

the concentration of JAAm (10%, 15%, and 20%) during polymerization with NIPAAm. 

JAAm incorporation was measured by 1H NMR and the resulting formulations are 

distinguished by their JAAm content: PNJ10, PNJ15, and PNJ20 (Table 3.2). Similar to 

our previous reports, the LCST for each copolymer was measured by rheology between 

29 and 31°C (data not shown). This characteristic allows for PNJ copolymer solutions to 

remain soluble when handled at room temperature (~25°C) and to form physically 

crosslinked scaffolds when heated to body temperature (~37°C) [1,180,181]. We observed 

that the three PNJ formulations formed viscoelastic scaffolds with storage and loss 

moduli that decreased in response to decreasing total polymer concentration (Figure 

3.1B). JAAm incorporation also affected scaffold stiffness; for 7.5 wt% and 5 wt%, higher 

JAAm content produced less stiff gels, whereas we observed that PNJ15 scaffolds 

exhibited increased stiffness compared to PNJ10 scaffolds when formed at 10 wt%. This 

observation, although unexpected, was repeatable across independent polymer batches. 

We also observed that the PNJ10 scaffolds were slower to dissolve when formed at 10 

wt% than the PNJ15 and PNJ20 scaffolds; it is thus possible that, at 10 wt%, a higher 

concentration of polymer facilitated additional hydrophobic interactions to promote 

phase separation, thus generating mild syneresis and a plateau in the PNJ10 modulus.  

Taken in sum, these data demonstrate the ability to produce a library of PNJ materials 

with scaffold stiffness (i.e., G’) tunable between 153 and 1240 Pa. 
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 GSCs in PNJ Scaffolds 

Patient-derived primary GSCs (GB3 and GB7) were cultured in soft 5 wt% PNJ 

scaffolds, which possess brain-mimetic stiffness (153 Pa - 325 Pa). We compared the 

growth of GSCs in these conditions to standard neurosphere culture conditions as a 

control. In neurosphere culture, GSCs displayed as expected, high variability in sphere 

sizes. Conversely, we observed that GSCs cultured in 3D grew as individual spheres that 

remained smaller and more uniform in size due to decreased cell-cell contact within the 

scaffold (Figure 3.2a). These qualitative observations were quantified by measuring the 

area of neurospheres in both neurosphere and 3D culture (Figure 3.2b). Both GB3 and 

GB7 grew as significantly smaller spheres with a higher degree of uniformity in 3D 

compared to controls. These data indicate that PNJ scaffolds segregate cells to prevent 

sphere aggregation, a key drawback of neurosphere culture.   

 GSC Multipotency and Self-Renewal 

Live GSCs were recovered from PNJ scaffolds by cooling the cultures to room 

temperature to induce scaffold phase transition [1]. The multipotency of the recovered 

cells was determined by differentiating GSCs in serum supplemented media. After two 

weeks, the differentiated cells were stained for markers of neuronal lineage (βIII-

tubulin), oligodendrocyte lineage (GalC), and astrocytic lineage (GFAP). GB3 and GB7 

cells grown in all PNJ and control cultures were observed to differentiate into each of the 

assayed neural subtypes (Figure 3.3) indicating that multipotency was maintained in 

control and PNJ culture conditions.  

We also measured the self-renewal capacity of the recovered cells in an in vitro 

limiting dilution assay (Figure 3.4). Given the initial cell density and resulting 

probability of neurosphere formation, we determined the concentration of clonal cells in 

populations taken from each culture condition using extreme limiting dilution analysis 
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[206]. The stem cell frequency of GB3 cells cultured in neurosphere conditions was 1 in 

6.7 (95% CI: [5.68, 7.97]) compared to 1 in 4.3 (95% CI: [3.68, 7.97]), 4.0 (95% CI: [3.39, 

4.63]), and 3.8 (95% CI: [2.05, 4.03]) for PNJ10, PNJ15, and PNJ20 respectively. For 

GB7 cells, the stem cell frequency in neurosphere conditions was 1 in 14.0 (95% CI: 

[11.41, 17.22]) compared to 1 in 6.9 (95% CI: [5.72, 8.45]), 8.0 (95% CI: [6.57, 9.75]), and 

6.4 (95% CI: [5.29, 7.80]) for PNJ10, PNJ15, and PNJ20 respectively. For both GB3 and 

GB7, all three PNJ scaffold formulations resulted in a significant (p < 0.01) increase in 

stem cell frequency compared to neurosphere culture; GSC enrichment in scaffolds was 

highest for the GB7 cell line.  

 Stem Marker Expression in PNJ Scaffolds 

For comprehensive characterization of the GSC phenotype, we measured the 

expression of proteins important to both GBM and GSC biology in PNJ cultured cells. In 

these assays, we measured expression of NESTIN along with the transcription factors 

SOX2 and OLIG2 as markers of GBM stemness [47].  We also measured expression of 

the receptor tyrosine kinases (RTKs) for epidermal growth factor (EGFR) and platelet 

derived growth factor alpha (PDGFRα) along with the hyaluronic acid receptor CD44, all 

of which are associated with malignant GBM phenotypes, GSC maintenance, and 

interactions with the GSC niche [16,47,71]. In both cell lines, we observed an increase in 

NESTIN and EGFR expression in all scaffold conditions compared to neurosphere 

controls (Figure 3.5). CD44 expression was also increased in PNJ cultured GB3 cells 

compared to neurosphere controls. In GB7, CD44 was increased in PNJ10 and PNJ20 

scaffolds but not in PNJ15. All other proteins tested did not display notable differences 

between scaffold and control cultures. The increases in expression of these proteins 

provides further evidence of GSC maintenance and enrichment in PNJ scaffolds. 
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 Radiation Sensitivity in PNJ Scaffolds 

Radiation resistance is a hallmark feature of GSCs in vivo and is actively 

supported by the GSC niche microenvironment. Here, we compared the viability of 

neurosphere and PNJ cultured GSCs following radiation treatment at a clinically 

relevant dose (2 Gy) and a high dose (10 Gy). Both GB3 and GB7 cells displayed a dose 

response to treatment in neurosphere conditions with GB3 cells exhibiting a more 

resistant baseline phenotype. Interestingly, 3D culture in PNJ scaffolds, regardless of 

composition, significantly increased resistant behavior in both GB3 and GB7 cells at all 

levels of treatment (Figure 3.6). This provides further evidence for the positive 

regulatory effect that the 3D PNJ microenvironment exerts on GSCs in culture.   

3.5. Discussion 

GSCs are distinguished within the broader population of GBM tumor cells by 

their multipotency, self-renewal capacity, NSC marker expression, and radioresistance 

[37,38,40,43].Together, these phenotypic features lead GSCs to be highly tumorigenic 

and likely drivers of tumor recurrence following conventional treatments such as 

radiation therapy. GSCs, similar to NSCs, are enriched in distinct niche 

microenvironments comprised of both cellular (e.g. immune cells) and non-cellular (e.g. 

extracellular matrix) components that provide critical regulatory signaling cues. In 

addition, niche inputs are also implicated in actively supporting treatment resistance in 

these cells [50,51,60,65,66]. Therefore, identifying mechanisms of GSC regulation 

contributed by the physical microenvironment may lead to options for targeting the 

niche with therapeutics that disrupt their regulatory capacity and sensitize otherwise 

resistant cells to treatment. 

The complexity and anisotropy of the GSC microenvironments complicates 

analyzing specific regulatory contributions in vivo. As a result, three-dimensional 
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scaffolds have been routinely used to measure various interactions between GBM cell 

lines or GSCs and their local microenvironment by us [1,27] and others 

[24,32,115,116,120,126,139,148,156–159]. Although immortalized cell lines are proven 

tools in GBM research, they are poor biological models of the clinical condition and do 

not maintain functional GSCs [43,40,44,101]. In addition, 3D culture conditions that 

enrich GSCs, as measured by their functional phenotype, and concurrently support 

radioresistance have not been reported. Thus, there remains a significant need to 

engineer physical microenvironments to study GSC-niche interactions and their 

contribution to therapeutic response. Here, we designed a synthetic polymeric 

biomaterial platform composed of poly(N-isopropylacrylamide-co-Jeffamine® M-1000 

acrylamide) (PNJ copolymers [1,180,181]) as a scaffold for expanding and enriching 

GSCs in 3D culture. To identify conditions under which the GSC phenotype was 

enriched, we performed a complete functional characterization (multipotency, self-

renewal capacity, and radioresistance) of GSC behaviors alongside analysis of relevant 

GSC markers. In this study, we utilized two molecularly distinct GSC lines, GB3 

(proneural) and GB7 (classical), primarily to illustrate the robustness of effects from the 

PNJ culture system. Evaluation of subtype-specific responses would be an interesting 

avenue for future work. In all, we utilized this approach to identify conditions within an 

engineered in vitro 3D microenvironment that positively regulate the GSC phenotype 

and contribute to radioresistant behaviors.  

PNIPAAm is a temperature responsive polymer that exhibits a lower critical 

solution temperature (LCST) phase transition near 30°C in aqueous solution [179]. The 

LCST enables reversible physical crosslinking where the polymer is soluble at room 

temperature and precipitates to form a non-water soluble scaffold at 37°C. In the gel 

state, PNIPAAm scaffolds experience significant phase separation due to hydrophobic 
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chain interactions which limits their utility in 3D culture. The phase separation of 

PNIPAAm is reduced considerably by copolymerization with Jeffamine M-1000® 

acrylamide (JAAm) [180], which generates PNJ copolymers that exhibit fast dissolution 

to enable transient 3D cell culture [1]. In this study, the biochemical properties of PNJ 

scaffolds were tuned by modulating JAAm incorporation to form the three different PNJ 

formulations (PNJ10, PNJ15, PNJ20). Increasing JAAm concentration effects a 

corresponding increase in equilibrium water content in the scaffold [180]. The physical 

properties of PNJ scaffolds can also be easily tuned by altering the dissolved copolymer 

concentration. At the concentrations tested, PNJ copolymers formed viscoelastic (G’ > 

G’’) scaffolds with stiffness (G’) ranging from 153 and 1240 Pa (Figure 3.1) which directly 

coincides with the stiffness of healthy brain tissue [154]. We also observed that JAAm 

content affected PNJ scaffold stiffness, and that this effect was amplified in the higher 

concentration constructs. Overall, the tunable nature of the PNJ platform enables 

analysis of cell responses to variations in both microenvironmental chemistry and 

stiffness. For these studies, we chose to utilize soft scaffolds (153 – 325 Pa) to model the 

microenvironment. Stable cell culture scaffolds in this stiffness range are currently 

underreported as they may be difficult to create with chemical crosslinking strategies due 

to a low incipient density of crosslinks.  

