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ABSTRACT

This dissertation treats a number of related problems in control and data analysis of complex

networks.

First, in existing linear controllability frameworks, the ability to steer a network from any initiate

state toward any desired state is measured by the minimum number of driver nodes. However, the

associated optimal control energy can become unbearably large, preventing actual control from

being realized. Here I develop a physical controllability framework and propose strategies to turn

physically uncontrollable networks into physically controllable ones. I also discover that although

full control can be guaranteed by the prevailing structural controllability theory, it is necessary to

balance the number of driver nodes and control energy to achieve actual control, and my work

provides a framework to address this issue.

Second, in spite of recent progresses in linear controllability, controlling nonlinear dynamical

networks remains an outstanding problem. Here I develop an experimentally feasible control frame-

work for nonlinear dynamical networks that exhibit multistability. The control objective is to apply

parameter perturbation to drive the system from one attractor to another. I introduce the concept

of attractor network and formulate a quantifiable framework: a network is more controllable if the

attractor network is more strongly connected. I test the control framework using examples from

various models and demonstrate the beneficial role of noise in facilitating control.

Third, I analyze large data sets from a diverse online social networking (OSN) systems and find

that the growth dynamics of meme popularity exhibit characteristically different behaviors: linear,

“S”-shape and exponential growths. Inspired by cell population growth model in microbial ecology,

I construct a base growth model for meme popularity in OSNs. Then I incorporate human interest
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dynamics into the base model and propose a hybrid model which contains a small number of free

parameters. The model successfully predicts the various distinct meme growth dynamics.

At last, I propose a nonlinear dynamics model to characterize the controlling of WNT signaling

pathway in the differentiation of neural progenitor cells. The model is able to predict experiment

results and shed light on the understanding of WNT regulation mechanisms.
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1 . PHYSICAL CONTROLLABILITY OF COMPLEX NETWORKS

A challenging problem in network science is to control complex networks. In existing frame-

works of structural or exact controllability, the ability to steer a complex network toward any de-

sired state is measured by the minimum number of required driver nodes. However, if we imple-

ment actual control by imposing input signals on the minimum set of driver nodes, an unexpected

phenomenon arises: due to computational or experimental error there is a great probability that

convergence to the final state cannot be achieved. In fact, the associated control cost can become

unbearably large, effectively preventing actual control from being realized physically. The diffi-

culty is particularly severe when the network is deemed controllable with a small number of drivers.

Here we develop a physical controllability framework based on the probability of achieving ac-

tual control. Using a recently identified fundamental chain structure underlying the control energy,

we offer strategies to turn physically uncontrollable networks into physically controllable ones by

imposing slightly augmented set of input signals on properly chosen nodes. Our findings indicate

that, although full control can be theoretically guaranteed by the prevailing structural controllability

theory, it is necessary to balance the number of driver nodes and control cost to achieve physical

control.

1.1. Introduction

The past few years have witnessed great progress toward understanding the linear controllability

of complex networks [1–28]. Given a linear and time-invariant dynamical system, the traditional

approach to assessing its controllability is through the Kalman rank condition [29]. However, for

a complex network, it is difficult to test, both mathematically and computationally, the Kalman

rank condition directly to determine the optimal configuration for control input signals [1] due to

the typically large network size and the complex spectrum of network topology. To overcome this
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difficulty, Liu et al. proposed in their pioneering work [4] to exploit Lin’s classic theory of struc-

tural controllability [30]. In this framework, the fundamental issue is to determine the minimum

number of controllers required to steer the whole networked system from an arbitrarily initial state

to an arbitrarily final state in finite time. It was proved and demonstrated [4] that, for directed

complex networks, their structural controllability can be established via the maximum matching al-

gorithm [31–33]. In particular, based on Lin’s theory, one can determine the maximally matched set

of nodes, where each and every unmatched node requires an external control signal. An equivalent

optimization procedure was developed for undirected networks to determine the minimum domi-

nating set of nodes [6]. The structural controllability framework also served the base to address

an array of issues such as edge dynamics [8], lower and upper bounds of energy required for con-

trol [7], control centrality [34], optimization [5], effects of the density of in/out degree nodes [14],

and scaling of energy cost [27]. In addition, based on the classic Popov-Belevitch-Hautus (PBH)

rank condition [35] from traditional control engineering, a variant of the structural-controllability

theory, an exact controllability framework was developed [10] which is universally applicable to

all kinds of complex networks: directed or undirected, weighted or unweighted. In terms of appli-

cations, the structural controllability framework has been used to characterize protein interaction

networks to determine the key proteins responsible for certain biological functions [16].

In both structural and exact controllability frameworks, the focus is to determine the minimum

number of control signals, denoted by ND, for complex networks of various topologies. However,

we have encountered an unexpected difficulty when using the minimal set given by either structural

or exact controllability theory to carry out actual control of the network: convergence to the final

state. In particular, given a network, once ND is determined, we can determine the specific control

signals to be applied at various unmatched nodes by using the standard linear systems theory [36].
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The surprising phenomenon is that, quite often, actual control of the system cannot be achieved

computationally in the sense that, in any finite time, the system cannot be driven from an arbitrarily

initial state to an arbitrarily final state. We believe that this difficulty is fundamental, as we were

not able to remove or even mitigate the problem of divergence despite extensive and systematic

computational efforts in implementing various ways to optimize the numerical algorithm. This

difficulty in realizing actual control persists for a large number of model and real world networks.

While somewhat unsettling, the issue prompts us to hypothesize that the existing controllability

frameworks are merely mathematical, as the implementation of actual control would often require

infinite precision computations and, more seriously, an infinite amount of energy. To make the

notion of controllability of complex networks meaningful, the issue of physical controllability must

be addressed.

In this paper, we develop a physical controllability framework for complex networks to address

whether actual control can be achieved in an experimentally or computationally feasible way. Given

a complex network, we first use the structural controllability theory [4] to determine ND and a set

of unmatched nodes to which control signals are to be applied. Then, with a given pair of arbitrarily

initial and final states as well as a finite control time, we calculate the optimal control signals [36]

and evolve the whole networked system, which is essentially a linear dynamical system under ex-

ternal driving, to determine whether the system can be driven from the initial state to the final state

in the given amount of time. During this process, the energy required for control can be calculated

through the standard formula in linear systems theory [36, 37], which expresses the energy as the

integral of the product of a number of matrices, including the inverse of the positive-definite, sym-

metric Gramian matrix. Freedom in choosing the initial and final states and independent network

realizations render feasible a statistical analysis of the control process. We find that, typically, there
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are two cases, depending on whether the network can be physically controlled. For the physically

controllable case, the whole system, starting from the chosen initial condition, can actually converge

to the final state in the prespecified time within a predefined precision. In this case, the Gramian

matrix is well-behaved, meaning that both its condition number and the energy are not unrealisti-

cally large. For the physically uncontrollable case, the system cannot reach the final state within the

predefined precision in the given time. In such a case, the Gramian matrix is singular in the sense

that its condition number can be arbitrarily large, so is the corresponding energy. Increasing the pre-

cision of the computation, e.g., by using special simulation packages with round-off error orders of

magnitude smaller than that associated with the conventional double-precision computation, would

convert a few uncontrollable cases into controllable ones, but vast majority of the uncontrollable

cases remain unchanged.

The main result of this paper is a proposal of a general, probabilistic measure to characterize the

physical controllability for complex networks of arbitrary topology. For physically uncontrollable

networks, it is important to develop effective strategies to make them physically controllable. To

accomplish this goal, we gain insights by calculating the control energy for a bidirectional 1D chain

and obtaining an analytical relation between energy E and chain length L. We then apply the result

to general networked systems based on the idea of longest control chain (LCC) [27]. Optimization

strategies can be derived to decrease the control energy drastically. In fact, if the system is physi-

cally uncontrollable, a viable way to make it controllable is to increase the number of control signals

beyond ND. Our framework of physical controllability thus contains the following essential ingre-

dients: (1) ND, the minimum number of control signals determined by the existing mathematical

controllability frameworks, (2) a measure of physical controllability, (3) control energy E deter-

mined by the Gramian matrix, and (4) augmentation of ND for physically uncontrollable networks.
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The existing mathematical controllability theories [4, 10] thus provide a base for our physical con-

trollability framework. The quantity ND, on which the mathematical controllability theories focus,

can effectively be regarded as the lower bound of the actual number of control signals required. To

realize physical control, depending on the specific system and control settings, either ND control

signals suffice or substantially more signals are needed.

1.2. Results

1.2.1. Definition of Physical Controllability.

We consider the standard setting of a linear dynamical system subject to control input [1,4,10]:

ẋ = A · x +B · u, (1.1)

where x = [x1(t), . . . , xN (t)]T is a vector of dynamical variables of the entire network, u =

[u1(t), . . . , uM (t)]T is a vector defining the set of control input signals, A = {aij}N×N is the

adjacency matrix with N being the number of nodes in the network, and B = {bik}N×ND
is

control input matrix specifying the set of ND “driver” nodes [4], each receiving a control signal

that corresponds to one component of the control vector u. From the linear systems theory, optimal

control of a linear dynamical network in the sense of minimized energy cost can be achieved when

the input control signals ut are chosen as [36, 37]: ut = BT · eAT (tf−t) ·W−1 · (xtf − eAtf · x0),

where

W ≡
∫ tf

t0

eAτ ·B ·BT · eAT τdτ (1.2)

is the Gramian matrix, a positive-definite and symmetric matrix [36], which serves as the base to

determine quantitatively if a system is actually controllable. In particular, the system is controllable

only when W is nonsingular (invertible) for given control precision [36, 37]. With the control input

signal u, the energy cost is [36]

E(tf) =

∫ tf

0
uTt · utdt, (1.3)
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Fig. 1. Condition number CW versus control precision eX for random and scale-free networks.

Network size is N = 100 for (a)-(d) and 200 for (e-h), average degree is 〈k〉 = 6 for ER random

networks [(a),(b),(e), and (f)] and 8 for BA scale-free networks [(c), (d), (g), and (h)]. Directional

link probability between any pair of nodes is Pb = 0.1. Panels (a),(c),(e), and (g) show the scaling

relation between the condition number CW and the control precision eX . Panels (b), (d), (f), and

(h) show the fraction RCW of the networks with a certain CW number. The scaling relation holds

within some CW -eX region with boundaries specified as the black dashed lines. The eX values

are not physically meaningful outside the boundaries that are defined according to the precision

limit of computation. The thresholds of CW and eX used in the computations are 1012 and 10−4,

respectively, which are indicated as the blue dashed lines. The threshold values are chosen to lie

within the physical boundaries so that the calculations for all CW values are meaningful.
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where control is initiated at t = 0 and ended at t = tf.

To present concrete evidence for the existence of physically uncontrollable networks, we use

the Erdos-Renyi (ER) type of directed random networks [38] and the Barabási-Albert (BA) type of

directed scale-free networks [39] with a single parameter Pb. The meaning of Pb is the following.

Given a pair of linked nodes, i and j, the probability that the link points from the smaller-degree

node to the larger-degree one is Pb, and the probability in the opposite direction is 1 − Pb. The

link direction is chosen randomly if i and j have the same degree. To determine the set of driver

nodes, we use the maximum-matching algorithm [30], which gives the control matrix B. For each

combination of A and B, we first randomly choose the initial and final states. We then calculate the

corresponding Gramian matrix W , its condition number, the input signal ut, the actual final states

x?tf , and finally the control energy E(tf). Repeating this process for each and every independent

network realization in the ensemble enables an extensive statistical analysis of the control process.

Mathematically, if the Gramian matrix W is singular, the energy diverges. Through extensive

and systematic numerical computations, we find that, even when W is non-singular in the mathe-

matical sense, for typical complex networks its condition number can be enormously large, making

it effectively singular as any physical measurement or actual computation must be associated with a

finite precision. Say in an experiment the precision of measurement is ε. In a computational imple-

mentation of control, ε is effectively the computer round-off error. Consider the solution vector X

of the linear equation: W ·X = Y, where Y is a known vector. Let CW be the condition number of

W . The accuracy of the numerical solution of X, denoted by eX = 10−k (k is a positive integer), is

bounded by the product between CW and ε [40]. We see that, if CW is larger than 10−k/ε ≡ C̄W , it

is not possible to bring the system to within 10−k of the final state at finite control cost, so physically

control cannot be achieved in finite time.
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For a large number of networks drawn from an ensemble of networks with a pre-defined topol-

ogy, the condition numbers of their Gramian matrices are often orders of magnitude larger than

C̄W . Figure 1 shows the correlation between the condition number CW and the control error eX .

We observe that, within a certain range of CW , an approximate scaling relation exists between CW

and eX , as shown in panels (a, c, e, g). However, the scaling disappears outside the range where

the Gramian matrix W is ill conditioned, leading to considerable errors when computing the matrix

inverse. In principle, the scaling regime can be extended with improved computational precision,

but not indefinitely. For the networks with an ill conditioned Gramian matrix, not only is the control

vector unable to drive the system to the target state, but the associated energy can be extremely

large. These observations suggest the following criterion to define physical controllability in terms

of the control energy cost: a network is controllable with respect to a specific control setting if and

only if the condition number of its Gramian matrix is less than C̄W , a critical number determined by

both the measurement or computational error and the required precision of control. For a given set

of network parameters (hence a given network ensemble) and control setting, the probability that

the condition number of the Gramian matrix is less than C̄W , P (C̄W ), can effectively serve as a

quantitative measure of physical controllability. Increasing the precision of the computation, e.g.,

by using special simulation packages with round-off error orders of magnitude smaller than that

associated with the conventional double-precision computation, would convert a few uncontrollable

cases into controllable ones, but vast majority of the uncontrollable cases remain unchanged.

1.2.2. Structural Controllability Does Not Imply Physical Controllability.

We present evidence that structural and physical controllabilities are not necessarily compati-

ble with each other. Figures 2(a,b) show the percentage of driver nodes, nD ≡ ND/N , versus the

directional link probability Pb. We see that nD is minimized for Pb = 0.5, indicating a maximal
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Fig. 2. Structural and physical controllability measures in directed networks. Structural controlla-

bility measure nD versus directional edge probability Pb for (a) ER random networks and (b) BA

scale-free networks of size N = 1000 and three values of the average degree (〈k〉 = 4, 6, and 8).

The dash-dotted lines represent the results obtained from the cavity method [4, 5], and the squares,

triangles, and circles are simulation results from the maximum matching algorithm [4]. (c,d) Mea-

sure of physical controllability P (C̄W ) for ER random and BA scale-free networks of sizeN = 100,

respectively, where P (C̄W ) is the probability that the condition number of the Gramian matrix is

less than some physically reasonable threshold value. Comparing (a) with (c), or (b) with (d), we

observe the striking phenomenon that, in the parameter regime where the number of driver nodes is

minimized so that the corresponding networks are deemed to be most structurally controllable, they

are physically uncontrollable. The phenomenon persists regardless of the network size and type. All

nodes are self-loop free. The qualitative behavior is robust against variations in the value of C̄W .
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(optimal) level of structural controllability because only a few control signals are needed to control

the whole network [4]. But can physical controllability be achieved in the same parameter regime

where structural controllability is optimized? Figures 2(c,d) show the corresponding physical con-

trollability P (C̄W ) versus the network parameter Pb. We see that, in both regimes of small and large

Pb values where structural controllability is weak [corresponding to relatively high values of nD in

Figs. 2(a,b)], the physical controllability is relatively strong. In the regime of small Pb values, most

directed links in the network point from small to large degree nodes. In this case, the network is

more physically controllable, in agreement with intuition. The striking result is that, in the regime

of intermediate Pb values (e.g., Pb around 0.5) where the number of driver nodes to control the

whole network is minimized so that structural controllability is regarded the strongest, the physical

controllability is in fact the weakest, as the probability of the condition number P (C̄W ) being small

is close to zero. For example, for the random networks in Fig. 2(c), for 〈k〉 = 4, the minimum value

of P (C̄W ) is only about 0.1 for Pb ≈ 0.6, while for 〈k〉 = 6 and 〈k〉 = 8, the minimum values are

essentially zero. Surprisingly, near zero values of P (C̄W ) occur in a wide range of the parameter

Pb, e.g., [0.3, 0.8] and [0.2, 0.9] for 〈k〉 = 6 and 〈k〉 = 8, respectively, as shown in Fig. 2(c). This

indicates that the network is physically uncontrollable for most cases where structural controllability

is deemed to be strong. BA scale-free networks behave similarly, as illustrated in Fig. 2(d). Another

finding from Fig. 2 is thatND is symmetric about Pb = 0.5, but the symmetry is broken for P (C̄W),

indicating that there is no simple linear correlation between ND and P (C̄W). It is thus necessary

to find the fundamental structural properties responsible for the smallness of P (C̄W). Through a

detailed analysis of the energy cost associated with controlling a simple one-dimensional chain and

a double chain network (Methods) and of the energy scaling [27], we identify the longest control

chains (LCCs), the shortest paths through which the control energy is “flowed” to all nodes in the
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network, as the fundamental structural component responsible for the control energy. The longer the

LCCs, the more singular the Gramian matrix, and the smaller the probability P (C̄W). The maximal

LCC is effectively the control diameter of the network [27].

