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ABSTRACT

The dissertation encompasses the transformer-less single phase PV inverters for

both the string and microinverter applications. Two of the major challenge with

such inverters include the presence of high-frequency common mode leakage current

and double line frequency power decoupling with reliable capacitors without com-

promising converter power density. Two solutions are presented in this dissertation:

half-bridge voltage swing (HBVS) and dynamic dc link (DDCL) inverters both of

which completely eliminates the ground current through topological improvement.

In addition, through active power decoupling technique, the capacitance requirement

is reduced for both, thus achieving an all film-capacitor based solution with higher

reliability. Also both the approaches are capable of supporting a wide range of power

factor.

Moreover, wide band-gap devices (both SiC and GaN) are used for implementing

their hardware prototypes. It enables the switching frequency to be high without

compromising on the converter efficiency. Also it allows a reduced magnetic com-

ponent size, further enabling a high power density solution, with power density far

beyond the state-of-the art solutions.

Additionally, for the transformer-less microinverter application, another challenge

is to achieve a very high gain DC-DC stage with a simultaneous high conversion effi-

ciency. An extended duty ratio (EDR) boost converter which is a hybrid of switched

capacitors and interleaved inductor technique, has been implemented for this purpose.

It offers higher converter efficiency as most of the switches encounter lower voltage

stress directly impacting switching loss; the input current being shared among all the

interleaved converters (inherent sharing only in a limited duty ratio), the inductor

conduction loss is reduced by a factor of the number of phases.

Further, the EDR boost converter has been studied for both discontinuous conduc-
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tion mode (DCM) operations and operations with wide input/output voltage range

in continuous conduction mode (CCM). A current sharing between its interleaved

input phases is studied in detail to show that inherent sharing is possible for only in

a limited duty ratio span, and modification of the duty ratio scheme is proposed to

ensure equal current sharing over all the operating range for 3 phase EDR boost. All

the analysis are validated with experimental results.
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Chapter 1

INTRODUCTION

Solar energy is among the fastest growing renewable energy resources which ac-

counts for an increasing and significant share of new generation capacity additions

each year [1]. In the U.S. new solar installations have exceeded 1 GW DC in each

quarter since 2014, reaching a total capacity of 29 GW DC in March 2016. In Q1 of

2016, solar photovoltaic (PV) systems accounted for 64% of new electric generation

added in the U.S. market, making it the largest source of capacity addition across

all the fuel types [1]. The distributed PV systems are garnering the interest of both

the utility providers and residential consumers with the reducing solar panel costs,

government incentive programs, and regulatory policies [2, 3]. The power electronic

converter is a key component of the grid connected PV systems, extracting maximum

power from PV panels and interfacing them to the grid.

1.1 PV Inverter

Currently, there are three widely used grid interactive PV systems: the centralized

inverter system, the string inverter system, and the microinverter system [4].

1.1.1 Central Inverter

The central inverters are typically in the 100 − 1000 kW range with three-phase

topology and modular design for large power plants and typical unit sizes of 100, 150,

250, 500 and 1000 kW. The PV modules are arranged in series-parallel combinations,

connected to one common central inverter as shown in Figure 1.1. The following are

the merits and demerits of central inverter system.
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Figure 1.1: Central Inverter System.

• High efficiency (more than 98 %) power conversion

• Cost effective for utility scale applications

• Maximum power point tracking (MPPT) control is disproportionate as it is

common for the combined PV array

• Reduction in energy yield in case of partial shading, and may lead to hot spot

failure under significantly unequal shading

• Loss of a single inverter leads to the loss of the entire or a large part of the

power generation, so the system is not reliable

• Need for high-voltage DC cables between PV panels and inverter.

1.1.2 String Inverter

The string inverters, shown in Figure 1.2, are based on a modular concept, where

PV strings, made up of series-connected solar panels, are connected to separate in-

verters. The string inverters are paralleled and connected to the grid. If the string

voltage is high enough then no voltage boosting is necessary, thereby improving the

system efficiency. Fewer PV panels can also be used, but then a DC/DC converter
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Figure 1.2: String Inverter System.

or a line/high frequency transformer is needed for a boosting stage. The advantages

compared to the central inverter are as follows:

• No losses in string diodes (no diodes needed)

• Separate MPPTs for each string so better power yield, but still it is not optimal.

However, due to the series connection of modules, the current from the PV string is

limited by the weakest link, i.e., a shaded module, and therefore, the loss of generation

is still larger than the corresponding microinverters for partial shading with string

inverters.

1.1.3 Microinverter

The microinverter, as shown in Figure 1.3 is popular for the power level ranging

from 200-500 W. Each such power processing device is responsible for the independent

MPPT of every single PV panel, thus maximizing the power production. It converts

the PV output to the AC voltage through one or more stages of power conversion,

and is integrated to the grid individually. It outperforms the string inverters under
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Figure 1.3: Microinverter System.

partial shading conditions created, for example, by-passing clouds. The output from

the unshaded modules is not affected under partial shading condition, and hence, the

total power is significantly higher. The following are the advantages of microinverter

system.

• The microinverter is an integrated part of the PV panel. It remove losses

due to the mismatch between panels and support panel level MPPT. For a

string inverter or a centralized inverter, a string or multistring of PV panels

shares a single MPPT controller, but the mismatch loss is significant in partial

shading conditions [5]. Considering the mismatch loss together with the DC/AC

conversion loss contributing to the whole PV system loss, string/centralized

inverters may have lower system efficiency than microinverters due to higher

mismatch loss although they usually have higher DC/AC conversion efficiency

than microinverters.

• Panel level hot-spot risk is removed and panel lifetime can be improved. Hot
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spot takes place when a shaded cell within a partially shaded panel becomes

reverse biased and dissipates power in the form of heat [6]. For series connected

PV panels used with a string/centralized inverter, a by-pass diode is added to

each panel in practice. For the microinverter solution, the by-pass diode is not

necessary because each panel has its own power processing unit, leading to no

direct connection between the PV panels.

• Its ’plug and play’ feature simplifies system installation and maintenance. The

microinverter solution allows for more flexible PV project planning and multi-

faceted PV panel installation.

1.2 Transformer-less Single Phase PV Inverter

The focus of the present work encompasses the transformer-less single phase PV

inverters, both the string and the microinverter implementation. The transformer-

less PV inverters are becoming increasingly more attractive due to their lower cost,

reduced footprint, and improved efficiency compared to inverters with transformer

isolation. However, a major challenge with the transformer-less inverters is the pres-

ence of common mode leakage currents [7] which can increase the system loss, distort

the grid current, and induce severe electromagnetic interference.

In addition, similar to most single-phase converters, another main challenge is the

presence of double line frequency power ripple [8, 9], which is the difference between

the instantaneous grid injected power and the constant dc power corresponding to

the maximum power point (MPP) from the PV panels, necessitating the use of large

filters in conventional topologies.

Finally, for the transformer-less microinverter application, another challenge is to

achieve a very high gain DC-DC stage simultaneously maintaining a high conversion

efficiency. The following gives a detailed discussion of the implementation challenges.
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1.2.1 Challenge I: Capacitive Ground Current

The frame of a PV module is required by codes to be grounded. There is significant

parasitic capacitances between the positive and negative PV terminals to the frame,

and hence to the ground. When the positive and/or negative terminals are connected

to a switching node of the inverter with respect to ground, it can lead to significant,

common mode ground currents through these parasitic capacitances. [7,10–13] present

different methods to mitigate this problem in transformer-less PV inverters.

The straight-forward way to address this issue would be directly connecting the

PV terminal ground to the grid neutral with topological variations which would gen-

erate no common mode voltage [14,15] or at least ensuring a low-frequency (typically

fundamental frequency) or constant potential of the PV negative terminal relative

to the grid neutral using half-bridge, or neutral point clamped (NPC) inverters [16].

For a conventional full bridge DC-AC inverter with unipolar sinusoidal pulse width

modulation (SPWM), the voltage across this stray capacitance swings at switching

frequency, increasing the leakage current, whereas realization with bipolar SPWM

reduces the common mode ground currents. Other solutions to the ground current

issue would involve disconnecting the PV negative from the grid neutral at certain

operating inverval over a cycle with additional switches and diodes [17,18].

1.2.2 Challenge II: Power Decoupling

Figure 1.4 shows the power decoupling consideration required for single phase

inverters. The input power from the PV array being purely DC as shown by PIN

and the output being a sinusoidally varying power superimposed on a DC average as

shown by PO, the instantaneous power from input is clearly not equal to that of the

output. Considering the grid voltage and current as given in (1.1), the grid power is
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given in (1.2) which is a double line frequency varying ripple power.

vg = Vg sin(ωt); ig = Ig sin(ωt+ θ) (1.1)

Pg =
VgIg

2
(cos θ − cos(2ωt+ θ)) (1.2)

Thus a energy storage element, like a large DC-link capacitor is required to store

and deliver the balance power over one fundamental cycle. This ensures that the

PV input is free from any voltage ripple which would otherwise degrade the MPPT

efficiency of the converter. The state-of-the-art approaches predominantly use elec-

trolytic capacitors for these decoupling purposes, which have relatively high equivalent

series resistance (ESR) and low RMS current rating per µF. Moreover, these capac-

itors have limited lifetime [19] which further degrades with electrical and thermal

stresses, and thermal cycling [20]. Consequently they pose reliability challenges to

the inverters, which require to compete with the 25 years of warranted lifetime of the

PV module [21].

Thus an extensive research has been directed to replace these electrolytic capac-

itors with corresponding film capacitors and increase the reliability of the inverters.

But as the capacitor to volume ratio of a film capacitor is low compared to an elec-

trolytic capacitor, so instead of directly replacing them, novel power decoupling tech-

Figure 1.4: Power Decoupling Concept.
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niques are proposed in literature [8, 19, 22–27] to reduce the capacitor requirement

and address the double line frequency power with smaller capacity energy storage

component.

Some converters address the issue by adding an additional conversion stage (an

auxiliary circuit) to handle the ripple power [22,24], which can be connected in either

series or parallel to the primary converter. The main disadvantages of such approaches

are higher cost, complex circuitry, and often higher losses with the addition of more

active components. They also have to encounter higher current stress on the auxiliary

circuit if connected in series [24] or higher voltage stress if connected in parallel.

For power factor correction (PFC) applications, [25] achieves reduction in the

capacitance by allowing higher voltage ripple across the DC-link but at the cost

of distorted line input current. Other papers have discussed sophisticated control

schemes to reduce the DC-link capacitor without affecting the power quality [26,27].

But all these approaches do not essentially stretch the limit on reducing the capacitors

to the minimum and there is still much room for improvement. As such decoupling

capacitor volume reduction remains an active area of research. In a recent study in

[28], several decoupling approaches have been compared including DC side decoupling

and AC side decoupling, with DC side decoupling shown to outperform AC decoupling

approaches. The best solution shown in [28] achieves 15 F/kW at 800 V, but using

six switches and without considering the ground current issues or non-unity power

factor operation.

1.2.3 Challenge III: High Volatage Gain

As mentioned in Section 1.1, the microinverters are directly connected to each

of the PV panel with typical input voltage spanning from 20 to 40 V, whereas, to

interface to the grid the AC output voltage needs to be 120 V/ 230 V RMS. This
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necessitates a high voltage boost for interfacing a PV panel to the grid. Thus a high

voltage gain is required by the DC-DC stage and with a transformer-less implemen-

tation, it poses a big challenge. A review of the high gain DC-DC boost is discussed

in the following Section 1.3.

1.3 High Gain Transformer-less DC-DC Boost Stage

Though ideally the conventional boost or buck-boost converter can achieve high

gain, in practical implementation their voltage gain is limited, typically to 5-8, by

the inductor series resistance and losses incurred by the semiconductor components

which need to operate under extreme-duty-ratio, high voltage stress, and overall poor

converter performance as duty ratio approaches unity. Hence, alternate topologies for

high step-up conversion and improved system operation is an active area of research

exploring both isolated and non-isolated converters.

A high frequency transformer-isolated DC-DC converter is a popular choice in

applications which necessitate galvanic isolation between the input and output ports

[29, 30]. It can also be employed in high step-up applications not demanding isola-

tion as it has the advantage of achieving high gain with a flexible selection of the

transformer turns ratio at the design stage. But it has the drawback of higher switch

voltage stress, current spike, and lower efficiency due to the transformer leakage induc-

tance and parasitic capacitance formed between its primary and secondary winding.

Active clamp or snubber circuit can be implemented to avoid voltage spike, but these

lead to complex circuitry and loss in the auxiliary circuit [31, 32]. Integrated mag-

netic based isolated converters can also be implemented to increase the power density

and efficiency with added performance features like soft switching of the converter

switches [33, 34]. Resonant converter based isolated converters are further proposed

where the transformer leakage inductance is used as the resonant inductance [35–37].
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On the other hand, non-isolated high gain converter has the benefits of higher

efficiency, smaller foot-print, reduced volume, and lower cost with the elimination of

the lossy and bulky transformer. A wide variety of non-isolated topologies based

on switched capacitor [38–41], voltage multiplier cell (VMC) [42–45], three state

switching cell (3SSC) [46–48], coupled and/or interleaved inductor [49–54], or a com-

bination of these [55–61] are available in literature. A number of soft switching ap-

proaches to improve the efficiency with the above mentioned voltage boost techniques

or even with the conventional converters extreme-duty-ratio-operation have also been

reported [62,63].

Switched capacitor based high step-up converters [38–41] have been presented to

attain improved efficiency, higher power density, and better performance as it has no

magnetic components making it a low noise with minimal radiated electromagnetic

interference (EMI) solution [40]. Due to its modular structure, the voltage scaling

is flexible with this technique. But it has the disadvantages of pulsating input cur-

rent and poor voltage regulation as the voltage gain is predetermined by the circuit

structure and the input must be an integer fraction of the output voltage. The VMC

based converters [42–45] more commonly referred to as hybrid switched capacitor can

be used to circumvent this problem. Primarily the voltage multiplier cell is composed

of capacitor-diode-resonance inductor which can be integrated to classical DC-DC

converters. The resonance inductor allows the zero current switching (ZCS) turn-on

of the main switch, but is not mandatory for basic operation of the multiplier cell [44].

For high gain applications, 3SSC converters based on acitve switches, diodes, and

coupled inductor are alternatively proposed to reduce inductor size, lower input and

output current ripple, and decrease the voltage stress of the main switch [46, 47]. In

fact the voltage stress across the switch is naturally clamped by the output filter

capacitor. [48] attains high gain by integrating VMC and 3SSC approaches.
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Besides, the coupled inductor based converters can provide high voltage step-

up by manipulating the turns ratio but maintaining lower voltage switch stress and

conduction loss [49, 50]. However, these have high ripple at the input and the ripple

increases with the increase of turns ratio to meet the higher voltage gain requirement.

Also their efficiency is degraded due to the losses associated with the leakage inductors

and active clamping is proposed to recycle the leakage energy at the cost of circuit

complexity [51, 52, 64]. For high input current application, interleaving has been

proven to provide lower input ripple, reduced passive component size, and lower loss,

but the voltage gain is still the same as the classical boost converter [53,54].

Converters combining the features of previously discussed approaches are demon-

strated to provide high gain with improved system performance but have inher-

ently complex implementations. [55, 56] combine the features of coupled inductor

and switched capacitor technique, while [57,58] integrate coupled inductor and VMC

attributes. The coupled inductor and 3SSC techniques are merged in [59,60], whereas

in a recent publication in [61], features of coupled inductor, VMC, and 3SSC are all

integrated in one converter. Additionally, the hybrid boost-flyback topology is in-

troduced to achieve high static gain with low voltage stress across the switches, but

it requires large input filters as the input current is pulsed [65, 66]. For improved

efficiency [62,63] propose soft switching technique with the interleaved converter.

