
From Formal Requirement Analysis to Testing and Monitoring of

Cyber-Physical Systems

by

Adel Dokhanchi

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved September 2017 by the
Graduate Supervisory Committee:

Georgios Fainekos, Chair
Yann-Hang Lee

Hessam Sarjoughian
Aviral Shrivastava

ARIZONA STATE UNIVERSITY

December 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ASU Digital Repository

https://core.ac.uk/display/154281835?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Cyber-Physical Systems (CPS) are being used in many safety-critical applications. Due to

the important role in virtually every aspect of human life, it is crucial to make sure that

a CPS works properly before its deployment. However, formal verification of CPS is a

computationally hard problem. Therefore, lightweight verification methods such as testing

and monitoring of the CPS are considered in the industry. The formal representation of

the CPS requirements is a challenging task. In addition, checking the system outputs with

respect to requirements is a computationally complex problem. In this dissertation, these

problems for the verification of CPS are addressed. The first method provides a formal

requirement analysis framework which can find logical issues in the requirements and help

engineers to correct the requirements. Also, a method is provided to detect tests which

vacuously satisfy the requirement because of the requirement structure. This method is

used to improve the test generation framework for CPS. Finally, two runtime verification

algorithms are developed for off-line/on-line monitoring with respect to real-time require-

ments. These monitoring algorithms are computationally efficient, and they can be used in

practical applications for monitoring CPS with low runtime overhead.

i

To my Mother, Farideh Hodania

Father, Mohammad Reza Dokhanchi

Brother, Ali Dokhanchi

ii

ACKNOWLEDGMENTS

At the beginning, I would like to thank my advisor, and my mentor, Professor Georgios

Fainekos, who graciously helped me during the last five years. He trusted me and provided

me financial support. Without his patience during my learning process, I could not under-

stand any subject that I am presenting in this dissertation. Without his corrections of my

mistakes, I would not be able to finish any of my research ideas. He is one of the most

intelligent, determined, and disciplined persons that I have ever seen. This dissertation is

the outcome of his research projects that he provided me and he helped me to understand,

discuss and work on the problems and to find the best solutions. I am proud to be a student

of Professor Fainekos.

I would like to thank the committee members Professor Yann-Hang Lee, Professor

Hessam Sarjoughian, and Professor Aviral Shrivastava for consulting me since my first

semester at ASU. During the first two years at ASU, they encouraged me to be patient and

to be positive until I found the best research lab and the right place to continue my Ph.D.

Their feedback about my research and education helped me to always think out of the box

and to prepare not only for my Ph.D., but also to plan for my future.

The CPS lab that I spend most of my time is one of the key reasons for my success.

When I first met the CPS lab members, I found that this is the place that I can build my

future. The people in the CPS lab were the best people that I have ever met, and I thank

all of them. Bardh Hoxha, Kangjin Kim, Haussam Abbas, Cumhur Erkan Tuncali, Shakiba

Yaghoubi, Mohammad Hekmatnejad and Joe Campbell helped me every day for several

years. Without their help, I could not finish any of my works. I should thank my best

friend, Moslem Didehban for supporting me, and being available anytime that I needed any

kind of help in the last four years. He helped me to manage my life in and out of the CPS

lab.

My family supported me during my whole life and especially in the last seven years.

iii

Because of them, the financial and emotional supports were the least concerns of mine.

This gave me the freedom to follow my instincts and desires during my life at ASU. They

always motivated me to work harder and to push my limits to achieve my goals. Without

my family, I could not be at this position and write this dissertation. I am blessed to be a

member of a family that I can always count on.

I thank the Arizona State University for giving me the admission and providing me an

environment to study and research. I always dreamed of study for Ph.D. at a high ranking

university, and ASU helped my dreams to become true. I hope in the future, I can help

ASU in return. I also thank National Science Foundation (NSF) for the several grants that

provided me to fund my research and education. This dissertation is completed because my

work was partially supported by the following NFS awards: CNS-1116136, CNS-1350420,

IIP-1361926 and the NSF I/UCRC Center for Embedded Systems.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

1.1 Specification Analysis . 3

1.2 Monitoring of Cyber-Physical Systems . 5

1.3 Summary of contributions and publications . 6

1.3.1 Specification Analysis . 6

1.3.2 Monitoring of Cyber-Physical Systems . 7

1.3.3 Other CPS related publications (not considered for this disser-

tation) . 8

2 HYBRID SYSTEMS . 11

2.1 Formal System Representation . 11

2.2 Hybrid Automata . 12

2.3 Automatic Transmission (AT) . 14

3 FORMAL SPECIFICATIONS . 17

3.1 System Behavior Representation . 17

3.1.1 Real-Time Signal . 17

3.1.2 Timed State Sequence . 18

3.1.3 Timed State Sequence over Atomic Propositions 18

3.2 Temporal Logic with Point-Based Semantics . 19

3.2.1 Linear Temporal Logic with Past (PLTL) . 19

3.2.2 Metric Temporal Logic with Past (MT LP) . 20

3.2.3 Timed Propositional Temporal Logic (TPTL) 22

v

CHAPTER Page

3.3 Temporal Logic with Continuous Semantics . 24

3.3.1 Metric Interval Temporal Logic (MITL) . 24

3.3.2 Signal Temporal Logic (STL) . 25

3.4 Temporal Logic with Robustness Semantics . 26

3.4.1 Euclidean Distance Metric . 26

3.4.2 Hybrid Distance Metric . 27

3.4.3 Multiple Hybrid Distance Metric . 28

3.4.4 Robustness Semantics for MT LP . 29

3.4.5 Syntax and Semantics for MTL<+∞
+pt . 30

4 SYSTEM INDEPENDENT SPECIFICATION DEBUGGING 32

4.1 Related Works . 32

4.2 MITL Elicitation Framework . 33

4.3 Problem Formulation . 36

4.4 MITL Specification Debugging . 37

4.4.1 Redundancy Checking . 39

4.4.2 Specification Vacuity Checking . 40

4.5 Experiments . 43

4.5.1 MITL Satisfiability . 44

4.5.2 Specification Debugging Results . 45

4.5.3 LTL Satisfiability . 50

4.6 Conclusions and Future Work . 53

5 SYSTEM DEPENDENT VACUITY CHECKING . 54

5.1 Related Works . 54

5.2 Vacuous Signals . 55

vi

CHAPTER Page

5.3 Vacuity Detection in Testing and Falsification . 58

5.4 Detecting Partially Covering Signals . 60

5.5 Experiments . 62

5.6 Conclusions and Future Work . 64

6 VACUITY AWARE FALSIFICATION . 65

6.1 Related Works . 66

6.2 Falsification Framework . 67

6.3 Problem Formulation . 68

6.4 Vacuity Aware Falsification Framework. 68

6.4.1 Input Prefix-Suffix Example . 71

6.5 Experiments . 72

6.5.1 Navigation Benchmark with Inputs . 73

6.5.2 Automatic Transmission . 76

6.6 Conclusions and Future Work . 78

7 ON-LINE MONITORING FOR BOUNDED MTL WITH PAST 79

7.1 Related Works . 79

7.2 Problem Formulation . 80

7.3 Solution Overview . 82

7.4 Finite horizon and history of MTL<+∞
+pt . 82

7.5 Monitoring Algorithm . 84

7.6 Experimental Results . 90

7.7 Case Study . 92

7.8 Conclusions and Future Work . 96

8 OFF-LINE MONITORING FOR TPTL . 97

vii

CHAPTER Page

8.1 Related Works . 97

8.2 Problem Formulation . 99

8.3 Solution Overview . 101

8.4 Monitoring Table . 103

8.5 TPTL Monitoring Algorithm . 106

8.5.1 TPTL to LTL Transformation . 106

8.5.2 LTL Monitoring . 108

8.5.3 Running example . 108

8.6 Experimental Results . 113

8.7 Case Study . 118

8.8 Conclusions and Future Work . 120

9 CONCLUSIONS AND FUTURE WORKS . 122

REFERENCES . 124

APPENDIX

A PROOFS OF CHAPTER 4 . 132

B PROOFS OF CHAPTER 5 . 138

C PROOFS OF CHAPTER 7 . 141

D PROOFS OF CHAPTER 8 . 150

viii

LIST OF TABLES

Table Page

4.1 Task List with Automotive System Specifications Presented in Natural Lan-

guage . 48

4.2 Incorrect Specifications from the Usability Study In [66], Error Reported to

the User by the Debugging Algorithm, and Algorithm Runtime. Formulas

Have Been Translated from STL to MITL. 49

4.3 Comparing the Runtime Overhead of MITL Satisfiability and LTL Satisfi-

ability (in Seconds) for Some of the Specifications from ViSpec’s Usability

Study. 53

5.1 Automatic Transmission Requirements Expressed in Natural Language and

MITL from [63]. 63

5.2 Reporting Signal Vacuity Issue for Each Mutated Formula. 64

6.1 Comparing Vacuity Aware Falsification (VAF) with Temporal Logic Falsi-

fication (TLF) for the Falsification of φNB, φAT . 76

7.1 Pre Vector and Robustness Table. 85

7.2 Robustness Computation of Each Table Entries (Gray Cells Are Unused). . . 85

7.3 The Overhead on Each Simulation Step on the Automatic Transmission

Model with Specifications of Increasing Length. Table Entries Are in Mil-

liseconds. 91

7.4 Simulation Runtime Statistics for the High-Fidelity Engine Model Running

for 35 Seconds with Simulation Step Size of 0.01s. The Results Include the

Confidence Intervals for the Mean Simulation Runtime. 95

8.1 The Monitoring Table of Formula φ of Example 8.3.1 (Figure 8.1) 105

8.2 Computing the Boolean Values for φ = �x.ψ2(x). Boolean Values Corre-

spond to the Final Snapshot of Monitoring Table. 112

ix

Table Page

8.3 Specifications of ψ Before Adding Time Variables. 116

8.4 The Runtime of Monitoring Algorithm for 18 TPTL Formulas. All the

Values Are in Seconds. 117

C.1 Robustness Table (Unchangeable Values in next Runs Are in Gray Color) . . 144

x

LIST OF FIGURES

Figure Page

1.1 CPS Testing Framework with Provided Components. 4

2.1 The Simple Hybrid Automaton Σ1 of Example 2.2.1. In This Example,

S = [0.85, 0.95]2 and t Is the Time Variable. 14

2.2 The Trajectories of the Hybrid Automaton From Figure 2.1. 14

2.3 Matlab Automatic Transmission Simulink Model [80]. 15

2.4 The Switching Logic for the Automatic Transmission [80]. 16

2.5 Input Throttle (Top) and the Corresponding Outputs of the Automatic Trans-

mission [63]. 16

4.1 Specification Elicitation Framework . 33

4.2 The Real-valued S peed Signal and Its Three Boolean Abstractions: a ≡

S peed > 100 (Solid Black Line), b ≡ S peed > 80 (Dotted Line), and

c ≡ 100 ≥ S peed > 80 (Gray Line). 34

4.3 Specification Debugging Framework [36] . 37

4.4 The MITL SAT Solver from [25] Is Used for Debugging Specifications. 43

4.5 Runtime Overhead of the Three Stages of the Debugging Algorithm over

User-submitted Specifications. Timing Results Are Presented over the Num-

ber of Literal Occurrences and the Number of Temporal Operators. 50

5.1 Using Signal Vacuity Checking to Improve the Confidence of an Automatic

Test Generation Framework. 60

6.1 Overview of S-TaLiRo Testing Framework for the Metric Temporal Logic

(MTL) Falsification Problem. 68

6.2 Proposed Flow for Vacuity Aware Falsification. 69

6.3 Stage 1 (Gray) and Stage 2 (White) of the Vacuity Aware Falsification. 72

xi

Figure Page

6.4 Modified Navigation Benchmark with 16 Locations (Modes): Two Trajec-

tories Falsifying the Requirements φNB1 , and φNB2 . 74

7.1 Overview of the Solution of the MTL<+∞
+pt On-Line Monitoring Problem.

The Monitored Robustness Values Could Be Used as Feedback to the CPS

or It Could Be Plotted to Be Observed by a Human Supervisor If Needed. . . 80

7.2 SimuQuest [91] Enginuity Matlab Simulink Engine Model with the On-

Line Monitoring Block. 93

7.3 Runtime Monitoring of Specifications φpt, φ f t and φpt f t On the High-Fidelity

Engine Model. The Figure Presents a Normalized Stoichiometric Ratio,

and the Corresponding Robustness Values for Specifications φpt, φ f t and

φpt f t. Note That No Predictor Is Utilized When Computing the Robustness

Values. 94

8.1 Binary Tree of Example 8.3.1 (φ) with Three Subtrees Corresponding to

Sets of Subformulas θ1, θ2, θ3. 101

8.2 Falsification of Φ1 Using S-TaLiRo. The Duration Between e1 and e3 Is

Less than 8 Seconds. 119

8.3 Falsification of Φ2 Using S-TaLiRo. The Duration Between e1 and e3 Is

More than 12 Seconds. 120

xii

Chapter 1

INTRODUCTION

Recently, most systems in industrial domains are extremely complex control systems.

In order to improve the flexibility, performance, reliability, and safety of these systems,

designers use software and algorithms to control physical and industrial systems. Such

systems are known as Cyber-Physical Systems (CPS). Medical devices, modern airplanes,

automobiles, and smart buildings are some examples of CPS, where the safety critical

components of these systems are controlled by embedded computers which interact with

the physical environment. Due to the safety critical applications of CPS, there exist strict

requirements on system behavior and functional safety. Hence, it is very important to

guarantee that a CPS meets the safety requirements, and to validate the correctness of its

behavior during designing or prototyping. This process is usually referred to as the CPS

verification problem.

In order to simplify design and analysis of CPS, Model Based Design (MBD) and

automatic code generation are used for CPS prototypes. Using MBD, we can simplify

the design, focus on the critical components of the system, and simulate the model to find

the bugs as soon as possible. In order to make it possible to apply formal or semi-formal

verification methods on MBD, we need to use mathematical formalization to specify the

physical and cyber models. As a result, hybrid automata is suggested as a mathematical

model to uniquely model both continuous system dynamics of physical models, and the

discrete components of the system such as control modes and switching components [59].

However, the verification problem for hybrid automata with respect to safety requirements

is undecidable, in general [6, 60]. Hence, a lot of effort has been invested on bounded-time

model checking (reachability analysis) and falsification methods (for an overview see [68]).

1

In the testing method, test team compares the outputs against the requirements. The

requirements usually come from the requirements team. In order to provide the safety

requirements, the most convenient way is to use natural language. Engineers usually prefer

natural language over formal requirements. However, natural language is not accurate

enough to provide requirements for safety critical systems. This is because the natural

language is ambiguous and it may have more than one interpretation. To have a unique

interpretation we need to use formal logics to specify the requirements.

In order to be able to verify real-time requirements, we need to use a formal logic that

considers time in its syntax and semantics [10, 9]. Metric Temporal Logic (MTL) was in-

troduced to verify a real-time specifications [71]. Since its introduction, MTL and its vari-

ations have been used in the verification of real-time systems [83]. Formal specifications in

MTL have been used for testing and verification of CPS with tools such as S-TaLiRo [13]

and Breach [41]. As a result, it is very important to provide CPS requirements in MTL.

However, providing correct MTL requirements needs a background in formal logic, which

many engineers do not have. Even if someone is an expert in MTL, it is very hard to trans-

late natural language requirements for real-time systems into MTL. Therefore, it takes a lot

of experience to be an expert on translating requirements into MTL.

To facilitate creating MTL specifications, [64] provided a graphical formalism (ViSpec

tool) that can be used for the elicitation of requirements for a subset of MTL. This sub-

set of MTL is expressive enough to define practical requirements for CPS. In [66], the

ViSpec tool was evaluated through a usability study which showed that both expert and

non-expert users were able to use the tool to elicit formal specifications. The usability

study results also indicated that in many cases the developed specifications were incorrect.

In an on-line survey1, they also tested how well formal method experts can translate natural

1The on-line survey is available through: http://goo.gl/forms/YW0reiDtgi (the results are reported

in [66])

2

http://goo.gl/forms/YW0reiDtgi

language requirements into Metric Interval Temporal Logic (MITL) [7]. The preliminary

results indicate that even experts can make errors in their specifications, which indicates

that specification correctness is a major issue in the testing and verification since effort can

be wasted in checking incorrect requirements, or even worse, the system can pass the in-

correct requirements. Therefore, before verification we must analyze the specification and

make sure it does not have any logical issues.

I develop new theories and tools for the analysis and monitoring of real time require-

ments in the context of CPS testing and verification. The high level architecture of CPS

testing framework is provided in Figure 1.1. In this figure, the input generator creates initial

conditions and inputs to the system under test. An example of a test generation technology

that implements the cyclic architecture in Figure 1.1 (the blue cycle with three white boxes)

is presented in [1]. The system executes or simulates to generate an output trace. Then, a

monitor checks the trace with respect to the specification and reports to the user whether the

system trace satisfies or falsifies the specification (for example [49, 78]). The components

that we consider in this dissertation are provided in different colors and will be discussed

in the following sections:

1.1 Specification Analysis

I first provide a framework that helps the users detect specification errors, where the

requirement issues can be corrected before any test and verification process is initiated.

This component is provided in Figure 1.1 in Green and is explained in detail in Chapter 4.

The Formal Requirement Analysis block checks for erroneous or incomplete temporal logic

specifications, without considering the system under test. In other words, the specification

issues are caught independent of the system. For example, in the on-line survey from [66],

they asked formal method experts to translate the natural language specification “At some

time in the first 30 seconds, the vehicle speed (v) will go over 100 and stay above 100 for

3

Is this Test

Vacuous ?

System under

Test

Input

Generator

output signals

initial

conditions &

input signal

Falsified/Satisfied

CPS Testing Framework

Vacuity Aware Testing

Monitor

Off-Line Monitor

On-Line Monitor

ϕ	(Specification)
Formal Requirement

Analysis

Is ϕ Logically

correct ?

Figure 1.1: CPS Testing Framework with Provided Components.

20 seconds” to MTL. The MTL specification ϕ = ^[0,30]((v > 100) → �[0,20](v > 100))

was provided as an answer by an expert user. Here, ^[0,30] stands for “eventually within 30

time units” and �[0,20] for “always from 0 to 20 time units”. However, the specification ϕ

is a tautology, i.e., it evaluates to true no matter what the system behavior is and, thus, the

requirement ϕ is invalid.

Some specification issues cannot be detected unless we consider the system, and test

the system behaviors with respect to the specification. Consider the MITL specification

ϕ = �[0,5](req → ^[0,10]ack). This formula is interpreted as “if at any time within the first

5 seconds, a request happens, then from that moment on within the next 10 seconds, an

acknowledge must happen”. The formula ϕ will successfully pass the Formal Requirement

Analysis in Figure 1.1. However, any output signal (See Figure 1.1) that does not satisfy

req at any point in time during the test will trivially satisfy ϕ. We call this issue vacuous sat-

isfaction and we call the signals that vacuously satisfy the specification as vacuous signals.

Any test case that uses vacuous input signals is not a valid test case and the user should be

aware of it. We call such bogus tests as vacuous tests. We first provide a framework that

4

finds vacuous tests in Chapter 5. Then we use a signal vacuity detection method to improve

the S-TaLiRo falsification framework in Chapter 6. The detection and prevention of signal

vacuity to happen during testing is called Vacuity Aware Testing and it is provided in blue

in Figure 1.1.

1.2 Monitoring of Cyber-Physical Systems

Runtime verification is one of the well known methods for checking the correctness of

a CPS [92, 75]. In runtime verification a monitoring program checks an execution trace

of the CPS and compares it to the desired requirement in a formal logic like MTL. Model

checking [30, 16] is not applicable for the verification of CPS, because state space explosion

is a limiting factor in model checking. As a result, even when we consider a discrete CPS

where the model is finite and the model checking is decidable, the size of the system reduces

the efficiency of model checking [31]. In contrast, runtime verification is independent of

the system. Runtime verification algorithms’ worst case execution time depends on the

size of the requirement and/or traces, but not the model. Therefore, it is used for CPS

verification in the industry.

There exist two types of runtime verification, off-line monitoring and on-line monitor-

ing. In off-line monitoring, the execution trace is finite and it is saved after running the

system for a limited amount of time [49, 78]. The off-line monitoring component is repre-

sented in Yellow in Figure 1.1, and it is the subject of Chapter 8. Off-line monitoring has

many applications such as system simulation, implementation, testing, and debugging. But,

there are some applications where off-line monitoring cannot be used. On-line monitoring

is an alternative of the off-line monitoring which can help us for the applications that need

the monitor to run simultaneously with the system. In safety critical embedded software,

the monitor has to be on-line because of the physical components. Therefore, physical de-

ployment of CPS monitoring cannot happen unless we have an on-line monitor [35, 61].

5

The on-line monitor component is represented in orange in Figure 1.1 (see Chapter 7).

1.3 Summary of contributions and publications

The summary of contributions and the list of my publication is provided as follows:

1.3.1 Specification Analysis

1. Adel Dokhanchi, Bardh Hoxha and Georgios Fainekos, “Metric interval temporal

logic specification elicitation and debugging” ACM/IEEE International Conference

on Formal Methods and Models for Codesign, 2015 [36].

In this paper, I provided the debugging algorithm to check logical issues in real-

time specifications. This framework detects validity, redundancy and vacuity issues

in formal specifications developed in a fragment of Metric Interval Temporal Logic

(MITL) [8] and Signal Temporal Logic (STL) [78]. Our experimental results on the

specification collected during the usability study of [66] show that we can benefit

from this framework to correct requirements created by the ViSpec software [64].

In the work of [36], I used the MITL satisfiability checker by [23] for finding log-

ical errors in the requirements. In addition, I proved that for the requirements that

have only one type of temporal operator, the LTL [84] satisfiability is related to the

MITL satisfiability. I also developed a prototype tool for specification debugging

(see Chapter 4).

2. Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos, “Formal Requirement Elic-

itation and Debugging for Testing and Verification of Cyber-Physical Systems” Ac-

cepted for the publication on the ACM Transactions on Embedded Computing Sys-

tems journal [37].

This paper is a journal extension of the previous paper [36]. In this work, I im-

6

proved the runtime overhead of MITL requirement analysis with using LTL satisfi-

ability solver instead of MITL satisfiability solver. Our experimental results show

that the runtime overhead of using the LTL satisfiability solver is negligible. In ad-

dition, I provided the framework that signal vacuity can be detected during testing.

In Request-Response requirements, the system traces (signals) that vacuously satisfy

the requirements are considered vacuous signals and should not be considered as use-

ful tests for example in coverage metrics. After detecting vacuous signals, the user

will be notified for further investigation. I also developed a toolbox, that can check

the signal vacuity of Matlab/Simulink traces (see Chapter 5).

3. Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha and Georgios Fainekos, “Vacuity

Aware Falsification for MTL Request-Response Specifications”[39]

Vacuous signals cause the system testers to have a false sense of system correctness.

Therefore, it is dangerous for CPS verifiers to not identify vacuous signals during

testing. On the other hand, Request-Response requirements are typically used in CPS

requirements. Falsification of Request-Response requirements is more challenging

than other types of requirements. This is because Request-Response requirements

have “if-then-else” components and if a signal does not satisfy the “if” part of the re-

quirements, it will vacuously satisfy the “if-then-else” specification. In this paper, we

modified the S-TaLiRo testing framework so that it first satisfies the “if” statement

and then, falsify the “if-then-else” specification. We showed that the proposed solu-

tion can drastically improve the falsification framework for some of the benchmarks

(see Chapter 6).

1.3.2 Monitoring of Cyber-Physical Systems

4. Adel Dokhanchi, Bardh Hoxha, and Georgios Fainekos “On-Line Monitoring for

Temporal Logic Robustness” International Conference on Runtime Verification, 2014

7

[35]2.

In this paper, I provided an on-line monitoring algorithm for computing the robust-

ness degree [48] of requirements in bounded future MTL with unbounded past tem-

poral operators MTL<+∞
+pt . My monitoring algorithm was based on the Dynamic Pro-

gramming method by [87] with polynomial time complexity with respect to the tem-

poral horizon of the MTL<+∞
+pt formula [53]. I showed that in practical applications

with short temporal horizon, the runtime overhead of my algorithm is negligible. I

also developed a monitoring block for the library browser of the Matlab/Simulink

that users can add to any Simulink diagram and they will be able to monitor on-line

any simulating model in Matlab/Simulink (see Chapter 7).

5. Adel Dokhanchi, Bardh Hoxh, Cumhur Erkan Tuncali, and Georgios Fainekos “An

efficient algorithm for monitoring practical TPTL specifications” ACM/IEEE Inter-

national Conference on Formal Methods and Models for Codesign, 2016 [38]

Monitoring of MTL requirements has been considered for several years [94], and

there are many efficient off-line monitoring algorithms for MTL [49, 42]. On the

other hand, Timed Propositional Temporal Logic (TPTL) [11] is a real-time require-

ment representation that is more expressive than MTL and its monitoring is a chal-

lenging problem. In this paper, I provided an efficient dynamic programming al-

gorithm for monitoring a fragment of TPTL which is strictly more expressive than

MTL. We proved the polynomial time complexity of off-line monitoring for any for-

mula with arbitrary size considering our TPTL fragment (see Chapter 8).

1.3.3 Other CPS related publications (not considered for this dissertation)

4. Adel Dokhanchi, Aditya Zutshi, Rahul T. Sriniva, Sriram Sankaranarayanan and

Georgios Fainekos “Requirements driven falsification with coverage metrics” Inter-
2An extended version of this paper with proofs is provided in http://arxiv.org/abs/1408.0045.

8

http://arxiv.org/abs/1408.0045

national Conference on Embedded Software, 2015 [40].

MTL is used in S-TaLiRo to falsify safety critical properties of CPS. S-TaLiRo

searches for counterexamples to MTL properties for non-linear hybrid systems through

global minimization of a robustness metric [48]. The robustness of an MTL formula

ϕ is represented as ~ϕ�, and it is a value that measures how far is the trace from the

satisfaction/falsification of ϕ. This measure is an extension of boolean values (>/⊥)

for representing satisfaction or falsification which is used in conventional monitor-

ing. A positive robustness value means that the trace satisfies the property and a

negative robustness means that the property is not satisfied. The stochastic search

then returns the simulation trace with the smallest robustness value that was found.

The S-TaLiRo testing framework [1, 64] is implemented as a Matlab toolbox that

uses stochastic optimization techniques to search for the simulation inputs which fal-

sify the safety requirements presented in MTL [1]. Falsification based approaches

for CPS can help us find subtle bugs in industrial size control systems [67].

Coverage guided falsification extends the S-TaLiRo framework with utilizing cover-

age metrics on the state space of hybrid systems in order to improve the performance

and coverage guarantees of the falsification methods. As the search process evolves,

coverage statistics are collected for the finite (logical) space of the output in addition

to the original output space. If the falsification process fails, then the search algo-

rithm switches to the coverage guided search, where we modify our specification

to bias the search towards the desired hybrid locations. In particular, if the original

specification is ϕ and the least visited (or notvisited at all) set of hybrid locations is

QDes , then we define a new MTL formula ϕ′ to incorporate the following require-

ment “never visit QDes”. The formula ϕ′ now becomes the target for the falsification

process. As the falsification algorithm tries to minimize the robustness metric, it in-

9

directly pushes the system to go to the locations provided in ϕ′. This is due to the

fact that the robustness value will be minimized if the hybrid location becomes QDes.

For this work, I developed the testing metrics and I implemented the coverage based

test generation method in S-TaLiRo.

5. Bardh Hoxha, Adel Dokhanchi and Georgios Fainekos “Mining Parametric Temporal

Logic Properties in Model Based Design for Cyber-Physical Systems” International

Journal on Software Tools for Technology Transfer, 2017 [65].

Parametric Signal Temporal Logic (PSTL) [15] is an STL formula where it has a

set of unknown space/time parameters (inside predicates/intervals) of the specifica-

tion. The problem of parameter mining is as follows: “Given a PSTL formula and

a set of parameters, and the range for each parameter’s values, find parameters’ sub-

ranges such that the given system will falsify the PSTL formula with any values in

those sub-ranges.” In this work, we implemented the parameter estimation as an op-

timization problem. My main contribution to this paper is the implementation of the

algorithm to find the monotonicity of PSTL formulas with respect to the parameters

as explained in [15].

6. Bardh Hoxha, Hoang Bach, Houssam Abbas, Adel Dokhanchi, Yoshihiro Kobayashi

and Georgios Fainekos “Towards Formal Specification Visualization for Testing and

Monitoring of Cyber-Physical Systems” International Workshop on Design and Im-

plementation of Formal Tools and Systems, 2014 [64].

This workshop paper is an overview of the latest additions to S-TaLiRo.

10

Chapter 2

HYBRID SYSTEMS

In this dissertation, we consider models of hybrid systems as models for Cyber Phys-

ical Systems (CPS) developed within a Model Based Development (MBD) language such

as Ptolemy [45] or Matlab Simulink/Stateflow. MBD helps us to define a mathematical

representation of the system and to facilitate the analysis and verification of CPS.

2.1 Formal System Representation

In this dissertation, we assume that R is the set of real numbers, R+ is the set of non-

negative real numbers, and R = R ∪ {±∞}. Also, N is the set of natural numbers including

0 and Z is the set of integers. In addition, Q is the set of rational numbers, Q+ is the set of

non-negative rational numbers. Given two sets A and B, BA is the set of all functions from

A to B, i.e., for any f ∈ BA we have f : A → B. We define P(A) to be the power set of

the set A. We also consider 2A as the power set of a finite set A. Since we are considering

CPS testing or simulation, we fix T ∈ R+ to be the maximum simulation time (or similarly

maximum time of the signals). A “discrete variable” is a variable that takes value in a

countable set such as N, and a “continuous variable” is a variable that takes value in an

uncountable set such as R.

Formally, we view a system Σ with states of X as a mapping from initial conditions

X0, system parameters P and input signals UR to output signals YR. Here, R represents an

abstract time domain. For example, R = N × R when we want to talk about the trajectories

of hybrid systems [77]. However, in the following, we will just assume that R = [0,T]

to avoid many technical issues. In detail, [0,T] can be thought as a dense physical time

domain for testing or simulation. Also, U is the set of input values (input space) and Y is

11

the set of output values (output space).

The following three restrictions on the system are critical in order to be algorithmically

searchable over an infinite space:

1. The input signals u ∈ U [0,T] (if any) must be piecewise continuous defined over a

finite number of intervals over [0,T]. This assumption is necessary in order to be

able to parameterize the input signal space over a finite set of parameters. Thus, in

the following we assume that any u ∈ U [0,T] of interest can be represented by a vector

of parameter variables p taking values from a set PU .

2. The output space Y must be equipped with a non-trivial metric. For example, the

discrete metric does not provide any useful quantitative information.

3. The system Σ must be deterministic1. That is, for a specific initial condition x0 and

input signal u, there must exist a unique output signal y.

The previous restrictions render the system Σ to be a function ∆Σ : X0×P×PU → Y [0,T]

which takes as input an initial condition vector x0 ∈ X0 and two parameter vectors p ∈ P

and p′ ∈ PU , and produces as output a signal y : [0,T]→ Y .

2.2 Hybrid Automata

Hybrid Automata is a formal representation of a mixed discrete-continuous system [59].

Hybrid Automata is a well known mathematical model to help us formally analyze the be-

havior of the CPS. This is because Hybrid Automata contains discrete variables to capture

the modes of the system as well as continuous variables to capture the physical dynamics

of the system.

1We remark that this assumption can also be relaxed [3].

12

Definition 2.2.1 (Hybrid Automata [2]) Hybrid AutomataH is the following tuple

H = (X, L, E, Inv, Flow,Guard,Re)

where

• X ⊆ Rn is the ‘continuous’ state of the system and n is the dimension of the system.

The continuous state is usually denoted by variable x.

• L ⊂ N is the set of control locations or discrete modes of the system.

• E ⊆ L × L is the set of control switches or location transitions.

• Inv : L→ P(X) assigns an invariant set to each location.

• Flow : L × X → Rn defines the time derivative of the continuous dynamics of the

system in each location.

• Guard : E → P(X) is the guard condition that controls the switch e = (s, d) ∈ E, i.e.

the location transition from s to d is enabled when x ∈ Guard(e).

• Re : X×E → L×X is a reset map. That reset the x and the location l to the specified

values in the map.

Finally, we set H = L×X to denote the state space of a hybrid automatonH , and the initial

conditions are denoted as H0 ⊆ H. For a more detailed review of the syntax and semantics

of hybrid automata refer to [5, 93]. Now we consider the following simple example:

Example 2.2.1 [40] Consider the hybrid automata Σ1 given in Figure 2.1. Briefly, if the

initial state x0 = (x01, x02) is in the set S (yellow box in Figure 2.2), then Σ1 follows the

dynamics in location l2, while if the initial system state x0 is in [1, 1]2\S (green box in

Figure 2.2), then Σ1 follows the dynamics in location l1. Moreover, if the system is operating

13

l1= − + 0.1= 2 − 2 +0.1
l2 == − +

= (0) ∈() ∈= (0) ∈ −1,1 \

Figure 2.1: The Simple Hybrid Automaton Σ1 of Example 2.2.1. In This Example, S =
[0.85, 0.95]2 and t Is the Time Variable.

−2 −1 0 1 2 3 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

Figure 2.2: The Trajectories of the Hybrid Automaton From Figure 2.1.

under the dynamics in location l1 and the state of the system enters the set S , then the

system switches to location l2. Sample trajectories with initial conditions over a grid of

0.05 intervals in each dimension over the set of initial conditions [−1, 1]2 are presented in

Figure 2.2.

2.3 Automatic Transmission (AT)

The Automatic Transmission model is the running example that we will use in most of

our experiments throughout this dissertation. The Automatic Transmission (AT) system is

provided by Mathworks as a Simulink demo [80]. We introduced a few modifications to the

model to make it compatible with the S-TaLiRo framework, which are explained in [63].

This is a model of an automatic transmission controller that contains 69 blocks. AT has two

inputs of Throttle and Brake (see Figure 2.3). The throttle and break can take any value

14

Modeling an Automatic Transmission Controller

3

State

2

RPM

1

speed

Vehicle

Ne

gear

Nout

Ti

Tout

Transmission

gear

throttle

down_th

up_th

run()

ThresholdCalculation

speed

up_th

down_th

gear

sldemo_v ar1

sldemo_v ar2

CALC_TH()

ShiftLogic

In1

In2

Out1

GetAutState

Ti

Throttle
Ne

Engine

1

In1

2

Brake

ImprellerTorque

EngineRPM

TransmissionRPM

VehicleSpeed

OutputTorque

Figure 2.3: Matlab Automatic Transmission Simulink Model [80].

between 0% to 100%, at each point in time. AT contains two continuous state variables:

the rotational speed of the engine ω and the speed of the vehicle v.

In addition, AT contains a Stateflow chart of two concurrently executing Finite State

Machines (FSM) with 4 and 3 states (see Figure 2.4). Thus, AT is a Simulink model

that exhibits both continuous and discrete behavior. The Simulink/Stateflow of AT has the

following state space [1]:

H = {first, second, third, fourth} × {steady state, upshifting, downshifting} × R2

Since we only consider the gear state as the discrete location of the system that is ob-

served in our requirements, the location state is as follows L = {first, second, third, fourth}×

{steady state, upshifting, downshifting} and X = R2.