1.2.3. Physical Controllability of An Electrical Circuit Network and a Strategy to Balance

Control Energy and Extra Inputs.

To further illustrate the concept of physical controllability, we consider a real one-dimensional

cascade parallel RC circuit network, as schematically illustrated in Fig. 3(a). The network can be

represented by a bidirectional 1D chain with self-loops for all the nodes, as shown in Fig. 3(b) (see

Methods). The network size can be enlarged, say by one unit, by attaching an additional branch of

resistor and capacitor at the right end of the circuit. The state ui(t) of node i at time t is the voltage

of capacitor i, and the input voltage u(t) represents the control signal. The purpose of control is to

drive the voltages of the capacitors from a set of values to another within time tf through the input

voltage u(t). The control energy can then be calculated by Eq. (1.3). The actual energy dissipated

in the circuit during the control process is given by

Ereal =

∫ tf

0
U(t) · I(t)dt, (1.4)

where U(t) ≡ u(t) and I(t) are the input voltage and current at time t, respectively, and Ereal is

in units of Joule. By making the circuit equivalent to a 1D chain network, we have three types of

energy: the control energy of the actual circuit calculated from Eq. (1.3), the dissipated energy of

the circuit from Eq. (1.4), and the control energy of the 1D equivalent network. Figure 3(c) shows

that the control energy and the dissipated energy of the circuit do not differ substantially from the

energy calculated from the unidirectional 1D chain. Among the three types of energy, the energy

cost associated with the control process calculated from Eq. (1.4) is maximal.
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Fig. 3. Illustration of parallel R-C circuit and optimization of control energy. (a) A cascade parallel

R-C circuit with L = 7 resistors (R1, R2, . . ., and RL, each of resistance 1Ω) and 7 capacitors

(C1, C2, . . ., and CL, each of capacitance 1F). External voltage input u(t) is applied from the

left side of the circuit, and the voltage of capacitor Ci is ui(t)(1 ≤ i ≤ L). An extra external

current input ie(t) serves as a redundant control input injected into the capacitor C3, where i3 and i4

denote the currents through resistors R3 and R4, respectively. In absence of the extra current input,

i3(t)− i4(t) is the current through the branch of C3. (b) Network representation of the circuit in (a)

as a bidirectional 1D chain network of seven nodes, where the external voltage input u(t) is injected

into node 1 (yellow driver node, the controller). The dynamical state of node i is described by the

voltage of its capacitor, ui(t). Links (blue) between nodes are bidirectional and have uniform weight

1 in either direction. Each node has a self-link (red) of weight −2, except the ending node (node 7)

whose self-link has weight −1. The extra external current input ie(t) serves as a redundant control

input injected into node 3 of the network in (b). Now there are two driver nodes (yellow) in the

network, nodes 1 and 3. (c) Energy required for controlling a unidirectional chain (red circle) and

the corresponding circuit (blue square) as well as the dissipated energy (green triangle) of the circuit

calculated from Eq. (1.4) versus chain length L. (d) Control and dissipated energies in presence of

a redundant control signal to node i (i > 1), which breaks the chain into two subchains of lengths i

and L− i, respectively.
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Our extensive computations reveal that many structurally controllable networks are not physi-

cally controllable due to a combination of the ill-conditioned Gramian matrix and the finite com-

putational or experimental error. Our analysis of the chain model (Methods) suggests a simple but

effective strategy to reduce the energy significantly so as to enhance the physical controllability of

the network: to place extra control signals along the LCCs to break the chains into shorter sub-

chains. (In Methods, we show how the redundant control input can be planted in a circuit network.)

To be illustrative, we consider a unidirectional 1D chain and add an extra control input at the ith

node. As shown in Fig. 3(d), the magnitude of the control energy is reduced dramatically. The

optimal location to place the extra control should be near in the middle of the chain so as to mini-

mize the length of the LCC using a minimal number of extra control signals. In Fig. 3(d), the red

circles represent a 1D chain and indicate that this simple strategy of adding one redundant control

signal near the middle can reduce dramatically the required energy. For the circuit network in Fig. 3,

the redundant control input can be realized by inducing external current input into a capacitor. In

Fig. 3(d), the real energy is represented by green triangles, which reaches the minimum when the

extra input is putting around the middle. Applying a single redundant control input can thus be an

extremely efficient strategy to make the one-dimensional chain network physically controllable.

1.2.4. Control Energy Optimization of Complex Networks.

For a complex network, there often exist multiple LCCs, requiring multiple redundant control

inputs. With insights from the RC circuit example, we see that a strategy is to place one redundant

control input at the middle of each LCC. In this case, each LCC in the network is broken into two

subchains. Figure 4(a) shows the effect of this optimization strategy on the energy distribution. For

comparison, the same number of redundant control inputs are also applied randomly throughout the

network. The reduction ratio between the control energy under optimization strategy, ∆E, and the
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Fig. 4. Effects of redundant control inputs. (a) For control diameter DC = 4, distribution of the

normalized energy reduction ∆E/E with redundant control in an ensemble of 10000 ER-random

networks (〈k〉 = 6, Pb = 0.1). Results from the LCC-breaking optimization and random control

augmentation are marked by “mid” (red circles) and “R-mid”(blue squares), respectively. For each

network, a corresponding number of additional random control inputs are applied to the system

10 times to average out the statistical fluctuations. Panel (b) shows the ∆E/E distributions for

networks with control diameter DC = 5.
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original control energy E characterizes the effectiveness of the optimization process. In particular,

if the distribution of ∆E/E is concentrated on large values of ∆E/E, then the corresponding

optimization strategy can be deemed to be effective. As shown in Fig. 4(a), for relatively large

∆E/E values, P (∆E/E) as a result of optimization has values that are systematically larger than

those under random control signal augmentation, while the opposite situation is observed for regions

with relatively smaller ∆E/E. Thus, our optimization strategy outperforms the random strategy.

The networks requiring proper optimization to be physically controlled are typically those with large

control diameters. Figures 4(b) show that this is indeed the case: for networks with larger values

of DC, the performance of our optimization strategy is significantly better than that with random

placement of extra controllers.

1.3. Discussion

As stated in Ref. [4], the ultimate proof that one understands a complex network completely lies

in one’s ability to control it. However, we find that strong structural controllability is no guarantee

that the network can be physically controlled. To resolve this paradox, We develop a physical

controllability framework in terms of the control energy cost and the number of external input

signals. To illustrate the framework, we focus on the situation where the structural controllability

theory yields a minimum number of external input signals required for full control of the network,

and determine whether in these situations the control energy is affordable so as to realize actual

control. Our systematic computations and analysis reveal a rather unexpected phenomenon: due to

the singular nature of the control Gramian matrix, in the parameter regimes where optimal structural

controllability is achieved in the sense that the number of driver nodes is minimized, energy cost

can be physically impossible to accommodate. To obtain a systematic understanding, we focus on a

bidirectional 1D chain and study the relationship between energy and chain length. We then apply
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the 1D chain model to complex networks based on the idea of LCCs. In fact, the simple chain model

captures the scaling behavior of energy distribution found in random networks [23, 27]. The chain

model also provides a guiding principle to articulate optimization strategies to reduce the control

energy, which are tested using a RC circuit network and model complex networks.

An intuitive picture of the interrelation between mathematical controllability [4, 10] and our

physical controllability is the following. In a fictitious world where the Gramian matrix is not

singular (regardless of its condition number) and the computer round off or experimental errors

are absolutely zero, using ND controllers as determined by the structural controllability theory can

bring the networked system from any initial state to any final state in a given time. However,

in the physical world, the inevitable measurement or computational errors will have a devastating

consequence in the execution of actual control as the Gramian matrix is typically effectively singular

with an arbitrarily large condition number. The dynamical interplay between the error and the

singular Gramian matrix makes the system uncontrollable in the sense that it cannot be driven to

the final state in finite time within the desirable precision and the energy required in the process

diverges. Often, to realize physical control, many more control signals than those determined by the

structural controllability theory are needed.

Our work indicates the difficulty of achieving actual control of complex networks associated

with even linear dynamics. Although the mathematical controllability theories [4, 10] offer theoret-

ically justified frameworks to guide us to apply external inputs on a minimum set of driver nodes,

when we implement control to steer a system to a desired state, the energy consumption is likely

to be too large to be affordable. For nonlinear dynamical networks, we continue to lack a general

controllability framework and an understanding of required control energy, although progress has

been made [22,41–46]. At the present we still know very little about controlling complex networks
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Fig. 5. Control energy for 1D chain. (a) Energies required to control a unidirectional chain Euni

(purple circles) and a bidirectional one Ebi (green squares) versus chain length L. (b), (c) and (d)

Control energies of bidirectional chain calculated by simulation (red squares), λ−1
HL

(azure triangles),

and chain length L as shown in Eq. (1.12) (navy crosses) for different values of the control time

tf = 0.3, 0.5, 1, respectively.

hosting nonlinear dynamics, and further effort is needed to address this challenging but greatly

important problem shared by a wide range of fields.

1.4. Methods

1.4.1. Control Energy of One-Dimensional Chain Model.

To gain insights into how a network’s structure affects the control energy, we rewrite Eq. (1.3)

as E(tf) = xT0 · H−1 · x0, where H = e−Atf · W · e−AT tf . Since H is positive definite and

symmetric like W , its inverse H−1 can be decomposed in terms of its eigenvectors as H−1 =

Q · Λ · QT , where Q = [q1, q2, . . . , qN ] is composed of the orthonormal eigenvectors that satisfy

Q · QT = QT · Q = I , and Λ = diag{λ1, λ2, . . . , λN} is the diagonal eigenvalue matrix of H−1
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in a descending order. Numerically, we find that λ1 is typically much larger than other eigenvalues.

We thus have E(tf) = xT0 ·Q · Λ ·QT · x0 =
∑N

i=1 λi(q
T
i · x0)2 ≈ λ1(qT1 · x0)2.

In an undirected network, the adjacency matrix A is positive definite and symmetric. We can

decompose A into the form A = V · S · V T , where the columns of V constitute the orthonor-

mal eigenvectors of A and S = diag{s1, s2, . . . , sN} is the diagonal eigenvalue matrix of A in a

descending order. We thus have

H = e−Atf ·W · e−AT tf = V · e−Stf · V T ·W · V · e−Stf · V T .

Let

ΛH = diag{λH1 , λH2 , . . . , λHN
} = diag{1/λN , 1/λN−1, . . . , 1/λ1}

be the eigenvalue matrix of H in a descending order. The energy can be expressed as

E(tf) ≈ λ1(qT1 · x0)2 = λ−1
HN

(qT1 · x0)2. (1.5)

We consider a bidiretional 1D chain network and provide an analytical calculation of the rela-

tionship between control energy and chain length L. In the undirected chain, the adjacency matrix

is defined as

A =



0 1

1 0
. . .

1
. . . 1

. . . 0 1

1 0


L×L

,

the control matrix isB = [1, 0, . . . , 0]T , and the eigenvalues and eigenvectors ofA are, respectively,

si = 2 cos

(
π

L+ 1
i

)
, i = 1, . . . , L, (1.6)

V
(i)
j =

√
2

L+ 1
sin

(
π

L+ 1
ij

)
, i, j = 1, . . . , L. (1.7)
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Recall that H = V · e−Stf · (
∫ tf

0 eSt · V T · B · BT · V · eSt dt) · e−Stf · V T . Substituting this in

Eqs. (1.6) and (1.7), after some algebraic manipulation, we obtain

H =
1

L+ 1
V ·D · P ·D · V T , (1.8)

where D = diag{sin(θ), sin(2θ), ..., sin(Lθ)}. and Pjk =
∫ 2tf

0 e−[cos(jθ)+cos(kθ)]t dt with θ =

π/(L+ 1), j, k = 1, · · · , L.

The Rayleigh-Ritz theorem can be used to bound P as:

λPL
≤ yT · P · y

yT · y
≤ λP1 ,

and y = [y1, y2, . . . , yL]T is an arbitrary nonzero column vector, λPL
and λP1 are the maximal and

minimal eigenvalues of P , respectively. Letting T = 2tf, we have

yT · P · y = (y1 · · · yL)

[∫ T

0
e−[cos(jθ)+cos(kθ)]τ dτ

]
L×L


y1

...

yL


=

L∑
j,k=1

yjyk

∫ T

0
e−[cos(jθ)+cos(kθ)]τ dτ

= 〈
L∑
j=1

yje
−[cos(jθ)]t,

L∑
j=1

yje
−[cos(jθ)]t〉, (1.9)

with 〈f, g〉 ≡
∫ T

0 fg dτ . Letting bj = e− cos(jθ) and performing a Taylor expansion on btj around

t = 0, we obtain btj =
∑L−1

k=0 [− cos(jθ)]k t
k

k! + [− cos(jθ)]L
tLj
L! , with tj ∈ [0, T ]. Now letting

qj(t) =
∑L−1

k=0 [− cos(jθ)]k t
k

k! , we have btj = qj(t) + [− cos(jθ)]L · (tLj /L!). Consequently, the
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numerator in the Rayleigh quotient can be expressed as

yT · P · y =〈
L∑
j=1

yjb
t
j ,

L∑
j=1

yjb
t
j〉

=〈
L∑
j=1

(
yjqj(t) + yj [− cos(jθ)]L

tLj
L!

)
,

L∑
j=1

(
yjqj(t) + yj [− cos(jθ)]L

tLj
L!

)
〉

=〈
L∑
j=1

yjqj(t),
L∑
j=1

yjqj(t)〉+ 2〈
L∑
j=1

yjqj(t),
L∑
j=1

yj [− cos(jθ)]L
tLj
L!
〉

+ 〈
L∑
j=1

yj [− cos(jθ)]L
tLj
L!
,

L∑
j=1

yj [− cos(jθ)]L
tLj
L!
〉

≤ 〈
L∑
j=1

yjqj(t),
L∑
j=1

yjqj(t)〉︸ ︷︷ ︸
Denote as K1

+ 2
TL

L!

L∑
k=1

|yk|

∣∣∣∣∣∣〈
L∑
j=1

yjqj(t), 1〉

∣∣∣∣∣∣


︸ ︷︷ ︸
Denote as K2

+

(
TL

L!

)2 L∑
j,k=1

|yjyk|T︸ ︷︷ ︸
Denote asK3

. (1.10)

Since y = [y1, y2, . . . , yL]T is an arbitrary nonzero column vector, for each L and T , we can choose

y = ym insofar as K1 and K2 are relatively small compared with K3. We can normalize yTm · y to

arrive at

λPL
≤ yTm · P · ym

yTm · ym
=

(
TL

L!

)2 L∑
j,k=1

|ymjymk
|T ∼ O

(
T 2L

(L!)2

)
, (1.11)

where λPL
is the smallest eigenvalue of P . Since P is symmetric and positive definite, using

Cholesky decomposition we can obtain its factorization [40] as P = UT · U , where U is the upper

triangular matrix with its diagonal being the square roots of eigenvalues of P . Equation (1.8) can

then be written as H = 1
L+1V · D · U

T · U · D · V T . Since orthonormal transform does not

change the eigenvalues of a matrix, H has the same eigenvalues as R = 1
L+1D · U

T · U · D =

1
L+1D ·U

T · (D ·UT )T . Suppose ΛP = diag{λP1 , λP2 , . . . , λPL
} is the diagonal eigenvalue matrix

of P in a descending order. We then have

λHj = λRj =
1

L+ 1
λPj (sin kθ)

2 ≤ 1

L+ 1
λPj ,
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Fig. 6. Correlation between network control energy and the smallest eigenvalue of H-matrix. Net-

work size is N = 100, directional link probability between any pair of nodes is Pb = 0.1, and

average degree is (a) 〈k〉 = 6 for ER random networks and (b) 〈k〉 = 8 for BA sale-free networks.

where j and k run from 1 to L. For arbitrary but fixed x0, the control energy E(tf) can be approxi-

mated as

E(tf) ∼ O(λ−1
HL

) = O
(

(L+ 1)
(L!)2

t2Lf

)
, (1.12)

where we see that E(tf) increases faster than exponential with L. As shown in Fig. 5(a), the energy

required to control a unidirectional 1D chain nearly overlaps with that of a bidirectional one with

identical weights. From Figs. 5(b,c,d) we see that Eq. (1.12) provides a reasonably accurate estimate

of the control energy.

Furthermore, we find numerically that Eq. (1.5) holds for random and scale-free networks. As

shown in Fig. 6, there is a strong correlation between the average network control energy, 〈E〉,

and the smallest eigenvalue of the H-matrix, λ−1
HN

, for ER random and BA scale-free networks,

indicating that the network control energy is essentially determined by the smallest eigenvalue of its

H-matrix.
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1.4.2. Network Representation of a Circuit System.