One initial observation of PNJ cultured GSCs was that cells did not cluster into 

large aggregates that are common in standard neurosphere cultures. During gelation, the 

physically crosslinked scaffolds form a polymeric network that segregates and suspends 

the cells in their location. Over the course of the culture, the cells grow as individual 

spheres that do not contact neighboring spheres as they inevitably do during free 

flotation in culture media. This caused GSCs to grow in significantly smaller and more 

uniform spheres in PNJ scaffolds compared to neurosphere conditions (Figure 3.2). This 
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phenomena has also been reported in other 3D scaffold systems [147,148]. One of the 

primary drawbacks of neurosphere culture is that nutrient gradients develop quickly in 

relation to sphere size and have an adverse effect on stem enrichment [144,145].  To this 

end, viscoelastic PNJ scaffolds prevent sphere aggregation and thus provide 

microenvironmental conditions that are fundamentally distinct from neurosphere or 

large organoid cultures. These conditions may positively contribute to enrichment of the 

GSC phenotype; it would be interesting, in future work, to consider hanging drop culture 

or culture within micro-patterned wells as methods to further define and control 

neurosphere size [207]. 

We measured functional GSC characteristics of GB3 and GB7 cells cultured in 

PNJ scaffolds to determine how stem phenotypes may be altered in comparison to 

neurosphere conditions. GSCs cannot be identified by a single feature but instead require 

multifaceted characterization. Multipotency, is a direct driver of GBM tumor 

heterogeneity as GSCs are capable of generating a diverse hierarchy of neoplastic cells 

that work to support tumor maintenance and growth [40,43,44]. Here, we observed that 

cells propagated in neurosphere culture as well in PNJ scaffold cultures were capable of 

multipotent differentiation (Figure 3.3) as measured by expression of proteins associated 

with three neural subtypes (neurons, oligodendrocytes, astrocytes). Importantly, 

differentiating GSCs will often promiscuously express differentiation markers of multiple 

neuronal lineages in ways that are not observed in healthy neural stem cells [37,40,44]. 

Thus, positive staining indicating overlapping expression of these antigens is possible 

under the described conditions. This phenomenon is generally ascribed to aberrant 

activation of differentiation machinery as a result of the malignant transformation that 

affects these tumor cells. 
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Self-renewal is another essential GSC characteristic that is a primary driver of 

tumorigenicity and recurrence in vivo [38–40]. We assayed the self-renewal capacity of 

GB3 and GB7 cells using an in vitro limiting dilution assay. In vivo limiting dilution is 

one of the gold standard methods for GSC identification. However, given that the control 

(neurosphere) cultures were previously characterized as containing GSCs [204,205], the 

in vitro limiting dilution and subsequent ELDA analysis were employed to measure 

quantitative differences in stem cell frequency [39,206]. Using this method, the stem cell 

frequency of PNJ cultured GB3 and GB7 cells was measured to be significantly increased 

(p < 0.01) for all scaffold formulations compared to neurosphere cultured controls 

(Figure 3.4). To our knowledge, this is the first report of a 3D biomaterial that increases 

self-renewal capacity in patient-derived GSC cultures. Mebiol® gel scaffolds have been 

shown to be useful for maintaining multipotent patient-derived GBM cells, but 

functional stem enrichment was not directly measured [148]. While Mebiol® gel and 

PNJ are chemically similar, the reported scaffold stiffness (1,000 Pa) is more than three 

times greater than the stiffest PNJ scaffold (325 Pa) and may play a role in this 

dichotomy. Alternatively, Matrigel® cultured GSCs reportedly develop GBM tumor 

organoids that reduce self-renewal capacity of the original stem population [159]. In 

contrast to Matrigel®, which contains both serum and extracellular matrix proteins, 

synthetic PNJ scaffolds do not provide any bioactive or native niche cues. Yet, the 

biochemical and biophysical properties of these scaffolds provide permissive conditions 

for non-adherent neurosphere growth that maintain GSCs in an undifferentiated state 

and increase self-renewal capacity. The interplay of effects imparted by the biochemical 

and biophysical properties of the scaffold is an important and likely complex relationship 

that warrants future study.  
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PNJ cultures also altered the expression of proteins that are attributed to the GSC 

phenotype. Specifically, NESTIN and EGFR expression were increased in both cell lines 

across all scaffold conditions (Figure 3.5). NESTIN is an established NSC marker and has 

been shown to regulate self-renewal capacity [208,209]. The EGFR pathway is one of the 

most studied in GBM biology as it is frequently amplified and/or mutated in the disease 

state [11]. Moreover, EGFR signaling in GSCs has been shown to help maintain the 

molecular characteristics of the original tumor sample [44] and also regulate their self-

renewal capacity in vitro [210]. Thus, increases in NESTIN and EGFR expression are 

consistent with the measured increase in GB3 and GB7 self-renewal. Additionally, 

expression of the hyaluronic acid receptor CD44 was also increased in PNJ cultured GB3 

cells as well as PNJ10 and PNJ20 cultured GB7 cells. CD44 expression has been 

proposed as a GSC marker and is commonly associated with an invasive phenotype 

[16,204]. Taken together, these data suggest that PNJ scaffolds promote expression of 

proteins that are known to regulate key GSC phenotypes such as self-renewal and 

invasion.  

In vivo, GSCs are concentrated in specific niches (hypoxic, invasive, and 

perivascular), each of which may regulate cellular phenotype via distinct mechanisms 

[51]. Culturing GSCs as neurospheres or organoids is expected to drive cellular evolution 

primarily as a result of the gradients of oxygen and nutrient deprivation, which develop 

as cells proliferate [144,145]. In contrast, the PNJ microenvironment is expected to be 

relatively nutrient and oxygen rich. This expectation is based on the relatively small size 

of neurospheres grown within the gel (which prevents formation of a necrotic core), as 

well as our previous work showing that PNJ scaffolds retain encapsulated protein [180]. 

It is possible that proteins secreted by GSCs in PNJ scaffolds are effectively sequestered 

near cells, leading to increased autocrine signaling. The increased expression of EGFR 
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we observed in these studies supports this hypothesis, and the small size of clonogenic 

cell aggregates produced by culture within PNJ draws further parallel to the in vivo 

circumstance, where GSCs are found in small clusters near blood vessels. We thus 

propose that the PNJ microenvironment may be a relevant model for GSC interactions 

with the perivascular niche [60,65]. 

From a clinical perspective, total surgical resection of GBM tumors is often 

impossible due to tumor location and the potential for damage to healthy brain tissue. As 

a result, radiation offers the best treatment modality for remaining tumorigenic cells due 

to its ability to directly penetrate the target tissue. However, radiotherapy is resisted by 

GSCs that respond with increased activation of DNA damage repair pathways [56]. This 

behavior, similar to self-renewal capacity, enables GSCs to mediate tumor recurrence 

and disease progression. Moreover, support from the GSC niche is believed to be 

significant driver of radioresistance [50,51,60,65,66]. Hubert et al. investigated this by 

irradiating GSC derived 3D GBM organoids and found that GSC marker expression was 

inversely correlated with apoptotic marker expression [159].  In our work, populations of 

PNJ cultured GSCs displayed significantly increased radioresistance in an experimental 

model that directly assayed cell viability in response to treatment (Figure 3.6). 

Additionally, EGFR activity has been studied as a driver of GBM radioresistance 

[211,212] and may in this context be a contributing factor to the behavior we observed. 

These data suggest that 3D cultures, and specifically PNJ scaffolds, are valuable tools for 

studying microenvironmental support of radioresistance in vitro; we propose that these 

microenvironments are an effective GSC niche model, which are implicated in driving 

treatment resistance and tumor recurrence in vivo [65]. 
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3.6. Conclusion 

This work describes 3D culture conditions that were implemented using fully 

synthetic PNJ scaffolds to expand and enrich GSCs in culture. Using these scaffolds, we 

measured enrichment of functional GSC characteristics, including radioresistance, as 

well as corresponding protein expression in two molecularly distinct patient-derived 

models of GBM. The tunable nature of the PNJ platform is a substantial advantage as it 

enables control over the chemical and physical properties of the scaffold to study niche 

regulation of GSCs in a variety of conditions. PNJ chemistry also presents the 

opportunity for additional engineering; for example, by inclusion of bioactive peptides 

such as RGD to study cell adhesion related GSC-TME interactions [1]. In conclusion, we 

propose that the PNJ platform offers significant opportunities for studying 

microenvironmental regulation of clinically relevant models of GBM in vitro. Although 

current methods of GBM treatment have proven minimally effective, future therapeutic 

strategies may achieve a higher degree of success by focusing on disruption of GSC 

regulatory mechanisms within the microenvironment. 
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3.7. Tables and Figures 

Table 3.1: List of primary and secondary antibodies used in this study 

Primary 
Antibodies 

Company Product # Host Dilution Application 

NESTIN 
Novus 

Biologicals 
NB300-266 Mouse 1:2000 WB 

EGFR Abcam AB52894 Rabbit 1:10000 WB 

CD44 
Cell 

Signaling  
3570S Mouse 1:2000 WB 

SOX2 
Cell 

Signaling  
3579S Rabbit 1:2000 WB 

OLIG2 [213] DF308 Rabbit 1:1000 WB 

PDGFRα Santa Cruz SC-338 Rabbit 1:1000 WB 

VINCULIN Abcam SPM227 Mouse 1:10000 WB 

GFAP 
Merck 

Millipore 
AB9598 Rabbit 1:200 IF 

GALC 
Merck 

Millipore 
MAB342 Mouse 1:250 IF 

TUBULIN 
βIII 

Merck 
Millipore 

MAB1637 Mouse 1:200 IF 

 

Secondary 
Antibodies 

Company Product # 
Host / 
Isotype 

Dilution Application 

Alexa Fluor 
488 

Thermo 
Fisher 

A21121 
Goat anti-

Mouse IgG1 
1:1000 IF 

Alexa Fluor 
488 

Thermo 
Fisher 

A21151 
Goat anti-

Mouse IgG3 
1:1000 IF 

Alexa Fluor 
488 and 568 

Thermo 
Fisher 

A11008/A11011 
Goat anti-
Rabbit IgG 

1:1000 IF 

DyLight 680 
Thermo 
Fisher 

PI35519 
Goat anti-
Mouse IgG 

1:10000 WB 

DyLight 800 
Thermo 
Fisher 

PISA510036 
Goat anti-
Rabbit IgG 

1:10000 WB 
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Table 3.2: Properties of PNJ copolymers. Monomer incorporation was measured by 1H 

NMR in D2O, and molecular weight was determined by GPC with THF as the mobile 

phase. 

 

 

 

 

 

 

 

Figure 3.1: (A) Chemical structure of PNJ copolymers. (B) Complex modulus of PNJ 

scaffolds formed at 10 wt%, 7.5 wt% and 5 wt% measured by rheology. Rheological 

measurements (n = 2) were made with samples heated to 37°C. 