Figure 2.5 shows a falsifying trajectories which automatically generated by S-TaLiRo

[63]. The requirement that the trajectories of Figure 2.5 falsify is as follows:

“The engine speed ω and the vehicle speed v never reach 4500 and 120, respectively”

15

downshifting

after(TWAIT,tick)

[speed >= up_th]

{gear_state.UP}

1
after(TWAIT,tick)

[speed <= down_th]

{gear_state.DOWN}

1

[speed > down_th]

[speed < down_th]

selection_state

during: CALC_TH;

first

entry:

gear = 1;

gear_state

Figure 2.4: The Switching Logic for the Automatic Transmission [80].

gear_state 1
fourth
entry:
gear = 4;

third
entry:
gear = 3;

second
entry:
gear = 2;

first
entry:
gear = 1;

selection_state
during: CALC_TH ;

2

steady_state

upshiftingdownshifting

UP
1

UP UP
1

DOWN
2

DOWNDOWN

2

[speed > up_th]
1

[speed < down_th]
2

[speed > down_th]

2

after(TWAIT,tick)
[speed <= down_th]
{gear_state.DOWN }

1
after(TWAIT,tick)
[speed >= up_th]
{gear_state.UP }

1

[speed < up_th]

2

0 5 10 15 20 25 30
0

50

100
Throttle

0 5 10 15 20 25 30
0

5000
RPM

0 5 10 15 20 25 30
0

100

200
Speed

Figure 1: Left: The switching logic for the automatic drivetrain; Right: An input
signal (top) and the corresponding output signals that falsify the specification.

(also known as a counter example). In [4], the authors utilize the model to
illustrate a method for mining requirements from closed-loop models.

Fault-Tolerant Fuel Control System Fault-Tolerant Fuel Control System
is a modified version of the model provided by Mathworks as a Simulink demo
[6]. The model detects system failures and as a result modifies its control law to
sustain system performance. The arrival of faults is modeled by Poisson stochas-
tic processes with different arrival rates. This benchmark was first considered
in [9], where the authors use Bayesian statistical model checking techniques to,
among others, estimate the probability of satisfying the specification, and to
estimate a corresponding confidence interval.

2 Brief description

Automatic Transmission There are two inputs to the system: the throttle
and break. The break input enables the user to model variable load to the
engine, e.g., going uphill or downhill. The physical system has two continuous-
time state variables which are also its outputs: the speed of the engine ω (RPM)
and the speed of the vehicle v (mph). Initially, the vehicle is at rest at time 0,
i.e. the speed v = 0 and engine speed ω = 0. Therefore, the output trajectories
depend only on the input signals ut and ub which model the throttle and break
inputs. The throttle and break, at each point in time, can take any value
between 0 (fully closed) to 100 (fully open). The range for the break depends
on the engine load that we would like to model. The system is deterministic,
i.e., under the same input u, it will always produce the same output y.

The model contains 69 blocks among which there are 2 integrators (i.e., 2
continuous state variables), 3 look-up tables, 3 2D look-up tables and a Stateflow
chart. The Stateflow chart (see Fig. 1 for a schematic) contains two concurrently
executing Finite State Machines with 4 and 3 states, respectively.

Table 1 presents a number of requirements that should be verified on the
automatic transmission model. As an example, consider formula φAT2 in Table
1: this is a simple invariant. The goal of the verification is either to prove the
invariant or produce counter examples that demonstrate that the invariant is not
true. The verification of the model is challenging for the following reasons. First,
the engine and the vehicle components contain nonlinear equations and lookup

2

Figure 2.5: Input Throttle (Top) and the Corresponding Outputs of the Automatic Trans-
mission [63].

16

Chapter 3

FORMAL SPECIFICATIONS

In this chapter, we review the formal representation of system trace and temporal logic

in details. This chapter provides the basic formalizations and the background definitions

that will be used in the rest of this dissertation. We assume AP = {a, b, · · · } is a set of

atomic propositions.

3.1 System Behavior Representation

Each variant of Temporal Logic is interpreted with respect to a different system be-

havior representation. Therefore, in this section, we consider the different system output

representations that will be considered in this dissertation.

3.1.1 Real-Time Signal

We consider system outputs y : [0,T] → Y , which were introduced in Section 2.1, as

real-time signals. Depending on the set Y , y can be a real-value signal or a state sequence

(SS). If Y obtains values {>,⊥} corresponding to existence of an element in a finite set, we

consider y as a state sequence (SS). Metric Interval Temporal Logic (MITL) is interpreted

with respect to SS (see Section 3.3.1 Definition 3.3.1). If Y obtains continuous values from

R, we consider y as a real-value signal1. Signal Temporal Logic (STL) is interpreted with

respect to real-value signals (see Section 3.3.2).

1Whether Y is Rn or a set of atomic propositions is clear from the context.

17

3.1.2 Timed State Sequence

Since we consider testing and/or simulation, we assume that there exists a sampling

function τ : N → [0,T] that returns for each sample i its time stamp τ(i). In practice, τ

is a partial function τ : N → [0,T] with N ⊂ N and |N| < ∞. A timed state sequence

or trace is the pair µ = (y ◦ τ, τ). We will also denote y ◦ τ by ỹ, where each ỹk contains

the values of the state variables of the system at each sampling instance k. The set of all

timed state sequences of Σ that correspond to any sampling function τ will be denoted by

L(Σ). That is, L(Σ) = {(y ◦ τ, τ) | ∃τ ∈ [0,T]N .∃x0 ∈ X0 .∃p ∈ P .∃p′ ∈ PU . y =

∆Σ(x0, p, p′)}. The timed state sequence (TSS) is a widely used model for reasoning about

real-time systems [10, 9]. A TSS represents the outcome of a sampling process which

is used for digitization of the physical environment. This digitization enables the digital

control methods for embedded systems. Using TSS, we assume that system outputs, i.e.

signals, satisfy the finite variability assumption. That is, for every finite time interval, the

number of times that output changes its value is also finite. The finite variability assumption

is an important assumption to have mathematical models which are closely modeling the

actual physical world.

3.1.3 Timed State Sequence over Atomic Propositions

Definition 3.1.1 A state sequence over atomic propositions σ = σ0σ1σ2 · · · is an infinite

sequence of states σi ⊆ AP, where i ∈ N. A (sampled) time sequence τ = τ0τ1τ2 . . . is an

infinite sequence of time stamps τi ∈ R+, where i ∈ N.

A state sequence over atomic propositions σ is a trace of sets of atomic propositions AP

[11]. We assume that the time sequence τ is:

1. Initialized, which means that the start up time is zero (τ0 = 0).

2. Monotonic, which means that τi ≤ τi+1 for all i ∈ N.

18

3. Progressive, which means that for all t ∈ R+ there is some i ∈ N such that τi > t.

Definition 3.1.2 (Timed State Sequence over Atomic Propositions (ATSS) [11]) A Timed

State Sequence over Atomic Propositions (ATSS) ρ = (σ, τ) is a pair consisting of a state

sequence over atomic propositions σ and a time sequence τ where

ρ0ρ1ρ2 · · · = (σ0, τ0)(σ1, τ1)(σ2, τ2) · · · .

Given an infinite ATSS ρ, we consider a finite prefix of ρ as a finite ATSS. The symbol

ρ̂ = (σ̂, τ̂) is used to denote a finite ATSS with the size of |ρ̂| = |σ̂| = |τ̂|. In Chapter 8, we

consider the monitoring of finite ATSS with the size of |ρ̂| which is equal to the number of

simulation/execution samples.

3.2 Temporal Logic with Point-Based Semantics

We assume a sampled representation of a system behavior with an ATSS as the output

of the system. This is conventional in CPS since we use a digital clock in the system.

3.2.1 Linear Temporal Logic with Past (PLTL)

Linear Temporal Logic (LTL) was first introduced by Pnueli for formal verification of

concurrent programs [84]. In this section, we provide the syntax and semantics of Linear

Temporal Logic with Past (PLTL) [74].

Definition 3.2.1 (Syntax for PLT L) The set of PLTL formulas φ over a finite set of atomic

propositions (AP) is inductively defined according to the following grammar:

φ ::= > | a | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | � φ | φ1Uφ2 | � φ | φ1Sφ2

where > is the symbol for “True”. Temporal operators are as follows: � is “Next”, U is

“Until”, � is “Previous”, and S is “Since”. Note that “False” is represented as ⊥ ≡ ¬>

and “Implication” is represented as ϕ1 → ϕ2 ≡ ¬ϕ1 ∨ ϕ2. For any formula ϕ, ^ϕ ≡ >Uϕ

19

(Eventually), �ϕ ≡ ¬^¬ϕ (Always), �ϕ ≡ >Sϕ (Eventually in the past), and �ϕ ≡ ¬�¬ϕ

(Always in the past) operators are defined, respectively.

Definition 3.2.2 (Semantics of PLT L [74]) Let ρ be an ATSS, i ∈ N and φ be a PLT L

formula, we inductively define the satisfaction relation (ρ, i) |= φ by:

(ρ, i) |= >

(ρ, i) |= a iff a ∈ σi

(ρ, i) |= ¬φ iff (ρ, i) 6|= φ

(ρ, i) |= φ1 ∧ φ2 iff (ρ, i) |= φ1 and (ρ, i) |= φ2

(ρ, i) |= φ1 ∨ φ2 iff (ρ, i) |= φ1 or (ρ, i) |= φ2

(ρ, i) |= �φ iff (ρ, i + 1) |= φ

(ρ, i) |= φ1Uφ2 iff (ρ, j) |= φ2 for some j ≥ i s.t. (ρ, k) |= φ1 for all i ≤ k < j

(ρ, i) |= �φ iff i > 0 and (ρ, i − 1) |= φ

(ρ, i) |= φ1Sφ2 iff (ρ, j) |= φ2 for some 0 ≤ j ≤ i s.t. (ρ, k) |= φ1 for all j < k ≤ i

Intuitively (ρ, i) |= φ means that φ holds at position i in ρ [74]. We say that ρ satisfies φ or

ρ |= φ iff (ρ, 0) |= φ.

3.2.2 Metric Temporal Logic with Past (MT LP)

Metric Temporal Logic (MTL) is the real-time version of LTL where the temporal op-

erators are annotated with Time Intervals that impose time constraints on the temporal

operations [71]. In this section, we consider the syntax and semantics of Metric Temporal

Logic with Past (MT LP) [10].

20

Definition 3.2.3 (Syntax for MT LP [10]) The set of MT LP formulas φ over a finite set of

atomic propositions (AP) is inductively defined according to the following grammar:

φ ::= > | a | ¬φ | φ1 ∧ φ2 | �I φ | φ1UIφ2 | �I φ | φ1S Iφ2

where I is an interval over R+ ∪ {+∞}. An interval is defined by the following template

〈u, r〉 where 〈 is (or 〈 is [when the interval is left open or close, respectively. Similarly, 〉

is) or 〉 is] when the interval is right open or close, respectively. When we have universal

interval I = [0,+∞) we simply remove the I and temporal operator is equivalent to LTL

operator (Definition 3.2.1). For each value r ∈ R+ and interval I, we define +,− operators

as follows r + I := {r + t | t ∈ I} and r − I := {r − t | t ∈ I} ∩ R+. For example, if I is an

interval of the form [l, u), the expressions y ∈ x + I and y ∈ x − I stand for the following

timing constraints x + l ≤ y < x + u and x− u < y ≤ x− l, respectively [10]. For any MT LP

formula ϕ, ^Iϕ ≡ >UIϕ (Eventually), �Iϕ ≡ ¬^I¬ϕ (Always), �Iϕ ≡ >S Iϕ (Eventually

in the past), and �Iϕ ≡ ¬�I¬ϕ (Always in the past) operators are defined respectively.

Definition 3.2.4 (Semantics of MT LP) Let ρ be an ATSS, i ∈ N and φ a MT LP formula,

we inductively define the satisfaction relation (ρ, i) |= φ by:

(ρ, i) |= >

(ρ, i) |= a iff a ∈ σi

(ρ, i) |= ¬φ iff (ρ, i) 6|= φ

(ρ, i) |= φ1 ∧ φ2 iff (ρ, i) |= φ1 and (ρ, i) |= φ2

(ρ, i) |= �Iφ iff τi+1 ∈ τi + I and (ρ, i + 1) |= φ

(ρ, i) |= φ1UIφ2 iff (ρ, j) |= φ2 for some j ≥ i where τ j ∈ τi + I s.t. (ρ, k) |= φ1 for all

i ≤ k < j

21

(ρ, i) |= �Iφ iff i > 0 and τi−1 ∈ τi − I and (ρ, i − 1) |= φ

(ρ, i) |= φ1S Iφ2 iff (ρ, j) |= φ2 for some 0 ≤ j ≤ i where τ j ∈ τi −I s.t. (ρ, k) |= φ1 for

all j < k ≤ i

Intuitively (ρ, i) |= φ means that φ holds at position i in ρ. We say that ρ satisfies φ or ρ |= φ

iff (ρ, 0) |= φ.

3.2.3 Timed Propositional Temporal Logic (TPTL)

TPTL is an extension of LTL that enables the formalization of real-time properties by

including time variables and a freeze time quantifier [11]. In this dissertation, we consider

Raskin’s TPTL semantics [85, 27] 2.

Definition 3.2.5 (Syntax for TPTL) The set of TPTL formulas φ over a finite set of atomic

propositions (AP) and a finite set of time variables (V) is inductively defined according to

the following grammar:

φ ::= > | a | x ∼ r | ¬φ | φ1 ∧ φ2 | φ1 ∨ φ2 | © φ | φ1Uφ2 | x.φ

where x ∈ V , r ∈ R+, a ∈ AP, and ∼ ∈ {≤, <,=, >,≥}. The time constraints of TPTL are

represented in the form of x ∼ r. The freeze quantifier x. assigns the current time of the

formula’s evaluation (at each sampled time τi) to the time variable x. A TPTL formula

is closed if every occurrence of a time variable is within the scope of a freeze quantifier

[11]. In the TPTL specifications, we always deal with closed formulas. Since we focus on

off-line monitoring (see Chapter 6), we only consider the TPTL semantics for finite traces.

Definition 3.2.6 (T PT L Semantics) Let ρ̂ = (σ̂, τ̂) be a finite ATSS and i ∈ N where i < |ρ̂|

is the index of the current sample, a ∈ AP, φ ∈ T PT L, and an environment ε : V → R+.

The satisfaction relation (ρ̂, i, ε) |= φ is defined recursively as follows:
2We will explain in Section 8.2 why we chose Raskin’s semantics.

22

(ρ̂, i, ε) |= >

(ρ̂, i, ε) |= a iff a ∈ σi

(ρ̂, i, ε) |= ¬φ iff (ρ̂, i, ε) 6|= φ

(ρ̂, i, ε) |= φ1 ∧ φ2 iff (ρ̂, i, ε) |= φ1 and (ρ̂, i, ε) |= φ2

(ρ̂, i, ε) |= ©φ iff (ρ̂, i + 1, ε) |= φ and i < (|ρ̂| − 1)

(ρ̂, i, ε) |= φ1Uφ2 iff ∃ j, i ≤ j < |ρ̂| s.t. (ρ̂, j, ε) |= φ2 and ∀k, i ≤ k < j it holds that

(ρ̂, k, ε) |= φ1

(ρ̂, i, ε) |= x ∼ r iff (τi − ε(x)) ∼ r i.e. (current time stamp) − ε(x) ∼ r

(ρ̂, i, ε) |= x.φ iff (ρ̂, i, ε[x := τi]) |= φ

TPTL semantics are defined over an evaluation function ε : V → R+ which is an environ-

ment for the time variables. Assume x = r where x ∈ V , and r ∈ R+, then we have ε(x) = r.

Given a variable x ∈ V and q ∈ R+, we denote the environment with ε′ = ε[x := q] which

is equivalent to the environment ε on all time variables in V except variable x. The assign-

ment operation x := q changes the environment ε to the new environment ε′. Formally,

ε′(y) = ε(y) for all y , x and ε′(x) = q. We write 0 for the (zero) environment such that

0(x) = 0 for all x ∈ V . We say that ρ̂ satisfies φ (ρ̂ |= φ) iff (ρ̂, 0,0) |= φ. A variable “x”

that is bounded by a corresponding freeze quantifier “x.” saves the local temporal context

τi (now) in “x”. Assume ϕ(x) is a formula with a free variable x. The ATSS ρ̂ satisfies

x.ϕ(x) if it satisfies ϕ(τ0 = 0), where ϕ(0) is obtained from ϕ(x) by replacing all the free

occurrences of the variable x with constant 0 [11].

23

3.3 Temporal Logic with Continuous Semantics

In this section we consider the variants of Temporal Logic that are interpreted with

respect to continuous signals (Section 3.1.1).

3.3.1 Metric Interval Temporal Logic (MITL)

Metric Interval Temporal Logic (MITL) is MTL where the timing constraints are not

allowed to be singleton sets [8]. The MITL formulas are interpreted with respect to State

Sequence (SS):

Definition 3.3.1 (State Sequence) A State Sequence (SS) is a mapping from the bounded

real line to sets of atomic propositions (y : [0,T]→ 2AP).

We assume that the signals satisfy the finite variability condition (non-Zeno condition) as

it is standard in the academia3.

In the corresponding Chapter 4, we restrict our focus to a fragment of MITL called

Bounded-MITL(^,�) where the only temporal operators allowed are Eventually (^) and

Always (�) operators with timing intervals. Formally, the syntax of Bounded-MITL(^,�)

is defined by the following grammar:

Definition 3.3.2 (Bounded-MITL(^,�) syntax)

φ ::= > | ⊥ | a | ¬a | φ1 ∧ φ2 | φ1 ∨ φ2 | ^Iφ1 | �Iφ1

where a ∈ AP, I is a nonsingular interval over Q+ with defined end-points. The interval

I is right-closed. We assume that Bounded-MITL(^,�) formulas are in Negation Normal

Form (NNF) where the negation operation is only applied on atomic propositions. NNF is

3The satisfiability tools for MITL that we use in Section 4.5.1, assume that the traces satisfy the finite

variability condition [25].

24

easily obtainable by iteratively applying the following transformation: ¬^Iϕ ≡ �I¬ϕ and

¬�Iϕ ≡ ^I¬ϕ. NNF formulas only contain the following boolean operators of (∧,∨).

Definition 3.3.3 (Bounded-MITL(^,�) semantics in NNF) Given an SS y : [0,T] →

2AP and t, t′ ∈ [0,T], and an MITL formula φ, the satisfaction relation (y, t) |= φ is in-

ductively defined as:

(y, t) |= >

(y, t) |= a iff a ∈ y(t)

(y, t) |= ¬a iff a < y(t)

(y, t) |= φ1 ∧ φ2 iff (y, t) � φ1 and (y, t) |= φ2

(y, t) |= φ1 ∨ φ2 iff (y, t) � φ1 or (y, t) |= φ2

(y, t) |= ^Iφ1 iff ∃t′ ∈ (t + I) ∩ [0,T] s.t (y, t′) |= φ1.

(y, t) |= �Iφ1 iff ∀t′ ∈ (t + I) ∩ [0,T], (y, t′) |= φ1.

An SS y satisfies a Bounded-MITL(^,�) formula φ (denoted by y |= φ), iff (y, 0) |= φ.

For simplifying the presentation, when we mention MITL, we mean Bounded-MITL(^,�).

Given MITL formulas ϕ and ψ, ϕ satisfies ψ, denoted by ϕ |= ψ iff ∀y.y |= ϕ⇒ y |= ψ. We

use ϕ ∈ ψ to denote that ϕ is a subformula of ψ.

3.3.2 Signal Temporal Logic (STL)

The logic and semantics of MITL can be extended to real-valued signals through Signal

Temporal Logic (STL) [78].

Definition 3.3.4 (Signal Temporal Logic [78]) Let s : [0,T] → Rm be a real-valued sig-

nal, and Π = {π1, ..., πn} be a collection of predicates or boolean functions of the form

πi : Rm → B where B = {>,⊥} is a boolean value.

25

For any STL formula ΦS T L over predicates Π, we can define a corresponding MITL formula

ΦMIT L over some atomic propositions AP as follows:

1. Define a set AP such that for each π ∈ Π, there exist some aπ ∈ AP

2. For each real-valued signal s we define a y such that ∀t.aπ ∈ y(t) iff π(s(t)) = >

3. ∀t.(s, t) � ΦS T L iff (y, t) � ΦMIT L

The traces resulting from abstractions through predicates of signals from physical systems

satisfy the finite variability assumption. For practical applications, the finite variability

assumption is satisfied. Since we focus on CPS in this dissertation, with a slight abuse of

terminology, we may use the term signal to refer to both a TSS µ and a signal y.

3.4 Temporal Logic with Robustness Semantics

Intuitively, robustness semantics is an extension of the Boolean semantics of temporal

logic. Robust semantics evaluate to positive values if the trajectory satisfies the specifica-

tion and it evaluates to negative values if the trajectory violates the specification. Moreover,

the magnitude of the robust evaluation indicates how robustly the behavior satisfies or vio-

lates the specification.

Temporal Logic (TL) can capture many system requirements by defining a set of atomic

propositions AP which labels subsets of the output space Y . We define those subsets

through an observation map O : AP → P(Y) where each π ∈ AP is mapped to a set

O(π) ⊂ Y .

3.4.1 Euclidean Distance Metric

Euclidean distance metric is used to capture the continuous system behavior for the

atomic propositions of TL. Using a metric d [90], we can define a distance function that

captures how far away a point y ∈ Y is from a set S ⊆ Y . Intuitively, the distance function

26

assigns positive values when y is in the set S and negative values when y is outside the set

S . The metric d must be at least a generalized quasi-metric as described in [1] which also

includes the case where d is a metric as it was introduced in [48].

Definition 3.4.1 (Signed Distance) Let y ∈ Y be a point, S ⊆ Y be a set and d be a metric.

Then, we define the Signed Distance from y to S to be

Distd(y, S) :=

−distd(y, S) if y < S

distd(y,Y\S)} if y ∈ S

where

distd(y, S) := inf{d(y, y′) | y′ ∈ S }

and inf is the infimum.

We should point out that we use the extended definition of supremum (t) and infimum

(u). In other words, the supremum of the empty set is defined to be bottom element of the

domain, while the infimum of the empty set is defined to be the top element of the domain.

For example, sup ∅ := −∞ and inf ∅ := +∞.

3.4.2 Hybrid Distance Metric

S-TaLiRo [13] originally supported the following metrics. When Y = Rn, then we use

the Euclidean metric d(y1, y2) = ‖y1 − y2‖. When Y is a hybrid space, we assume that the

output space Y of the system Σ comprises of the original output space YΣ of the system

(equipped with the nontrivial metric), and a finite space YF . That is, Y = YΣ × YF with

YΣ = Rn and YF = Q, where Q is the set of states of a Hybrid Automata H (Section 2.2),

then we use the following generalized quasi-metric [82, 1] dh : Y × Y →
〈
N ∪∞,R+

〉
with

definition:

dh(〈x, q〉 , 〈x′, q′〉) =

〈0, d(x, x′)〉 if q = q′〈
π(q, q′), min

q→q′′{q′
distd(x,Guard(q, q′′))

〉
otherwise

27

where π(q, q′) is the size of the shortest path between q and q′ on the graph of H . The

distance metric d is on Rn, and Guard(q, q′′) denotes that the switching guard that activates

the transition from state q to state q′′ in the transitions set E ∈ H (see Definition 2.2.1).

State q′′ is chosen from all the neighbors of q that are one step closer to q′ in the shortest

path (with the size equal to π(q, q′)). We assume that Guard(q, q′′) ⊆ YΣ. Finally, the “min”

operator quantifies over all neighboring states q′′ of q that are on a shortest path from q to

q′. A more detailed discussion can be found in [1]. When the two points 〈x, q〉 , 〈x′, q′〉

are in the same locations, then the distance computation reduces to the distance computa-

tion between the points in the continuous state space. When the two points 〈x, q〉 , 〈x′, q′〉

are in different locations, then the distance is the path distance between the two locations

“weighted” by the distance to the closest guard that will enable the transition to the next

locations (q′′) that reduces the path distance. Essentially, the last condition is a heuristic

that chooses one of the shortest paths.

The generalized distance function dh is computationally complex. On the other hand,

the Guard may not be defined in some Hs. Therefore, we define the following simplified

generalized quasi-metric [82, 1] d0
h : Y × Y →

〈
N ∪∞,R+

〉
:

d0
h(〈x, q〉 , 〈x′, q′〉) =

〈0, d(x, x′)〉 if q = q′

〈π(q, q′), 0〉 if q , q′ and π(q, q′) < +∞

〈+∞,+∞〉 otherwise

The distance function d0
h ignores the guards and considers distance metric d only when the

two points are in the same location inH [1].

3.4.3 Multiple Hybrid Distance Metric

When dealing with industrial size models, it is unrealistic to assume that there is going

to be a single hybrid automataH or that it is going to be efficient to flatten all the different

hybrid automata into a single one H ′. On the other hand, the hybrid system modeled as

28

a Simulink or Ptolemy [45] model may have various discrete blocks such as statechart,

switch, saturation or if-then-else block. In this case, the hybrid metric needs to resolve

the distance metric of all the discrete blocks [40]. Therefore, we have modified S-TaLiRo

to handle multiple finite state components as follows: We extend the metric in a natural

way using the maximum pairwise hybrid distance. Namely, when Y = YΣ × YF , where

YF = Q1 × . . . × Qm, and Q1, . . ., Qm are the sets of states of m different Hs, we use the

following metric:

dmax
h (〈x, q1, . . . , qm〉 ,

〈
x′, q′1, . . . , q

′
m
〉
) = max{dh(〈x, q1〉 ,

〈
x′, q′1

〉
), . . . ,dh(〈x, qm〉 ,

〈
x′, q′m

〉
).}

The multiple hybrid distance metric is used to define different coverage metrics for

addressing the coverage guided falsification of hybrid systems [40].

3.4.4 Robustness Semantics for MT LP

The formulas in MT LP state requirements over the observable trajectories of a CPS. In

order to capture these requirements, each predicate p ∈ AP is mapped to a subset of the

metric space. Note that, we use an observation map O to interpret each predicate p ∈ AP,

where the observation map is defined as O : AP → P(Y) such that for each p ∈ AP the

corresponding set is O(p). We define the robust valuation of an MT LP formula ϕ over a

TSS ỹ as follows [47].

Definition 3.4.2 (MT LP Robustness Semantics) Let µ be a timed state sequence as de-

fined in Section 3.1.2, and O be an observation map O : AP → P(Y), then the robust

semantics of any formula ϕ ∈ MT LP with respect to µ is recursively defined as:

~>�(µ, i) :=
⊔

Range(d)

~p�(µ, i) := Distd(ỹi,O(p)) see Definition 3.4.1

~¬ϕ�(µ, i) := −~ϕ�(µ, i)

29

~ψ ∨ ϕ�(µ, i) := ~ψ�(µ, i) t ~ϕ�(µ, i)

~ψUIϕ�(µ, i) :=
⊔

j∈τ−1(τ(i)+I)

(
~ϕ�(µ, j)

� �
i≤k< j

~ψ�(µ, k)
)

~ψS Iϕ�(µ, i) :=
⊔

j∈τ−1(τ(i)−I)

(
~ϕ�(µ, j)

� �
i≤k< j

~ψ�(µ, k)
)

where τ−1 is the inverse function of τ, and − is an unary operator defining the “negative”

values of the range of d, i.e., Range(d). A trace µ satisfies an MT LP formula φ (denoted

by µ |= φ), if [[φ]]d(µ, 0) > 0. On the other hand, a trace µ′ falsifies an MT LP formula φ

(denoted by µ′ 6|= φ), if [[φ]]d(µ′, 0) < 0.

3.4.5 Syntax and Semantics for MTL<+∞
+pt

The set of formulas of MTL<+∞
+pt is a subset of MT LP. We refine MT LP into MTL<+∞

+pt

to make a feasible and efficient solution for the on-line monitoring problem (see Chapter

7). We must assume a fixed sampling period for the system, where there exists a fixed time

period between consecutive time stamps. Using the fixed time period ∆t > 0, for all i ≥ 0,

we have τi+1− τi = ∆t. As a result, we can simply compute each time stamp τi knowing the

trace index (or simulation step) i by this multiplication τi = i∆t. Therefore, in MTL<+∞
+pt ,

we use the trace index (simulation step i) as the reference of time.

Definition 3.4.3 (MTL<+∞
+pt Syntax) Let AP be the set of predicates and I be any non-

empty interval of N, and I be any non-empty interval of N ∪ {+∞}. The set MTL<+∞
+pt

formulas is inductively defined as ϕ ::= > | p | ¬ϕ | ψ ∨ ϕ | ψUIϕ | ψS
I
ϕ where p ∈ AP

and > stands for true.

Note that in MTL<+∞
+pt syntax, we use the number of samples to represent the time interval

constraints of temporal operators. For example, assume that ∆t = 0.1, then the MTL

formula ^[0,0.5]a where the timing constraints are over time is instead represented by ^[0,5]a

in MTL<+∞
+pt . All bounded future temporal operators can be syntactically defined using

30

Until (UI), where � (Next), ^ (Eventually), and � (Always) are defined as �ϕ ≡ >U[1,1]ϕ,

^Iϕ ≡ >UIϕ, and �Iϕ ≡ ¬^I¬ϕ respectively. The intuitive meaning of the ψU[a,b]ϕ

operator at sampling time i is a follows: ψ has to hold at least until ϕ becomes true within

the time interval of [i + a, i + b] in the future. Similarly, all other bounded/unbounded past

temporal operators can be defined using Since (S
I
), where � (Previous), � (Eventually in

the past), and � (Always in the past) are defined as �ϕ ≡ >S [1,1]ϕ, �
I
ϕ ≡ >S

I
ϕ, and

�
I
ϕ ≡ ¬�

I
¬ϕ. The intuitive meaning of the ψS [a,b]ϕ operator at sampling time i is as

follows: since ϕ becomes true within the interval [i − b, i − a] in the past, ψ must hold till

now (current time i). We define the robust valuation of an MTL<+∞
+pt formula ϕ over a trace

ỹ as follows [47].

Definition 3.4.4 (MTL<+∞
+pt Robustness Semantics) Let ỹ be a sampled output as defined

in Section 3.1.2, and O be an observation map O : AP → P(Y), then the robust semantics

of any formula ϕ ∈ MTL<+∞
+pt with respect to ỹ is recursively defined as:

~>�(ỹ, i) := +∞

~p�(ỹ, i) := Distd(ỹi,O(p)) see Definition 3.4.1

~¬ϕ�(ỹ, i) := −~ϕ�(ỹ, i)

~ψ ∨ ϕ�(ỹ, i) := ~ψ�(ỹ, i) t ~ϕ�(ỹ, i)

~ψU[l,u]ϕ�(ỹ, i) :=
⊔i+u

j=i+l

(
~ϕ�(ỹ, j) u

� j−1

k=i
~ψ�(ỹ, k)

)
~ψS [l′,u′〉ϕ�(ỹ, i) :=

⊔i−l′

j=max{0,i−u′}

(
~ϕ�(ỹ, j) u

�i

k= j+1
~ψ�(ỹ, k)

)
where t stands for max, u stands for min, p ∈ AP, l, u, l′ ∈ N and u′ ∈ N ∪ {∞}. Further-

more, the symbol 〉 in S[l′,u′〉 will be) when u′ = +∞ and] when u′ , +∞.

31

Chapter 4

SYSTEM INDEPENDENT SPECIFICATION DEBUGGING

In this chapter, I provide a specification analysis framework that would enable the de-

bugging of specifications. The specification debugging algorithm identifies invalid and in-

correct specifications. This method will then be applied to find critical issues in the system

when we consider Request-Response requirements (Chapters 5, 6).

4.1 Related Works

Let us consider the model checking with respect to LTL formulas [30, 16]. It is possible

that the model satisfies the specification but not in the intended way. This may hide actual

problems in the model. These satisfactions are called vacuous satisfactions. Antecedent

failure was the first problem that raised the vacuity as a serious issue in verification [20, 22].

Vacuity can be addressed with respect to a model [21, 14, 73] or without a model

[54, 29]. A formula which has a subformula that does not affect the overall satisfaction

of the formula is a vacuous formula. It has been proven in [54] that a specification ϕ

is satisfied vacuously in all systems that satisfy it iff ϕ is equivalent to some mutations

of it. In [29], they provide an algorithmic approach to detect vacuity and redundancy in

LTL specifications. Vacuity with respect to testing was considered in [18], where they

considered vacuity in model checking as a strong vacuity. In contrast, [18] defined weak

vacuity for test suites that vacuously pass LTL monitors, e.g. [58]. Our work extends [29]

and it is applied to a fragment of MITL. For the overview of MITL fragment, consider

Section 3.3.1.

32

Formal Requirement Debugging for Testing and Verification of CPS A:7

Table I. Classes of specifications expressible with the graphical formalism

Specification
Class

Explanation

Safety Specifications of the form 2φ used to define specifications where φ should always be
true.

Reachability Specifications of the form 3φ used to define specifications where φ should be true at
least once in the future (or now).

Stabilization Specifications of the form 32φ used to define specifications that, at least once, φ
should be true and from that point on, stay true.

Oscillation Specifications of the form 23φ used to define specifications that, it is always the case,
that at some point in the future, φ repeatedly will become true.

Implication Specifications of the form φ⇒ ψ requires that ψ should hold when φ is true.
Reactive
Response

Specifications of the form 2(φ⇒ Mψ), where M is temporal operator, used to define
an implicative response between two specifications where the timing of M is relative
to timing of 2.

Conjunction Specifications of the form φ∧ψ used to define the conjunction of two sub-specifications.
Non-strict
Sequencing

Specifications of the form N(φ ∧Mψ), where N and M are temporal operators, used
to define a conjunction between two specifications where the timing of M is relative
to timing of N .

VISPEC
Tool

User Input MITL Debugging Specification

Revision Necessary

Fig. 3. Specification Elicitation Framework
the definition of: a) Reactive response specifications of the form 2(φ ⇒ Mψ) ; b) Non-
strict sequencing specifications of the form N(φ ∧Mψ), where N and M are temporal
operators. The variety of templates and the connections between them allow users to
express a wide collection of specifications as presented in Table I.

4. MITL ELICITATION FRAMEWORK
Our framework for elicitation of MITL specifications is presented in Fig. 3. Once a
specification is developed using VISPEC, it is translated to STL. Then, we create the
corresponding MITL formula from STL. Next, the MITL specification is analyzed by
the debugging algorithm which returns an alert to the user in case the specification
has inconsistency or correctness issues. The debugging process is explained in detail
in the next section.