We consider a cascade parallel R-C circuit consisting of three identical resistors and capacitors

as an example to illustrate how the circuit can be abstracted into a directed network, as shown in

Fig. 7. For convenience, we set R1 = R2 = R3 = R and C1 = C2 = C3 = C, and denote the

currents through R1, R2, and R3 as i1(t) , i2(t), and i3(t), respectively. The equations of the circuit

are 

u(t) = i1(t)R+ u1(t)

u1(t) = i2(t)R+ u2(t)

u2(t) = i3(t)R+ u3(t)

C du1(t)
dt = i1(t)− i2(t)

C du2(t)
dt = i2(t)− i3(t)

C du3(t)
dt = i3(t)

(1.13)

After some algebraic manipulation, we have

du1(t)
dt = − 2

RCu1(t) + 1
RCu2(t) + 1

RCu(t)

du2(t)
dt = 1

RCu1(t)− 2
RCu2(t) + 1

RCu3(t)

du3(t)
dt = 1

RCu2(t)− 1
RCu3(t),

(1.14)

which can be written as
du1(t)

dt

du2(t)
dt

du3(t)
dt

 =


− 2
RC

1
RC 0

1
RC − 2

RC
1
RC

0 1
RC − 1

RC




u1(t)

u2(t)

u3(t)

+


1
RC

0

0

u(t). (1.15)

Setting R = 1Ω and C = 1F , we have
du1(t)

dt

du2(t)
dt

du3(t)
dt

 = A ·


u1(t)

u2(t)

u3(t)

+B · u(t), (1.16)

22



where

A =


−2 1 0

1 −2 1

0 1 −1

 (1.17)

is the adjacency matrix of the network representing the circuit, and

B =


1

0

0

 (1.18)

is the control input matrix. The circuit has thus been transferred into a 3-node bidirectional 1D

chain network with adjacency matrix A.

1.4.3. Implementation of Extra Control Input in the Circuit System.

Without loss of generality, we inject an extra external current input ie(t) into the capacitor C2,

and the circuit equations become:

u(t) = i1(t)R+ u1(t)

u1(t) = i2(t)R+ u2(t)

u2(t) = i3(t)R+ u3(t)

C du1(t)
dt = i1(t)− i2(t)

C du2(t)
dt = i2(t)− i3(t) + ie(t)

C du3(t)
dt = i3(t)

(1.19)

The state equations are
du1(t)

dt

du2(t)
dt

du3(t)
dt

 = A ·


u1(t)

u2(t)

u3(t)

+Be ·

 u(t)

ie(t)

 , (1.20)
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Fig. 7. Controlling and optimizing a cascade parallel RC circuit system and the corresponding

network presentation. (a) A cascade parallel R-C circuit with 3 resistors (R1, R2, and R3, each of

resistance 1Ω) and 3 capacitors (C1, C2, and C3, each of capacitance 1F), where u(t) is the external

input voltage, u1(t), u2(t), and u3(t) are the voltages on the capacitors C1, C2, and C3, and i1(t),

i2(t), and i3(t) are the currents through the resistors R1, R2, and R3, respectively. (b) Network

representation of the circuit in (a). (c) Circuit with an extra external current input ie(t) into the

capacitor C2. (d) The extra external current input ie(t) serves as a redundant control input injected

into node 2 of the network in (b). There are two driver nodes (yellow) in the network: 1 and 2.
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where

Be =


1 0

0 1

0 0

 (1.21)

is the control input matrix of the circuit under the original control input u(t) on node 1 and a

redundant control input ie(t) to node 2. Similarly, the redundant control input can be injected into

any capacitor.

It is necessary to keep all other nodes unaffected while introducing exactly one extra control

input into the circuit. However, any additional voltage change in any part of the circuit can lead to

voltage changes on all the capacitors. A change in the current through a capacitor will not affect the

currents in other components of the network, since only the time derivative of its voltage is affected.

Thus, a meaningful way to introduce an extra control signal input to one node of a circuit’s network

is to inject current into one particular capacitor in the circuit.
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2 . A GEOMETRICAL APPROACH TO CONTROL AND CONTROLLABILITY OF NON-

LINEAR DYNAMICAL NETWORKS

In spite of the recent interest and advances in linear controllability of complex networks, control-

ling nonlinear network dynamics remains an outstanding problem. We develop an experimentally

feasible control framework for nonlinear dynamical networks that exhibit multistability (multiple

coexisting final states or attractors), which are representative of, e.g., gene regulatory networks

(GRNs). The control objective is to apply parameter perturbation to drive the system from one

attractor to another, assuming that the former is undesired and the latter is desired. To make our

framework practically useful, we consider restricted parameter perturbation by imposing the fol-

lowing two constraints: (a) it must be experimentally realizable and (b) it is applied only temporar-

ily. We introduce the concept of attractor network, in which the nodes are the distinct attractors

of the system, and there is a directional link from one attractor to another if the system can be

driven from the former to the latter using restricted control perturbation. Introduction of the attrac-

tor network allows us to formulate a controllability framework for nonlinear dynamical networks: a

network is more controllable if the underlying attractor network is more strongly connected, which

can be quantified. We demonstrate our control framework using examples from various models of

experimental GRNs and the beneficial role of noise in facilitating control.

2.1. Introduction

An outstanding problem in interdisciplinary research is to control nonlinear dynamics on com-

plex networks. Indeed, the physical world in which we live is nonlinear, and complex networks

are ubiquitous in a variety of natural, social, economical, and man-made systems. Dynamical pro-

cesses on complex networks are thus expected to be generically nonlinear. While the ultimate goal

to study complex systems is to control them, the coupling between nonlinear dynamics and com-
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plex network structure presents tremendous challenges to our ability to formulate effective control

methodologies. In spite of the rapid development of network science and engineering toward un-

derstanding, analyzing and predicting the dynamics of large complex network systems in the past

fifteen years, the problem of controlling nonlinear dynamical networks has remained open.

In the past several years, a framework for determining the linear controllability of network

based on the traditional control and graph theories emerged [4, 7, 8, 10, 14–16, 22, 23, 47], leading

to a quantitative understanding of the effect of network structure on its controllability. In particular,

a structural controllability framework was proposed [4], revealing that the ability to steer a com-

plex network toward any desired state, as measured by the minimum number of driver nodes, is

determined by the set of maximum matching, which is the maximum set of links that do not share

starting or ending nodes. A main result was that the number of driver nodes required for full control

is determined by the network’s degree distribution [4]. The framework was established for weighted

and directed networks. An alternative framework, the exact controllability framework, was subse-

quently formulated [10], which was based on the principle of maximum multiplicity to identify the

minimum set of driver nodes required to achieve full control of networks with arbitrary structures

and link weight distributions. Generally, a limitation of such rigorous mathematical frameworks of

controllability is that the nodal dynamical processes must be assumed to be linear. For nonlinear

dynamical networks, to establish a mathematical controllability framework similar to those based

on the classic Kalman’s rank condition [29] for linear networks is an unrealistically broad objective.

Traditionally, controllability for nonlinear control can be formulated based on Lie brackets [48], but

to extend the abstract framework to complex networks may be difficult. A recent work extended the

linear controllability and observability theory to nonlinear networks with symmetry [22]. In spite
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of the previous works, at the present there is no known general framework for controlling nonlinear

dynamics on complex networks.

Due to the high dimensionality of nonlinear dynamical networks and the rich variety of behav-

iors that they can exhibit, it may be prohibitively difficult to develop a control framework that is

universally applicable to different kinds of network dynamics. In particular, the classic definition of

linear controllability, i.e., a network system is controllable if it can be driven from an arbitrary ini-

tial state to an arbitrary final state in finite time, is generally not applicable to nonlinear dynamical

networks. Instead, controlling collective dynamical behaviors may be more pertinent and realistic.

Our viewpoint is that, for nonlinear dynamical networks, control strategies may need to be specific

and system-dependent. The purpose of this paper is to articulate control strategies and develop a

controllability framework for nonlinear networks that exhibit multistability. A defining characteris-

tic of such systems is that, for a realistic parameter setting, there are multiple coexisting attractors

in the phase space [49,50]. The goal is to drive the system from one attractor to another using phys-

ically meaningful, temporary and finite parameter perturbation, assuming that the system is likely

to evolve into an undesired state (attractor) or the system is already in such a state and one wishes

to implement control to bring the system out of the undesired state and steer it into a desired one.

In biology, nonlinear dynamical networks with multiple attractors have been employed to un-

derstand fundamental phenomena such as cancer mechanisms [51], cell fate differentiation [52–55],

and cell cycle control [56,57]. For example, Boolean network models were used to study gene evo-

lution [58], attractor number variation with asynchronous stochastic updating [59], gene expression

in the state space [53], and organism system growth rate improvement [60]. Another approach is

to abstract key regulation genetic networks [61,62] (or motifs) from all associated interactions, and

to employ synthetic biology to modify, control and finally understand the biological mechanisms
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within these complicated systems [52, 56]. An earlier application of this approach led to a good

understanding of the ubiquitous phenomenon of bistability in biological systems [63], where there

are typically limit cycle attractors and, during cell cycle control, noise can trigger a differentiation

process by driving the system from a limit circle to another steady state attractor [52]. Generally

speaking, there are two candidate mechanisms for transition or switching between different attrac-

tors [54]: through signals transmitted within cells and through noise, which were demonstrated

recently using synthetic genetic circuits [64]. More recently, a detailed numerical study was carried

out of how signal-induced bifurcations in a tri-stable genetic circuit can lead to transitions among

different cell types [55].

In this paper, we develop a control and controllability framework for nonlinear dynamical

networks based on the concept of attractor networks [44]. An attractor network is defined in

the phase space of the underlying nonlinear system, in which each node represents an attractor

and a directed edge from one node to another indicates that the system can be driven from the

former to the latter using experimentally feasible, temporary, and finite parameter changes. A

well connected attractor network implies a strong feasibility that the system can be controlled to

reach a desired attractor. The connectivity of the attractor network can then be used to characterize

the controllability of the nonlinear dynamical network. More specifically, for a given pair of

attractors, the relative weight of the shortest path is the number of accessible control parameters

whose adjustments can lead to the attractor transition as specified by the path. We use gene

regulatory networks (GRNs) to demonstrate the practicality of our control framework, which

includes low-dimensional, experimentally realizable synthetic gene circuits and a realistic T-cell

cancer network of 60 nodes. A finding is that noise can facilitate control by reducing the required

amplitude of the control signal. We emphasize that the development of our nonlinear control
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framework is based entirely on physical considerations, rendering feasible experimental validation.

2.2. Results

A complex, nonlinear dynamical network ofN variables can be described by a set ofN coupled

differential equations:

ẋ = F(x, µ), (2.1)

where x ∈ RN denotes the N -dimensional state variable, F(x, µ) is the nonlinear vector field, and

µ ∈ RM represents the set of coupling parameters. In a GRN, the nodal dynamics is typically one

dimensional. For simplicity, we assume that this is the case to be treated so that the size of the

network represented by Eq. (2.1) is N . From consideration of realistic GRNs, we assume that the

coupling parameters can be adjusted externally, which are effectively the set of control parameters.

Specifically, for a GRN, we assume that the various coupling strengths among the nodes (genes)

can be experimentally and systematically varied through application of specific targeted drugs. On

a larger scale, the fate of a cell can be controlled by adding drugs to the cell-growth environment,

which adjust the interaction parameters in the underlying network [63]. While dynamical variables

themselves can also be perturbed for the purpose of control, for GRNs this is unrealistic. For this

reason the scenario of perturbing dynamical variables will not be considered in this paper.

We focus on nonlinear dynamical networks with multiple coexisting attractors. For a given set

of parameters µ, the multiple attractors (e.g., stable steady states) and the corresponding basins are

fixed. In the absence of stochasticity, for a given initial condition, the system will approach one of

the attractors. Each attractor has specific biological significance, which can be regarded as either

desired or undesired, depending on the particular function of interest. Suppose, without any control,

the system is in an undesired attractor or is in its basin of attraction. The question is how to steer
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the system from the undesired state to a desired state by means of temporary and small parameter

variations that are experimentally feasible.

2.2.1. Control Principle Based on Bifurcation.

To motivate the development of a feasible control principle, we consider the simple case where

the system is near a bifurcation point and control is to be applied to drive the system from one

attractor to another through temporal perturbation to a single parameter. That is, the parameter

variation is turned on and takes effect for a finite (typically short) duration of time. After control

perturbation is withdrawn, the system is restored to its parameter setting before control but its state

has been changed: the system will have moved to the basin of the desired attractor and will approach

the desired attractor spontaneously. Let µ0 be the initial parameter value and the system is in an

undesired attractor denoted as x∗i , and let x∗f be the desired attractor to which the system is driven.

Imposing control means that we change the parameter from µ0 to µ1. The dynamical mechanism to

drive the system out of the initial attractor is bifurcations, e.g., a saddle-node bifurcation at which

the original attractor disappears and its basin is absorbed into that of an intermediate attractor [57],

denoted as x̄∗k. Turning on control to change µ from µ0 to µ1 thus makes the system approach x̄∗k.

This process continues until the system falls into the original basin of x∗f , at which point the control

parameter is reset to its original value µ0 so that the system will approach the desired attractor

x∗f . Success of control relies on the existence of a “path” from the initial attractor to the final one

through a number of intermediate attractors. If a single parameter is unable to establish such a path,

variations in multiple parameters can be considered, provided that such parameter adjustments are

experimentally realizable. For a biological network, this can be achieved through application of a

combined set of drugs [65, 66]. However, even when potential complications induced by inter-drug

interactions are neglected, the search space for suitable parameter perturbation can be prohibitively
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large if we allow all available parameters to be adjusted simultaneously. We demonstrate below that

this challenge can be met by constructing an attractor network for the underlying system.

We note that, not only is it now feasible to perturb gene expressions directly, but the technol-

ogy for fine-tuning regulation strengths is also commonly available. For example, in our previous

synthetic biology studies [64, 67], we used chemical inducers such as aTc, IPTG, and Arabinose to

fine tune the strength of inhibition or activation. These chemical inducers do not change the protein

abundance but rather chemically modify the protein structures upon binding so as to change their

functions including binding affinity. Other techniques such as RNAi can also be used to fine-tune

gene regulation strength. In general, there are many different ways to tune gene regulation without

chaining its transcription and translation.

2.2.2. Attractor Network for the T-Cell Signaling Network.

For a complex, nonlinear dynamical network, an attractor network can be constructed by defin-

ing each of all possible attractors of the system as a node. There exists a directed link from one

node to another if an experimentally accessible parameter of the system can be adjusted to drive

or control the system from the former to the latter. There can be multiple edges from one node to

another, if there are multiple parameters, each enabling control. Starting from an initial attractor,

one can identify, using all accessible parameters with variations in a physically reasonable range, a

set of attractors that the system can be driven into. Repeating this procedure for all attractors in the

system, we build up an attractor network that provides a blueprint for driving the whole networked

system from any attractor to any other attractor in the system, assuming at the time the latter at-

tractor would lead to desired function of the system as a whole. As we can see from following

examples, all these can be done using relatively small parameter perturbation in the sense that the
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Fig. 8. T-cell survival signaling network and its attractor network. (a) Structure of T-cell survival

network: each node is labeled with its generic name, and the arrowhead and diamond-head edges

represent activation and inhibition regulations, respectively. The inhibitory edges from “Apoptosis”

to other nodes are not shown (for clarity). (b) Attractor network of the T-cell network, which con-

tains three nodes: two cancerous states denoted as C1 and C2 and a normal state denoted as N. The

two directed edges in the attractor network are multiple, each containing altogether 48 individual

edges corresponding to controlling the 48 edges in the original network, which are indicated by the

dark dashed lines, whereas the remaining edges in the original network are signified by the light

solid lines. Our detailed computations reveal that parameter perturbation on any one of the 48 edges

can drive the system from a cancerous state to the normal state. That is, regardless of whether the

initial state is C1 or C2, with a proper modification to one of the 48 parameters, the system can be

driven to the normal state N.
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modifications are small as compared with the ranges over which the corresponding parameters can

vary.

To demonstrate the construction of attractor networks, we take as an example a realistic biologi-

cal network, T cells in large granular lymphocyte (T-LGL) leukemia associated with blood cancer.

Specifically, apoptosis signaling of the T cells can be described by a network model: T-cell survival

signaling network [68, 69], which has 60 nodes and 195 regulatory edges, as shown in Fig. 8(a).

Nodes in the network represent proteins and transcripts, and the edges correspond to either activa-

tion or inhibitory regulations. Experimentally, it was found that there are three attractors for this

biophysically detailed network [68, 69]. Among the three attractors, two correspond to two distinct

cancerous states (denoted as C1 and C2) and one is associated with the normal state (denoted as

N). The two cancerous states are biologically equivalent, differing only on node P2 (either activated

or inactivated). Since the T-LGL leukemia disease originates from the failure of the programmed

T-cell, the normal state corresponds to the situation where the node Apoptosis is activated while

all other nodes are inactivated. By translating the Boolean rules into a continuous form using the

method in [70, 71] and setting the strength of each edge to unity, one can obtain a set of nonlinear

dynamical equations for the entire network system. Direct simulation of the model indicates that

there are three stable fixed point attractors, in agreement with the experimental observation [68,69].