1.4 Objectives and New Contributions of the Work

The dissertation focuses on developing single phase transformer-less PV intervers

for string and microinverter application, ensuring higher efficiency, high power den-

sity, wide band-gap device based high switching frequency, and reduced decoupling

capacitance requirement through active power decoupling. The new contributions of

this work are:
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• extended duty ratio (EDR) boost converter has been thoroughly analyzed and

implemented for high gain purpose as the DC-DC stage for the non-isolated

microinverter application;

• a novel sensor-less current sharing technique with duty ratio and phase shift

modification of the carrier signal has been proposed to ensure wide input/output

voltage range of operation for the EDR boost converter;

• discontinuous conduction mode (DCM) operation for the EDR converter is stud-

ied for different operating zones for high gain dc-dc light load application;

• an active power decoupling scheme with large sinusoidal swing of the half-bridge

capacitors and a double line frequency DC-link voltage ripple termed as half-

bridge voltage swing (HBVS) inverter has been proposed to reduce the capacitor

requirement; the proposed converter is studied, implemented and tested for its

performance validation in string inverter application;

• another active power decoupling scheme with dynamic DC-link (DDCL) ap-

proach has been analyzed, implemented, and tested for microinverter appli-

cation which uses only four switches and reduced capacitance for decoupling

purposes along with the feature of double grounding.
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• J. Roy and R. Ayyanar, ”Sensor-Less Current Sharing Over Wide Operating

Range for Extended-Duty-Ratio Boost Converter,” in IEEE Transactions on

Power Electronics, vol. 32, no. 11, pp. 8763-8777, Nov. 2017.

• Y. Xia; J. Roy; R. Ayyanar, ”A capacitance-minimized, doubly grounded transformer-

less photovoltaic inverter with inherent active-power decoupling,” in IEEE Trans-

actions on Power Electronics, vol. 32, no. 7, pp. 5188-5201, July 2017.
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Orleans, LA, 2015, pp. 1-3.

1.5 Chapter Overview

Chapter 2 discusses the EDR boost for transformer-less high step-up application.

Comprehensive analysis of converter operating principles, key theoretical waveforms,

and steady state circuit performance corresponding to all the possible zones of opera-

tion have been presented for a 3-phase EDR boost converter. Methods for sensor-less

current sharing among the different phases of the 3-phase EDR boost have been in-

troduced. The sharing scheme has been convincingly demonstrated in a 250 W GaN

based hardware prototype for different operating regions.

The EDR converter shows interesting performance features and current sharing

characteristics in the discontinuous conduction mode (DCM) operation. For an M -

phase converter in DCM, all the boost inductors would still share the current equally

inherently in each of Zone I to Zone M-1, while only Zone M (the least gain region)

would not experience inherent equal current sharing. In fact, in Zone M, the inductor

current for phases 2 to M will have negative excursion at certain operating interval.

A comprehensive analysis of the operation of 3-phase EDR boost converter in DCM

for each of its operating zones is presented in Chapter 3. Further, the results are

validated from the GaN-based 3-phase 100 W experimental prototype.

In Chapter 4, a power decoupling scheme for single phase inverters has been

proposed. The converter termed as half-bridge voltage swing (HBVS) inverter is a

combination of boost and half-bridge stages along with a power decoupling stage. A

large sinusoidal swing of the half-bridge capacitors are allowed along with a double

line frequency DC-link voltage ripple to address the power decoupling with a reduced

capacitor value of only 54 µF/ kW at a peak of 550 V DC-link voltage. Further, the

inductors of the buck-boost and the half-bridge inverter stages are integrated in one
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single core to reduce the converter volume and cost. The experimental results with

the integrated inductors at 1 kW output are provided for validation of the concept

for string inverter application.

In Chapter 5, another power decoupling technique is introduced based on a

doubly grounded transformer-less PV inverter topology with active power decoupling

built into the basic topology termed as dynamic DC-link (DDCL) inverter. It is

based on a single stage of power conversion by a unique combination of boost-coupled

half bridge circuit using only four switches overall and capable of supporting a wide

range of power factor. The simulation and experimental results at 300 W output are

provided for validation of the concept for microinverter application with a high-gain

DC-DC stage as the front-end converter.

The report is concluded in Chapter 6 with the summary and future work of this

research contribution.
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Chapter 2

EXTENDED DUTY RATIO BOOST CONVERTER

2.1 Introduction

The extended-duty-ratio (EDR) boost converter (M -phase version is shown in

Figure 2.1), has been studied for the high step-up implementation. It inherits the

merits of switched capacitors and interleaved inductor technique and offers lower

converter losses as most of the switches encounter lower voltage stress, and thus

switches with lower voltage rating and thus lower RDS(ON) can be used. Also the

input current is shared among all the interleaved converters (inherent sharing only

in a limited duty ratio), so the inductor conduction loss is reduced by a factor of the

number of phases. Besides, the current through the switches is a fraction of the input

current resulting in minimized conduction and switching losses. Buck implementation

of EDR converter is proposed in a number of previous works intended for voltage step-

down applications as voltage regulators (VR) or point of load (POL) implementation

[67–70], whereas its variations are reported in [71–78]. These papers primarily studied

the converter in only one operating zone, where the phase currents (output inductor

currents for buck operation) are being shared inherently. In a recent work EDR

converter has been employed in a bidirectional application [79].

In this chapter, the operation of the EDR boost converter in different operating

zones is studied in detail along with the current sharing between its interleaved input

phases.
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Figure 2.1: Topology for M -Phase Extended Duty Ratio (EDR) Boost.

2.2 M -Phase EDR Boost Converter

Figure 2.1 shows the M -phase EDR boost topology. It is a combination of in-

terleaved inductor with switched capacitor configuration. The circuit consists of M

switched capacitors CM whose voltage levels vcM are a fraction of the output voltage

vout, and M interleaved boost inductors which share the input current in equal or

unequal proportion depending on the operating duty ratio of the converter. The load

is connected across the final capacitor i.e., vcM = vout. Each boost phase is interleaved

which means that they are phase shifted by (360/M)◦.

For a comprehensive analysis and design of a general M -phase converter, the

operation needs to be studied under M different zones with the duty ratio for the mth

zone given by (2.1).

M −m
M

≤ D ≤ M −m+ 1

M
for all m ∈ [1,M ] (2.1)

The converter gain in different zones cannot be expressed with any general expres-

sion, as the operating modes in each zone is not the same. As an example for Zone I

(this is the zone with maximum voltage gain), the operating modes only encompass

intervals with either all M phases being simultaneously on or intervals where (M−1)

phases are on in a certain pattern depending on interleaving sequence. Here, the
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lower switch turned on is referred to as the phase being on. The voltage gain of the

converter in this zone is given by (2.2).

kI =
M

1−D for m = 1 (2.2)

On the contrary, for Zone M (this is the zone with minimum voltage gain), the

operating modes only encompass intervals with either a single phase being on or

intervals where neither of the phases are on. And the gain in this zone is given by

(2.3).

kM =
1

(1−D)M
for m = M (2.3)

It is also interesting to notice that the current is inherently shared among all the

interleaved boost inductors only in Zone I operation. This can be verified with the

basic capacitor charge balance principle for all the switched capacitors. Thus it is the

preferred operating zone as the maximum voltage gain is also obtained in this region.

However, with a wide range of operating input and output voltages, the converter

is required to be operated for an expanded range of duty ratio forcing the converter

to also operate in some other M − 1 operating zones where the current is no longer

shared equally inherently.

So outside this region some of the phases might be overloaded, if a proper current

sharing scheme is not employed. This would lead to higher switching and conduction

losses in overloaded phases leading to hot spot; the inductors might also saturate

altogether disrupting the converter operation. So it is very important to address the

current sharing issue.

Current sensors can be employed to realize the current sharing by advanced con-

trol technique [69]. But it would incur higher component count as each phase would

require separate sensor and associated conditioning circuitry, increased control com-

19



plexity, and higher cost. It has been observed that in the rest of the (M − 1) zones

where the phase currents are not inherently shared, either the magnitude or the

phase-shift of the duty ratio of each interleaved phase can be modified to ensure in-

put current being shared equally or more evenly between the phases. This property

has been exploited to ensure current sharing in EDR boost converter.

2.3 Operating Principles

The following analysis considers the converter operating in continuous conduction

mode (CCM) where the inductor current of all the boost phases would always be

continuous.

As has been discussed in Section 2.1, to get an insight of the converter operation

in various zones, each operating zone with unique combination of operating modes

needs to be analyzed individually. A basic 3-phase topology as given in Figure 2.2 is

considered to comprehend the converter operation where M = 3. Figure 2.3 shows

the different operating modes of the converter resulting from different combination

of the switching pattern. For example, Figure 2.3a with S1S2S3 = 111 mode signifies

that all the switches are on; whereas, Figure 2.3h with S1S2S3 = 000 mode signifies

that all the switches are off. The rest of the modes can be similarly recognized from
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Figure 2.2: Topology for 3-Phase EDR Boost.
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Figure 2.3b to Figure 2.3g. Figure 2.4 shows the typical gate signal, corresponding

inductor current, and switch voltage stress in each of the operating zones for 3-phase

converter.

2.3.1 Zone I

Table 2.1 gives the detail of the operation in Zone I where duty ratio of each

phase is equal and is beteween 2/3 ≤ D ≤ 1. The switch states, time interval,

and corresponding inductor current and capacitor voltage slopes have been tabulated

along with the figure reference for the operating modes. It also gives the charg-

ing/discharging conditions of the passive component in these intervals denoted by ↑

and ↓ respectively. Figure 2.4a shows the typical gate signal, corresponding inductor

current, and switch voltage stress, both the diode (denoted by VD) and MOSFETs

(denoted by VDS) in this zone of operation, where xI = (D−2/3)Ts and yI = (1−D)Ts.

The voltage vcM for each capacitor can be established in terms of the input voltage

Vin by applying the inductor volt-second balance and is given by (2.4) where vc3 is

also the output voltage, vout.

vc1 =
Vin

(1−D)
; vc2 =

2Vin
(1−D)

; vc3 =
3Vin

(1−D)
(2.4)

In this zone the input current is inherently shared among all the three boost

phases. This can be analyzed from Table 2.1 by applying capacitor charge balance

principle. As each of the intermediate capacitors are carrying current only in two

operating intervals, it is straightforward to understand the inherent current share.

For example, the charge balance of C1 shows iL1 = iL2. The current in each boost

inductor is given by (2.5).
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(c) S1S2S3 = 101, possible mode in Zone I and

Zone II
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(d) S1S2S3 = 100, possible mode in Zone II and

Zone III
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(e) S1S2S3 = 011, possible mode in Zone I and
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(f) S1S2S3 = 010, possible mode in Zone II and

Zone III
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(g) S1S2S3 = 001, possible mode in Zone II and

Zone III
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(h) S1S2S3 = 000, possible mode in Zone III

Figure 2.3: Current Path Corresponding to Each of the Operating Intervals/Modes
for 3-Phase EDR Boost.
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Figure 2.4: Gate Signal, Inductor Current, and Device Voltage at Three Operating
Zones for 3-Phase EDR Boost.

iL1 = iL2 = iL3 =
io

(1−D)
(2.5)

Finally, the gain of the converter for this zone follows in (2.6). As vc1 and vc2

are integer fractions of vc3, it is to be noted from Table 2.1 that the voltage applied

across each input inductor is equivalent, i.e., they have the same voltage magnitude

and duration, and thus equivalent current slope, but phase shifted by 360/3 = 120◦

for interleaving.

kI =
vc3
Vin

=
iL1 + iL2 + iL3

io
=

3

(1−D)
(2.6)
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2.3.2 Zone II

Table 2.2 gives the details of the operation in Zone II where duty ratio of each

phase is equal and is beteween 1/3 ≤ D < 2/3. Similar to Table 2.1 the details of

the switch states, time interval, and corresponding inductor current and capacitor

voltage are tabulated along with the figure reference for the operating modes. By

applying inductor volt-second balance, the voltage vcM for each capacitor is obtained

and is given by following sets of equation.

vc1 =
Vin(D2 − 5D/3 + 7/9)

(1−D)3
(2.7)

vc2 =
Vin(D2 − 2D + 10/9)

(1−D)3
(2.8)

vc3 =
Vin(2D2 − 4D + 19/9)

(1−D)3
(2.9)

It can be observed that unlike Zone I, the intermediate capacitor voltage is not

an integer fraction of the output voltage. Figure 2.4b shows the typical gate signal,

corresponding inductor current, and switch voltage stress both the diode (denoted

by VD) and MOSFETs (denoted by VDS) in this zone of operation, where xII =

(D− 1/3)Ts and yII = (2/3−D)Ts. The inductor current is derived by applying the

capacitor charge balance principle and is given in (2.10)-(2.11).

iL1 =
io

(1−D)
; iL2 =

io
3(1−D)2

(2.10)

iL3 =
io(D

2 − 5D/3 + 7/9)

(1−D)3
(2.11)
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It can be clearly noticed that current is not the same in each of the phases, it is

the highest in phase 1, and the lowest in phase 2. (2.12) gives the converter gain in

this operating zone.

kII =
vc3
Vin

=
(2D2 − 4D + 19/9)

(1−D)3
(2.12)

2.3.3 Zone III

This is the zone for minimum converter gain with the least duty ratios. Table

2.3 gives the detail of the operation in Zone III where duty ratio of each phase is

considered equal and is beteween 0 ≤ D < 1/3. Similar to the previous two Tables

2.1 and 2.2, the attributes of the switch states, time interval, and corresponding

inductor current and capacitor voltage are tabulated along with the figure reference

for the operating modes. The capacitor voltage vcM is obtained by applying inductor

volt-second balance, and is given in (2.13)-(2.14).

vc1 =
VinD

(1−D)3
; vc2 =

VinD(2−D)

(1−D)3
(2.13)

vc3 =
Vin

(1−D)3
(2.14)

Similar to Zone II, the intermediate capacitor voltage is not an integer fraction

of the output voltage. Thus from Table 2.3 and from vcM expressions it can be seen

that the inductor voltage of each phase is not equivalent to each other. The inductor

current is derived by applying the capacitor charge balance principle and is given in

(2.15).

iL1 =
io

(1−D)
; iL2 =

ioD

(1−D)2
; iL3 =

ioD

(1−D)3
(2.15)
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Even in this zone, the current is not the same in each phase; phase 1 has the highest

current and phase 2 the least. Figure 2.4c shows the typical gate signal, corresponding

inductor current, and switch voltage stress for this zone both the diode (denoted by

VD) and MOSFETs (denoted by VDS), where xIII = DTs and yIII = (1/3 − D)Ts.

(2.16) gives the converter gain in this operating zone.

kIII =
vc3
Vin

=
1

(1−D)3
(2.16)

2.4 Current Sharing

Equal duty ratio does not ensure equal current sharing except in Zone I, as men-

tioned in Section 2.3. Therefore, this paper proposes suitable adjustment of duty

ratios for each phase to ensure equal current sharing or at least to minimize the cur-

rent RMS error in the worst scenario. Since in Zone I current is inherently shared

with duty ratio of all the phases being in the range of 2/3 ≤ D ≤ 1, the discussion

here would consider the remaining two operating zones. Depending on the operating

zone, the correction of duty ratio of each phase would be different with the objec-

tive of either sharing the current equally between phases or minimizing the standard

deviation of the current error.