To enable the debugging of specifications, we must first project the STL predicate
expressions (functions) into atomic propositions with independent truth valuations.
This is very important because the atomic propositions (a ∈ AP) in MITL are assumed
to be independent of each other. However, when we project predicates to the atomic
propositions, the dependency between the predicates restricts the possible combina-
tion of truth valuation of the atomic propositions. This notion of predicate dependency
is illustrated using the following example. Consider the real-valued signal Speed in
Fig. 4. The boolean abstraction a (resp. b) over the Speed signal is true when the Speed
is above 100 (resp. 80). The predicates a and b are related to each other because it is
always the case that if Speed > 100 then also Speed > 80. In Fig. 4, the boolean signals
for predicates a and b are represented in black solid and dotted lines, respectively. It
can be seen that solid and dotted lines are overlapping which shows the dependency
between them. However, this dependency is not captured if we naively substitute each
predicate with a unique atomic proposition. If we lose information about the intrin-

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 4.1: Specification Elicitation Framework

4.2 MITL Elicitation Framework

The framework for elicitation of MITL specifications is presented in [66]. Once a

specification is developed using ViSpec [66], it is translated into STL (see Figure 4.1).

Then, we create the corresponding MITL formula from STL. Next, the MITL specification

is analyzed by the debugging algorithm which returns an alert to the user if the specification

has inconsistency or correctness issues. The debugging process is explained in details in

the next section.

To enable the debugging of specifications, we must first project the STL predicate ex-

pressions (functions) into atomic propositions with independent truth valuations. This is

very important because the atomic propositions (a ∈ AP) in MITL are assumed to be

independent of each other. However, when we project predicates to the atomic proposi-

tions, the dependency between the predicates restricts the possible combinations of truth

valuations of the atomic propositions. This notion of predicate dependency is illustrated

using the following example. Consider the real-valued signal S peed in Figure 4.2. The

boolean abstraction a (resp. b) over the S peed signal is true when the S peed is above

100 (resp. 80). The predicates a and b are related to each other because it is always the

case that if S peed > 100 then also S peed > 80. In Figure 4.2, the boolean signals for

predicates a and b are represented in black solid and dotted lines, respectively. It can

be seen that solid and dotted lines are overlapping which shows the dependency between

them. However, this dependency is not captured if we naively substitute each predicate

with a unique atomic proposition. If we lose information about the intrinsic logical depen-

33

time

a

a ≡ Speed >100
time

t

Speed

b100
80

Boolean

abstraction

time

time

b ≡ Speed >80

c ≡ 100 ≥ Speed >80

Figure 4.2: The Real-valued S peed Signal and Its Three Boolean Abstractions: a ≡
S peed > 100 (Solid Black Line), b ≡ S peed > 80 (Dotted Line), and c ≡ 100 ≥ S peed >
80 (Gray Line).

dency between a and b, then the debugging algorithm will not find possible specication

issues. For analysis of STL formulas within our MITL debugging process, we must re-

place the original predicate with non-overlapping (mutual exclusive) predicates. For the

example illustrated in Figure 4.2, we create a new atomic proposition c which corresponds

to 100 ≥ speed > 80 and the corresponding boolean signal is represented in gray. In

addition, we replace the atomic proposition b with the propositional formula a ∨ c since

speed > 80 ≡ (speed > 100 ∨ 100 ≥ speed > 80). Now, the dependency between

S peed > 100 and S peed > 80 can be preserved because it is always the case that if a

(S peed > 100), then a ∨ c (S peed > 80). It can be seen in Figure 4.2 that the signal b

(dotted line) is the disjunction of the solid black (a) and gray (c) signals, where a and c

cannot be simultaneously true.

The projection of STL to MITL with independent atomic propositions is conducted

using a brute-force approach that runs through all the combinations of predicate expressions

to find overlapping parts. The high level overview of Algorithm 1 is as follows: given the

set of predicates Π = {π1, ..., πn}, the algorithm iteratively calls Algorithm 2 (DecPred) in

order to identify predicates whose corresponding sets have non-empty intersections. For

each predicate πi, we assume there exists a corresponding set Si such that Si = {x | x ∈

34

Algorithm 1 Generate Mutually Exclusive Predicates
Input: Set of predicates Π = {π1, ..., πn}

Output: Mutually exclusive predicates Ψ

1: Initially, update Π with Disjunction of Ψ

2: termCond← 0;∆← Π

3: while termCond = 0 do

4: Ψ← DecPred(∆)

5: if Ψ , ∅ then

6: ∆← Ψ

7: else

8: termCond← 1

9: Ψ← ∆

10: end if

11: end while

12: Π←CreateDisjunction(Π,Ψ)

13: return Π,Ψ

Rm, πi(x) = >}. The set Si represents part of space Rm where predicate function πi evaluates

to >. When no non-empty intersection is found, the Algorithm 1 terminates.

Algorithm 1 creates a temporary copy of Π in a new set ∆. Then in a while loop Al-

gorithm 2 is called in Line 3 to find overlapping predicates. Algorithm DecPred checks

all the combination of predicates in ∆ until it finds overlapping sets (see Line 3). The

DecPred partitions two overlapping predicates πi, π j into three mutually exclusive predi-

cates πi j1, πi j2, πi j3 in Lines 4-6. Then πi, π j are removed from ∆ in Line 7 and new predi-

cates πi j1, πi j2, πi j3 are appended to ∆ (Line 8). If no overlapping predicates are found, then

DecPred returns ∅ in Line 13 and termCond gets value 1 in Line 7 of Algorithm 1. Now the

35

Algorithm 2 DecPred: Decompose Two Predicates
Input: Set of predicates Π = {π1, ..., πn}

Output: Set of updated predicates Π

1: for i = 1 to size of Π do

2: for j = i + 1 to size of Π do

3: if Si ∩ S j , ∅ then

4: πi j1 ← Si ∩ S j

5: πi j2 ← Si \ S j

6: πi j3 ← S j \ Si

7: Remove(Π, {πi, π j})

8: Aappend(Π, {πi j1, πi j2, πi j3})

9: return Π

10: end if

11: end for

12: end for

13: return ∅

while loop will terminate and Ψ contains all non-overlapping predicates. We must rewrite

the predicates in Π with a disjunction operation on the new the predicates in Ψ. This oper-

ation takes place in Line 11 of Algorithm 1. Since the CreateDisjunction function is trivial,

we omit its pseudo code. The runtime overhead of Algorithm 1 and the size of the result-

ing set Ψ can be exponential to |Π| = n, because we can have 2n possible combinations of

predicate evaluations.

4.3 Problem Formulation

In this section, we present the framework which checks the requirements for erroneous

or incomplete MITL specifications without considering the system (system independent).

36

Formal Requirement Elicitation and Debugging for Testing and Verification of CPS A:9

ValidityMITL
Specification Redundancy Vacuity Specification passed

debugging checks

Revision Necessary

VISPEC
Tool

Fig. 4. Specification Debugging

specification p ∧ 2[0,10]p, the first conjunct is redundant. Sometimes redundancy is re-
lated to incomplete or erroneous requirements where the user may have wanted to
specify something else. Therefore, the user should be notified.

Vacuity checking determines whether the specification has a subformula that does
not have any affect on the satisfaction of the specification. For example ϕ = p∨3[0,10]p
is vacuous since the first occurrence of p does not have any affect on the satisfaction of
ϕ.

Definition 5.1 (Wrong Specification). A specification which is redundant or vacuous
is called wrong.

The reason that we choose the term “wrong” is that although this specification is
logically valid, the specification in its current representation does not reflect the in-
tention of the requirement in its natural language form. This is because part of the
specification is overshadowed with the other components.

The debugging process is presented in Fig. 3. First, given a specification, a validity
check is conducted. If a formula does not pass a validity check then it means that
there is a major problem in the specification and the formula is returned for revision.
Therefore, redundancy and vacuity checks are not relevant at that point. Similarly, if
the specification is redundant it means that it has a conjunct that does not have any
affect on the satisfaction of the specification and we return the redundant conjunct for
revision. Lastly, if the specification is vacuous it is returned with the issue for revision
by the user.

5.1. Redundancy Checking
Recall that a specification has a redundancy issue if one of its conjuncts can be re-
moved without affecting the models of the specification. Before we formally present
what redundant requirements are, we have to introduce some notation. We consider
specification Φ as a conjunction of MITL subformulas (ϕj):

Φ =
∧k

j=1
ϕj (1)

To simplify discussion, we will abuse notation and we will associate a conjunctive for-
mula with the set of its conjuncts. That is:

Φ = {ϕj | j = 1, ..., k} (2)

Similarly, {Φ\ϕi} represents the specification Φ where the conjunct ϕi is removed:

{Φ\ϕi} = {ϕj | j = 1, ..., i − 1, i + 1, ..., k} =
∧i−1

j=1
ϕj ∧

∧k

j=i+1
ϕj (3)

Whether {Φ\ϕi} represents a set or a conjunctive formula will be clear from the con-
text. Redundancy in specifications is fairly common in practice due to the incremental

ACM Transactions on Embedded Computing Systems, Vol. V, No. N, Article A, Publication date: January YYYY.

Figure 4.3: Specification Debugging Framework [36]

Then, in Chapter 5, we will provide the method to analyze reactive requirements with

respect to system test traces to find more subtle errors in specifications or systems. This

framework can help the users to detect the specification errors, where the requirement issues

can be corrected before any test and verification process is initiated.

Problem 1 (System Independent MITL Analysis) Given an MITL formula ϕ, find whether

ϕ has any of the following logical issues:

1. Validity: the specification is unsatisfiable or a tautology.

2. Redundancy: the formula has redundant conjuncts.

3. Vacuity: some subformulas do not contribute to the satisfiability of the formula.

In particular, issues 2 and 3 usually indicate some misunderstanding in the requirements.

The overview of our proposed solution to Problem 1 is provided in Figure 4.3. This frame-

work appeared in [36], and it can solve the specification correctness problem for ViSpec

[66] requirements. The user of ViSpec can benefit from our feed-back and fix any reported

issue.

4.4 MITL Specification Debugging

In the following, we present algorithms that can detect inconsistency and correctness

issues in specifications. This will help the user in the elicitation of correct specifications.

37

Our specification debugging process conducts the following checks in this order: 1) Va-

lidity, 2) Redundancy, and 3) Vacuity. In brief, validity checking determines whether the

specification is unsatisfiable or a tautology. Namely, if the specification is unsatisfiable no

system can satisfy it and if it is a tautology every system can trivially satisfy it. For exam-

ple, p∨¬p is a tautology. If an MITL formula passes the validity checking, this means that

the MITL is satisfiable but not a tautology.

Redundancy checking determines whether the specification has any redundant conjunct

when the specification is a conjunction of MITL formulas. For example, in the specification

p∧�[0,10] p, the first conjunct is redundant. Sometimes redundancy is related to incomplete

or erroneous requirements where the user may have wanted to specify something else.

Therefore, the user should be notified.

Vacuity checking determines whether the specification has a subformula that does not

affect on the satisfaction of the specification. For example, ϕ = p∨^[0,10] p is vacuous since

the first occurrence of p does not have any affect the satisfaction of ϕ. This is a logical issue

because a part of the specification is overshadowed by the other components.

The debugging process is presented in Figure 4.3. The feedback (Revision Necessary)

to the user is a textual description about the detail of each issue. First, given a specifica-

tion, a validity check is conducted. If a formula does not pass the validity check then it

means that there is a major problem in the specification and the formula is returned for

revision. Therefore, redundancy and vacuity checks are not relevant at that point and the

user is notified that the specification is either unsatisfiable or is a tautology. Similarly, if

the specification is redundant it means that it has a conjunct that does not have any effect

on the satisfaction of the specification and we return the redundant conjunct to the user for

revision. Lastly, if the specification is vacuous it is returned with the issue for revision by

the user. When vacuity is detected, we return to the user the simplified formula which is

equivalent to the original MITL.

38

4.4.1 Redundancy Checking

Recall that a specification has a redundancy issue if one of its conjuncts can be removed

without affecting the models of the specification. Before we formally present what redun-

dant requirements are, we have to introduce some notation. We consider specification Φ as

a conjunction of MITL subformulas (ϕ j):

Φ =
∧k

j=1
ϕ j (4.1)

To simplify discussion, we will abuse notation and we will associate a conjunctive formula

with the set of its conjuncts. That is:

Φ = {ϕ j | j = 1, ..., k} = ϕ1 ∪ ϕ2 ∪ · · · ∪ ϕk (4.2)

Similarly, {Φ\ϕi} represents the specification Φ where the conjunct ϕi is removed:

{Φ\ϕi} = {ϕ j | j = 1, ..., i − 1, i + 1, ..., k} =
∧i−1

j=1
ϕ j ∧

∧k

j=i+1
ϕ j (4.3)

Therefore {Φ\ϕi} represents a conjunctive formula. Redundancy in specifications can ap-

pear in practice due to the incremental additive approach that system engineers take in

the development of specifications. Redundancy should be avoided in formal specification

because it increases the overhead of the testing and verification processes. In addition,

redundancy can be the result of incorrect translation from natural language requirements.

In the following, we consider the redundancy removal algorithm provided in [29] for LTL

formulas and we extend it to support MITL formulas.

Definition 4.4.1 (Redundancy of Specification) A conjunct ϕi is redundant with respect

to Φ if ∧
ψ

ψ∈{Φ\ϕi}

|= ϕi

39

To reformulate, ϕi is redundant with respect to Φ if {Φ\ϕi} |= ϕi. For example, in

Φ = ^[0,10](p∧q)∧^[0,10] p∧�[0,10]q, the conjunct ^[0,10](p∧q) is redundant with respect to

^[0,10] p ∧ �[0,10]q since ^[0,10] p ∧ �[0,10]q |= ^[0,10](p ∧ q). In addition, ^[0,10] p is redundant

with respect to^[0,10](p∧q)∧�[0,10]q since^[0,10](p∧q)∧�[0,10]q |= ^[0,10] p. This method can

detect both the issues and report them to the user. Algorithm 3 finds redundant conjuncts

in the conjunction operation of the following levels:

1. Conjunction as the root formula (top level).

2. Conjunction in the nested subformulas (lower levels).

In the top level, it provides the list of subformulas that are redundant with respect to the

original MITL Φ. In the lower levels, if a specification has nested conjunctive subformulas

(φi ∈ Φ), it will return the conjunctive subformula φi as well as its redundant conjunct

ψ j ∈ φi. For example, if Φ = ^[0,10](p ∧ �[0,10] p) is checked by Algorithm 3, then it will

return the pair of (p, p ∧ �[0,10] p) to represent that p is redundant in p ∧ �[0,10] p. In Line 5,

the pair of (ψ j, φi) is interpreted as follows: ψ j is redundant in φi.

4.4.2 Specification Vacuity Checking

Vacuity detection is used to ensure that all the subformulas of the specification con-

tribute to the satisfaction of the specification. In other words, vacuity check enables the

detection of irrelevant subformulas in the specifications [29]. For example, consider the

STL specification φstl = ^[0,10]((speed > 100) ∨ ^[0,10](speed > 80)). In this case, the

subformula (speed > 100) does not affect the satisfaction of the specification. This indi-

cates that φstl is a vacuous specification. We need to create correct atomic propositions

for the predicate expressions of φstl to be able to detect such vacuity issues in MITL

formulas. If we naively replace the predicate expressions speed > 100 and speed >

80 with the atomic propositions a and b, respectively, then the resulting MITL formula

40

Algorithm 3 Redundancy Checking
Input: Φ (MIT L Specification)

Output: RLϕ (redundant conjuncts w.r.t conjunctions)

1: RLϕ ← ∅

2: for each conjunctive subformula φi ∈ Φ do

3: for each conjunct ψ j ∈ φi do

4: if {φi\ψ j} |= ψ j then

5: RLϕ ← RLϕ ∪ (ψ j, φi)

6: end if

7: end for

8: end for

9: return RLϕ

will be φmitl = ^[0,10](a ∨ ^[0,10]b). However, φmitl is not vacuous. Therefore, we must

extract non-overlapping predicates as explained in Section 4.2. The new specification

φ′mitl = ^[0,10](a ∨ ^[0,10](a ∨ c)) where a corresponds to speed > 100 and c corresponds to

100 ≥ speed > 80 is the correct MITL formula corresponding to φstl, and it is vacuous. In

the following, we provide the definition of MITL vacuity with respect to a signal:

Definition 4.4.2 (MITL Vacuity with respect to timed trace) Given a timed trace µ and

an MITL formula ϕ. A subformula ψ of ϕ does not affect the satisfiability of ϕwith respect to

µ if and only if ψ can be replaced with any subformula θ without changing the satisfiability

of ϕ on µ. A specification ϕ is satisfied vacuously by µ, denoted by µ |=V ϕ, if there exists a

subformula ψ which does not affect the satisfiability of ϕ on µ.

In the following, we extend the framework presented in [29] to support MITL specifica-

tions. Let ϕ be a formula in NNF where only predicates can be in the negated form. A

literal is defined as a predicate or its negation. For a formula ϕ, the set of literals of

41

Algorithm 4 Vacuity Checking
Input: Φ (MIT L Specification)

Output: VLϕ (vacuous formulas)

1: VLϕ ← ∅

2: for each formula ϕi ∈ Φ do

3: for each l ∈ litOccur(ϕi) do

4: if Φ |= ϕi[l←⊥] then

5: VLϕ ← VLϕ ∪ {Φ\ϕi} ∧ ϕi[l←⊥]

6: end if

7: end for

8: end for

9: return VLϕ

ϕ is denoted by literal(ϕ) and contains all the literals appearing in ϕ. For example, if

ϕ = (¬p ∧ q) ∨^[0,10] p ∨ �[0,10]q, then literal(ϕ) = {¬p, q, p}. Literal occurrences, denoted

by litOccur(ϕ), is a multi-set of literals appearing in some order in ϕ, e.g., by traversal of

the parse tree. For the given example litOccur(ϕ) = {¬p, q, p, q}. For each l ∈ litOccur(ϕ),

we create the mutation of ϕ by substituting the occurrence of l with ⊥. We denote the

mutated formula as ϕ[l←⊥].

Definition 4.4.3 (MIT L Vacuity w.r.t. literal occurrence) Given a timed trace µ and an

MIT L formula ϕ in NNF. Specification ϕ is vacuously satisfied by µ if there exists a literal

occurrence l ∈ litOccur(ϕ) such that µ satisfies the mutated formula ϕ[l ←⊥]. Formally,

µ |=V ϕ if ∃l ∈ litOccur(ϕ) s.t. µ |= ϕ[l←⊥].

Theorem 4.4.1 (MIT L Vacuity with respect to Specification) Assume that the specifica-

tion Φ is a conjunction of MITL formulas. If ∃ϕi ∈ Φ and ∃l ∈ litOccur(ϕi), such that

Φ |= ϕi[l←⊥], then Φ is inherently vacuous.

42

1

LabLabLabLabCPSCPSCPSCPS

� M. Bersani and M. Rossi and P. San Pietro, A tool for deciding the satisfiability of continuous-time metric

temporal logic. Acta Informatica, pages 1–36, 2015.

QTL Solver

Zot
Z3

MITL

SAT

CLTLoc

SAT

SMT

Validity

Redundancy

Vacuity

Figure 4.4: The MITL SAT Solver from [25] Is Used for Debugging Specifications.

A specification Φ is inherently vacuous if it is equivalent to its simplified mutation,

which means that Φ is vacuous independent of any signal or system. Inherent vacuity of

LTL formulas is addressed in [54, 29]. The proof of Theorem 4.4.1 is straightforward

modification of the proofs given in [29, 73]. We provide the proof in Appendix A. When

we do not have a root-level conjunction in the specification (Φ = ϕ1), we check the vacuity

of the formula with respect to itself. In other words, we check whether the specification

satisfies its mutation (ϕ |= ϕ[l ←⊥] or ϕ |=V ϕ). Technically, Algorithm 4 as presented,

returns a list of all the mutated formulas that are equivalent to the original MITL.

4.5 Experiments

All the thee level correctness analysis of MITL specifications need satisfiability check-

ing as the underlying tool [26]. In validity checking, we simply check whether the speci-

fication and its negation are satisfiable. In general, in order to check whether ϕ |= ψ, we

should check whether ϕ→ ψ is a tautology, that is ∀µ, µ |= ϕ→ ψ. This can be verified by

checking whether ¬(ϕ → ψ) is unsatisfiable. Recall that ϕ → ψ is equivalent to ¬ϕ ∨ ψ.

So we have to check whether ϕ ∧ ¬ψ is unsatisfiable to conclude that ϕ |= ψ. We use the

above reasoning for redundancy checking as well as for vacuity checking. For redundancy

checking of conjuncts at the root level, {Φ\ϕi} ∧ ¬ϕi should be unsatisfiable, in order to

conclude that {Φ\ϕi} |= ϕi. For vacuity checking, Φ ∧ ¬(ϕi[l←⊥]) should be unsatisfiable,

1In this case, we assume {Φ\ϕi} ≡ > in Line 5 of the Algorithm 4.

43

in order to prove that Φ |= ϕi[l←⊥].

4.5.1 MITL Satisfiability

The satisfiability problem of MITL is EXPSPACE-complete [8]. In order to check

whether an MITL formula is satisfiable we use two publicly available tools: qtlsolver2

and zot3. The qtlsolver that we used translates MITL formulas into CLTL-over-clocks

[25, 26]. Constraint LTL (CLTL) is an extension of LTL where predicates are allowed

to be assertions on the values of non-Boolean variables [32]. That is, in CLTL, we are

allowed to define predicates using relational operators for variables over domains like N

and Z. Although satisfiability of CLTL in general is not decidable, some variants of it are

decidable [32].

CLTLoc (CLTL-over-clocks) is a variant of CLTL where the clock variables are the

only arithmetic variables that are considered in the atomic constraints. It has been proven

in [24] that CLTLoc is equivalent to timed automata [30]. Moreover, it can be polynomi-

ally reduced to decidable Satisfiability Modulo Theories which are solvable by many SMT

solvers such as Z34. The satisfiability of CLTLoc is PSPACE-complete [26] and the trans-

lation from MITL to CLTLoc in the worst case can be exponential [25]. Some restrictions

must be imposed on the MITL formulas in order to use the qtlsolver [25]. That is, the

lower bound and upper bound for the intervals of MITL formulas should be integer values

and intervals are left/right closed. Therefore, we expect the values to be integer when we

analyse MITL formulas. The high level architecture of the MITL SAT solver, which we

use to check the three issues, is provided in Figure 4.4.

2qtlsolver: A solver for checking satisfiability of Quantitative / Metric Interval Temporal Logic

(MITL/QTL) over Reals. Available from https://code.google.com/p/qtlsolver/
3The zot bounded model/satisfiability checker. Available from https://code.google.com/p/zot/
4Microsoft Research, Z3: An efficient SMT solver. Available from http://research.microsoft.

com/en-us/um/redmond/projects/z3/

44

https://code.google.com/p/qtlsolver/
https://code.google.com/p/zot/
http://research.microsoft.com/en-us/um/redmond/projects/z3/
http://research.microsoft.com/en-us/um/redmond/projects/z3/

4.5.2 Specification Debugging Results

We utilize the debugging algorithm on a set of specifications developed as part of a

usability study for the evaluation of the ViSpec tool [66]. The usability study was conducted

on two groups:

1. Group A: These are users who declared that they have little to no experience in

working with requirements. The Group A cohort consists of twenty subjects from

the academic community at Arizona State University. Most of the subjects have an

engineering background.

2. Group B: These are users who declared that they have experience working with sys-

tem requirements. Note that they do not necessarily have experience in writing re-

quirements using formal logics. The Group B subject cohort was comprised of ten

subjects from industry in the Phoenix metro area.

Each subject received a task list to complete. The list contained ten tasks related to

automotive system specifications. Each task asked the subject to formalize a natural lan-

guage specification through ViSpec and generate an STL specification. The task list is

presented in Table 4.1. A detailed report on the accuracy of the users response to each

natural language requirement is provided in [66]. Note that the specifications were pre-

processed and transformed from the original STL formulas to MITL in order to run the

debugging algorithm. For example, specification φ3 in Table 4.2 originally in STL was

φ3S T L = ^[0,40](((speed > 80) → ^[0,20](rpm > 4000)) ∧ �[0,30](speed > 100)). The

STL predicate expressions (speed > 80), (rpm > 4000), (speed > 100) are mapped into

atomic propositions with non-overlapping predicates (Boolean functions) p1, p2, p3. The

predicates p1, p2, p3 correspond to the following STL representations: p1 ≡ speed > 100,

p2 ≡ rpm > 4000, and p3 ≡ 100 ≥ speed > 80. In Table 4.2, we present common is-

sues with the elicited specifications that our debugging algorithm would have detected and

45

alerted each subject if the tool were available at the time of the study. Note that validity,

redundancy and vacuity issues are present in the specifications listed. It should be noted

that for specification φ3, although finding the error takes a significant amount of time, our

algorithm can be used off-line.

In Figure 4.5, we present the runtime overhead of the three stage debugging algorithm

over specifications collected in the usability study. In the first stage, 87 specifications go

through validity checking. Five specifications fail the test and therefore they are immedi-

ately returned to the user. As a result, 82 specifications go through redundancy checking

of conjunction in the root level 5, where 9 fail the test. Lastly, 73 specifications go through

vacuity checking where 5 specifications have vacuity issues. The remaining 68 specifi-

cations passed the tests. Note that in the figure, two outlier data points are omitted from

the vacuity sub-figure for presentation purposes. The two cases were timed at 39,618sec

and 17,421sec. In both cases, the runtime overhead was mainly because the zot software

took hours to determine that the modified specification is unsatisfiable (both specifications

were vacuous). The overall runtime of φ3 in Table 4.2 is 39,645sec which includes the run-

time of validity and redundancy checking. The runtime overhead of vacuity checking of φ3

can be reduced by half because, originally, in vacuity checking we run MITL satisfiability

checking for all literal occurrences. In particular, φ3 has four literal occurrences where for

two cases the zot took more than 19,500sec to determine that the modified specification is

unsatisfiable. We can provide an option for early detection: stop and report as soon as an

issue is found (the first unsatisfiability).

The circles in Figure 4.5 represent the timing performance in each test categorized by

the number of literal occurrences and temporal operators. The asterisks represent the mean

values and the dashed line is the linear interpolation between them. In general, we observe

5In these experiments, we did not consider conjunctions in the lower level subformulas for redundancy

checking.

46

an increase in the average computation time as the number of literal occurrences and tem-

poral operators increases. All the experimental results in Section 4.5 were performed on an

Intel Xeon X5647 (2.993GHz) with 12 GB RAM.

47

Table 4.1: Task List with Automotive System Specifications Presented in Natural Lan-
guage

Task Natural Language Specification

1. Safety In the first 40 seconds, vehicle speed should always be less than 160.

2. Reachability In the first 30 seconds, vehicle speed should go over 120.

3. Stabilization At some point in time in the first 30 seconds, vehicle speed will go over

100 and stay above for 20 seconds.

4. Oscillation At every point in time in the first 40 seconds, vehicle speed will go over

100 in the next 10 seconds.

5. Oscillation It is not the case that, for up to 40 seconds, the vehicle speed will go

over 100 in every 10 second period.

6. Implication If, within 40 seconds, vehicle speed is above 100 then within 30 seconds

from time 0, engine speed should be over 3000.

7. Request-

Response

If, at some point in time in the first 40 seconds, vehicle speed goes over

80 then from that point on, for the next 30 seconds, engine speed should

be over 4000.

8. Conjunction In the first 40 seconds, vehicle speed should be less than 100 and engine

speed should be under 4000.

9. Non-strict

sequencing

At some point in time in the first 40 seconds, vehicle speed should go

over 80 and then from that point on, for the next 30 seconds, engine

speed should be over 4000.

10. Long Se-

quence

If, at some point in time in the first 40 seconds, vehicle speed goes over

80 then from that point on, if within the next 20 seconds the engine

speed goes over 4000, then, for the next 30 seconds, the vehicle speed

should be over 100.

48

Table 4.2: Incorrect Specifications from the Usability Study In [66], Error Reported to the User by the Debugging Algorithm, and
Algorithm Runtime. Formulas Have Been Translated from STL to MITL.

φ # MITL Specification created by ViSpec users Reporting the errors Sec.

φ1 3 ^[0,30] p1 ∧ ^[0,20] p1 ^[0,30] p1 is redundant 14

φ2 3 ^[0,30](p1 → �[0,20] p1) ϕ is a tautology 7

φ3 10 ^[0,40](((p1 ∨ p3)→ ^[0,20] p2) ∧ �[0,30] p1) ϕ is vacuous: ϕ |= ϕ[p3 ←⊥] 39645

φ4 4 �[0,40] p1 ∧ �[0,40]^[0,10] p1 �[0,40]^[0,10] p1 is redundant 29

φ5 10 ^[0,40](p1 ∨ p3) ∧ ^[0,40] p2 ∧ ^[0,40]�[0,30] p1 ^[0,40](p1 ∨ p3) is redundant 126

49

Validity

1 2 3 4 5
0

100

200
Ti

m
e

(s
ec

)

Literal Occurence
1 2 3 4 5

0

100

200

Ti
m

e
(s

ec
)

No. of Temporal Operators

Redundancy

1 2 3 4 5
0

50

100

150

Ti
m

e
(s

ec
)

Literal Occurence
1 2 3 4 5

0

50

100

150

Ti
m

e
(s

ec
)

No. of Temporal Operators

Vacuity

1 2 3 4 5
0

500

1000

1500

Ti
m

e
(s

ec
)

Literal Occurence
1 2 3 4 5

0

500

1000

1500

Ti
m

e
(s

ec
)

No. of Temporal Operators

Figure 4.5: Runtime Overhead of the Three Stages of the Debugging Algorithm over User-
submitted Specifications. Timing Results Are Presented over the Number of Literal Occur-
rences and the Number of Temporal Operators.

4.5.3 LTL Satisfiability

In the previous section, we mentioned that MITL satisfiability problem is a computa-

tionally hard problem. However, in practice, we know that LTL satisfiability is solvable

faster than MITL satisfiability [76]. In this section, we consider how we can use the satis-

fiability of LTL formulas to decide about the satisfiability of MITL formulas. Consider the

following fragments of MITL and LTL in NNF:

MITL(�): ϕ ::= > | ⊥ | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �Iϕ1

MITL(^): ϕ ::= > | ⊥ | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ^Iϕ1

LTL(�): ϕ ::= > | ⊥ | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �ϕ1

50

LTL(^): ϕ ::= > | ⊥ | p | ¬p | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | ^ϕ1

In Appendix A, we prove that the satisfaction of a formula φM ∈ MITL(^) in NNF

is related to the satisfaction of an LTL version of φM called φL ∈ LTL(^) where φL is

identical to φM except that every interval I in φM is removed. For example, if φM =

^[0,10](p∧ q)∧^[0,10] p then φL = ^(p∧ q)∧^p. In essence, if φM is satisfiable, then φL is

also satisfiable. Therefore, if φL is unsatisfiable, then φM is also unsatisfiable.

For the always (�) operator, satisfiability is the dual of the eventually operator (^).

Assume that φ′M ∈ MITL(�) contains only the � operator and φ′L ∈ LTL(�) is the LTL

version of φ′M. If φ′L is satisfiable, then φ′M will also be satisfiable.

Based on the above discussion, if the specification that we intend to test/debug belongs

to either category (fragment) of MITL(^) or MITL(�), then we can check the satisfiability

of its LTL version (φL) and decide according to the following:

Theorem 4.5.1 For any formula φM ∈ MITL(^) and φ′M ∈ MITL(�) then

If φL ∈ LTL(^) is unsatisfiable, then φM is unsatisfiable.

If φ′L ∈ LTL(�) is satisfiable, then φ′M is satisfiable.

In these two cases, we do not need to run MITL SAT, if otherwise, we must apply MITL

SAT which means that we wasted effort by checking LTL SAT. However, since the runtime

of LTL SAT is negligible, it will not drastically reduce the performance. As a result, LTL

satisfiability checking is useful for validity testing. For redundancy checks, it may also

be useful. For example, if we have a formula φ = ^[0,10] p ∧ �[0,20] p we should check

the satisfiability of φ′ = �[0,10]¬p ∧ �[0,20] p and φ′′ = ^[0,10] p ∧ ^[0,20]¬p for redundancy.

Although the original formula φ does not belong to either MITL(^) or MITL(�), its modi-

fied NNF version will fit in these fragments and we may benefit by the usually faster LTL

satisfiability for φ′ and/or φ′′. For vacuity checking, we can use LTL satisfiability if after

manipulating/simplifying the original specification and creating the NNF version, we can

51

categorize the resulting formula into the MITL(^) or the MITL(�) fragments (see Table

4.3).

We can check LTL satisfiability of the modified MITL specifications using existing

methods and tools [88]. In our case, we used the NuSMV6 tool with a similar encoding of

LTL formulas as in [88]. In Table 4.3, we compare the runtime overhead of MITL and LTL

satisfiability checking. For the results of the usability study in [66], we conduct validity

and vacuity checking with the LTL satisfiability solver. We remark that in our results in

Table 4.3, all the formulas belong to the MITL(�) fragment. Since we did not find any

MITL(^) formula in our experiments where its LTL version is not satisfiable, we did not

provide MITL(^) formulas in Table 4.3.

The first column of Table 4.3 provides the debugging test phase where we used the

satisfiability checkers. The second column represents the MITL formulas that we tested

using the SAT solver. We omit the LTL formulas from Table 4.3, since they are identical to

MITL but do not contain timing intervals. The atomic propositions p1, p2, p3, p4, p5 of the

MITL formulas in Table 4.3 correspond to the following STL predicates: p1 ≡ speed >

100, p2 ≡ rpm > 4000, p3 ≡ 100 ≥ speed > 80, p4 ≡ rpm > 3000, and p5 ≡ speed > 80.

The third and fourth columns represent the runtime overhead of satisfiability checking for

MITL specifications and their corresponding LTL version. The last column represents the

speedup of the LTL approach over the MITL approach. It can be seen that the LTL SAT

solver (NuSMV) is about 30-300 times faster than the MITL SAT solver (zot). These

results confirm that, when applicable, LTL SAT solvers outperform MITL SAT solvers in

checking vacuity and validity issues in specifications. As a result, it is worth running LTL

SAT before MITL SAT when it is possible.

6 NuSMV Version 2.6.0. Available from http://nusmv.fbk.eu/

52

http://nusmv.fbk.eu/

Table 4.3: Comparing the Runtime Overhead of MITL Satisfiability and LTL Satisfiability
(in Seconds) for Some of the Specifications from ViSpec’s Usability Study.

Phase MITL Specification MITL LTL MITL/LTL

Validity �[0,40](p1 → �[0,10](p1)) 4.154 0.047 88

Validity �[0,30](¬p1) ∨ �[0,20](¬p1) 3.418 0.0538 63

Validity �[0,40]((¬p1 ∧ ¬p3) ∨ �[0,20]¬p2 ∨ �[0,30] p1)) 10.85 0.045 240

Validity �[0,40]((p1 ∨ p3)→ �[0,20](p2 → �[0,30] p1)) 15.406 0.0463 333

Vacuity �[0,40](p1) 1.71 0.0473 36

Vacuity �[0,40](p1 ∧ �[0,10](p1)) 3.727 0.044 84

Vacuity �[0,40] p1 ∧ �[0,30](p4) 5.77 0.0456 126

Vacuity �[0,40] p5 ∧ �[0,70](p5) 8.599 0.044 194

4.6 Conclusions and Future Work

In this chapter, we have presented a specification debugging framework that helps ex-

pert and non-expert users to produce correct formal specifications. The debugging algo-

rithm enables the detection of logical inconsistencies in MITL specifications. Our algo-

rithm improves the elicitation process by providing feedback to the users on validity, re-

dundancy and vacuity issues. The specification debugging framework will be integrated in

the ViSpec tool to simplify MITL specification development for verification of CPS.