The attractor network is thus quite simple: it has three nodes only, as shown in Fig. 8(b). Testing

all the 195 experimentally adjustable parameters, we find 48 edges from each cancerous attractor

to the normal one (see Supplementary Table 1). Our detailed computations reveal that parameter

perturbation on any one of the 48 edges can drive the system from a cancerous state to the normal

state. That is, regardless of whether the initial state is C1 or C2, with a proper modification to one

of the 48 parameters, the system can be driven to the normal state N. Since the goal of control

34



is to bring the system from one of the cancerous states to the normal one, it is not necessary (or

biologically meaningful) to test whether parameter perturbation exists that drives the system from

the normal node to a cancerous node.

2.2.3. Control Implementation Based on Attractor Network.

Given a nonlinear dynamical network in the real (physical) space, the underlying phase space

dimension may be quite high, rendering analysis of the dynamical behaviors difficult. The attractor

network is a coarse grained representation of the phase space, retaining information that is most

relevant to the control task of driving the network system to a desired final state. Once an attractor

network has been constructed, actual control can be carried out through temporary changes in a set

of experimentally adjustable parameters, one at a time. This should be contrasted to one existing

approach [72] that requires accurate adjustments in the state variables, which may not always be

realistic.

We detail how actual control can be implemented based on the attractor network for the T-cell

system. To be concrete, we assume that the control signal has the shape of a rectangular pulse in

the plot of a parameter versus the time, as shown in Fig. 9(a), where the control parameter is µ and

the rectangular pulse has duration τ and amplitude ∆µ = |µn − µ0|, with µ0 denoting the nominal

parameter value and µn being the value during the time interval when control is on. For the T-cell

network, we set µ0 = 1.0. As µ is reduced the system approaches a bifurcation point. (In other

examples a bifurcation can be reached by increasing a control parameter, as in the low-dimensional

GRNs detailed in Methods.) Extensive numerical simulations for controlling the T-cell network

from a cancerous state (C1 or C2) to the normal state N shows that, to achieve control, there are

wide ranges of choices for ∆µ and τ . In fact, once µn is decreased through the bifurcation point µc

at which the initial attractor loses its stability, the goal of control can be realized. The critical value
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Fig. 9. Relationship between edge control strength and minimal control time. For the T-cell

network, (a) an inverted rectangular control signal of duration τ and amplitude ∆µn = |µn − µ0|,

where µ0 is the original parameter value and µn is the control parameter value. A saddle-node

bifurcation occurs for µ = µc, so ∆e = µc − µn is the excessive amount of the parameter change

over the critical value µc. (b,c) Minimal control time τm versus µn, where parameter control is

applied to the activation edge from node “S1P” to node “PDGFR” and to the inhibitory edge from

“DISC” to “MCL1”, respectively. These four nodes are indicated with the solid black circles in

Fig. 8(a). The corresponding plots on a logarithmic scale in the insets of (b) and (c) suggest a

power-law scaling behavior between τm and ∆e [Eq. (2.2)]. The fitted power-law scaling exponents

are β ≈ −0.44, and −0.55, respectively, for (b) and (c).
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µc for each parameter can be identified from the bifurcation analysis. Additionally, for µn < µc,

there exists a required minimum control time τm, over which the system will move into the original

basin of the target attractor before control is activated. Insofar as τ > τm, the control signal can

be released. Longer duration of control is not necessary since the system will evolve into the target

attractor following its natural dynamical evolution associated with the nominal parameter µ0. The

value of τm increases as µn is closer to µc, where if µn = µc, τm is infinite due to the critical slowing

down at the bifurcation point µc. Figures 9(b) and 9(c) show, respectively, for the T-cell network,

the relationship between τm and µn when controlling the strength of the activation edge from node

“S1P” to node “PDGFR”, and that of the inhibitory edge from node “DISC” to node “MCL1” [cf.,

Fig. 8(a), the nodes denoted as black circles and connected by bold coupling edges]. The critical

value µc (indicated by the dotted line) can be estimated accordingly. The insets of (b) and (c) show

the corresponding plots of the relationships on a double logarithmic scale, with the horizontal axis

to be ∆e = µc − µn, the exceeded value of µn over the critical point µc. We observe the following

power-law scaling behavior:

τm = α|µn − µc|β ≡ α|∆e|β, (2.2)

where β is the scaling exponent. The upper right region in the plane of the control parameters over

the curve of τm(∆e), i.e., the region with larger ∆e value or longer duration τ , corresponds to the

case where control is successful in the sense that the system can definitely be driven to the desired

final state.

The power-law scaling relation for τm demonstrated in Figs. 9(b) and 9(c) for the T-cell network

is quite general, as it also holds for two-node and three-node GRNs (see Methods). For the T-cell

system, the critical values of parameters for all the possible controllable edges from C1 or C2 to

N, and the corresponding values of α and β in Eq. (2.2) are provided in Supplementary Table 1 and
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Supplementary Note 1. The control magnitude and time for some parameters are identical, for the

reason that the logic relationship from the corresponding edges to the same node can be described as

“AND” (c.f., Fig. 8) so that in the continuous-time differential equation model, all these in-edges are

equivalent. (The control results for the two-node and three-node GRNs between any pair of nearest-

neighbor attractors are listed in Supplementary Tables 2 and 3 respectively.) Due to the flexibility

in choosing the control signal, our control scheme based on the attractor network is amenable to

experimental implementation. We can assign weights to the shortest paths in the attractor network.

For example, if we assume all the links are equally implementable, from Supplementary Table 1,

the path from the C state to the N state that involve any one of IL2RB, STAT3, NFkB, PI3K or

Apoptosis to MCL1 has a relatively larger weight, representing the relatively more efficient control

protocol as the required parameter change ∆e can be minimized.

2.2.4. Beneficial Role of Noise in Control.

More than three decades of intense research in nonlinear dynamical systems has led to great

knowledge about the role of noise, in terms of phenomena such as stochastic resonance [73, 74],

coherence resonance [75, 76], noise-induced chaos [50] and noise-induced state transitions [77].

Common to all these phenomena is that a proper amount of noise can in fact be beneficial, for ex-

ample, to optimize the signal-to-noise ratio, to enhance the signal regularity or temporal coherence,

or to facilitate the transitions among the attractors. This can be understood intuitively by noting that

our control mechanism is to make the system leave an undesired attractor and approach a desired

one but noise in combination with parameter adjustments can facilitate the process of escaping from

an attractor. To demonstrate this, we assume that the T-Cell network is subject to Gaussian noise,

which can be modeled by adding independent normal distribution terms N(0, σ2) to the system

equations, where σ is the noise amplitude. We find that, with noise, the required magnitude of pa-
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Fig. 10. The benefit of noise in controlling the T-cell network. (a) Success rate to control the

T-cell network from the cancerous state C1 to the normal state N using a combination of parameter

perturbation and external noise (of amplitude) σ, where ∆d ≡ µn − µc is the parameter deficiency.

Warm colors indicate higher probability values of successful control. The perturbation duration is

τ = 200. The results are averaged over 1000 realizations. (b) A three-dimensional plot: success

rate versus ∆d and σ.

39



rameter change can be reduced. In fact, even when the controlled parameter µn has not yet reached

the bifurcation point µc, noise can lead to a finite probability for the system to escape the basin of

the undesired attractor. We note that, in a recent work on stochastic control [77], a method was pre-

sented to switch the dynamical states. In a real experimental setting, there can be different sources

of noise such as temperature and metabolic burden. In our parametric control method, the control

signals are flexible with adjustable duration and amplitude, and noise can enhance the flexibility.

Suppose the control parameter is set to the value µn, which is insufficient to induce escape

from the undesired attractor in the absence of noise. When noise is present, the system dynamics

is stochastic. To characterize the control performance, we use a large number of independent

realizations with the same initial condition. Specifically, we perform independent simulations

starting from one cancerous state, e.g., C1, but with insufficient control strength as characterized by

the deficiency parameter ∆d ≡ µn − µc, and calculate the probability P of control success through

the number of trials that the system can be successfully driven to the normal state N. Figure 10(a)

shows, on a double logarithmic scale, the values of P in the parameter plane of σ and ∆d, where

the control parameter is the strength of the activation edge from node “S1P” to node “PDGFR” in

the T-cell network. A three-dimensional plot of P versus σ and ∆d is shown in Fig. 10(b). We see

that, for fixed σ, P decreases with ∆d but, for any fixed value of ∆d, the probability P increases

with σ, indicating the beneficial role of noise in facilitating control. In the parameter plane there

exists a well-defined boundary, below which the control probability assumes large values but above

which the probability is near zero. Testing alternative control parameters yields essentially the

same results, due to the simplicity of the attractor network for the T-cell system and the multiple

directed edges from each cancerous state to the normal state.
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2.3. Conclusion

The field of controlling chaos in nonlinear dynamical systems has been active for more than two

decades since the seminal work of Ott, Grebogi, and Yorke [78]. The basic idea was that chaos,

while signifying random or irregular behavior, possesses an intrinsically sensitive dependence on

initial conditions that can be exploited for controlling the system using only small perturbation. This

feature, in combination with the fact that a chaotic system possesses an infinite set of unstable peri-

odic orbits, each leading to different system performance, implies that a chaotic system can be stabi-

lized about some desired state with optimal performance. Controlling chaos has since been studied

extensively and examples of successful experimental implementation abound in physical, chemical,

biological, and engineering systems [79]. The vast literature on controlling chaos, however, has been

mostly limited to low-dimensional systems, systems that possess one or a very few unstable direc-

tions (i.e., one or a very few positive Lyapunov exponents [80]). Complex networks with nonlinear

dynamics are generally high dimensional, rendering inapplicable existing methodologies of chaos

control. While mathematical frameworks of controllability of complex networks [4,10] were devel-

oped and extensively studied recently, the limitation of such rigorous mathematical frameworks is

that the nodal dynamical processes must be assumed to be linear.

Controlling nonlinear dynamics on complex networks remains to be an outstanding and chal-

lenging problem, especially in terms of the two key issues: controllability and actual control. To

assess the controllability of nonlinear dynamical networks, drastically different approaches than

the linear controllability framework are needed. While there were previous works on specific con-

trol methods such as pinning control [41, 81] and brute-force control that rely on altering the state

variables of the underlying system (which in realistic situations can be difficult to implement),

we continue to lack a general framework for actual control of complex networks with nonlinear
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dynamics through realistic, physical means. The main difficulty lies in the extremely diverse non-

linear dynamical behaviors that a network can generate, making it practically impossible to develop

a general mathematical framework for control. In particular, the traditional control theoretical tools

for linear dynamical systems aim to control the detailed states of all of the variables, which is in

fact an overkill for most systems. For nonlinear dynamical networks, a physically meaningful ap-

proach may not require detailed control of all state variables. With this relaxation of the control

requirement, it may be possible to develop a framework of controllability and devise actual control

strategies for nonlinear dynamical networks based on physical/experimental considerations.

A common feature of nonlinear dynamical systems is the emergence of a large number of dis-

tinct, coexisting attractors [50, 82]. Often the performance and functions of the system are deter-

mined by the particular attractor that the system has settled into, associated with which the detailed

states of the dynamical variables are not relevant. The key is thus to develop control principles

whereby we nudge a complex, nonlinear system from attractor to attractor through small perturba-

tion to a set of physically or experimentally feasible parameters. The main message of this paper

is that a controllability framework can be developed for nonlinear dynamical networks based on

controlling attractors.

Generally, the reason for control is that the current system is likely to evolve into an undesired

state (attractor) or the system is already in such a state, and one wishes to apply perturbation to

bring the system out of the undesired state and steer it into a desired state. The first step is then to

identify a final state or attractor of the system that leads to the desired performance. The next step is

to choose a set of experimentally adjustable parameters and determine whether small perturbation

to these parameters can bring the system to the desired attractor. That is, under physically realizable

perturbation there should be a control path between the undesired and the desired attractors. The
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path can be directly from the former to the latter, or there can be intermediate attractors on the

path. For example, due to the physical constraint on the control parameters and the ranges in which

they can be meaningfully varied, one can drive the system into some intermediate attractors by

perturbing one set of parameters, and then from these attractors to the final attractor by using a

different set of parameter control. For a complex, nonlinear dynamical network, the number of

coexisting attractors can be large. (See Supplementary Note 5 for a systematic method to find the

attractors.) Given a set of system performance indicators, one can classify all the available attractors

into three categories: the undesired, desired, and the intermediate. We say a nonlinear network is

controllable if there is a control path from any undesired attractor to the desired attractor under

finite parameter perturbation. Regarding each attractor as a node and the control paths as directed

links or edges, we generate an attractor network whose properties determine the controllability of

the original networked dynamical system. For example, the average path length from an undesired

to a desired attractor and the “control energy” (or the amount of necessary parameter perturbation)

can serve as quantitative measures to characterize the controllability of the original network. We

demonstrate our idea of control and construction of attractor networks using realistic networks from

systems and synthetic biology. We also find that noise can facilitate control of nonlinear dynamical

networks, and we provide a physical theory to understand this phenomenon.

Our framework can be adopted to controlling nonlinear dynamical networks other than the

GRNs. For example, for the Northern European power grid network recently studied by Menck

et al. [83], a rewiring method was proposed and demonstrated to be able to enhance the system sta-

bility through the addition of extra transmission lines. For a power grid network, the synchronous

states are desired while other states, e.g., limit cycles, detrimental. Treating the link density (or

number) as a tunable parameter, the minimum transfer capacity required for extra lines to real-
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ize the control can be estimated through our method. Another example is Boolean networks with

discrete dynamics, for which Campbell and Albert proposed a perturbation method based on modi-

fication of update rules to rescue the system from the undesired states [84]. In terms of our method,

an attractor network can be constructed based on perturbation to multiple parameters to drive the

system out of the undesired, damaged states toward a normal (desired) state. For biological systems,

Wang et al. proposed an epigenetic state network (ESN) approach [85] to analyze the transitions

among different phenotypic processes. In an ESN, nodes represent attractors and edges represent

pathways between a pair of attractors. By construction, different parameter values would result in

a different ESN. (See Supplementary Note 6 and Supplementary Fig. 2 for an example of using the

principle of attractor network to control a stochastic, biochemical reaction network.) In our attrac-

tor network, nodes are attractors but edges are directed and represent controllable paths (through

parameter perturbation) to drive the system from one attractor to another.

While we emphasize the need to focus on physically meaningful and experimentally accessible

parameter perturbation, there can still be a large number of attractor networks depending on the

choice of the parameters, making it difficult to formulate a rigorous mathematical framework.

Moreover, since the attractor network is directed and typically does not have an all-to-all coupling

configuration, multiple parameter perturbation may be needed to realize control (e.g., as demon-

strated using our three-node system), rendering the amount of computation prohibitive for relatively

large dynamical networks. Successfully addressing these issues will ultimately enable us to achieve

the grand goal of controlling nonlinear dynamical networks.
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2.4. Methods

2.4.1. Construction of Attractor Networks.

For a system with known attractor basins and given initial and final states, the attractor network

can be constructed through the following steps.

(1) Find all the parameters that can be adjusted externally and determine the possible range of vari-

ation of each tunable parameter based on experimental considerations and computational efficiency.

For example, the T-cell network has 195 tunable parameters. Using the differential equation model

one can test each parameter separately to determine its range of variation that can drive the system

from one attractor to another. (Testing different parameter combinations is computationally pro-

hibitive.)

(2) For a tunable parameter, choose a small set of values in its variable range, which include its

original or nominal value.

(3) Simulate the system dynamics for each parameter value, starting from the initial attractor and

determine the final attractor. Record the parameter values that can drive the system into the basin of

the desired attractor. For example, for the T-cell network, parameter variations lead to saddle-node

bifurcations, rendering applicable a straightforward bisecting algorithm to reduce the computational

complexity in searching for the set of parameter values that result in a desired attractor.

(4) An attractor network can be constructed after all tunable parameters have been tested, from

which distinct control paths can be identified for any given pair of initial and final attractors. (For

the systems treated in this paper, the computational time required to construct the attractor network

is listed in Supplementary Table 4.)

For systems whose attractors are unknown a priori, it is necessary to execute an attractor finding

algorithm before an attractor network can be reconstructed. An example of such an algorithm is pre-
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sented in Supplementary Note 5. The issues of multiple parameter based control and computational

cost are discussed in Supplementary Notes 7 and 8 respectively.

2.4.2. Bifurcation Diagram and Continuation Algorithm.

Bifurcation diagram is a visualized method to characterize a system’s steady state behavior with

respect to parameter variation. In this paper, we used the MATCONT package in MATLAB to

draw the bifurcation diagrams [86]. The bifurcation curves in MATCONT are computed based on

the numerical continuation algorithm with a predictor-corrector procedure to enhance the stability

and reduce the computational time. For the two-node GRN example, we calculate the bifurcation

diagrams with respect to all 4 tunable parameters, based on which the attractor network can be

constructed.