2.4.1 Zone II

As shown in Section 2.3, in Zone II the current in phase 1 is the highest and that

in phase 2 is the least, i.e., iL1 > iL3 > iL2. Also from Table 2.2 and Figure 2.4b, it

can be seen that iL1 is charged from t0 to t3 for an interval of DTs and discharged

from t3 to t6 for an interval of (1−D)Ts. So to decrease the average of iL1, it could

be as simple as decreasing the duty ratio of phase 1 by a certain value, lets assume

it a. Similar analysis would indicate increasing the duty ratio of phase 2 by b to
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Figure 2.5: Adjusted Duty Ratio for Three Phases to Balance Current in Zone II
Operating Region for 3-Phase EDR Boost.

increase the average of iL2, and keeping the duty ratio of phase 3 unchanged. The

carrier signals (Vca1, Vca2, Vca3) and modified duty ratios are shown in Figure 2.5 for

two different pulse width modulation (PWM) generation schemes, asymmetric (saw-

tooth carrier) and symmetric (triangle carrier) PWM. Finally, this modification of

duty ratio of each phase would lead to the change in the converter gain, which is now

an involved function of a, b, and D.

This section discusses the estimation of a and b for meeting the specified gain of the

converter for Zone II operation for both asymmetric and symmetric PWM schemes.

The operation with unequal duty ratios affects the two PWM schemes differently

and imposes different restrictions on the limit of duty ratio modification. Thus the

converter is analyzed separately in each of the two PWM schemes of operation.

Case I (Asymmetric PWM)

For asymmetric PWM, the duty control signal of phase 1 is decreased by a1, and that

of phase 2 is increased by b1. Thus the modified duty ratio of each phase becomes:

D1(II) = D − a1, D2(II) = D + b1, and D3(II) = D. The corresponding gate and
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carrier signals along with the primary control signal (vcs) are shown in Figure 2.5a.

The inductor current and capacitor voltage would be modified accordingly as involved

functions of a1, b1, and D as given in (2.17)-(2.22) obtained by capacitor charge and

inductor volt-second balance principles respectively.

iL1 =
io
γ

(1−D − b1) (2.17)

iL2 =
io
γ

(1/3 + a1 + b1) (2.18)

iL3 =
io(D

2 − 5
3
D + 7

9
+ 2Db1 + a1

3
− 5

3
b1 − a1b1)

(1−D)γ
(2.19)

vc1 =
VinD

2

ζ
− Vin(5

9
− b21 − a1b1 + 5

3
a1 + 4

3
b1)D

(1
3

+ a1 + b1)ζ
+
Vin(7

9
a1 − 2

3
a1b1 − 2

3
b21 + 5

9
b1 + 7

27
)

(1
3

+ a1 + b1)ζ

(2.20)

vc2 =
Vin
ζ

(D2 −D(2− b1) +
1

3
a1 −

2

3
b1 +

10

9
) (2.21)

vc3 =
Vin
ζ

(2D2 −D(4 + a1 − 2b1) +
4

3
a1 −

5

3
b1 − a1b1 +

19

9
) (2.22)

where, ζ = (1−D)(D2−D(2 +a1− b1) + (1 +a1)(1− b1)) and γ = (1−D)2−D(a1−

b1) + a1 − b1 − a1b1. To impose equal current sharing among all the phases, (2.23)

needs to be satisfied (where k is the corresponding converter gain).

iL1 = iL2 = iL3 =
kio
3

(2.23)

With further simplification of (2.17)-(2.19) by using (2.23), the condition for equal

current among all the phases can be derived as (2.24).
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a1 = 2/3−D; b1 = 0 (2.24)

The relationship between duty ratio and gain in this operating region is given in

(2.25) which is interestingly independent of a1 and b1.

kII(1) = 1/(
5

9
− 2

3
D); D =

1

6
(5− 9

kII(1)
) (2.25)

It is worth noting that this condition is only true for a1Ts ≤ xII , i.e., a1 ≤

(D − 1/3), implying D ≥ 0.5 beyond which the operating modes would no longer be

the same as given in Table 2.2 for Zone II, and condition (2.24) would not anymore

ensure equal current sharing. Finally by clubbing the condition in (2.25) it is seen

that the minimum gain with asymmetric PWM in Zone II is 4.5, with the current

being shared equally among the phases.

Case II (Symmetric PWM)

With the similar reasoning as the asymmetric PWM, the duty control signal of phase 1

in symmetric PWM is decreased by a2, and that of phase 2 is increased by b2 as shown

in Figure 2.5b along with the carrier signals and the primary control signal (vcs). Thus

the modified duty ratio of each phase becomes: D1(II) = D − 2a2, D2(II) = D + 2b2,

and D3(II) = D. Similar to the asymmetric case, the corresponding inductor current

and capacitor voltage would be altered as involved functions of a2, b2, and D which

are not provided here to avoid lengthy repetition. The condition for equal current

among all the phases can be derived as (2.26) by using (2.23).

a2 =
4

5
(2/3−D); b2 =

2

5
(2/3−D) (2.26)
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Finally the relationship between duty ratio and gain in this operating region is

given in (2.27) which is again independent of a2 and b2.

kII(2) = 1/(
23

45
− 3

5
D); D =

23

27
− 5

3kII(2)
(2.27)

It is to be noted that this condition is only true for a2Ts ≤ xII , i.e., a2 ≤ (D−1/3),

and b2Ts ≤ yII , i.e., b2 ≤ (2/3−D) Beyond these values, the operating modes would no

longer be the same as given in Table 2.2 for Zone II, and (2.26) would not anymore

ensure equal current sharing. The limit on a2 is stringent than on b2, in fact, the

condition on b2 is always true for (2.26). The limit on a2 implies D ≥ 3/7. Thus the

range of duty ratio for which (2.23) is satisfied is expanded from asymmetric PWM

scheme of [2/3, 1/2] to symmetric PWM scheme of [2/3, 3/7]. Finally by clubbing the

condition in (2.27) the minimum gain of 3.94 is obtained for this case with current

being shared equally among the phases.

For the rest of the region in this zone i.e., for 1/3 ≤ D < 3/7, the converter duty

ratio modification would be discussed in the next sub-section as the analysis would

be similar to that of Zone III.

2.4.2 Zone III

In this zone the current in phase 1 is the highest and that in phase 2 is the least,

i.e., iL1 > iL3 > iL2 (shown in Section 2.3). Also from Table 2.3 and Figure 2.4c, it

can be seen that iL3 is charged from t4 to t5 for an interval of D3Ts and discharged

from t0 to t4 and t5 to t6 for an interval of (1−D3)Ts, iL2 is charged for an interval of

(D2 +D3)Ts and discharged for an interval of (1−D2−D3)Ts, and iL1 is charged for

an interval of (D1+D2+D3)Ts and discharged for an interval of (1−D1−D2−D3)Ts.

From this discussion it is clear that the average of iL3 could be increased by increasing

the duty ratio of phase 3. But it would also increase the average of the iL1 and iL2.
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With similar reasoning the average of iL2 cannot be increased with a simultaneous

decrease of iL1 and thus current balance is not possible in this case with interleaved

phases.

Case I (1 ≤ kIII ≤ 3)

The average of iL1 would be the minimum if the duty of phase 1 is set to 0, i.e.,

D1(III) = 0 and the duty of other phases are varied according to the converter gain

requirement. Figure 2.6 shows the duty ratio for this scenario, along with the mod-

ulating signals. VM are now interleaved by 360/2 = 180◦, thus the converter would

retain the operating modes of Zone III as discussed in Section 2.3 for 0 ≤ Dn(III) ≤ 1/2

rather than for only 0 ≤ Dn(III) ≤ 1/3, where Dn(III) is the modified duty ratio of

phase n in this zone; and the analysis would be less complex. The operation in this

case for both the asymmetric and symmetric PWM would be similar.

The inductor current and capacitor voltage would be modified accordingly as a

function of D2(III) and D3(III). The corresponding expressions are given in (2.28)-

(2.33) obtained by capacitor charge and inductor volt-second balance principles re-

spectively.

iL1 = io (2.28)

iL2 =
ioD2(III)

(1−D2(III))
(2.29)

iL3 =
ioD3(III)

(1−D2(III))(1−D3(III))
(2.30)

vc1 = 0 (2.31)
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Figure 2.6: Adjusted Duty Ratio of Three Phases to Reduce the RMS Current Error
in Zone III (Case 1) Operating Region for 3-Phase EDR Boost with 1 ≤ kIII ≤ 3.

vc2 =
VinD2(III)

(1−D2(III))(1−D3(III))
(2.32)

vc3 =
Vin

(1−D2(III))(1−D3(III))
(2.33)

As iL1 in (2.28) is independent of the duty ratio, equal current sharing is not a

function of D2(III) and D3(III) anymore, and under only one condition with D2(III) =

1/2 and D3(III) = 1/3, (2.23) holds true where each phase current is equal to io i.e.,

iL1 = iL2 = iL3 = io = iin/3. And the converter gain at this condition is 3 as obtained

from the converter gain relationship given in (2.34).

kIII(1) =
1

(1−D2(III))(1−D3(III))
(2.34)

Further from (2.28)-(2.30) it is clear that for a given converter gain, the current in

phase 1 is constant while that of phase 2 and 3 are variable depending on the values

of D2(III) and D3(III). Thus a minimization problem to find the best combination of

D2(III) and D3(III) can be formulated so as to decrease the per unit RMS error of

the phase current ie (2.35), with the equality constraint on converter gain (2.34) and

inequality constraint on the duty ratios (2.36) ensuring no overlap of the phases with

180◦ interleaving.
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ie =
1√
3iin

[(
iin
3
− iL1)2 + (

iin
3
− iL2)2 + (

iin
3
− iL3)2]0.5 (2.35)

where, iin = iL1 + iL2 + iL3 = kIIIio

D2(III) ≤ 0.5 D3(III) ≤ 0.5 (2.36)

This is a non-linear minimization and need not be solved on-line to save on the

controller computation time. Optimization solver in MATLAB is used to solve the

minimization problem and compute a look-up table in advance with the values of

D2(III) and D3(III) vs kIII(1) to be used during converter operation.

Alternatively, this can also be solved by Lagrange multiplier method with the prob-

lem formulation as defined in (2.37). Here, L is the Lagrangian with f(D2(III), D3(III))

as the function to be minimized subject to the constraint g(D2(III), D3(III)).

L = f − λg where, f = ie

and g = kIII −
1

(1−D2(III))(1−D3(III))
= 0 (2.37)

(2.38) gives the duty ratio values in terms of the converter gain as obtained from

solving the Lagrangian L . The solution is similar to that obtained from the previous

minimization technique from MATLAB.

D2(III) =
kIII − 1

kIII + 1
; D3(III) =

D2(III)

1 +D2(III)

(2.38)

Case II (3 ≤ kIII ≤ 3.94)

Until now the converter operation with modified duty ratio is discussed with gain

in the range of [9, 3.94] and [3, 1]. For the rest of the operating region, the function

would be mostly similar to case 1 in Zone III but with modified D1(III). In case
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Figure 2.7: Modified Duty Ratio of Three Phases Ensuring Equal Current Sharing
in Zone III (Case 2) for 3-Phase EDR Boost with 3 ≤ kIII ≤ 3.94.

1, iL1 is always higher than corresponding iL2 and iL3, whereas, with k > 3, iL1

becomes less than the rest two. Thus D1(III) is modified to be non-zero and overlap

D2(III) in phase, which increases the average value of iL1 and modifies iL2 but has no

effect on the converter gain or other capacitor voltages. The corresponding gate and

modulating signals are shown in Figure 2.7.

The modified current expressions are given in (2.39) and (2.40), the rest of the

variables remain the same as in case 1. Here the constraint (2.36) is modified to

D2(III) +D3(III) ≤ 1, and only with symmetrical PWM phase 2 and 3 overlapping is

restricted, which are still 180◦ interleaved.

iL1 =
io

(1−D1(III))
(2.39)

iL2 =
io(D2(III) −D1(III))

(1−D1(III))(1−D2(III))
(2.40)

Again by applying (2.23), (2.41) is obtained, i.e., under this condition equal cur-

rent sharing is ensured in this region.

D1(III) = 1− 3

kIII(2)
; D2(III) =

1

2
+
D1(III)

2
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Figure 2.8: Implementation Flow Diagram of Current Sharing with Modified Duty
Ratio for 3-Phase EDR Boost.

D3(III) = 1/3 (2.41)

2.4.3 Implementation

Table 2.4 provides the summary of operating duty ratio, the status of current

sharing, and converter gain at different operating regions for a quick reference. Figure

2.8 shows the implementation flow diagram of current sharing with modified duty ratio

for 3-phase EDR boost. The output voltage error (difference of a reference voltage and

the sensed output voltage) is fed to a voltage controller to generate a common control

signal vcs. The operating zone is determined based on its value which then determines

the individual control signal for each phase in the current sharing block. Finally, the

corresponding PWM signals are generated by comparing the control signals with the

phase shifted carrier signals.
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2.5 Discontinuous Conduction Mode

The EDR boost converter might also potentially operate in discontinuous conduc-

tion mode (DCM) when the load current is quite low. For an M phase converter, all

the boost inductors would still share the current equally inherently in each of Zone

I to Zone M − 1, while only Zone M would not experience inherent equal current

sharing. In fact, in Zone M , the inductor current for phases 2 to M will have negative

excursion (phase 1 is defined as the one which is closest to the input as seen from

Figure 2.1) which would lead to circulating current resulting in higher RMS current of

all the inductors, diodes, and MOSFETs, and consequently lower efficiency. Whereas,

in buck version of EDR converter, the DCM operation would lead to negative current

excursion and uneven current sharing in all the possible operating zones. Shenoy and

Amaro [80] has proposed an improved interleaving technique to address the negative

phase current problem in 2-phase converter by uneven phase interleaving approach.

In this chapter, the analysis of improved modulation technique for equal phase current

sharing is primarily focused on the CCM operation of EDR boost.

2.6 Experimental Results

2.6.1 Hardware Prototype

A 250 W GaN based hardware prototype for 3-phase EDR boost as shown in

Figure 2.9, has been built to validate the current sharing concept. Table 2.5 and

Table 2.6 give the converter specifications and the passive and active component

details for the hardware set-up respectively. The inductors are designed based on a

specified ripple current percentage on each of the phase in Zone I operation, this is

the zone which sees inherent current sharing among the boost inductors and each

inductor is subjected to same voltage waveform (as seen from Figure 2.4a). So the
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Figure 2.9: Experimental Prototype for 3-Phase EDR Boost.

inductor values are equal for each phase.

UCC27511 from TI has been used as gate driver with the provision for independent

turn-on and turn-off gate resistors which is critical for operation with GaN devices

at relatively high switching frequency. Digital isolator Si8610BB from Silicon Labs is

used for isolating the PWM signals from the control and power sections. The auxil-

iary power supply for the control section is derived externally. EZDSP TMSF28335

has been used to generate the 200 kHz interleaved PWM signals. LeCroy 6200A oscil-

loscope is used to capture the relevant waveforms and power analyzer YOKOGAWA

WT3000 is used to measure the efficiency.

2.6.2 Converter Operation Without Duty Ratio Adjustment

The input current, individual inductor current, input and output voltage, inter-

mediate capacitor voltage, and the device drain-source voltage vDS have been shown

in Figs. 2.10, 2.11, and 2.12 respectively for each of the operating zones. For Zone

I, the conversion is from 20 V to 220 V at 200 W with duty ratio of 0.73 for each
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Figure 2.10: Waveforms for Zone I 3-phase EDR boost with D1 = D2 = D3 = 0.73
operating from 20 V to 220 V at 200 W (current: 0.5 A/div, vin, vc1 : 20 V/div,
vc2, vc3 : 50 V/div, vDS1, vDS2, vDS3 : 50 V/div, time : 2 µs/div).

phase. The input current is shared equally and vDS is same for all phases, the input

current has reduced ripple, the switch stress is 1/3rd of the output voltage, and the

intermediate capacitor voltages are 1/3rd and 2/3rd of the output voltage respectively.