53

Chapter 5

SYSTEM DEPENDENT VACUITY CHECKING

In this chapter, we provide a new definition of vacuity with respect to real-time signals. We

devise algorithms to detect specification issues with respect to signals which helps the CPS

developers find more in depth specification issues during system testing.

5.1 Related Works

In this chapter, we mainly adopt the method provide in [18] for CPS. For the overview

of vacuity issues in the model checking, consider Section 4.1. For each implication sub-

formula (φ → ψ), the left operand (φ) is the precondition (antecedent) of the implication.

In the previous chapter, we addressed specification vacuity without considering the sys-

tem. However, in many cases specification vacuity depends on the system. For example,

consider the LTL specification ϕ = �(req → ^ack). The specification ϕ does not have

an inherent vacuity issue [54]. However, if req never happens in any of the behaviors of

the system, then the specification ϕ is vacuously satisfied on this specific system. In this

example, ack does not affect the satisfaction of ϕ in any system with no request [18]. As a

result, it has been argued that it is important to add vacuity detection in the model checking

process [73]. We encounter the same issue when we test signals and systems with respect to

Request-Response STL/MITL specifications. We refer to signals that do not satisfy the an-

tecedent (precondition) of the subformula as vacuous signals. The following is the formal

definition of the signal vacuity problem.

Problem 2 (Signal Vacuity and Coverage Checking) Given an MITL formula ϕ, and sig-

nal y, check whether y satisfies a mutation of ϕ.

54

5.2 Vacuous Signals

Consider the MITL specification ϕ = �[0,5](req → ^[0,10]ack). This formula will pass

the MITL Specification Debugging method presented in Section 4.4. However, any signal

y that does not satisfy req at any point in time during the test will vacuously satisfy ϕ.

We refer to timed traces that do not satisfy the antecedent (precondition) of the subformula

as vacuous timed traces. Similarly, these issues follow for STL formulas over signals as

well. Consider Task 6 in Table 4.1 with the specification ψ = ^[0,40](speed > 100) →

�[0,30](rpm > 3000). Any real-time signal y that does not satisfy ^[0,40](speed > 100) will

vacuously satisfy ψ. Finding such signals is important in testing and monitoring, since if

a signal y does not satisfy the precondition of an STL/MITL specification, then there is no

point in considering y as a useful test.

Definition 5.2.1 (Vacuous Signal) Given an MITL (STL) formula ϕ, a timed trace µ (sig-

nal s) is vacuous if it satisfies the Antecedent Failure mutation of ϕ.

Antecedent Failure is one of the main sources of vacuity. Antecedent Failure occurs in

a Request-Response specification such as ϕRR = �[0,5](req ⇒ ^[0,10]ack). We provide a

formula mutation that can detect signal vacuity in Request-Response specifications [62]:

Definition 5.2.2 (Request-Response MITL) A Request-Response MITL formula ϕRR is

an MITL formula that has one or more implication (→) operations in positive polarity

(without any negation). In addition, for each implication operation the consequent must

have a temporal operator at the top-level.

In the Request-Response (RR) specifications, we define sequential events in a specific order

(by using the implication operator). Many practical specification patterns based on the

Request-Response format are provided for system properties [44, 70]. Therefore, we can

define a chain of events that the system must respond/react to. In an RR-specification such

55

as ϕRR = �[0,5](req → ^[0,10]ack), the temporal operator for the consequent ^[0,10]ack is

necessary, unless the system does not have any time to acknowledge the req. For any trace

µ in which req never happens, we can substitute ack by any formula and the specification is

still satisfied by µ. Therefore, if the antecedent is failed by a trace µ, then ϕRR is vacuously

satisfied by µ.

For each implication subformula (ϕ → ψ), the left operand (ϕ) is the precondition (an-

tecedent) of the implication. An antecedent failure mutation is a new formula that is cre-

ated with the assertion that the precondition (ϕ) never happens. Note that RR-specifications

should not be translated into NNF For each precondition ϕ, we create an antecedent failure

mutation �Iϕ(¬ϕ) where Iϕ is called the effective interval of ϕ.

Definition 5.2.3 (Effective Interval) The effective interval of a subformula is the time in-

terval when the subformula can have an impact on the truth value of the whole MITL(STL)

specification.

Each subformula is evaluated only in the time window that is provided by the effective

interval. For example, for the MITL specification ϕ ∧ ψ, the effective interval for both ϕ

and ψ is [0,0], because ϕ and ψ can change the value of ϕ∧ψ only within the interval [0,0].

Similarly, for the MITL specification �[0,10]ϕ, the effective interval of ϕ is [0,10], since

the truth value of ϕ is observed in the time window of [0,10] for evaluating �[0,10]ϕ. The

effective interval is important for the creation of an accurate antecedent failure mutation.

This is because the antecedent can affect the truth value of the MITL formula only if it is

evaluated in the effective interval. The effective interval is like a timing window to make

the antecedent observable for an outside observer the way it is observed by the MITL

specification.

56

The effective interval of MITL formulas can be computed recursively using Algorithm

5. To run Algorithm 5, we must process the MITL formula parse tree1. The algorithm

must be initialized with the interval of [0,0] for the top node of the MITL formula, namely,

EIU(ϕ,[0,0]). This is because, according to the semantics of MITL, the value of the whole

MITL formula is only important at time zero. In Line 8 of Algorithm 5, the operator ⊕ is

used to add two intervals as follows:

Definition 5.2.4 (⊕) Given intervals I = [l, u] and I′ = [l′, u′], we define I′′ ← I ⊕ I′

where I′′ = [l′′, u′′] such that l′′ = l+ l′ and u′′ = u+u′. If u or u′ is +∞ then I′′ = [l′′,+∞)

If either I or I′ is left open (resp. right open), then I′′ will be left open (resp. right open)2.

In Line 1 of Algorithm 5, the input interval I is assigned to the effective interval of ϕ,

namely ϕ.EI. If the top operation of ϕ is a propositional operation (¬,∨,∧,→) then the

I will be propagated to subformulas of ϕ (see Lines 2-6). If the top operation of ϕ is a

temporal operator (�I′ ,^I′), then the effective interval is modified according to Definition

5.2.4 and interval I′′ ← I ⊕ I′ is propagated to the subformulas of ϕ.

For example, assume that the MITL specification is ϕRR = �[1,2](^[3,5]b → (�[4,6](c →

d))). The specification ϕ has two antecedents, α1 = ^[3,5]b and α2 = c. The effective

intervals of α1 and α2 areIα1 = [0, 0]⊕[1, 2] = [1, 2] andIα2 = [0, 0]⊕[1, 2]⊕[4, 6] = [5, 8],

respectively. As a result, the corresponding antecedent failure mutations are �[1,2](¬^[3,5]b)

and �[5,8](¬c), respectively. Algorithm 6 returns the list of antecedent failures AFϕ, namely

all the implication subformulas that are vacuously satisfied by y. If the AFϕ list is empty,

1We assume that the MITL specification is saved in a binary tree data structure where each node is a

formula with the left/right child as the left/right corresponding subformula. of ϕ. In addition, we assume that

the nodes of ϕ’s tree contain a field called EI where we annotate the effective interval of ϕ in EI, namely,

ϕ.EI ← Iϕ.
2Although we assume in Definition 3.3.2 that intervals are right-closed, Algorithm 5 can be applied to

right-open intervals as well.

57

Algorithm 5 Effective Interval Update EIU(ϕ,I)
Input: ϕ (Parse Tree of the MITL formula), I (Effective Interval)

Output: ϕ (Updated formula with subformulas annotated with effective intervals)

1: ϕ.EI ← I

2: if ϕ ≡ ¬ϕm then

3: EIU(ϕm,I)

4: else if ϕ ≡ ϕm ∨ ϕn OR ϕ ≡ ϕm ∧ ϕn OR ϕ ≡ ϕm → ϕn then

5: EIU(ϕm,I)

6: EIU(ϕn,I)

7: else if ϕ ≡ �I′ϕm OR ϕ ≡ ^I′ϕm then

8: I′′ ← I′ ⊕ I

9: EIU(ϕm,I′′)

10: end if

11: return ϕ

then the signal y is not vacuous. To check whether the signal s satisfies ϕ’s mutations in

Algorithm 6 (Line 3), we should use an off-line monitor such as [49].

5.3 Vacuity Detection in Testing and Falsification

Detecting vacuous satisfaction of specifications is usually applied on top of model

checking tools for finite state systems [21, 73]. However, in general, the verification prob-

lem for hybrid automata (a mathematical model of CPS) is undecidable [6]. Therefore, a

formal guarantee about the correctness of CPS modeling and design is impossible, in gen-

eral. CPS are usually safety critical systems and the verification and validation of these

systems is necessary. One approach is to use Model Based Design (MBD) with a mathe-

matical model of the CPS to facilitate the system analysis and implementation [1]. Thus,

58

Algorithm 6 Antecedent Failure
Input: ϕ,y (Specification, Signal)

Output: AFϕ a list of failed antecedents

1: AFϕ ← ∅

2: EIU(ϕ,[0,0])

3: for each implication (ϕi → ψi) ∈ ϕ do

4: Iϕi ← ϕi.EI

5: if y |= �Iϕi(¬ϕi) then

6: AFϕ ← AFϕ ∪ {ϕi → ψi}

7: end if

8: end for

9: return AFϕ

semi-formal verification methods are gaining popularity [69]. Although we cannot solve

the correctness problem with testing and monitoring, we can detect possible errors with

respect to STL requirements.

In order to use vacuity detection (Problem 2) in CPS testing, we provide our framework

in Figure 5.1. The input generator creates initial conditions and inputs to the system under

test. The system under test can be a Model, Process in the Loop, Hardware in the Loop

or a real system. Then, a monitor checks the trace with respect to the specification [94,

78]. For each falsification, we will report to the user the falsifying trajectory to investigate

the system for this error. Falsification can help us find counter-examples in the CPS (see

Section 6.2). If after using stochastic-based testing and numerical analysis we could not

find any issue, then we are more confident that the system works correctly.

However, it will be concerning if the numerical analysis is mostly based on vacuous

signals. This is because vacuous signals satisfy the specification for reasons other than

59

System under

Test

Input

Generator

output signals

initial

conditions &

input signal

MITL Monitor

Falsified/Satisfied

ϕ

Testing Framework

Signal Vacuity

Checking

Is signal

Vacuous?

Figure 5.1: Using Signal Vacuity Checking to Improve the Confidence of an Automatic
Test Generation Framework.

what was originally intended. Signal vacuity checking is conducted in Fig. 5.1 using

Algorithm 6, and vacuous signals are reported to the user for further inspection. This will

help users to focus their analysis on the part of the system that generates vacuous signals

to prevent vacuous test generation. It should be noted that signal vacuity checking in the

S-TaLiRo tool is computationally efficient (PTIME). The time complexity is proportional

to the number of implication operations, the size of the formula and to the size of the signal

[49].

5.4 Detecting Partially Covering Signals

A problem closely related to vacuity detection is the partial coverage problem. In this

section, we show that Literal Occurrence Removal can be used for determining partially

covering signals. Partially covering signals are the signals that not only satisfy the specifi-

cation but also they satisfy Literal Occurrence Removal mutation:

Definition 5.4.1 (Partially Covering Timed Trace (Signal)) Given an MITL (STL) for-

mula ϕ in NNF, a timed trace µ (signal s) is partially covering if it satisfies the Literal

Occurrence Removal mutation of ϕ.

60

This mutation is generated by repeatedly substituting the occurrences of literals with ⊥,

which is denoted by ϕ[l←⊥] (see the Definition 4.4.3). In Algorithm 7, we check whether

the signal will satisfy the mutated specification (ϕi[l←⊥]). In the following, we prove that

all satisfying signals are also partially covering signals:

Theorem 5.4.1 For all MITL formula ϕ ∈ Φ in NNF, if there exists a disjunction subfor-

mula in ϕ, then for all µ such that µ |= ϕ, it is always the case that there exists a literal

l ∈ litOccur(ϕ) s.t. µ |= ϕ[l←⊥].

The proof of Theorem 5.4.1 is provided in Appendix B. For any MITL (STL) specification

ϕ, which contains one or more disjunction operators (∨) in NNF, any timed trace (signal)

that satisfies ϕ will also satisfy a mutation ϕ[l ←⊥] for some literal occurrence l. Further,

any specification which lacks a disjunction operator (∨) in its NNF will not satisfy ϕ[l←⊥]

for any literal occurrence l. That is, for formulas without any disjunction operator in NNF,

we have ϕ[l ←⊥] ≡⊥ since for any MITL formula ϕ, we have ϕ ∧ ⊥ ≡ ⊥. If all satisfying

signals are partially covering signals, what is the benefit of Algorithm 7? There are two

applications for Algorithm 7 as follows.

First, Algorithm 7 can find which (how many) disjuncts are satisfied by the partially

covering signal. This information can be used by the falsification technique to find the

disjuncts/predicates that cause the formula satisfaction. Therefore, the falsification method

will target the system behaviors corresponding to those predicates. As a result, Algorithm

7 can be used to improve the falsification method.

Second, Algorithm 7 can also be used for coverage analysis when falsification occurs.

This is because with a slight modification, the dual of Algorithm 7 can help us to find

the source of the falsification. According to Corollary B.0.2, for any ϕ in NNF, where ϕ

has a conjunctive subformula of ψ = ψ1 ∧ ψ2, if µ 6|= ϕ then ∃l ∈ litOccur(ψ) s.t. µ 6|=

ϕ[l ← >]. Now, we can identify which conjunct of ψ contributes towards the falsification

61

Algorithm 7 Literal Occurrence Removal
Input: Φ,y (Specification, Signal)

Output: MFϕ a list of mutated formulas

1: MFϕ ← ∅

2: for each formula ϕi ∈ Φ do

3: for each l ∈ litOccur(ϕi) do

4: if y |= ϕi[l←⊥] then

5: MFϕ ← MFϕ ∪ {ϕi[l←⊥]}

6: end if

7: end for

8: end for

9: return MFϕ

by substituting it by iteratively applying ϕ[l ← >]. This can be better explained in the

following example:

Example 5.4.1 Assume ϕ = ^I1(a ∧ ^I2b) and a falsifying trace µ 6|= ϕ exists. Formula ϕ

contains conjunction of ψ = a ∧ ^I2b and litOccur(ψ) = {a, b}. We can substitute a and b

with > to find the main source of falsification of ϕ as follows:

• If µ |= ϕ[a← >] then µ |= ^I1(^I2b), so a is the source of the problem.

• If µ |= ϕ[b← >] then µ |= ^I1(a), so b is the source of the problem.

As a result, the dual of Algorithm 7 can be used to debug a trace when the counter example

is created using falsification methodologies [1].

5.5 Experiments

To apply signal vacuity checking we use the S-TaLiRo testing framework [1, 64]. S-

TaLiRo is a MatLab toolbox that uses stochastic optimization techniques to search for

62

Table 5.1: Automatic Transmission Requirements Expressed in Natural Language and
MITL from [63].

Req. Natural Language MITL Formula

φAT
1

There should be no transition from

�[0,27.5]((g2 ∧ ^(0,0.04]g1)→ �[0,2.5]¬g2)gear two to gear one and back to

gear two in less than 2.5 sec.

φAT
2

After shifting into gear one, there

�[0,27.5]((¬g1 ∧ ^(0,0.04]g1)→ �[0,2.5]g1)should be no shift from gear one to

any other gear within 2.5 sec.

φAT
3

If the ω is always less than 4500,

�[0,30](ω ≤ 4500)→ �[0,10](v ≤ 85)then the v can not exceed 85 in

less than 10 sec.

φAT
4

Within 10 sec. v is less than 80 and

^[0,10]((v ≤ 80)→ �[0,30](ω ≤ 4500))from that point on, ω is always

less than 4500.

system inputs for Simulink models which falsify the safety requirements presented in MTL

[1]. If we report vacuous signals to S-TaLiRo users, then they will be aware of the vacuity

issue. For example, users should find the system inputs that activate the antecedent in case

of antecedent failure.

In the following, we illustrate the vacuous signal detection process by using the Auto-

matic Transmission (AT) model provided in Section 2.3. S-TaLiRo calls the AT Simulink

model in order to generate the output trajectories. The outputs contain two continuous-

time real-valued signals: the speed of the engine ω (RPM) and the speed of the vehicle

v. In addition, the outputs contain one continuous-time discrete-valued signal gear with

four possible values (gear = 1, ..., gear = 4) which indicates the current gear in the auto-

transmission controller. S-TaLiRo then monitors system trajectories with respect to the

63

Table 5.2: Reporting Signal Vacuity Issue for Each Mutated Formula.

Requirement Antecedent Failure Vacuous Signals / All Signals

φAT
1 �[0,27.5]¬(g2 ∧ ^(0,0.04]g1) 1989 / 2000

φAT
2 �[0,27.5]¬(¬g1 ∧ ^(0,0.04]g1) 1994 / 2000

φAT
3 ¬�[0,30](ω ≤ 4500) 60 / 214

φAT
4 �[0,10]¬(v ≤ 80) 1996 / 2000

requirements provided in Table 5.1. There, in the MITL formulas, we use the shorthand gi

to indicate the gear value, i.e. (gear = i) ≡ gi. The simulation time for the system is set to

30 seconds; therefore, we can use bounded MITL formulas for the requirements.

After testing the AT with S-TaLiRo, we collected all the system trajectories. Then, we

utilized the antecedent failure mutation on the specification to check signal vacuity (Algo-

rithm 6) for each of the formulas that are provided in Table 5.1. We provide the antecedent

failure specifications and the number of signals that satisfy them in Table 5.2. It can be

seen in Table 5.2 that most of the system traces are vacuous signals where the antecedent is

not satisfied. This helps the users to consider these issues and identify interesting test cases

that can be used to initialize the system tester so that the antecedent is always satisfied.

5.6 Conclusions and Future Work

In this chapter, we considered vacuity detection with respect to signals. Our method

reports the user, the number of vacuous signals during system testing. The techniques pre-

sented in this chapter can also be used for specification coverage analysis when falsification

occurs. Namely, in a conjunctive requirement, we can identify which of the conjuncts con-

tributed towards the falsification. This can be achieved by a straightforward modification

of Algorithm 7 using Corollary B.0.2. As a result, users can debug the system when the

specification is falsified.

64

Chapter 6

VACUITY AWARE FALSIFICATION

Falsification methods try to find unsafe behaviors with respect to safety specifications

[1]. These methods are used to debug the CPS design during model based development

(through simulations), implementation (through software-in-the-loop testing), and proto-

typing (through hardware-in-the-loop testing). Request-Response requirements are very

important in safety critical systems where the CPS must react to a critical event. Request-

Response requirements specify that every request should be followed by some response

usually within some bounded time. For example, one such specification is “Every time

the engine shifts from 1st to 2nd gear, then it does not shift back to 1st gear within 2.5

sec” [50]. In this case, the request is the event of shifting from 1st to 2nd gear, while the

response is that the engine should not shift back to 1st gear for a bounded amount of time.

Falsification of Request-Response specifications is particularly difficult since the falsi-

fication method must first satisfy the antecedent and, then, falsify the consequent. Hence, it

can be the case that computational effort is wasted because the generated test cases do not

satisfy the request part of the specification (see for example the discussion in Section 5.5).

In this chapter, we propose a method to improve automatic test case generation for

falsification of CPS with respect to Request-Response requirements. We consider the ap-

plication of utilizing signal vacuity checking (Chapter 5) to improve the counter-example

generation process. Vacuity detection is the problem of determining whether a temporal

logic specification is vacuously satisfied with respect to a signal or system (see Chapter 5

for more details). One of the main sources of vacuity in system testing and verification

is the antecedent failure in Request-Response requirements (see Section 5.2). Request-

Response requirements contain at least one implication operation (ϕ → ψ) which consists

65

of an antecedent (ϕ) and a consequent (ψ). The system trajectories that fail to satisfy the an-

tecedent (ϕ) will trivially satisfy the implication (→). We refer to these system trajectories

(behaviors) that trivially (vacuously) satisfy the specifications as vacuous signals (see Sec-

tion 5.2). We have developed a framework to discover and focus the falsification process

on non-vacuous signals in order to improve the counter-example generation for CPS. We

call the framework Vacuity Aware Falsification (VAF). We have implemented our results

on top of S-TaLiRo [13]. Our experimental results demonstrate that VAF achieves better

falsification outcomes.

6.1 Related Works

The most related work is by Akazaki [4]. Akazaki applied Gaussian Process Regression

(GPR) [19] to improve the probability of antecedent satisfaction during the falsification

process using the robust semantics of Signal Temporal Logic (STL) formulas [43, 48]. The

work in [4] focuses the search on the antecedent satisfaction by applying GPR to estimate

the input region that most likely leads the system to satisfy the antecedent.

Our work is based on the results of our earlier work [36, 37] (see Chapters 5,4). We gen-

eralize the concept of antecedent failure as a subset of the signal vacuity issue [37], and we

utilize the signal vacuity detection to provide an alternative solution to this problem using

a two stage falsification process. Hence, our solution can benefit from various stochastic

optimization techniques as we report in the experiments. Furthermore, our framework can

also be applied to the systems where the robust semantics do not provide any guidance to

the falsification process. For instance, this can be the case when the request in the specifica-

tion is over the Boolean values {>,⊥}. Finally, our approach can utilize the GPR method of

[4] in order to improve the probability of antecedent satisfaction in our framework (Section

6.4, Stage 1).

A thorough recent review on search based falsification methods can be found in [68]. In

66

our prior work [36, 37], we studied the problems of vacuous requirements and the impact of

vacuous signals to the efficiency of the falsification process. However in [37] (see Chapter

5), we did not discuss how to improve the falsification process which is the focus of this

chapter.

6.2 Falsification Framework

The falsification problem is the process of finding a witness trace/signal of the system

Σ which does not satisfy a formal specification. To formalize the falsification problem:

Problem 3 (MTL Falsification) Given a system Σ and an MTL specification φ, the falsi-

fication problem consists of finding a trace µ of the system Σ starting from an initial state

x0, parameter p, and an input signal u such that µ = Σ(x0, p, u) and µ 6|= φ.

Thus, falsification method tries to generate tests that reduce the robustness of the system

behavior with respect to the specification and, eventually, become negative. The robust

semantics (see Section 3.4.4) can help us to guide the search for MTL falsification [43,

48]. In order to falsify the specification, we use the temporal logic robustness as a cost

function which we attempt to minimize. Therefore, we converted the falsification problem

into an optimization problem. This is essentially the application of a range of stochastic

or deterministic optimization algorithms such as Simulated Annealing [1], Cross-Entropy

[89], Ant Colony Optimization [12], and Nelder-Mead [41] to the falsification problem.

The high level overview of the solution of the Temporal Logic Falsification (TLF) prob-

lem appears in Figure 6.1. The optimization algorithm generates initial conditions, and

input signals. Then, the system under test produces the output signal for which the spec-

ification robustness is evaluated by an MTL monitor [50]. The process is repeated until a

maximum number of tests is reached or a falsifying behavior is detected. The framework

of Figure 6.1 can be implemented as a MATLAB toolbox, i.e., S-TaLiRo [13] or Breach

67

[41].

System under

Test

Input

Generator

output signals

initial

conditions &

input signal

MTL Monitor

Falsified/Satisfied

ϕ

S-TaLiRo Falsification Framework

Figure 6.1: Overview of S-TaLiRo Testing Framework for the Metric Temporal Logic
(MTL) Falsification Problem.

6.3 Problem Formulation

To simplify the presentation, we assume that the MTL specification has only one im-

plication operation. In order to falsify the implication operation φ = ψ → ϕ ≡ ¬ψ ∨ ϕ, we

need to satisfy the antecedent ψ first. Therefore, we need to satisfy the antecedent before

any attempt to falsify φ.

Problem 4 (Vacuity Aware Falsification) Given a system Σ and a Request-Response MTL

specification φ with an implication ψ → ϕ subformula in a positive form1, find a trace µ

of the system Σ starting from an initial state x0, a fixed parameter p and an input signal

u = uu such that the prefix of the trace µ = Σ(x0, p, u) satisfies the antecedent µ |= ψ2 and

the whole trace µ = Σ(x0, p, uu) falsifies the main MTL formula µ 6|= φ.

6.4 Vacuity Aware Falsification Framework

Our strategy for Vacuity Aware Falsification is a two stage solution: 1) The falsification

process should first satisfy the antecedent. 2) For the traces that satisfy the antecedent,

1Without any negation in the parent nodes of ψ→ ϕ in φ’s parse tree.
2Traces that satisfy the antecedent are called non-vacuous traces [37].

68

Input

Generator

Non vacuous

signals

Suffix of

input signal

MTL Monitor

Falsified/Satisfied

��(ϕ)

Modified S-TaLiRo

S-TaLiRo

Falsified ?
No Yes

Extract Initial condition,

Input prefix from the

counter example

ϕ

Initial conditions & Prefix of input signal

Stage 1

Stage 2

Counter example

input

Counter example

output

Trajectory of

��(�)

System Σ

ϕ is vacuously Satisfied

Figure 6.2: Proposed Flow for Vacuity Aware Falsification.

the process will guide the system toward falsifying the consequent. The proposed flow is

provided in Fig. 6.2. To address the first stage, we create the Antecedent Failure (AF)

formula AF(φ) where its falsification is interpreted as satisfaction of the antecedent. The

AF in AF(φ) is a function that when given the formula φ = �I(ψ → ϕ), it returns �I(¬ψ).

The algorithm that extracts AF(φ) from a more complex MTL formula φ is provided in

[37]. The AF(φ) = �I(¬ψ) formula asserts that the antecedent ψ would never happen in the

time window of I, see [37] for more details. If S-TaLiRo falsifies AF(φ), it means that the

antecedent ψ has eventually been satisfied. According to the architecture in Fig. 6.2, our

proposed flow runs the testing framework in two stages:

Stage 1: We try to falsify AF(φ) using the falsification framework. If the AF(φ) is

falsified during Stage 1, it means that the antecedent has eventually been satisfied by µ.

Thus, we can proceed to Stage 2 to falsify the main formula φ. Otherwise, φ is vacuously

69

satisfied in this run.

Stage 2: Since AF(φ) is falsified (in Stage 1), the counter example is the system input

u that leads the system to create trajectories that satisfy the antecedent of the specification.

Now, we should extract the shortest prefix of the input (denoted as u) that leads the system

to just falsify AF(φ) and immediately stop the simulation at the falsification point. The

input prefix u leads the system to create the µ trace. We should choose the input prefix

u as short as possible to increase the search space to help the input generator to find the

best suffix (input u) that may lead the system to falsify φ. Now, we can explain why the

system Σ should be deterministic. This is because in Stage 2 we expect to create the same

satisfying output µ for the same input prefix u that is extracted from Stage 1.

In Stage 2, we fix the initial condition x0, parameter p and input prefix u which forces

all the new testing trajectories to become non-vacuous signals. Recall that non-vacuous

signals are the signals that satisfy the antecedent. As a result, the input generator will search

over the suffix of the input u for the system to find a non-vacuous signal µ = Σ(x0, p, uu)

that will eventually falsify the main formula.

The high-level pseudo code of the algorithm that corresponds to Fig. 6.2 is provided in

Algorithm 8, where opt and opt′ are the optimizers of choice, and NMAX is the upper-limit

for the number of optimizer’s iterations. In Line 2, we run S-TaLiRo to falsify φAF = AF(φ)

(Stage 1). S-TaLiRo returns x0, p, u correspond to the minimum robustness. If the search

is successful, we move to Stage 2, unless we report that φ is vacuously satisfied (Line 15).

In Stage 2, we extract the input prefix u in Line 6 and run S-TaLiRo to find the falsifying

suffix (Line 7). In Line 7, (u,U) is the input space with fixed prefix u. S-TaLiRo in Stage

2 searches over the suffixes of the input signal to find the trajectory µ′ that falsifies the

specification until the number of tests of opt′ reaches to Nφ.

Finally, we report the falsification results in Lines 10 and 12. Here, we need to remark

that [[φAF]]d(µ, 0) < 0 does not guarantee that there exists a µ such that [[φ]]d(µ, 0) < 0.

70

Algorithm 8 Vacuity Aware Falsification
Input: Σ, P,X0,U, φ, opt, opt′,NMAX;

Output: Message about Falsification Report;

Procedure VAF(Σ, P,X0,U, φ, opt,NMAX)

1: φAF ← AF(φ)

2: [x0, p, u,NAF]← S-TaLiRo(Σ, P,X0,U, φAF , opt,NMAX)

3: µ← Σ(x0, p, u) ; Nφ ← NMAX − NAF

4: if [[φAF]]d(µ, 0) < 0 then

5: Extract µ ⊂ µ such that [[φAF]]d(µ, 0) < 0

6: Extract u ⊂ u such that µ = Σ(x0, p, u)

7: [x0, p, u′,N f]← S-TaLiRo(Σ, p, x0, (u,U), φ, opt′,Nφ)

8: µ′ ← Σ(x0, p, u′)

9: if [[φ]]d(µ′, 0) < 0 then

10: return “φ is falsified”

11: else

12: return “φ is NOT falsified”

13: end if

14: else

15: return “φ is vacuously satisfied!”

16: end if

6.4.1 Input Prefix-Suffix Example

An example for extracting the input prefix u from input u is depicted in Fig. 6.3. Con-

sider the following specification φ = �[0,t1](a→ ^[0,t2]b) where a ≡ v > 80 and b ≡ v < 60,

which formalizes the following natural language requirement:

“Always during the simulation time up to t1 seconds, if the speed (v) goes above 80,

71

time

Throttle

%100

% 70

time

a

t	≤	t1

v

b

80
60

��

Stage 1 Stage 2

�

(Speed)

Figure 6.3: Stage 1 (Gray) and Stage 2 (White) of the Vacuity Aware Falsification.

then it must eventually drop below 60 in t2 seconds”

Figure 6.3 represents the system input and trajectory corresponding to the formula φ.

In Fig. 6.3, the system input u (Throttle) and the system output v (Speed) are presented.

Any system trace µ that falsifies φ must first satisfy the precondition of φ. In other words,

its prefix µ must falsify the antecedent failure, namely AF(φ) = �[0,t1]¬(a) = �[0,t1](v ≤ 80).

The system trajectory in Fig. 6.3 is a falsifying signal for the antecedent failure �[0,t1](v ≤

80). Therefore, the trajectory in Fig. 6.3 is a non-vacuous signal since v > 80. The

entire duration of input signal u is represented by a dashed line which contains the whole

throttle schedule. The shortest prefix of the input signal u that leads the system to v > 80 is

represented with a hashed box.

6.5 Experiments

In this section, we consider the application of our proposed method to improve the

performance of the falsification method. Our experiments were conducted on a 64-bit In-

tel Xeon CPU (2.5GHz) with 64-GB RAM and Windows Server 2012. We used MATLAB

2015a to run the falsification toolbox S-TaLiRo3 and to implement our method (Fig. 6.2 and

Algorithm 8). For our experiments, we used the following stochastic optimization meth-

3S-TaLiRo: https://sites.google.com/a/asu.edu/s-taliro/

72

https://sites.google.com/a/asu.edu/s-taliro/

ods: Simulated Annealing (SA) [1], Cross-Entropy (CE) optimization [89], and Uniform

Random (UR) sampling. We remark that all the experiments were performed with the de-

fault parameters for each optimization method. All the benchmark problems are available

with the S-TaLiRo distribution or from the ARCH workshop repository 4.

6.5.1 Navigation Benchmark with Inputs

We consider a version of the Navigation Benchmark proposed by Fehnker and Ivan-

cic [51] with a few modifications. The Navigation Benchmark is a four continuous-state

autonomous affine hybrid automaton. Formal description of hybrid automata is provided

in Definition 2.2.1. The primary modification is that now we allow for external inputs to

the system (beyond the constant affine term in the original model). Even though affine

hybrid systems can now be efficiently solved using reachability tools for hybrid systems,

it still remains a challenge to verify Request-Response requirements as expressed in MTL.

In addition, we remark that for this benchmark, the affine dynamics in each mode could be

changed to complex smooth non-linear dynamics without any impact to the applicability

of the proposed methodology.

The benchmark studies a hybrid automaton H with a variable number of discrete

locations and 4 continuous state variables x1, x2, x3 and x4 that form the state vector

x = [x1 x2 x3 x4]T . The structure of the hybrid automaton can be better visualized in

Fig. 6.4. The hybrid automaton has a number of modes (16 in the example of Fig. 6.4)

where in each mode, the dynamics of the system are different.

In detail, in each location i of the hybrid automaton, the system evolves under the

differential equation

ẋ = Ax − Bv(i) + Cu (6.1)
4Applied Verification for Continuous and Hybrid Systems (ARCH):

https://cps-vo.org/group/ARCH

73

https://cps-vo.org/group/ARCH

0 1 2 3 4

x
1

0

1

2

3

4

x 2

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

Figure 6.4: Modified Navigation Benchmark with 16 Locations (Modes): Two Trajectories
Falsifying the Requirements φNB1 , and φNB2 .
where u is a 2 dimensional external continuous input to the system (in this benchmark for

all time t, u(t) ∈ [−5, 5]2), the matrices A, B and C are defined as

A =

[
0 0 1 0
0 0 0 1
0 0 −1.2 0.1
0 0 0.1 −1.2

]
, B =

[
0 0
0 0
−1.2 0.1
0.1 −1.2

]
and C =

[
0 0
0 0
1 0.5
0 1

]
and the constant vector term in each location is

v(i) = [sin(πD(i)/4) cos(πD(i)/4)]T .

The array D is one of the parameters of the hybrid automaton that the user can control in

order to define different benchmarks. It defines the input vector in each discrete location

(see arrows in Fig. 6.4).

The invariant set of every location (mode) is a 1×1 box that constraints the “position” of

the system (x1, x2), while the velocity (x3, x4) can flow unconstrained. The guards in each

location are the edges and the vertices that are common among the neighboring locations.

When a guard is reached, the system switches between system dynamics. The set of initial

conditions is the set to H0 = {(m, x) | m = 13, x ∈ [0.2 0.8]× [3.2 3.8]× [−0.4 0.4]2} (green

box in Fig. 6.4).

Sample trajectories (under some input signal) of the system appear in Fig. 6.4 for initial

conditions (0.6821, 3.6558, 0.0685,−0.1790) for the blue trajectory and

74

(0.4136, 3.2076,−0.3705, 0.3474) for the red trajectory.

We evaluated the following Request-Response requirements on the system (the sets

which correspond to each predicate in the formulas are highlighted as yellow boxes in Fig.