2.4.3. Attractor Network for a GRN of Two Nodes.

In spite of the simplicity of its attractor network, the original T-cell network itself is still quite

complicated from the point of view of nonlinear dynamical analysis. To have a better understanding

of our control mechanism, we study GRNs of relatively low dimensions and carry out a detailed

analysis of the associated attractor networks.

We use a two-node GRN to understand the dynamical underpinning of the attractor network. As

shown in Fig. 11(a), the network contains two auto-activation nodes (genes) and together they form

a mutual inhibitory circuit. Such a topology was shown to be responsible for the regulation of blood

stem cell differentiation [87]. In addition, it is conceivable that such topologies can be constructed

with tunable inputs using synthetic biology approaches [64].

In a typical experimental setting, four coupling parameters can be adjusted externally through

the application of repressive or inductive drugs. To demonstrate attractor network and control im-

plementation, we consider the parameter regime in which the system has four stable steady states

46



0 0.5 1 1.5

0

0.5

1

1.5

x
1

x
2

0 0.5 1 1.5

0

0.5

1

1.5

x
1

x
2

0 0.5 1 1.5

0

0.5

1

1.5

x
1

x
2   t

0
~t

1

a
1
=a

1
a

1
=a

1

  t
0

  t
1
~t

2

d e f

BA B’ BA

0 n

a
1
=a

1

0

0
1

2

0.5 1 1.5 2

0

0.5

1

x
1

x
2

a
1

b

X
1

a
1

a
2

b
1

b
2

a

t
t
0

t
1

a
1
=a

1

0

a
1
=a

1

n

a
1
=a

1

0

c

t
2

Fig. 11. Control of a GRN of two nodes. (a) Simplified model of the two-node GRN, where the

arrowhead and bar-head edges represent activation and inhibition regulations, respectively, and the

sawtooth lines denote the strength of the tunable edge. (b) Bifurcation diagram with respect to

the control parameter a1, where the red and gray solid lines denote the stable and unstable steady

states, respectively. In the two parallel cross-sections (with dashed line boundaries) for a1 = a0
1 and

a1 = an1 , the yellow and brown dots represent the corresponding stable attractors, respectively. (c)

Control signals required to drive the system from attractor A to attractor B. In (d-f), gray dashed

lines represent the basin boundaries; black solid circles and green crosses denote attractors and

unstable steady states, respectively. (d) For the initial parameter setting, a1 = a0
1, the system is at

a low concentration state A, and the target state is B. (e) By changing a1 from a0
1 to an1 , attractor

A is destabilized and its original basin is absorbed into that of the intermediate attractor B′, so the

system approaches B′. (f) When control perturbation upon a1 is released, the landscape recovers

to that in (d). Once the system has entered the basin of the target state B during the process in (e),

it will evolve spontaneously towards B. Parameters in simulation are a0
1 = 1.0, an1 = 1.4, t0 = 0,

t1 = 23, and t2 = 40. 47
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Fig. 12. Attractor network construction for a GRN of two nodes. (a-c) Bifurcation diagrams with

respect to the coupling parameters a1, a2 and b2, respectively, where each bifurcation point can

be exploited to design control. (d) The corresponding attractor network, in which a directed edge

corresponds to an elementary control that is designed to steer the system from the original attractor

to the directed one. The solid and dashed edges, respectively, denote the positive and negative

changes in the corresponding control parameters. (e) Sequential control signals required to drive

the system from attractor A to attractor C through the path A → B → C. In simulation, the

original parameter values are a0
1 = 1.0 and b02 = 0.2. We set an1 = 1.4, followed by setting

bn2 = 4.2, and the respective durations of the parameter perturbation are τa = 23 and τb = 32.
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(attractors) that correspond to four different cell states during cell development and differentiation.

In particular, the dynamical network can be mathematically described as,

ẋ1 = a1 ·
xn1

sn + xn1
+ b1 ·

sn

sn + xn2
− k · x1,

ẋ2 = a2 ·
xn2

sn + xn2
+ b2 ·

sn

sn + xn1
− k · x2,

(2.3)

where the dynamical variables (x1, x2) characterize the protein abundances of the gene products, k

denotes the degradation rate of each gene, and the tunable parameters a1, a2, b1, and b2 represent

the strengths of auto or mutual regulations. In a GRN, the dynamical behaviors of inhibition and

activation are captured by the Hill function: f(x) = xn/(xn + sn) for activation and f(x) =

sn/(xn + sn) for inhibition, where the parameter s characterizes half activation (or inhibition)

concentration (for x = s, the output is 0.5), and n quantifies the correlation between the input and

output concentrations, with a larger value of n corresponding to a stronger inhibition or activation

effect. For any specific GRN, the values of both s and n can be determined experimentally. For

simplicity, we assume the system to be symmetric in that inhibition and activation share the same

Hill function (i.e., with the same parameters s and n). To have four attractors, we set the auto

activation strengths, a1 and a2, to 1.0, and mutual inhibition strengths, b1 and b2, to 0.2. The value

of the degradation rate k is set to 1.1, taking into account the effects of protein degradation and cell

volume expansion.

Figures 11(b-f) show a particular process of controlling the system from an initial state, denoted

as A, in which both x1 and x2 have low abundance, to a final state B where x1 and x2 have high and

low abundance, respectively. From the bifurcation diagram [Fig. 11(b)] with respect to the control

parameter a1, we see that, as a1 is increased from 1.0 to 1.4, in the lower branch, the initial attractor

A is destabilized through a saddle-node bifurcation. The control signal is shown in Fig. 11(c),

where the original and perturbed parameter values are denoted as a0
1 and an1 , respectively. The
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bifurcation based control process is shown in Figs. 11(d-f), where panel (d) exhibits the phase space

of the system prior to control (a1 = 1.0). When control is activated so that a1 is set to a1 = 1.4, the

original basin of attractor A merges into the basin of an intermediate attractor B′, and the system

originally in A starts to migrate towards the intermediate attractor B′, as indicated by the arrowed

trajectory in panel (e). Control perturbation upon a1 can be withdrawn once the system enters the

region belonging to the original basin of the target attractor B, after which the system spontaneously

evolves into B for a1 = 1.0, as shown in Fig. 11(f).

To obtain a global picture of all possible control outcomes, we construct the attractor network for

the two-node GRN system, assuming that three parameters: a1, a2 and b2, are available for control.

The corresponding bifurcation diagrams are shown in Figs. 12(a-c), from which all saddle-node

bifurcations can be identified for control design. When all the attractors are connected with directed

and weighted edges through the control processes, i.e., when none of the attractor is isolated, we

obtain an attractor network, as shown in Fig. 12(d). Specifically, the edge weight can be assigned

by taking into account the key characteristics of control such as the critical parameter strength µc

and the power-law scaling behavior of the required minimum control time τm (see Supplementary

Table 2). From the attractor network, we can find all possible control paths for any given pair of

original and desired states.

From Fig. 12(d), we see that the two-node GRN system is fully controllable since any of the

coexisting attractors is reachable by applying proper sequential controls to the available parameters.

The concept of attractor network is appealing because it provides a clear control scenario to drive

the system from any initial attractor to any desired attractor. In fact, the attractor network provides

a blueprint that can be used to design a proper combination of parameter changes to induce the

so-called synergistic or antagonistic effects [88]. For example, A is not directly connected with C,
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neither is B directly connected to D. However, the system can be steered from A to B through

perturbation on a1, and then from B to C through a change in b2, as shown in Fig. 12(e). Another

example to demonstrate the need of multiple parameter perturbation is to control the system from

B to D. A viable control path is B → C → D, which can be realized through perturbation on

parameters (b2, a1). We also see that the two B→ A→ D paths can be realized through parameter

changes in (a1, a2) and (a1, b2), respectively. A phase diagram illustrating hoe different choices of

the parameters affect the final attractor is provided in Supplementary Note 2 and Supplementary

Fig. 1.

When multiple control paths exist from an initial attractor to a final one, a practical issue is to

identify the optimal path that is cost effective and robust. The concept of weighted-shortest path can

be used to address this issue. Particularly, the weights of edges can be determined from experimental

considerations such as the cost, limitation in drug dose, the control duration time, etc.

2.4.4. Potential Landscape and Noise in Nonlinear Control.

The role of noise in facilitating control of a nonlinear dynamical network can be understood

using the concept of potential landscape [89–91] or Waddington landscape [92] in systems biology,

which essentially determines the biological paths for cell development and differentiation [93, 94].

The potential landscape was used to manipulate time scales to control stochastic and induced switch-

ing in biophysical networks [77, 94]. Intuitively, the power of the concept of the landscape can be

understood by resorting to the elementary physical picture of a ball moving in a valley under grav-

ity. The valley corresponds to one stable attractor. To the right of the valley there is a hill, or

a potential barrier in the language of classical mechanics. The downhill side to the right of the

barrier corresponds to a different attractor. Suppose the confinement of ball’s motion within the

valley is undesired and one wishes to push the ball over the barrier to the right attractor (desired).
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Fig. 13. Illustration of pseudo potential landscape. “Pseudo” potential Ẽ of the two-node GRN
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a1. (d) For fixed a1 = 1.3, two-dimensional representation of Ẽ for a number of values of σ.
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If the barrier is large, there will be little probability for the ball to move across the top of the bar-

rier towards the desired attractor. In this case, a small amount of noise is unable to enhance the

crossover probability. However, if the barrier height is small, a small amount of noise can push the

ball over to desired attractor on the right side of the barrier. Thus, the beneficial role of noise is

more pronounced for small height of the potential barrier, a behavior that we observe when con-

trolling the T-cell network (Fig. 10). In mechanics, the system can be formulated using a potential

function so that, mathematically, the motion of the ball can be described by the Langevin equation,

which has been a paradigmatic model to understand nonlinear phenomena such as stochastic res-

onance [73, 95, 96]. In the past few years, a quantitative approach has been developed to map out

the potential landscape for gene circuits or GRNs [89, 97, 98]. In nonlinear dynamical systems, a

similar concept exists - quasipotential [99–101], which plays an important role in understanding

phenomena such as noise-induced chaos.

For an attractor network, in the presence of noise each node corresponds to a potential valley

of certain depth that characterizes the stability of the attractor. For a fixed depth, noise of larger

amplitude σ leads a higher escaping probability or shorter escaping time. When the amplitude of

the control signal is not sufficient to drive the system across the local potential barrier, noise can

facilitate control by pushing the system out of the undesired valley (attractor).

The potential landscape for a GRN under Gaussian noise can be constructed from the dynamical

equations of the system using the concept of “pseudo” energy [91] (see Methods). For the two-node

GRN system [Eq. (2.3)] subject to stochastic disturbance N(0, σ2), we can compute the potential

landscape for any combination of some system parameter (say a1) and the noise amplitude σ. Fig-

ures 13(a) and 13(b) show two examples of the landscape (in three-dimensional representation) for

a1 = 1.0 and a1 = 1.3, where the noise amplitude is σ = 0.05. Figures 13(c) shows, for σ = 0.02,
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a two-dimensional representation of the pseudo-energy for a number of values of a1. We observe

that, for a same noise amplitude, as a1 is increased, the transition rate from A to B becomes higher

(the color becomes warmer).

What if the system is at an attractor that is deep in its basin and not close to the boundary?

Since our approach is based on parameter adjustment, such a case can still be effectively controlled

in the sense that the system can be brought out of the attractor. For example, consider the attractor

C for a1 = 1.5 in the two-node GRN system, which is deep inside its own basin, as shown in

Fig. 13(c). When parameter perturbation is applied to the system, its energy landscape and basin

structure are changed (from top to bottom). Under control, the attractor “moves” towards the basin

boundary and is destroyed when it reaches the boundary, thereby bringing the system out of this

attractor. Another example is attractor A in Fig. 13(c), where it can be seen that, when the control

parameter a1 increases its value from 0.9 to 1.5, its basin changes and the attractor moves towards

the boundary as well. Similar plots but for fixed a1 = 1.3 and different values of σ are shown in

Fig. 13(d). We see that, for example, for a1 = 1.0, there are four valleys (attractors). For a1 = 1.3,

the pseudo energy for A (the original valley at the lower-left corner) becomes higher, and the path

for the transition from A to B becomes more pronounced. Further increasing a1 towards the critical

value (about 1.35) raises the energy of A to the level of the potential barrier, effectively eliminating

the corresponding valley and the attractor itself. Note that, for a fixed value of a1, increasing noise

amplitude can lead to a mixture of cold colors, meaning that the valley range becomes wider and the

ridge between two adjacent valleys becomes shallower, resulting in a higher transition probability

for each attractor.
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Fig. 14. A GRN of three nodes and its attractor network. (a) Schematic illustration of a three-node

GRN system. The arrowhead and bar-head edges represent activation and inhibitory regulations,

respectively. The sawtooth lines specify that the corresponding edge strength is experimentally

adjustable. (b) Coexisting attractors (A to H) in the phase space. (c) The underlying attractor

network, where each node represents an attractor and each weighted directed link indicates that its

strength can be experimentally tuned to steer the system from the starting attractor to the pointed

attractor. Each grey directed link with a single arrow indicates that only one parameter is needed to

achieve control, and each purple link with a double-arrow and the label 3 represent the case where

three parameters are required to achieve control.
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2.4.5. Attractor Network for a Three-Node GRN.

We also study a three-node GRN system, as shown in Fig. 14(a). Similar to the two-node GRN

system, there exist both auto and mutual regulations among the nodes. All the interactions are

assumed to be characterized by the same parameters, s and n, in the Hill function. The nonlinear

dynamical equations of the system are [61, 102]

ẋ1 = a1 ·
xn1

sn + xn1
+ b1 ·

sn

sn + xn2
+ c1 ·

sn

sn + xn3
− k · x1,

ẋ2 = a2 ·
sn

sn + xn1
+ b2 ·

xn2
sn + xn2

+ c2 ·
sn

sn + xn3
− k · x2,

ẋ3 = a3 ·
sn

sn + xn1
+ b3 ·

sn

sn + xn2
+ c3 ·

xn3
sn + xn3

− k · x3,

(2.4)

where the state variables (x1, x2 and x3) represent the abundances of the three genes products, the

auto-activation parameters a1, b2, c3 and the mutual-inhibition parameters a2, a3, b1, b3, c1, c2 are

all experimentally accessible. To be concrete, initially all the auto activation and mutual inhibition

parameters are set to be 1.0 and 0.1, respectively, and k (the degradation rate) can be conveniently

set to unity. The parameters in the Hill function are n = 4 and s = 0.5. there are altogether eight

attractors in this system, as shown in Fig. 14(b), which are distributed symmetrically in the three-

dimensional state space. For example, attractor H has relatively high values for all three dynamical

variables, and attractor B exhibits the opposite case with low abundances. For attractors A, C and

F, one of the three state variables is high and the other two are low. For attractors D, E and G, one

of the three state variables is low but the other two are high.

From numerical simulations, we find that the features of control are essentially the same as

those for the two-node GRN system, in terms of characteristics such as the existence of critical con-

trol strength and the power-law scaling behavior of the minimum control time (see Supplementary

Table 3, Supplementary Notes 3 and 4). We construct the attractor network in Fig. 14(c) through

combinations of all eight attractors (as nodes) and directed elementary controls (as weighted di-
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rected edges). Information in Supplementary Table 3 can also be used to estimate the respective

weights of the edges. From the attractor network, for any given pair of initial and final states, we

can identify all the viable control paths. Furthermore, the weighted-shortest path can be calculated

once the edge weights are determined.

We note that, typically, the attractor network based on elementary control is not an all-to-all

directed network so that certain control paths are absent, e.g., from attractor H to B. Therefore,

we need to extend the control method to a combination of multiple parameters. From Fig. 14(c),

we note that attractor H has incoming links only while B has outgoing links only. The structure

of the attractor network thus indicates that full control can be achieved (i.e., to drive the system

from any initial attractor to any final attractor) if we can build a directed path from H to B. Since

attractors B and H have low and high abundance, respectively, in the phase space, we modify the

three auto-activation parameters simultaneously to steel the system from H to B. We find that the

relationship between control strength and minimal control time also follows the power law scaling

with µc ≈ 0.7973, α ≈ 1.26, and β ≈ −0.77. In fact, when all the auto-activation strengths are

smaller than µc, the system has one attractor only: B, meaning that perturbation based on parameter

combinations can be used to realize the control from other attractors as well, i.e., from one of the

attractors A, C, D, E, F, and G to attractor B.

2.4.6. Construction of Pseudo Potential Landscape.

For a dissipative, nonlinear dynamical system subject to noise, we can construct a pseudo poten-

tial landscape based on the state probability distribution. Assume that, asymptotically, the system

approaches a stationary distribution. For a canonical dynamical system, the potential can be de-

fined as E(x) = − logP (x), where P (x) is the probability density function. For a conservative

dynamical system, the direction of system evolution is nothing but the direction of the gradient of
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the potential function. However, this does not hold for dissipative dynamical systems. The potential

function thus does not have the same physical meaning as that for a conservative system, henceforth

the term pseudo potential. This approach can be adopted to GRNs.

