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ABSTRACT

Scattering from random rough surface has been of interest for decades. Several

methods were proposed to solve this problem, and Kirchhoff approximation (KA)

and small perturbation method (SMP) are among the most popular. Both methods

provide accurate results on first order scattering, and the range of validity is limited

and cross-polarization scattering coefficient is zero for these two methods unless these

two methods are carried out for higher orders. Furthermore, it is complicated for

higher order formulation and multiple scattering and shadowing are neglected in these

classic methods.

Extension of these two methods has been made in order to fix these problems.

However, it is usually complicated and problem specific. While small slope approxi-

mation is one of the most widely used methods to bridge KA and SMP, it is not easy

to implement in a general form. Two scale model can be employed to solve scattering

problems for a tilted perturbation plane, the range of validity is limited.

A new model is proposed in this thesis to deal with cross-polarization scatter-

ing phenomenon on perfect electric conducting random surfaces. Integral equation

is adopted in this model. While integral equation method is often combined with

numerical method to solve the scattering coefficient, the proposed model solves the

integral equation iteratively by analytic approximation. We utilize some approxima-

tions on the randomness of the surface, and obtain an explicit expression. It is shown

that this expression achieves agreement with SMP method in second order.
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Chapter 1

INTRODUCTION

1.1 Scattering from Random Rough Surface

Wave scattering from random rough surface has been studied for decades and the

interest remains strong due to the significance of the applications in diverse areas,

such as imaging, communications, and remote sensing [27]. In particular, remote

sensing in microwave range is among the most popular methods in remote sensing

applications. Microwaves are suitable for different kinds of weathers, media and land-

scapes. In addition, compared to acoustic remote sensing, microwaves can travel faster

and contain more information because of the existence of polarization. Electromag-

netic waves can propagate through different media with very low loss while optical

waves have more attenuation. It is easy to find an explicit solution for reflection and

transmission from a planar boundary, however, scattering from rough surfaces is of

practical benefit since most natural surfaces are not ideally planar. For instance, in

remote sensing applications, both land surfaces and sea surfaces are irregular and

knowledge of random rough scattering is helpful in these cases [14].

There are several methods to solve scattering problems. Empirical methods are

the most straightforward, however, experimental conditions restrict the application

of these methods. In remote sensing applications, it is impractical to measure all the

parameters. Alternative way to deal with scattering is theoretical methods. Theoret-

ical models consist of two different kind of models, numerical model and analytical

model[10]. For numerical models, Monte-Carlo simulation should be employed which

leads to high complexity of computation[12]. Method of moments combined with
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Rao-Wilton-Glisson (RWG) basis functions is a popular method to deal with scat-

tering issue numerically. Some progress are made to reduce the complexity of the

numerical model with the introduction of wavelets [16][30]. Nevertheless, numeri-

cal models require computational space and are time consuming. Analytical models

provide a method to deal with scattering more efficiently. While Maxwell equation

and boundary conditions governing the scattering problem can not be solved analyt-

ically in closed-form under irregular boundary conditions, it is convenient to make

some assumptions and approximations. Most famous early developed approaches

are Kirchhoff approximation and small perturbation method, which are still widely

used[23]. However, they all have limited domain of validity, and people are working

to build a bridge between these two classic methods[11][7]. Small slope approxima-

tion(SSA)is among the most widely used methods [26]. SSA is still of interest and

extension has been made to solve different kinds of scattering problems [13] [15]. And

local curvature approximation is one of the successful extensions of SSA [6][5].

Backscattering is a special case in scattering problem and backscattering is of

practical importance because of the wide applications such as communication, remote

sensing and medical applications. While both numerical and analytical methods have

been developed to solve co-polarization problems, cross-polarization has not been

studied as much as co-polarization. Nevertheless, cross-polarization is as significant

as co-polarization. In this thesis, cross-polarization is studied and an analytical model

is established.

1.2 Basic Concept

Before getting started, basic concept should be established. In this thesis, only

scatterings occurring between two different semi-infinitive materials are under consid-

2



eration. When electromagnetic wave propagates towards the surface boundary, if the

boundary is planar, reflection and refraction takes place. However, when the surface

is rough, the wave can be reflected to many directions, and in practice, backscattering

is of most significance in remote sensing application. In addition, if the medium is

not homogeneous, some of the transmitted wave may be scattered back to the first

medium, which is called volume scattering. Fortunately, in remote sensing appli-

cations, it is okay to assume the sea to be homogeneous since the electromagnetic

property does not change a lot in different depth.

1.2.1 Random Roughness

In practice, sea surface is not deterministic, it has perturbations. The surface

roughness can be modeled as stochastic process such that scattered power can be

obtained in statistical sense, if we have the distribution of height probability and cor-

relation length. In general, two parameters are commonly used in analytical methods.

The first one is the standard deviation of the surface height, or root-mean-square(rms)

height, noted by σ, which represents height variation. The other one is surface correla-

tion length, noted by l, which stands for variation on horizontal directions. Typically,

σ and l are expressed in terms of wavelength. And these two parameters form the

concept of surface roughness. In particular, rms slope is one of the most popular

parameters used to describe the surface roughness. When autocorrelation function of

the surface is Gaussian, the rms slope can be expressed as

m =
√

2
σ

l
(1.1)

3



1.2.2 Scattering Coefficient

Radar cross section (RCS) is a far-field parameter characterizing the scattering

property of a radar target[2]. It is defined as the ratio of power of the reflected signal

from a target to the reflected signal from a perfectly smooth sphere of cross sectional

area of unit area. In general,

Pr
Pt

=
1

4πr2
Gtσ

1

4πr2
(1.2)

where Pt is the input power of the transmitter, Gt is the gain of the transmitter, and

r is the distance between the target and antenna, and σ is the radar cross section.

However, this definition of RCS can not be applied to infinite surface, such as sea

surface in remote sensing. In addition, polarization is not included in this RCS defini-

tion. In order to generalize it to extended surface, the concept of scattering coefficient

is introduced. Scattering coefficient is defined as average RCS per unit area, and it is

often noted by σ0. Scattering coefficient is a function of several parameters, such as

system parameters(parameters dependent on the antenna part, i.e., frequency, polar-

ization, incident angle and angle of observation) and target parameters(parameters

dependent on the surface, i.e. surface roughness and permittivity). In order to show

the dependence on polarization more explicitly, we attach subscripts on σ0 and the

received power. In the following equation(1.3), p and q denotes receiver polarization

and transmitter polarization, respectively.

Pqp =

∫∫
A0

PtGt

(4π)2r4
σ0
qpds (1.3)

where A0 is the illuminated area. σ0 is assumed to be independent of surface coor-

dinates throughout this thesis, thus, the integral in (1.3) can be replaced by simple

multiplication.

Pqp =
PtA0Gt

(4π)2r4
σ0
qp (1.4)

4



Taking circular attenuation into consideration, the power at receiver can be ex-

pressed as Ppqr = Pqp/4πr
2. Thus, rearrange (1.3), one can get

Pqpr =
PtA0Gt

4πr2
σ0
qp

(1.5)

In theoretical studies of random rough scattering, the average of σ0
qp is of interest

since it is available to carry out and this parameter represents the property of an

extended target in remote sensing applications. Cross-polarization backscattering

has bot been discussed much[8].

5



Chapter 2

CLASSIC THEORETICAL STUDIES ON RANDOM ROUGH SCATTERING

Theoretical studies focus on the derivation of σ0 for extended targets as in Kirch-

hoff approximation and small perturbation method. These two methods were devel-

oped in 1960s, while they are still widely used and provides accurate results. Exten-

sion of these two methods were made from then, and attempt to bridge these two

methods has not ceased. In this chapter, classic formulation and application of these

two methods are introduced.

2.1 Kirchhoff Approximation

Kirchhoff approximation(also referred to tangent plane approximation or physical

optics approximation) is one of the most widely used tools to solve surface-scattering

problems. This method has a range of validity, it applies to high frequency incident

waves. High frequency means small wavelength, and it is equivalent to the statement

that the correlation length of the surface is large relative to the incident wavelength.

As a result, it is reasonable to assume that any point at the surface can be regarded

as an infinitely extended tangent plane and the total field is the sum of field reflected

at every single point. On other words, reflection is specular at any point locally. And

this tangent plane approximation is the basic assumption of Kirchhoff method. This

assumption is valid when every point on the surface has a large radius of curvature

compared to the wavelength of incident wave, which is the same as the statements

before.

Under tangent plane approximation, the total field of a single point on the surface

is the superposition of incident field and reflected field. Thus, the total field equal

6



the sum of incident field and the reflected field by an infinite extended plane tangent

to the point.

2.1.1 Formulation

A linear polarized plane wave is considered throughout this thesis. Although in

practice, there does not exist a monochromatic wave, the incident wave emitted by

radar has little dispersion such that single frequency approximation does not produce

significant errors. Thus, monochromatic wave is considered to simplify the calcula-

tion. Note that a time harmonic factor ejωt is omitted in every field terms throughout

this paper. According to the properties of Helmholtz equation, the field on a source-

free upper half plan is uniquely determined by the boundary condition. With the

help of vector second Green’s theorem and dyadic Green’s function, the electric field

satisfying radiation boundary condition can be expressed in integral form. [3] [1]

~E(~r) = ~Ei(~r) +

∫
S

[−jωµG(~r, ~r′)n̂′ × ~H(~r′)−∇×G(~r, ~r′)n̂′ × ~E(~r′)]ds (2.1)

where G(~r, ~r′) is dyadic Green’s function which satisfies (2.2), and n̂ is the unit normal

vector pointing to the upper half plane.