A peak efficiency of 96.06% is obtained in this operating condition.

For Zone II, the conversion is from 40 V to 220 V at 200 W with duty ratio of

0.55 for each phase. vDS is not the same for all the phases, the switch stress for Qs1

is Vc2, whereas, for Qs2 and Qs3 it is Vout − Vc1 and Vout − Vc2 respectively. A peak

efficiency of 96.01% is obtained in this operating condition.

For Zone III, the converter is operated from 50 V to 125 V at 220 W with duty

ratio of 0.27 for each phase. Even in this zone, vDS is not the same for all phases,

in fact Qs1 encounter full output voltage, whereas, Qs2 and Qs3 experience the same

voltage stress as in Zone II. Due to the limitation of the component voltage ratings,

the operation of Zone III is shown for a maximum of 50 V input to 125 V output. A

peak efficiency of 94.28% is obtained in this operating condition.

As expected, the inductor current is not equally shared between the phases for

Zones II and III and the input current has higher ripple. For better visualization,

each inductor current are captured with the same current offset in the scope. As

expressions for voltage and current in different operating zones have been derived for
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Figure 2.11: Waveforms for Zone II 3-phase EDR boost with D1 = D2 = D3 = 0.55
operating from 40 V to 220 V at 200 W (current: 0.5 A/div, vin, vc1 : 20 V/div,
vc2, vc3 : 50 V/div, vDS1, vDS2, vDS3 : 100 V/div, time : 2 µs/div).

iin

iL2

iL1

iL3

vc3

(a) Inductor currents (vc3 : 50

V/div)

vc1

vin

vc2

vc3

(b) Capacitor voltages (vc3 : 20

V/div)

vDS2

vDS1

vDS3

vc3

(c) Device drain-source voltages

(vc3 : 50 V/div)

Figure 2.12: Waveforms for Zone III 3-phase EDR boost with D1 = D2 = D3 = 0.27
operating from 50 V to 125 V at 220 W (current: 0.5 A/div, vin : 50 V/div, vc1, vc2 :
20 V/div, vDS1, vDS2, vDS3 : 100 V/div, time : 2 µs/div).

ideal case in Section 2.3, the experimental values can be verified to be very close to

that computed from these equations.

2.6.3 Converter Operation With Duty Ratio Adjustment

The input current, individual inductor current, input and output voltage, inter-

mediate capacitor voltage, and the device drain-source voltage have been shown in

Figure 2.13 for Zone II operation with symmetric PWM. The converter is operated

from 36 V to 220 V at 200 W with duty ratio of 0.57 for phase 3, and for other phases

it is calculated from expression given in Table 2.4. vDS is same as that of non-adjusted
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Figure 2.13: Waveforms with modified duty ratio scheme for Zone II 3-phase EDR
boost with symmetric PWM, D3 = 0.57 and D1 and D2 calculated from expression
given in Table 2.4, operating from 36 V to 220 V at 200 W (current: 0.5 A/div,
vin, vc1 : 20 V/div, vc2, vc3 : 50 V/div, vDS1, vDS2, vDS3 : 100 V/div, time : 2 µs/div).

iin

iL2

iL1

iL3
vc3

(a) Inductor currents (vc3 : 50

V/div)

vc1

vin

vc2

vc3

(b) Capacitor voltages (vc3 : 20

V/div)

vDS2

vDS1

vDS3

vc3

(c) Device drain-source voltages

(vc3 : 50 V/div)

Figure 2.14: Waveforms with modified duty ratio scheme for Zone III (Modified
D-higher gain) 3-phase EDR boost with symmetric 180◦ interleaved PWM, D1 and
D2 in phase, D1 = 0.18, D3 = 0.33 and D2 calculated from expression given in Table
2.4, operating from 37 V to 125 V at 220 W (current: 0.5 A/div, vin, vc2 : 20 V/div,
vc1 : 10 V/div vDS1, vDS2, vDS3 : 100 V/div, time : 2 µs/div).

duty ratio Zone II operation as discussed in Section 2.6.2. A peak efficiency of 96.27%

is obtained in this operating condition.

Figs. 2.14 and 2.15 respectively give the input current, individual inductor current,

input and output voltage, intermediate capacitor voltage, and the device drain-source

voltage waveforms for both modified D-higher gain and modified D-lower gain regions

in Zone III operation. For former with symmetric 180◦ interleaved PWM, the con-

verter is operated from 37 V to 125 V at 220 W with duty ratio of 0.18 for phase 1,
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Figure 2.15: Waveforms with modified duty ratio scheme for Zone III (Modified
D-lower gain) 3-phase EDR boost with symmetric 180◦ interleaved PWM, D1 = 0,
D2 = 0.46 and D3 calculated from expression given in Table 2.4, operating from 47 V
to 125 V at 220 W (current: 0.5 A/div, vin, vc2 : 20 V/div, vc1 : 10 V/div vDS1, vDS2,
vDS3 : 100 V/div, time : 2 µs/div).

0.33 for phase 3, and for phase 2 it is calculated from expression given in Table 2.4,

also D1 and D2 are in phase. For modified D-lower gain region with symmetric 180◦

interleaved PWM, it is operated from 47 V to 125 V at 220 W with duty ratio of 0

for phase 1, 0.46 for phase 2, and for phase 3 it is calculated from expression given

in Table 2.4. A peak efficiency of 94.67% is obtained in this operating condition.

The voltage stress on the switches in each of these two cases is the same as that of

non-adjusted duty ratio operation in Zone III discussed in Section 2.6.2.

With the proposed duty ratio scheme, it is shown that equal current sharing among

the three phases has been achieved for Zone II and Zone III modified D-higher gain

region (Figs. 2.13a and 2.14a respectively), and for Zone III in modified D-lower

gain region (Figure 2.15a) the RMS current error has been significantly reduced. The

voltage and current values can be verified to be very close to that obtained from the

equations in Section 2.4 which were derived assuming ideal converter operation.
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2.7 Conclusion

EDR boost has been studied for high step-up application. Comprehensive analysis

of converter operating principles, key theoretical waveforms, and steady state circuit

performance corresponding to all the possible zones of operation have been presented.

Methods for sensor-less current sharing among the different phases of the 3-phase EDR

boost have been introduced. It is shown that inherent current sharing in three boost

phases is only possible in Zone I operation. For Zones II and III equal current sharing

can only be ensured with adapted duty ratio scheme until certain range of converter

gain. Beyond this, though the current cannot be shared equally among phases, the

per unit RMS current error can be minimized with modified duty ratio value and

phase. The sharing scheme has been convincingly demonstrated in a 250 W GaN

based hardware prototype for different operating regions.
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Table 2.4: Gain Summary

Condi-
tion

Current
sharing

Duty ratio Ideal gain

Zone I Inherent
sharing with

equal D

2
3
≤ D1 = D2 = D3 ≤

1

3

(1−D)
∞− 9

Zone II

Typically
not shared
with equal

D

1
3
≤ D1 = D2 = D3 ≤

2
3

(2D2 − 4D + 19/9)

(1−D)3
9− 3.375

Modified D
(Asym

PWM) -
shared
equally

D1 = 2D − 2
3
; D2 =

D3 = D; 1
2
≤ D ≤ 2

3

(
5

9
− 2

3
D

)−1

9− 4.5

Modified D
(Sym

PWM) -
shared
equally

D1 = 13
5
D − 16

15
; D2 =

1
5
D + 8

15
; D3 =

D; 3
7
≤ D ≤ 2

3

(
23

45
− 3

5
D

)−1

9− 3.94

Zone III

Typically
not shared
with equal

D

0 ≤ D1 = D2 = D3 ≤
1
3

1

(1−D)3
3.375− 1

Modified
D-higher

gain (case 2)
- shared
equally

D1 = D; D2 =
1
2

+ 1
2
D; D3 = 1

3
, 180◦

interleaving with D1 in
phase with D2

1

(1−D2)(1−D3)
3.94− 3

Modified
D-lower gain

(case 1) -
RMS error
minimized

D1 = 0; D2 =

D; D3 =
D2

1 +D2

,

180◦ interleaving

1

(1−D2)(1−D3)
3− 1
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Table 2.5: Converter Specification

Parameter Rating

Input 20-50 V

Output 220 V, 250 W

Switching frequency 200 kHz

Table 2.6: Component Details

Component Parameters

C1 , C2 , C3 4.7 µF/ 100 V, 4.7 µF/ 200 V, 4.7 µF/ 300 V

L1 , L2 , L3 180 µH

Qs1 , Qs2 , Qs3 GS66508P

D1 , D2 , D3 C3D04060E (2), SBR10U200
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Chapter 3

DISCONTINUOUS CONDUCTION MODE OPERATION OF EDR BOOST

CONVERTER

3.1 Introduction

The extended duty ratio (EDR) converter shows interesting performance features

and current sharing characteristics in the discontinuous conduction mode (DCM)

operation. For an M -phase converter in DCM, all the boost inductors would still

share the current equally inherently in each of Zone I to Zone M-1, while only Zone

M (the least gain region) would not experience inherent equal current sharing. In fact,

in Zone M, the inductor current for phases 2 to M will have negative excursion at

certain operating interval. A comprehensive analysis of the operation of 3-phase EDR

boost converter in each of its operating zones is presented in this chapter. Further,

the results are validated from the GaN-based 3-phase 100 W experimental prototype.

3.2 Operating Principles

Figure 3.1 shows the 3-phase EDR boost converter, the circuit configuration is

already discussed in the previous chapter. Like continuous conduction mode (CCM),

for DCM operation too it has three different operating zones. With equal duty ratio

for each phase and a phase shift of 120◦ between them, the input current is shared

between the interleaved phases for operating Zones I and II, while for Zone III it is

still not shared. Moreover, Zone III operation has multiple cases depending on the

duty ratio and the average input current of the converter with different combination

of operating modes as discussed shortly.
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Figure 3.1: Topology for 3-Phase Extended Duty Ratio (EDR) Boost Converter.

The boundary between CCM and DCM operation can be derived in a similar

way to the conventional boost converter. For DCM operation, the average inductor

current for each phase iLiavg should be less than its corresponding peak-peak ripple

∆iLi which leads to the following condition for DCM.

2L

RTs
<
DD

′2

3
(3.1)

The dimensionless parameter k is defined by k = 2L
RTs

and its critical value kcrit for

DCM can be identified form (3.1). Smaller value of k < kcrit leads to the discontinuous

operation of the EDR converter.

3.2.1 Zone I Operation

Zone I corresponds to the duty ratio range 2/3 ≤ D < 1. For DCM operation,

Figure 3.2 shows the typical gate signal, corresponding inductor current, and switch

voltage stress of both the diode (denoted by VD) and MOSFETs (denoted by VDS) in

this zone of operation, where xI = (D − 2/3)Ts and yI = (1−D)Ts. The maximum

voltage stress for each device has been marked. It can be seen that all the switches

experience a voltage stress of vo/3, while it is 2vo/3 for the diodes of first two phases

and vo/3 for the third one. Also, the inductor currents are equivalent in all three
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Figure 3.2: Gate Signal, Inductor current, and Device Voltages for DCM Operation
in Zone I for 3-Phase EDR Boost.
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phases with similar slope, peak, and average values.

3.2.2 Zone II Operation

For Zone II, the duty ratio range is given as 1/3 ≤ D < 2/3. It is interesting

to note that for Zone II operation in DCM, the waveforms are similar to that of

Zone I with xII = (D − 1/3)Ts and yII = (2/3 − D)Ts, and thus are not repeated.

This is different than the CCM operation, where Zone II has different combination

of operating modes, higher device voltage stress, and unequal phase inductor current

than that of Zone I.

Zone III operation is more involved and is discussed in the next section.

3.3 Zone III Operation

Zone III corresponds to the duty ratio range 0 ≤ D < 1/3. In this zone, individ-

ual inductor current has negative current excursion even for non-synchronous circuit

implementation. This is because of the coupling between the interleaved phases with

the switched capacitors. The negative current path can be appreciated by noting

the conducting devices during each of the operating interval as discussed below. The

presence of the negative phase current leads to circulating current in the converter

accounting to additional conduction loss. It is to be noted that depending on the

converter duty ratio and k, Zone III can further have different operating cases as

analyzed below.

3.3.1 Case I

For DCM operation, Figure 3.3 shows the typical gate signal, corresponding in-

ductor current, and switch voltage stress of both the diode (denoted by VD) and

MOSFETs (denoted by VDS) for Case I operation in Zone III, where xIII = DTs
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and yIII = (1/3 − D)Ts. The maximum voltage stress for all the devices is shown.

Different operating intervals are marked in Figure 3.3, based on which Table 3.5 gives

the conducting devices, inductor voltages, and capacitor currents. For each of the

interval, the inductor voltages are obtained by applying KVL. However, additionally

the conditions vL1 + vL2 + vL3 and vL1 + vL2 are respectively applied for interval b and

c to derive the corresponding voltages. Capacitor currents are obtained by applying

KCL. The final column in Table 3.5 describes the condition of transition from one

interval to its subsequent one. For Case I, none of the diode of the main MOSFETs

conduct.

Denoting iL1a as the inductor current of boost phase I at the end of the interval

a, and by noting its slope from Table 3.5 at that interval, iL1a can be obtained as

iL1a =
vin
L
DTs +

vin − vo
L

aTs (3.2)

Similarly, each of the phase currents can be obtained at the end of each operating

interval (representation similar to iL1a is followed for all others). Subsequently the

mathematical expression of these intervals can be obtained by applying the condition

which marks the end of the interval (given in the final column of Table 3.5). For

example, interval a ends when condition iL1a + iL2a + iL3a = 0 is satisfied, which is

used to derive the expression for a as

a =
vinD

3vo − 3vin − vc1 − vc2
(3.3)

The expression for all other intervals can be similarly obtained and are given in

Table 3.1.

53



Table 3.1: Computing Operating Interval for Case I Operation in Zone III

Condition applied Expression of interval

iL1a + iL2a + iL3a = 0 a =
vinD

3vo − 3vin − vc1 − vc2

iL3b = 0 b =
(vo − vin − vc2)3a

2vc2 − vc1

a+ b+ c =
1

3
(1− 3D) c =

1

3
−D − a− b

d = D d = D

iL1e = 0 e =
iL1d

vo − vin
L

Ts

iL2f + iL3f = 0 f =
iL2e + iL3e

2vo − 2vin − vc1 − vc2
L

Ts

g + e+ f = 1
3
(1− 3D) g = 1

3
−D − e− f

h = D h = D

iL2p = 0 p =
iL2h

vo − vin − vc1
L

Ts

p+ q = 1
3
(1− 3D) q = 1

3
−D − p

iL3r = 0 p =
iL3q

vo − vin − vc2
L

Ts

r + s = D s = D − r

3.3.2 Case II

In this case, the diode of Q3 conducts, i.e., negative current flows through it

for certain intervals (b + c) as shown in Figure 3.3 which shows the typical gate
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in Zone III, Case II for 3-Phase EDR Boost.
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signal, corresponding inductor current, and switch voltage stress of both the diode

(denoted by VD) and MOSFETs (denoted by VDS) for Case II operation in Zone III.

The negative conduction happens if the condition 3vin < 2vc2 − vc1 is satisfied. The

intervals xIII and yIII is similar to that of the previous case. The maximum switch

voltage stress is also marked in the Figure, the voltage stress for all the intervals

can be found by referring to Table 3.7. Different operating intervals are marked in

Figure 3.3, based on which Table 3.7 gives the conducting devices, inductor voltages,

and capacitor currents. Similar to Case I, the final column in the table describes the

condition of transition from one interval to its next.