To obtain the stationary distribution, we use the modified weighted-ensemble algorithm pro-

posed by Kromer et al. [91], which offers faster convergence than, for example, the traditional

random walk method. To be illustrative, we take the two-node GRN system [Eq. (2.3)] as an exam-

ple to demonstrate how the pseudo potential landscape can be numerically constructed. The state

space of the two-dimensional dynamical system is partitioned into an M ×M lattice with reflective

boundaries conditions. Initially the probability Pm,n(t) of all gird points are set to be uniform. The

simulation time is divided into T steps, where each step has the duration ∆t. At the beginning of

each step t, there are N walkers randomly distributed at the grid point (m,n), which carry equal

weight Pm,n(t)/N and perform random walk under the system dynamics and noise. The locations

of these walkers in the grid are recorded at the end of each time step, and the probability at the next

time step, Pm,n(t+ 1), is the summation of the probabilities carried by all the walkers at time t. At

time (t + 1), N new walkers carrying the updated probability at each grid point perform random

walk again on the grid. This procedure repeats until the probability distribution becomes stationary,

say Pm,n, which gives the pseudo potential landscape as Ẽ(m,n) = − logPm,n. Numerically, the

time evolution of all walkers can be simulated using the second-order Heun method for integrating

stochastic differential equations. For Fig. 13, the state space is divided into a 500 × 500 grid. At

each grid point there are N = 20 walkers, each evolving T = 2000 time steps with ∆t = 10−4.

Instead of calculating the stationary probability distribution density, an alternative approach

to constructing the potential landscape is the Freidlin and Wentzel’s large deviation theory [103].

According to this theory, first, one maps the stochastic dissipative system of interest to a Hamiltonian
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system [104]. Then, using the Freidlin and Wentzel theory [103], one can estimate the transition

rate from an attractor to a saddle point as r ∼ exp(−S0/σ), where σ is the noise amplitude and

S0(·) characterizes the action functional associated with the optimal energy path, which can be

numerically solved through an unconstrained nonlinear optimization method [85, 89]. Since this

theory relies on solving a nonlinear optimization problem, in order to visualize the energy landscape,

it is necessary to use a large number of state values x and solve the optimization problem for each,

which is computationally exhaustive. We find that, to capture the essential features of the energy

landscape, it suffices to use the stationary distribution method.

In the small noise limit σ → 0, according to the theory of Freidlin and Wentzell [85,103], to the

leading order the transition rate r from one fixed point in a nearby saddle point can be approximated

as

r ∼ exp [(−S0(xsp)],

where S0(x) characterizes the action function of the optimal energy path ending at state x and can

be numerically solved through an unconstrained nonlinear optimization method, and xsp denotes

the saddle point. The minimum control time satisfies τm ∼ r−1, so we have τm ∼ exp [S0(xsp)].

From Eq. (2.2) we obtain

∆e ∼ exp(S0(xsp)/β),

indicating that the exceeded value ∆e of the control parameter µ is exponentially related to the

optimal energy S0 between the initial state and the nearby saddle point in the potential landscape.

2.5. Supplementary Information

2.5.1. Supplementary Tables
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TABLE 1: Edge control in the T-cell system. The first and the second columns, respectively, give

the executor and the receiver of the coupling edges in the T-cell system. For control associated with

each edge, the minimum control time τm exhibits a power-law scaling behavior: τm = α·|µc−µn|β ,

where µc is the critical coupling strength (the third column). The fourth and the fifth columns list

the scaling parameters α and β obtained by least squares fitting, with mean squared error (MSE)

given in the sixth column. Note that Apoptosis represents the outcome of cellular signaling and it

has inhibitory regulations to all the other nodes in the network. If Apoptosis is activated, the system

will reach the desired normal state. Because of this the node Apoptosis appears in every row of the

first column.

From To µc α β MSE

S1P or PDGF or Apoptosis PDGFR 0.5210 1.9921 −0.4360 0.0070

GRB2 or PDGFR or GAP or Apoptosis RAS 0.5329 1.5664 −0.4892 0.0052

IL2RA or IL2RB or RANRES or IFENG JAK 0.5408 1.5619 −0.5154 0.0272

or SOCS or CD45 or Apoptosis

PDGFR or Apoptosis SPHK1 0.5496 1.7948 −0.4904 0.0001

SPHK1 or Ceramide or Apoptosis S1P 0.5697 1.7324 −0.5509 0.0008

RAS or Apoptosis MEK 0.5805 1.5169 −0.5009 0.0111

JAK or Apoptosis STAT3 0.5935 1.7482 −0.4587 0.0536

TPL2 or PI3K or FLIP or TRADD NFkB 0.6060 1.2286 −0.6366 0.0004

or IAP or Apoptosis

FDGFR or RAS or Apoptosis PI3K 0.6187 1.3917 −0.5764 0.0786

MEK or PI3K or Apoptosis ERK 0.6225 1.7762 −0.4363 0.0500
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ERK or TBET or Apoptosis IL2RBT 0.6412 1.7303 −0.4581 0.0285

IL2RBT or IL2 or IL15 or Apoptosis IL2RB 0.6520 1.6082 −0.5078 0.0980

DISC or IL2RB or STAT3 or NFkB MCL1 0.6596 1.5745 −0.5480 0.0510

or PI3K or Apoptosis

TABLE 2: Controlling a two-node GRN system. For the two-node GRN system discussed in the

main text, the underlying attractor network consists of four nodes, denoted as A, B, C, and D,

respectively. The first column represents all possible elementary controls among the nodes in the

attractor network. The second column shows the specific coupling parameter adjusted to realize the

elementary control and the corresponding critical coupling strength. The remaining columns show

the parameters α and β as well as the fitting error (MSE) in the power-law scaling of the minimum

control time τm.

Elementary control Critical coupling strength µc α β MSE

A to B a1 = 1.3523 2.7590 −0.6688 0.2148

A to B b1 = 0.2206 0.1735 −0.9085 0.0014

A to D a2 = 1.3523 2.7590 −0.6688 0.2148

A to D b2 = 0.2206 0.1735 −0.9085 0.0014

B to A a1 = 0.6800 2.0415 −0.5539 0.0990

B to C b2 = 4.1557 5.9264 −0.5364 0.0646

C to B a2 = 0.9385 0.7697 −0.6906 0.1870

C to D a1 = 0.9385 0.7697 −0.6906 0.1870

D to A a2 = 0.6800 2.0415 −0.5539 0.0990
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D to C b1 = 4.1557 5.9264 −0.5364 0.0646

TABLE 3: Controlling a three-node GRN system. For the three-node GRN system in the main text,

the underlying attractor network has eight nodes, denoted as A, B, . . ., and H, respectively. The

first column specifies all possible elementary controls among the nodes in the attractor network.

The second column shows the specific coupling parameter that needs to be adjusted to realize the

corresponding elementary control and the critical coupling strength. The remaining columns show

the power-law scaling parameters α and β, as well as the fitting error MSE of the minimum control

time τm associated with each elementary control.

Path Critical coupling strength α β MSE

A to D a1 = 6.0540 10.6386 −0.5326 0.5491

A to D b1 = 2.7534 6.1863 −0.5682 0.2130

A to D c1 = 0.1872 0.4634 −0.7315 0.0100

A to E a3 = 0.1872 0.4634 −0.7315 0.0100

A to E b3 = 2.7534 6.1863 −0.5682 0.2130

A to E c3 = 6.0540 10.6386 −0.5326 0.5491

B to A a2 = 0.1011 0.0487 −0.9492 0.0090

B to A b2 = 1.0183 1.0208 −0.8049 0.2461

B to A c2 = 0.1011 0.0487 −0.9492 0.0090

B to C a1 = 1.0183 1.0208 −0.8049 0.2461

B to C b1 = 0.1011 0.0487 −0.9492 0.0090

B to C c1 = 0.1011 0.0487 −0.9492 0.0090
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B to F a3 = 0.1011 0.0487 −0.9492 0.0090

B to F b3 = 0.1011 0.0487 −0.9492 0.0090

B to F c3 = 1.0183 1.0208 −0.8049 0.2461

C to D a2 = 2.7534 6.1863 −0.5682 0.2130

C to D b2 = 6.0540 10.6386 −0.5326 0.5491

C to D c2 = 0.1872 0.4634 −0.7315 0.0100

C to G a3 = 2.7534 6.1863 −0.5682 0.2130

C to G b3 = 0.1872 0.4634 −0.7315 0.0100

C to G c3 = 6.0540 10.6386 −0.5326 0.5491

D to H a3 = 3.8127 6.4535 −0.5125 0.0142

D to H b3 = 3.8127 6.4535 −0.5125 0.0142

E to H b1 = 3.8127 6.4535 −0.5125 0.0142

E to H c1 = 3.8127 6.4535 −0.5125 0.0142

F to E a2 = 0.1872 0.4634 −0.7315 0.0100

F to E b2 = 6.0540 10.6386 −0.5326 0.5491

F to E c2 = 2.7534 6.1863 −0.56823 0.2130

F to G a1 = 6.0540 10.6386 −0.5326 0.5491

F to G b1 = 0.1872 0.4634 −0.7315 0.0100

F to G c1 = 2.7534 6.1863 −0.5682 0.2130

G to H a2 = 3.8127 6.4535 −0.5125 0.0142

G to H b2 = 3.8127 6.4535 −0.5125 0.0142
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TABLE 4: Computational setting and cost for constructing the attractor networks. The first row

specifies the systems. The second row shows the number of attractors in the system under the

original parameter setting. The third row illustrates the method of calculation. The fourth row

shows the number of coupling parameters tested. The fifth row shows the number of parameters

that can be exploited to achieve control. The sixth row shows the computational time for each

method. The software and computers for the T-cell simulation are MATLAB 2012a, 3.4GHz, Intel

Core i7, Win7, while those for the two- and three-node GRNs calculations are: MATLAB 2015b,

2.9 GHz, Intel Core i7, OS X.

System T-cell Two-node GRN Three-node GRN

Attractors 3 4 8

Calculation Methods Bisection Search Continuation Continuation

Coupling Parameters 195 4 9

Control Parameters 48 4 9

Computation Time 4.61 hours 64.60 seconds 21.87 minutes

2.5.2. Supplementary Figures

2.5.3. Supplementary Note 1: Control of T-Cell System.

The success of our control scheme relies on one important condition: the underlying dynamical

system is capable of responding to control perturbation in the sense that parameter perturbation can

lead to dramatic changes in the system’s attractors. A “rule of thumb” to determine if a dynamical

system satisfies this condition can be, as follows. Given a computational model of the GRN to be

controlled, we can increase the perturbation to an accessible control parameter (either activation or

inhibition) to test if the corresponding attractor disappears. If it turns out impossible for the system
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the main text, final state of the system in the parameter plane (a1, b2), where each colored region

represents a specific combination of attractors. Other parameters are set as a2 = 1.0 and b1 = 0.2.

Each white circle represents a whole set of possible attractors in one system and white dash lines

represent control procedures. The four-attractor state ABCD can be identified toward the bottom

of the phase diagram.

65



0 20 40 60 80 100 120 140 160

0

0.5

1

1.5

2

t

x
1

 a
1
= 1.0

 a
1
= 1.5

a
1
 = 1.0

0 20 40 60 80 100 120 140 160

0

0.5

1

1.5

2

t

x
2

 a
1
= 1.0

 a
1
= 1.5  a

1
= 1.0

a

b

Fig. 16. Control of a stochastic model. Time series of variables x1 (a) and x2 (b). In the simulation,

we multiply the values a1, a2, b1, b2 and s by 100 to obtain biologically reasonable protein abun-

dances, while other parameters are unchanged. The final stochastic results are rescaled to match

the ODE model results. Green and red lines represent the systems with a1 = 1.0 and a1 = 1.5,

respectively.
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to escape from the attractor with single parameter perturbation, multiple parameter perturbation

should be tested - see Supplementary Note 7.

In the main text, we address the issue of control constraint by focusing on the minimum control

time τ associated with two edges in the T-cell system as examples. Here, in Supplementary Table 1

we list the results from tuning all the identified edges that can steer the system from a cancerous

state to the normal state, which include the critical coupling strength µc for each edge, the power-

law scaling parameters α and β for the minimum control time [τm = α · |µn − µc|β , Eq. (2) in

the main text]. The MSEs in the fitting are also listed. Additionally, in the Boolean model, the

logic relationship for all the multiple in-edges towards one given node is identically “AND”. Thus,

when translating the Boolean model to the continuous-time model, all the in-edges share the same

parameter values of µc, α, and β.

We also test the case of driving the system from a normal state to a cancerous state. In par-

ticular, each of the two experimentally adjustable parameters, the edge from node “Caspase” to

“Apoptosis” and the self edge of “Apoptosis,” can be used for the control. We find that, for each

control parameter, the relationship between its strength and the minimal control time also follows

an algebraic scaling law: µc ≈ 0.8778, α ≈ 1.1626, where β ≈ −0.6268. This result is in accor-

dance with clinical studies that revealed that T-LGL leukemia disease results from dysregulation of

apoptosis [105, 106].

2.5.4. Supplementary Note 2: Phase Diagram.

A phase diagram illustrates how different choices of the parameters affect the system’s stable

asymptotic states (attractors). Supplementary Figure 15 shows the phase diagram of the two-node

GRN system with respect to variations in a1 and b2. Each point in the diagram represents, for the

particular combination of values of a1 and b2, the whole set of possible attractors of the system.
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There are seven possible combinations of attractors in the diagram. As shown in Fig. 5(d) in the

main text, if we set out to control the system from attractor A to attractor C, we can first steer the

system from A to B through perturbation on a1 and then drive the system from B to C by tuning b2.

Note that the sequence of a1 and b2 is important here: if we first perturb b2, the system in attractor

A will be driven to attractor D. When this happens, the system will remain in D, regardless of any

additional parameter adjustments, rendering unrealizable the control goal to drive the system into

attractor C. This scenario can also be seen from the phase diagram in Supplementary Fig. 15. In

particular, starting from the dark red region, with the particular combination of parameters, there

are 4 attractors: A, B, C and D. As we increase a1 and set the parameters to the red area, attractor

A disappears and its basin is merged into that of one of the remaining three attractors (B, C, and

D). From Fig. 4(e) in the main text, we see that A migrates into B. Thus, when we withdraw the

perturbation on a1 and turn on the perturbation on b2, the possible attractors of system are C and

D (the light green area). Figure 5(d) in the main text also indicates that B migrates to C. We note

that, in the phase diagram, it is difficult to distinguish into which state A merges, but this can be

readily accomplished through the attractor network in Fig. 5(d) in the main text, which indicates

unequivocally that the basin of A is absorbed into that of D.

2.5.5. Supplementary Note 3: Termination Criteria and Calculation of Control Strength and

Minimum Control Time.

For all systems studied in this paper, of particular importance to control is the relationship

between control strength and minimum control time. The attractor network needs to be constructed

first based on the procedures described in Methods in the main text. From the attractor network,

we can obtain the control parameter for the transition between any two states. For each control

parameter, we choose several different values which can realize the control and use a bisecting
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search to find the minimum control time. We then apply linear regression to the data on a double

logarithmic scale to find the value of µc. In the bisecting search process, the time interval is chosen

to be ts = 10−2. For the T-cell and two-node GRN systems detailed in the main text, we choose Tf

to be 100. For the three-node GRN system, we choose Tf to be 1000. The results for each system

are illustrated in Supplementary Table 1-3 and the following notes.

2.5.6. Supplementary Note 4: Parameter Control in the Two-Node and Three-Node GRNs.

For the two-node GRN system [Eq. (3) in the main text], the corresponding attractor network

consists of four attractors, denoted by A, B, C, and D, respectively. All parameter controls to

realize the transitions among them are given in Supplementary Table 2, together with the critical

coupling strength, the minimum control time, and so on.

Similarly, for the three-node GRN system [Eq. (4) in the main text], eight attractors(A, B, C, D,

E, F, G and H,) constitute the attractor network. Supplementary Table 3 illustrates the critical

coupling strength and the minimal control time to realize control.

2.5.7. Supplementary Note 5: Algorithms to Find Attractors.

Given a nonlinear dynamical network, the following procedure can be used to locate all the

attractors.

1. For a given parameter set, we define the search space according to the maximum and min-

imum possible values of each state variable. For a GRN, the maximal value of each steady

state is the activation rate divided by the degradation rate whereas its minimum value is zero.

For example, for our two-node GRN model, we obtain that the maximal initial value for x1 is

(a1 + b1) · k−1 under the assumption that the leakage term is negligible.