∇×∇×G(~r, ~r′)− k2
0G(~r, ~r′) = −Iδ3(~r − ~r′) (2.2)

where k0 is the wavenumber, ~r represents observation vector, ~r′ means source position,

I is the identity matrix and δ3(~r − ~r′) stands for 3-D Dirac-delta function, and it is

defined by (2.3).

δ3(~r − ~r′) = δ(x− x′)δ(y − y′)δ(z − z′) (2.3)

After some calculation, the above equation can be rearranged as

∇×∇×G(~r, ~r′) + k2
0G(~r, ~r′) = (I +∇∇/k2)δ3(~r − ~r′) (2.4)

7



where G(~r, ~r′) is the Green’s function for 3-D scalar wave equation(2.5).

∇2G(~r, ~r′) + k2
0G(~r, ~r′) = −δ3(~r − ~r′) (2.5)

Combine equation (2.4) and equation (2.5), it is indicated that dyadic Green’s func-

tion can be replaced by scalar Green’s function G(~r, ~r′).

G(~r, ~r′) = (I +∇∇/k2)G(~r, ~r′) (2.6)

It is obvious that field of any point is the superposition of incident field and scattered

field.

~E(~r) = ~Ei(~r) + ~Es(~r) (2.7)

Compare (2.1) and (2.7), the first part on right hand side of (2.1) is the contribution

of incident wave, while the second part denotes the contribution of the scattered wave

and as shown in the equation, this part is due to the existence of surface. Therefore,

the scattered wave field can be written as

~Es(~r) =

∫
S

[−jωµG(~r, ~r′)n̂′ × ~H(~r′)−∇×G(~r, ~r′)n̂′ × ~E(~r′)]dS (2.8)

Solve equation (2.5) in polar coordinates, scalar Green’s function can be expressed as

G(~r, ~r′) = − e
−jk0|~r−~r′|

4π|~r − ~r′|
(2.9)

When the observation is in far field region, in the denominator, |~r − ~r′| ' |~r| = r,

while in the numerator, |~r−~r′| is in the phase, so the first two orders of the expansion

is kept, namely, |~r− ~r′| ' r− r̂ · ~r′ (r̂ means unit vector on ~r direction). Based upon

these two approximations, Stratton-Chu integral in terms of field components can be

derived when we extend the integral domain S to infinity.[23]

~Es = −C × k̂s ×
∫

[n̂× ~E − ηk̂s × (n̂× ~H)]ej
~ks·~rdS (2.10)

8



where n̂ is the unit normal vector pointing outwards the surface, ~ks denotes the

scattered direction, and C is a attenuation factor of circular wave. C and n̂ can be

expressed by equation (2.11).

n̂ =
−x̂Zx − ŷZy + ẑ√

1 + Z2
x + Z2

y

C =
jk0

4πR
e−jk0R

(2.11)

where Zx and Zy are the surface derivatives with respect to x and y.

As indicated in equation (2.10), the scattered field can be implied as long as the

tangential component of the field n̂× ~E and n̂× ~H are found. Most widely employed

Kirchhoff approximation uses local frame of reference in terms of incident electrical

polarization vector. And Fresnel reflection coefficient varies at different points as the

angle of incidence changes. Assume the incident electric field to be

~Ei = p̂E0e
−j~k·~r (2.12)

where E0 is the amplitude of incident wave, p̂ is the direction of electric field which

indicates the type of polarization.

Only linear polarization is considered in this thesis for ease of derivations. Fur-

thermore, other kind of polarization can be reconstructed by two basic kinds of linear

polarization of whom the vectors p̂ are orthogonal, namely, horizontal polarization

and vertical polarization.(In some literature, they are also referred to perpendicular

polarization and parallel polarization, respectively)

As shown in Figure 2.1, x, y and z forms a pair of global coordinates, while k̂, ĥ

and v̂ makes up local coordinates. In fact, the incident wave can be decomposed

into a horizontal and a vertical component, by take the dot product with ĥ and

v̂. The tangential component n̂ × ~E and n̂ × ~H can be expressed as sum of the

tangential vertically polarized field and tangential horizontally polarized field. And

9



𝑘

𝑦 𝑥

𝑧 = ℎ(𝑥, 𝑦)

𝑬𝒊

ො𝑛

𝑘

ො𝑣

ℎ

Figure 2.1: Geometry of Kirchhoff method. p̂ = v̂ in this case, which means the
incident wave is vertically polarized

scattered field is written in terms of incident field and Fresnel reflection coefficient.

The scattered field can be obtained after trivial calculation

n̂× ~E = [(1 +Rh)(p̂ · ĥ)(n̂× ĥ)− (1−Rv)(n̂ · k̂)(p̂ · v̂)ĥ]E0e
−j~k·~r)

n̂× ~H = −1

η
[(1−Rh)(n̂ · k̂)(p̂ · ĥ)ĥ+ (1 +Rhv)(p̂ · v̂)(n̂× ĥ)]E0e

−j~k·~r
(2.13)

Substitute equation (2.13) into equation (2.10), the scattered field can be written as

~Es = −C × k̂s ×
∫

[n̂× ~E − ηk̂s × (n̂× ~H)]ej(
~ks−~k)·~r′dS ′ (2.14)

The physical meaning of the above equation is that the scattered wave can be seen

as the superposition of the scattered waves over the illuminated area along with a

phase factor e−j
~k·~r′ . However, analytical solution to equation (2.14) is still difficult

to be obtained without further simplifying assumptions. There are two common as-

sumptions called stationary-phase approximation (also referred to geometric optics

approximation) and scalar approximation(physical optics approximation). The for-

mer approximation works for surfaces with large variations of heights compared to

wavelength of incident wave, while the latter is applied to surfaces with small slopes

and small or medium variations of heights.

10



2.1.2 Stationary-Phase Approximation

Stationary-phase approximation is based on an assumption that scattering only

happens along directions for which there are specular points on the surface. This

means local diffraction affects is ignored in this assumption. Phase Q is defined as

Q = (~ks − ~k) · ~r′ ≡ qxx
′ + qyy

′ + qzz
′ (2.15)

Assume that the surface is a linear system, which means frequency remains the same

in the scattered wave. That is to say, |~ks| = |~k|, and denote this magnitude by k. It is

convenient to expand ~ks and ~k in spherical coordinates, and hence Q can be written

in terms of spherical expansions.

k̂s = x̂sinθscosφs + ŷsinθssinφs + ẑcosθs

k̂ = x̂sinθscosφs + ŷsinθsinφ− ẑcosθ
(2.16)

Thus qx,qy and qz can be expressed as

qx = k[sinθscosφs − sinθscosφs]

qy = k[sinθssinφs − sinθsinφ]

qz = k[cosθs + cosθ]

(2.17)

Q is stationary means that Q is a constant hence the partial derivatives of Q are 0.

∂Q

∂x
= 0 = qx + qz

∂z

∂x
∂Q

∂y
= 0 = qy + qz

∂z

∂y

(2.18)

Rearrange the above equations, the partial derivatives of surface heights can be writ-

ten in terms of the components of phase.

Zx =
∂z

∂x
= −qx

qz

Zy =
∂z

∂y
= −qy

qz

(2.19)

11



According to equation (2.11), n̂× ~E and n̂× ~H is dependent on the surface derivatives.

The introduction of stationary-phase approximation yields equation (2.19), which

makes the tangential field components independent on the surface derivatives hence

eliminates the dependence on integral variables. Therefore, the expression for ~Es can

be simplified as shown in equation (2.20).

~Es = −C × k̂s × [n̂× ~E − ηk̂s × (n̂× ~H)]I1 (2.20)

where

I1 =

∫
ej(

~ks−~k)·~r′dS ′ (2.21)

The scattered field with polarization vector q̂ and incident polarization vector p̂ can

be expressed by

Es
qp = q̂ · ~Es = CI1E0Uqp (2.22)

where

Uqp =
1

E0

q̂ · k̂s × [n̂× ~E − ηk̂s × (n̂× ~H) (2.23)

Since power of electromagnetic wave is proportional to the square of the amplitude of

electric field, an expression of scattering coefficient can be derived after we rearrange

equation(1.5). [23]

σqp =
4πr2|Es

qp|2

A0|Ei|2
(2.24)

As shown in equation (2.24), the ensemble average of |I1|2is required in order to

calculate |Es
qp|2.

< |I1|2 >=< I∗1I1 >=

∫∫
< ej(

~ks−~k)·(~r−~r′) > dsds′ (2.25)

Gaussian and isotropic random process, which has a zero mean, standard deviation

σ and correlation coefficient ρ, is assumed in this case. Furthermore, the standard
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deviation is assumed be to large. Based upon these assumptions, equation (2.25) can

be solved.