6.4):

φNB1 =�((i = 10 ∧ x1 ≥ 1.2 ∧ x2 ≥ 2.25)

→ �¬(i = 5 ∧ x1 ≤ 0.75 ∧ x2 ≤ 1.8))

φNB2 =�((i = 5 ∧ x1 ≤ 0.75 ∧ x2 ≤ 1.8)

→ �¬(i = 14 ∧ x1 ≥ 1.65 ∧ x2 ≥ 3.65))

Both specifications state “if a set X is visited, then from that point on a set Y should not be

visited”. Variations of these requirements with timing constraints can be easily constructed.

Since the predicates in φNBi represent hybrid space (discrete locations with continuous state

variables) we need to use hybrid distance semantics for the robustness semantics (see the

generalized distance function dh in in Section 3.4.2). Finally, we set NMAX = 200 for

Algorithm 8.

The results for both formulas are presented in Table 6.1 (φNB rows). All the experiments

are conducted with the same number of optimization’s tests (NMAX) for both VAF and S-

TaLiRo. The following observations can be made. First and foremost, using VAF uniformly

improves the falsification outcomes independently of what the underlying method is. In all

cases, by utilizing VAF, the rate of detecting falsifying behaviors is at least doubled. Sec-

ond, on harder problem instances, i.e., for specification φNB2 , the VAF method outperforms

the methods without VAF by an order of magnitude. In general, the difficulty of a bench-

mark can be assessed by how easily it is falsified using uniform random sampling.

75

Table 6.1: Comparing Vacuity Aware Falsification (VAF) with Temporal Logic Falsifica-
tion (TLF) for the Falsification of φNB, φAT .

Vacuity Aware Falsification (VAF) S-TaLiRo

Spec. Opt. AF(Spec.) is falsified (S1) Spec. is falsified (S2) Opt. falsified

φNB1 UR 100/100 88/100 UR 32/100

φNB1 SA 91/100 59/91 SA 21/100

φNB1 CE 100/100 67/100 CE 26/100

φNB2 UR 100/100 10/100 UR 1/100

φNB2 SA 92/100 23/92 SA 1/100

φNB2 CE 100/100 24/100 CE 2/100

φAT1 UR 97/100 97/97 UR 20/100

φAT2 UR+SA 95/100 (UR) 95/95 (SA) SA 17/100

φAT2 UR+CE 91/100 (UR) 91/91 (CE) CE 8/100

6.5.2 Automatic Transmission

The Automatic Transmission (AT) model is provided in Section 2.3. In order to evaluate

the improvement of S-TaLiRo framework by using VAF, we considered the following safety

Request-Response requirements:

1. “After shifting down into gear one, there should be no shift from gear one to any

other gear within 2.5 sec.”

2. “After shifting down into gear one, the engine speed ω should always stay below

3000 RPM within 2.5 sec.”

The simulation time for the system is set to 30 seconds. Therefore, we can use bounded

MTL formulas for the requirement such that the horizon of MTL formula equals to the

simulation time (30 seconds). We formalize the above requirements as the follows:

φAT1 = �[0,27.5]((¬g1 ∧©g1)→ �(0,2.5]g1)

76

φAT2 = �[0,27.5]((¬g1 ∧©g1)→ �(0,2.5]r1)

where g1 ≡ {gear = 1} and r1 ≡ {ω ≤ 3000}.

For the AT experiments, we set the number of optimization’s tests to be 1000 (NMAX =

1000). In addition, for VAF, we create the antecedent failure of φAT1 and φAT2 as follows:

AF(φAT) = �[0,27.5](¬(¬g1 ∧©g1))

For evaluating VAF, we first setup the S-TaLiRo to falsify the AF(φAT) which is the execu-

tion of Stage 1 in Fig. 6.2. Then, we run the second stage of VAF if Stage 1 was successful

(see Fig. 6.2 Stage 2).

The falsification results of our proposed method are provided in Table 6.1 (φATi rows).

It can be observed that for φAT1 the original UR method can successfully falsify only 20 out

of 100 runs. However, our method successfully falsified the antecedent failure in 97 out

of 100 runs in Stage 1, and among the runs that successfully falsify AF(φAT), all of them

would ultimately falsify the original specification in Stage 2.

For the rows corresponding to φAT2 , we choose UR for the falsification at Stage 1. This

is due to the fact that the hybrid robustness value of g1 is equivalent to>when gear = 1, and

⊥ when gear , 1 with no intermediate values between them (see the generalized distance

function d0
h in Section 3.4.2). Therefore, the cost function of the stochastic optimizer does

not decrease towards the falsification. In this case, since g1 behaves like a Boolean event,

UR is the preferred optimization algorithm in Stage 1. This demonstrates the flexibility of

our method in that we can choose different optimizations for different Stages of VAF.

For the second stage of φAT2 , we used SA and CE. The VAF method with using UR+SA

improves the falsification for SA-TaLiRo as follows: The original SA-TaLiRo successfully

falsifies 17 out of 100 runs. We used UR-TaLiRo in Stage 1 to falsify antecedent failure

in 95 out of 100 runs and SA-TaLiRo used those signal prefixes to falsify all of the runs in

Stage 2. CE-TaLiRo improves the results in a similar way. Our experiments on AT show

77

that VAF with UR-TaLiRo in Stage 1, can drastically improve the falsification process.

6.6 Conclusions and Future Work

We have introduced a new framework for Vacuity Aware Falsification (VAF) for Cyber-

Physical Systems (CPS). Our experimental results demonstrate improvements for different

S-TaLiRo optimization methods when we apply our new VAF framework. In the future,

this method will be applied to more complex Request-Response requirements with more

than one implication operations.

78

Chapter 7

ON-LINE MONITORING FOR BOUNDED MTL WITH PAST

Formal specifications in MTL [71] have been used for testing and semi-formal verification

of CPS with tools such as S-TaLiRo [13] and Breach [41]. These tools use off-line and on-

line monitoring algorithms to check whether the execution trace of a CPS satisfies/falsifies

an MTL formula. In off-line monitoring, the execution trace is finite and generated by run-

ning the system for a bounded amount of time. Then, the off-line monitor checks whether

the execution trace satisfies the specification. On the other hand, an on-line monitor runs

simultaneously with the system. On-line monitoring is more challenging than off-line mon-

itoring. This is because on-line monitoring is used for surveillance of the real-time events

for safety critical applications and it may have catastrophic outcomes due to failure. In

this chapter, we provide an efficient algorithm for on-line monitoring of a subset of MTL,

which is called MTL<+∞
+pt . Syntax and Semantics of MTL<+∞

+pt formulas are provided in

Section 3.4.5.

7.1 Related Works

Monitoring of CPS is the problem of finding whether an execution trace satisfies the

requirements. Monitoring of MTL has been considered in [94]. This algorithm is modified

for monitoring of real-value signals considering robustness metric [48]. Since a rewriting

based approach for monitoring is not efficient [57, 94], the MTL robustness computation

method has the same runtime over head issue [48]. Therefore, in order to improve the

monitoring time of S-TaLiRo [13], a dynamic programming method for computing the

MTL robustness is provided in [49]. The algorithm in DP-TaLiRo [49] uses the method

that is provided for LTL formulas of boolean traces [87] and it is applied to compute the

79

Simulink model or Deployed System

CPS

On-Line

Robustness

Monitor for φ Plot

Robustness

�	��	����	��
…�	�����

Figure 7.1: Overview of the Solution of the MTL<+∞
+pt On-Line Monitoring Problem. The

Monitored Robustness Values Could Be Used as Feedback to the CPS or It Could Be Plot-
ted to Be Observed by a Human Supervisor If Needed.

robustness of MTL formulas with respect to real-value traces.

Another alternative to our S-TaLiRo testing framework is Breach [41]. They defined

the Signal Temporal Logic (STL) to specify the real-time requirements of real value sig-

nals [78]. They provided a robustness concept of STL requirements [43] based on the

definition of robustness in S-TaLiRo [48]. In Breach, they provide a sliding window al-

gorithm for computing the robustness of finite traces [42]. The work that I will present in

this chapter is followed by [33] and they applied their sliding window algorithm in [42] for

on-line monitoring of real value signals. In [33], their on-line monitor does not consider the

specifications that contain both past and future temporal operators; therefore, they monitor

a subset of requirements that we can monitor in [35].

7.2 Problem Formulation

In the following, we represent the set of natural numbers including zero by N and the

finite interval of N up to m by Nm = {0, 1, . . . ,m}. We assume that we have access to some

discrete time execution or simulation traces of the CPS. We view (execution or simulation)

traces as timed state sequences µ = µ0µ1µ2 . . . µm = (ỹ0, τ0) (ỹ1, τ1) (ỹ2, τ2) . . . (ỹm, τm)

where for each k ∈ Nm, τk ∈ R≥0 is a time stamp.

Throughout this chapter, the variable i, which ranges over N, is used to represent the

current simulation step or the current index of the sampling process. Since in Section 3.4.5

80

we assumed constant sampling rate for syntax and semantics of MTL<+∞
+pt , when we mention

time, we are actually referring to the corresponding sampling index i. More specifically,

at each time i, we would like to monitor safety requirements represented as MTL<+∞
+pt for-

mulas. These formulas capture safety properties of the system, such as bounded reactivity,

which can be periodically analyzed for violation.

In our formulation, we use the robust (quantitative) semantics [48] that quantify the

distance between a given execution trace of a CPS and all the execution traces that violate

the property. The robustness of a formula ~ϕ� with respect to a trace ỹ time i is a value

that measures how far is the trace from the satisfaction/falsification. This measure is an

extension of boolean values representing satisfaction or falsification which is used in con-

ventional monitoring. A positive robustness value means that the trace satisfies the property

and a negative robustness means that the specification is not satisfied.

We assume that at each time i, the CPS outputs its current state ỹi along with a finite

prediction ỹi+1, ỹi+2, . . ., ỹi+Hrz of horizon length Hrz ∈ N (see Figure 7.1). The horizon

length Hrz will be formally defined in Section 7.3; informally, Hrz is the required number

of samples after time i so that any future requirements in the MTL specification φ are re-

solved, i.e., the horizon depends on the structure of the formula φ, Hrz = hrz(φ). When

dealing with CPS, there exist numerous methods by which such a prediction horizon (fore-

casting) can be computed [46, 17, 81]. Now, we can formally define the on-line monitoring

problem.

Problem 5 (MTL<+∞
+pt Robustness Monitoring) Given an MTL<+∞

+pt specification ϕ, a sam-

pling instance i and an execution trace ỹ = ỹ0ỹ1 . . . ỹm such that m = i + hrz(ϕ), compute

the current robustness estimate [[ϕ]](ỹ, i) at time τi = i∆t.

Intuitively, ϕ represents a system invariant that must hold at every point in the system

execution. This can also be viewed as testing for the specification robustness [[�ϕ]](ỹ, 0),

81

where ϕ is an arbitrary MTL<+∞
+pt specification. However, instead of caring about the satis-

faction of the formula at the beginning of the time, we care about the potential of violating

ϕ for which we design an on-line monitor.

7.3 Solution Overview

We provide an on-line monitoring approach for computing the robustness of an MTL<+∞
+pt

formula with respect to execution traces of a CPS. An overview of the solution for the

MTL<+∞
+pt on-line monitoring problem appears in Figure 7.1. Our method monitors the be-

havior of a CPS as it executes. Our toolbox is also useful for applications where Simulink

models are actually used for process monitoring (and not simulation). In addition, it can

also be used for code generation for general MTL<+∞
+pt monitors for deployment on actual

systems. Our method computes the robustness of invariants [[ϕ]](ỹ, i) by storing previous

specification robustness values – if needed – and by only utilizing a bounded number of

pairs of the execution trace ỹHst, . . . , ỹHrz where Hst ∈ Ni and it will be formally defined

in Sec. 7.3. Our monitor uses bounded memory and, in the worst case, it has quadratic

time complexity that depends on the magnitude of Hrz − Hst. In principle, our solution

for robustness monitoring is inspired by the boolean temporal logic monitoring algorithm

in [53].

7.4 Finite horizon and history of MTL<+∞
+pt

For each MTL<+∞
+pt formula ψ we define the finite horizon hrz(ψ) as the number of sam-

ples we need to consider in the future. In MTL, the satisfaction of the formula depends on

what will happen in the future. In bounded MTL, the finite horizon hrz(ψ) is the number of

steps (samples) which we need to consider in the future in order to evaluate the formula ψ

at the current time i. In other words, hrz(ψ) is the number of steps into the future for which

the truth value of the sub-formula ψ depends on [53]. Similarly, we define the finite history

82

hst(ψ) of ψ as the number of samples we need to look into the past. That is, the number of

steps in the past for which the truth value of the sub-formula ψ depends on. Intuitively, the

hst(ψ) is the size of the history we need to consider in order to keep track of what happened

in the past to evaluate the formula ψ at present time. The finite horizon and the history can

be defined recursively. We define hrz(ψ) (similar to h(ψ) in [53]) and we add the recursive

definition of hst(ψ) in the following:

hrz(p) = 0 hst(p) = 0

hrz(¬ψ) = hrz(ψ) hst(¬ψ) = hst(ψ)

hrz(ψ OP ϕ) = max{hrz(ψ), hrz(ϕ)} hst(ψ OP ϕ) = max{hst(ψ), hst(ϕ)}

hrz(ψU[l,u]ϕ) = max{hrz(ψ) + u − 1, hrz(ϕ) + u} hst(ψU[l,u]ϕ) = max{hst(ψ), hst(ϕ)}

hrz(ψS[l′,u′〉ϕ) = max{hrz(ψ), hrz(ϕ)}

hst(ψS[l′,u′〉ϕ) =

max{hst(ψ) + u′ − 1, hst(ϕ) + u′} if u′ , +∞

max{hst(ψ) + l′ − 1, hst(ϕ) + l′} if u′ = +∞

where p ∈ AP. Here, OP is any binary operator in propositional logic, and ψ, ϕ are MTL<+∞
+pt

formulas. For the unbounded S[0,+∞) operator, the computation of finite history is more in-

volved and needs more explanation. Namely, we need to restate the dynamic programming

algorithm for monitoring a sub-formula ψS[0,+∞)ϕ based on the following works [87, 58].

According to the robustness semantics, the robustness of ψS[0,+∞)ϕ at time i is as follows:

~ψS[0,+∞)ϕ�(ỹ, i) =
⊔i

j=0

(
~ϕ�(ỹ, j) u

�i

k= j+1
~ψ�(ỹ, k)

)
also robustness of ψS[0,+∞)ϕ at time i − 1 is

~ψS[0,+∞)ϕ�(ỹ, i − 1) =
⊔i−1

j=0

(
~ϕ�(ỹ, j) u

�i−1

k= j+1
~ψ�(ỹ, k)

)
Thus, we can rewrite ~ψS[0,+∞)ϕ�(ỹ, i) as

83

~ψS[0,+∞)ϕ�(ỹ, i) = ~ϕ�(ỹ, i) t
(
~ψ�(ỹ, i) u

(⊔i−1

j=0

(
~ϕ�(ỹ, j) u

�i−1

k= j+1
~ψ�(ỹ, k)

)))
=

= ~ϕ�(ỹ, i) t
(
~ψ�(ỹ, i) u

(
~ψS[0,+∞)ϕ�(ỹ, i − 1)

))
Therefore, similar to [58] we recursively update the robustness of ψS[0,+∞)ϕ at the cur-

rent time i and save it in a variable called “Pre” to reuse it for the computation of the next

time step (see [58] for more details). As a result, when we have an unbounded past time

operator, we do not need the full history table. However, if the formula contains a nested

future time operator, we need to extend the history to be long enough to contain the ac-

tual values. In other words, although for unbounded past time operators we do not need

the whole history table, we should still extend the history to be able to store the actual

simulation values (not the predicted values) in “Pre”.

7.5 Monitoring Algorithm

For each MTL<+∞
+pt formula ϕ, we construct a table called Robustness Table with width

of Hst + 1 + Hrz, where Hrz = hrz(ϕ) is the finite horizon of the specification formula

ϕ, and, Hst = Hrz + hst(ϕ), where hst(ϕ) is the finite history of the specification ϕ. Hst

is extended conservatively due to the fact that “Pre” value can only store the robustness

values corresponding to the actual simulation. The height of the robustness table is the

size of the formula ϕ (|ϕ|), where |ϕ| is the number of sub-formulas of ϕ including itself.

For example, assume we have a formula ϕ = �[0,+∞) p ∧ �[1,2]q and we intend to compute

[[ϕ]](T , i) at each time i. In formula ϕ, Hst = 2 and Hrz = 2. Since ϕ has unbounded past-

time operators, it needs the Pre vector as well as the Robustness Table. The Pre vector

appended to the Robustness Table is presented in Table 7.1. In particular, the Pre vector

contains the value of past sub-formulas from the beginning of the time up to the current

time.

84

Table 7.1: Pre Vector and Robustness Table.

Pre[k] Tk, j col. j⇒ -2 -1 0 1 2

k ⇓ Time(i) i − 2 i − 1 i i + 1 i + 2

ψ1 = ϕ ψ2 ∧ ψ3 ~ϕ�(ỹ, i − 2) ~ϕ�(ỹ, i − 1) ~ϕ�(ỹ, i) ~ϕ�(ỹ, i + 1) ~ϕ�(ỹ, i + 2)

ψ2 �[1,2]q ~ψ2�(ỹ, i − 2) ~ψ2�(ỹ, i − 1) ~ψ2�(ỹ, i) ~ψ2�(ỹ, i + 1) ~ψ2�(ỹ, i + 2)

~ψ3�(ỹ, i − 3) ψ3 �[0,+∞) p ~ψ3�(ỹ, i − 2) ~ψ3�(ỹ, i − 1) ~ψ3�(ỹ, i) ~ψ3�(ỹ, i + 1) ~ψ3�(ỹ, i + 2)

ψ4 p ~ψ4�(ỹ, i − 2) ~ψ4�(ỹ, i − 1) ~ψ4�(ỹ, i) ~ψ4�(ỹ, i + 1) ~ψ4�(ỹ, i + 2)

ψ5 q ~ψ5�(ỹ, i − 2) ~ψ5�(ỹ, i − 1) ~ψ5�(ỹ, i) ~ψ5�(ỹ, i + 1) ~ψ5�(ỹ, i + 2)

Table 7.2: Robustness Computation of Each Table Entries (Gray Cells Are Unused).

Tk, j i − 2 i − 1 i i + 1 i + 2

k ⇓, j⇒ j = −2 j = −1 j = 0 j = 1 j = 2

Pre[1] T2,−2 u T3,−2 T2,−1 u T3,−1 T2,0 u T3,0 T2,1 u T3,1 T2,2 u T3,2

Pre[2] T5,−1 u T5,0 T5,0 u T5,1 T5,1 u T5,2 T5,2 +∞

Pre[3] Pre[3]uT4,−2 T3,−2 u T4,−1 T3,−1 u T4,0 T3,0 u T4,1 T3,1 u T4,2

Pre[4] Distd(ỹi−2,O(p)) Distd(ỹi−1,O(p)) Distd(ỹi,O(p)) Distd(ỹi+1,O(p)) Distd(ỹi+2,O(p))

Pre[5] Distd(ỹi−2,O(q)) Distd(ỹi−1,O(q)) Distd(ỹi,O(q)) Distd(ỹi+1,O(q)) Distd(ỹi+2,O(q))

85

In the following, we explain how the values of Table 7.2, the robustness table, are

computed using Algorithms 9 and 10. In order to make our algorithms more readable, we

used a vector to show the CPS output ỹi, ỹi+1, . . ., ỹi+Hrz to the monitoring (see Figure 7.1).

We define a vector ỹ′i = ỹiỹi+1 . . . ỹi+Hrz which appends current state ỹi with predictions ỹi+1,

ỹi+2, . . ., ỹi+Hrz. In Table 7.1, i is the current simulation step which corresponds to column

0. At each simulation step i, for each unbounded past time sub-formula φ, we first save

the values of the column −Hst + hst(φ) in the Pre vector (Algorithm 9 lines 1-3) since

the column −Hst + hst(φ) contains the robustness value of φ from the beginning of the

simulation. We need the Pre vector to compute the robustness of φ at the next sampling

time using the dynamic programming method. In the above example, for �[0,+∞) p the value

at column −2 is saved in Pre to be used during robustness computation. Then, we shift all

the robustness table entries of the predicates by one position to the left (Algorithm 9, lines

4-10). Then the loop (Algorithm 9, lines 11-21) recursively calls Algorithm 10 to fill the

robustness table for each sub-formula from bottom to top.

Each call of Algorithm 10 (CR) computes each table entry Tk, j (see tables 7.1,7.2)

where column j is the horizon/history index and row k is the sub-formula index. For past

sub-formulas the table entries are computed from left to right (Algorithm 9, lines 13-15),

and for future sub-formulas the table entries are computed from right to left (Algorithm

9, lines 17-19). New values for predicates (according to execution traces) will be placed

in column 0 and the predicted values of the predicates will be saved in columns 1 to Hrz

(Algorithm 10, lines 2-5). Table 7.2 shows the updates of predicate values in rows 4, and 5

which correspond to Algorithm 10, line 4.

86

Algorithm 9 On-Line Monitor
Input: ϕ, ỹ′i = ỹiỹi+1 . . . ỹi+Hrz, d, O; Global variables: T , Pre; Output: T1,0(robustness

value). procedure Monitor(ϕ, ỹ′i ,d,O)

1: for k ← 1 to |ϕ| do

2: Pre(k)← Tk,(−Hst+hst(ϕk))

3: end for

4: for j← 1 − Hst to Hrz do

5: for k ← 1 to |ϕ| do

6: if ϕk = p ∈ AP then

7: Tk, j−1 ← Tk, j

8: end if

9: end for

10: end for

11: for k ← |ϕ| down to 1 do

12: if ϕk = ϕmS[l′,u′〉ϕn then

13: for j← −Hst + hst(ϕk) to Hrz do

14: Tk, j ← CR(ϕk, j, ỹ′i ,d,O)

15: end for

16: else

17: for j← Hrz down to − Hst + hst(ϕk) do

18: Tk, j ← CR(ϕk, j, ỹ′i ,d,O)

19: end for

20: end if

21: end for

22: return T1,0

end procedure

87

Algorithm 10 Robustness Computation (CR)
Input: ϕk, j, ỹ′i = ỹiỹi+1 . . . ỹi+Hrz, d, O; Global variables: T , Pre; Output: Tk, j.

procedure CR(ϕk, j, ỹ′i ,d,O)

1: if ϕk = > then Tk, j ← +∞

2: else if ϕk = p ∈ AP then

3: if j >= 0 then

4: Tk, j ← Distd(ỹi+ j,O(p))

5: end if

6: else if ϕk = ¬ϕm then

7: Tk, j ← −Tm, j

8: else if ϕk = ϕm ∨ ϕn then

9: Tk, j ← Tm, j t Tn, j

10: else if ϕmU[l,u]ϕn then

11: if j + l ≤ Hrz then

12: tmpmin ←
�

j≤ j′< j+l Tm, j′

13: Tk, j ← −∞

14: mins← min{Hrz, j + u}

15: for j′ ← j + l to mins do

16: Tk, j ← Tk, j t (tmpmin u Tn, j′)

17: tmpmin ← tmpmin u Tm, j′

18: end for

19: else

20: Tk, j ← −∞

21: end if

22: else if ϕmS[l′,u′〉ϕn then

23: tmpmin ←
�

j−l′< j′≤ j Tm, j′

24: if u′ , +∞ then

25: Tk, j ← −∞

26: for j′ ← j− l′ down to j− u′ do

27: Tk, j ← Tk, j t (tmpmin u Tn, j′)

28: tmpmin ← tmpmin u Tm, j′

29: end for

30: else

31: if j = −Hst + hst(ϕk) then

32: tmpS ← Pre[k] u Tm, j

33: else

34: tmpS ← Tk, j−1 u Tm, j

35: end if

36: Tk, j ← (Tn, j−l′ u tmpmin) t tmpS

37: end if

38: end if

39: return Tk, j

end procedure

In the following, we explain how the CR Algorithm 10 computes the MTL robustness

values for three different cases of MTL:

88

Case 1 (Lines 10-20): The robustness of bounded future temporal sub-formulas with in-

terval [l, u] at each column j is computed given the values of its operands for columns j

up-to min{ j + u,Hrz} (Line 14). For example, this case is used in Table 7.2 to compute the

robustness of sub-formula ψ2 = �[1,2]q from right to left. Case 1 in CR Algorithm is similar

to the DP-TALIRO algorithm [50].

Case 2 (Lines 23-28): The robustness of bounded past temporal sub-formulas with interval

[l′, u′] at each column j is computed given the values of its operands for columns j down-to

j − u′ (Line 25).

Case 3 (Lines 30-36): The robustness of unbounded past temporal sub-formulas with in-

terval [l′,+∞) for column j is computed using the stored value in column j − 1 in dynamic

programming fashion (Line 33) and using the Pre vector (Line 31). For example, Case 3

is used to compute the robustness of ψ3 = �[0,+∞] p using Pre[3] from left to right in Table

7.2.

Finally, we update table entries for the top row which corresponds to ψ1 = ϕ. Since

its corresponding operator ∧ is propositional (Algorithm 10 Lines 6-9), we can update its

value from any direction. The high level explanation of Algorithm 9 is described as follows:

1. Store values of column −Hst + hst(φk) for each unbounded past sub-formula φk in

Pre[k] and shift the table entries of predicates one to the left (Lines 1-10).

2. For each row i from |ϕ| to 1 compute the robustness values according to:

(a) If ϕi is a future temporal operator, for each column j from Hrz down to −Hst +

hst(ϕi), update table entry Ti, j using Algorithm 10.

(b) If ϕi is a past temporal operator, for each column j from −Hst + hst(ϕi) up to

Hrz update table entry Ti, j using Algorithm 10.

3. Return the robustness (T1,0).

89

We provided the proof of this section in Appendix C.

7.6 Experimental Results

We measured the overhead of the proposed monitoring framework on the Automatic

Transmission (AT) model provided in Section 2.3. We introduce our MTL<+∞
+pt monitoring

block in the AT model and test the performance over a set of specifications. In order to test

the runtime overhead of our work, we artificially generate 30 different MTL<+∞
+pt formulas

based on typical critical safety formulas to show that the runtime overhead depends on both

of the size of the formula and the horizon/history. We test our method for 100 runs of mon-

itoring algorithm for each specification (formula), and for each run we use 100 simulation

steps. Then, we compute the mean and variance of the overhead for each simulation step

which is the execution time of Algorithm 9 (in Table 8.4). In Table 8.4, the overhead is

measured on specifications that contain either nested Until operators (U columns) or nested

Eventually operators (E columns).

We generate 30 formulas according to the following templates:

• E formulas: φn(H) = p j −→ ψn(H/n)

where H ∈ N is the finite horizon of the formula. In Table 8.4, we used 1,000, 2,000

and 10,000 for the size of the horizon. Here, p j is an arbitrary predicate and ψn(H/n)

is defined recursively as follows:

ψ1(h) = ^[0,h] pk and ψn(h) = ^[0,h](pl ∧ ψn−1(h)), for 1 < n ≤ 10

where h = H/n, i.e., the finite horizon H divided by the number of nested sub-

formulas n and pk, pl are arbitrary predicates.

• U formulas: φn(H) = p j −→ ψn(H/n)

where H ∈ N is the finite horizon of the formula. In Table 8.4, we used 1,000, 2,000

and 10,000 for the size of the horizon of H. Here, p j is an arbitrary predicate and

90

Table 7.3: The Overhead on Each Simulation Step on the Automatic Transmission Model
with Specifications of Increasing Length. Table Entries Are in Milliseconds.

H=1,000 H=2,000 H=10,000

E U E U E U

Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var.

φ1(H) 2.39 0.00 4.83 0.00 8.03 0.00 15.8 0.001 188.8 0.001 358.5 0.036

φ3(H) 4.24 0.00 7.5 0.001 12.7 0.00 25.09 0.005 314.4 0.01 599 0.665

φ5(H) 4.66 0.00 8.36 0.001 14.01 0.00 27.8 0.005 309.2 0.077 650 0.014

φ7(H) 4.95 0.00 8.94 0.00 14.83 0.00 29.33 0.006 311 0.013 674.2 0.033

φ9(H) 5.23 0.00 9.46 0.001 15.4 0.001 30.56 0.007 317.5 0.011 683.5 0.698

ψn(H/n) is defined recursively as follows:

ψ1(h) = pkU[0,h] pl and ψn(h) = pmU[0,h](pn ∧ ψn−1(h)), for 1 < n ≤ 10

where h = H/n and pk, pl, pm, pm are arbitrary predicates.

As illustrated in Table 8.4, the computational complexity of the monitoring algorithm

is closely related to the horizon and history size. Since the algorithm’s complexity is of

order O(n2) where n is the horizon/history, the added overhead (in worst case execution)

is quadratic in terms of the size of the horizon for some formulas in table 8.4 (like φ1(H)).

Moreover, in most cases, the impact of the number of nested temporal operators is not sig-

nificant compared to the size of horizon/history windows. From Table 8.4, we notice that

when the horizon and history size is less than 2,000, the overhead for each simulation step

is negligible with our prototype implementation. Furthermore, for most practical reactiv-

ity requirements, it is quite unlikely that even a window size of 2,000 sampling points is

necessary.

91

7.7 Case Study

In the following, we utilize the monitoring method on an industrial size high-fidelity

engine model. The model is part of the SimuQuest Enginuity [91] Matlab/Simulink tool

package. The Enginuity tool package includes a library of modules for engine component

blocks. It also includes pre-assembled models for standard engine configurations. In this

work, we use the Port Fuel Injected (PFI) spark ignition, 4 cylinder inline engine configu-

ration. It models the effects of combustion from first physics principles on a cylinder-by-

cylinder basis, while also including regression models for particularly complex physical

phenomena. The model includes a tire-model, brake system model, and a drive train model

(including final drive, torque converter and transmission). The input to the system is the

throttle schedule. The output is the normalized air-to-fuel(A/F) ratio. Simulink reports that

this is a 56 state model. Note that this number represents only the visible states. It is possi-

ble that more states are present in the blackbox s-functions which are not accessible. This

is a high dimensional non-linear system for which reachability analysis is very difficult.

It also includes lookup tables, non-linear components, and inputs that affect the switching

guards.

A specification of practical interest for an engine is the settling time for the A/F ratio,

which is the quotient between the air mass and fuel mass flow. Ideally, the normalized A/F

ratio λ should always be 1, indicating that the ratio of the air and fuel flow is the same as

the stoichiometric ratio. Under engine operating conditions, this output fluctuates ±%10.

We add the on-line monitoring block to the Simulink model as presented in Figure 7.2.

Our goal is to monitor the engine while allowing temporary fluctuations to λ. We

formally define the specification as follows:

φpt = (λ out of bounds)→ �[0,1] �[0,1] ¬(λ out of bounds)

Here, the formal specification states that if the A/F ratio exceeds the allowed bounds,

92

Enginuity High-Fidelity Engine Model with On-Line Monitoring

on_line monitoring

lambda robustness

engine_torque

engine_speed

manifold_pressure

mass_air_flow

lambda

o2_sensor_voltage

gear

vehicle_speed

input throttle

[torque]

[manifold_press]

[mass_air_flow]

[lambda_exhaust]

[engine_speed]

[o2_sensor_voltage]

[gear_active]

[vehicle_speed]

[manifold_press]

[vehicle_speed]

[lambda_exhaust]

[mass_air_flow]

[gear_active]

[torque]

[engine_speed]

[o2_sensor_voltage]

engine speed [rpm]

manifold pressure [Pa]

mass air flow [kg/s]

torque [Nm]

vehicle speed [mph]

active gear [-]

O2 sensor voltage [V]

lambda exhaust [-]

robustness

input throttle

Figure 7.2: SimuQuest [91] Enginuity Matlab Simulink Engine Model with the On-Line
Monitoring Block.

then the ratio should have been settled for at least one second within the last two seconds.

Notice that an alternative presentation of the formula would be to use the future even-

tually and always operators, i.e. the formula would be defined as follows:

φ f t = (λ out of bounds)→ ^[0,1]�[0,1]¬(λ out of bounds)

In this case, the specification states that always, if the A/F ratio output exceeds the

allowed bounds, then within one second it should settle inside the bounds and stay there

for a second.

Clearly, both φpt and φ f t are equivalent in terms of the set of traces that satisfy/falsify

each specification1. However, in real-time robustness monitoring, there is an important

distinction between the two. When the specification requires future information, either

a predictor is put in place or the semantics will handle only the current information. In

1Formally, this is the case if we ignore the first 2 seconds of the execution trace as well as the last 2

seconds – if the execution trace is finite.

93

0 5 10 15 20 25 30 35
0.8

0.9

1

1.1

Normalized stoichiometric ratio

0 5 10 15 20 25 30 35
−0.2

−0.1

0

0.1

0.2
Robustness with the specification φpt

0 5 10 15 20 25 30 35
−0.2

−0.1

0

0.1

0.2
Robustness with the specification φft

0 5 10 15 20 25 30 35
−0.2

−0.1

0

0.1

0.2
Robustness with the specification φptft

Figure 7.3: Runtime Monitoring of Specifications φpt, φ f t and φpt f t On the High-Fidelity
Engine Model. The Figure Presents a Normalized Stoichiometric Ratio, and the Corre-
sponding Robustness Values for Specifications φpt, φ f t and φpt f t. Note That No Predictor Is
Utilized When Computing the Robustness Values.

this case, without a predictor, the future time formula reduces to the propositional formula

φ f t = (λ out of bounds) → ¬(λ out of bounds) ≡ (λ out of bounds). Therefore, past time

operators should be used. Recall that when monitoring robustness, our goal is to provide

early warning on when the specification may fail by approaching dangerously an undesired

threshold. In other words, the past formula allows us to reason about the robustness of

the actual system observations, while the future formula in collaboration with a forecast

model would allow us to estimate the likely robustness. This is in contrast to many boolean

monitoring algorithms which issue an “undecided until further notice” verdict that does not

provide any actionable information.

A third alternative monitoring specification is the following formula:

φpt f t = �[0,2]((λ out of bounds)→ ^[0,1]�[0,1]¬(λ out of bounds))

94

Table 7.4: Simulation Runtime Statistics for the High-Fidelity Engine Model Running
for 35 Seconds with Simulation Step Size of 0.01s. The Results Include the Confidence
Intervals for the Mean Simulation Runtime.

Simulation runtime(sec.) Est. Mean Est. Std. Dev
95% 99%

LB UB LB UB

Without monitor 10.811 0.090 10.778 10.844 10.766 10.857

With monitor 10.987 0.086 10.955 11.019 10.944 11.030

This specification states that at some point in the last two seconds, when λ is out of

bounds then within the next second, λ will not be out of bounds and stay there for one

second. This alternative seems to be the balance between the φpt and φ f t formulas. Where

φpt purely relies on past information, and φ f t relies on information from a predictor, φpt f t

has the advantage that it utilizes both the information from the past but also it could include

information from the predictor.

An example of real-time monitoring on the high-fidelity engine model is presented

in Figure 7.3. The figure illustrates the significance of using past time operators when

defining specifications. Due to the lack of predictor information, the φ f t monitor falsely

returns falsification at about 4 seconds whereas the φpt monitor does not.