Following the same procedure as above, the expression for each of the operating

interval is derived as given in Table 3.2.

3.3.3 Case III

Case III is characterized by the negative conduction of both Q2 and Q3. The

operating intervals can be similarly derived as Cases I and II and are not shown here

to avoid lengthy repetition.

Also it is to be noted that apart from the presented waveforms in Figures 3.3 and

3.4, there can exists variation in the combination of operating intervals. However,

these additional cases have very similar operating characteristics as the basic ones

discussed here with limited differences in the operating intervals. In fact, the new

ones would constitute a sub-set of these three operating cases. For example, a variant

of Case II has no p interval, though it retains the basic operating principles of Case

II.
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Table 3.2: Computing Operating Interval for Case II Operation in Zone III

Condition applied Expression of interval

iL1a + iL2a + iL3a = 0 a =
vinD

3vo − 3vin − vc1 − vc2

iL1b + iL2b = 0 b =
iL1a + iL2a

2vc2 − 2vin + vc1

L

Ts

iL3c = 0 c =
iL3c

vin

L

Ts

a+ b+ c+ d =
1

3
(1− 3D) d =

1

3
−D − a− b− c

iL1e = 0 e =
iL1d

vc1 − vin
L

Ts

e+ f = D f = D − e

iL2g + iL3g = 0 g =
iL2f

2vo − 2vin − vc1 − vc2
L

Ts

iL2h = 0 h =
2iL2g

vc1 − vc2
L

Ts

g + h+ p = 1
3
(1− 3D) p = 1

3
−D − g − h

q = D q = D

iL3r = 0 r =
iL3q

vo − vin − vc2
L

Ts

r + s =
1

3
(1− 3D) s =

1

3
−D − r

t = D t = D
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Table 3.3: Converter Specification

Parameter Rating

Input 20-50 V

Output 220 V, 100 W

Switching frequency 150/200 kHz

Table 3.4: Component Details

Component Parameters

C1 , C2 , C3 4.7 µF/ 100 V, 4.7 µF/ 200 V, 4.7 µF/ 300 V

L1 , L2 , L3 6.5 µH

Qs1 , Qs2 , Qs3 GS66508P

D1 , D2 , D3 C3D04060E (2), SBR10U200

3.4 Simulation and Experimental Results

3.4.1 Hardware Prototype

A 100 W GaN based hardware prototype for 3-phase EDR boost as shown in Fig.

3.5 has been built to study the DCM operation. Table 3.3 and Table 3.4 give the

Figure 3.5: Experimental Prototype for 3-Phase EDR Boost.
58



iL1

vds1

vout

vds3

vin

iL2

vds2

iL3

iin

(a)

iL1

vds1

vout

vds3

vin

iL2

vds2

iL3

iin

(b)

Figure 3.6: Waveforms for DCM operation (current: 5 A/div, vin : 20 V/div, othe
voltages : 100 V/div, time : 2 µs/div) of 3-phase EDR boost for (a) Zone I with
D1 = D2 = D3 = 0.7 operating from 10 V to 200 V at 150 kHz switching frequency
(time : 2 µs/div), (b) Zone II with D1 = D2 = D3 = 0.45 operating from 17 V to
200 V at 200 kHz switching frequency (time : 1 µs/div).

converter specifications and the passive and active component details for the hardware

set-up respectively. A 500 Ω load resistor is used for the experiment. The inductors

are designed with toroid MPP core CO-55351-A2 from Magnetics. Litz wire is used

to limit the high frequency conduction loss. The value of the dimensionless parameter

k for this case is 3.9× 10−3 and 5.2× 10−3 for 150 kHz and 200 kHz respectively.

EZDSP TMSF28335 has been used to generate the 200 kHz interleaved PWM

gate signals. LeCroy 6200A oscilloscope is used to capture the relevant waveforms

and power analyzer YOKOGAWA WT3000 is used to measure the efficiency.

3.4.2 Experimental Results

Figs. 3.6a and 3.6b respectively show the experimental waveforms for Zones I

and II operation under DCM. The interleaved phase currents, device voltages, input

current and voltage, and output voltages are shown for each zone. It can be seen

that for both the zones, the inductor currents are equivalent in all three phases with

similar slope as discussed earlier. Further, the voltage stress for all the three devices

can be observed to be vo/3. An experimental efficiency of 90.92% and 93.98% are
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Figure 3.7: Waveforms for Zone III DCM operation at 200 kHz switching frequency
(current: 2 A/div, vin : 50 V/div, time : 2 µs/div) in 3-phase EDR boost for (a)
Case I with D1 = D2 = D3 = 0.18 operating from 37 V to 175 V (vo : 200 V/div) ,
(b) Case II with D1 = D2 = D3 = 0.3 operating from 29 V to 175 V (vo : 100 V/div).

observed in operating Zones I and II respectively.

Figs. 3.7a and 3.7b respectively show the waveforms from hardware prototype for

Cases I and II operation in Zone III under DCM for 175 V output. The interleaved

phase currents, and input and output voltages are shown for each case. An effi-

ciency of 91.07% and 89.97% are observed in experiment for Cases I and II operation

respectively.

High-frequency ringing is present in the experimental waveforms due to circuit

non-idealities. Thus simulation results are provided for further validation of the con-

verter operation. Figs. 3.8 and 3.9 present the corresponding simulation results for

Cases I and II operation respectively showing all the relevant waveforms of the con-

verter. It can be verified that 3vin < 2vc2−vc1 is satisfied for Case II operation where

QD3 conducts. Also it can be seen that the presented simulation and experimental

results are in good agreement with the analysis presented in the previous sections.
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Figure 3.8: PLECS simulation waveforms for Case I of Zone III 3-phase EDR boost
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3.5 Conclusion

In this chapter, EDR boost has been studied for high step-up light load application

in DCM operation. Comprehensive analysis of converter DCM operating principles,

key theoretical waveforms, and steady state circuit performance corresponding to all

the possible zones of operation have been presented. It is shown that inherent current

sharing in three boost phases is possible in Zones I and II operation unlike for only

Zone I in CCM operation. For Zone III, multiple operating cases exist with different

combination of operating modes. Finally, the DCM operation analysis is validated in

a 100 W GaN based hardware prototype for different operating regions.
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Chapter 4

HALF BRIDGE VOLTAGE SWING INVERTER

4.1 Introduction

As discussed in Section 1.2.2, the input power from the PV array being purely DC

and the output being a sinusoidally varying power superimposed on a DC average, the

instantaneous power from input is clearly not equal to that of the output. Also the

problem of capacitive ground current has been introduced in Section 1.2.1. Here, a

power decoupling scheme for single phase inverters has been proposed which addresses

both the challenges of transformer-less application as discussed above [81]. The pro-

posed converter termed as half-bridge voltage swing (HBVS) inverter topology is a

combination of the boost and half-bridge stages along with a power decoupling stage.

A large sinusoidal swing of the half-bridge capacitors are allowed along with a double

line frequency DC-link voltage ripple to address the power decoupling with a reduced

capacitor value of only 54 µF/ kW at 550 V peak, and only uses film capacitors for

this purpose. Unlike many other active decoupling solutions, the proposed approach

does not significantly increase the DC-link voltage and therefore the switch voltage

stress. Also being a half-bridge implementation, the voltage ripple seen by the stray

ground capacitor is only at grid frequency of 60 Hz, yielding very low capacitive leak-

age current and EMI. The string inverter is implemented with SiC devices, with a

100 kHz switching frequency.
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Figure 4.1: Proposed Half Bridge Voltage Swing (HBVS) Inverter for Transformer-
less PV Application.

4.2 Circuit Configuration

Figure 4.1 shows the topology of the half bridge voltage swing (HBVS) inverter for

transformer-less PV application. The converter has an input boost stage followed by

a buck-boost power decoupling and half-bridge inverter stages. The buck-boost stage

comprises of two switches Q2 and Q3 and an inductor Lbb and controls the voltage

of the half-bridge capacitors, C1 and C2 such as to provide a part of 120 Hz power

decoupling. Whereas, the unidirectional boost stage consisting of a diode D1, a switch

Q1, and input inductor Lb boosts the PV input voltage vin to a higher dc-link voltage

v3 with a 120 Hz ripple which supports the rest of the grid ripple power. Additionally

this stage adds to the flexibility of accepting a wide input voltage range, as required

by the PV inverters to address the partial shading conditions.

The half-bridge inverter comprises of two switches Q4 and Q5. In stand-alone

(Figure 4.1b) and grid connected (Figure 4.1c) modes, node A{B} is shorted with

A1{B1} and A2{B2}, respectively. For grid connected implementation LCL (Lg1, Cg,

Lg2) and for stand-alone operation LC (Lg1, Cg) filters are considered. The grid neu-

tral is connected to the middle point of half-bridge capacitor, which ensures that the

PV panel stray capacitance encounter only fundamental frequency current, and thus

address the ground current issue. Though this is true for any half-bridge based in-

verter, but for the double line frequency decoupling power they necessitate very large
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capacitors in the range of mF. In the proposed converter through active power decou-

pling scheme, the capacitance requirement is greatly minimized, a detailed discussion

is given in the next section.

4.2.1 Power Decoupling

The power decoupling is predominantly taken care of by the buck-boost stage

through the control of the half-bridge capacitors. The grid neutral is connected to

the middle point of half-bridge capacitor, which ensures that the PV panel stray ca-

pacitance encounter only line frequency current, and thus address the ground current

issue. This is true for any half-bridge based inverter, but for power decoupling they

necessitate large capacitor in the range of mF. In the proposed converter through

active power decoupling scheme, the capacitance requirement is greatly minimized.

Considering no capacitor is present on the DC-link i.e., C3 = 0 and the DC-link

voltage v3 is held constant, i.e., with zero 120 Hz voltage ripple on the DC-link, the

voltage across the two capacitors v1 and v2 are given by (4.1) and (4.2) respectively.

v1 =
v3
2

+ A sin(ωt+ φ) (4.1)

Table 4.1: Converter Specification

Parameter Rating

DC Input 100-450 V

Output 120 V, 60 Hz, stand-alone

Operating power factor (pf) 0.7 lagging - 0.7 leading

Switching frequency, fsw 100 kHz
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v2 =
v3
2
− A sin(ωt+ φ) (4.2)

Ideally, v1 and v2 can swing from 0 to v3, i.e., A = v3/2. In such scenario, the

capacitance can be reduced to a minimum vale and the power decoupling principle

in this converter can be analyzed as follows. In a quarter cycle when C1 gets charged

from 0 to v3/2 and C2 is discharged from v3 to v3/2 keeping the sum of them to be

constant to v3, the increment of power for C1 is less than that discharged by C2 and

thus the balanced power is fed to the grid. In the next quarter, C1 gets charged from

v3/2 to v3 and C2 is discharged from v3/2 to 0 again maintaining the sum of the

capacitor voltages to be constant to v3, the increment of power for C1 is more than

that discharged by C2 and the thus C1 sinks the balanced power between the input

and the grid. Exactly opposite happens in the other two quarter cycles.

Figure 4.2a shows the variation of the pulsating power P1 and P2 supported by

these capacitors, and the total ripple power addressed by the two capacitors corre-

sponding to the specification given in Table 4.1 and at unity power factor (UPF).
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Figure 4.2: Analytic Plots for Operating Condition Corresponding to Vg = 120 V,
P = 1 kW, v3 = 530, A 250, C = 43 µF.
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The pulsating power for each capacitor is given in (4.3).

P1 =
1

2

d

dt

(
C1v

2
1

)
; P2 =

1

2

d

dt

(
C2v

2
2

)
(4.3)

Further (4.4) is obtained by substituting for v1 and v2 from (4.1) and (4.2) respec-

tively and by considering C1 = C2 = C for symmetry.

P1 + P2 = ωCA2 sin(2ωt+ 2φ) (4.4)

Figure 4.2b gives the analytic waveforms of three capacitor voltages, grid voltage,

and scaled grid current at A = 0.94(v3/2) corresponding to the specification given

in Table 5.1 and UPF. Though ideally, v1 and v2 can swing from 0 to v3 and A =

v3/2, but it cannot be realized because of the additional constraint imposed on the

instantaneous values of v1 and v2 at any operating power factor. The constraint

expression is given in (4.5). This ensures that the inverter stage does not operate at

modulation index more than 1, which would otherwise distort the output waveforms

and impact their total harmonic distortion (THD) performance.


v1 > vg if vg ≥ 0

v2 > |vg| if vg < 0

(4.5)

This is quite different from any HB inverter with v1 = v2 and conventional de-

coupling scheme which uses a very large dc-link capacitor, generally electrolytic, with

a small double line frequency voltage ripple, Vr on the dc-link. Thus no additional

constraint is imposed on the instantaneous HB voltages w.r.t. the grid voltage, where

it is enough to satisfy 2v1 > Vg globally.

Finally by comparing the magnitude and phase of 2ωt terms in Pg and P1 + P2

from (1.2) and (4.4), the condition for double line frequency power decoupling as
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given in (4.6) are obtained, where Sg is the inverter VA. Thus the capacitor values

and its voltage phase are determined independently.

C =
VgIg
2ωA2

=
Sg

ωA2
; φ =

π

4
+
θ

2
(4.6)

(4.6) shows that the capacitor value is dependent only on the voltage swing across

the capacitor and unlike the full bridge inverter or most of other power decoupling

approaches, it is independent of the DC-link voltage.

4.3 Capacitance Optimization and Operation

Until now the DC-link capacitor is considered to be zero with no voltage ripple

at the DC link i.e., C3 = 0 and v3 = 0. But it has been observed that the total

capacitor values required for power decoupling can be further reduced by allowing

a limited double line frequency voltage ripple at the DC-link with a non-zero DC

link capacitor. This section studies an optimization problem to arrive at the best

capacitance value with a constraint on the switch voltage stress and instantaneous

values of v1 and v2 with respect to vg.

4.3.1 Case Studies

Figure 4.3 gives the simulation waveforms of capacitor voltages, DC-link voltage,

grid voltage, and scaled grid current for 1 kW converter corresponding to the spec-

ification given in Table 5.1 and at three different power factor with 530 V as the

allowable switch voltage stress corresponding to a 600 V (with the safety margin for

converter transient). Figures 4.3a, 4.3b, and 4.3c respectively present waveforms at

0.7 leading pf, UPF, and 0.7 lagging pf with a total of 86 µF capacitor (C1 + C2).

It can be seen that the condition given in (4.5) has been satisfied in all three cases.

Further, the worst operating condition occurs at leading power factor when the vg

72



v3

vg

5ig

v1 v2

(a) pf = 0.7 leading

v3

vg
5ig

v1 v2

(b) pf = 1

v3

vg

5ig

v1 v2

(c) pf = 0.7 lagging

Figure 4.3: Waveforms from PLECS for Operating Condition Corresponding to Vg
= 120 V, P = 1 kW, v3 = 530, A 250, C = 43 µF.

waveform barely touches v1 and v2 waveforms at the critical point, with the difference

in voltage being very minimal. Thus to design the values of the passive components,

especially the decoupling capacitor, the range of power factor the inverter needs to

operate should be carefully noted as the voltage difference at the critical point varies

along the power factor. And even if condition (4.6) is satisfied with the chosen capac-

itor, (4.5) can impose more stringent requirement at leading power factor requiring a
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higher capacitor value than given by the former.

However, the total capacitance requirement can be reduced if instead of having a

constant DC-link voltage, a limited double line frequency ripple is allowed in the DC-

link. The DC-link voltage would now be pulsating as given in (4.7). This introduces

two new variables in the converter parameter, one is the DC-link ripple Vr and the

other is the DC-link capacitor C3.

v3 = V + Vr sin(2ωt+ θ) (4.7)

The ripple power addressed by C3 is given in (4.8) which can be further written

as (4.9) by combing the expression of v3 from (4.7).