  NIPAAm wt% (x) : JAAm wt% (y)  Molecular Weight 

Polymer   Feed Composition  M
W (x 106 Da) P

D
 

PNJ10  90 : 10 92.4 : 7.6  1.671 1.047 

PNJ15  85 : 15  89.3 : 10.7  1.649 1.133 

PNJ20   80 : 20  85.2 : 14.8   1.182 1.076 
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Figure 3.2: (A) Brightfield images of GB7 spheres in neurosphere conditions and PNJ20 

scaffolds after 7 days of culture. (B) Quantification of 2D GSC sphere area during culture 

in neurosphere or PNJ scaffold conditions. Spheres were significantly smaller in all PNJ 

scaffolds at all time points compared to neurosphere cultures (* p < 0.05 and ** p < 0.01; 

1-way ANOVA with Tukey post-test; n > 225 for each data set). 
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Figure 3.3: Multipotency of GB7 and GB3 GSCs measured by immunofluorescence 

staining for differentiation markers (green) along with DAPI nuclei counterstaining 

(blue). Cells cultured in both neurosphere and PNJ scaffold conditions were capable of 

differentiating into Neuronal (Tubulin), Oligodendrocyte (GalC), and Astrocytic (GFAP) 

lineages (nonlinear adjustments were made to some images for visual clarity). 

 

 

Figure 3.4: Self-renewal and stem cell frequency of GB7 and GB3 cells measured in a 

limiting dilution assay. Stem cell frequency was significantly increased in all PNJ 

cultures compared to control (** p < 0.01; chi-squared test for pairwise differences). 
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Figure 3.5: Expression of GSC marker proteins in PNJ scaffolds compared to 

neurosphere control cultures measured by Western Blot. In GB3 (n = 4), NESTIN, 

EGFR, and CD44 expression were increased in PNJ scaffolds compared to controls. In 

GB7 (n = 4), expression of NESTIN and EGFR were again increased in all scaffold 

conditions, while CD44 was increased in PNJ10 and PNJ20 scaffolds. Nonlinear 

adjustments were made to some images for visual clarity. 
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Figure 3.6: Viability of GSCs following low dose (2 Gy) and high dose (10 Gy) radiation is 

significantly higher in PNJ scaffolds compared to neurosphere cultures (fold change 

calculated in comparison to neurosphere controls; mean values are reported with SD; n 

= 12 replicates; * p < 0.05 and ** p < 0.01; 2-way ANOVA with Bonferonni post-test). 
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PNIPAAm-co-Jeffamine® (PNJ) Scaffolds Regulate Glioblastoma Stem-Like 

Cell (GSC) Self-Renewal and Model Niche Support for Radioresistance 

4.1. Abstract 

Glioblastoma (GBM) is the most deadly malignant primary brain tumor. Within 

GBM exists a subpopulation of glioblastoma stem-like cells (GSCs), which are 

maintained in niche microenvironments within the brain and are believed to be a 

primary source of tumor recurrence. Niche regulation supports the GSC population 

primarily through maintenance of self-renewal, multipotency, and expression of stem-

associated genes. However, these specialized microenvironments also provide protection 

from radiation and sustain the stem cell pool by promoting stem-plasticity in 

differentiated GBM cells. Previously, we described the design and development of 

temperature responsive poly(N-isopropylacrylamide-co-Jeffamine® M100 acrylamide) 

(PNJ) copolymer scaffolds as microenvironmental models that enriched patient-derived 

GSCs. Building on this prior work here, we investigated the capacity for PNJ scaffolds to 

regulate self-renewal and radioresistance in response to alterations in the physical 

microenvironment. We cultured two distinct patient-derived GSC models in four 

different PNJ scaffold formulations for comparison to conventional neurosphere culture. 

We identified dynamic microenvironmental regulation of GSC self-renewal that was a 

function of both the physical scaffold properties and cell-type. In conditions where self-

renewal was enriched, the GSC marker NESTIN was ubiquitously expressed; in 

conditions that were detrimental to self-renewal, NESTIN expression was decreased. 

Importantly, we observed that PNJ scaffolds produced de novo expression of the 

transcription factor HIF2α, which has well-documented functional roles in GSC 

tumorigenicity and stem-plasticity. In contrast, HIF2α was not expressed in neurosphere 
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culture conditions. We also observed that PNJ scaffolds were radio-protective, with the 

strongest protection provided in conditions that also promoted GSC self-renewal. 

Importantly, we also observed increased NESTIN expression in select PNJ scaffold 

conditions in response to radiation. The relative maintenance of HIF2α in both treated 

and untreated scaffold conditions provides mechanistic evidence for stem plasticity and 

enrichment in response to radiation in 3D culture. Therefore, PNJ scaffolds provide 

unique opportunities for understanding GSC-specific microenvironmental regulation in 

response to radiation. 

4.2. Introduction 

The brain microenvironment provides broad support for the development and 

growth of glioblastoma (GBM). Specialized niches within the tumor and healthy tissue 

harbor small populations of glioblastoma stem-like cells (GSCs) that exhibit neural stem 

cell (NSC) phenotypes, including self-renewal, a capacity for multipotent differentiation, 

and expression of NSC marker proteins [38,39,51]. GSC niche microenvironments have 

been described in multiple distinct anatomical locations with GSCs concentrated near 

blood vessels in perivascular niches, on the edge of necrotic tissue in hypoxic niches, and 

also at the invasive edge of the tumor [51,65,72,81]. Accordingly, these 

microenvironments provide a diverse set of regulatory functions that support GSC 

phenotypes, and have been implicated in contributing to tumor recurrence via 

development of resistance to chemotherapy and radiation [62–64,85,90,214,215].  Thus, 

identifying and disrupting GSC-niche interactions may provide an avenue for sensitizing 

this population of cells to treatment. 

Radiation is the most effective post-surgical treatment for GBM, although not all 

cells will be susceptible. GSCs are characteristically described as radioresistant, and 

radiation exposure has been observed to enrich GSC-specific markers in vitro 
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[56,61,138,216]. Importantly, GSCs are more radioresistant in vivo than in vitro, 

indicating that cellular microenvironment plays a critical role in supporting this behavior 

[63,64]. In situations where GSCs are depleted, the niche may induce dedifferentiation of 

remaining GBM cells to maintain the stem fraction. This bidirectional differentiation 

(interconversion) indicates that the GSC state is plastic and may be induced as a result of 

microenvironmental, epigenetic, or treatment responses [74,79,137,217]. Thus, through 

the functional treatment resistance and stem-plasticity provided by the 

microenvironment GSCs are unimpeded to maintain the hierarchical structure of GBM. 

 Designing reliable assays to measure microenvironmental regulation of stem 

phenotypes and radioresistance is challenging in standard in vitro cultures, particularly 

when comparing stem and non-stem tumor cell populations, which requires divergent 

growth conditions (serum vs. serum free; growth factor addition; attached vs. suspension 

culture) [62]. Importantly, standard conditions for culturing GSCs do not permit 

selective manipulation of the microenvironment. To address some of the challenges in 

traditional cell culture approaches, we recently developed scaffolds composed of poly(N-

isopropylacrylamide-co-Jeffamine M-1000 acrylamide) (PNJ) as an in vitro model of the 

GSC microenvironment [2]. We observed that patient derived GBM cultured within the 

scaffolds demonstrated enriched self-renewal, stem marker expression, and decreased 

radiation sensitivity compared to neurosphere cultures [2].  

Here, using two patient-derived models of GBM, our goal was to define the 

capacity for PNJ microenvironments to regulate GSC-phenotypes, including self-

renewal, expression of stem markers, and radioresistance. We hypothesized that cell 

behaviors within PNJ scaffolds would be dynamically regulated as a function of the 

biophysical scaffold environment as well as cell type. This enabled identification of 

molecular mechanisms, specifically HIF2α, that are activated in PNJ scaffolds and model 
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in vivo niche regulation of GSCs. Furthermore, we provide evidence for radioresistance 

and stem plasticity in PNJ scaffolds, which indicates that this platform is relevant for 

studying treatment resistance in GBM, and may facilitate our long-term goal of 

identifying targets for disrupting niche regulation of GSCs. 

4.3. Methods 

 Materials 

Chemicals were reagent grade and purchased from Sigma Aldrich (St. Louis, MO, 

USA) unless otherwise stated. Cell culture reagents were purchased from Thermo Fisher 

Scientific (Waltham, MA, USA) unless otherwise stated. N-isopropylacrylamide 

(NIPAAm) purchased from Tokyo Chemical Company (Portland, OR, USA) was purified 

by recrystallization from hexane, while 2,2’-Azobisisobutyronitrile (AIBN) was purified 

by recrystallization from methanol. Jeffamine® M-1000 was generously donated by the 

Huntsman Corporation (Salt Lake City, UT, USA). Jeffamine® M-1000 acrylamide 

(JAAm) was synthesized as previously described [180,181]. 

 Polymer Synthesis 

Poly(N-isopropylacrylamide-co-Jeffamine® M-1000 acrylamide) or PNJ 

copolymers were synthesized as previously described [1,2,180] with copolymer mass feed 

ratios of NIPAAm:JAAm 90:10 (PNJ10) or 80:20 (PNJ20). PNJ copolymers were 

purified by dialysis (3,500 MWCO) against diH2O at 4°C and sterilized with ethylene 

oxide. Syntheses were confirmed by 1H NMR in D2O (400 MHz Varian Inova, Agilent 

Technologies, Santa Clara, CA, USA). 

 Patient Derived GSC Cultures 

Patient tissue samples were acquired from the Biobank Core Facility at St. 

Joseph’s Hospital and Medical Center and Barrow Neurological Institute (BNI) 

(Phoenix, AZ, USA). All samples were collected and transmitted according to the 
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Biobank Institutional Review Board’s approved protocol. Two low-passage patient-

derived GSC cell lines, GB3 and GB7, were established from primary GBM tumors 

surgically resected at BNI. Both lines were characterized as human GSC models with 

GB3, classified as a proneural GBM subtype, and GB7 was classified as a classical GBM 

subtype (detailed characterization is provided in prior publications; GB3: [2,204,205]; 

GB7: [2,204]). GSCs were propagated in standard neurosphere conditions for less than 

20 passages. Briefly cells were cultured in DMEM/F12 media supplemented with B27, 

N2 and penicillin/streptomycin in poly(hydroxyethylmethacrylate) (polyHEMA) coated 

plates. Cultures were supplemented with 20 ng/mL of epidermal growth factor (EGF) 

and basic fibroblast growth factor (bFGF) (Merk Millipore, Billerica, MA, USA) every 2-3 

days.  