2. Divide the phase space into a grid to generate a large number of initial conditions (grid points).

Evolve each initial condition under the system dynamics to determine the final attractors of
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the system. Increase the grid resolution until no new attractors appear. For example, for our

two-node GRN, the initial conditions are chosen from a 11× 11 grid in the two-dimensional

phase space region determined by the respective ranges of the dynamical variables. There

are then 121 different initial conditions, which lead to four distinct attractors. Doubling the

grid resolution results in no new attractors, enabling us to conclude that there are four distinct

attractors.

3. For each attractor, calculate the eigenvalues of Jacobian matrix to determine its relative sta-

bility.

2.5.8. Supplementary Note 6: Parameter Control Method in Stochastic Model.

Our nonlinear control framework is also applicable to stochastic systems. To demonstrate this,

we convert the ODE model of two-node system [Eq. (3) in the main text] to a set of Langevin

equations for biochemical reactions and use the Gillespie algorithm to approximate the stochastic-

ity [107]. Supplementary Figure 16 shows a particular control process from attractor A to B. As

discussed in the main text, A has low abundance in both x1 and x2, and B has high abundance in

x1 and low abundance in x2. From the attractor network in Fig. 5(d) of the main text, we see that

by increasing a1, we can drive the system from A to B. Thus, we first set the system in A with

a1 = 1.0. At t = 60, we increase a1 to 1.5, and at t = 120, we change a1 back to 1.0. We see that,

for t > 120 when the perturbation on a1 has been withdrawn, the system spontaneously evolves

into the attractor B.

2.5.9. Supplementary Note 7: Control Based on Multiple Parameters.

To figure out the optimal parameter combinations for controlling nonlinear networks of even

moderate size is computationally prohibitive at the present. However, for small networks, this can

be done. For example, for the three-node GRN system studied in this paper, multiple parameter
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control is needed to induce certain state transition, e.g., from attractor H to attractor B in Fig. 7 in

the main text. However, for the T-cell network, there are several dozens tunable edges. A surprising

finding is that, because of the simplicity of the attractor network, it is only necessary to apply

perturbation to any one of the 48 tunable edges to realize control.

It is interesting to note that, the sequential combination of control dosage derived from our at-

tractor network may be regarded as a kind of control based on parameter combination. For example,

it has been known that the human embryonic stem cells (hESCs) can be differentiated to a pancre-

atic fate under stepwise exposures to different signaling factors [108,109]. However, the functional

pancreatic fate would not occur if the differentiation steps are permuted. The non-interchangeable

sequence can be understood using the concept of our attractor network, where one parameter mod-

ification represents one stage protocol. For example, in Fig. 5(d) in the main text, the hESCs cor-

respond to attractor A, by increasing the value of a1 (stage 1) and then that of b2 (stage 2), we can

drive the system to attractor C. However, if we increase b2 first (stage 2 first), we will not be able

to drive the system to the attractor C by increasing the value a1 (stage 1) [see also the top branch

of attractor D in Fig. 5(a) in the main text]. We emphasize that these results do not imply that

the sequential combination method is restricted to perturbation to one parameter at a time. Indeed,

recent works suggested that simultaneous therapy with two drugs can be much more effective than

sequential therapy [110].

2.5.10. Supplementary Note 8: Algorithmic Complexity and Computational Cost.

In the attractor network, a link is determined when the undesired attractor vanishes upon appli-

cation of control parameter perturbation of certain magnitude (within some predefined range). For

each attractor, we perform a bisecting search for all the tunable parameters to establish the possible

links in the attractor network. In each search, the number of checks to see if the attractor has disap-
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peared is log2 (1/∆), where ∆ is the accuracy in the estimate of the critical perturbation amplitude.

The total number of bisecting searches is the number of attractors, NS, multiplying the number of

tunable parameters, NL. In a nonlinear system, the number of attractors depends on the system

size. For example, for a boolean network, there are 2N possible states. While the actual number

of attractors can be much less than 2N , it depends on the network size N . The number of control

parameters is the number of controllable links. Assuming that the network is sparse (as in many

biological networks), the total number of checks is ≈ log2 (1/∆) × NS × ρN2, where ρ is the

connection probability. The bisecting searching needs to be performed once for a sufficiently large

time duration τ of the control. The reason is that, if the control is achievable for a link for a longer

duration, the same control can be realized for a shorter duration but with a larger control amplitude.

For nonlinear and complex dynamical systems, the relation between control perturbation and

escaping from an attractor can be discontinuous and/or non-monotonic. In such a case, a “blind”

application of the bisecting search to build up the attractor network and to estimate the computa-

tional cost may fail. This difficulty, however, can be overcome by using the method of parameter

continuation with multiple initial conditions, which is standard in generating and analyzing the bi-

furcation diagram of dynamical systems. Especially, one can choose a small number of random

initial conditions and a small set of parameters in a physically/biologically meaningful range, and

determine the distinct attractors that the system possesses. The result will be a global picture of

the possible attractors of the system in a small number of parameter intervals, which will facilitate

greatly the computational task.
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3 . EMERGENCE, EVOLUTION AND SCALING OF ONLINE SOCIAL NETWORKS

Online social networks have become increasingly ubiquitous and understanding their structural,

dynamical, and scaling properties not only is of fundamental interest but also has a broad range of

applications. Such networks can be extremely dynamic, generated almost instantaneously by, for

example, breaking-news items. We investigate a common class of online social networks, the user-

user retweeting networks, by analyzing the empirical data collected from Sina Weibo (a massive

twitter-like microblogging social network in China) with respect to the topic of the 2011 Japan

earthquake. We uncover a number of algebraic scaling relations governing the growth and structure

of the network and develop a probabilistic model that captures the basic dynamical features of the

system. The model is capable of reproducing all the empirical results. Our analysis not only reveals

the basic mechanisms underlying the dynamics of the retweeting networks, but also provides general

insights into the control of information spreading on such networks.

3.1. Introduction

Online social networks have become an indispensable part of our modern society for obtaining

and spreading information. A piece of breaking news can activate a corresponding online social

network, through which the news topic can spread rapidly to many individuals. By its very nature an

online network is necessarily time dependent, growing rapidly in size initially as the news spreads

out and saturating after certain amount of time. Since online social networks concerning certain

topics can be active for only a transient period of time, they are extremely dynamic, which is quite

distinct from, e.g., the typical networks studied in the literature where they can be regarded as

stationary with respect to the time scale of typical dynamical processes supported. A question of

interest is whether there are general rules underlying the evolution of online social networks. A

viable approach to addressing this question is to analyze large empirical data sets that are becoming
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increasingly accessible [111]. In fact, recent years have witnessed a growing research interest in

online social network systems. There have been efforts in issues such as network and opinion

co-evolution [112], users participation comparison for topics of current interest [113], information

diffusion patterns in different domains [114, 115], the dynamics of users’ activity across topics and

time [116, 117], users behavior modeling on networks [118, 119], popular topic-style analysis in

the Twitter-like social media [120–122], users influence in social networks [123], and language

geography studies of Twitter data set [124].

In this paper, we aim to uncover the fundamental mechanisms underpinning the dynamical evo-

lution of online social networks through empirical-data analysis. Our data come from Sina Weibo,

a twitter-like microblogging social network medium in China. The appealing features of the data

include wide publicity, real-time availability of information, and message compactness. Similar to

Twitter, Weibo attracts users through all kinds of breaking news and spotlight topics, such as the

“Japan Earthquake”, “Oscar Ceremony”, “Boston Marathon Terrorist” and so on. All users can

see messages, called Weibos in Chinese, published by concerned users. Given a specific topic of

interest, an individual can join the corresponding online social network simply by retweeting (for-

warding) or tweeting (posting) the interesting Weibo [125]. To be concrete, we take the empirical

data set of the Weibo topic on “Japan Earthquake” and focus on the spatiotemporal dynamics of

the user-user retweeting network in terms of characterizing quantities such as the network size, the

in-degree and out-degree distributions which correspond to the frequencies of retweeting other or

being retweeted by others, and the in- or out-degree correlations. Our main findings are the fol-

lowing: (1) initially the network size increases algebraically with time but it begins to plateau at a

critical time when another significant topic of interest emerges; (2) both the in- and out-degrees of

the dynamic online-social network follow fat-tailed, approximately algebraic distributions, and (3)
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the average out-degree is approximately independent of the average in-degree from degree correla-

tion analysis. Based on these results and the rules of online social-network systems, we articulate

a theoretic model for the dynamical evolution of these networks. Simulation results of the model

agree well with those from the empirical data. Our analysis also suggests a controlled approach to

significantly enhancing information spreading on online-social networks.

3.2. Results

The 2011 Japan earthquake is a 9.0 magnitude undersea mega-thrust earthquake occurred

on March 11 in the north-western Pacific Ocean near Tohoku, Japan. It was the most powerful

earthquake ever hit Japan, which triggered powerful tsunami waves and caused nuclear accidents

in the Fukushima Daiichi Nuclear Power Plant complex [126], leading to tremendous loss of

human lives and large-scale infrastructure damages. This catastrophe aroused wide concerns and

discussions all over the world, especially in China. Since Weibo is the most accessible online social

medium in China, a large number of Chinese users joined Weibo to discuss the earthquake and

related issues, forming an extremely dynamic user-user retweeting network. We analyze more than

500 thousands Weibo items concerning “Japan Earthquake”, starting from the 1st day of earthquake

until the 100th day (defined in Methods). A simple way for a user to join the Weibo social network

is to retweet other users’ Weibos. The user-user retweeting network can be generated from the

data by identifying the retweeting actions among the users. In particular, when a Weibo published

by user i is retweeted by user j, we draw a directed link from i to j. If j retweets the Weibo

published by i again, another link from i to j is added, and so on. In some cases, if a Weibo

published by user i and retweeted by user j, and then this retweeted Weibo is retweeted by user m,

we draw two directed links from i to j and i to m respectively. There can then be duplicate links

between any two users in the retweeting network. In the network, a relatively large value of the
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t(days)

Fig. 17. Evolution of user-user retweeting network triggered by the 2011 Japan earthquake. (a)

evolution of the cumulative number N of users with time (green circles), where Ne is from our

model (blue squares). (b) The corresponding “instantaneous” growth rates ∆N and ∆Ne.

out-degree indicates that the corresponding user may act as a main source of information, while

a large value of the in-degree suggests a high level of retweeting activities of the corresponding user.

3.2.1. Evolution of the User-User Retweeting Network.

Figure 17(a) shows the evolution of the number N of users involved by retweeting links in

days (green circles). We observe that for the initial period of about 7 days, the size of the network

increases approximately algebraically with the scaling exponent of about 1.3. At the critical time

tc, where tc ≈ 7, a crossover behaviors occurs, after which the number of nodes increases slowly

or plateaus. While in general, an algebraic scaling relation does not permit the definition of some
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global growth rate, we can still define an “instantaneous” growth rate, the increment ∆N per day.

As shown in Fig.17(b), the “instantaneous” growth rate is approximately constant for t < tc, but for

t ≥ tc, the rate decreases approximately algebraically from about 104 per day to about 101 per day

at the end of the data duration.

The remarkable change in the temporal behavior of the system on the 7th day demands a

sensible explanation. By looking into the data further and searching for other medium information

about “Japan Earthquake”, we find that, at the critical time tc, many users switched to discuss

the issue of “Salt Rush”, which is closely related to “Japan Earthquake.” In fact, on the 7th day

after the earthquake, a rumor began to spread in Weibo that salt may offer protection against

radiation, but the radiation leak from the Fukushima nuclear plant explosion would contaminate

sea-salt products [127]. This new topic switched many users’ attention from the primary “Japan

Earthquake” topic to the “Salt Rush” topic, and for t > tc many users stopped discussing the

“Japan Earthquake” topic. As a consequence, the instantaneous growth rate for the original topic

began to decrease.

3.2.2. Fat-Tailed Distribution of In- and Out-Degrees.

Figure 18(a) displays the distributions of the in- and out-degrees on a logarithmic scale, where

we observe approximately algebraic scaling behaviors. Here, the out-degree of user j, denoted

by kjout, is the total times of j’s Weibo(s) being retweeted by other users in the network, and the

in-degree of j, denoted by kjin, is the retweeting times j has performed. We note that the algebraic

scaling exponents are are 3.50 for in-degree and 2.48 for out-degree distributions. Moreover, the

maximum value of in-degree is 67 while the out-degree has a much larger maximum value (5, 825).

This means that, while the capacity of any individual user to retweet others is limited, users’
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Fig. 18. Degree distribution of user-user retweeting network. In- and out-degree distributions of

user-user retweeting network generated from real Japan earthquake data (a) and from model (b).

The four distribution can be fitted as P (k) ∼ k−α with algebraic scaling exponents α ≈ 3.50, 2.48,

3.50, and 2.57 for real in- or out-degree and model in- or out-degree distributions respectively. The

distributions were recorded at t=100 days, and the value of α are estimated using the maximum-

likelihood estimator [128].
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collective retweeting behavior may congregate, generating superhubs with very large out-degrees.

This can be considered as an evidence for the preferential selection in the retweeting process

introduced by the scheme that Weibo system updates and recommends information.

3.2.3. Model of User-User Behavior Network

. In the Weibo system, up-to-date topics emerge all the time and are recommended to users

through the list of retweeted actions of their friends in the order of time. As soon as a new item

is added to the recommendation list, one of the early items is removed from the list. This rule

stipulates that, when some extreme event occurs, the related topics may rapidly cover the entire rec-

ommendation list to attract more users who might not have paid any attention initially. This process

could also attract users who are less likely to be interested in the topic. Thus, the number of poten-

tial users who may join the retweeting network and then become the enabled users will increase.

This mechanism in fact generates a self-reinforcing (positive feedback) process that makes the mes-

sages spread extremely fast initially in the Weibo system. Conversely, this kind of recommendation

mechanism may also reduce the number of nodes in the network dramatically when alternative top-

ics emerge. As can be seen from Fig. 17, the event of “Salt Rush” occurring at the 7th day after the

Japan earthquake is a typical distractive topic with respect to the original earthquake topic. After

the distractive topic emerged, the retweeting dynamics associated with the original topic enters into

a phase with distinct scaling behaviors.

The sketch map in Fig. 19 briefly illustrates the generation scheme of retweeting network in our

model with the aforesaid empirical rules and observations taking into consideration. The dynamical

process of retweeting is usually initiated by some primary users’ reporting of some specific events.

The basic element in the process is the spontaneous retweeting action of some users, i.e., one po-
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Fig. 19. Degree distribution of user-user retweeting network. (a)-(d) illustrate four instants of the

system at t1 < t2 < tc < t3 < t4, respectively. There exists one topic A0 initially, while another

topic A1 emerges at tc. The solid circles (gray, yellow or pink) covered in the yellow (or pink)

background areas are the potential users who become interested in the topic A0 (or A1), with those

colored (yellow or pink) individuals “enabled” by retweeting others. The yellow or pink solid circles

respectively are the enabled users of topic A0 or A1.

tential user voluntarily built up a directed link pointed from another user towards him-herself. The

final in-degree of each user characterizes its inherent property, i.e., the level of activity in the re-

lated topic. The algebraic in-degree distribution signifies the heterogeneity and diversity in the user

activities. We are thus led to define the activity level of individual i as

ai = kiin/max[kin], (3.1)

where max[kin] is the maximum in-degree of all users in the system. A potential user i will retweet

a related message from others, i.e., to add one in-link, with probability Ii ≡ ai at each time step. As

soon as the first in-link is established, the user is enabled to behave as a new source of the topic and

can be retweeted by others. The enabled users are thus those connected to the user-user retweeting

network, which can be identified from real data. The probability Oi for an enabled user i to be
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retweeted by another potential user, i.e., to add an out-link, is

Oi ≡ (kiout + 1)/
∑
j∈Πe

(kjout + 1), (3.2)

where Πe denotes the set of enabled users and the proportional relation is for the reason that, if a

user is retweeted by others more frequently, its actions will appear in the recommendation list more

times and thus are more likely to be further retweeted.

The temporal evolution of the number of enabled users Ne can be obtained analytically. The

recommendation mechanism requires that the number of potential users (denoted by Np) increases

with time rapidly in the initial phase of the retweeting process. To gain insights, we first consider the

simple case whereNp is assumed to be constant. The probability for a potential user i to retweet the

topic (i.e., to become enabled) at each time step is Ii = ai (each user’s own level of activity). The

probability for user i to be enabled before time t is then pit = 1− (1− ai)t ≡ f(ai, t). For the case

where the users have identical activity level a, the expectation number of the enabled users at time t

is 〈Ne(t)〉 = Npf(a, t), whereNe(t) is distributed binomially: P (Ne) = CNe
Np

(pit)
Ne(1−pit)Np−Ne .

Assuming that the user activity obeys a given probability distribution P (ai), the expectation number

of enabled users is

〈Ne(t)〉 =
∑
ai

NpP (ai)f(ai, t). (3.3)

As can be seen from real data in Fig. 18(a), user activities ai are typically heterogeneous, where the

number of retweeted actions performed (the in-degrees) by users ranges from 1 to 67 and approxi-

mately follows an algebraic distribution P (kin) ∼ k−γin , with γ ≈ 3.5.