< |I1|2 >=
2πA0q

2

q4
zσ

2|ρ”(0)|
exp[−

q2
x + q2

y

2q2
zσ

2|ρ”(0)|
] (2.26)

where ρ”(0) represents second derivative of correlation coefficient at the origin, and

σ2|ρ”(0)| is the same as mean-square slope of this random surface. [22]

Upon substituting equation (2.26) and equation (2.22) into equation (2.24), it

follows

σqp =
(kq2|Uqp|)2

2q4
zσ

2|ρ”(0)|
exp[−

q2
x + q2

y

2q2
zσ

2|ρ”(0)|
] (2.27)

Throughout the derivation of equation (2.27), shadowing and multiple scattering are

not taken into consideration. And backscattering is a case of special interest. Another

pair of polarization vectors ĥs and v̂s, representing horizontal and vertical polarization

of the scattered field, is introduced. It is easy to find the expressions of these two

pairs of polarization vectors in terms of θ, φ, θs and φs. In backscattering case, θs = θ,

φs = π and φ = 0. Since backscattering occurs in the plane of incidence, which is

orthogonal to horizontal polarization vector. Therefore, ĥs · k̂ and ĥs · k̂s vanishes.

The expression of scattering coefficient in backscattering is shown below.

σppθ =
|Rpp(0)|2e−(tan2θ/2σ2|ρ”(0)|)

2σ2|ρ”(0)|cos4θ
(2.28)

σpqθ = 0 (2.29)

where Rpp(0) is the Fresnel reflection coefficient under normal incidence.

A disadvantage of this method is that, due to the neglect of multiple scatter-

ing, the cross-polarized scattering coefficient is 0. And also note that this model

has limitations which states that the standard deviation of surface height must be

large compared to incident wavelength. The physical interpretation is that when

surface function has a large variance, the specular component becomes negligible as

13



the surface gets rougher hence the scattered field behaves stochastically. However,

when variance becomes small, specular component(also referred to coherent scattering

component) appears to influence the process, and when σ approaches zero, coherent

scattering component dominates. When the variance is zero for the surface, it be-

comes a planar reflection, which is purely coherent. A different approximation for

small variance is needed, which is called a scalar approximation.

2.1.3 A Scalar Approximation

A different approach is mentioned in this part, which is different from stationary-

phase approximation. In stationary-phase approximation, Based upon the assump-

tion that only specular reflection occurs on every tangential plane, the scattering is

purely non-coherent, since the scattering only depends on the randomness of the sur-

face. When surface becomes less rougher, the surface generates coherent scattering.

Fortunately, as shown in equation (1.1), small standard deviation means small rms

slope. Further approximation can be made since the surfaces are restricted to those

with small slopes. Since the denominator of equation (2.11) contains second order of

slope terms, these terms are ignored in this approximation, which implies

n̂ = −x̂Zx − ŷZy + ẑ (2.30)

This assumption leads to a decoupling of polarization in the vector scattering equa-

tions and hence reducing to scalar equations. Therefore, this assumption is called a

scalar approximation. The power of scattered field can be obtained by taking Taylor

expansion of Stratton-Chu integral in surface slope distribution. The expression of

scattered field can be rewritten as

Es
qp = CE0

∫
Ūqpe

j(~ks−~k)·~rds (2.31)
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where Ūqp is defined in [23]. And since Ūqp is a function of unit normal vector and

hence a function of surface slopes, one can expand it in Taylor series in terms of Zx

and Zy and neglect all higher orders.

Ūqp = a0 + a1Zx + a2Zy (2.32)

where a0, a1 and a2 are related to polarization of incident and scattered wave.

I =< Es
qpE

s∗
qp >=

∫∫
< ŪqpŪ

∗
qpe

j(~ks−~k)·(~r−~r′)>dsds′ (2.33)

ŪqpŪ
∗
qp is required in order to obtain I and hence the scattering coefficient. Ignore all

higher order items,

ŪqpŪ
∗
qp = a0a

∗
0 + a0a

∗
1Zx + a∗0a1Zx + a0a

∗
2Zy + a∗0a2Zy (2.34)

Assume the illuminated area is 2L × 2L, and keep only the first term in equation

(2.34), and substitute into equation (2.33), it follows

I0 = |a0|2
∫ 2L

−2L

∫ 2L

−2L

(2L− |u|)(2L− |v|)ejqxu+jqyve−q
2
zσ

2(1−ρ)dudv (2.35)

In this assumption, standard deviation of surface height is small. Thus, Maclaurin

expansion can be applied to term eq
2
zσ

2ρ, yielding

I0 = |a0|2
∞∑
n=0

(q2
zσ

2)n

n!

∫ 2L

−2L

∫ 2L

−2L

ρn(2L− |u|)(2L− |v|)ejqxu+jqyvdudv (2.36)

where n = 0 term stands for coherent scattering term. Further calculation implies

that

σ0
qp

c = πk2|a0|2δ(qx)δ(qy)e−q
2
zσ

2

(2.37)

The exponential term in equation (2.37) shows that the coherent scattering coefficient

only matters when qzσ is small, which corresponds to the statement that ,the scat-

tering is purely incoherent when standard deviation of the surface is large compared

to the wavelength. Note that qzσ is proportional to σ/λ.
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The rest of summation in equation (2.36) corresponds to incoherent component.

Since illuminated area is large compared with correlation length, for n ≥ 1, equation

(2.36) can be approximated as

I0 = |a0|2A0

∞∑
n=1

(q2
zσ

2)n

n!

∫ ∞
−∞

∫ ∞
∞

ρn(2L− |u|)(2L− |v|)ejqxu+jqyvdudv (2.38)

Similarly as in stationary-phase approximation, stable isotropic Gaussian stochastic

process is assumed in order to obtain an analytical expression of scattering coefficient.

σ0
qp

inc = (kl|a0|)2e−q
2
zσ

2
∞∑
n=1

(q2
zσ

2)n

n!n
exp(−−(qx + qy)

2l2

4n
) (2.39)

As standard deviation of the surface approaches zero, equation (2.39) tends to zero.

It is to say, when surface become planar surface, only the spectacular reflection whose

power intensity is governed by Fresnel reflection coefficient remains. An additional

contribution to the total scattering coefficient is from the slope terms which is ignored

in the above derivations. The derivations of this part is not important in this thesis,

thus it is not included. It was derived in [23] in detail. Also, we are interested at the

special case of backscattering. BY geometry, a0 in backscattering can be expressed

as a function of incident angle θ.

a0 = 2Rhθcosθ for HH polarization

a0 = −2Rvθcosθ for V V polarization

a0 = 0 for HV and V H polarizations

(2.40)

As shown in equation (2.40), in a scalar approximation the cross-polarization scat-

tering coefficient is also zero. However, this scattering coefficient exists in practice.

In Kirchhoff approximation, the average radius of curvature is required to be large

compared to the incident wavelength.
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2.2 Small Perturbation Method

For Kirchhoff approximation, the basic assumption must be satisfied thus high

frequency is required. However, when this condition does not hold, alternative method

should be proposed. The small perturbation method is applied to a slightly rough

surface.

2.2.1 Formulation

First of all, Fourier transform of the surface height function z = h(x, y) is needed.

Z̃(u, v) =

∫∫ ∞
∞

z(x, y)e−jux−jvydxdy

z(x, y) =
1

2π

∫∫ ∞
∞

Z̃(u, v)ejux+jvydudv

(2.41)

A classical way to solve Helmholtz equation is separation of variables, however, it is

hard to employ this method since the boundary condition is complicated. Fortunately,

utilize Fourier transform and assume the wave propagates in the xz plane. Another

assumption applied in the calculation is that only wave propagates to +z direction is

taken into consideration. Actually, there exists some waves traveling in −z direction

at surface points of larger height and larger slope, however, the wave traveling to −z

direction encounters second refection and travels upwards after multiple scattering.

Also, in far-field, only waves propagating upwards survive. There are different com-

binations of incident polarization and scattered polarization. A horizontal polarized

wave (See Figure (2.2)) is utilized as the start point for this section. This is the same

with Rayleigh Hypothesis stated in [26]. Figure (2.2) shows the geometry of this

problem.

For horizontal polarized incident wave, the electric field amplitude on polarization

direction should be the sum of incident wave, coherent reflected waved and incoherent
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Figure 2.2: Geometry of Scattering Wave in Small Perturbation Method

reflection.

Ex =
1

2π

∫∫ ∞
∞

Ux(kx, ky)exp(jkxx+ jkyy − jkzz)dkxdky

Ey =
1

2π

∫∫ ∞
∞

Uy(kx, ky)exp(jkxx+ jkyy − jkzz)dkxdky+

E0e
−jkxsinθ(ejkzcosθ +Rhe

−jkzcosθ)

Ez =
1

2π

∫∫ ∞
∞

Uz(kx, ky)exp(jkxx+ jkyy − jkzz)dkxdky

k2
z =k2 − k2

x − k2
y

(2.42)

where Ux, Uy and Ux are unknown amplitude in spatial frequency domain. Similarly,
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the field amplitude in medium 2 can be written as

E ′x =
1

2π

∫∫ ∞
∞

Dx(kx, ky)exp(jkxx+ jkyy + jk′zz)dkxdky

E ′y =
1

2π

∫∫ ∞
∞

Dy(kx, ky)exp(jkxx+ jkyy + jk′zz)dkxdky + E0Th(e
−jk′xsinθ + ejk

′zcosθ)

E ′z =
1

2π

∫∫ ∞
∞

Dz(kx, ky)exp(jkxx+ jkyy + jk′zz)dkxdky

k′2z = k′2 − k2
x − k2

y

(2.43)

where k′ is the wavenumber in medium 2, Th is the Fresnel transmission coefficient for

horizontal polarization and Dx, Dy and Dz are unknown field amplitude in medium

2 correspondingly. Actually, the above equation does not satisfy the conservation of

energy, which is the same as in Rayleigh Hypothesis. In order to achieve conserva-

tion of energy, the coherent scattering and transmitted terms should be modified.