P3 =
1

2

d

dt

(
C3v

2
3

)
(4.8)

P3 = ωC3V Vr cos(2ωt+ θ) + ωC3V
2
r sin(4ωt+ 2θ) (4.9)

With the ripple on DC-link, the expression for P1 and P2 and thus P1 + P2 are

also modified as shown in (4.10).

P1 + P2 = ωC(A2 + V Vr) cos(2ωt+ θ)

+
1

2
ωCV 2

r sin(4ωt+ 2θ) (4.10)

And the total ripple power supported by all three capacitors is given in (4.11).

Pt = P1 + P2 + P3 (4.11)

Finally by comparing the magnitude and phase of 2ωt terms in Pg and Pt from

(1.2) and (4.11), the condition for double line frequency power decoupling as given in

(4.12) is obtained.
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V Vr(2C3 + C) + CA2 =
VgIg
2ω

=
Sg

ω
(4.12)

4.3.2 Optimization Problem

Unlike previous case, where the half-bridge capacitance C can be uniquely deter-

mined from (4.6), it is interesting to note that now there could be multiple combina-

tions of V, Vr, C, C3, and A values satisfying the condition (4.12) and no particular

solution exist for this. But each of this solution is not necessarily a good choice as

all of these combinations not necessarily ensure satisfaction of (4.5) and minimized

voltage stress on the switches. So the analysis has been modified to a multi-objective

optimization problem instead of a straightforward equation based problem with the

objective of minimizing the total capacitance value while limiting the voltage stress

on the switches i.e., the DC-link voltage peak and satisfying condition (4.5). The

objectives and constraints of the optimization problem are formulated as discussed

below.

Objectives

• Maximize dc voltage utilization factor of the decoupling capacitors.

• Minimize the average voltage on the dc-link which directly translates to the

average switching loss over a grid cycle.

• Minimize the decoupling capacitor requirement so as to improve on converter

power density and reduce cost.

• Maximize the voltage swing of capacitors C1 and C2, i.e., to maximize A so as

to provide maximum power decoupling with the designed capacitance value.
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Constraints

• Satisfy the active power decoupling equality constrain in (4.5).

• Limit the voltage stress Vswitch on switches depending on the switch voltage

rating. The voltage stress is the peak of the dc-link voltage.

• Satisfy the no-over-modulation criteria in (4.5).

The optimization problem formulates as follows in (4.13) where wi is the weighing

function for each objective. It is solved using MATLAB optimization solver for the

converter specifications given in Table 4.1. The total capacitance required has been

optimized to only 54 µF/ kW with 500 V maximum switch stress to support 1 kW

at 0.7 lagging - 0.7 leading pf range. Table 4.2 gives the detail of the decoupling

capacitor values.

Minimize f = −
3∑

i=1

wiηvi + w4(V ) + w5(C + C3)− w6A

Subject to



V Vr(2C3 + C) + CA2 = VgIg
2ω

= Sg

ω

v1 > vg if vg ≥ 0

v2 > |vg| if vg < 0

V + Vr ≤ Vswitch

(4.13)

The corresponding simulation waveforms of capacitor voltages, DC-link voltage,

grid voltage, and scaled grid current are shown in Figures 4.4a, 4.4b, and 4.4c re-

spectively at 0.7 leading pf, UPF, and 0.7 lagging pf showing DC-link ripple. As

previously discussed it is seen that the condition given in (4.5) has been satisfied in

all three cases with the worst operating condition occurring at leading power factor

when the vg waveform barely touches v1 and v2 waveforms at the critical point.
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Figure 4.4: Waveforms from PLECS for Operating Condition Corresponding to Vg
= 120 V, P = 1 kW, v3 = 530, A = 200, C3 = 30 µF, and C = 12 µF.

4.3.3 Pulsating Power Elimination

Additionally, from (4.11) it is seen that, Pt has a fourth-order component result-

ing from the interaction between the second-order terms in the capacitor voltages

and currents. In conventional FB inverters with large decoupling capacitors and

minimized voltage ripple on the dc-link, this term can be neglected. But with the
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proposed decoupling approach, this residual ripple power in the dc-link of the PV

inverter suggests that the elimination of fluctuating power is not complete.

To improve the performance of power decoupling, [82] PV with Leakage current

and power decoupling) a voltage compensation term vcomp is introduced into the

capacitor voltages as follows

v1c = v1 + vcomp; v2c = v2 + vcomp (4.14)

such that the following differential equation is satisfied.

C
d

dt

(
v21c + v22c

)
+ C3

d

dt
v23 = −VgIg cos(2ωt+ θ) (4.15)

Numerically, it is complex to solve (4.15). Also it does not take into account

the circuit non-idealities like the ESR of capacitors, on-resistance of the switches,

series resistance of inductors, distortions caused by the deadtime, and effect of in-

ductors on the pulsating power. However, this can be mitigated by the closed-loop

implementation.

4.3.4 Operating Principles

The operation of the HBVS inverter is straightforward. Q1 controls the boost

stage gain so as to have double line frequency component on the dc-link and input

is free of any ripple component. Its duty ratio db is given in (4.16) which is a dc

superimposed on line frequency harmonic terms.

db =
V + Vr sin(2ωt+ θ)− vin
V + Vr sin(2ωt+ θ)

(4.16)

The duty ratio dbb of Q2 is given in (4.17) to control the HB capacitor voltages

to provide the power decoupling as discussed in the previous section. The HB stage
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Figure 4.5: Proposed Integrated Magnetic Based Transformer-less String Inverter.

modulates the output ac waveform, the duty ratio dinv of Q5 is given in (4.18). Unlike

in conventional HB inverters apart from the fundamental frequency component, dinv

also contains higher order harmonics. Q3 and Q5 operates complementary to Q2

and Q4 respectively with appropriate deadtime. In the presence of internal damping

during the actual inverter operation, the exact duty ratio is to be determined using

a closed-loop control scheme.

dbb =
V + 2vcomp + Vr sin(2ωt+ θ)− 2A sin(ωt+ ζ)

2V + 2Vr sin(2ωt+ θ)
(4.17)

dinv =
V + 2vcomp + Vr sin(2ωt+ θ)− 2A sin(ωt+ ζ) + 2vg

2V + 2Vr sin(2ωt+ θ)
(4.18)

4.4 Integrated Magnetics

Figure 4.5 shows the topology of the transformer-less string inverter with inte-

grated magnetics (IM) scheme. The advantages of transformer-less implementation

offering reduced volume, lower cost, and higher efficiency can be further enhanced

Wbb Winv

Φc

Φl Φr

g gia ibva
+

-

+

-
vb

Figure 4.6: Integrated Inductor for Buck-Boost and Inverter Stage.
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Figure 4.7: Gyrator Capacitor Model for the Integrated Inductor in Buck-Boost
and Inverter Stage.

by IM scheme. For DC-DC application IM implementation has been shown to re-

duce converter volume with some improved performance features [83–87]. In [88]

IM has been applied to parallel inverters leading to reduced volume and suppressed

circulating current.

The inductors of half-bridge and power decoupling stages are integrated in one

single core as shown in Figure 4.6. va and ia are the voltage across and current through

the winding Wbb (buck-boost stage inductor), and vb and ib are the corresponding

variables for winding Winv (inverter stage inductor). g is the air gap in each of the

outer two limbs, the further details are discussed in the Section 4.4.

Figure 4.8: Flux density distribution in the magnetic core at one instant for the
integrated inductor of the buck-boost and inverter stages with air-gap only at the
outer limbs for minimized coupling.
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4.4.1 Magnetic Circuit Analysis

The IM implementation is studied by using gyrator-capacitor model, where each

winding Wbb and Winv is modeled as a gyrator [89, 90] linking the electrical and

magnetic domain as shown in Figure 4.7. Nbb and Ninv are the number of turns of

each corresponding winding Wbb and Winv, with Nbb : Ninv = 1. Φ̇l, Φ̇c, Φ̇r and Pl, Pc,

Pr are the flux-rate and permeance of the left, center, and right limbs respectively.

Pl1 and Pl2 are the leakage permeance of winding Wbb and Winv respectively.

For the buck-boost stage inductor winding, the interface between the magnetic

and electrical circuits are decided by the relationship given in (4.19).

va = NbbΦ̇a; ia =
Fa

Nbb

; Φ̇a = P
dFa

dt
(4.19)

where, va is the voltage, ia is the current, Fa is the magnetomotive force (mmf), and

Φ̇a is the flux-rate corresponding to the left limb with buck-boost inductor winding.

Similar expression can also be written for the inverter stage inductor winding on

the right limb as given in (4.20).

vb = NinvΦ̇b; ib =
Fa

Ninv

; Φ̇b = P
dFb

dt
(4.20)

4.4.2 Finite Element Analysis

Ferrite core dimensions corresponding to E65/32/27 has been used for FEA with

an air gap (g in Figure 4.6) of 2.5 mm in each of the outer limbs. The center limb

does not have any air gap ensuring minimized coupling between the two windings.

Thus Pl, Pr � Pc. Ansys Maxwell has been used for this analysis.

Figure 4.8 shows the flux density distribution at one particular instant, flux is

shown to cancel in the center limb. With 32 turns of each winding, the inductance
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value of Lbb and Linv is 214.24µH and mutual inductance is 6.32µH, obtained from

FEA.

4.4.3 Simulation Results

PLECS has been used for the circuit simulation, where the magnetic circuit is

modeled with gyrator-capacitor structure as discussed. Figures 4.9a and 4.9b give the

v3

vg

5ig

v1 v2

(a) Voltage waveforms

v3/10

vg/5

ib

ibbig

(b) Current waveforms

Bc

Bl Br

(c) Magnetic flux density

Figure 4.9: PLECS waveforms for UPF Operation at Vg = 120 V, P = 1 kW, v3 =
530, A = 200, C3 = 30 µF, and C = 5 µF
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simulation waveforms of different voltage and current variables at the rated power and

unity pf (UPF) operation. The flux density of left, center, and right limbs are shown

in Figure 4.9c (Bl, Bc, and Br respectively). It is to be noted that the buck-boost

current is out of phase with respect to the grid current, thus the flux density of left and

right limbs are out-of phase, with fundamental frequency flux being canceled in the

center limb. As the flux is canceled, the cross sectional area of the center limb can be

made smaller compared to that of the individual inductor case, thus further saving on

the converter cost and volume. It is observed that the maximum flux cancellation is

obtained when the switching frequency carrier signals of the buck-boost and inverter

stages are in phase.

4.5 Efficiency Optimization

As the average switching loss in a converter over a grid cycle is proportional to

the dc-link average V , the associated loss can be minimized by operating it at the

minimum dc-link average value as required to instantaneously satisfy the no-over-

modulation condition of (4.5) for different operating conditions. Also with lower V ,

Table 4.2: Component Details

Component Parameters

C1 , C2, C3 12 µF/ 700 V (2), 30 µF/ 700 V

Cin, Cg 5 µF/ 500 V, 2.5 µF/ 300 V AC

Lb , Lbb , Lg1, Lg2 180 µH, 190 µH (2), 22 µH

Q1 - Q5 CREE C3M0120090D (5)

D1 CREE C2D05120A

83



V
o

lt
ag

e 
(V

),
 C

u
rr

en
t 

(A
)

t (s)

gv1v 2v
inv

3v

10

gv

gi

1 gv v
2 gv v

(a)

V
o

lt
ag

e 
(V

),
 C

u
rr

en
t 

(A
)

t (s)

gv1v 2v

inv
3v

10

gv

gi

1 gv v

2 gv v

(b)

V
o

lt
ag

e 
(V

),
 C

u
rr

en
t 

(A
)

t (s)

gv
1v 2v

inv
3v

10

gv

gi

1 gv v

2 gv v

(c)

Figure 4.10: Steady state waveforms at 1 kVA showing converter voltages, grid
current, and the voltage margin at (a) 0.7 lagging pf, (b) unity pf, (c) 0.7 leading pf
operations highlighting the voltage margin of 20 V, fixed for each operating point by
implementation of ADCL voltage control scheme.
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the inductor current ripple can be decreased accounting for lower high frequency

copper and core loss, directly translating into improved inverter efficiency.

The inverter is to be designed based on the worst operating condition which cor-

responds to the rated VA at leading pf case [10]. Once the decoupling capacitors are

fixed, an adaptive dc-link (ADCL) average voltage can be implemented to operate

it at the minimum dc-link average voltage thus improving the efficiency over wide

power and pf range, as analyzed below.

4.5.1 Minimum DC-Link Average Voltage Requirement

Instead of a 0 voltage margin Vmi, over a grid cycle (4.5) can be modified as follows

to accommodate requirements on the switch dead-time, limit on modulation margin

(modulation index is limited to 0.95), and a non-zero ripple on vin.

Vm1 = v1 − |vg| > 0; Vm2 = v2 + |vg| > 0 (4.21)

From Section 4.3 it is clear that v1 and v2 and thus Vm1 and Vm2 are functions

of the dc-link average voltage V , operating VA (Sg) and pf of the inverter. Thus a

change on any one of Sg or pf parameters would allow a change in V , provided (4.21)

is satisfied.

The dependence of V and Vmi on Sg is intuitive from decoupling power balance

expression (4.12), whereas their dependence on pf can be observed from the steady

state simulation results given in Figure 4.10. It gives the converter voltages (plot

1), grid current (plot 3), and the voltage margin (plot 2) waveforms corresponding to

different operating pf - unity, 0.7 lagging, and 0.7 leading. Figure 4.10c shows that the

leading pf gives the worst voltage margin [10] and thus needs a higher dc-link mean,

whereas, lagging pf [see Figure 4.10a] gives the best margin requiring minimum dc-

link mean. It has been accomplished by the ADCL scheme with the minimum voltage
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margin Vmi over a grid cycle always being barely around 20 V at the critical point

(Figure 4.10). It can be further seen that the constraints given in (4.5) have been

satisfied in all three cases.

Additionally, though Vmi is not dependent on vin, V is restricted by vin. Because

of the input boost stage, the minimum of the dc-link needs to be at least higher than

vin which limits its average. Thus while computing V through ADCL scheme, all the

three parameters vin, Sg, and operating pf need to be considered.

4.5.2 Adaptive DC-Link Scheme

For different values of Sg and pf different minimum Vavg is required to satisfy

(4.21). However, it is very complex to derive the solutions of the optimal V for

different Sg and pf values analytically. Therefore, numerical method is used to find

the minimum V in MATLAB by sweeping the dc-link voltage average value over

the specified operating range. 3-D plots showing the dependence of minimum V

required are given in Figure 4.11 for various combination of Sg (swept from 100 to

1000 VA corresponding to 10 to 100 % of VA) and pf angle (swept from −45◦ to 45◦

corresponding to 0.7 lagging and 0.7 leading pf respectively).

From the 3-D plot, the difference between the highest (for 0.7 leading pf at 100

% VA) and the lowest (for 0.7 lagging pf at 10 % VA) V is 56.76% for the specified

range of operating conditions. It is 27.47% for UPF operation (fixed pf but varying

Sg). But without the ADCL voltage scheme, V will always be set to the largest

value even at conditions that does not require such high dc link voltage, and loss

reduction could not be achieved. With adaptive dc link scheme the voltage at the

best case condition can be reduced by 56.76% which corresponds to around 56.76%

switching loss reduction (switching loss is linear with the voltage stress across the

semiconductor) and even higher percentage of savings in the high-frequency inductor
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Figure 4.11: Relationship between the Minimum V Required to Satisfy (4.5) for
Various Combinations of Sg and pf in the Given Operating Range.

core and copper loss.