In the following, we analyze the overhead of the monitoring algorithm for this case

study. Since the runtime is influenced by numerous sources of nondeterminism, we apply

the central limit theorem to form confidence intervals for the mean simulation runtime when

running the simulations with and without the monitor. To generate the results in Table 7.4,

we collected 30 samples with 100 simulation run-times in each sample. We note that the

difference between the estimated mean simulation runtime when adding the monitor is

0.97%. The experimental results were generated on an Intel Xeon X5647 (2.993GHz, 8

CPUs) machine with 12 GB RAM, Windows 7, and Matlab 2012a.

95

7.8 Conclusions and Future Work

We have presented an algorithm for monitoring the robustness of combined past and

future MTL specifications. Our framework can incorporate predicted or estimated data as

provided by a model predictive component. We have created a Simulink toolbox for MTL

robustness monitoring which is distributed with the S-TaLiRo tools [13]. Our experiments

indicate that the toolbox adds minimal overhead to the simulation time of Simulink models

and it can be used for both runtime analysis of the models and for off-line testing. The

current version of the tool allows reasoning over timed state sequences generated under a

constant sampling rate. In the future, we would like to relax this constraint so that we allow

arbitrary sampling functions. In addition, we would like to investigate the possibility of

porting our monitor on FPGA platforms similar to [53, 86].

96

Chapter 8

OFF-LINE MONITORING FOR TPTL

In this chapter, we consider off-line monitoring of TPTL specifications. The time com-

plexity of the off-line monitoring for MTL is linear to the size of a finite system trace and

linear to the size of MTL formula. Several algorithms using dynamic programming [49]

or sliding windows [42] have been proposed for MTL monitoring of CPS. Therefore, the

off-line monitoring of MTL specifications are not challenging. Instead, in this chapter, we

consider off-line monitoring of TPTL specifications which are more expressive than MTL

specifications [27]. Syntax and Semantics of TPTL formulas are provided in Section 3.2.3.

8.1 Related Works

TPTL is an extension of Linear Temporal Logic (LTL) with freeze quantifiers repre-

sented as “x.”. A freeze quantifier x. assigns to time variable x the “current” time stamp

when the corresponding subformula x.ϕ(x) is evaluated [11]. Then, the time value (stored

in x) can be evaluated inside time constraints which are linear inequalities over the time

variables.

Since its introduction, two semantics where considered for TPTL [11, 27]. Alur’s se-

mantics [11] allows two time variables in time constraints (for example x + 1 ≤ y + 4). In

contrast, Raskin’s semantics allows only one time variable in the time constraint (x ≤ 4)

and implicitly considers the current time as the second time variable [27, 85]. Since the

latter semantics was first considered by Jean-Franois Raskin in [85], we will refer to it as

“Raskin’s TPTL semantics” in this chapter. Raskin’s TPTL semantics was mentioned with

alternative terms such as “Timed LTL” in [72]. In another line of work, in [34], the authors

augmented Alur’s time constraints with more complex temporal-special predicates to de-

97

fine the closeness property of two different CPS trajectories. However, the authors in [34]

did not provide a TPTL monitoring algorithm.

Since TPTL subsumes MTL, it is expected that the monitoring problem of TPTL is

computationally more complex [52]. It has been proven that monitoring of a finite trace

with respect to Alur’s TPTL specification is PSPACE-hard [79]. In [79], the authors trans-

form a Quantified Boolean Formula (QBF), which is PSPACE-hard, into a TPTL formula

with real value time variables. A similar complexity result (PSPACE-hard) for Raskin’s

TPTL semantics is obtained for integer time variables in [52]. It is mentioned in [52] that

in order to obtain a polynomial time algorithm for TPTL monitoring (path checking), we

need to fix the number of time variables. In other words, if the number of time variables

is bounded then the finite trace monitoring will be polynomial to the size of the TPTL for-

mula. However, in [52], the authors did not provide any applicable algorithm for TPTL

monitoring and they focused only on the complexity class.

In this work, we move one step further from [52], and allow the number of time vari-

ables to be arbitrary, but they must be independent to each other1. For this fragment of

TPTL, we provide an efficient TPTL monitoring algorithm which has time complexity

quadratic in the length of the finite trace. In addition, the runtime of the algorithm is pro-

portional to the number of time variables in TPTL.

A rewriting based algorithm for TPTL has been provided in [28]. In [28], the authors

did not evaluate the time complexity of their proposed algorithm. The rewriting technique

was used for on-line monitoring of TPTL specifications in [56]. The authors used the

relativization of TPTL formula with respect to the sequence of observed states [56], and it

was reported that the time complexity is exponential to the size of TPTL formula [56].

1In Section 8.2, Definition 8.2.1, we introduce independent time variables.

98

8.2 Problem Formulation

In this section, we introduce a TPTL fragment for which we have developed a mon-

itoring algorithm. This restriction is crucial for obtaining the polynomial runtime of the

algorithm.

Definition 8.2.1 (Independent Time Variable) A time variable x is independent if it is in

the scope of only one freeze quantifier x. and no other time variable is in the scope of the

corresponding freeze quantifier (x.).

For example in x.(ψ(x)∨^y.ϕ(x, y)), neither x nor y is independent. This is because x is

within the scope of the freeze time quantifiers x. in x.(ψ(x)∨^y.ϕ(x, y)) and y. in y.ϕ(x, y).

Similarly, y is not the only time variable that is within the scope of y. in y.ϕ(x, y). However,

both x and y are independent in x.(ψ(x) ∨ ^y.ϕ(y)).

Now we explain why we focus on Raskin’s semantics in our monitoring algorithm. In

Raskin’s semantics, each time constraint contains a single time variable (see Definition

3.2.5). However, in Alur’s semantics each time constraint contains two time variables [11].

In Alur’s semantics, time variables in the same constraint are dependent to each other. As

a result, in order to benefit from independent time variables, we should consider Raskin’s

semantics.

Definition 8.2.2 (Encapsulated TPTL formula) Encapsulated TPTL formulas are TPTL

formulas where all the time variables are independent.

In other words, an encapsulated formula is a closed formula in which every sub-formula

has at most one free time variable.

Definition 8.2.3 (Frozen Subformula) Given an encapsulated TPTL formula Φ, a frozen

subformula φ of Φ is a subformula which is bounded by a freeze quantifier corresponding

to (an independent) time variable.

99

In encapsulated formulas, all the closed subformulas are frozen. For example the for-

mula x.(ψ(x) ∨ ^y.ϕ(x, y)) is not an “encapsulated” formula because y.ϕ(x, y) is not frozen

since x, y are not independent. Here are two TPTL formulas ϕ1,ϕ2 that look similar but

only one of them is encapsulated.

• ϕ1 = �x.^(a ∧ x ≤ 10 ∧ y.�(y ≤ 2 ∧ y ≥ 1 ∧ b))

• ϕ2 = �x.^(a ∧ x ≤ 10 ∧ y.�(x ≤ 2 ∧ y ≥ 1 ∧ b))

In the above, ϕ1 is encapsulated, but ϕ2 is not encapsulated since y.�(x ≤ 2 ∧ y ≥ 1 ∧ b)

where x ≤ 2 is inside the scope of “y.”.

Lemma 8.2.1 Any MTL formula can be represented by an “encapsulated” TPTL formula.

Problem 6 Each time interval of an MTL temporal operator can be represented with a

unique time variable which is independent of the rest of time variables. The syntactic mod-

ification works as follows: every MTL formula of the form ϕ = ψU[l,u]φ can be recursively

represented as the following TPTL formula ϕ = x.(ψU(x ≥ l ∧ x ≤ u ∧ φ)). The resulting

TPTL formula is encapsulated.

Lemma 8.2.2 MTL is less expressive than “encapsulated” TPTL formulas.

Proof 8.2.1 It is proven in [27] that the following TPTL formula, which is evidently encap-

sulated, cannot be expressed by any MTL formula [27]: ψ = x.^(a ∧ x ≤ 1 ∧ �(x ≤ 1 →

¬b))

In the rest of the chapter, we focus on the following problem:

Problem 7 Given a finite ATSS ρ̂ and an “encapsulated” TPTL formula ϕ, check whether

ρ̂ satisfies ϕ (ρ̂ |= ϕ).

100

☐

x.

◇◇◇◇

∧

→

x ≤ 1 a

→

y ≤ 1 ¬

y.

◇◇◇◇

b

��

��

�	

 = ��

�� = ��. ������

�	 = ��. ����

��

�� �� = ��. ������

��

��

�� = ��. ����

���

��� ���

��	

Figure 8.1: Binary Tree of Example 8.3.1 (φ) with Three Subtrees Corresponding to Sets
of Subformulas θ1, θ2, θ3.

8.3 Solution Overview

In the following, we will describe the data structure that will be utilized to capture the

solution for the TPTL monitoring problem. We store each TPTL formula in a binary tree

data structure. Consider the following example:

Example 8.3.1 Assume AP = {a, b} and let

φ = �x.^((x ≤ 1→ a) ∧ y.^(y ≤ 1→ ¬b))

φ ≡ �x.^((x ≤ 1→ a) ∧ y.ψ1(y)) ≡ �x.ψ2(x)

where we use ψ1 and ψ2 to simplify the presentation:

ψ1(y) ≡ ^(y ≤ 1→ ¬b)

ψ2(x) ≡ ^((x ≤ 1→ a) ∧ y.ψ1(y))

In this example, we have two independent time variables x and y. The binary tree of

Example 8.3.1 is depicted in Figure 8.1. There, the thirteen nodes correspond to thirteen

subformulas.

In Figure 8.1, each subformula ϕi has a node corresponding to the highest operator for

ϕi. In addition, for each subformula ϕi we assign an index i. The order of indexes is gen-

erated according to a topological sort where parents have lower index values than children.

Therefore, the original subformula φ obtains the index 1 because it is the first visited. To

101

evaluate each node’s >/⊥ value we need to evaluate its children’s >/⊥ value before, this is

because of the TPTL recursive semantics (see Definition 3.2.6). If we evaluate the nodes in

the decreasing order of indexes, we would be able to evaluate all the children before their

parents.

Now, we must partition the formula tree into subtrees rooted by the freeze time oper-

ators. Since in Example 8.3.1, we have two independent time variables, we created 2+1

subtrees (two for time variables and one for the original formula). Each subtree contains a

set of subformulas. These subformulas and their corresponding subtrees θ1, θ2, θ3 are shown

in Figure 8.1 with different colors:

The set θ1 contains subformulas rooted at node ϕ9 represented in the light-gray subtree.

The set θ1 contains the subformulas of y.ψ1(y) as follows θ1 = {^(y ≤ 1 → ¬b), y ≤ 1 →

¬b, y ≤ 1,¬b, b} = {ϕ9, ϕ10, ϕ11, ϕ12, ϕ13}.

The set θ2 contains subformulas rooted at node ϕ3 represented in the white subtree. The

set θ2 contains the subformulas of x.ψ2(x) as follows θ2 = {^((x ≤ 1 → a) ∧ y.ψ1(y)), (x ≤

1→ a) ∧ y.ψ1(y), (x ≤ 1→ a), y.ψ1(y), x ≤ 1, a} = {ϕ3, ϕ4, ϕ5, ϕ6, ϕ7, ϕ8}.

The set θ3 contains subformulas rooted at node ϕ1 represented in dark-gray subtree.

The set θ3 contains the subformulas of θ3 = {�x.ψ2(x) , x.ψ2(x)} = {ϕ1, ϕ2}.

Each of the subtrees θ1 and θ2 have distinguished fields referencing to (the index of)

parent and root nodes which are represented in Figure 8.1 as follows:

1) θ1.parent = 6 and θ1.root = 9.

2) θ2.parent = 2 and θ2.root = 3.

Note that θ1 is subformula of θ2, and θ2 is subformula of θ3. This ordering is very

important for our algorithm. We created these subtrees because each frozen subformula

can be separately evaluated. Therefore, we can guarantee the polynomial runtime. The

method will be described in details in Section 8.5.

102

8.4 Monitoring Table

We assume that the sampled system output is mapped (projected) on a finite ATSS ρ̂;

therefore, we can evaluate the system output using our off-line monitor. If the specification

does not have a freeze time operator, then the formula is an LTL formula for which the

existing monitoring algorithms will be utilized [87]. If the specification has a freeze time

operator, we first “instantiate” the time variable with the time label of the current sample

before formula evaluation. Then, we compute ⊥/> values of the corresponding time con-

straints. When time constraints are evaluated, they will be resolved to ⊥/>, and then, the

frozen subformula (x.ϕ(x)) is converted into an LTL formula. Hence, we can apply dynamic

programming method [87] to compute the Boolean value of the frozen subformula.

For each frozen subformula (x.ϕ(x)) at each time instance τi, we must first precompute

the Boolean (⊥/>) value of the corresponding time constraints to transform this frozen

subformula into an LTL. A two-dimensional matrix M|φ|×|ρ̂| with height (number of rows) |φ|

, and width (number of columns) |ρ̂| is created. Here |φ| denotes the number of subformulas

in φ, and |ρ̂| is the number of samples. Note that row indexing starts from 1 (φ ≡ ϕ1) up to

|φ| and column indexing starts from 0 (ρ0) up to |ρ̂| − 1.

The monitoring table of Example 8.3.1 is presented in Table 8.1. At the beginning, the

system outputs corresponding to atomic propositions (AP = {a, b}) are stored in the rows

which belong to the propositions a (row ϕ8) and b (row ϕ13) in Table 8.1. In Figure 8.1,

the subformula ψ2(x) is depicted inside the white subtree and ψ1(y) is depicted inside the

light-gray subtree. In the following, we explain the other rows of Table 8.1 and provide a

high level overview of the monitoring of φ:

1st Run) We first instantiate time variable y at each sample i with the corresponding

timed instance τi to evaluate the Boolean values for the corresponding time constraint y ≤ 1

(row ϕ11). The instantiation transforms y.ψ1(y) into an LTL formula. Then we compute the

103

Boolean values of ψ1(τ0), ψ1(τ1), ψ1(τ2), . . . , ψ1(τ6) from left to right. Now the Boolean

value of y.ψ1(y) for each time stamp τi is available for the higher level subtree of the Table

8.1. Therefore, the Boolean values should be copied from row ϕ9 to row ϕ6.

2nd Run) Given the ⊥/> values of y.ψ1(y), we can instantiate x at each time stamp τi

and modify formula x.ψ2(x) into an LTL formula. Then we compute the Boolean values of

ψ2(τ0), ψ2(τ1), ψ2(τ2), . . . , ψ2(τ6) from left to right. Now the Boolean values of x.ψ2(x) are

available for each time stamp τi for the higher subtree. As a result, the ⊥/> values should

be copied from row ϕ3 to row ϕ2.

3rd Run) The Boolean value of �x.ψ2(x) is computed given the Boolean values of

ψ2(τi) according to the semantics of Always (�) operator:

φ ≡
∧6

i=0
ψ2(τi)

104

Table 8.1: The Monitoring Table of Formula φ of Example 8.3.1 (Figure 8.1)

ϕi(OP) τ0 τ1 τ2 τ3 τ4 τ5 τ6

ϕ1(�) {⊥/>}

ϕ2(x.) ψ2(0) ψ2(τ1) ψ2(τ2) ψ2(τ3) ψ2(τ4) ψ2(τ5) ψ2(τ6)

ϕ3(^) ψ2(0) ψ2(τ1) ψ2(τ2) ψ2(τ3) ψ2(τ4) ψ2(τ5) ψ2(τ6)

ϕ4(∧)

ϕ5(→)

ϕ6(y.) ψ1(0) ψ1(τ1) ψ1(τ2) ψ1(τ3) ψ1(τ4) ψ1(τ5) ψ1(τ6)

ϕ7(x ≤ 1)

ϕ8(a)

ϕ9(^) ψ1(0) ψ1(τ1) ψ1(τ2) ψ1(τ3) ψ1(τ4) ψ1(τ5) ψ1(τ6)

ϕ10(→)

ϕ11(y ≤ 1)

ϕ12(¬)

ϕ13(b)

105

8.5 TPTL Monitoring Algorithm

The algorithms has the main following steps.

1. For each time variable (frozen subformula) and for each time stamp.

2. Resolve the time constraints into ⊥/> values (This step converts the corresponding

frozen subformula into an LTL formula).

3. Compute ⊥/> value of the resulting LTL formula using the dynamic programming

algorithm.

4. These ⊥/> values of frozen subformula are used to evaluate the higher level subfor-

mulas.

In the following, a detailed description and pseudo code of the proposed algorithm for

TPTL monitoring will be explained.

8.5.1 TPTL to LTL Transformation

The pseudo code of the monitoring algorithm is provided in Algorithm 11 and its main

loop has |V | + 1 iterations where |V | is the number of freeze time variables. Algorithm 11

calls Algorithm 12 for computing the Boolean value of LTL subformulas. The first line of

Algorithm 11 sets the monitoring table entries of the corresponding atomic propositions,

namely the Boolean value of each p ∈ AP is extracted from the finite state sequence ˆ̃y.

In addition, Line 1 sets the monitoring table entries for constant boolean values ⊥/>. For

each time variable vk (in Line 2), we need to compute the ⊥/> value of the subtree θk. The

order of k is in such away that the inner most subtree (θ1) is evaluated first then θ2, and

finally, θ3 (See Fig 8.1 for Example 8.3.1). This order is crucial for the correctness of the

algorithm, because higher level subformulas consider the lower level frozen subformulas

as ⊥/>.

106

To transform the frozen formula into LTL for each sample time t between 0 to |ρ̂| − 1

(see Line 3), we must first instantiate the time variable vk to the corresponding time stamp

τt, then compute the Boolean value of the corresponding time constraint vk ∼ r. The

instantiation evaluates the whole constraint row into ⊥/> in Lines 4-13 of Algorithm 11.

The environment is updated based on the time stamp τt and the formula translated into an

LTL formula. Now we use a dynamic programming algorithm based on [87] to compute

the⊥/> value of the frozen subformula in Lines 14-18. In Line 15 of Algorithm 11, θk.max

(θk.min) is the maximum (minimum) index of subformulas in the subtree θk. In Example

8.3.1:

1) θ1.min = 9 and θ1.max = 13

2) θ2.min = 3 and θ2.max = 8

When the Boolean value of the frozen subformula of vk.ψ(vk) (θk.root) at time stamp

vk = τt is resolved, this Boolean value is copied to the parent of θk (θk.parent) to be used

by higher level subformulas (see Line 19 of Algorithm 11). The loop of Line 3-20 con-

tinues for the other time stamps (τ1 . . . τ|ρ̂|−1) and computes the ⊥/> value of the frozen

subformula for each instantiation of vk to the time stamps τ1 . . . τ|ρ̂|−1 in this order. Now

we resolved the ⊥/> value of the frozen subformula of vk.ψ(vk) for all time stamps. We

continue this process for other time variables (Lines 2-21).

When the Boolean values of the frozen subformulas are resolved for each time variable

v1 . . . vk . . . v|V | in this order, we have an LTL formula for the highest level subformula where

it corresponds to subtree θ|V |+1. To compute the ⊥/> value of the highest set of subformulas

we run Lines 22-26 of Algorithm 11. Note that Lines 22-26 are almost identical to Lines

14-18 because the highest set of subformulas is in LTL. The final value that corresponds to

the monitoring trace is stored in table entry M[1, 0] and it will be returned to the user. The

table entry M[1, 0] contains the Boolean value of the TPTL specification (ϕ1) at sampled

index 0.

107

8.5.2 LTL Monitoring

Now we explain how to compute the Boolean values of the LTL subtree. Algorithm 12

is based on [87], and follows Definition 3.2.6. Algorithm 11 calls Algorithm 12 at each

sample u. Algorithm 12 has the following 5 cases to compute the Boolean values of the

corresponding LTL operators:

1. Lines 1-2 for the NOT operation (¬).

2. Lines 3-4 for the AND operation (∧).

3. Lines 5-6 for the OR operation (∨).

4. Lines 7-12 for the NEXT operation (©).

5. Lines 13-19 for the UNTIL operation (U).

Note that Algorithm 12 (ComputeLTL) is O(1) complexity. Since we can evaluate each

frozen subformula (x.ϕ(x)) separately because of independent time variables, the time com-

plexity of the algorithm is proportional to the number of time variables and the size of the

subformula. On the other hand, for each time sample we instantiate each time variable to

convert the TPTL subformula into an LTL subformula in O(|ρ̂|) then run the LTL monitor-

ing algorithm in O(|ρ̂|). As a result, the upper bound on the time complexity of Algorithm

11 is O(|V | × |ϕ| × |ρ̂|2), where |V | is the number of time variables, |ϕ| is the number of

subformulas, and |ρ̂| is the number of ATSS samples. Both algorithms’ correctness proofs

are provided in Appendix D.

8.5.3 Running example

In this section, we utilize our monitoring algorithm to compute the solution for Example

8.3.1. First step of the algorithm is the >/⊥ computation of the frozen subformula y.ψ1(y)

108

which corresponds to subtree θ1 and is represented in light-gray rows of Tables 8.1 and

8.2. In Table 8.2, when the time value of y is instantiated to 0, then the value of the time

constraint y ≤ 1 will be resolved for all the samples of i between 0 to 6 according to the

following inequality τi − 0 ≤ 1. Now ψ1(0) is transformed into LTL and ψ1(0) is evaluated,

i.e., ψ1(0) ≡ > (see row ϕ9 column τ0). Then, the time value of y is instantiated to τ1 = 0.3

and the value of the time constraint y ≤ 1 will be resolved for all the samples of i between

1 to 6 according to the following inequality τi − 0.3 ≤ 1. Similarly, ψ1(0.3) is transformed

into LTL and ψ1(0.3) can be computed, i.e., ψ1(0.3) ≡ > (see row ϕ9 column τ1). We

continue the computation of ψ1(τi) with the following instantiation τ2 = 0.7, . . . , τ6 = 1.9

similar to τ0. Now ⊥/> values of the frozen subformula y.ψ1(y) for each time stamp τi are

available in row ϕ9 of Table 8.2.

The Boolean values of subtree θ1 should be available for higher level subformulas.

Therefore, the row ϕ9 will be copied to row ϕ6 (in Table 8.2 both rows have the same

color). Now we can continue the second run of the algorithm. The >/⊥ computation of

the frozen subformula x.ψ2(x) which corresponds to subtree θ2 is represented in white rows

of Table 8.1 and 8.2. In Table 8.2, the time value of x is instantiated to 0, then the value

of ψ2(0) is computed, i.e., ψ2(0) ≡ > (see row ϕ3 column τ0). Now, the time value of x

is instantiated to τ1 = 0.3 and the value of ψ2(0.3) is computed ψ2(0.3) ≡ > (see row ϕ3

column τ1). We continue the computation of ψ2(τi) similarly with τ2 = 0.7 . . . τ6 = 1.9.

Now the ⊥/> values of the frozen subformula x.ψ2(x) for each time stamp τi are available

in row ϕ3 of Table 8.2. Since the Boolean values of subtree θ2 should be available for higher

level subformulas, the row ϕ3 is copied to row ϕ2. Finally, we compute φ = �x.ψ2(x) using

Lines 22-26 of Algorithm 11 which corresponds to following: φ =
∧6

i=0
ψ2(τi) ≡ ⊥

109

Algorithm 11 TPTL Monitor
Input: ϕ, ρ̂ = (ỹ0, τ0)(ỹ1, τ1) · · · (ỹT , τT); Global variables: M|ϕ|×|ρ̂|; Output: M[1, 0].

procedure TPTLMonitor(ϕ, ρ̂)

1: Init rows of M|ϕ|×|ρ̂| correspond to predicates ϕ j ≡ p ∈ AP with >/⊥ according to ˆ̃y.
2: for k ← 1 to |V | do
3: for t ← 0 to |ρ̂| − 1 do
4: for u← t to |ρ̂| − 1 do
5: for each ϕ j ≡ vk ∼ r ∈ θk where

6: j is the index of vk ∼ r in M do
7: if (τu − τt) ∼ r then
8: M[j, u]← >

9: else
10: M[j, u]← ⊥

11: end if
12: end for
13: end for
14: for u← |ρ̂| − 1 down to t do
15: for j← θk.max down to θk.min do
16: M[j, u]← ComputeLT L(ϕ j, u,M|ϕ|×|ρ̂|)

17: end for
18: end for
19: M[θk.parent, t]← M[θk.root, t]

20: end for
21: end for
22: for u← |ρ̂| − 1 down to 0 do
23: for j← θ|V |+1.max down to θ|V |+1.min do
24: M[j, u]← ComputeLT L(ϕ j, u,M|ϕ|×|ρ̂|)

25: end for
26: end for
27: return M[1, 0] // Return the value of the first cell/row in M|ϕ|×|ρ̂| table

end procedure

110

Algorithm 12 LTL Monitor
Input: ϕ j, u,M|ϕ|×|ρ̂|; Output: M[j, u].

procedure ComputeLTL(ϕ j, u,M|ϕ|×|ρ̂|)

1: if ϕ j ≡ ¬ϕm then

2: return ¬M[m, u]

3: else if ϕ j ≡ ϕm ∧ ϕn then

4: return M[m, u] ∧ M[n, u]

5: else if ϕ j ≡ ϕm ∨ ϕn then

6: return M[m, u] ∨ M[n, u]

7: else if ϕ j ≡ ©ϕm then

8: if u = |ρ̂| − 1 then

9: return ⊥

10: else

11: return M[m, u + 1]

12: end if

13: else if ϕ j ≡ ϕmUϕn then

14: if u = |ρ̂| − 1 then

15: return M[n, u]

16: else

17: return M[n, u] ∨ (M[m, u] ∧ M[j, u + 1])

18: end if

19: end if

end procedure

111

Table 8.2: Computing the Boolean Values for φ = �x.ψ2(x). Boolean Values Correspond to the Final Snapshot of Monitoring
Table.

ϕi(OP) τ0 = 0 τ1 = 0.3 τ2 = 0.7 τ3 = 1.0 τ4 = 1.1 τ5 = 1.5 τ6 = 1.9

ϕ1(�) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

ϕ2(x.) ψ2(0) ≡ > ψ2(τ1) ≡ > ψ2(τ2) ≡ > ψ2(τ3) ≡ > ψ2(τ4) ≡ ⊥ ψ2(τ5) ≡ ⊥ ψ2(τ6) ≡ ⊥

ϕ3(^) > > > > ⊥ ⊥ ⊥

ϕ4(∧) ⊥ ⊥ > > ⊥ ⊥ ⊥

ϕ5(→) ⊥ ⊥ > > > ⊥ ⊥

ϕ6(y.) ψ1(0) ≡ > ψ1(τ1) ≡ > ψ1(τ2) ≡ > ψ1(τ3) ≡ > ψ1(τ4) ≡ ⊥ ψ1(τ5) ≡ ⊥ ψ1(τ6) ≡ ⊥

ϕ7(x ≤ 1) > > > > > > >

ϕ8(a) ⊥ ⊥ > > > ⊥ ⊥

ϕ9(^) > > > > ⊥ ⊥ ⊥

ϕ10(→) > > ⊥ > ⊥ ⊥ ⊥

ϕ11(y ≤ 1) > > > > > > >

ϕ12(¬) > > ⊥ > ⊥ ⊥ ⊥

ϕ13(b) ⊥ ⊥ > ⊥ > > >

112

8.6 Experimental Results

An implementation of our TPTL monitoring algorithm is provided in the S-TaLiRo test-

ing framework [64]. S-TaLiRo is a Matlab toolbox that uses stochastic techniques to find

initial states and inputs to Simulink models which result in trajectories that falsify MTL for-

mulas. With our TPTL off-line monitoring algorithm, S-TaLiRo can evaluate specifications

that are more expressive than MTL. We measured the runtime of our TPTL monitoring

algorithm using the S-TaLiRo toolbox. The system under test was the Automatic Trans-

mission (AT) model provided in Section 2.3. We introduced a few modifications to the

model to make it compatible with the S-TaLiRo framework, which are explained in [63].

AT has two inputs of Throttle and Brake. The outputs contain two real-valued traces: the

rotational speed of the engine ω and the speed of the vehicle v. In addition, the outputs

contain one discrete-valued trace gear with four possible values.

To provide TPTL specifications, we defined four atomic propositions corresponding to

the following predicates:

1) a1 ≡ (ω ≥ 4500): “rotational speed of the engine ≥ 4500”

2) a2 ≡ (ω ≤ 1500): “rotational speed of the engine ≤ 1500”

3) a3 ≡ (v ≥ 40): “speed of the vehicle ≥ 40”

4) a4 ≡ (v ≤ 120): “speed of the vehicle ≤ 120”

Note that these predicates are chosen to be non-trivial and have meaning in the CPS context.

The TPTL formulas are generated based on typical safety Request-Response specifications.

We generated these TPTL formula patterns to check the runtime with respect to: 1) Size of

system trace 2) Number of temporal operators 3) Number of time variables.

We created 18 TPTL formulas that cannot be expressed in MTL. All the specifications

have the Request-Response pattern: �(a1 → ψ) where ψ is categorized in two groups:

1. EA group (ψEA): contains Eventually/Always specifications with 2, 4 and 8 temporal

113

operators.

2. UR group (ψUR): contains Until/Release specifications with 2, 4 and 8 temporal op-

erators.

We first chose a ψ specification in LTL from Table 8.3 column (LTL template). In Table

8.3, column (#) represents the number of temporal operators for each LTL template. Then,

we added time variables to create a TPTL specification. The last column in Table 8.3

represents the number of TPTL formulas that we created by adding time constraints on ψ.

The time variables that we add to ψ correspond to individual temporal operators. In this

case, for ψEA2 we create two TPTL formulas with one and two time variables respectively

given as φ1 and φ2:

EA φ1 = �(a1 → x.^(a2 ∧ �(a3 ∨ a4 ∧Cx)))

EA φ2 = �(a1 → x.^(a2 ∧Cx ∧ y.�(a3 ∨ a4 ∧Cy)))

where Cx and Cy are the corresponding time constraints for x and y. Similarly for ψUR2 we

created two TPTL formulas with one and two time variables respectively given as φ1 and

φ2:

UR φ1 = �(a1 → x.(a2U(a3R(a4 ∧Cx))))

UR φ2 = �(a1 → x.(a2Ua4 ∧Cx ∧ y.(a3R(a4 ∧Cy)))

We used a similar method to generate φ3 with one time variable, φ4 with two time variables,

and φ5 with four time variables based on ψEA4 and ψUR4 with the total number of six TPTL

formulas. Finally, we create eight TPTL formulas based on ψEA8 and ψUR8. These formulas

are φ6, φ7, φ8, φ9 and they are represented in Table 8.4. Our experiments were conducted on

a 64-bit Intel Xeon CPU (2.5GHz) with 64-GB RAM and Windows Server 2012. We used

114

Matlab 2015a and Microsoft Visual C++ 2013 Professional to compile our algorithms’

code (in C) using the Matlab mex compiler.

The runtime is provided in Table 8.4. Each row considers two TPTL formulas in EA

or UR configuration. For example, the first column φ1 represents �(a1 → x.^(a2 ∧ �(a3 ∨

a4 ∧ Cx))) and �(a1 → x.(a2U(a3R(a4 ∧ Cx)))) in EA and UR configurations, respectively.

In Table 8.4 the second column (#) represents the number of temporal operators in the

corresponding frozen subformula, namely, the number of of temporal operators in ψEA# or

ψUR#. The third column (|V |) in Table 8.4 represents the number of time variables in ψEA#

or ψUR#.

We tested our algorithm with the execution traces of the length 1000, 2000, and 10000.

For each TPTL formula, we tested our algorithm 100 times where the AT’s throttle input is

provided by random signal generator (without brake). We reported the mean value (in Bold)

and variance of the algorithm’s runtime in Table 8.4. It can be seen that when the length of

the trace doubles from |ρ̂|=1,000 to |ρ̂|=2,000 , the runtime quadruples (see Mean values

in Table 8.4). Similarly, when the length of trace increases ten times from |ρ̂|=1,000 to

|ρ̂|=10,000 the runtime increased 100 times (see Mean values in Table 8.4). Now, consider

the mean values of φ1 and φ2. The number of time variables in φ1 is one and in φ2 is

two. It can be seen that mean values of φ2 are twice as those of φ1. Similarly, comparing

φ3 and φ4 and φ5 shows that the runtime is proportional to the number of time variables.

Finally, comparing rows φ1 and φ3 and φ6 shows that the runtime relates to the number of

temporal operators. The experimental results indicate that the runtime behaves as expected,

considering that our algorithm is in O(|V | × |ϕ| × |ρ̂|2).

115

Table 8.3: Specifications of ψ Before Adding Time Variables.

LTL # LTL template TPTLs

ψEA2 2 ^(a2 ∧ �(a3 ∨ a4) 2

ψEA4 4 ^(a2 ∧ �(a3 ∨ a4 ∧ ψEA2) 3

ψEA8 8 ^(a2 ∧ �(a3 ∨ a4 ∧ ^(a2 ∧ �(a3 ∨ a4 ∧ ψEA4)))) 4

ψUR2 2 a2U(a3Ra4) 2

ψUR4 4 a2U(a3R(a4 ∧ ψUR2)) 3

ψUR8 8 a2U(a3R(a4 ∧ (a2U(a3R(a4 ∧ ψUR4))))) 4

116

Table 8.4: The Runtime of Monitoring Algorithm for 18 TPTL Formulas. All the Values Are in Seconds.

|ρ̂|=1,000 |ρ̂|=2,000 |ρ̂|=10,000

EA (ψEA#) UR (ψUR#) EA (ψEA#) UR (ψUR#) EA (ψEA#) UR (ψUR#)

φ # |V | Mean Var. Mean Var. Mean Var. Mean Var. Mean Var. Mean Var.

φ1 2 1 0.077 0.0002 0.064 0.000 0.326 0.001 0.250 0.0013 8.512 0.066 6.427 0.068

φ2 2 2 0.151 0.0005 0.137 0.0003 0.5887 0.0018 0.551 0.002 14.31 0.191 13.67 0.175

φ3 4 1 0.142 0.0003 0.097 0.0001 0.5885 0.002 0.382 0.002 15.33 0.232 10.46 0.154

φ4 4 2 0.205 0.0003 0.15 0.0002 0.871 0.0032 0.604 0.002 22.9 0.344 16.35 0.24

φ5 4 4 0.417 0.0012 0.38 0.0004 1.721 0.0058 1.558 0.007 46.25 7.08 41.2 1.077

φ6 8 1 0.227 0.0001 0.154 0.0002 0.948 0.005 0.552 0.0046 30.27 9.708 17.01 2.184

φ7 8 2 0.367 0.025 0.235 0.0011 1.474 0.0078 1.023 0.0137 41.59 2.17 26.95 2.204

φ8 8 4 0.533 0.0042 0.437 0.0013 2.26 0.024 1.751 0.0115 66.13 34.36 48.95 8.857

φ9 8 8 1.145 0.025 1.093 0.0066 4.9 0.0391 4.346 0.1413 137 220 124.6 184

117

8.7 Case Study

In this section, we consider CPS requirements which are impossible to formalize in

MTL [27], but we formalize them in TPTL, very easily. The ultimate goal is to run the

testing algorithm on these requirements. Our TPTL monitoring algorithm is provided

as add-on to the S-TaLiRo testing framework. S-TaLiRo searches for counterexamples

to MTL properties through global minimization of a robustness metric [48]. The robust-

ness of an MTL formula ϕ is a value that measures how far is the trace from the satisfac-

tion/falsification of ϕ. This measure is an extension of Boolean values (>/⊥) for represent-

ing satisfaction or falsification. A positive robustness value means that the trace satisfies

the property and a negative value means that the property is not satisfied. The stochastic

search then returns the simulation trace with the smallest robustness value that was found.