 PNJ Scaffold Cultures 

PNJ copolymer was dissolved at low (5 wt/v%) and high (10 wt/v%) 

concentrations in GSC media overnight at 4°C generating 4 separate PNJ solutions: 

PNJ10Low, PNJ10High, PNJ20Low, PNJ20High. GSC neurosphere cultures were dissociated 

with Accutase to a single cell suspension, counted (Cellometer Mini, Nexcelom, 

Lawrence, MA, USA), and diluted in PNJ-media solution at room temperature (GB3: 

500k cells/mL; GB7: 250k cells/mL). Cultures were incubated at 37° C to crosslink PNJ 

scaffolds and encapsulate cells in 3D culture. After 48 hours, an equal volume of warm 

neurosphere media (no PNJ) was added above the scaffold. Every 2-3 days, scaffolds 

were supplemented with EGF and bFGF (20 ng/mL) after being solubilized at room 

temperature to allow for nutrient distribution. At confluence (7 - 14 days), PNJ scaffolds 

were diluted in cold PBS, and centrifuged to recover live cells.  Neurosphere cultures 

were utilized as controls for all comparisons of scaffold growth characteristics. 
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 EGF Diffusion 

Low and high concentration PNJ solutions were added in 10 µL aliquots to a 

sample chamber on a 3D gel chemotaxis slide (µ-Slide Chemotaxis 3D, IBIDI, 

Martinsried, Germany) and heated to 37°C to form scaffolds. PBS + 1% BSA was added 

to empty channels on either side of the newly formed scaffold and the slides were 

equilibrated at 37°C overnight. One channel was replaced with EGF in PBS + 1% BSA to 

set up a growth factor gradient such that Csource(0) = 4 ng/mL and Csink(0) = 0 ng/mL . 

Both the source and sink channels were collected at 48, 96, or 120 hrs. EGF 

concentration was measured using a sandwich ELISA (DuoSet, R&D Systems, 

Minneapolis, MN, USA) in comparison to EGF controls. The diffusion coefficient was 

calculated using the following relationship for diffusion across a diaphragm [218]: 

𝐷 =
1

𝛽𝑡
ln(

𝐶𝑠𝑜𝑢𝑟𝑐𝑒(0) − 𝐶𝑠𝑖𝑛𝑘(0)

𝐶𝑠𝑜𝑢𝑟𝑐𝑒(𝑡) − 𝐶𝑠𝑖𝑛𝑘(𝑡)
) 

Where Csource and Csink are the EGF concentrations in the source and sink 

chambers at a given time t; As is the scaffold cross-sectional area; Ws is the scaffold 

width; Vsource and Vsink are the volume of the source and sink chambers; t is the time at 

measurement; and 

𝛽 =
𝐴𝑆

𝑊𝑆
 (

1

𝑉𝑠𝑜𝑢𝑟𝑐𝑒
+

1

𝑉𝑠𝑖𝑛𝑘
) 

 Stem Cell Frequency 

Stem cell frequency was determined using a limiting dilution assay as previously 

described [2]. GSCs were collected from low and high concentration PNJ scaffolds as 

well as neurosphere conditions, dissociated with Accutase, and cultured at low initial 

densities (1 – 100 cells/well) in polyHEMA coated 96 well plates. Plates were analyzed 

with brightfield microscopy (Zeiss Axio Observer A1) at 7 days to determine sphere 

formation at each initial density; wells negative for sphere formation (% nonresponsive) 
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were counted. This experiment was replicated 3 times with n = 24 samples for each 

initial cell density. Data was analyzed using the Extreme Limiting Dilution Analysis 

(ELDA) software to quantify differences in stem cell frequency across culture conditions 

using a chi-squared test for pairwise differences [206]. Statistical significance is reported 

for p < 0.05. 

 Radiosensitivity 

GSCs in PNJ scaffolds and neurosphere conditions were cultured for 7-8 days 

and were treated with 2 Gy ionizing radiation (RS 2000, RAD Source, Suwanee, GA, 

USA). Cells were collected as described in section 4.3.4 for TUNEL and immunostaining 

staining 48 hrs after radiation.   

 Immunofluorescence Staining 

GSCs were collected from neurosphere or PNJ scaffold conditions and processed 

for immunofluorescence staining using an established protocol [219]. Briefly, cells were 

incubated in 4% paraformaldehyde for 3 hrs at 4°C, dehydrated in 30% sucrose for 30 

min at 25°C, resuspended in OCT, and frozen at -80°C. Samples were sectioned at 5 µm, 

collected on gelatin coated slides, and stored at -80°C until staining. Slides were 

defrosted at room temperature (5-10 min) and samples were fixed to the gelatin coating 

with 4% paraformaldehyde (5 min). Antigen retrieval was performed by heating samples 

in 10 mM Sodium Citrate buffer (pH 6.0) for 30 minutes at 80°C. Samples were blocked 

for 30 min (10% Normal Goat Serum, 0.1 M glycine, 0.3% Triton-X 100 in PBS). Primary 

antibodies were incubated overnight at 4°C (Table 4.1; 10% Normal Goat Serum, 0.3% 

Triton-X 100 in PBS), and secondary antibodies were incubated for 45 minutes at 25°C 

(Table 4.1; 10% Normal Goat Serum, 0.3% Triton-X 100 in PBS). Cells were 

counterstained with DAPI. Samples were imaged with an inverted fluorescence confocal 
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microscope (Zeiss LSM 710 Axio Observer Z1) with imaging settings applied uniformly 

across conditions to enable direct comparison of staining results.  

 TUNEL Assay 

Irradiated GSCs were processed in the same manner as for immunofluorescence 

staining. Fragmented DNA was labeled via TUNEL staining (DeadEnd Fluormetric 

TUNEL System, Promega, Fitchburg, WI, USA) to label apoptotic cells 48 hrs after 

radiation. Cells were counterstained with DAPI.  

 Image Analysis 

Image analysis of immunostaining and TUNEL staining was performed in 

ImageJ (NIH). For each image, the area of positive staining was measured and 

normalized to DAPI area, which enabled quantitative comparison across different 

culture conditions. Statistical testing was performed in Prism 5 (GraphPad) using a one-

way ANOVA with Bonferroni multiple comparisons post-test. Statistical significance is 

reported for p < 0.05. 

4.4. Results 

 Biophysical Characterization 

EGF diffusion was measured across PNJ scaffolds in a diaphragm diffusion cell, 

and compared to diffusion through water, which was measured at D = 3.0E-6 cm2/s 

using this experimental setup. For the tested scaffolds, both JAAm content and total 

polymer concentration altered the diffusion coefficient (Figure 4.1). The JAAm content 

of PNJ20 scaffolds led to an increase in the diffusion coefficient compared to PNJ10 

scaffolds as a result of greater equilibrium water content enabling better penetration and 

transfer of the growth factor [180]. In the low concentration scaffolds the diffusion 

coefficients were measured at D = 1.28E-6 cm2/s in PNJ10Low and D = 2.70E-6 cm2/s in 

PNJ20Low. High concentration scaffolds predictably effected a decrease in EGF diffusion, 
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presumably as a result of the increased polymer content and decreased equilibrium 

water content. These scaffolds yielded diffusion coefficients of D = 6.43E-7 cm2/s in 

PNJ10High and D = 1.67E-6 cm2/s in PNJ20High. These values are within range of the 

diffusion of EGF through brain tissue, which has been reported at D = 5.18 ± 0.16 E-7 

cm2/s [220]. These results indicate that all tested scaffold conditions retarded the rate of 

diffusion of a model growth factor relative to diffusion through water, such that scaffold 

cultures are likely to maintain higher concentrations of cell-derived and exogenous 

biomolecules. Along with these distinct diffusion profiles, PNJ scaffolds possessed 

composition dependent stiffness that was described in our previous work (PNJ10Low
 G’ = 

325 Pa; PNJ10High G’ = 972 Pa; PNJ20Low G’ = 153 Pa; PNJ20High G’ = 617 Pa) [2]. The 

relationship between composition, stiffness and diffusion is described in Figure 4.2. 

From this, we can qualitatively describe scaffold PNJ concentration (low vs. high) in 

terms of the scaffold stiffness (low vs. high), and JAAm concentration (10 vs. 20) in 

terms of diffusion (low vs. high). 

 Stem Cell Frequency 

An in vitro limiting dilution assay was used to measure self-renewal capacity, and 

we identified significant differences in self-renewal based on scaffold conditions and cell-

type in these assays (Figure 4.3). We have previously reported that GB3 and GB7 cells 

exhibited a significant increase in stem cell frequency when cultured in low stiffness 

PNJ10 and PNJ20 scaffolds [2].  Here, we observed that culture in high stiffness PNJ 

scaffolds significantly decreased GB3 self-renewal compared to neurosphere conditions 

(p < 0.01, Figure 4.3A, B). JAAm content did not produce a measurable effect in either 

high or low stiffness conditions. Thus, total polymer content was the primary biophysical 

factor in regulating GB3 self-renewal. GB7 cells produced an opposing response to 

changing scaffold conditions. In this cell line, both high and low stiffness scaffolds 
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produced a significant increase in self-renewal compared to neurosphere conditions (p < 

0.01, Figure 4.3C, D). Furthermore, PNJ20High scaffolds elicited a significant increase in 

self-renewal compared to all other scaffold conditions (p < 0.01).  Therefore, the 

combination of high PNJ and JAAm content were significant factors in promoting GB7 

self-renewal. Altogether, these data suggest that GSC self-renewal is affected by both 

PNJ and JAAm content through mechanisms that may be differentially regulated 

according to cell type.  

 Functional Radiation Response  

Following irradiation, scaffold and neurosphere grown GSCs were analyzed for 

specific functional responses.  First, a TUNEL assay was used to label cells in late-stage 

apoptosis (Figs. 4.4A, 4.5A). GB3 apoptosis was significantly reduced (p < 0.05) in 

PNJ10Low and PNJ20Low scaffolds compared to neurosphere conditions (Figure 4.4B). 

However, GSCs cultured in PNJ10High and PNJ20High scaffolds did not produce a 

significant change in apoptosis compared to controls. PNJ scaffolds also altered the 

apoptotic fraction of GB7 cells following radiation. Here, we observed a significant 

decrease (p < 0.01) in apoptotic cells in PNJ10High, PNJ20Low, and PNJ20High scaffolds 

compared to neurosphere conditions (Figure 4.5B).  Although GSCs cultured in PNJ10Low 

scaffolds showed fewer apoptotic cells than neurosphere culture, differences were not 

significant.  

In parallel to apoptosis, we also measured functional markers of DNA damage 

(γH2AX) and proliferation (Ki67). Both GB3 (Figure 4.4A, C) and GB7 (Figure 4.5A, C) 

showed relatively little activation of DNA damage repair as identified by γH2AX 

intranuclear foci. The one exception to this was GB3 cells cultured in PNJ20High scaffolds 

which showed an increase in γH2AX, though it was not significantly different from 
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neurosphere cultures. All other scaffold conditions tended to show decreased γH2AX 

activity in both cell lines, however, these differences were not statistically significant.  

GSC proliferation, as identified by the intranuclear marker Ki67, did not 

significantly change following radiation in either GB3 (Figure 4.4A, D) or GB7 (Figure 

4.5A, D) PNJ scaffold cultured cells compared to controls. GB3 cells in high 

concentration scaffolds show greater proliferation than neurosphere and low 

concentration scaffold conditions. Conversely, GB7 cells in low concentration scaffolds, 

particularly PNJ20Low, showed greater proliferation than both neurosphere and high 

concentration scaffolds. While overall, GB7 cells showed lower overall Ki67 activity 

following radiation compared to GB3.  