Though the ADCL scheme does not interfere with the basic inverter control design,

it is impossible or very difficult to be implemented with analog controller. In digital

control platform, instead of providing a constant dc-link average as conventionally

done, V will be decided based on the converter’s operating point and provided as an

reference to the dc-link controller. Alternatively, the values of V can be saved in a

look-up-table (LUT) off-line corresponding to different Sg, vin, and pf to save the

computation burden on the digital controller.

4.6 Controller Implementation

4.6.1 Controllers

Figure 4.12 shows the overall controller block diagram in grid connected mode,

the primary objective is to control the input voltage according to the MPPT reference

and control the grid injected current as per the pf command. Without the input PV
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Figure 4.12: Controller Block Diagram of HBVS Inverter in Grid Connected Mode.

panel in the hardware setup, the input of the converter comes from a dc source in

series with a resistor to closely mimic the PV characteristic.

Boost stage control

The objective of the input boost stage controller Gc b is to regulate the input voltage

such that vin is free of any double line frequency ripple. Its reference is generated by

MPPT controller, in this case it is provided manually. Gc b has a high bandwidth to

generate the boost stage duty db or else 120 Hz ripple would leak to vin disrupting

the MPPT efficiency when connected across the PV source.

Inverter stage control

PI controllers with appropriate feed forward terms are used for both the dc-link and

inverter control loops as shown. The dc-link controller Gc dc regulates the average

of the dc-link voltage to a reference value generated by the ADCL voltage control

scheme as detailed in the next section. A first-order low-pass-filter (LPF) with cutoff

frequency of 12 Hz is used to filter out the 120 Hz component in the dc-link voltage

before comparing it with the reference so as to remove the line frequency harmonics
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in the controller response.

The output current controller Gc o is designed to control the grid current with the

current peak reference derived from the dc-link voltage control loop and the phase

and frequency of the sinusoidal waveform determined by a phase-locked loop (PLL)

and an external pf command. The output of the controller decides the inverter stage

duty dinv.

Decoupling stage control

By regulation of the duty ratio dbb of Q3, the decoupling stage controller Gc bb controls

the voltage v2. As v3 is already controlled to its reference by the inverter stage control,

it implies v1 is automatically controlled to (4.2). The reference generation for the lower

capacitor voltage v2 is highlighted with blue in Figure 4.12 .

Alternatively, as v2 is an internal variable, its dynamic response is not critical.

Without compromising the power decoupling support, it can also be operated open

loop with the duty ratio given as

dbb = 0.5 +
A

V
sin(ωt+ ζ) (4.22)

where, ωt will be generated by the PLL block, similar to the closed loop scenario.

4.6.2 ADCL Calculation Block

The ADCL controller is highlighted in Figure 4.12. The calculation block is imple-

mented with an LUT, which takes in the three operating parameters vin Sg, and pf,

and outputs the dc-link average reference. As LUT has one switching cycle response

and requires minimal mathematical formulation, it is fast and stable but is affected

by the parameters uncertainty. Thus a minor correction term ∆v∗3 is added to the

LUT output based on the flow-chart shown in Figure 4.13. This loop operates at line
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Figure 4.13: Flow-chart for Calculating ∆v∗3 for the ADCL Voltage Controller Block.

frequency which calculates Vdiff based on the following


Vdiff1 = v1 − vg − Vm

Vdiff2 = v2 + vg − Vm

Vdiff = min{Vdiff1, Vdiff2}

(4.23)

where the value of Vm is user-defined. A hysteresis control algorithm calculates ∆v∗3

in every iteration. If Vdiff is within the predefined limit between Vlow and Vhigh), ∆v∗3

is preserved as previously stored value. But if Vdiff is lower than Vlow, the new ∆v∗3

is obtained by adding a variable step ∆v3 corr given by (4.24). Otherwise, the new

∆v∗3 is calculated by subtracting the same step. This calculation loop operates at a

much slower rate (line frequency update in contrast to switching frequency response

of LUT), but it provides an accurate regulation of the dc-link reference v∗3 avg.
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∆v3 corr = KVdiff (4.24)

4.7 Hardware Prototype and Experimental Results

4.7.1 Hardware Prototype

The hardware prototype of 1 kW inverter is shown in Figure 4.14. The component

details are given in Table 4.2. The input is given in series with a 5 Ω resistor to mimic

PV panel input. The controller is implemented in a customized DSP board built with

TMS320F28335 (indigo board in Figure 4.14). The auxiliary power as required by

the gate driver and controller section is derived externally.

Planar ferrite core E64/10/50-3C94 with appropriate air gap on all the three limbs

are used for the inductors to have low profile design. Litz wire of 400 strands AWG 40

is used for the inductor winding to reduce high-frequency copper loss. The capacitors

are chosen based on the rated voltage. SiC devices of rating 900 V, 23A, 120 mΩ are

used as switches with external anti-parallel SiC schottky diodes to minimize the loss

during dead-time. Avago ACPL 337J is used as the driver IC with negative voltage

for reliable device turn-off.

4.7.2 Steady State Experimental Results

The experimental results represented in this section correspond to 1 kVA, UPF

operation at steady state with specifications given in Table 4.1. Figure 4.15a shows

the input voltage vin, grid voltage vg and current ig, dc-link voltage v3, and HB

capacitor voltages v1 and v2. Figure 4.15b shows the magnified input voltage and

different converter currents - input, decoupling stage inductor, and inverter stage

inductor (iin, ibb, and iinv respectively).
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Figure 4.14: 1 kVA Experimental Prototype for the SiC Based Proposed HBVS
Inverter.

The grid current has a THD of 2.6% calculated by using fast Fourier transform

(FFT) in MATLAB on the measured ig data. It can be noticed that the decoupling

and inverter stages current are exactly out-of phase but with different ripple profile,

as expected. The steady state waveforms demonstrate that the power has been de-

coupled through C1, C2, and C3, whereas, the input voltage has very little peak-peak

ripple constituting both the 120 Hz and switching frequency components. The 120

Hz ripple (obtained using MATLAB FFT) is only 3.5 V, which is 2.12% of the av-

erage input voltage of 165 V, demonstrating that the performance of input voltage

controller is good in restricting the 120 Hz ripple only to the dc-link making the input

free of double line frequency ripple resulting in higher MPPT efficiency.

Figure 4.15c shows the duty ratios of all the three stages. The duty ratio is

obtained by cycle-by-cycle averaging of measured gate voltage Vgs. As Vgs is 20 V

when turned ON and -6 V when turned OFF, the 0 and 1 of the duty ratio can

be established from Figure 4.15c accordingly. It can be seen that, dbb is sinusoidal

whereas, dinv which modulates v1 and v2, has double-line-frequency component to
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Figure 4.15: Steady state waveforms at 1 kVA, UPF operation with 165 V input,
375 V dc-link average, and 120 V/60 Hz output (time : 5 ms/div). (a) Input and
outut voltage and current with the internal capacitor voltages (vin: 100 V/div, v1,
v2, v3, vg: 200 V/div, ig: 20 A/div), (b) Magnified input current and voltage and
converter currents (vin: 10 V/div, iin: 1 A/div, ibb, iinv, ig: 20 A/div), (c) Cycle-by-
cycle averaged duty ratios for all the three stages (ig: 20 A/div, vg: 200 V/div).

mitigate the influence of large 120 Hz dc-link ripple on the grid output. Also in order

to regulate the input voltage to be a pure dc with ripple on dc-link, the boost duty

ratio (dQ1 = db) should contain 120 Hz component as shown.

Figure 4.16 shows the instantaneous drain-to-source voltage of the MOSFETs

Q1 (Vds Q1), Q2 (Vds Q2), and Q4 (Vds Q4) and the three inductor currents at around

−45◦ of the output voltage (between negative peak and zero crossing) at 100 kHz to

highlight some of the switching waveforms using SiC MOSFETs.
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Figure 4.16: Instantaneous 100 kHz switching level waveforms at 1 kVA, UPF
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Figure 4.17: Steady state waveforms at 1 kVA (vin, v1, v2, v3: 200 V/div, vg: 350
V/div, currents: 50 A/div, time : 5 ms/div). (a) leading pf with 453 V dc-link
average, (b) lagging pf with 311 V dc-link average.

4.7.3 ADCL Waveforms

The waveforms corresponding to 1 kVA non-upf operation with the ADCL voltage

control scheme implemented is shown in Figure 4.17. The average dc-link voltage

is computed within controller which is 453 V and 311 V for leading and lagging

pf respectively. Figure 4.18 shows the transient waveforms of the inverter for an

active-power step change from 1 kW to 500 W with vin = 165 V, at UPF operation,

i.e., pf = 0◦. As can be seen, average value of vlink changes from 375 V to 329 V

dynamically, as calculated from the ADCL control block. It also shows the voltage
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margin vc1 − vg and vc2 + vg demonstrating that the margin finally settles to the

minimum value after the step change. Also good tracking of step changes in active-

power command with transient times well below one fundamental period can be

observed from the waveforms in Figure 4.18.

4.7.4 Efficiency

Figure 4.19 shows the efficiency measured at UPF for different power levels based

on California Energy Commission (CEC) requirement for PV inverters. The weighted

CEC efficiency at switching frequency of 75 and 100 kHz is obtained to be 96.48% and

95.72% while a peak of 96.25% and 96.81% are measured respectively. These mea-

surements do not consider the controller and auxiliary power consumption including

the power for gate drivers, DSP controller, and other ICs which is around 2.7 W. It

is to be noted that the peak as well as the CEC efficiency has been improved signifi-

cantly by implementing the ADCL voltage control method, specially in the light load

conditions.

vg ig

vC1

vC3

vC2

-vC1 vg vgvC2- -

Figure 4.18: Step change response with the ADCL control implementation for 500
W to 1 kW step-up load showing the voltage margin (voltage: 200 V/div, current:
20 A/div, time : 50 ms/div).
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Figure 4.19: Efficiency of HBVS Inverter with ADCL Voltage Control Scheme Im-
plemented.

4.8 Conclusion

An IM scheme for transformer-less string inverter which addresses both the chal-

lenges of transformer-less application has been thoroughly discussed. The proposed

converter topology is a combination of boost and half-bridge stages along with a

power decoupling stage. The capacitance required for power decoupling is minimized

through active power decoupling scheme with a large voltage swing of half-bridge

capacitors requiring only a total of 54 µF/kW at a peak of 550 V DC-link voltage

for decoupling. The inductors of buck-boost and half-bridge inverter stages are in-

tegrated in one single E-core to furhte reduce the converter volume and cost. The

experimental results with with integrated inductors at 1 kW, 120 V, 60 Hz output are

provided from a 100 kHz SiC-based hardware prototype for validation of the concept.
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Chapter 5

DOUBLY GROUNDED DYNAMIC DC-LINK (DDCL) INVERTER

5.1 Introduction

In this Chapter, another power decoupling technique is introduced based on a

doubly grounded transformer-less PV inverter topology with active power decoupling

built into the basic topology. It is based on a single stage of power conversion by a

unique combination of boost-coupled half bridge circuit using only four switches over-

all and capable of supporting a wide range of power factor. This topology, termed

as dynamic DC-link (DDCL) inverter, effectively addresses both the issues of sin-

gle phase, transformer-less PV inverters, with the connection of AC neutral to PV

negative terminal eliminating common mode module ground currents, and the active

decoupling at high DC-link voltage resulting in DC-link capacitance that is well below

the values used in state-of-the-art commercial products.

5.2 Operating Principles

Figure 5.1 shows the DC-DC boost stage followed by doubly grounded voltage

swing inverter considered for the transformer-less microinverter application. The

DC-DC stage is already discussed, which is the high gain boost converter.

The output of the DC-DC boost stage is the first DC-link vdc1 which is connected

to the doubly grounded voltage swing inverter, i.e., the DC-AC stage. The later

comprises of a synchronous boost stage which further boosts its input to a higher

voltage vdc2 (a second DC-link), as it is advantageous to perform the decoupling at

higher DC voltage from the perspective of capacitance volume. (5.1) and (5.2) give
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the expressions for the corresponding DC-link voltage.

vdc1 = Vdc1 + Vr1 sin(2ωt+ θ) (5.1)

vdc2 = Vdc2 + Vr2 sin(2ωt+ θ) (5.2)

where, Vdc1 and Vdc2 are the nominal DC voltage and Vr1 and Vr2 are the amplitude

of the ripple component for capacitors Cdc1 and Cdc2 respectively, and the grid power

factor is given by cos θ.

The boost stage is followed by a half bridge inverter. The grid neutral is di-

rectly connected to the PV negative, thus the capacitive ground current is completely

eliminated, a very critical requirement for transformer-less PV inverters. In order

to regulate the grid current and voltage without distortion, the condition given in

(5.3) needs to be satisfied instantaneously ensuring that the converter is not over-

modulated at any operating interval.
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Figure 5.1: Transformer-less Microinverter Topology with a DC-DC Stage and Dou-
bly Grounded DC-AC Stage.
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
vdc1 > vg if vg ≥ 0

vdc2 − vdc1 > |vg| if vg < 0

(5.3)

The grid voltage and current at an arbitrary power factor cos θ is given in (5.4)

and the corresponding instantaneous grid power is shown in (5.5).

vg = Vg sin(ωt); ig = Ig sin(ωt+ θ) (5.4)

Pg =
VgIg

2
(cos θ − cos(2ωt+ θ)) (5.5)

The 120 Hz ripple power supported by both the DC-link capacitors Cdc1 and Cdc2

are P1 and P2 respectively, as given in (5.6).

P1 =
1

2

d

dt

(
Cdc1v

2
dc1

)
; P2 =

1

2

d

dt

(
Cdc2v

2
dc2

)
(5.6)

Thus the total ripple power supported by both the capacitors Pt = P1 + P2 can

be expressed as (5.7) by substituting for vdc1 and vdc2 from (5.1), (5.2) in (5.6).

Pt = ωCdc1(2Vdc1Vr1 cos(2ωt+ θ) + V 2
r1 sin(4ωt+ 2θ))

+ωCdc2(2Vdc2Vr2 cos(2ωt+ θ) + V 2
r2 sin(4ωt+ 2θ)) (5.7)

By comparing the similar frequency terms (2ωt) of Pg and Pt from (5.5) and (5.7),

the relationship between Cdc1 and Cdc2 with the corresponding DC voltage levels and

ripple component are obtained as given in (5.8).

Cdc1Vdc1Vr1 + Cdc2Vdc2Vr2 =
VgIg
4ω

(5.8)
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This however, is not a closed form equation, and the values of the DC-link mean

and ripple are optimized for the minimum total capacitance values with the constraint

set by the switch voltage stress.

5.3 Capacitance Optimization

Figure 5.2 shows the flowchart to determine the optimum capacitance value. At

first, various combinations of Vr1, Vdc1, Vr2, and Vdc2 are obtained for different com-

binations of Cdc1 and Cdc2 values from (5.8). From all these values, the ones which

satisfy (5.3) are stored as valid combinations, from which the minimum capacitor

value is identified. The optimization is stopped once the number of iterations reached

the maximum iteration length specified.

5.4 Controller Design and Simulation Results

Based on the microinverter specifications given in Table 5.1, the controllers (Figure

5.3) are designed and the corresponding simulation results are given in this section.

5.4.1 Controller Design

For the microinverter operation in grid connected mode, the objective of the con-

troller is to control the input voltage according to the MPPT voltage reference which

Table 5.1: Converter Specification

Parameter Rating

Input 20 V

Output 120 V, 60 Hz, 300 W

Switching frequency, fsw 100 kHz
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Figure 5.2: Capacitance Optimization Flow Chart for the Proposed Transformer-
less Microinverter Topology.

fixes the input power, control the grid current depending on the input power (with the

fixed grid voltage), and control both the DC-link voltages to a mean value ensuring

the voltage stress on the switches is kept within limits. However in the stand-alone

operation, the input is a DC source in series with a resistor to coarsely mimic the PV

panel characteristic. The output AC voltage is controlled to a reference value and the

output power is determined by the AC load. Based on this the input voltage reference
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is fixed. Figure 5.3 shows the basic controller block diagram employed to design the

four basic controllers required for each of the stages of the proposed microinverter in

stand-alone mode.