To falsify safety requirements in TPTL which are more expressive than MTL, we should

use our proposed TPTL monitor that can handle those specifications. Now let us consider

the Automatic Transmission (AT) system. It contains the discrete output gear signal with

four possible values (gear = 1, ..., gear = 4) which indicate the current gear in the auto-

transmission controller. We use four atomic propositions g1, g2, g3, g4 for each possible

gear value, where (gear = i) ≡ gi. Then we define three up-shifting events as follows:

1) e1 = g1 ∧©g2 means shift from gear one to gear two.

2) e2 = g2 ∧©g3 means shift from gear two to gear three.

3) e2 = g3 ∧©g4 means shift from gear three to gear four.

In CPS, it is possible that we need to specify the safety requirement about three or more

events in sequence, but the time difference between the first and last event happening should

be of importance. In general, these types of specification are impossible to represent in

MTL. We provide two very succinct TPTL specifications that can formalize these chal-

118

0 5 10 15 20 25 30
0

50

100
Throttle

0 5 10 15 20 25 30
0

500
Break

0 5 10 15 20 25 30
0

2

4
Gear

6.68

Figure 8.2: Falsification of Φ1 Using S-TaLiRo. The Duration Between e1 and e3 Is Less
than 8 Seconds.

lenging requirements.

The first requirement is as follows:

“Always if e1 happens, then if e2 happens in future and if e3 happens in future after e2, then

the duration between e1 and e3 should be equal or more than 8.”

This specification is formalized in the following formula:

Φ1 = �z.(e1 → �(e2 → �(e3 → z ≥ 8)))

S-TaLiRo successfully falsified Φ1 which is represented in Figure 8.2. In Figure 8.2 the

Throttle, Break, and Gear trajectory of the corresponding falsification is presented. It can

be seen that the duration between e1 and e3 is less that 8. Its actual value is 8.4 − 1.72 =

6.68 < 8.

The second requirement is as follows:

“Always if e1 happens, then e2 should happen in future, and e3 should happen in future

after e2, and the duration between e1 and e3 should be equal or less than 12.”

119

0 5 10 15 20 25 30
0

50

100
Throttle

0 5 10 15 20 25 30
0

500
Break

0 5 10 15 20 25 30
0

2

4
Gear

17.88

Figure 8.3: Falsification of Φ2 Using S-TaLiRo. The Duration Between e1 and e3 Is More
than 12 Seconds.

This specification is formalized by the following formula:

Φ2 = �z.(e1 → ^(e2 ∧ ^(e3 ∧ z ≤ 12)))

In Figure 8.3 the Throttle, Break, and Gear trajectories of the falsification of Φ2 are

represented. It can be seen that the duration between e1 and e3 is more than 12, its actual

value is 19.2 − 1.32 = 17.88 > 12. This case study shows that S-TaLiRo can be used for

the falsification problem of challenging TPTL requirements. The method we propose in

this work opens the possibility for CPS off-line monitoring of very complex specifications

in TPTL using an efficient algorithm.

8.8 Conclusions and Future Work

In this chapter, we provide an efficient polynomial time algorithm for a practical sub-

set of TPTL specifications. We show that very complex specifications can be succinctly

represented in this TPTL subset. Our method can help CPS developers to efficiently test

120

requirements that cannot be expressed in MTL. In the future, we can combine full TPTL

with a bounded number of time variables with our suggested algorithm to test the speci-

fications that have an arbitrary number of independent time variables and full TPTL with

limited number of time variables.

121

Chapter 9

CONCLUSIONS AND FUTURE WORKS

Nowadays, most CPS are safety-critical systems. Therefore, safety is the top priority

during design, implementation and deployment of CPS. It is important to guarantee that a

CPS satisfies the safety requirements. Formal verification is the best way to prove the cor-

rectness of a system with respect to its requirements. However, in general, the verification

problem for CPS is an undecidable problem. To face the undecidability issues, research

and development teams have worked on a number of semi-formal problems. Testing is one

of the most important methods for verification and validation of CPS.

In this dissertation, we provided a number of contributions to improve testing of CPS.

We first provided a debugging framework which could find the most common logical issues

in formal specifications represented in MITL. Checking the logical inconsistency helps the

testing teams catch fundamental issues in MITL requirements and fix them before doing

any testing and monitoring on the system. Our contributions on this topic are reported in

Chapter 4. In the future, our specification debugging framework can be integrated into the

specification elicitation tool ViSpec as a single system. This can improve the specification

elicitation framework by debugging MITL formulas on the fly and by interacting with non-

expert users in a better way.

Some of the specification issues can only be detected when considering both the system

and the specification. In Chapter 5, we considered signal vacuity checking for improving

CPS testing. This enables improved and deeper analysis since we consider both the sys-

tem and the specification. We applied this method to improve the S-TaLiRo falsification

framework in Chapter 6. We showed that non-vacuous signals can improve the falsifica-

tion of Request-Response requirements for the benchmarks that we tested. We considered

122

the Request-Response specifications with only one implication. In the future, our vacu-

ity aware falsification framework can be applied to Request-Response specifications with

more than one implication operators to improve the falsification framework for more com-

plex requirements.

One of the main parts of any CPS testing flow is the monitoring component. In the mon-

itor section, we checked whether the system trace satisfies the requirement or not. Since

monitoring of a formal specification has theoretical and practical challenges, we devoted

two chapters of this dissertation to CPS monitoring. We provided an on-line monitoring

component in Chapter 7, and an off-line monitoring method in Chapter 8. Both our mon-

itoring algorithms are efficient and they are used in S-TaLiRo for testing industrial size

models. In the future, we will consider the embedded implementation of our motoring

components for real-time applications on physical platforms (as opposed to models).

123

REFERENCES

[1] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić, and A. Gupta. Probabilistic
temporal logic falsification of cyber-physical systems. ACM Trans. Embed. Comput.
Syst., 12(2s):95:1–95:30, May 2013.

[2] H. Abbas and G. E. Fainekos. Linear hybrid system falsification through descent.
CoRR, abs/1105.1733, 2011.

[3] H. Abbas, B. Hoxha, G. Fainekos, and K. Ueda. Robustness-guided temporal logic
testing and verification for stochastic cyber-physical systems. In Proc. of IEEE Inter-
national Conference on CYBER Technology in Automation, Control, and Intelligent
Systems, 2014.

[4] T. Akazaki. Falsification of conditional safety properties for cyber-physical systems
with gaussian process regression. In Runtime Verification - 16th International Confer-
ence, RV 2016, Madrid, Spain, September 23-30, 2016, Proceedings, pages 439–446,
2016.

[5] R. Alur. Principles of Cyber-Physical Systems. MIT Press, 2015.

[6] R. Alur, C. Courcoubetis, N. Halbwachs, T. A. Henzinger, P.-H. Ho, X. Nicollin,
A. Olivero, J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems.
Theoretical Computer Science, 138(1):3–34, 1995.

[7] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. In
Symposium on Principles of Distributed Computing, pages 139–152, 1991.

[8] R. Alur, T. Feder, and T. A. Henzinger. The benefits of relaxing punctuality. J. ACM,
43(1):116–146, 1996.

[9] R. Alur and T. A. Henzinger. Real-Time: Theory in Practice: REX Workshop Mook,
The Netherlands, June 3–7, 1991 Proceedings, chapter Logics and models of real
time: A survey, pages 74–106. Springer Berlin Heidelberg, Berlin, Heidelberg, 1992.

[10] R. Alur and T. A. Henzinger. Real-time logics: Complexity and expressiveness. Inf.
Comput., 104(1):35–77, 1993.

[11] R. Alur and T. A. Henzinger. A really temporal logic. Journal of the ACM, 41(1):181–
204, 1994.

[12] Y. S. R. Annapureddy and G. E. Fainekos. Ant colonies for temporal logic falsification
of hybrid systems. In Proceedings of the 36th Annual Conference of IEEE Industrial
Electronics, pages 91–96, 2010.

[13] Y. S. R. Annapureddy, C. Liu, G. E. Fainekos, and S. Sankaranarayanan. S-taliro:
A tool for temporal logic falsification for hybrid systems. In Tools and algorithms
for the construction and analysis of systems, volume 6605 of LNCS, pages 254–257.
Springer, 2011.

124

[14] R. Armoni, L. Fix, A. Flaisher, O. Grumberg, N. Piterman, A. Tiemeyer, and M. Y.
Vardi. Enhanced vacuity detection in linear temporal logic. In Computer Aided Ver-
ification, 15th International Conference, CAV 2003, Boulder, CO, USA, July 8-12,
2003, Proceedings, pages 368–380, 2003.

[15] E. Asarin, A. Donzé, O. Maler, and D. Nickovic. Parametric identification of temporal
properties. In Runtime Verification - Second International Conference, RV 2011, San
Francisco, CA, USA, September 27-30, 2011, Revised Selected Papers, pages 147–
160, 2011.

[16] C. Baier and J. Katoen. Principles of model checking. MIT Press, 2008.

[17] A. Bakirtzis, V. Petridis, S. Kiartzis, M. Alexiadis, and A. Maissis. A neural network
short term load forecasting model for the greek power system. IEEE Transactions on
Power Systems, 11(2):858–863, May 1996.

[18] T. Ball and O. Kupferman. Vacuity in testing. In Tests and Proofs, Second Inter-
national Conference, TAP 2008, Prato, Italy, April 9-11, 2008. Proceedings, pages
4–17, 2008.

[19] E. Bartocci, L. Bortolussi, L. Nenzi, and G. Sanguinetti. System design of stochastic
models using robustness of temporal properties. Theor. Comput. Sci., 587:3–25, 2015.

[20] D. L. Beatty and R. E. Bryant. Formally verifying a microprocessor using a simulation
methodology. In DAC, pages 596–602, 1994.

[21] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh. Efficient detection of vacuity in
temporal model checking. Formal Methods in System Design, 18(2):141–163, 2001.

[22] S. Ben-David, D. Fisman, and S. Ruah. Temporal antecedent failure: Refining vacuity.
In CONCUR 2007 - Concurrency Theory, 18th International Conference, CONCUR
2007, Lisbon, Portugal, September 3-8, 2007, Proceedings, pages 492–506, 2007.

[23] M. Bersani, M. Rossi, and P. San Pietro. A tool for deciding the satisfiability of
continuous-time metric temporal logic. Acta Informatica, pages 1–36, 2015.

[24] M. M. Bersani, M. Rossi, and P. S. Pietro. A logical characterization of timed (non-
)regular languages. In Mathematical Foundations of Computer Science 2014 - 39th
International Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Pro-
ceedings, Part I, pages 75–86, 2014.

[25] M. M. Bersani, M. Rossi, and P. S. Pietro. A tool for deciding the satisfiability of
continuous-time metric temporal logic. Acta Inf., 53(2):171–206, 2016.

[26] M. M. Bersani, M. Rossi, and P. San Pietro. Deciding the satisfiability of mitl speci-
fications. In Fourth International Symposium on Games, Automata, Logics and For-
mal Verification,, volume 119 of EPTCS, pages 64–78. Open Publishing Association,
2013.

[27] P. Bouyer, F. Chevalier, and N. Markey. On the expressiveness of TPTL and MTL.
Inf. Comput., 208(2):97–116, 2010.

125

[28] M. Chai and H. Schlingloff. A rewriting based monitoring algorithm for TPTL. In
Proceedings of the 22nd International Workshop on Concurrency, Specification and
Programming, Warsaw, Poland, pages 61–72, 2013.

[29] H. Chockler and O. Strichman. Before and after vacuity. Form. Methods Syst. Des.,
34(1):37–58, Feb. 2009.

[30] E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cam-
bridge, Massachusetts, 1999.

[31] E. M. Clarke, W. Klieber, M. Novácek, and P. Zuliani. Model checking and the state
explosion problem. In Tools for Practical Software Verification, LASER, International
Summer School 2011, Elba Island, Italy, Revised Tutorial Lectures, pages 1–30, 2011.

[32] S. Demri and D. D’Souza. An automata-theoretic approach to constraint LTL. Inf.
Comput., 205(3):380–415, 2007.

[33] J. V. Deshmukh, A. Donzé, S. Ghosh, X. Jin, G. Juniwal, and S. A. Seshia. Robust
online monitoring of signal temporal logic. In Runtime Verification - 6th International
Conference, RV 2015 Vienna, Austria, September 22-25, 2015. Proceedings, pages
55–70, 2015.

[34] J. V. Deshmukh, R. Majumdar, and V. S. Prabhu. Quantifying conformance using the
skorokhod metric. In Computer Aided Verification - 27th International Conference,
CAV 2015, San Francisco, CA, USA, July 18-24, 2015, Proceedings, Part II, pages
234–250, 2015.

[35] A. Dokhanchi, B. Hoxha, and G. E. Fainekos. On-line monitoring for temporal logic
robustness. In Runtime Verification - 5th International Conference, RV 2014, Toronto,
ON, Canada, September 22-25, 2014. Proceedings, pages 231–246, 2014.

[36] A. Dokhanchi, B. Hoxha, and G. E. Fainekos. Metric interval temporal logic spec-
ification elicitation and debugging. In 13. ACM/IEEE International Conference on
Formal Methods and Models for Codesign, MEMOCODE 2015, Austin, TX, USA,
September 21-23, 2015, pages 70–79, 2015.

[37] A. Dokhanchi, B. Hoxha, and G. E. Fainekos. Formal requirement elicitation
and debugging for testing and verification of cyber-physical systems. CoRR,
abs/1607.02549, 2016.

[38] A. Dokhanchi, B. Hoxha, C. E. Tuncali, and G. Fainekos. An efficient algorithm for
monitoring practical TPTL specifications. In 2016 ACM/IEEE International Confer-
ence on Formal Methods and Models for System Design, MEMOCODE 2016, Kanpur,
India, November 18-20, 2016, pages 184–193, 2016.

[39] A. Dokhanchi, S. Yaghoubi, B. Hoxha, and G. Fainekos. Vacuity aware falsification
for MTL request-response specifications. In Proceedings of the 13th international
Conference on Automation Science and Engineering. IEEE, 2017.

126

[40] A. Dokhanchi, A. Zutshi, R. T. Sriniva, S. Sankaranarayanan, and G. E. Fainekos.
Requirements driven falsification with coverage metrics. In 2015 International Con-
ference on Embedded Software, EMSOFT 2015, Amsterdam, Netherlands, October
4-9, 2015, pages 31–40, 2015.

[41] A. Donze. Breach, a toolbox for verification and parameter synthesis of hybrid
systems. In Computer Aided Verification, volume 6174 of LNCS, pages 167–170.
Springer, 2010.

[42] A. Donzé, T. Ferrère, and O. Maler. Efficient robust monitoring for STL. In Com-
puter Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg,
Russia, July 13-19, 2013. Proceedings, pages 264–279, 2013.

[43] A. Donze and O. Maler. Robust satisfaction of temporal logic over real-valued signals.
In Formal Modelling and Analysis of Timed Systems, volume 6246 of LNCS. Springer,
2010.

[44] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett. Property specification patterns for
finite-state verification. In Proceedings of the Second Workshop on Formal Methods
in Software Practice, FMSP ’98, pages 7–15. ACM, 1998.

[45] J. Eker, J. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig, S. Sachs, and Y. Xiong.
Taming heterogeneity - the ptolemy approach. Proceedings of the IEEE, 91(1):127–
144, Jan. 2003.

[46] J. M. Eklund, J. Sprinkle, and S. Sastry. Implementing and testing a nonlinear model
predictive tracking controller for aerial pursuit/evasion games on a fixed wing aircraft.
In American Control Conference, 2005.

[47] G. Fainekos and G. J. Pappas. Robustness of temporal logic specifications. In Formal
Approaches to Testing and Runtime Verification, volume 4262 of LNCS, pages 178–
192. Springer, 2006.

[48] G. Fainekos and G. J. Pappas. Robustness of temporal logic specifications for
continuous-time signals. Theor. Comput. Sci., 410(42):4262–4291, 2009.

[49] G. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel. Verification of auto-
motive control applications using s-taliro. In Proceedings of the American Control
Conference, 2012.

[50] G. Fainekos, S. Sankaranarayanan, K. Ueda, and H. Yazarel. Verification of auto-
motive control applications using s-taliro. In Proceedings of the American Control
Conference, 2012.

[51] A. Fehnker and F. Ivancic. Benchmarks for hybrid systems verification. In Hybrid
Systems: Computation and Control, volume 2993 of LNCS, pages 326–341. Springer,
2004.

[52] S. Feng, M. Lohrey, and K. Quaas. Path checking for MTL and TPTL over data
words. In Developments in Language Theory - 19th International Conference, DLT
2015, Liverpool, UK, July 27-30, 2015, Proceedings., pages 326–339, 2015.

127

[53] B. Finkbeiner and L. Kuhtz. Monitor circuits for ltl with bounded and unbounded
future. In Runtime Verification, volume 5779 of LNCS, pages 60–75. Springer, 2009.

[54] D. Fisman, O. Kupferman, S. Sheinvald-Faragy, and M. Y. Vardi. A framework for
inherent vacuity. In Hardware and Software: Verification and Testing, 4th Interna-
tional Haifa Verification Conference, HVC 2008, Haifa, Israel, October 27-30, 2008.
Proceedings, pages 7–22, 2008.

[55] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. Simple on-the-fly automatic verifi-
cation of linear temporal logic. In Proceedings of the Fifteenth IFIP WG6.1 Interna-
tional Symposium on Protocol Specification, Testing and Verification XV, pages 3–18,
London, UK, UK, 1996.

[56] J. Håkansson, B. Jonsson, and O. Lundqvist. Generating online test oracles from
temporal logic specifications. STTT, 4(4):456–471, 2003.

[57] K. Havelund and G. Rosu. Monitoring programs using rewriting. In Proceedings of
the 16th IEEE international conference on Automated software engineering, 2001.

[58] K. Havelund and G. Rosu. Efficient monitoring of safety properties. STTT, 6(2):158–
173, 2004.

[59] T. A. Henzinger. The theory of hybrid automata. In Proceedings, 11th Annual IEEE
Symposium on Logic in Computer Science, New Brunswick, New Jersey, USA, July
27-30, 1996, pages 278–292, 1996.

[60] T. A. Henzinger, P. W. Kopke, A. Puri, and P. Varaiya. What’s decidable about hybrid
automata? J. Comput. Syst. Sci., 57(1):94–124, 1998.

[61] H. Ho, J. Ouaknine, and J. Worrell. Online monitoring of metric temporal logic. In
Runtime Verification - 5th International Conference, RV 2014, Toronto, ON, Canada,
September 22-25, 2014. Proceedings, pages 178–192, 2014.

[62] F. Horn, W. Thomas, N. Wallmeier, and M. Zimmermann. Optimal strategy synthesis
for request-response games. RAIRO - Theor. Inf. and Applic., 49(3):179–203, 2015.

[63] B. Hoxha, H. Abbas, and G. Fainekos. Benchmarks for temporal logic requirements
for automotive systems. In Proc. of Applied Verification for Continuous and Hybrid
Systems, 2014.

[64] B. Hoxha, H. Bach, H. Abbas, A. Dokhanchi, Y. Kobayashi, and G. Fainekos. To-
wards formal specification visualization for testing and monitoring of cyber-physical
systems. In Int. Workshop on Design and Implementation of Formal Tools and Sys-
tems. October 2014.

[65] B. Hoxha, A. Dokhanchi, and G. Fainekos. Mining parametric temporal logic prop-
erties in model-based design for cyber-physical systems. International Journal on
Software Tools for Technology Transfer, pages 1–15, 2017.

128

[66] B. Hoxha, N. Mavridis, and G. Fainekos. ViSpec: a graphical tool for easy elicitation
of MTL requirements. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, Hamburg, Germany, September 2015.

[67] X. Jin, A. Donze, J. Deshmukh, and S. Seshia. Mining requirements from closed-loop
control models. In Hybrid Systems: Computation and Control. ACM Press, 2013.

[68] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. Butts. Simulation-based ap-
proaches for verification of embedded control systems: An overview of traditional
and advanced modeling, testing, and verification techniques. IEEE Control Systems
Magazine, 36(6):45–64, 2016.

[69] J. Kapinski, J. V. Deshmukh, X. Jin, H. Ito, and K. R. Butts. Simulation-guided
approaches for verification of automotive powertrain control systems. In American
Control Conference, ACC 2015, Chicago, IL, USA, July 1-3, 2015, pages 4086–4095,
2015.

[70] S. Konrad and B. H. C. Cheng. Real-time specification patterns. In Proceedings of the
27th International Conference on Software Engineering, ICSE ’05, pages 372–381.
ACM, 2005.

[71] R. Koymans. Specifying real-time properties with metric temporal logic. Real-Time
Systems, 2(4):255–299, 1990.

[72] K. J. Kristoffersen, C. Pedersen, and H. R. Andersen. Runtime verification of timed
LTL using disjunctive normalized equation systems. In Proceedings of the 3rd Work-
shop on Run-time Verification, volume 89 of ENTCS, pages 1–16, 2003.

[73] O. Kupferman and M. Y. Vardi. Vacuity detection in temporal model checking. STTT,
4(2):224–233, 2003.

[74] F. Laroussinie, N. Markey, and P. Schnoebelen. Temporal logic with forgettable past.
In 17th IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July
2002, Copenhagen, Denmark, Proceedings, pages 383–392, 2002.

[75] M. Leucker and C. Schallhart. A brief account of runtime verification. J. Log. Algebr.
Program., 78(5):293–303, 2009.

[76] J. Li, L. Zhang, G. Pu, M. Y. Vardi, and J. He. LTL satisfiability checking revisited.
In 2013 20th International Symposium on Temporal Representation and Reasoning,
Pensacola, FL, USA, September 26-28, 2013, pages 91–98, 2013.

[77] J. Lygeros, K. H. Johansson, S. N. Simic, J. Zhang, and S. Sastry. Dynamical proper-
ties of hybrid automata. IEEE Transactions on Automatic Control, 48:2–17, 2003.

[78] O. Maler and D. Nickovic. Monitoring temporal properties of continuous signals. In
Proceedings of FORMATS-FTRTFT, volume 3253 of LNCS, pages 152–166, 2004.

[79] N. Markey and J.-F. Raskin. Model checking restricted sets of timed paths. Theor.
Comput. Sci., 358(2):273–292, Aug. 2006.

129

[80] MathWorks. Modeling an automatic transmission controller, avail-
able at: http://www.mathworks.com/help/simulink/examples/
modeling-an-automatic-transmission-controller.html, 1998.

[81] C. Monteiro, R. Bessa, V. Miranda, A. Botterud, J. Wang, and G. Conzelmann. Wind
power forecasting: State-of-the-art 2009. Technical Report ANL/DIS-10-1, Argonne
National Laboratory, 2009.

[82] T. Nghiem, S. Sankaranarayanan, G. E. Fainekos, F. Ivancic, A. Gupta, and G. J.
Pappas. Monte-carlo techniques for falsification of temporal properties of non-linear
hybrid systems. In Proceedings of the 13th ACM International Conference on Hybrid
Systems: Computation and Control, HSCC 2010, Stockholm, Sweden, April 12-15,
2010, pages 211–220, 2010.

[83] J. Ouaknine and J. Worrell. Some recent results in metric temporal logic. In Formal
Modeling and Analysis of Timed Systems, 6th International Conference, FORMATS
2008, Saint Malo, France, September 15-17, 2008. Proceedings, pages 1–13, 2008.

[84] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE Sympo-
sium Foundations of Computer Science, pages 46–57, 1977.

[85] J.-F. Raskin. Logics, automata and classical theories for deciding real-time. Ph.D.
Thesis, University of Namur, Belgium, 1999.

[86] T. Reinbacher, K. Y. Rozier, and J. Schumann. Temporal-logic based runtime observer
pairs for system health management of real-time systems. In Proceedings of the 20th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, volume 8413 of LNCS, pages 357–372. Springer, 2014.

[87] G. Rosu and K. Havelund. Synthesizing dynamic programming algorithms from lin-
ear temporal logic formulae. Technical report, Research Institute for Advanced Com-
puter Science (RIACS), 2001.

[88] K. Y. Rozier and M. Y. Vardi. LTL satisfiability checking. STTT, 12(2):123–137,
2010.

[89] S. Sankaranarayanan and G. Fainekos. Falsification of temporal properties of hybrid
systems using the cross-entropy method. In Proceedings of the 15th ACM Interna-
tional Conference on Hybrid Systems: Computation and Control, HSCC ’12, pages
125–134, New York, NY, USA, 2012. ACM.

[90] A. K. Seda and P. Hitzler. Generalized distance functions in the theory of computation.
The Computer Journal, 53(4):bxm108443–464, 2008.

[91] Simuquest. Enginuity. http://www.simuquest.com/products/enginuity,
2013. Accessed: 2013-10-14.

[92] O. Sokolsky, K. Havelund, and I. Lee. Introduction to the special section on runtime
verification. STTT, 14(3):243–247, 2012.

130

http://www.mathworks.com/help/simulink/examples/modeling-an-automatic-transmission-controller.html
http://www.mathworks.com/help/simulink/examples/modeling-an-automatic-transmission-controller.html
http://www.simuquest.com/products/enginuity

[93] P. Tabuada. Verification and Control of Hybrid Systems: A Symbolic Approach.
Springer, 2009.

[94] P. Thati and G. Rosu. Monitoring algorithms for metric temporal logic specifications.
In Runtime Verification, volume 113 of ENTCS, pages 145–162. Elsevier, 2005.

131

APPENDIX A

PROOFS OF CHAPTER 4

132

Proof of Theorem 4.4.1

Proof A.0.1 In order to show that ϕi is satisfied vacuously with respect to Φ, we must show

that if Φ |= ϕi[l←⊥], then the mutated specification is equivalent to the original specifica-

tion. In other words, we should show that if Φ |= ϕi[l ←⊥], then ({Φ\ϕi} ∪ ϕi[l ←⊥]) ≡ Φ

. If the mutated specification is equivalent to the original specification, then the original

specification is vacuously satisfiable in any system. That is, the specification is inherently

vacuous [54, 29]. We already know that if Φ |= ϕi[l ←⊥], then Φ =⇒ ϕi[l ←⊥] and

trivially Φ =⇒ ϕi[l ←⊥] ∪ {Φ\ϕi}. Now we just need to prove the other direction. We

need to prove that when ϕi is in NNF, then ϕi[l ←⊥] =⇒ ϕi. Since we replace only one

specific literal occurrence of ϕ with ⊥, the rest of the formula remains the same. Therefore,

it should be noted that ϕi[l←⊥] does not modify any l′ ∈ litOccur(ϕi) where l′ , l.

Base Case: ϕi = l or ϕi = l′ , l

We know that ⊥ =⇒ l and l′ =⇒ l′. Therefore ϕi[l←⊥] =⇒ ϕi.

Induction Hypothesis: ∀ϕ j, ϕ j[l←⊥] =⇒ ϕ j

Induction Step: We will separate the case into unary and binary operators.

Before providing the cases we should review the positively monotonic operators [73]. Ac-

cording to MITL semantics, f ∈ {�I,^I} and g ∈ {∧,∨} are positively monotonic, i.e. for

every MITL formulas ϕ1 and ϕ2 in NNF with ϕ1 =⇒ ϕ2, we have f (ϕ1) =⇒ f (ϕ2).

Also, for all MITL formulas ϕ′ in NNF, we have g(ϕ1, ϕ
′) =⇒ g(ϕ2, ϕ

′) and g(ϕ′, ϕ1) =⇒

g(ϕ′, ϕ2).

Case 1: ϕi = f (ϕ j) where f ∈ {�I,^I}. Since f is positively monotonic, we have that

ϕ j[l←⊥] =⇒ ϕ j implies f (ϕ j[l←⊥]) =⇒ f (ϕ j). Thus,

f (ϕ j)[l←⊥] = f (ϕ j[l←⊥]) =⇒ f (ϕ j) = ϕi. As a result ϕi[l←⊥] =⇒ ϕi.

Case 2: ϕi = g(ϕ j1 , ϕ j2) where g ∈ {∧,∨} Since g is positively monotonic, we have that

ϕ j1[l←⊥] =⇒ ϕ j1 , and ϕ j2[l←⊥] =⇒ ϕ j2 implies

133

g(ϕ j1[l ←⊥], ϕ j2[l ←⊥]) =⇒ g(ϕ j1 , ϕ j2) . Thus, g(ϕ j1 , ϕ j2)[l ←⊥] = g(ϕ j1[l ←⊥

], ϕ j2[l←⊥]) =⇒ g(ϕ j1 , ϕ j2) = ϕi. As a result ϕi[l←⊥] =⇒ ϕi.

Since ϕi[l←⊥] =⇒ ϕi we can have:

{Φ\ϕi} ∪ ϕi[l←⊥] =⇒ {Φ\ϕi} ∪ ϕi which is equivalent to

{Φ\ϕi} ∪ ϕi[l←⊥] =⇒ Φ

134

Proof of Theorem 4.5.1

We consider two MITL(^,�) fragments, denoted MITL(�), and MITL(^). In this proof

we assume that all formulas are in NNF. We also consider LTL(^,�) as the set of LTL

formulas (with continuous semantics) that contains only ^ and � as temporal operators. In

the following we provide the continuous semantics of LTL(^,�) over traces with bounded

duration. Semantics of LTL(^,�) over bounded timed traces can be defined as follows:

Definition A.0.1 (LTL(^,�) continuous semantics) Given a timed trace µ : [0,T]→ 2AP

and t, t′ ∈ R, and an LTL(^,�) formula φ, the satisfaction relation (µ, t) � φ for temporal

operators is inductively defined:

(µ, t) � ^φ1 iff ∃t′ ∈ [t,T] s.t (µ, t′) � φ1.

(µ, t) � �φ1 iff ∀t′ ∈ [t,T], (µ, t′) � φ1.

We will consider two LTL(^,�) fragments denoted LTL(�), and LTL(^). The syntax of

MITL and LTL fragments are as presented in Section 4.5.3. We define the operator [φ]LT L

which can be applied to any MITL(^,�) formula and removes its interval constraints to

create a new formula in LTL(^,�). For example if φ = ^[0,10](p ∧ q) ∧ ^[0,10] p ∧ �[0,10]q,

then [φ]LT L = ^(p ∧ q) ∧ ^p ∧ �q. As a result, for any φ ∈MITL(^,�) there exists a ψ ∈

LTL(^,�) where ψ = [φ]LT L. For each MITL(^,�) formula φ, the language of φ denoted

L(φ) is the set of all timed traces that satisfy φ: µ � φ iff µ ∈ L(φ). Similarly, for any

ψ ∈ LTL(^,�), the language of ψ denoted L(ψ) is the set of all timed traces that satisfy ψ:

µ′ � ψ iff µ′ ∈ L(ψ). Based on set theory, it is trivial to prove that A ⊆ B and C ⊆ D implies

A ∪C ⊆ B ∪ D and A ∩C ⊆ B ∩ D.

Theorem A.0.1 For any formula ϕ ∈ MITL(^), and t ∈ [0,T] we have Lt(ϕ) ⊆ Lt([ϕ]LT L)

where Lt(ϕ) = {µ | (µ, t) � ϕ}. In other words for every timed trace µ we have (µ, t) � ϕ

implies (µ, t) � [ϕ]LT L.

135

Proof A.0.2 We use structural induction to prove that Lt(ϕ) ⊆ Lt([ϕ]LT L)

Base Case: if ϕ = >,⊥, p,¬p, then [ϕ]LT L = ϕ and Lt(ϕ) ⊆ Lt([ϕ]LT L)

Induction Hypothesis: We assume that there exist ϕ1, ϕ2 ∈ MITL(^) where for all t ∈

[0,T], Lt(ϕ1) ⊆ Lt([ϕ1]LT L) and Lt(ϕ2) ⊆ Lt([ϕ2]LT L)

Case 1: For Binary operators ∧,∨ we can use the union and intersection properties.

In essence, for all formulas ϕ1, ϕ2 we have Lt(ϕ1 ∨ ϕ2) = Lt(ϕ1) ∪ Lt(ϕ2) and Lt(ϕ1 ∧

ϕ2) = Lt(ϕ1) ∩ Lt(ϕ2). According to the IH Lt(ϕ1) ⊆ Lt([ϕ1]LT L) and Lt(ϕ2) ⊆ Lt([ϕ2]LT L);

therefore, Lt(ϕ1) ∩ Lt(ϕ2) ⊆ Lt([ϕ1]LT L) ∩ Lt([ϕ2]LT L) and Lt(ϕ1) ∪ Lt(ϕ2) ⊆ Lt([ϕ1]LT L) ∪

Lt([ϕ2]LT L). As a result, Lt(ϕ1 ∧ ϕ2) ⊆ Lt([ϕ1]LT L ∧ [ϕ2]LT L) = Lt([ϕ1 ∧ ϕ2]LT L), and

Lt(ϕ1 ∨ ϕ2) ⊆ Lt([ϕ1]LT L ∨ [ϕ2]LT L) = Lt([ϕ1 ∨ ϕ2]LT L).

Case 2: For the temporal operator ^, we need to compare the semantics of MITL(^)

and LTL(^). Recall that

(µ, t) � ^Iϕ1 iff ∃t′ ∈ (t + I) ∩ [0,T] s.t (µ, t′) � ϕ1.

(µ, t) � ^ϕ1 iff ∃t′ ∈ [t,T] s.t (µ, t′) � ϕ1.

Recall that t′′ ∈ (t + I) ∩ [0,T] implies t′′ ∈ [t,T] since the left bound of I is nonnegative.

According to the semantics, ∀µ.(µ, t) � ^Iϕ1 implies

∃t′ ∈ (t + I) ∩ [0,T] s.t (µ, t′) � ϕ1 implies

∃t′ ∈ (t + I) ∩ [0,T] s.t (µ, t′) � [ϕ1]LT L according to IH (Lt′(ϕ1) ⊆ Lt′([ϕ1]LT L)).

If ∃t′ ∈ (t + I) ∩ [0,T] s.t (µ, t′) � [ϕ1]LT L then

∃t′ ∈ [t,T] s.t (µ, t′) � [ϕ1]LT L since t′ ∈ (t + I) ∩ [0,T] implies t′ ∈ [t,T].

Moreover, (µ, t′) � [ϕ1]LT L implies that (µ, t) � ^[ϕ1]LT L ≡ [^ϕ1]LT L.

As a result, ∀µ. (µ, t) � ^Iϕ1 =⇒ (µ, t) � [^ϕ1]LT L so Lt(^Iϕ1) ⊆ Lt([^ϕ1]LT L).

If ϕ ∈ MITL(^) then Lt([ϕ]LT L) ⊆ Lt(ϕ) (immediate from set theory). Thus, for all timed

traces µ, µ 2 [ϕ]LT L implies that µ 2 ϕ.