However, in this thesis, for ease of calculation and simplicity, modifications of Fresnel

coefficient is not taken in to consideration. [19]

The unknown amplitude is determined by divergence relations and boundary con-

ditions which is affected by the geometry of the surface and the electromagnetic

properties of two media. Equation (2.44) shows these relations.

n̂× ( ~E − ~E ′) = 0

n̂× ( ~H − ~H ′) = 0

∇ · ~E = 0

(2.44)

where n̂ can be expressed in terms of surface slope as shown in equation (2.11).

Six scalar equations can be extracted from the above relations, which can be

utilized to determine six unknowns, namely, Ux, Uy, Uz and Dx, Dy, Dz.In small

perturbation method, kzz and k′zz is assumed to be small, as a result, it is reasonable

to expand all exponential terms involving kz in Taylor series. Furthermore, the field
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amplitudes can be expended in a perturbation series as shown in equation (2.45)

Ux = Ux1 + Ux2 + Ux3 + · · ·

Dx = Dx1 +Dx2 +Dx3 + · · ·
(2.45)

Substitute equation (2.45) into equation (2.42) and do Taylor expansion, then it

follows

Ex =
1

2π

∫∫ ∞
∞

(Ux1 + Ux2 + · · · )(1− jkzz − · · · )exp(jkxx+ jkyy)dkxdky

E ′x =
1

2π

∫∫ ∞
∞

(Dx1 +Dx2 + · · · )(1 + jk′zz + · · · )exp(jkxx+ jkyy)dkxdky

(2.46)

Similarly, the y and z components can be expressed in terms of series. And substitute

the expressions of electric field into the relations, six algebraic equations can be found

for six unknown amplitudes.

Ux1 = Dx1

Uy1 = Dy1 − jk′cos(θ′)(1/µr − 1)ThZ̃(kx + ksinθ, ky)

kx(Uz1 −Dz1/µr) + kzUx1 + k′zDx1/µr + β1 = 0

kx(Uz1 −Dz1/µr) + kzUx1 + k′zDx1/µr + β2 = 0

kzUz1 = kxUx1 + kyUy1

k′zDz1 = −(kxDx1 + kyDy1)

(2.47)

where Z̃ is the Fourier transform of surface height function as shown in equation

(2.41)β1 and β2 is expressed as follows.

β1 = jkkysinθ(1− 1/µr)ThZ̃(kx + ksinθ, ky)

β2 = jTh[
k′2cos2(θ′)

µr
− k2cos2θ − (kx + ksinθ)ksinθ(1− 1

µr
)]Z̃(kx + ksinθ, ky)

(2.48)

Equation (2.47) can be solved. Once the six amplitudes is obtained, the scattered

field of different polarization can be found. Since the start point of the derivation is
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horizontal polarized wave, Ehh and Evh can be calculated in terms of these amplitudes.

As shown in Figure (2.3), the field amplitude of co-polarized (Ehh) and cross-polarized

(Evh) can be expressed in terms of spherical coordinate.

Ehh = ĥ · ~Es = φ̂s · ~Es

Evh = v̂ · ~Es = θ̂s · ~Es

(2.49)

Unit coordinate vector can be expressed as

θ̂s = x̂cosθscos(φx) + ŷcosθssinφs − ẑsinθs

φ̂s = −x̂sinφs + ŷcosφs

(2.50)

𝜃𝑠

𝜙𝑠

𝑘𝑠 = Ƹ𝑟

ℎ = 𝜙

ො𝑣 = መ𝜃

𝑦

𝑥

𝑧

Figure 2.3: Geometry of Scattered Wave in Spherical Coordinate
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where k̂s is the direction of wave propagation, and as shown in this figure, hori-

zontal polarized vector is the same as φ̂ while vertical polarization vector is the same

as θ̂. These geometrical relations allow us to express the scattered field in spherical

coordinate.

Substitute equation (2.50) into equation (2.49), it follows

Ehh =
1

2π

∫∫
[Uy1cosφs − Ux1sinφs]exp(jkxx+ jkyy − jkzz)dkxdky

Evh =
1

2π

∫∫
Ux1cosφs + Uy1sinφs

cosθs
exp(jkxx+ jkyy − jkzz)dkxdky

(2.51)

When scattered field is obtained, scattering coefficient can be found in terms of the

ensemble average of the magnitude squared of scattered amplitude shown in equation

(2.51). According to equation (1.5), the scattering coefficient can be derived after

further simplifications. The zero order corresponds to a planar surface, which only

has specular reflection. And first order gives the incoherent field with only single

scattering. Thus as stated in Kirchhoff approximation, cross-polarization scattering

coefficient for backscattering is 0 due to the ignorance of multiple scattering. The

first order bi-static scattering coefficient at the incident medium can be expressed as

σqp = 8|k2σcosθcosθsαqp|2W (ksx + ksin(θi), k
s
y) (2.52)

where σ is the standard deviation of the surface height function, αqp is defined in [23]

and W (U, V ) is defined as

W (U, V ) =
1

2π

∫∫ ∞
∞

dξdζexp(−jUξ − jV ζ)ρ(ξ, ζ) (2.53)

where ρ(ξ, ζ) is the correlation function of the surface. And ksx, k
s
y can be expressed

in spherical coordinates.

ksx = −ksinθscosφs

ksy = −ksinθssinφs
(2.54)
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Again, backscattering from non-magnetic material is of special interest in practical

applications. Mathematically, this means that θs = θ, φs = π and µr = 1, leading to

σqp = 8k4σ2cos4θ|αqp|2W (2ksinθ, 0) (2.55)

where

αhh = Rh

αvv = (εr − 1)
sin2θ − εr(1 + sin2θ)

[εrcosθ + (εr − sin2θ)1/2]2

αhv = αvh = 0

(2.56)

As expected, cross-polarization vanishes in backscattering direction. Fortunately, if

second order term is kept for both small perturbation series and Taylor expansion of

exponential, we are able to obtain a non-zero cross-polarized scattering coefficient.

[24]

σvh = σhv =[πk4σ4cos2θ
|(εr − 1)(Rv −Rh)|2

2
]∫∫ ∞

∞

u2v2

|D0|2
W (u− ksinθ, v)W (u+ ksinθ, v)dudv

(2.57)

where

D0 = (k2 − u2 − v2)1/2 + εr(k
′2 − u2 − v2)1/2 (2.58)

The small perturbation method works only for slightly rough surface, and it excludes

multiple scattering if this formulation is carried out in the first order. However, it has

been argued that small perturbation method does account for multiple scattering up

the order of expansion.[22] For example, if multiple scattering is excluded, the cross-

polarization scattering coefficient is supposed to vanish in backscattering direction as

shown in Kirchhoff approximation and first order small perturbation method. When

second order expansion is utilized in the derivation, equation (2.57) shows that cross-

polarized scattering coefficient is non-zero, which means that multiple scattering is

taken into consideration in second order small perturbation method.
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Table 2.1: Summary on Validity Conditions

Kirchhoff Approximation

kl > 6, l2 > 2.76σλ

Stationary-phase approximation scalar approximation

kσ > 2 kσ < 1, rms slope < 0.25

Small Perturbation Method

kσ < 0.3, rms slope< 0.3

Another issues of small perturbation method is that energy is not conserved in

first order. [20]

2.3 Range of Validity for Kirchhoff Approximation and Small Perturbation Method

In this section, validity of these two classic models will be discussed, and mathe-

matical expression of validity under stationary isotropic Gaussian random surface is

expressed.

Kirchhoff Approximation is based upon the assumption that planar reflection oc-

curs at the every point of the surface. Thus, it requires large horizontal scale compared

to wavelength and simultaneously small vertical scale roughness. This means large

correlation length l and small standard deviation of surface height σ compared to

wavelength is expected to fulfill the assumption. However, surface standard devia-

tion can be comparable or even larger than the electromagnetic wavelength when the

correlation length is large enough to have a small rms slope and hence a large radius

of curvature is preserved. For stationary isotropic Gaussian random surfaces, the

condition can be expressed mathematically as shown in Table (2.1). For stationary-

phase approximation, standard deviation is required to be large, while for a scalar

approximation, small standard deviation and small rms slope are desired.
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While Kirchhoff model requires the horizontal-scale roughness kl to be larger than

6, surface varying horizontally with in the distance of a wavelength can be manipu-

lated in small perturbation model. However, the surface height standard deviation

is required to be much less than the electromagnetic wavelength. For stationary

isotropic Gaussian stochastic processes, the validity can be shown in table (2.1).

Note that if higher orders are carried out in small perturbation method, the validity

range would be larger. For instance, for kσ � 1 and kl > 6, which is in the range of

validity for Kirchhoff approximation, it was shown that the sum of first three orders of

small perturbation method gives accurate result compared to numerical simulations.