The results of these functional assays following radiation indicate that scaffold 

conditions provide radioprotection for GSCs in vitro. Conditions that enriched the self-

renewing population also limited radiation-induced cell death. Additionally, there was 

minimal evidence of DNA damage and no significant differences in proliferation across 

the culture conditions at 48 hrs post-treatment.  

 GSC Marker Expression 

Based on the impact PNJ cultures have on GSC self-renewal and functional 

radiation response, we investigated the expression of GSC markers (NESTIN, HIF2α) to 

further probe for potential changes in stem regulation. First, in untreated cultures, GB3 

cells in PNJ10Low, PNJ20Low and neurosphere conditions all showed high expression of 

NESTIN (Figure 4.6A). However, PNJ10High and PNJ20High cultures, which maintained 

the fewest self-renewing cells, elicited a significant decrease in NESTIN (Figure 4.6C) 

with few spheres showing expression. After radiation treatment, PNJ10Low and PNJ20Low 

cultures maintained NESTIN expression. In contrast, NESTIN expression decreased in 

neurosphere cultures with few cells showing strong expression. Notably, NESTIN 
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expression increased in radiated PNJ10High, and significantly increased (p < 0.01) in 

PNJ20High conditions compared to untreated conditions (Figure 4.6C). Moreover, all 

radiated scaffold conditions produced increased NESTIN expression compared to 

radiated neurosphere cultures, but these differences were not significant. 

Expression of the transcription factor HIF2α was not observed in neurosphere 

conditions. However, HIF2a was stabilized in untreated PNJ scaffold GB3 cultures 

(Figure 4.6B). Expression was significantly increased (p < 0.01) in PNJ10High cultures 

compared to neurosphere, while PNJ10Low cultures also exhibited relatively high 

expression (Figure 4.6D). Moreover, strong HIF2α expression was identified in a subset 

of cells in each of the 3D culture conditions (Figure 4.6B). In response to radiation, 

PNJ20High scaffolds produced higher expression of HIF2α, while expression significantly 

decreased (p < 0.05) in PNJ10High cultures, and also decreased in PNJ10Low and 

PNJ20Low though not significantly. Importantly, HIF2α remained stabilized and strongly 

expressed in a subset of GSCs in all PNJ culture conditions following radiation. 

Neurosphere cultures exhibited a slight increase in expression following radiation that 

was not statistically significant. Moreover, HIF2α expression in neurosphere conditions 

was never comparable to the high levels of expression observed in scaffold conditions.  

In untreated GB7 cultures, NESTIN expression was ubiquitous across all tested 

conditions (Figure 4.7A). Therefore, unlike GB3, NESTIN expression was not directly 

reflective of the self-renewal enrichment provided by PNJ scaffolds. Radiation treatment 

elucidated a significant increase in NESTIN expression in both PNJ10Low (p < 0.05) and 

PNJ10High (p < 0.01) compared to radiated neurosphere cultures; PNJ10High NESTIN 

expression was also significantly increased (p < 0.05) compared to untreated PNJ10High 

culture (Figure 4.7C). NESTIN expression increased in radiated PNJ20Low and PNJ20High 

scaffolds, and decreased in matched neurosphere cultures compared to untreated 
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conditions but differences were not significant. Similar to GB3, NESTIN expression 

following radiation was lowest in neurosphere conditions.   

Strong and consistent expression of HIF2α was again observed for PNJ scaffold 

cultured GB7 cells, while neurosphere cultures produced sporadic HIF2α stabilization 

(Figure 4.7B). PNJ20High scaffolds elicited significantly increased HIF2α expression 

compared to neurosphere culture, while other scaffold conditions producing comparable 

expression levels. Similar to GB3, a subset of GB7 cells in PNJ scaffolds consistently 

exhibited strong expression of this transcription factor. Here, HIF2α expression was 

reflective of GB7 self-renewal. Radiation treatment produced an increase in HIF2α in 

PNJ10Low cultures, and a decrease in both PNJ10High, PNJ20Low, and PNJ20High scaffolds, 

although differences were not significant. Neurosphere cultures showed a slight increase 

in HIF2α in response to radiation, but again, was not significant or strongly expressed in 

any cells. Radiation thus did not eradicate the HIF2α positive population of GSCs.  

A complete summary showing quantitative comparisons of GB3 and GB7 self-

renewal capacity, expression of NESTIN and HIF2α, along with their response to 

radiation is provided in Tables 4.2 and 4.3.  

4.5. Discussion 

The GSC population consists of highly tumorigenic, self-renewing cells [39] 

residing in niche microenvironments [51] that are resistant to conventional 

chemotherapy [57] and radiation [56]. GSC niche microenvironments are dynamic 

regulatory structures that provide integral support for both self-renewal and 

radioresistance [51,62–64,74,85,214]. In addition, these structures also enable stem-

plasticity by directing the dedifferentiation of neoplastic cells to acquire the GSC 

phenotype [74]. Following standard of care treatments, recurrent GBM tumors have 

been shown by histology to be enriched with GSCs compared to matched primary tumor 
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samples [57]. As a result, these defining features collectively suggest GSCs play a 

prominent role in driving near universal rates of tumor recurrence and a 

correspondingly low median patient survival.  

GSC niches may contribute to radioresistance through mechanisms that include 

interactions with the ECM [168,221], soluble signaling factors [56,62,214,222–224], and 

hypoxia [36,72,74,76,77,88,225,226]. Of these components, hypoxia may provide the 

strongest direct and indirect protection against radiation [87]. Mechanistically, radiation 

generates free radicals such as reactive oxygen species (ROS) which subsequently induce 

double strand break DNA damage.  In oxygen restricted conditions, the capacity for ROS 

generation is reduced thereby protecting cells from DNA damage. In addition, GSCs 

respond to decreases in oxygen through activation of hypoxia inducible transcription 

factors 1α (HIF1α) and 2α (HIF2α). HIF1α is stabilized under conditions of chronic 

hypoxia, while HIF2α acts in an early response to hypoxia and can be stabilized in 

normoxic conditions, as well [36,72]. Clinically, expression of HIF2α, but not HIF1α, is 

correlated with poor prognosis in GBM [78], and, experimentally, HIF2a has been shown 

to promote stem plasticity [74,79]. Furthermore, activation of these transcription factors 

may decrease GBM radiation sensitivity through downstream activation of HIF target 

genes that include both stem and survival pathways [72,74,88,89].  

Isolating the contribution of individual GSC-niche interactions in vivo is 

generally not feasible, given the complex landscape of the brain. Therefore, modeling the 

three-dimensional (3D) GSC microenvironment in vitro provides opportunities for 

separating specific components of stem maintenance. Recently, we developed PNJ 

copolymer scaffolds as 3D models of the GSC microenvironment that are capable of 

enriching stem phenotypes in vitro [2].  This platform is advantageous for a number of 

reasons, including that it is thermally reversible, mechanically tunable, and biologically 
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inert. These feature enable facile recollection of cells under mild temperature stimulus, 

and manipulation of microenvironmental parameters to study cell behaviors. 

Additionally, we demonstrated that these materials actively enrich GSCs compared to 

conventional neurosphere conditions, and proposed that this enrichment could present a 

model of stem maintenance in the nutrient rich perivascular niche [1].  

Here, we expand on our prior work, designing PNJ microenvironments to study 

mechanisms that govern GSC response to radiation in 3D. Despite the functional 

importance of the microenvironment to treatment response, relatively few studies have 

investigated GSC contributions to radiation resistance using a 3D culture paradigm. 

Recently, Hubert et al. reported the development of large heterogeneous GBM organoids 

from GSCs cultured in Matrigel scaffolds with constant mechanical agitation. While 

these constructs decreased self-renewal overall, GSCs identified within the organoids 

exhibited little sensitivity to radiation induced apoptosis [159]. In our prior work, we 

determined that cells irradiated within PNJ microenvironments showed greater viability 

than neurosphere cultured cells, after the cells were replated; these assays did not allow 

us to probe cell behavior during recovery in a 3D environment [2].  

In vivo, the tumor microenvironment ECM sequesters soluble signaling factors 

and serves as a depot for GSCs [34,62]. Mitogenic growth factors, such as EGF and FGF, 

are potent regulators of GSC phenotypes and requisite for stem maintenance in vitro 

[44]. Additionally, soluble factors may promote GBM radioresistance via growth factor 

(EGF/bFGF [56,62], EGFR [211,212], TGFβ/TGFβR1 [214], IGF-1/IGF1R [222]) and 

cytokine signaling (SDF-1/CXCR4 [223,224]). We previously observed that PNJ 

scaffolds increased expression of EGFR in both GB3 and GB7 cells [2], and in separate 

studies, retained ovalbumin protein in sink diffusion conditions [180]. Biomolecules 

encapsulated within PNIPAAm homopolymer are poorly retained due to water expulsion 
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in the gel state. However, incorporation of the hydrophilic comonomer Jeffamine limits 

water expulsion; we thus predicted that the movement of biomolecules through PNJ 

scaffolds would be hindered relative to pure water, enabling PNJ microenvironments to 

effectively sequester signaling molecules to stimulate autocrine/paracrine signaling 

([180] Figure 7). To test this hypothesis, we measured the diffusion of EGF (6.6 kDa) as a 

model for growth factor diffusion. Our measurement of EGF diffusion through water (D 

= 3.0E-6 cm2/s) was comparable to reported values, and is nearly an order of magnitude 

greater than the reported diffusion coefficient through brain tissue (D = 5.18E-7 cm2/s)  

[220]. Predictably, each of the PNJ scaffold formulations retarded growth factor 

diffusion compared to diffusion through water, which was used to effectively model 

growth factor mobility in neurosphere conditions (Figure 4.1). PNJ concentration and 

JAAm content independently produce a measureable effect on both EGF diffusion and 

scaffold stiffness (measured by the storage modulus (G’); Figure 4.2).  Increasing JAAm 

content effected an increase in diffusion and a decrease in G’, while increasing PNJ 

concentration decreased diffusion and increased G’. This characterization indicates that 

these 4 PNJ scaffold formulations cover the reported stiffness of brain tissue (100-1,000 

Pa [129,154,155]), and slow growth factor diffusion toward more physiological levels 

compared to standard culture conditions [220].  

Having generated scaffolds to present distinct microenvironments, we next 

sought to study how these microenvironments would impact GSC behaviors. 