Corollary A.0.1 For any ϕ ∈ MITL(^), if [ϕ]LT L ∈ LTL(^) is unsatisfiable, then ϕ is un-

136

satisfiable.

Theorem A.0.2 For any formula ϕ ∈MITL(�), and t ∈ [0,T], we have Lt([ϕ]LT L) ⊆ Lt(ϕ),

where Lt(ϕ) = {µ|(µ, t) � ϕ}. In other words. ∀µ.(µ, t) � [ϕ]LT L =⇒ (µ, t) � ϕ

Proof A.0.3 Similar to Theorem A.0.1, we can apply structural induction for the proof of

Theorem A.0.2.

137

APPENDIX B

PROOFS OF CHAPTER 5

138

Proof of Theorem 5.4.1

In this section, we will prove that any MITL (STL) Φ which contains a disjunction

operation (∨) in NNF can be be satisfied by partially covering signals. In other words, we

will prove that any timed trace (signal) which satisfies Φ will be considered as partially

covering timed trace (signal) according to Algorithm 7. Without loss of generality we

assume that both operands of disjunction are not constant. This is because if one of the

operands be equivalent to > or ⊥, this will remove the disjunction semantically as follows

ψ ∨ > ≡ > or ψ∨ ⊥≡⊥ for any MITL(STL) ψ.

Lets consider partially covering timed trace (signal) returned by Algorithm 7. If there

exist ϕi ∈ Φ and l ∈ litOccur(ϕi) such that the timed trace µ satisfies ϕi[l ←⊥], then µ will

be reported as partially covering timed trace (signal). Recall that we assume that Φ is a

conjunction of MITL specifications ϕ j according to Equation (4.1). We also assume that

the conjunct ϕk ∈ Φ is the subformula that contains the disjunction operation. Namely, that

ψ = ψ1 ∨ ψ2 is a subformula of ϕk.

Theorem B.0.3 Any timed trace µ that satisfies ϕk will satisfy ϕk[l ←⊥] for some l ∈

litOccur(ϕk).

Proof B.0.4 We have two cases for µ |= ϕk

1. µ 6|= ψ: In this case ψ does not affect the satisfaction of µ |= ϕk. If we choose l′ ∈

litOccur(ψ), then due to monotonicity of ϕk, ψ[l′ ←⊥] does not affect the satisfaction

of ϕk. As a result, µ |= ϕk[l′ ←⊥] since ϕk is in NNF.

2. µ |= ψ: In this case ψ affects the satisfaction of µ |= ϕk. So either µ |= ψ1 or µ |= ψ2. If

µ |= ψ1 then we can choose l′ ∈ litOccur(ψ2) and we have µ |= ψ[l′ ←⊥]. Similarly,

if µ |= ψ2 then we can choose l′′ ∈ litOccur(ψ1) and we have µ |= ψ[l′′ ←⊥]. As

139

a result, there exists some l ∈ litOccur(ψ) where µ |= ψ[l ←⊥] and accordingly

µ |= ϕk[l←⊥].

Finally, if ψ = ψ1 ∨ ψ2 is a subformula of ϕk then there exists some l ∈ litOccur(ψ)

where µ |= ϕk[l←⊥]. Which means that µ is a partially covering timed trace (signal).

Corollary B.0.2 Assume that the conjunct ϕ j ∈ Φ is the subformula that contains the

conjunction operation in NNF. Namely, that ψ = ψ1 ∧ ψ2 is a subformula of ϕ j. Any timed

trace µ that falsifies ϕ j will falsify ϕ j[l← >] for some l ∈ litOccur(ϕ j).

140

APPENDIX C

PROOFS OF CHAPTER 7

141

We prove by induction the correctness of Algorithms 9 and 10. We need to prove that at

each simulation step i, the returning value of the CR algorithm is the same as the robustness

value. Without loss of generality, assume i ≥ Hst; therefore, the values in the table columns

−Hst to 0 contain the robustness values based on the actual simulation. When i < Hst then

the proof is immediate by the semantics of temporal logic. We must show that, for each

sub-formula ϕk the value stored in column j of robustness table Tk, j should be correctly

computed according to the semantics

~ϕk�(ỹ, i + j) = Tk, j = CR(ϕk, j, ỹ′i ,d,O)

given matrix T and vector Pre

Base case:

We will show that for each MTL<+∞
+pt sub-formula in the form of a predicate, the value

which is returned by the CR algorithm (Algorithm 10) is equal to the semantics of the sub-

formula. Assume the sub-formula is a predicate p = ϕk, for each simulation time i + j, the

corresponding robustness value is stored in the column j of robustness table as follows:

∀ j,−Hst ≤ j ≤ Hrz, ~p�(ỹ, i + j) = Distd(ỹi+ j,O(p)) =

Tk, j = CR(p, j, ỹ′i ,d,O)

Therefore, for each predicate the algorithm “CR” computes the correct robustness value.

Induction Hypothesis:

For each temporal sub-formulas ϕk, Hst − hst(ϕk) ≥ Hrz because of the fact that

Hst = Hrz + hst(ϕ) ≥ Hrz + hst(ϕk); therefore −Hst + hst(ϕk) ≤ −Hrz.

As a result, the values at the columns from −Hst up to −Hst + hst(ϕk) will only depend on

the actual simulation values, i.e., the predicates from column −Hst up to column 0 which

142

will not change in next simulation steps. These values are shown in gray color cells of

Table C.1. As a result, all the table entries from −Hst up to −Hst + hst(ϕk) will not change

(in next run) and the re-computation is not needed. Therefore, we shift all the values of

predicates one column to the left and we ignore columns −Hst to −Hst + hst(ϕk)− 1 in our

current run of Algorithm 9 (Lines 13 and 18). Therefore, it is not necessary to include the

columns −Hst to −Hst + hst(ϕk) − 1 in proof and Induction Hypothesis.

For Induction Hypothesis, we assume that the value stored in the robustness table is the

semantically correct robustness value for each sub-formula ϕk:

∀ j,−Hst + hst(ϕk) ≤ j ≤ Hrz, ~ϕk�(ỹ, i + j) = Tk, j = CR(ϕk, j, ỹ′i ,d,O)

And if there exists unbounded past operator sub-formula like ϕk = ψS[l′,+∞)ϕ, we assume

the Pre(k) = ~ψS[l′,+∞)ϕ�(ỹ, i − 1 − Hst + hst(ϕk))) because it belongs to the previous run

of i − 1, i.e we store the value Tk,(−Hst+hst(ϕk)) in Pre(k) before processing the current run (i)

(see Algorithm 9 line 2).

143

Table C.1: Robustness Table (Unchangeable Values in next Runs Are in Gray Color)

column(j)⇒ −Hst ... −Hst + hst(ϕk) ... −Hrz = −Hst + hst(ϕ) ... −1 0 1 ... Hrz

index(time)⇒ i − Hst ... i − Hst + hst(ϕk) ... i − Hrz ... i − 1 i i + 1 ... i + Hrz

Pre[1]

Pre[...]

Pre[k]

Pre[...]

Pre[|ϕ|]

144

Induction Step:

• Negation:

∀ j,−Hst + hst(ϕk) ≤ j ≤ Hrz : ~ϕk�(ỹ, i + j) = ~¬ϕm�(ỹ, i + j) =

−~ϕm�(ỹ, i + j) = −Tm, j = CR(¬ϕm, j, ỹ′i ,d,O)

• Disjunction:

∀ j,−Hst + hst(ϕk) ≤ j ≤ Hrz : ~ϕk�(ỹ, i + j) = ~ϕm ∨ ϕn�(ỹ, i + j) =

~ϕm�(ỹ, i + j) t ~ϕn�(ỹ, i + j) = Tm, j t Tn, j = CR(ϕm ∨ ϕn, j, ỹ′i ,d,O)

• Until:

For sub-formulas of the form ϕk = ϕmU[l,u]ϕn, either the corresponding robustness

values are correctly saved in robustness matrix for ϕm, ϕn or the semantics will satisfy

the correctness if the corresponding values belong to columns beyond the Hrz:

∀ j,−Hst + hst(ϕk) ≤ j ≤ Hrz : ~ϕk� = ~ϕmU[l,u]ϕn�(ỹ, i + j) =⊔i+ j+u

h=i+ j+l
(~ϕn�(ỹ, h) u

�h−1

r=i+ j
~ϕm�(ỹ, r)) =⊔

h∈[j+l, j+u]∩[−Hst,Hrz]
(Tn,h u

�h−1

r= j
Tm,r) = CR(ϕmU[l,u]ϕn, j, ỹ′i ,d,O)

• Bounded Since:

For bounded sub-formula ϕk = ϕmS[l,u]ϕn, the robustness is defined as follows:

~ϕk�(ỹ, i + j) = ~ϕmS[l,u]ϕn�(ỹ, i + j) =
⊔i+ j−l

h=i+ j−u
(~ϕn�(ỹ, h) u

�i+ j

r=h+1
~ϕm�(ỹ, r))

Based on IH we know that j ≥ −Hst + hst(ϕk). We must show that the values of Tn,p

for j−u ≤ p ≤ j−l satisfy Tn,p = ~ϕn�(ỹ, i+ p) i.e. −Hst+hst(ϕn) ≤ j−u and also we

need to show that the values of Tm,q for j− u + 1 ≤ q ≤ j satisfy Tm,q = ~ϕm�(ỹ, i + q)

145

i.e. −Hst + hst(ϕm) ≤ j − u + 1.

We have two cases for hst(ϕk):

Case 1: hst(ϕk) = hst(ϕn) + u = max{hst(ϕn) + u, hst(ϕm) + u − 1}

According to IH, j ≥ −Hst + hst(ϕk), then j ≥ −Hst + hst(ϕn) + u. Thus j − u ≥

−Hst + hst(ϕn) which satisfies the fact that Tn,p = ~ϕn�(ỹ, i + p) for j− u ≤ p ≤ j− l.

On the other hand, in this case: hst(ϕn) + u ≥ hst(ϕm) + u − 1

According to IH, j + Hst ≥ hst(ϕk) ≥ hst(ϕm) + u− 1, i.e., j + Hst ≥ hst(ϕm) + u− 1.

Thus j − u + 1 ≥ −Hst + hst(ϕm), which satisfies the fact that Tm,q = ~ϕm�(ỹ, i + q)

for j − u + 1 ≤ q ≤ j.

Case 2: hst(ϕk) = hst(ϕm) + u − 1 = max{hst(ϕn) + u, hst(ϕm) + u − 1}

According to IH, j ≥ −Hst + hst(ϕk) then j ≥ −Hst + hst(ϕm) + u − 1. Thus

j − u + 1 ≥ −Hst + hst(ϕm) which satisfies the fact that Tm,q = ~ϕm�(ỹ, i + q) for

j − u + 1 ≤ q ≤ j. On the other hand, in this case: hst(ϕm) + u − 1 ≥ hst(ϕn) + u.

According to IH, j + Hst ≥ hst(ϕk) ≥ hst(ϕn) + u i.e j + Hst ≥ hst(ϕn) + u.

Thus j − u ≥ −Hst + hst(ϕn) which satisfies the fact that Tn,p = ~ϕn�(ỹ, i + p)

for j − u ≤ p ≤ j − l.

As a result:

∀ j,−Hst + hst(ϕk) ≤ j ≤ Hrz : ~ϕk�(ỹ, i + j) = ~ϕmS[l,u]ϕn�(ỹ, i + j) =⊔i+ j−l

h=i+ j−u
(~ϕn�(ỹ, h) u

�i+ j

r=h+1
~ϕm�(ỹ, r)) =⊔ j−l

h= j−u
(Tn,h u

� j

r=h+1
Tm,r) = CR(ϕmS[l,u]ϕn, j, ỹ′i ,d,O)

146

• Unbounded Since:

For unbounded sub-formula ϕk = ϕmS[l,+∞)ϕn, according to Induction Hypothesis:

Pre(k) = ~ϕmS[l,+∞)ϕn�(ỹ, i − 1 − Hst + hst(ϕk))

In dynamic programming we recursively update the value

~ϕmS[l,+∞)ϕn�(ỹ, i − Hst + hst(ϕk) + x)

given the previous robustness value in the table

~ϕmS[l,+∞)ϕn�(ỹ, i − Hst + hst(ϕk) + x − 1)

(where x = 0 when we use the Pre(k))

According to Def. 3 the robustness semantics at time i + j:

~ϕmS[l,+∞)ϕn�(ỹ, i + j) =
⊔i+ j−l

h=0

(
~ϕn�(ỹ, h) u

�i+ j

r=h+1
~ϕm�(ỹ, r)

)
and robustness for previous time i + j − 1:

~ϕmS[l,+∞)ϕn�(ỹ, i + j − 1) =
⊔i+ j−l−1

h=0

(
~ϕn�(ỹ, h) u

�i+ j−1

r=h+1
~ϕm�(ỹ, r)

)
We can define robustness value at time i + j given the value at time i + j − 1:

~ϕmS[l,+∞)ϕn�(ỹ, i + j) =
⊔i+ j−l

h=0

(
~ϕn�(ỹ, h) u

�i+ j

r=h+1
~ϕm�(ỹ, r)

)
=

=

(⊔i+ j−l−1

h=0

(
~ϕn�(ỹ, h) u

�i+ j−1

r=h+1
~ϕm�(ỹ, r)

)
u ~ϕm�(ỹ, i + j)

)⊔(
~ϕn�(ỹ, i + j − l) u

�i+ j

r=i+ j−l+1
~ϕm�(ỹ, r)

)
=

=

(
~ϕmS[l,+∞)ϕn�(ỹ, i + j − 1) u ~ϕm�(ỹ, i + j)

)⊔(
~ϕn�(ỹ, i + j − l) u

�i+ j

r=i+ j−l+1
~ϕm�(ỹ, r)

)

Based on IH, we know that j ≥ −Hst + hst(ϕk). We must show that the value of

Tn, j−l = ~ϕn�(ỹ, i + j − l), i.e., −Hst + hst(ϕn) ≤ j − l and also the values of Tm,q for

147

j − l + 1 ≤ q ≤ j satisfy Tm,q = ~ϕm�(ỹ, i + q), i.e., −Hst + hst(ϕm) ≤ j − l + 1.

We have two cases for hst(ϕk):

Case 1: hst(ϕk) = hst(ϕn) + l = max{hst(ϕn) + l, hst(ϕm) + l − 1}

According to IH, j ≥ −Hst + hst(ϕk); therefore, j ≥ −Hst + hst(ϕn) + l and j − l ≥

−Hst + hst(ϕn) which satisfies Tn, j−l = ~ϕn�(ỹ, i + j − l). On the other hand in this

case: hst(ϕn) + l ≥ hst(ϕm) + l − 1.

According to IH, j + Hst ≥ hst(ϕk) ≥ hst(ϕm) + l − 1, i.e., j + Hst ≥ hst(ϕm) + l − 1.

Thus j− l + 1 ≥ −Hst + hst(ϕm) which satisfies the fact that Tm,q = ~ϕm�(ỹ, i + q) for

j − l + 1 ≤ q ≤ j.

Case 2: hst(ϕk) = hst(ϕm) + l − 1 = max{hst(ϕn) + l, hst(ϕm) + l − 1}

According to IH, j ≥ −Hst + hst(ϕk); therefore, j ≥ −Hst + hst(ϕm) + l − 1 where

j − l + 1 ≥ −Hst + hst(ϕm) which satisfies the fact that Tm,q = ~ϕm�(ỹ, i + q) for

j − l + 1 ≤ q ≤ j. On the other hand in this case: hst(ϕm) + l − 1 ≥ hst(ϕn) + l.

According to IH, j + Hst ≥ hst(ϕk) ≥ hst(ϕn) + l i.e. j + Hst ≥ hst(ϕn) + l.

thus j − l ≥ −Hst + hst(ϕn) which satisfies Tn, j−l = ~ϕn�(ỹ, i + j − l)

As a result:

∀ j,−Hst + hst(ϕk) ≤ j ≤ Hrz : ~ϕk�(ỹ, i + j) = ~ϕmS[l,+∞)ϕn�(ỹ, i + j) =

=

(
~ϕmS[l,+∞)ϕn�(ỹ, i + j − 1) u ~ϕm�(ỹ, i + j)

)⊔(
~ϕn�(ỹ, i + j − l) u

�i+ j

r=i+ j−l+1
~ϕm�(ỹ, r)

)
=

=

(
Tk, j−1 if j > −Hst + hst(ϕk)

Pre[k] if j = −Hst + hst(ϕk)

 u Tm, j

)⊔ (
Tn, j−l u

� j

r= j−l+1
Tm,r

)
=

148

(
tmpS

)⊔ (
Tn, j−l u tmpmin

)
= CR(ϕmS[l,+∞)ϕn, j, ỹ′i ,d,O).

149

APPENDIX D

PROOFS OF CHAPTER 8

150

In this section, we will prove the correctness of Algorithms 11 and 12. Our method

first transforms the TPTL formula into LTL formula using Algorithm 11. Then it uses the

dynamic programming method for monitoring LTL using Algorithm 12.

Proof of the correctness of Algorithm 11

Theorem D.0.4 Given an encapsulated TPTL formula ϕ, and a finite ATSS ρ̂, after the

execution of Algorithm 11 the returned value is:

M[1, 0] = > iff (ρ̂, 0, 0) |= ϕ

To prove this theorem, we must show that the Boolean value of the subformulas that are

computed using Algorithm 11, follows the TPTL semantics in Definition 3.2.6. Since

Algorithm 11 does not evaluate propositional and temporal operators, their corresponding

proof will be provided in Section D.

According to the TPTL semantics in Definition 3.2.6, for each freeze time operation

x.ϕ(x), and for each time stamp τi we must instantiate the time variable x with the value of

τi. This instantiation enables us to evaluate time constraints and transform TPTL to LTL.

The loop of Lines 2-21 is the main loop of Algorithm 11 which instantiates each variable

vk with each time sample τt in Line 3.

Lemma D.0.1 The loop invariant of Algorithm 11 is as follows:

∀ j, k, t where ϕ j ≡ vk.ϕi, 0 ≤ t < |ρ̂| :

M[j, t] = > iff (ρ̂, t, ε) |= vk.ϕi

We use induction to prove the loop invariant of Algorithm 11.

Base Case: If |V | = 0, then formula is in LTL and algorithm does not enter the to loop

of Lines 2-21 (only executes Lines 22-26). The proof of LTL is provided in Section D.

151

Induction Hypothesis: We assume for all vl, where l < k the invariant holds. In other

words

∀ j, l < k, t where ϕ j ≡ vl.ϕi, 0 ≤ t < |ρ̂| :

M[j, t] = M[θl.parent, t] = > iff (ρ̂, t, ε) |= vl.ϕi

Induction Step: To show the correctness for the case of vk, we prove that Algorithm

11 correctly transform TPTL into LTL. Then we apply the correctness of LTL (See Section

D) to establish the correctness of invariant considering vk. Thus, we consider two cases that

instantiate and evaluate vk and show that Algorithm 11 follows the semantics in Definition

3.2.6. According to I.H. and since time variables are independent, we can correctly con-

sider frozen subformulas of ϕi as >/⊥. As a result, we will conclude that ϕi is in LTL.

Case of vk.ϕi:

Consider the semantics of the freeze operator in Definition 3.2.6:

(ρ̂, t, ε) |= vk.ϕi iff (ρ̂, t, ε[vk := τt]) |= ϕi

According to this semantics, the freeze operation “vk.” first assigns a new value to the

variable (vk := τt). Then the >/⊥ value of vk.ϕi ≡ ϕ j will be resolved to the same >/⊥

value of ϕi (with the new environment update). Therefore, for each variable assignment

(vk := τt), we first update the environment variables (Algorithm 11, Line 3), and then copy

the ϕi’s >/⊥ value into vk.ϕi’s corresponding row (Algorithm 11, Line 19).

Since each time variable vk is independent, we create the subtree (set) θk corresponding

to the subformulas of vk.ϕi(vk) (see Section 8.3). To evaluate vk.ϕi(vk), we must first instan-

tiate variable vk for each time stamp τ0 . . . τ|ρ̂|−1. This instantiation is considered in Line 2

of Algorithm 11 for time variable vk and for each sample of time 0 . . . (|ρ̂| − 1) in Line 3

of Algorithm 11. Now we must copy the resulting >/⊥ value from ϕi back to vk.ϕi. The

row corresponding to θk.root contains the >/⊥ value of ϕi which is the root of θk subtree.

152

This values must be copied to the row θk.parent which is the parent of subtree θk and it

corresponds to ϕ j (Algorithm 11, Line 19).

Case of vk ∼ r:

Consider the semantics of time constraints in Definition 3.2.6:

(ρ̂, u, ε) |= vk ∼ r iff (τu − ε(vk)) ∼ r

In the above semantics, ε(vk) corresponds to the frozen value of the time variable vk (en-

vironment of vk). In the previous case for vk.ϕi, we mentioned that we should instantiate

vk at each time stamp τ0 . . . τ|ρ̂|−1. According to semantics in Definition 3.2.6, each freeze

operator assigns the environment variable for the current and future samples of time t:

(ρ̂, t, ε) |= vk.ϕi iff (ρ̂, t, ε[vk := τt]) |= ϕi

Which means that the environment updates ε[x := τt] are observable for the current and

the future samples (t ≤ u). Therefore, after we instantiated variable vk at each time stamp

τt, the environment update will affect all the samples u between t ≤ u ≤ |ρ̂| − 1. As a result,

the time constraint vk ∼ r must be updated for all future samples of t ≤ u ≤ |ρ̂| − 1 for

ε[vk := τt] instantiation.

Lines 4-13 of Algorithm 11 follow the above discussion. Namely, for time variable vk,

we instantiate each time stamp τt (Line 3), the time constraints of current/future samples

are evaluated according to the frozen time stamp τt. Actual evaluation happens in the Line

7 of Algorithm 11, where (τu − τt) ∼ r follows the semantic (τu − ε(vk)) ∼ r for each

environment assignment of ε[vk := τt]. Lines 14-18 of Algorithm 11 will evaluate the LTL

formula ϕi(τt).

So far, we transformed TPTL vk.ϕi(vk) into LTL ϕi(τt) for each time stamp τt. Now we

can prove that the loop invariant of Algorithm 11 holds for vk.

153

Proof D.0.5 We will prove the Induction Step by assuming the correctness of LTL formula

ϕi according to Section D:

∀i, t, ε where ϕi ⊂ LT L, 0 ≤ t < |ρ̂|

M[i, t] = > iff (ρ̂, t, ε) |= ϕi

Since for each θk, i = θk.root is the index of the highest LTL, M[θk.root, t] will also contain

the correct >/⊥ value, therefore

M[i, t] = M[θk.root, t] = > iff (ρ̂, t, ε) |= ϕi(vk = τt) iff (ρ̂, t, ε[vk := τt]) |= ϕi

Since in Line 19 M[θk.parent, t]← M[θk.root, t]

and j = θk.parent we have

M[j, t]← M[i, t], as a result

M[j, t] = M[θk.parent, t] = > iff (ρ̂, t, ε) |= vk.ϕi ≡ ϕ j

Proof of the correctness of Algorithm 12

LTL formulas consider only propositional and temporal operators; therefore, the time

variables’ environment (ε) is not affected by Algorithm 12. Since time variables do not

change during Algorithm 12, we assume that Algorithm 12 considers time constraints as

>/⊥ values since they are already evaluated in Algorithm 11. In this section, we prove that

the output of Algorithm 12 corresponds to the correct evaluation of the LTL subformula ϕ j

at sample instance u based on Definition 3.2.6.

In essence, we will prove M[j, u] = > if (ρ̂, u, ε) |= ϕ j and similarly M[j, u] = ⊥ if

(ρ̂, u, ε) 6|= ϕ j. For the proof of Algorithm 12, we use induction:

Base Case: In Section 8.5, we mentioned that in Line 1 of Algorithm 11 the corre-

sponding values for atomic propositions are stored in the monitoring table. In essence, for

each a ∈ AP, and for each time stamp τu, we save the following values in the monitoring

154

table entry M[aindex, u], where aindex is the index of atomic proposition a in the monitoring

table M|ϕ|×|ρ̂|:

1. M[aindex, u]← > if a ∈ ỹu if (ρ̂, u, ε) |= a

2. M[aindex, u]← ⊥ if a < ỹu if (ρ̂, u, ε) 6|= a

Since evaluation of predicates is independent of the time variables’ environment (ε) the

above cases are always satisfied for all sample instances u and all environments ε. As a

result, every table entry corresponding to a predicate, correctly reflects the satisfaction of

the predicate with respect to the state trace ˆ̃y and the environment ε. Similarly, the table

entries for constant Boolean values (>/⊥) are trivially correct.

Induction Hypothesis: Algorithm 11 updates the values of Table from right to left,

i.e., for the samples with indexes |ρ̂| − 1 down to 0. This is because we resolve temporal

operators looking into the future. Namely, if the Boolean value in the next samples of time

are resolved, then we can resolve the Boolean evaluation for the current sample of time.

For the Induction Hypothesis, we assume the table entries for the proper subformulas of ϕ j

at the same or future samples contain the correct >/⊥, i.e, we assume that

∀ϕk ⊂ ϕ j,∀v ≥ u,M[k, v] = > iff (ρ̂, v, ε) |= ϕk

And also for the same subformula (ϕ j), we assume the table entries for all the future sam-

ples contain the correct >/⊥ values as follows:

∀v > u,M[j, v] = > iff (ρ̂, v, ε) |= ϕ j

Induction Step: For the induction step we consider five cases of ϕ j:

Case 1: ϕ j ≡ ¬ϕm:

155

Consider M[j, u]← ¬M[m, u] (Algorithm 12, Line 2).

According to Definition 3.2.6: (ρ̂, u, ε) |= ¬ϕm iff (ρ̂, u, ε) 6|= ϕm

Based on IH: M[m, u] = ⊥ iff (ρ̂, u, ε) 6|= ϕm iff (based on Def. 3.2.6) (ρ̂, u, ε) |= ¬ϕm ≡ ϕ j

Therefore, M[j, u] = ¬M[m, u] = ¬⊥ iff (ρ̂, u, ε) 6|= ϕm iff (ρ̂, u, ε) |= ¬ϕm ≡ ϕ j

As a result M[j, u] = > iff (ρ̂, u, ε) |= ϕ j

Case 2: ϕ j ≡ ϕm ∧ ϕn:

Consider M[j, u]← M[m, u] ∧ M[n, u] (Algorithm 12, Line 4).

According to Definition 3.2.6: (ρ̂, u, ε) |= ϕm ∧ ϕn iff (ρ̂, u, ε) |= ϕm and (ρ̂, u, ε) |= ϕn

Based on IH: M[m, u] = > iff (ρ̂, u, ε) |= ϕm and M[n, u] = > iff (ρ̂, u, ε) |= ϕn

We know that, M[m, u] ∧ M[n, u] = > iff M[m, u] = > and M[n, u] = >

Thus, M[m, u] ∧ M[n, u] = > iff (ρ̂, u, ε) |= ϕm and (ρ̂, u, ε) |= ϕn

Therefore, M[m, u] ∧ M[n, u] = > iff (ρ̂, u, ε) |= ϕm ∧ ϕn ≡ ϕ j

As a result M[j, u] = > iff (ρ̂, u, ε) |= ϕ j

Case 3: ϕ j ≡ ϕm ∨ ϕn:

Consider M[j, u]← M[m, u] ∨ M[n, u] (Algorithm 12, Line 6).

According to Definition 3.2.6: (ρ̂, u, ε) |= ϕm ∨ ϕn iff (ρ̂, u, ε) |= ϕm or (ρ̂, u, ε) |= ϕn

Based on IH: M[m, u] = > iff (ρ̂, u, ε) |= ϕm and M[n, u] = > iff (ρ̂, u, ε) |= ϕn

We know that, M[m, u] ∨ M[n, u] = > iff M[m, u] = > or M[n, u] = >

Thus, M[m, u] ∨ M[n, u] = > iff (ρ̂, u, ε) |= ϕm or (ρ̂, u, ε) |= ϕn

Therefore, M[m, u] ∨ M[n, u] = > iff (ρ̂, u, ε) |= ϕm ∨ ϕn ≡ ϕ j

As a result M[j, u] = > iff (ρ̂, u, ε) |= ϕ j

Case 4: ϕ j ≡ ©ϕm

Consider M[j, u] ← M[m, u + 1] if u < |ρ̂| − 1 (Line 11) and M[j, u] ← ⊥ otherwise (Line

156

9 of Algorithm 12).

According to Definition 3.2.6 we have two cases:

Case 4.1) u < (|ρ̂| − 1):

(ρ̂, u, ε) |= ©ϕm iff (ρ̂, u + 1, ε) |= ϕm

Based on IH: M[m, u + 1] = > iff (ρ̂, u + 1, ε) |= ϕm iff (ρ̂, u, ε) |= ©ϕm ≡ ϕ j

As a result M[j, u] = M[m, u + 1] = > iff (ρ̂, u, ε) |= ϕ j

Case 4.2) u = |ρ̂| − 1:

by Definition 3.2.6, (ρ̂, u, ε) 6|= ⊥

Line 9 of Algorithm 12 similarly assigns M[j, u]← ⊥

Case 5: ϕ j ≡ ϕmUϕn

According to [55], Until operation can be simplified according to following equivalence

relation:

φUψ ≡ ψ ∨ (φ ∧©(φUψ))

In other words, we need to consider current value of ©(φUψ) (future value of φUψ at the

next sample) and use the current values of φ and ψ to resolve and evaluate φUψ at the

current sample using equation ψ ∨ (φ ∧ ©(φUψ)). Algorithm 12 considers two case for

ϕ j ≡ ϕmUϕn ≡ ϕn ∨ (ϕm ∧©(ϕmUϕn)):

Case 5.1) u < (|ρ̂| − 1):

Now consider the update of M[j, u]← M[n, u]∨ (M[m, u]∧M[j, u + 1]) according to Line

17 of Algorithm 12.

Based on IH: M[n, u] = > iff (ρ̂, u, ε) |= ϕn and M[m, u] = > iff (ρ̂, u, ε) |= ϕm and

M[j, u + 1] = > iff (ρ̂, u + 1, ε) |= ϕ j iff (ρ̂, u, ε) |= ©ϕ j

According to Case 2 (Conjunction) M[m, u] ∧ M[j, u + 1] = > iff (ρ̂, u, ε) |= ϕm and

(ρ̂, u, ε) |= ©ϕ j

Therefore, M[m, u] ∧ M[j, u + 1] = > iff (ρ̂, u, ε) |= ϕm ∧©ϕ j

157

We know that, M[j, u] = > iff M[n, u] = > or M[m, u] ∧ M[j, u + 1] = >

According to Case 3 (Disjunction) M[j, u] = > iff (ρ̂, u, ε) |= ϕn or (ρ̂, u, ε) |= ϕm ∧©ϕ j

As a result, M[j, u] = > iff (ρ̂, u, ε) |= ϕn ∨ (ϕm ∧©ϕ j)

Case 5.2) u = |ρ̂| − 1:

According to Case 4.2 for Next operator: (ρ̂, u, ε) 6|= ⊥

This implies that ϕ j ≡ ϕn ∨ (ϕm ∧ ⊥) ≡ ϕn ∨ ⊥ ≡ ϕn

Now consider the update of M[j, u]← M[n, u] according to Line 15 of Algorithm 12.

Based on IH: M[n, u] = > iff (ρ̂, u, ε) |= ϕn

Therefore after the assignment, M[j, u] = > iff (ρ̂, u, ε) |= ϕ j

158

	LIST OF TABLES
	LIST OF FIGURES
	1 INTRODUCTION
	1.1 Specification Analysis
	1.2 Monitoring of Cyber-Physical Systems
	1.3 Summary of contributions and publications
	1.3.1 Specification Analysis
	1.3.2 Monitoring of Cyber-Physical Systems
	1.3.3 Other CPS related publications (not considered for this dissertation)

	2 HYBRID SYSTEMS
	2.1 Formal System Representation
	2.2 Hybrid Automata
	2.3 Automatic Transmission (AT)

	3 FORMAL SPECIFICATIONS
	3.1 System Behavior Representation
	3.1.1 Real-Time Signal
	3.1.2 Timed State Sequence
	3.1.3 Timed State Sequence over Atomic Propositions

	3.2 Temporal Logic with Point-Based Semantics
	3.2.1 Linear Temporal Logic with Past (PLTL)
	3.2.2 Metric Temporal Logic with Past (MTLP)
	3.2.3 Timed Propositional Temporal Logic (TPTL)

	3.3 Temporal Logic with Continuous Semantics
	3.3.1 Metric Interval Temporal Logic (MITL)
	3.3.2 Signal Temporal Logic (STL)

	3.4 Temporal Logic with Robustness Semantics
	3.4.1 Euclidean Distance Metric
	3.4.2 Hybrid Distance Metric
	3.4.3 Multiple Hybrid Distance Metric
	3.4.4 Robustness Semantics for MTLP
	3.4.5 Syntax and Semantics for MTL<++ pt

	4 SYSTEM INDEPENDENT SPECIFICATION DEBUGGING
	4.1 Related Works
	4.2 MITL Elicitation Framework
	4.3 Problem Formulation
	4.4 MITL Specification Debugging
	4.4.1 Redundancy Checking
	4.4.2 Specification Vacuity Checking

	4.5 Experiments
	4.5.1 MITL Satisfiability
	4.5.2 Specification Debugging Results
	4.5.3 LTL Satisfiability

	4.6 Conclusions and Future Work

	5 SYSTEM DEPENDENT VACUITY CHECKING
	5.1 Related Works
	5.2 Vacuous Signals
	5.3 Vacuity Detection in Testing and Falsification
	5.4 Detecting Partially Covering Signals
	5.5 Experiments
	5.6 Conclusions and Future Work

	6 VACUITY AWARE FALSIFICATION
	6.1 Related Works
	6.2 Falsification Framework
	6.3 Problem Formulation
	6.4 Vacuity Aware Falsification Framework
	6.4.1 Input Prefix-Suffix Example

	6.5 Experiments
	6.5.1 Navigation Benchmark with Inputs
	6.5.2 Automatic Transmission

	6.6 Conclusions and Future Work

	7 ON-LINE MONITORING FOR BOUNDED MTL WITH PAST
	7.1 Related Works
	7.2 Problem Formulation
	7.3 Solution Overview
	7.4 Finite horizon and history of MTL<++ pt
	7.5 Monitoring Algorithm
	7.6 Experimental Results
	7.7 Case Study
	7.8 Conclusions and Future Work

	8 OFF-LINE MONITORING FOR TPTL
	8.1 Related Works
	8.2 Problem Formulation
	8.3 Solution Overview
	8.4 Monitoring Table
	8.5 TPTL Monitoring Algorithm
	8.5.1 TPTL to LTL Transformation
	8.5.2 LTL Monitoring
	8.5.3 Running example

	8.6 Experimental Results
	8.7 Case Study
	8.8 Conclusions and Future Work

	9 CONCLUSIONS AND FUTURE WORKS
	REFERENCES
	A PROOFS OF CHAPTER 4
	B PROOFS OF CHAPTER 5
	C PROOFS OF CHAPTER 7
	D PROOFS OF CHAPTER 8