[21]

Also note that Kirchhoff approximation works for small slopes as well as small per-

turbation method, and thus a successful attempt to bridge this two methods is small

slope approximation. [26] [25] Small slope approximation is also a widely adopted

approach. [15] Nonetheless, it requires some analytical work, and cannot be imple-

mented in computer directly. Thus, it is not discussed in this thesis.
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Chapter 3

MODELING

As shown in the chapter before, two classic methods have some drawbacks. First of

all, multiple scattering is not taken into consideration in Kirchhoff approximation,

and in small perturbation method, multiple scattering is only taken up to the orders

of expansion, which will be complicated if higher orders are carried out. Due to lack

of multiple scattering, cross-polarization scattering coefficient vanishes. In addition,

the range of validity of each method is limited. The proposed model can be applied

to both slightly rough surfaces and rough surfaces with large correlation length.

In this chapter, integral equation is introduced at first due to the signification of

this technique in both analytic and numerical methods. Then, analytic expression

of surface current is obtained with the help of integral equation. And once the sur-

face current is found, expression of far-field backscattering electric amplitude can be

derived. Then, equation (1.5) is applied.

3.1 Integral Equation

Integral equation is a specific kind of equation in which the unknown variable

is part of the integrand. The objective of this technique is to cast the solution for

induced current density on the surface, which can be expressed in terms of integral

equation. Integral equation technique, combined with numerical method such as the

method of moment(MoM), finite difference time domain(FDTD) and finite element

method(FEM) forms a powerful tool to solve scattering problems[28]. [1][18]

There are many classifications of integral equations and among the most widely

used forms are electric field integral equation(EFIE) and magnetic field integral equa-
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tion(MFIE). The EFIE enforces boundary condition on the tangential component of

electric field while the boundary condition of tangential magnetic field is applied in

the MFIE.

3.1.1 Electric Field Integral Equation

The boundary condition of EFIE is that total tangential field vanishes on a per-

fectly electric conducting(PEC) surface. And this can be expressed as

~Etan = ~Ei
tan + ~Es

tan = 0 on S

~Ei
tan = − ~Es

tan on S

(3.1)

where S is the PEC surface, and subscript tan indicates tangential components.

With the help of scalar potential and vector potential, the scattered field can be

expressed in terms of potentials which are functions of surface current density. In

fact, the incident field induces surface current with current density ~Js which in turn

radiates to the medium and produces the scattered field.

~Es(~r) = −∇Φ− jω ~A (3.2)

where Φ is the scalar potential and ~A is the magnetic vector potential expressed as

follows.

~A(~r) =
µ

4π

∫∫
S

~Js(~r
′)
e−jk|~r−~r

′|

|~r − ~r′|
ds′ = µ

∫∫
S

~Js(~r
′)G(~r, ~r′)ds′ (3.3)

where G(~r, ~r′) is the 3-D scalar Green’s function as expressed in equation (2.9).

Lorentz gauge condition is applied in order to determine the scalar potential Φ

uniquely. [4]

Φ =
−1

jωµε
∇ · ~A (3.4)

Combine the above equations together, trivial calculation yields

~Es(~r) = −j η
k

[k2

∫∫
S

~Js(~r
′)G(~r, ~r′)ds′ +∇

∫∫
S

∇′ · ~Js(~r′)G(~r, ~r′)ds′] (3.5)
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where ∇ and ∇′ are operator working on observation coordinates and source coordi-

nates, respectively. And apply the boundary condition at the conducting surface,

~Ei(~r = ~rs) = j
η

k
[k2

∫∫
S

~Js(~r
′)G(~rs, ~r

′)ds′ +∇
∫∫

S

∇′ · ~Js(~r′)G(~rs, ~r
′)ds′] (3.6)

The right hand side of equation (3.6) is known incident electric field, and the unknown

current density is on the left hand side and inside the integrand. Thus, this integral

is referred to as electric field integral equation, and it can be used to determine the

current density at any point on the surface. Once the current density is obtained,

Stratton-Chu integral of current density can be employed to find the scattered filed

amplitude and hence the scattering coefficient.

EFIE can be applied to both open and closed surface. Note that as |~r − ~r′|

approaches 0, there is a singularity in Green’s function, which is removable in most

cases. However, in EFIE, twice derivative of Green’s function is taken, which gives

rise to more severe singularity terms with the order of R−3, and hence the integrand

is not uniformly convergent.

3.1.2 Magnetic Field Integral Equation

The magnetic filed integral equation is obtained through the boundary condition

of tangential magnetic field.

~J(~r′) = n̂× [ ~Htan(~r′)] = n̂× [ ~H i(~r′) + ~Hs(~r′)] (3.7)

The scattered magnetic field can be expressed in terms of magnetic vector potential

and hence as a function of induced current density.

~Hs(~r) =
1

µ
∇× ~A

=∇×
∫∫

S

~Js(~r
′)
e−jk|~r−~r

′|

4π|~r − ~r′|
ds′

=∇×
∫∫

S

~Js(~r
′)G(~r, ~r′)ds′

(3.8)
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In the right hand of equation (3.8), differentiation can integration can be interchanged.

And vector identity is utilized to simplify the expression of ~Hs, which leads to

∇× ( ~JsG) = G∇× ~Js − ~Js ×∇G (3.9)

And two properties are applied

∇× ~Js(~r
′) = 0

∇G = −∇′G
(3.10)

The above equations yield the simplified expression of scattered magnetic field.

~Hs(~r) =

∫∫
S

~Js(~r
′)×∇G(~r, ~r′)ds′ (3.11)

In order to cast a solution for current density, equation (3.11) should be carried out on

the conducting surface S. However, there is a singularity term inside the integrand,

which can not be calculated directly. The MFIE can be expressed as a limit of this

integral as ~r approaches the conducting surface.

~Js(~r′) = n̂×H i(~r = ~r′) + lim
~r→S

[n̂×
∫∫

s

~Js(~r
′)×∇G(~r, ~r′)ds′] (3.12)

However, this equation is not applicable in most applications, since it can not be

solved using numerical methods with the help of computer. Hence, an explicit form

of MFIE is desired.

As shown in Figure (3.1), one can rewrite equation (3.12) as follows.

~Js(~r) = n̂×H i(~r) + lim
~r′′→~r

[n̂×
∫∫

S

~Js(~r
′)×∇′′G(~r′′, ~r′)ds′] (3.13)

The integral in the limit can be regarded as sum of integral over the disk D and

integral over surface S other than D.

Integral over D can be expressed as

Id = lim
~r′′→~r

[

∫∫
D

n̂× ~Js(~r
′)×∇′′G(~r′′, ~r′)ds′] (3.14)
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Figure 3.1: Evaluation of Limiting Value of the Integral When ~r′′ Approaches the
Boundary

IS/D =

∫∫
S/D

n̂× ~Js(~r
′)×∇′′G(~r′′, ~r′)ds′ (3.15)

When D is small enough, ~r′ → ~r. And if D is small enough, equation (3.15) can be

expressed as principle value integral. The following vector identity is applied

n̂× ~Js ×∇′′G = ~Js(∇′′G · n̂)−∇′′G(n̂ · ~Js) (3.16)

Since ~Js is on the surface, and n̂ is the normal vector of the surface, the second term

on right hand side of equation (3.16) vanishes. And hence the integral over D becomes

Id = ~Js(~r)

∫∫
D

n̂ · ∇′′Gds′ = ~Js(~r)
1

4π

∫∫
D

n̂ · R̂′′

R′′2
ds′ = ~Js(~r)

ΩD(~r′′)

4π
(3.17)

where ~R′′ = ~r′′−~r, R′′ stands for its magnitude, and R̂′′ means the normalized vector

~R′′. ΩD represents the solid angle subtended by disk D at ~r′′, whose value is 2π since
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this disk covers half of the space.

lim
~r′′→~r

lim
D→0

ID =
~Js(~r)

2
(3.18)

Thus, equation (3.12) can be rearranged and rewritten as

~Js(~r) = 2n̂× ~H i +
1

2π

∫∫
A0

n̂× [∇G× ~Js(~r
′)]dS ′ (3.19)

Equation (3.19) is referred to as standard magnetic field integral equation, since

right hand side of this integral is in terms of incident magnetic field. Note that the

second integral is in terms of principle value since the disk D is not in the domain of

integration.

As shown in equation (3.19), compared with equation (3.6), the MFIE has a

singularity of order r−2, which is better than the EFIE.[29] And this kind of singularity

can be dealt with in scattering problems. [3]

3.2 Surface Current

The key to the solution of scattering from a PEC surface is the determination

of surface current density. Magnetic field integral equation is utilized as our starting

point to evaluate surface current density. The reason why we choose MFIE rather than

EFIE is that MFIE is well-posed and converges fast. Several methods and numerical

manipulations were proposed recently and convergence and fast computation time are

achieved. [17] Stratton-Chu integral can be expressed as a function of surface current

as shown in equation (3.20).

~Es = −Cηk̂s ×
∫
A0

k̂s × ~Jse
−j~ks·~rdS

= −Cηk̂s ×
∫
A0

k̂s ×
~Js

cos(χ)
e−j

~ks·~rdxdy

(3.20)

In the equation above, ~ks is the direction of scattering, η is the intrinsic impedance

of free space, k̂s is the unit vector of ~ks, and C is a parameter representing circular
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attenuation defined by (2.11).

Note z = h(x, y) as the function of surface. Zx and Zy denotes the partial deriva-

tive with respect to x and y, respectively. The relations between some factors is shown

in (3.21).

n̂ = ~ncos(χ)

~n = −x̂Zx − ŷZy + ẑ

cos(χ) =
1√

1 + Z2
x + Z2

y

dS =
dxdy

cos(χ)

(3.21)

where θ is the angle of incidence as is shown in (3.2), E0 represents the amplitude of

incident electric field. And χ is the angel between h(x, y) and x− y plane.