The controller block diagram shows that the EDR boost (DC-DC stage) controller

has two control loops, the inner loop controls the input voltage and regulate the boost

stage duty db. The input voltage reference is derived from an outer loop controller

which controls the first DC-link voltage (vdc1) based on the set reference. The DC-

AC stage controller comprises of two independent stages to generate the duty of the

second boost stage (dbb) and the half-bridge inverter stage (dinv). The first controller

controls the mean of the second DC-link voltage (vdc1) which sets the duty dbb. Based

on the sinusoidal reference value, the second controller regulates the output voltage

through dinv.

5.4.2 Simulation Results

Figure 5.4 shows the input (vin), DC-link (vdc1, vdc2), and all the intermediate

capacitor voltages (vc1, vc2) at 300 W, unity power factor (UPF) operation. It can

Gc4

~

dinv
~

vg

*

vg
dinvvg

Gc3

~
~

*

dbb

vdc2
v
dc2

dbb

v
dc2

Gc1
vinGc2

~

db
~

vdc1
~

vin
~

vdc1vdc1
db vin

* vin
*

EDR boost controller

DC-AC stage controller

Figure 5.3: Controller Block Diagram in Stand-alone Operation for the Proposed
Transformer-less Microinverter Topology.
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vc2

vin

vdc1

v
dc2

vc1

Figure 5.4: PLECS Simulation Waveforms for Input, DC-link, and all the Interme-
diate Capacitor Voltages at 300 W Operation.

vg

ig

vdc1 vdc2 vdc1-

vg/20

Figure 5.5: PLECS simulation waveforms at 300 W operation showing the first DC-
link voltage vdc1 and the difference of the first and second DC-link voltage vdc2− vdc1
with the grid voltage showing the voltage margin between vg and vdc1 and vdc2− vdc1,
scaled output voltage and current.

be noticed that all the voltages have 120 Hz component, except for the input voltage

which has been regulated to be free of any 120 Hz component, which would otherwise

deteriorate the MPPT efficiency when connected across the PV panel.

Figure 5.5 gives the corresponding waveforms for vdc1, vdc2−vdc1, vg, and ig showing

the voltage margin between vg and vdc1 and vdc2− vdc1. It is seen that throughout the

operating range, the condition for no over-modulation as given in (5.3) is satisfied.
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5.5 Hardware Implementation and Experimental Results

5.5.1 Component Selection and Hardware Prototype

Figure 5.6 shows the 3-level EDR boost followed by doubly grounded voltage swing

inverter considered for the transformer-less microinverter application.

The component details for a 300 W DC-AC stage of microinverter are given in

Table 5.2. The inductors are designed based on the allowed current ripple. Planar

E38/8/25-3F3 has been used as the inductor core to obtain a low profile design. Litz

wire (270 strands of AWG 42) has been used as the inductor winding. The component

details for the DC-DC stage is same as discussed in Chapter 2.

A 300 W GaN based converter prototype has been developed, as shown in Figs.

5.7a and 5.7b. UCC27511 from Texas Instruments has been used as gate driver

which has the provision for separate on and off gate resistors, critical for operation

at high switching frequency. This allows the use of higher turn-on and lower turn-off

gate resistance ensuring the reduction of ringing during turn-on for improved electro-

magnetic interference (EMI), as well as decreasing the chance of Miller turn-on of the

complementary switch during the switch turn-off. In the present prototype, 20 Ω turn-

on and 2.2 Ω turn-off gate resistors are used. EZDSP TMSF28335 has been used as

the controller platform. LeCroy 6200A oscilloscope is used to capture the waveforms

Figure 5.6: Transformer-less Microinverter Topology with a DC-DC Stage and Dou-
bly Grounded DC-AC Stage.
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(a) Hardware prototype top view (b) Hardware prototype bottom view

Figure 5.7: GaN Based Hardware Prototype of Transformer-less Microinverter with
EDR Boost and Doubly Grounded DDCL inverter.

Table 5.2: Component Details

Component Parameters

Cin ,Cdc1, Cdc2 4.7 µF/ 50 V, 4.7 µF/ 300 V, 15 µF/ 575 V

Lb , Lg 190 µH, 630 µH

Q1 −Q4 GS66508P (4)

iinv

ib

Vds Q1 -

Vds Q3-

Figure 5.8: 100 kHz instantaneous switching level waveforms from hardware for the
dc-ac stage at 300 W, UPF operation (voltage: 200 V/div, current: 10 A/div, time :
5 µs/div).

and power analyzer YOKOGAWA WT3000 is used to measure the efficiency.
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5.5.2 Switching Level Experimental Results

Fig. 5.8 shows the instantaneous experimental waveforms for dc-ac stage. It gives

the drain-to-source voltage of the MOSFETs Q1 (Vds Q1) and Q3 (Vds Q3) and the two

inductor currents at around 25◦ of the output voltage (between positive peak and

zero crossing) at 100 kHz switching frequency. At this instant, the peak-peak ripple

of ib is around 5.2 A and that of iinv is around 4.4 A. It is to be noted that the boost

inductor current ripple remains nearly constant while the inverter stage ripple varies

with the point on the sine wave similar to any conventional inverter.

5.5.3 Steady State and Dynamic Experimental Results

In stand-alone mode, the experiments are performed with 45 V dc voltage source in

series with a 1.1 Ω resistor to emulate the PV input characteristic, with an effective 35

V input to the microinverter. Figure 5.9 gives the closed loop operating waveforms

for the microinverter operation from 35 V input to 120 V, 60 Hz output at 300

W, UPF. Figure 5.9a illustrates the waveforms of two dc-link voltages (vdc1, vdc2),

vg

iinv

vdc2

vd c1

ib

ig

(a)

vgig

vdc1

vin

(b)

Figure 5.9: Steady state experimental waveforms for GaN based transformer-less
microinverter operating from 35 V dc input to 120 V, 60 Hz ac output at 300 W (time
: 5 ms/div) showing (a) Output and two dc-link voltages, and output, buck-boost
stage inductor, and inverter stage inductor currents (vdc1, vdc2, vg: 200 V/div, ig: 10
A/div, ib, iinv: 20 A/div), (b) Input, output, and first dc-link voltages, and output
current (vin : 2 V/div, vdc1: 50 V/div, vg: 100 V/div, ig: 5 A/div).
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vd c1
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(a)

vg

iinv

vdc2

vd c1

ib

ig

(b)

Figure 5.10: Steady state experimental waveforms for GaN based transformer-less
microinverter operating at nominal operating condition illustrating the output and
two dc-link voltages, and output, buck-boost stage inductor, and inverter stage in-
ductor currents (vdc1, vdc2, vg: 200 V/div, ig: 10 A/div, ib, iinv: 20 A/div, time : 5
ms/div) at (a) 0.7 lagging pf, (b) 0.7 leading pf.

output voltage and current, and dc-ac stage inductor current (ib, iinv) corresponding

to 100 kHz switching frequency. Both the dc-links have been shown to share the

120 Hz ripple, whereas, the input voltage is shown to have negligibly small double

line frequency ripple [see Figure 5.9b] demonstrating that the MPPT efficiency would

not be compromised. In Figure 5.9b the scale of vin is magnified (2 V/div) to show

the very small 120 Hz ripple in the input voltage (only 0.9 V 120 Hz component

as obtained using MATLAB FFT which is 2.6% of the average input voltage of 35

V), thus verifying the closed loop controller performance is effective in restricting the

double line frequency ripple from input.

Figs. 5.10a and 5.10b respectively show all the relevant waveforms for the 0.7

lagging and 0.7 leading pf operation with stand-alone load, which matches very well

with the corresponding simulation results presented in earlier section. As expected,

it can be observed that the voltage margin is maximum with the lagging pf and

minimum with the leading pf [10], when the average of both the dc-link voltages are

same for all the pf operations (i.e., over the entire range of the converter operation).

Figure 5.11 shows the transient waveforms of the inverter with a 50% step-up
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vg

iinv

vdc2

vd c1

ib

ig

Figure 5.11: Experimental waveform for a step-up load change from 150 W to 300
W at UPF showing the output and two dc-link voltages, and output, buck-boost
stage inductor, and inverter stage inductor currents (voltages: 200 V/div, currents:
10 A/div, time : 10 ms/div).

change (a step change of power from 150 W to 300 W) in the active-power at UPF

operation. Good tracking of step changes in active-power command with transient

times well below one fundamental period can be observed from the waveforms.

5.5.4 Efficiency

The power analyzer YOKOGAWA WT3000 is used to measure the efficiency of

the converter. The peak measured efficiency for dc-dc EDR boost stage is 96.78% and

96.11% for 100 kHz and 200 kHz respectively. Whereas, the peak measured efficiency

for the inverter stage is 97.91% and 97.45% for 50 kHz and 100 kHz respectively.

Figure 5.12 shows the efficiency of the proposed 300 W non-isolated microinverter

at different operating loads. The boost stage is always operated at 100 kHz and the

inverter stage is operated at 50 kHz and 100 kHz to obtain the efficiency plots. At

50 kHz, the CEC and peak efficiencies are 94.09% and 94.43% respectively. And at

100 kHz, the CEC and peak efficiencies are 93.54% and 93.89% respectively. The

reported efficiency does not include the controller and auxiliary power consumption

of around 2 W required for gate drivers, DSP controller, and other control ICs.
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Figure 5.12: Efficiency plot for the proposed 300 W non-isolated microinverter
with dc-dc boost stage operating at 100 kHz, and dc-ac voltage swing inverter stage
operating at 50 kHz and 100 kHz.

Comparison of the proposed topology with a number of recently proposed microin-

verter topologies of comparable ratings in terms of the number of active components,

voltage gain, presence of transformer, power decoupling capacitor used, and reported

efficiency are presented in Table 5.3. It shows that the proposed converter has one

of the higher reported efficiencies, while switching at relatively higher frequency and

achieving significant reduction in decoupling capacitor requirement. However, there is

still scope for efficiency improvement through better inductor and gate driver design

using a lower gate resistor, which is a part of the future work.

5.6 Conclusion

An active power decoupling technique with doubly grounded voltage swing inverter

has been discussed. The converter operation is elaborated along with the details

of design and component selection. A 300 W GaN based experimental prototype

for transformer-less microinverter has been developed and the experimental results

validate the converter’s operation with input of 40 V and 120 V, 60 Hz output and
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Table 5.3: Performance Comparisons with Various Other Topologies

Topo-

logy

No.

of

swit-

ches

Vin, Vo,

Prated (V),

(V), (W)

Iso-

lation

Primary

decoupling

capacitor

(µF)

Swit-

ching

fre-

quency

Efficiency (%)

(S, D) (kHz) CEC peak

Pro-

posed

7, 3 35, 120,

300

non-

isolated

film, 32 100 94.09 94.43

[91] 5, 0 45, 220,

250

isolated electrolytic,

5000

50 NR ∗ 94

[92] 5, 0 35, 230,

220

isolated electrolytic,

18800

20 NR ∗ 93

[93] 4, 3 48, 110,

200

non-

isolated

film, 47 50 NR ∗ 89.3

[94] 5, 0 50, 110,

300

non-

isolated

electrolytic,

2200

50 94.43 94.55

[95] # 8, 17 45, 110,

120

isolated electrolytic,

2000

70 92.4 93.1

∗ not reported

# efficiency reported for 8 phases

operating at switching frequency of 100 kHz. The doubly grounded voltage swing

inverter has the advantages of connecting the PV negative terminal directly to the grid

neutral, thereby eliminating the capacitive-coupled common-mode ground currents.
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Also through dynamically variable DC-link with large voltage swing approach, the

decoupling capacitor is reduced.
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Chapter 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

This dissertation is an effort to develop single phase transformer-less PV intervers

for string and microinverter application, ensuring higher efficiency, high power den-

sity, wide band-gap device based high switching frequency, and reduced decoupling

capacitance requirement through active power decoupling. A high gain DC-DC stage

with advanced features have been proposed along with two power decoupling tech-

niques for single phase inverter active power decoupling purposes. The following list

presents a summary of the dissertation work:

• Chapter 2 discusses the EDR boost converter for transformer-less high step-

up application. Comprehensive analysis of converter operating principles, key

theoretical waveforms, and steady state circuit performance corresponding to

all the possible zones of operation have been presented for a 3-phase EDR boost

converter. It is shown that inherent current sharing in three boost phases is only

possible in Zone I operation. For Zones II and III equal current sharing can

only be ensured with adapted duty ratio scheme until certain range of converter

gain. Beyond this, though the current cannot be shared equally among phases,

the per unit RMS current error can be minimized with modified duty ratio value

and phase. The sharing scheme has been convincingly demonstrated in a 250

W GaN based hardware prototype for different operating regions at 200 kHz

switching frequency.
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• In Chapter 3, EDR boost has been studied for high step-up application in

DCM operation. Comprehensive analysis of converter DCM operating prin-

ciples, key theoretical waveforms, and steady state circuit performance corre-

sponding to all the possible zones of operation have been presented. It is shown

that inherent current sharing in three boost phases is possible in Zones I and

II operation unlike for only Zone I in CCM operation. For Zone III, multi-

ple operating cases exist with different combination of operating modes. It is

straightforward to express the converter gain in 1st two zones, while for Zone

III, the gain expression is obtained by curve fitting technique over the duty ratio

range. Finally, the DCM operation analysis is validated in a 100 W GaN based

hardware prototype for different operating regions.

• In Chapter 4, a power decoupling scheme for single phase inverters has been

proposed. The converter topology is a combination of boost and half-bridge

stages along with a power decoupling stage. A large sinusoidal swing of the

half-bridge capacitors are allowed along with a double line frequency DC-link

voltage ripple to address the power decoupling with a reduced capacitor value

of only 40 µF/ kW at a peak of 550 V DC-link voltage. Further, the inductors

of the buck-boost and the half-bridge inverter stages are integrated in one single

core to reduce the converter volume and cost. The experimental results with

the integrated inductors with SiC based hardware prototype are provided at

100 kHz for validation of the concept for string inverter application.

• In Chapter 5 an active power decoupling technique with doubly grounded

voltage swing inverter has been discussed. The converter operation is elaborated

along with the details of design and component selection. A 300 W GaN based

experimental prototype for transformer-less microinverter has been developed
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and the experimental results validate the converter’s operation with input of 40

V and 120 V, 60 Hz output and operating at switching frequency of 100 kHz.

The doubly grounded voltage swing inverter has the advantages of connecting

the PV negative terminal directly to the grid neutral, thereby eliminating the

capacitive-coupled common-mode ground currents. Also through dynamically

variable DC-link with large voltage swing approach, the decoupling capacitor is

reduced to only 10 µF for 300 W microinverter.

6.2 Future Work

The potential future work for this research endeavor are listed as follows:

• Efficiency improvement of the string and micro inverters with improvements

in magnetics design including coupled and integrated magnetics, through opti-

mization of the gate drive circuitry and switching frequency.

• Design of more advanced controller like sliding mode control to enhance the PV

inverters dynamic performance.

• Investigation of soft-switching technique to further push the efficiency of the

high gain dc-dc converters. Additionally, topologies based on coupled inductor

can be explored for high gain application.

• An interesting study would include coupling of the interleaved inductors in the

EDR boost converter. Coupling will affect the converter current sharing. Also

it will introduce inherent leakage inductances in the current path which can in

turn be used for implementing soft switching.
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