Microenvironmental stiffness and chemistry have been shown to regulate the migration 

and invasive capacity of GSCs in vitro [32,115,126,156,157], while growth factor 

accessibility is known, particularly in neurosphere cultures, to be critical in maintaining 

the stem fraction [144,145].  Furthermore, self-renewing NSCs were reported by Saha et 

al. to be preferentially enriched on substrates with stiffness ≥ 100 Pa [129]. Therefore, 
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these different microenvironmental characteristics may each independently regulate 

GSC behaviors in vitro, and to our knowledge, GSC self-renewal capacity has not been 

investigated as a function of the biophysical microenvironment. Our prior work 

indicated that both GB3 and GB7 exhibited significantly increased populations of self-

renewing cells in low stiffness PNJ10 and PNJ20 scaffolds [2]. Here, we expanded the 

number of scaffold conditions tested and observed that GB3 cells cultured in high 

stiffness scaffolds showed a significant decrease in the self-renewing population (Figure 

4.3B). In contrast, GB7 demonstrated a significant increase in self-renewing cells in both 

low and high stiffness scaffolds, with a further significant increase in the high 

stiffness/high diffusion scaffolds (PNJ20High) compared to neurosphere culture (Figure 

4.3D). Comparison of GB3 and GB7 data suggest that regulation of self-renewal by the 

physical microenvironmental is dependent on cell-type. Grundy et al. described subtype-

specific regulation of GSC migration where neural subtype GSCs migrated efficiently on 

soft substrates where mesenchymal GSCs were poorly motile [157]. In the present study, 

GB3 cells belong to the proneural classification, which phenotypically best represent an 

oligodendrocyte lineage [11]; accordingly, Jagielska et al. reported that oligodendrocyte 

precursors are better maintained on soft (100 Pa) substrates but show increased 

differentiation on substrates with greater stiffness [227]. This may provide a possible 

mechanism for the decline in GB3 self-renewal in high concentration scaffolds. GB7 

cells, on the other hand, are characterized as classical subtype, and self-renewing cells 

showed affinity for each of the tested scaffold conditions. The classical subtype most 

directly corresponds to an astrocytic lineage [11] which prefer stiff (> 1 kPa) substrates 

[129,228]. However, both soft and stiff microenvironments enriched GB7 self-renewal, 

and this behavior showed dependence on a balance of microenvironmental stiffness and 

diffusion properties that was not observed in GB3. Thus, our data are suggestive that the 
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observed behaviors may be related to subtype characteristics of their originating tumor, 

although additional work will be needed to fully define these subtype differences. 

Importantly, this highlights the critical need to utilize multiple patient-derived models 

for identifying mechanisms of microenvironmental regulation.  

Since treatment resistance is considered a characteristic of self-renewing GSCs 

and is actively supported by features of the in vivo tumor microenvironment [51,62–

64,74,214], we investigated PNJ scaffolds for their ability to model radio-protection in 

vitro. Here, we observed decreased radiation induced apoptosis in GB3 and GB7 cells 

cultured in scaffolds that enriched the self-renewal capacity (Tables 4.2, 4.3). For GB3, 

we also observed that high stiffness PNJ20 scaffolds produced a slight increase in 

apoptotic cells compared neurosphere conditions, while high stiffness PNJ10 scaffolds 

tended to show a slight decrease in apoptosis, although these differences were not 

statistically significant. Interestingly, these conditions appear to provide a level of radio-

protection that extended beyond the pool of self-renewing cells. Neurosphere conditions 

maintain approximately twice as many self-renewing cells compared to these scaffolds, 

but did not provide a measurable benefit to cell viability. Thus, one significant 

observation from this work is that radiation resistance exhibited by cells was not 

exclusively a function of the self-renewing fraction; these data demonstrate that other 

microenvironmental variables must play a role. 

In considering cellular responses to radiation, we also examined expression of 

γH2AX which marks DNA double strand breaks and leads to activation of DNA repair 

machinery [229]. Phosphorylation of this protein occurs within minutes of DNA damage, 

is dephosphorylated following repair, and prolonged activation (>24 hrs) is a precursor 

to cell death [64,230]. Although we did not observe statistically significant activation of 

γH2AX in any of the tested culture conditions for either cell line following irradiation, 
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this was not necessarily surprising given the 48 hr recovery period following treatment. 

Importantly, γH2AX activation tended to be higher in cultures retaining the least clonal 

populations (GB3: neurosphere, PNJ10High, PNJ20High; GB7: neurosphere). As a final 

functional marker, we measured proliferation via presence of intranuclear Ki67. In GB3, 

high stiffness PNJ scaffolds tended to produce more proliferative cells than neurosphere 

conditions, while in GB7, low stiffness PNJ scaffolds tended to maintain the most 

proliferative cells. Mildly proliferative behaviors following treatment may be indicative of 

selection toward a more malignant phenotype, and suggest that these conditions may 

provide a model for investigating tumorigenicity following radiation.  

Expression of GSC marker proteins NESTIN and HIF2α was measured using 

immunofluorescence to identify molecular level changes in stem regulation that may 

contribute to radio-response.  Immunofluorescence was chosen for the ability to detect 

differences in intra-sphere protein spatial distribution (a concern in large neurospheres 

[144,219]), and to better identify expression patterns in small cell fractions. NESTIN 

marks the self-renewing population of NSCs [209]; expression in GBM identifies the 

stem fraction [38,39] is strongly correlated to poor clinical prognosis, and is observed in 

invasive cells in vivo [58]. HIF2α has been reported as a GSC selective biomarker, and is 

instrumental to tumor angiogenesis via downstream production of VEGF [72]. Although 

stabilization of this transcription factor is associated with hypoxia, expression has been 

observed in GSCs residing in perivascular niches, acidic microenvironments, and also 

importantly, in normoxic in vitro culture conditions [36,72,79]. Furthermore, Li et al. 

reported that orthotopic GBM tumors initiated by GSCs with genetic knockdown of 

HIF2α exhibited histological expression of the transcription factor [72]. This indicates 

that the in vivo microenvironment selected GSCs that were not efficiently targeted by 

HIF2α knockdown. Indeed, when GSCs were purified for HIF2α knockdown, they were 
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unable to form tumors thus suggesting a requisite function for in vivo tumorigenesis 

[72]. Therefore, HIF2α expression has significant implications beyond hypoxia, and 

appears to be a key factor that is dynamically regulated the tumor microenvironment. 

Outside of functions in tumorigenicity and angiogenesis, HIF2α also has a documented 

role in promoting GBM stem-plasticity [74,79]. Downstream target genes of HIF2α 

include Oct4, c-Myc, and Nanog all of which are critical to the development of induced 

pluripotent stem cells (iPSCs) [231].  

GB3 cells exhibited NESTIN expression that closely mirrored the population of 

self-renewing cells (Table 4.2). Similar patterns of near ubiquitous NESTIN expression 

were observed in low stiffness scaffolds, as well as in neurosphere cultures, while 

expression was abrogated in high stiffness scaffolds (Figure 4.6a). Following radiation, 

the NESTIN expression profile was significantly altered. While low stiffness scaffolds 

maintained high expression, neurosphere conditions exhibited decreased NESTIN, and 

notably, high stiffness scaffolds increased NESTIN expression (Figure 4.6C). The high 

stiffness conditions are particularly intriguing as these conditions were detrimental to 

self-renewal. Therefore, increased NESTIN in these conditions provides evidence that 

the PNJ microenvironment may promote stem plasticity in response to radiation. 

Expression of HIF2α was not predictive of GB3 self-renewal, as high stiffness PNJ10 

scaffolds exhibited the highest expression and low self-renewal (Table 4.2). However, 

HIF2α did appear to decrease the radiosensitivity of cells in high stiffness PNJ10 

scaffolds, particularly compared to high stiffness PNJ20 scaffolds, which maintained the 

lowest HIF2α expression in untreated cultures, and provided the least protection from 

radiation induced apoptosis. Moreover, high stiffness PNJ20 scaffolds showed the 

strongest increase in HIF2α expression in response to radiation again providing 

evidence that mechanistically suggests stem plasticity in these conditions. 
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In contrast to GB3, GB7 cultures showed ubiquitous expression of NESTIN in all 

culture conditions, and NESTIN was not directly predictive of self-renewal status (Table 

4.3). In response to radiation, scaffold cultured cells maintained (PNJ20Low, PNJ20High) 

or were enriched (PNJ10Low, PNJ10High) in NESTIN expressing cells, while neurosphere 

cultures exhibited a slight decrease in expression. The increase in NESTIN expression 

may again be indicative of further enrichment of the stem population as a component of 

the radiation response. Unlike NESTIN, HIF2α expression in GB7 was a better predictor 

of self-renewal with high stiffness PNJ20 cultures showing the strongest expression in 

untreated conditions. Similarly, high expression of HIF2α correlated with decreased 

radiation induced apoptosis. Moreover, low stiffness PNJ10 cultures, which were the 

most radiosensitive scaffold conditions, also exhibited the lowest expression of HIF2α in 

untreated cultures. Yet in response to radiation, these conditions exhibited the strongest 

increase of the transcription factor, again possibly suggesting a plastic response (Table 

4.3). We also examined expression of EGFR, FAK, AKT, and pAKT in both GB3 and GB7 

cells; while variations in expression were observed between scaffold and neurosphere 

cultures, the data did not directly correlate to GSC self-renewal or radiosensitivity 

(results not shown). 

GSC plasticity is a critically important mechanism for maintenance of the stem 

cell pool and development of tumor heterogeneity in vivo [137]. Stem plasticity or 

enrichment of the stem fraction has been described both as a response to radiation 

[56,138,216], and separately as a function of HIF2α signaling induced by the tumor 

microenvironment [75,79]. Here, we described that PNJ microenvironments consistently 

maintained a population of HIF2α expressing cells even in conditions where the fraction 

of self-renewing cells was depleted.  Increased expression of NESTIN following radiation 

provides evidence for dynamic regulation of stem phenotypes in PNJ cultures. Given the 
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role of HIF2α in maintaining the stem fraction, we hypothesize that this response is 

mediated by the activity of this transcription factor. To our knowledge, the contribution 

of HIF2α to promoting GSC radioresistance and stem plasticity has not been described 

in any 3D models of the GSC microenvironment. The critical importance of HIF2α in 

GSC tumorigenicity and stem maintenance indicates that PNJ scaffolds provide a unique 

opportunity for studying microenvironmental regulation of this transcription factor in 

vitro. 

4.6. Conclusions 

In conclusion, we developed PNJ scaffolds as a tunable biomaterial platform for 

identification of microenvironmental regulation of stem phenotypes in patient-derived 

GBM. We observed PNJ scaffolds provide microenvironmental regulation of self-renewal 

that was dependent on the physical properties of the scaffold and the cell-type. 

Enhancement of paracrine/autocrine signaling or activation of mechanosensation 

pathways are possible mechanisms supporting this behavior and will require further 

study. Scaffold cultures were also radio-protective as they decreased radiation induced 

cell death in two distinct GSC models. Additionally, in response to radiation, all scaffold 

conditions maintained increased expression of NESTIN and HIF2α compared to 

neurosphere cultures, with selected conditions providing evidence of stem-plasticity. 