As shown in (3.20), ~Js/cos(χ) is of interest.

~Js(~r)

cos(χ)
= 2~n× ~H i +

1

2π

∫
~n× [∇G×

~Js(~r
′)

cos(χ′)
]dx′dy′ (3.22)

In the above equation, the first term at right-hand side is Kirchhoff approximation

of surface current, which is used as the first guess in the integral of the second term.

Since higher orders can be neglected, it is reasonable to use only first order term

inside the integral.

~Jkh(~r) = 2~n× ~H i

~Jch(~r) =
1

2π

∫
~n× [∇G×

~Jkh(~r
′)

cos(χ′)
]dx′dy′

~Js(~r)

cos(χ)
= ~Jkh(~r) + ~Jch(~r)

(3.23)

where Jkh represents Kirchhoff component, Jch stands for non-Kirchhoff Component.

A monochromatic, horizontal polarized incident wave can be represented as (3.24),

which is taken as an example to formulate the scattering coefficient of cross-polarization,
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σV H .

~Ei = ŷ ek
~k·~r = ŷ e−jkxx−jkzz

= ŷ e−jkxsinθ+jkzcosθ
(3.24)

where θ is the angle of incidence (Figure 3.2). In this case, ŷ points toward the

paper, and p̂ = ŷ, which means this wave is horizontally polarized, or perpendicular

polarized.

ො𝑛

𝑬𝒊

𝜃

𝑧

𝑥

𝑦

Figure 3.2: Geometry of the Surface Scattering Problem

Then, it is trival to find Jkh as in (3.25)

Jkh =
2E0

η


−Zysinθ

Zxsinθ + cosθ

Zycosθ

 e−jkxx−jkzz (3.25)

where Zx, Zy are the partial derivatives with respect to x and y, respectively.

Green’s function can be expressed employing inverse Fourier transform.[3] Assume

Green’s function has Fourier transform G̃, and take Fourier transform of both sides
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in (2.5), where ~k0 = (u, v, q)

G̃(u, v, q) =

∫∫∫ ∞
−∞

G(~r)e−j
~k0~rdxdydz

G(~r) =
1

(2π)3

∫∫∫ ∞
−∞

G̃(u, v, q)ej
~k~rdudvdq

(3.26)

And after taking Fourier transform of two sides, and since two sides are equal for all

u, vandq, we must have (3.27)

G̃(u, v, q) = − 1

k2
0 − u2 − v2 − q2

G(~r) = − 1

(2π)3

∫∫∫ ∞
−∞

1

k2
0 − u2 − v2 − q2

ej
~k~rdudvdq

(3.27)

Where u2 + v2 + q2 = k2
0.

Residue theorem can be applied to solve this equation, however, there are two

poles in this integral, which makes this integral ambiguous since the two poles are

infinity and hence not defined. This integral would be divergent without this small

positive part. In practice, for every medium, there should be loss factor. Air can be

modeled as a medium with very low loss in microwave frequency range, therefore, it

is reasonable to assume that k0 contains a small positive imaginary part. Namely,

k0 = k′0 + jk0”. And this introduction of k0” fulfills the radiation condition named

limiting absorption principle.[26]

As depicted in Figure 3.3, real axis represents inverse Fourier contour, which equals

to the integration along the contour C plus the residue of the pole above real axis.

The two poles are off the real axis, which makes this integral unambiguously defined.

When x > 0, jux approaches to −∞ when imaginary part of u tends to +∞.

As a result, the integration along contour C vanishes according to Jordan’s lemma.

The whole integral(3.27) equals to the residue on the pole
√
k2

0 − v2 − q2. Similarly,

when x < 0, the integral(3.27) remains the same as the integrating over the pole

−
√
k2

0 − v2 − q2. All the argument yields the following equation(3.28)
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𝑢 = − 𝑘0
2 − 𝑣2 − 𝑞2

𝑢 = + 𝑘0
2 − 𝑣2 − 𝑞2

𝑅𝑒(𝑢)

𝐼𝑚(𝑢)

C

Figure 3.3: Integral Contour for Inverse Fourier Transform

G(~r, ~r′) = − j

8π2

∫∫
1

u
e−ju|x−x

′|+jv(y−y′)+jq(z−z′)dvdq (3.28)

Equation (3.28) is the same as equation (2.9), namely

− e−jk|~r−~r
′|

4π|~r − ~r′|
= − j

8π2

∫∫
1

u
e−ju|x−x

′|+jv(y−y′)+jq(z−z′)dvdq (3.29)

The above equation is called Weyl’s identity. The physical meaning behind this

identity is that a spherical wave can be reconstructed by a summation of planar wave

in frequency domain. [3]

The advantage of this technique, compared to conventional Fourier transform in

x− y plane, is to avoid calculation of absolute value of |z− z′|, which is complicated.

[9] In addition, z component, which is incorporated into the statistical calculation,

is kept in this proposed approach. In following sections, it can be shown that the

absolute value |x− x′| equal to each other in symmetric case.
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Hence, Jch can be derived using all the equations above,

Jch =
E0

2π2η

∫∫
dx′dy′e−jkxx−jkzz

∫∫
dvdq

1

u
e−ju|x−x

′|+jv(y−y′)+jq(z−z′)
±uZycosθ + qZy′sinθ ∓ uZy′cosθ ± uZx′Zysinθ − vZyZy′sinθ

∓uZxcosθ + vZy′cosθ − qZx′sinθ − qcosθ ∓ uZxZx′sinθ + vZxZy′sinθ

−qZycosθ ∓ uZxZy′cosθ + qZxZy′sinθ − qZyZx′sinθ + vZyZx′cosθ


(3.30)

Neglecting all higher-order terms yields the following equation(3.31)

Jch =
E0

2π2η

∫∫
dx′dy′e−jkxx−jkzz

∫∫
dvdq

1

u
e−ju|x−x

′|+jv(y−y′)+jq(z−z′)
±uZycosθ + qZy′sinθ ∓ uZy′cosθ

∓uZxcosθ + vZy′cosθ − qZx′sinθ − qcosθ

−qZycosθ


(3.31)

3.3 Far Field Backscattering Modeling

In this thesis, only cross polarization is taken into consideration since there exists

many papers which provide approaches to solving RCS of like polarization. [7]

Vector identity yields an expression of ~E. In this thesis, we start the computation

based on the assumption that x− x′ < 0,and as it goes with the derivation, there is

no difference between x − x′ < 0 and x − x′ > 0 as long as the surface correlations

are stationary stochastic processing. EV lies in x − z plane and only relates with x

component and z component of the reflected E field.

In backscattering, the direction of scattering ~ks goes along the opposite direction

of incident wave. As a result,

~ks = −x̂ksinθ + ẑkcosθ = −~k (3.32)
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Therefore, employing vector identities, Stratton-Chu integral (3.20) can be written

as

~Es = −Cη
∫
A0

k̂s(k̂s ·
~Js

cos(χ)
)−

~Js
cos(χ)

e−j
~ks·~rdxdy (3.33)

Figure 3.4 indicates EV H can be computed by secθx̂ · ~E or cscθẑ · ~E.

𝑅

𝜃

𝐸𝑉

𝐸𝑥

𝐸𝑧

𝑧

𝑥

𝑦

𝜃

Figure 3.4: Geometry of the Reflected E Field

And these two computations give the same result. Kirchhoff component tends to

vanish at EV H , which is reasonable, since cross-polarization in Kirchhoff approxima-

tion is 0 for a PEC surface.

EV H = −CE0

2π2

∫∫
dvdqdxdydx′dy′(Zy − Zy′)cos2θ

e−jkxx−jkzz−jkxx
′−jkzz′ eju(x−x′)+jv(y−y′)+jq(z−z′)

(3.34)

Integrate this integral by parts and ignore edge effects, (3.35) is obtained.

EV H = −CE0cos
2θ

π2

∫∫
dvdqdxdydx′dy′

kzv

k2
z − q2

e−jkxx−jkzz−jkxx
′−jkzz′ eju(x−x′)+jv(y−y′)+jq(z−z′)

(3.35)

Because q is, in most case, imaginary, it makes more sense to convert to dudv, and
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integrate on dudv.

EV H =
CE0cos

2θ

π2

∫∫
dudvdxdydx′dy′

u

q

kzv

k2
z − q2

e−jkxx−jkzz−jkxx
′−jkzz′ eju(x−x′)+jv(y−y′)+jq(z−z′)

(3.36)

As assumed before, q2 = k2
0 − u2 − v2, which makes q a multi-value function, hence a

careful choice of the square root branch is required. According to limiting absorption

principle, k0 has a positive imaginary part, yielding that the real part is also positive.

Therefore, the square root of k2
0−u2−v2 has positive real part and positive imaginary

part. That is to say, q locates on the first quadrant of the complex plane, which fulfills

the limiting absorption principle.

3.4 Scattered Power in Statistical Sense

Once the far-field expression is got, scattered power is needed. However, due to

randomness of the surface, it is impossible to obtain an expression. The statistical

average is of great interest in this case. To find the average power, we multiply EV H

by its complex conjugate, and then take ensemble average,namely,

PV H =
< EV HE

∗
V H >

η2
(3.37)

where angular brackets <> represent ensemble average over the spatial domain. And

note that this PV H contains circular attenuation, it is actually Ppqr in (1.5).