Finally, HIF2α expression was almost exclusively observed in scaffold conditions with 

only rare and sporadic activation in any neurosphere culture. Overall, these data suggest 

that GSC maintenance is fundamentally unique in PNJ scaffolds, thus enabling further 

analysis of the microenvironmental regulation of HIF2α, stem-plasticity, and 

radioresistance.   
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4.7. Figures and Tables 

Table 4.1: List of primary and secondary antibodies used in this study 

Primary 
Antibodies Company Product # Host Dilution 

NESTIN 
Novus 

Biologicals 
NB300-266 Mouse 1:200 

HIF2α Millipore MAB3472 Mouse 1:200 

Ki67 Cell Signaling 9449S Mouse 1:400 

γH2AX Cell Signaling 2577S Rabbit 1:400 

FAK 
Novus 

Biologicals 
NBP1-47494 Mouse 1:200 

pAKT Cell Signaling 4060S Rabbit 1:25 

EGFR Abcam AB52894 Rabbit 1:200 

     

Secondary 
Antibodies Company Product # Host / Isotype Dilution 

Alexa Fluor 488 Thermo Fisher A21121 
Goat anti-Mouse 

IgG1 
1:500 

Alexa Fluor 488 Thermo Fisher A21151 
Goat anti-Mouse 

IgG3 
1:500 

Alexa Fluor 568 Thermo Fisher A11011 
Goat anti-Rabbit 

IgG 
1:500 
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Figure 4.1: Diffusion coefficient of EGF in various conditions. EGF diffusion was 

measured across a diaphragm diffusion cell with PNJ scaffolds or water separating the 

source and sink chambers [218]. The diffusion of EGF in brain was reported by Thorne et 

al [220]. 

 

Figure 4.2: The relationship between EGF diffusion, shear modulus (stiffness), and the 

composition of PNJ scaffolds. (Left) These PNJ scaffold formulations effectively 

represent the shear modulus range reported for brain tissue [129,154,155], while also 

slowing EGF diffusion toward more physiological levels compared to fully liquid culture. 

(Right) Increasing JAAm leads to increased rates of diffusion, and increasing the total 

polymer content effects an increase in scaffold stiffness (shear modulus).  
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Figure 4.3: GSC self-renewal measured in response to Neurosphere or PNJ scaffold 

culture conditions. (A,B) Using an in vitro limiting dilution assay, GB3 cells exhibited a 

significant increase in self-renewing cells in low stiffness PNJ scaffolds (** p < 0.01 

compared to neurosphere), and a corresponding significant decrease in self-renewing 

cells in high stiffness PNJ scaffolds (** p < 0.01 compared to neurosphere; ## p < 0.01 

compared to low stiffness scaffold conditions). (C,D) Self-renewing GB7 cells were 
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observed to be significantly increased in all low and high stiffness scaffold conditions 

with PNJ20High scaffolds maintaining significantly higher self-renewal capacity than all 

other conditions (** p < 0.01 compared to neurosphere; ## p < 0.01 compared to other 

scaffold conditions). Percentages of self-renewing cells were calculated and tested for 

statistical differences using the Extreme Limiting Dilution Analysis software [206]. 

 

Figure 4.4: Functional response of GB3 GSCs to radiation treatment. Cultures were 

treated (2 Gy) and given 48 hrs to recover prior to analysis. (A – TUNEL) Apoptotic cells 

were identified via TUNEL staining (red). (B) Low stiffness scaffolds significantly 

reduced radiation induced cellular apoptosis compared to neurosphere culture (* p < 
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0.05). (A – γH2AX) Unrepaired DNA damage was assessed via γH2AX staining (green). 

(C) High stiffness PNJ20 scaffolds showed the highest fraction of cells with DNA 

damage, but differences between conditions were not statistically significant. (A – Ki67) 

Proliferation was measured via Ki67 staining. (D) High stiffness scaffolds produced the 

highest proliferative index, but differences among groups were not statistically 

significant. Quantification (Cell Fraction) is presented as number of staining events 

normalized to the number of cells estimated from nuclear counterstaining (DAPI, scale 

bars = 100 µm). 

 

Figure 4.5: GB7 functional response to radiation treatment. Cultures were treated (2 Gy) 

and given 48 hrs to recover prior to analysis. (A – TUNEL) Apoptotic cells were 
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identified via TUNEL staining (red). (B) Radiation induced cellular apoptosis was 

reduced in PNJ scaffolds, significantly so in PNJ10High, PNJ20Low, and PNJ20High 

conditions compared to neurosphere culture (** p < 0.01). (A – γH2AX) Unrepaired 

DNA damage was assessed via γH2AX staining (green). (C) PNJ scaffolds reduced DNA 

damage, but differences between conditions were not statistically significant. (A – Ki67) 

Proliferation was measured via Ki67 staining. (D) Low stiffness scaffolds produced the 

highest proliferative index, but differences among groups were not statistically 

significant. Quantification (Cell Fraction) is presented as number of staining events 

normalized to the number of cells estimated from nuclear counterstaining (DAPI, scale 

bars = 100 µm). 
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Figure 4.6: GB3 molecular response to radiation in PNJ scaffolds and neurosphere 

conditions. (A) Expression of NESTIN (red) and (B) HIF2α (red) was measured in 

untreated (0 Gy) and radiated (2 Gy) conditions with a 48 hr recovery period following 

treatment. (C) Untreated (0 Gy) high stiffness scaffolds produced significantly decreased 

NESTIN expression compared to neurosphere conditions (* p < 0.05, ** p < 0.01). 

Irradiated (2 Gy) high stiffness scaffolds exhibited increased NESTIN that was 
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statistically significant compared to untreated conditions for PNJ20High. Irradiated (2 

Gy) neurosphere cultures produced the lowest expression of NESTIN, but was not 

significantly different from scaffold conditions. (D) Untreated (0 Gy) PNJ10 scaffolds 

produced the highest expression of HIF2α with PNJ10High scaffold having significantly 

higher expression compared to neurosphere cultures (** p < 0.01). No HIF2α expression 

was identified in untreated neurosphere cultures. In response to radiation treatment (2 

Gy), all PNJ scaffold conditions maintained a subset of HIF2α expressing cells that was 

increased over neurosphere cultures, but PNJ10High cultures exhibited a significant 

decrease in HIF2α expression (* p < 0.05). Quantification (Relative Expression) is 

presented as area of staining (NESTIN or HIF2α) normalized to area of nuclear 

counterstain (DAPI, scale bars = 100 µm). 
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Figure 4.7 GB7 molecular response to radiation in PNJ scaffolds and neurosphere 

conditions. (A) Expression of NESTIN (red) and (B) HIF2α (red) was measured in 

untreated and radiated (2 Gy) conditions with a 48 hr recovery period following 

treatment. (C) Untreated (0 Gy) scaffold and neurosphere conditions produced similar 

expression of NESTIN. Irradiated (2 Gy) PNJ10 scaffolds exhibited increased NESTIN 

that was statistically significant compared to neurosphere cultures (* p < 0.05, ** p < 
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0.01), and for PNJ10High, compared untreated conditions (# p < 0.05). (D) Untreated (0 

Gy) PNJ20High scaffolds produced significantly higher expression of HIF2α compared to 

neurosphere cultures, which did not express HIF2α (** p < 0.01). Irradiated (2 Gy) PNJ 

scaffold cultures all maintained a subset of HIF2α expressing cells, while expression in 

neurosphere cultures was rare. Quantification (Relative Expression) is presented as area 

of staining (NESTIN or HIF2α) normalized to area of nuclear counterstain (DAPI, scale 

bars = 100 µm). 

 

Table 4.2: Summary of GB3 behaviors compared across PNJ scaffolds and neurosphere 

cultures. Color scale is represented with 0% as green, 50% as yellow, and 100% as red. 

Color scales are reset for each individual column other than NESTIN and HIF2α, which 

include both 0 Gy and 2 Gy columns. 

 

Self-
renewing 2 Gy Functional Response NESTIN HIF2α 

Condition 0 Gy TUNEL Ki67 γH2AX 0 Gy 2 Gy 0 Gy 2 Gy 

Neurosphere 0.15 0.37 0.35 0.09 0.44 0.21 0.00 0.00 

PNJ10Low 0.23 0.20 0.24 0.06 0.44 0.37 0.08 0.05 

PNJ10High 0.08 0.24 0.48 0.08 0.01 0.26 0.15 0.05 

PNJ20Low 0.26 0.19 0.33 0.05 0.56 0.38 0.03 0.01 

PNJ20High 0.07 0.42 0.47 0.16 0.02 0.47 0.02 0.08 
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Table 4.3: Summary of GB7 behaviors compared across PNJ scaffolds and neurosphere 

cultures. Color scale is represented with 0% as green, 50% as yellow, and 100% as red. 

Color scales are reset for each individual column other than NESTIN and HIF2α, which 

include both 0 Gy and 2 Gy columns. 

 

Self-
renewing 2 Gy Functional Response NESTIN HIF2α 

Condition 0 Gy TUNEL Ki67 γH2AX 0 Gy 2 Gy 0 Gy 2 Gy 

Neurosphere 0.07 0.23 0.16 0.10 0.63 0.57 0.00 0.01 

PNJ10Low 0.14 0.19 0.20 0.06 0.82 1.03 0.06 0.17 

PNJ10High 0.13 0.12 0.12 0.07 0.63 1.12 0.12 0.09 

PNJ20Low 0.16 0.07 0.36 0.09 0.52 0.64 0.13 0.10 

PNJ20High 0.25 0.10 0.11 0.06 0.60 0.71 0.30 0.17 

 

  



118 
 

  

Conclusions and Future Directions 

This final chapter describes the progress that we achieved in addressing each of 

our individual specific aims, and the opportunities that this work has created for future 

studies. 

5.1. Specific Aim 1:  Design a tunable 3D biomaterial model of the GBM 

tumor microenvironment that enables recollection of live cells under 

mild conditions. 

In the first research chapter, we describe the steps that we took in developing a 

temperature responsive PNJ copolymer as a platform for 3D cell culture. The modular 

chemistry of the biomaterial enabled inclusion of cysteine terminated bioactive peptides, 

which we tested using the cell-adhesion peptide RGD. One of the key components of PNJ 

and PNJ-RGD copolymers is the ability to encapsulate and release cells using a mild 

change in environmental temperature. Characterization of non-adherent PNJ and 

adherent PNJ-RGD scaffold systems indicated that these copolymers remained soluble 

in aqueous solution at room temperature, and each exhibited a lower critical solution 

temperature (LCST) phase transition when heated to body temperature). Additionally, 

the shear modulus of the PNJ-RGD scaffolds was tunable between 40 Pa and 3 kPa, and 

scaffolds displayed rapid phase reversal when cooled. These properties enable PNJ-RGD 

scaffolds to accurately model the stiffness of brain tissue, while also quickly dissociating 

physical crosslinks to facilitate cell recovery. We demonstrated that PNJ-RGD scaffolds 

were cytocompatible over a 14 day culture using a model GBM cell line. The adherent 

conditions provided in PNJ-RGD scaffolds also enabled GBM invasion as opposed to 

non-adherent PNJ scaffolds which rarely produced invasive cells. This indicates that the 

PNJ-RGD platform may be useful for studying the biology of invasive cells, particularly if 
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they can be separated from proliferative cells in a tumor spheroid. Finally, we 

demonstrated that live cells could be recovered from PNJ-RGD scaffolds over the course 

of a 7 day culture. Efficient recollection required the use of enzymatic dissociation to 

detach cells from RGD binding sites, but was not necessary for recollection from non-

adherent scaffolds. Interestingly, scaffold dissociation became more difficult over time, 

likely a result of matrix protein deposition, but viable recovery remained above 50% even 

for a 7 day culture.  This study showed the successful development of PNJ scaffolds as a 

platform for transient 3D culture of GBM in both non-adherent and adherent conditions. 