Then, after substitution, the following equation(3.38) can be deduced,

P =
k2
z |C|2E2

0cos
4θ

π4

∫∫
dxdydx̄dȳdudvdūdv̄dx′dy′dx̄′dȳ′

uūvv̄

qq̄(k2
z − q2)(k2

z − q̄2)

ejkx(x̄+x̄′−x−x′)eju(x−x′)−jū(x̄−x̄′)ejv(y−y′)−jv̄(ȳ−ȳ′) < ejkz(z̄+z̄′−z−z′)ejq(z−z
′)−jq̄(z̄−z̄′) >

(3.38)

In this equation, z′ and z̄′ are from the surfaces, while z and z̄ are from incident
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waves. Rearrange this equation,

< ejkz(z̄+z̄′−z−z′)ejq(z−z
′)−jq̄(z̄−z̄′) >

= < ej(kz−q̄)z̄+j(−kz−q)z
′+j(−kz+q)z+j(kz+q̄)z̄′ >

(3.39)

It is reasonable to assume that surface variables and incident variables are indepen-

dent, since physically the incident wave component does not affect surface component

and vice versa. That is, the correlation coefficients ρ12, ρ14, ρ23 are 0, where ρ repre-

sents correlation coefficient, and 1,2,3,4 stand for z̄, z′, z, z̄′ respectively. In addition,

it is natural to assume that the correlation between z̄ and z and the correlation

between z̄′ and z′ are identical, since it is a dual relationship. The following equa-

tion(3.40)can be derived because of independence.

< ej(kz−q̄)z̄+j(−kz−q)z
′+j(−kz+q)z+j(kz+q̄)z̄′ >

= < ej(kz−q̄)z̄+j(−kz+q)z >< ej(−kz−q)z
′+j(kz+q̄)z̄′ >

= e−σ
2[2k2z+q2+q̄2+(kz q̄−qq̄−k2z+kzq)ρ13+(−kzq−kz q̄−qq̄−k2z)ρ24]

(3.40)

Substitute (3.40) to (3.38), the expression of power can be simplified.

P =
k2
z |C|2E2

0cos
4θ

π4

∫∫
dxdydx̄dȳdudvdūdv̄dx′dy′dx̄′dȳ′

uūvv̄

qq̄(k2
z − q2)(k2

z − q̄2)

ejkx(x̄+x̄′−x−x′)eju(x−x′)−jū(x̄−x̄′)ejv(y−y′)−jv̄(ȳ−ȳ′)

e−σ
2[2k2z+q2+q̄2+(kz q̄−qq̄−k2z+kzq)ρ13+(−kzq−kz q̄−qq̄−k2z)ρ24]

(3.41)

It would be convenient to change into a different coordinates, x − x̄ = ξ, y − ȳ =

η, x′ − x̄′ = ζ, y′ − ȳ′ = τ . These are the distances, and for stationary stochastic

process, the correlation coefficient is only a function of the distance. Therefore, this

substitution would simplify the calculation.

P =
k2
z |C|2E2

0cos
4θ

π4

∫∫
dξdηdζdτdx̄dȳdx̄′dȳ′dudvdūdv̄

uūvv̄

qq̄(k2
z − q2)(k2

z − q̄2)

e−jkx(ξ+ζ)−ju(ζ−ξ)−jv(τ−η)ej(u−ū)(x̄−x̄′)+j(v−v̄)(ȳ−ȳ′)

e−σ
2[2k2z+q2+q̄2+(kz q̄−qq̄−k2z+kzq)ρ13+(−kzq−kz q̄−qq̄−k2z)ρ24]

(3.42)
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Dirac-delta function can be applied in order to simplify this equation.(3.43)∫
ej(u−ū)x̄dx̄ = 2πδ(u− ū),

∫
ej(v−v̄)ȳdȳ = 2πδ(v − v̄) (3.43)

Only when ū = u and v̄ = v, this integral is nonzero. Therefore, ū and v̄ can be

eliminated by the introduction of Dirac-delta function.∫∫
ej(u−ū)(x̄−x̄′)ej(v−v̄)(ȳ−ȳ′)dx̄dȳdx̄′dȳ′ = 4π2

∫∫
dx̄′dȳ′ = 4π2A0 (3.44)

In addition, Dirac-delta function gives us that u = ū and v = v̄, which implies that

q2 = q̄2. In fact, q̄ equals to complex conjugate of q. Hence, the entire integral can

be expressed as (3.45)

P =
4k2

z |C|2A0E
2
0cos

4θ

π2

∫∫
dξdηdζdτdudv

u2v2

qq̄(k2
z − q2)2

e−jkx(ξ+ζ)−ju(ζ−ξ)−jv(τ−η)e−σ
2[2k2z+2q2−(kz−q̄)(kz−q)ρ13−(kz+q)(kz+q̄)ρ24]

(3.45)

Note that q2 = q̄2 does not necessarily imply q = q̄. ρ13 is a function of ζ and ξ, while

ρ24 is a function of η and τ .

In order to obtain incoherent power, we subtract the mean-square value from the

power, yielding

P − Pms = < EV HE
∗
V H > − < EV H >2

=
4k2|C|2A0E

2
0cos

6θ

π2

∫∫
dξdηdζdτdudv

u2v2

qq̄(k2
z − q2)2

e−jkx(ξ+ζ)−ju(ζ−ξ)−jv(τ−η)

e−σ
2(2k2z+2q2)(eσ

2[(kz−q̄)(kz−q)ρ13+(kz+q)(kz+q̄)ρ24] − 1)

(3.46)

Expand exponential term by Taylor series,

eσ
2[(kz−q̄)(kz−q)ρ13+2(kz+q)(kz+q̄)ρ24] =

∞∑
m=0

∞∑
n=0

σ2(m+n)(kz − q̄)m(kz − q)m(kz + q)n(kz + q̄)n

m!n!
ρm13ρ

n
24;

(3.47)

For m = n = 0, this equation is 1, canceling the mean square value. In addition,

for m = 0, n 6= 0 or m 6= 0, n = 0,it can be found that the RCS is zero due to the
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existence of Dirac-delta function. Namely, for m = 0, the expression containsδ(u)

and therefore u = 0 is taken in the integral, which implies the whole expression is 0.

Similarly, we can conclude that for n = 0, this integral vanishes. Thus, the first order

is m = n = 1.

A definition of new function W will be employed throughout this thesis.

W n(U, V ) =
1

2π

∫∫ ∞
∞

dξdζexp(−jUξ − jV ζ)ρn(ξ, ζ) (3.48)

where n denotes the nth power of ρ.

Note that if n = 1, equation(2.53) shows that this is the Fourier transform of the

surface correlation function, which is called roughness spectrum of the surface.

Scattering coefficient is expressed by (1.5). And Gt is assumed to be 1 in order to

simplify the calculations. After simplifications, the following equation(3.49) can be

derived.

σ0
V H =

4πR2

A0E2
0η

2
(< EV HEV H∗ > − < EV H >2) (3.49)

Hence, the power can be expressed in term of W n, and after trivial calculation,

σ0
V H =

4k4cos6θ

π

∞∑
m=1

∞∑
n=1

∫
R2

dudv
u2v2

qq̄(k2
z − q2)2

e−σ
2(2k2z+2q2)

σ2(m+n)(kz − q̄)m(kz − q)m(kz + q)n(kz + q̄)n

m!n!
Wm(ksinθ − u,−v)W n(ksinθ + u, v)

(3.50)

Follow the same procedure, assume x − x > 0′, then another equation of RCS can

be computed as (3.51) In fact, the x component and z component of EV H only differ

by sign, which can be eliminated by taking square of EV H . And throughout the

derivation, it has nothing but the sign to do with the ensemble average, after similar
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calculation, (3.51) can be deduced.

σ0
V H =

4k4cos6θ

π

∞∑
m=1

∞∑
n=1

∫
R2

dudv
u2v2

qq̄(k2
z − q2)2

e−σ
2(2k2z+2q2)

σ2(m+n)(kz − q̄)m(kz − q)m(kz + q)n(kz + q̄)n

m!n!
Wm(ksinθ + u,−v)W n(ksinθ − u, v)

(3.51)

Compare (3.50) and (3.51), it is obvious that if (3.52) holds, then these two expressions

are identical when m = n.

W (ksinθ + u,−v)W (ksinθ − u, v) = W (ksinθ − u,−v)W (ksinθ + u, v) (3.52)

A stationary random processing is defined in the way that the autocorrelation function

only depends on the distance. Therefore, the correlation function is an even function,

which implies that its Fourier transform is even(3.53).

W (ksinθ + u,−v) = W (ksinθ + u, v)

W (ksinθ − u, v) = W (ksinθ − u,−v)

(3.53)

We can conclude that if the surface is stationary stochastic processing, then these

two equations have the same result when m = n. The assumption here makes sense

if it is used to model sea surface. Physically, sea surface is big enough to be modeled

as a infinite surface. The correlation between two points on the sea surface depend

only on the distance if we exclude the influence of wind. Ideally, x direction and y

direction has the same distribution.