5.2. Specific Aim 2: Identify microenvironmental conditions that support 

and enrich GSC phenotypes in vitro. 

The second research chapter describes the use of non-adherent PNJ scaffolds as 

microenvironmental niche models for culturing patient-derived GSCs. In this study, we 

chose to develop three separate PNJ formulations by altering the concentration of the 

NIPAAm and JAAm comonomers. We identified scaffold conditions that provided a 

shear modulus range that was appropriate for brain tissue engineering (153 Pa – 1240 

Pa), and focused on measuring GSC responses to low stiffness (153 Pa – 325 Pa) scaffold 

conditions. Using two genetically distinct patient-derived GSC models, we observed that 

scaffold conditions significantly enriched the population of self-renewing cells compared 

to standard neurosphere culture conditions. Scaffold conditions also maintained GSC 

multipotency as shown by differentiation into three neural cell subtypes. In addition, we 

measured increased expression of key stem markers including NESTIN, EGFR, and 

CD44 in response to scaffold conditions. This led to a hypothesis that PNJ scaffolds 

enrich self-renewal as a result of increased autocrine and paracrine signaling, due to 

diffusion limitations in the physical PNJ microenvironment and interactions with the 

physical scaffold structure. We concluded this study by determining that scaffold 
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cultured GSCs were more resistant to radiation than cells cultured in neurosphere 

conditions. Therefore, this study provided evidence that GSC phenotypes including self-

renewal, stem marker expression, and radioresistance were enriched via culture in PNJ 

scaffold conditions compared to traditional neurosphere cultures. These experiments 

provided the first evidence that PNJ scaffolds model niche microenvironmental 

regulation of patient-derived GSCs. 

5.3. Specific Aim 3: Define the regulatory capacity of in vitro GSC niche 

models, and determine biological mechanisms that support GSC 

maintenance and radioresistance. 

The final research chapter details measurements and interpretations of GSC 

responses to alterations in the physical properties of PNJ scaffold microenvironments. 

We characterized the diffusion of a model growth factor, EGF, and showed that diffusion 

was dependent on both the concentration of the scaffold and the constituent 

comonomers. In cell culture assays, we applied four different scaffolds with shear moduli 

and diffusion properties appropriate for brain tissue engineering to our two genetically 

distinct GSC models described in Chapter 3. PNJ scaffold cultures regulated the self-

renewal of GSCs as a function of the scaffold physical properties and cell-type. The 

dynamic regulation that we observed enabled study of populations that were enriched or 

depleted of self-renewing cells simply by changing the configuration of the physical 

microenvironment.  We also observed that a subset of GSCs strongly expressed the 

transcription factor HIF2α in all PNJ scaffold conditions, whereas neurosphere cultures 

did not produce HIF2α expressing cells.  The final component of this study was to 

determine if PNJ scaffolds provided radio-protective microenvironmental growth 

conditions to GSCs in vitro. Here, we measured that PNJ scaffolds provided radio-

protection that was most profound in conditions that also enriched self-renewal. 
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Interestingly, we also observed that scaffold conditions that decreased the self-renewing 

populations effected an increase in NESTIN expression in response to radiation. Given 

the role HIF2α plays in GSC maintenance and plasticity, we hypothesized that PNJ 

scaffolds primed an enrichment of stem behaviors as a response to radiation. 

Furthermore, the lack of consistent HIF2α expression in neurosphere culture suggests 

that PNJ scaffolds provide a unique set of microenvironmental conditions that enable 

analysis of its molecular mechanism of action in an in vitro GSC niche model. In this 

final study, we demonstrated the capacity for PNJ scaffolds to support 

microenvironmental maintenance and radioresistance of GSC phenotypes.     

5.4. Future Directions 

 Engineering the Perivascular Niche 

The approach that we described in Chapter 2 involved developing PNJ scaffolds 

with the cell adhesion peptide RGD. However, in the work presented in Chapters 3 and 

4, we elected to employ non-adherent scaffold conditions to patient-derived GSC 

cultures. This was primarily done to enable direct comparison to neurosphere culture, 

which does not present any matrix adhesion sites. In the perivascular niche, GSCs are 

known to interact and concentrate in laminin rich regions surrounding blood vessels.  It 

is therefore unsurprising that laminin and its corresponding integrins have been 

identified as regulators of various GSC phenotypes in vitro and in vivo 

[21,29,30,32,97,113,156]. Although non-adherent suspension cultures are standard for 

GSC propagation, it is also now accepted that GSCs may be maintained in culture on 2D 

laminin substrates [97]. Considering that RGD and a number of other cell adhesive sites 

are presented on different laminin isoforms (YIGSR, IKVAV, etc.), we propose that the 

PNJ platform would enable analysis of GSC regulation via adhesion to various laminin-

derived peptides. A limitation of the currently validated scaffold system is that assays 
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would be restricted to cysteine terminated peptides. Incorporation of full length laminin 

or other ECM proteins is likely to significantly disrupt the physical gelation, and increase 

the LCST out of the workable range for cell culture.  In work not described here (and not 

yet published), we have observed that GSCs increase self-renewal capacity and ECM 

deposition on PNJ-RGD scaffolds as compared to non-adherent PNJ formulations, 

which motivates further functional studies to study how these cells differentially remodel 

their microenvironment in response to extracellular cues. We would be interested to 

study the effect of various laminin derived peptides specifically on the treatment 

resistance of PNJ cultured GSCs. The direct evidence for perivascular protection from 

radiation is relatively limited in vivo. Thus, these in vitro assays may provide insight into 

the specific contributions of various adhesive ligands toward building a radio-protective 

GSC microenvironment. 

Expanding on the idea of perivascular niche modeling, we also propose that the 

PNJ-RGD system would be useful for establishing GSC co-cultures with vascular 

endothelial cells. The interactions between these two cell types is well-characterized both 

in vivo and in vivo. However, their relationship has not been defined in response to 

radiation in a three-dimensional co-culture. Furthermore, a second motivating factor is 

that HIF2α activity in PNJ cultures would be predicted to increase recruitment and 

proliferation of endothelial cells.   Therefore, there may be new understanding to be 

gained from developing this system where GSCs are encapsulated and endothelial cells 

are cultured on the gel surface. This test design would allow for measurements of 

endothelial tube formation as well as contributions to therapeutic response. These 

interactions described therein may lead to identification of mechanisms that are co-

opted to decrease GSC and tumor associated endothelial cell radiosensitivity. 
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 Characterization of GSC Derived Exosomes 

In PNJ scaffold cultures we have consistently observed what appear to be vesicles 

concentrated around growing spheres, and immunofluorescence staining indicates that 

cytoplasmic NESTIN is present in these structures (results not shown or published). 

Importantly, we have never observed the presence of DNA in these structures (via 

positive DAPI staining), thus ruling out the concern that these structures are evidence of 

membrane blebbing associated with apoptosis. Instead, we hypothesize that these 

structures are exosomes, and that they may also contribute to GSC enrichment. GBM 

cells release exosomes containing proteins, miRNA, and mRNA that induce changes in 

their surrounding microenvironment [232]. One of the primary responses associated 

with exosome signaling is angiogenesis, and both VEGF and FGF have each been 

empirically identified as proteins secreted in GBM exosomes [232,233]. To identify 

exosomes in PNJ cultures, we propose staining PNJ derived GSCs for exosome surface 

markers including CD9, CD63, Lamp-1, and Lamp-2. Growth factor signaling plays a 

principal role in maintaining GSC phenotypes [44], and we therefore believe that the 

concentration of these extracellular structures around spheres may promote stem 

behaviors in PNJ scaffolds through growth factor pathways. 

 Microenvironmental Regulation of HIF2α 

As previously described, expression of HIF2α is controlled by the 

microenvironment and may manifest in conditions where oxygen is not restricted 

[36,72,74,79]. Therefore, further characterization of the GSC-PNJ microenvironment 

may provide insight into the mechanisms that lead to HIF2α activity. The simplest 

explanation is that expression is mediated by relative hypoxia within the PNJ 

microenvironments. However, evidence to the contrary is provided in that HIF2α 

expression was not directly correlated to microenvironmental inhibition of diffusion; 
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also, HIF2a expression was not observed in the core of large neurospheres. Still, hypoxic 

microenvironments could be directly identified using a chemical probe such as 

pimonidazole, and could be analyzed in conjunction with staining for both HIF2α and 

HIF1α. Considering that HIF1α is generally observed in states of chronic hypoxia, this 

would provide a more complete landscape of how oxygen availability affects different 

GSC culture conditions.  

The role of HIF2α and hypoxia in regulating GSC phenotypes indicates that PNJ 

scaffolds offer a platform for studying activation of this pathway and mechanistic 

consequences. The long-term goal of the project described in this dissertation is to 

identify possible methods for disrupting niche regulation of GSCs. HIF2α is an 

interesting GSC selective target, and we would be interested to test the effects of HIF2α 

inhibitory drugs such as TC-S7009 and PT2385 on GSC behaviors in PNJ scaffolds 

[234].   

 Preservation of Tumor Heterogeneity 

A primary challenge in establishing patient-derived GBM cell lines is that 

cultured cells tend to converge rapidly on a single dominant genetic profile [98]. This 

loss of heterogeneity limits the capacity for recapitulating the genetic and phenotypic 

diversity of GBM cell types that are present in the original tumor tissue. In the work 

presented here, we demonstrated the ability to use PNJ scaffolds such that cells are 

segregated and unable to aggregate during culture. We therefore hypothesize that PNJ 

scaffold conditions may be useful for maintaining a heterogeneous mixture of tumor cell 

types during cell line establishment. These assays would be completed in conjunction 

with FACS sorting for GSC/GBM marker proteins and/or lineage tracing to determine 

how well different cell types are maintained. Although GSC cultures currently provide 

the best in vitro model for maintaining key features of the original tumor, there is 
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nonetheless always loss of heterogeneity that may be important for drug testing in the 

development of next generation personalized medicine strategies.  
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