And since the first order dominates the result, to simplify the calculation, higher

orders are ignored in this approach. Stationary stochastic processing is utilized in this

thesis, and keeping the lowest order, the two situations have the same results. There-

fore, the probability of each case is not important in this situation. In conclusion,

this equation works for stationary isotropic random processes.
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Chapter 4

NUMERICAL EVALUATION, RESULTS, AND FUTURE WORK

4.1 Numerical Method to Evaluate the Integral

In this section, the evaluation of the integral (3.51) is proposed. In order to

validate this method, Gaussian distribution is assumed for both x and y direction.

And only first order item is kept in order to simplify the numerical evaluation. All

higher orders are neglected since that W n is of higher orders. Ignore all higher orders,

the integral(3.51) can be expressed by

σ0
V H =

4k4σ4cos6θ

π

∫
R2

dudv
u2v2

qq̄
e−σ

2(2k2z+2q2)W (ksinθ−u,−v)W (ksinθ+u, v) (4.1)

Since q̄ comes from E∗V H , q̄ = q∗. Hence, the equation becomes (4.2)

σ0
V H =

4k4σ4cos6θ

π

∫
R2

dudv
u2v2

|q|2
e−σ

2(2k2z+2q2)W (ksinθ−u,−v)W (ksinθ+u, v) (4.2)

For Gaussian isotropic random process, the correlation function can be expressed as

follows

ρ(ξ, ζ) = e−
ξ2+ζ2

l2 (4.3)

Hence, according to equation (3.48), W n can be expressed as follows for Gaussian

correlation

W n(U, V ) =
1

2π

∫∫ ∞
∞

dξdζe−jUξ−jV ζe−n( ξ
2+ζ2

l2
) (4.4)

Evaluate the above integral using change of variables, we can get

W n(U, V ) =
l2

2n
exp[−(U2 + V 2)l2

4n
] (4.5)
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Substitute equation equation (4.5) into equation (4.2), one can get

σ0
V H =

4k4σ4cos6θ

π

∫
R2

dudv
u2v2

|q|2
e−σ

2(2k2z+2q2) l
4

4
exp[− l

2(k2sin2θ + u2 + v2)

2
] (4.6)

Normalization of u, v and q gives further simplification of the integral. And one

benefit of normalization is that kl terms are carried out.

σ0
V H =

k4σ4k4l4cos6θ

π
e−2k2σ2cos2θe−

k2l2(1+sin2θ)
2

∫
R2

dudv
u2v2

|q|2
e
k2l2q2

2 e−2q2(kσ)2 (4.7)

where u2 + v2 + q2 = 1 in equation (4.7) due to normalization.

However, equation (4.7) has a singularity due to the singularity for Green’s func-

tion in lossless medium. And once we convert this equation into polar coordinates of

u, v and simplify it by change of variables, as shown in equation(4.9), this singularity

is a logarithmic branch-point singularity. Note that ρ2 = u2 + v2.

σ0
V H =

k4σ4k4l4cos6θ

4
e−2k2σ2(1+cos2θ)e−

k2l2sin2θ
2

∫ ∞
0

dρ
ρ5

|1− ρ2|
e−

k2l2ρ2

2 e+2ρ2(kσ)2 (4.8)

Further simplification can be made by making % = ρ2, yielding

σ0
V H =

k4σ4k4l4cos6θ

8
e−2k2σ2(1+cos2θ)e−

k2l2sin2θ
2

∫ ∞
0

d%
%2

|1− %|
e−

k2l2%
2 e+2%(kσ)2 (4.9)

Note that when |q| = 1, the term in the integrand is non-convergent and thus, it is

impossible to do numerical integration. Recall that convergence and uniqueness is

guaranteed by the introduction of small loss and hence the fulfillment of radiation

condition. Or on the other hand, the path of integral is stipulated for the evaluation

of this integral and Sommerfeld integration path is one of the most widely adopted.

[3]

Sommerfeld adopted the path as shown in Figure(4.1), which is a path located

on the complex plane, and this path worked even for lossless medium. However,
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it only works for theoretical purpose. There are several methods dealing with the

evaluation of Sommerfeld integral. And method of uniform asymptotic expansions is

one of the most widely adopted approaches, despite the weakness that this method

is problem specific. One way of computing the solution to these kinds of problems

in a general case is by the numerical integration of Sommerfeld integration. An

advantage of numerical evaluation is that it is capable to a computer program and

hence applicable widely.

+𝑞

−𝑞 𝑅𝑒𝑎𝑙(𝑞)

𝐼𝑚𝑎𝑔(𝑞)

Figure 4.1: Sommerfeld Integration Path in Complex q Plane

Numerically, since there could be singularities on the real axis, the integrand in

a vicinity of the singularity will be sharp peaked, which exacerbates the errors in

numerical evaluation. Thus, we choose an integration path as shown in figure (4.2).

Since the singularities are assumed to have some positive imaginary part in order

to ensure radiation condition, there is no singularity in the positive real axis. Thus,

the proposed integration path has the same value as the original integral according to

Cauchy’s integral theorem as long as the value of the integrand equals 0 at infinity.

As shown in figure (4.2), numerically integrating the integral along an integration

path parallel to the real axis is the way adopted in this thesis for ease of implemen-
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𝜚

𝑅𝑒𝑎𝑙(𝜚)

𝐼𝑚𝑎𝑔(𝜚)

Figure 4.2: A Robust Way of Defining an Integration Path

tation on computers.

There are several choices of integral path in order to evaluate equation (4.9). And

there are several advantages of this particular path. First of all, this choice of integra-

tion path avoids the sharp peak caused by singularity, making the integrand smoother

and converge faster. Then, this integration path is simple for computer simulation.

In addition, this integration path is a robust path since the error committed in a

numerical scheme is proportional to the derivatives of the integrand. Adaptive in-

tegration techniques can interpolation techniques can be applied in this integration

path to evaluate this kind of integral.[3]

And note that the integration path is valid only when the value of the integrand

vanishes at infinity. A sufficient condition for this is (kl)2 > 4(kσ)2, which means the

exponential term inside the integral decays when % approaches +∞. According to

equation (1.1), this condition means that

m =
√

2
σ

l
<

1√
2

(4.10)

Equation (4.10) shows one of the restrictions on the range of validity of this proposed

model. However, for both Kirchhoff approximation and small perturbation method,
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rms slope is required to be less than 0.5 typically. So this condition is of practical

use.

4.2 Results and Comparison with Classic Model

After numerical integration path is established, equation (4.9) can be evaluated by

the aid of computer program. And equation (2.57) is used for comparison, assuming

εr = 1 − j20000 for the dielectric. Since a dielectric material with large electric

coefficient can be regarded as a good conductor in the sense of Fresnel reflection

coefficient.
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Figure 4.3: The Scattering Coefficient for kσ = 0.2 and kl = 2.0

As shown in Figure (4.3), the scattering coefficient decreases as incident angle

increases, due to decrease of Fresnel reflection coefficient as incident angle increases.

Only angles from 0 degree to 50 degrees are considered in this thesis, since large inci-
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dent angle means small grazing angle. And a large amount of incident wave is shad-

owed and multiple scattering takes place, such that it is not accurate. Fortunately,

in practice remote sensing applications, small grazing angle is not of interest since

transmitter and receiver antenna are usually carried on a plane or satellite, which is

high from the earth surface. And also note that as grazing angle get smaller, scatter-

ing coefficient from perturbation method is larger because of ignorance of shadowing

and higher-order multiple scattering.
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Figure 4.4: The Scattering Coefficient for kσ = 0.2 and kl = 2.4

As shown in Figure (4.4), the shape of this curve is similar to the curve shown in

Figure (4.3). However, in this situation, scattering coefficient is larger than kl = 2.0.

In addition, when grazing angle gets smaller, the difference between these two methods

gets smaller. For fixed height variation, larger correlation length means smaller rms

slope, which implies that multiple scattering and shadowing are not as severe as larger
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slope surfaces. And since shadowing gets smaller, the scattering field in backscattering

direction gets more power, and hence larger scattering coefficient.
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Figure 4.5: The Scattering Coefficient for kσ = 0.1 and kl = 2.0

As shown in Figure (4.5), as standard deviation increases, the value of backscat-

tering coefficient gets raised near vertical direction. As the rms slope increases, second

order multiple scattering begins to contribute more into the total scattering coeffi-

cient, and thus large scattering coefficient is expected.

Above figures indicate that the scattering coefficient agree well with the small

perturbation method.

Note that scattering coefficient given by proposed model is larger than it given by

equation (2.57). The main reason is that in equation (2.57), a dielectric with large

imaginary permittivity is used to approximate a PEC surface. However, though it

can form a very good conductor, it is impossible to get perfect conducting.
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Figure 4.6: The Scattering Coefficient for kσ = 1.26 and kl = 3.77

Figure (4.6) depicts that the proposed model works for intermediate range, by

comparison with numerical method for a dielectric with large loss tangent. [12].

This set of surface is out of the range of validity of both small perturbation method

and Kirchhoff approximation, and the proposed model achieves good agreement with

numerical simulation.

4.3 Conclusion and Future Work

As shown in above figures, the proposed model agrees well with small perturbation

method carried out to second order in relatively large grazing angle. In addition, this

proposed model has larger range of validity since it works for intermediate range.

However, the validity condition of this model is required in order to be applied in
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practice. The comparison with rough surface as in Kirchhoff model range is desired

to show the agreement and validity of this model in high frequency range.
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