From the expressions of pit and 〈Ne(t)〉, we see that the growth rate of 〈Ne(t)〉 is a monotonic

decreasing function of time. However, from Fig. 17, the rate ∆Ne(t) from the real data increases

in the initial phase after the network emerges. This discrepancy originates from the simple case

assuming constant Np in our probabilistic model, whereas in the real system, Np increases rapidly
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initially as a result of the recommendation mechanism. It is thus necessary to take into account the

fact that, at time step t′, ∆N t′
p new potential users become aware of the topic from their respective

recommendation list in the Weibo page and then retweet with the probability Ii = ai. Here, ∆N t′
p ≡

Np(t
′)−Np(t

′−1) andNp(0) = 0. We assume that the time step t′ for user i to become aware of the

topic is independent of its activity level ai. Equivalently, the activity distribution of new potential

users at each time obeys the same distribution P (ai). Taking the increment of Np into account, we

obtain the expected number of enabled users as

〈Ne(t)〉 =
t∑

t′=1

[
∑
ai

∆N t′
p P (ai)f(ai, t− t′ + 1)], (3.4)

where t − t′ + 1 is the duration of the potential users since their awareness of the topic at t′.

The exact form of the function ∆N t′
p cannot be obtained explicitly, as we can observe from data

only increment in the number Ne of enabled users. However, we note that the analog of Np is

the coverage of a spreading process of the topic associated with the recommendation mechanism,

which takes place on the underlying friendship network of the Weibo system. We thus have [128],

approximately, ∆N t
p ∼ ntβ , where the parameters n and β can be obtained by fitting to the real

data.

As can be seen from Fig. 17, there is a crossover behavior in the time evolution of Ne due to

the emergence of some alternative topic. For convenience, we name the original topic as A0 that

takes place at t = 0 and the new topic as A1 that emerges at t = tc. For t ≥ tc, as is illustrated

in Figs. 19(c)(d), A1 competes for potential users against A0. We assume that the basic dynamical

process underlyingA1 is identical to that ofA0. The number of potential users left inA0 for t ≥ tc is

thus given by Ñp(t) = Np(t)−Np(t− tc), giving rise to a decreasing behavior in the instantaneous

growth rate in the number of enabled users.
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Fig. 20. Degree correlations in the user-user retweeting network generated from real data and model.

(a) in-degree (kin) and out-degree (kout) of each user, (b) average in-degree 〈kin〉 over the users of

the same out-degree kout, and (c) average out-degree 〈kout〉 over the users of the same in-degree

kin.

Our model can be simulated to yield behaviors that reproduce those from the real data. In

particular, in the simulation, each user’s activity level ai is proportional to its in-degree, whose

distribution can be obtained from data. The increment of potential users obtained from data fitting

is ∆Np(t) ≈ 1.89 × 105t−1.1. The topic A0 is initially notified by Ne(0) enabled users to trigger

the retweeting process [e.g., Ne(0) = 3]. Results of Ne(t) from our model agree well with those

from the data, as shown in Fig. 17. The reproduced in- and out-degree distributions are shown in

Fig. 18, which again agree with the distributions from the real data.
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To further validate our model, we calculate and compare the degree-degree correlation behaviors

from the real data and our model. Figure 20(a) plots the out-degree versus the in-degree for all

users in the network at time t = 100. Figures 20(b) and 20(c) show, respectively, the average

in-degrees for users having the same out-degrees and the average out-degrees for users with the

same in-degrees. The two types of average values are approximately constant but with significant

spreads, and the results from our model are qualitatively consistent with those from the real data.

The spread can be attributed to the fluctuation due to small amount of large in- or out-degree nodes.

Furthermore, we have also calculated the Pearson correlation of the directed networks [129] of

the user-user retweeting relation, and the network generated from our model. The four directed

assortativity measures from Pearson correlation, i.e., the (in, in), (in, out), (out, in), and (out, out)

degree correlations averaged over pairs of neighbor nodes are all found to be around zero.

What would be an effective way to spread information? In a twitter-like virtual social network,

the performance of individual users in the spreading process is determined by their out-degrees

kiout [130, 131]. To select users with larger out-degrees as the sources of spreading would then

result in higher coverage in the subsequent time steps. To better understand the spreading process,

we plot in Figs. 21(a) and 21(c) the average out-degrees of each user’s neighbors, denoted by 〈kni
out〉,

versus the user’s own out-degree kiout, obtained from both real data and from model, respectively,

where the solid circles denote the average values of 〈kni
out〉 over the users with the same value of

kiout. We see that for those users with one given out-degree kout, the value of 〈kni
out〉 is distributed in

a wide interval of about 3 orders of magnitude. However, the average of 〈kni
out〉 over each kiout (the

solid circle) is approximately constant. Figures 21(b) and 21(d) plot the product of the out-degree

and the average neighbor out-degree kout · 〈kni
out〉, which measures the new information coverage

one step after spreading from that particular user. The correlation of kout · 〈kni
out〉 and kout on a
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Fig. 21. Neighboring out-degrees in user-user retweeting network generated from real data and

model. (a) average neighboring out-degree (〈kni
out〉) and out-degree (kiout) of each user from real

data, (b) product between the out-degree and the average neighboring out-degree (kout · 〈kni
out〉) of

each user from real data, and (c,d) respective results from model.
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logarithmic scale is approximately linear with unit slope both for real data and model. Moreover,

the users with larger sum of neighboring out-degrees are those who perform well in the spreading

process if they are selected to be the source. The upper-left regions in Figs. 21(b) and 21(d) thus

locate the users who are not so popular (small out-degrees) but can spread news efficiently because

they have relatively large sums of neighboring out-degrees. These users are the optimal candidates

to be controlled for spreading information if a rapid growth of the underlying network is desired.

3.3. Discussion

Online social network systems are becoming increasingly ubiquitous in a modern society. At

the present few research are considering their dynamical behavior. Using the approach of empirical-

data analysis, we have developed a probabilistic model for the growth dynamics of an important

class of such systems: user-user retweeting networks. Our model is capable of reproducing the

dynamical and statistical behaviors of the key characterizing quantities such as the growth of the

network size, in- and out-degree distributions, and the degree-degree correlations. The development

of our model also leads to insights into controlling the information-spreading dynamics on these

extremely dynamic networks. Our work represents an initial step in understanding, modeling, and

controlling online social network systems, with potential applications not only in social sciences

(e.g., for controlling opinion spreading) and commerce (e.g., for developing efficient recommenda-

tion algorithms), but also in other disciplines where rapidly time-varying, dynamic networks arise.

3.4. Materials and Methods

3.4.1. Data Collection

The data contains 490, 243 Weibo items with the key word “Japan Earthquake”, starting from

the day of earthquake (March 11) and ending on June 19, so the duration of the data set is 100 days.

In the dataset, 89, 113 items have the retweeting or retweeted actions. The collected Weibos
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have the following features: unique message ID of each published Weibo (Mid), unique user ID of

each Weibo user (Uid), the publishing time of each Weibo (CreatedAt), the source Weibo’s Mid if

it is retweeted (rtMid, empty if the Weibo is not retweeted).
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4 . A BIOMIMICRY BASED UNIVERSAL MODEL FOR MEME POPULARITY IN DI-

VERSE SOCIAL NETWORKING SYSTEMS

We analyze large data sets from a diverse online social networking (OSN) systems and find that

the growth dynamics of meme popularity exhibit characteristically different behaviors. For example,

there is a linear growth associated with online recommendation and sharing platforms, a plateaued

(or an “S”-shape) type of growth behavior from a web service focusing on helping users to collect

bookmarks, and an exponential increase from the largest and most popular microblogging website

in China. Does a single framework with a common set of dynamical rules exist that can explain

the distinct behaviors in a universal manner? We provide an affirmative answer in this paper. In

particular, inspired by biomimicry to take advantage of cell population growth in microbial ecology,

we first construct a base growth model for meme popularity in OSNs. We then take into account

human factors by incorporating a general model of human interest dynamics into the base model.

The final hybrid model contains a small number of free parameters that can be estimated from

data. We demonstrate, using five big OSN data sets from diverse OSN systems, that our model is

universal in the sense that it can successfully predict the various distinct meme growth dynamics.

Our study represents the first attempt to incorporate traditional microbial growth models in biology

with meme popularity, and our universal model can be used to gain insights into critical issues such

as classification, robustness, optimization, and control of online social networking systems.

4.1. Introduction

Online social networking (OSN) systems are becoming ubiquitous and play an increasingly

important role in the modern society, as they provide an unprecedented platform that supports

communications among a vast number of users all over the world. Due to the availability of

massive time series data sets in OSN systems, a quantitative system analysis becomes feasi-
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ble [112,114–122,132–145]. There were previous efforts in investigating issues such as network and

opinion co-evolution [112], users behavior modeling on networks [118,119], the dynamics of users’

activity across topics and time [116,117], human interest dynamics in e-commerce and communica-

tion data sets [135], evolution dynamics of forwarding network in the Weibo platform [136], compe-

tition among different Twitter topics [134, 137, 141], popular topic-style analysis in the Twitter-like

social media [120–122], information diffusion patterns in different domains [114, 115], and the ef-

fect of coexistence of different OSN network services [140]. These studies mainly considered two

common perspectives, the collective behaviors of users and the dynamics of posts or memes. Based

on specific empirical findings, e.g., certain power-law scaling relations, mathematical or physical

models were developed with the aim to reproduce the scaling relations. For instance, a two-layer

model was proposed to characterize the viral dynamics and media influence [146], a branching pro-

cess was used to explain the power-law distributions of meme popularity [137,141], and a Bayesian

probabilistic model was developed to characterize the evolution of tweets [147]. Although these

models are able to simulate or predict certain aspects of the meme popularity in real OSN systems,

they are often dependent upon the structure of the underlying social network, which limits their

applicability to a specific type of social networking platform with specialized functions. Due to the

vast complexity of and diversity in the OSN systems, to develop a quantitative, generally applicable

model for the dynamical evolution of key variables of empirical interest remains an outstanding and

challenging problem. In this paper, we present, for the first time, a hybrid model for the dynam-

ics of memes based on a combination of biomimicry consideration with inspiration from microbial

ecology, physical reasoning of human behaviors, and empirical laws extracted from big data sets.

The model is universal as it predicts accurately characteristically distinct growth behaviors from a

diverse array of OSN systems.
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Typically in an OSN system, memes such as news, ideas, information, knowledge or rumors at-

tract users’ attention and induce heterogeneous dynamical behaviors in the network. Some memes

can go viral, some might receive consistent attention, and some simply get ignored. It has been

challenging to study the mechanisms that drive the fates of different types of memes on a micro-

scopic scale. In a previous work [134], it was found that in OSN systems, the distribution of meme

popularity is typically heterogeneous as a result of the mutual “competition” among different coex-

isting memes for users’ attention. This observation provides the base for the proposal of a theoretical

model to describe the dynamical evolution of memes with a particular focus on the influence of users

actions on information diffusion [137, 141]. The mathematical backbone of the theory is branching

processes and it has successfully explained certain empirical observations such as the distribution

of meme popularity growth associated with the Twitter datasets. A key assumption of the theory,

which makes feasible a detailed analytic treatment, is that users have constant activity rates and

memes are equipped with the same “fitness.” While identical users and memes enables a mathemat-

ical analysis, a key ingredient of meme dynamics in real-world systems, namely heterogeneity in

user and meme behaviors which is typical and indispensable in OSN systems, is not captured by the

theory. An alternative modeling approach is to apply a self-exciting point process (e.g., the Hawkes

process [148]) to predict the popularity of tweets based on partial information about the network

structure and observations of retweet times [147,149]. This type of models can successfully predict

the total final number of retweets but, because of the focus on information diffusion at the individual

level, the common phenomenon of group popularity is not accounted for. At the present, a compre-

hensive model that incorporates the heterogeneity of users and memes to describe quantitatively the

collective dynamics of meme popularity is lacking.
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A more significant challenge in the construction of a model for meme popularity lies in its

distinct growth behaviors for different OSN systems. In particular, from five big data sets from

diverse social networking platforms, we find three characteristically different types of behaviors:

linear, plateaued (or “S” shaped), and exponential growth in time. Is it possible to construct a single

model that can explain these distinct growth behaviors? Naturally, such a model will contain a small

number of free parameters whose values depend on the specific OSN system and can be estimated

from data. Except for the differences in the values of the free parameters, the basic elements of the

model are identical for OSN systems from diverse contexts. In this sense the model can be regarded

as universal.

In this paper, we exploit biomimicry to develop a universal model for meme popularity

dynamics in diverse OSN systems. The general idea is that, while OSN systems are man-made

with a great deal of complexity, nature has solved problems in more complex systems. Animals,

plants, microbes, and even cells are extremely well self-organized natural systems with superior

functions and efficiency. Our first step is to hypothesize an equivalence between meme evolution in

OSN systems and microbial cell population growth and develop a probabilistic, population-level

base model. In such a model for the dynamical evolution of cell population [150–162], at a given

time a cell can experience one of the three possible events: division (generation), death, and

survival. Likewise, memes are the “microscopic” elements of an OSN system. At a given time,

the possible events that can happen to a meme are similar: posting/forwarding, being overwritten

(exclusion), or simple survival, which are equivalent, respectively, to cell division, death, and

survival in a microbial system, as shown on the left side of the schematic illustration in Fig. 22.

This equivalence, or biomimicry, leads to a base model for meme population growth. While

this model captures certain features of the meme dynamics, our data analysis shows that large
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Fig. 22. An illustration of the basic principles underlying the construction of a universal model for

meme popularity dynamics: biomimicry and human interest dynamics. Cell population dynamics

in microbial ecology contain three basic elements: cell division, death, and survival. The dynamical

evolution of memes in OSN systems has three corresponding elements: forwarding, exclusion, and

survival. A base model for meme popularity dynamics can then be constructed according to the cell

growth model in biology. Human factors, however, play a significant role in meme spreading and

propagation and therefore must be taken into account. A combination of the biology inspired base

model and human interest dynamics model leads to a universal hybrid model for meme popularity

dynamics.
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errors can arise when attempting to predict the detailed growth dynamics of meme population.

Additional considerations beyond the biological equivalence must be sought. This is reasonable as

OSN systems are man-made and human factors can play a significant role in the dynamics. The

second step in our model building is then to incorporate human interest dynamics that intuitively

should have a strong correlation with meme popularity. Incorporating a general model for the

dynamical evolution of human interest into the bio-inspired base growth model, we arrive at a

hybrid model for meme popularity dynamics, as shown on the right side of Fig. 22. The final

model contains four free parameters that can be determined from data, as we demonstrate using

empirical big data sets from diverse OSN systems in interest sharing (e.g., various Douban

platforms and Delicious) and the online OSN platform Weibo. The striking result is that the

model can predict the detailed meme popularity growth behaviors in all OSN systems studied,

regardless of their characteristically distinct underlying mechanisms, providing a solid ground for

its validity and universal applicability. While our model predicts three distinct meme popularity

growth behaviors from five data sets, we are confident that, with the values of the four free

parameters determined from data, the model is capable of predicting growth behaviors beyond

the three types uncovered here. To be able to predict the dynamical evolution of memes is of

great social, economical, and political interest. What we have achieved in this paper is a uni-

versal model that can be used to predict the meme dynamics with only limited available information.

4.2. Results

4.2.1. Biomimicry: From Microbial Ecology to Social Network.

In microbial ecology, quantitative analysis of cell population is a fundamental approach [150–

162]. Due to time and economic constraints, most cell models are at the population level because
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it is impractical to monitor the state of each individual cell and count the number of living cells

frequently. A typical cell population model contains three processes: cell division (birth), death,

and survival. Likewise, in an OSN system, it is often unrealistic to study the behavior of every

single post, but it is feasible to obtain data from the collective behaviors of these posts. Especially,

a meme can be generated and passed onto another under in response to certain social event (birth),

it can disappear if there is no or no longer any interest it (death), or it can simply be associated with

the same user without any change (survival). This analog suggests that a meme associated with an

individual is dynamically equivalent to a cell in a microbial ecological system.

To place the cell-meme correspondence on a quantitative footing, we consider the probabilis-

tic model of cell growth and mortality [156]. At each basic time step, three possible events can

occur to an individual cell: it can divide, can die, or remain alive. The probabilities of the respec-

tive events are represented as functions of time with parameters estimated from experimental data.

Consideration of the events and the probabilities provides a base to formulate a meme probabilistic

framework. An illustrative example is shown in Fig. 23. In this toy social system, there are are seven

users and four types of memes that constitute a bipartite network, as shown in Fig. 23(a), where the

former and the latter are connected through posting or forwarding actions. Especially, two users

are directionally connected if a meme is forwarded from one to another. Figure 23(b) shows the

recording of the posting forwarding actions related to each type of meme - essentially a space-time

representation of how the memes are created and evolve. For example, users U1, U4, U5 and U7

post meme types M1, M2, M3 and M4 at time t = 0, t = 1, t = 2, t = 2, respectively, while

users U2, U3 and U4 forward the M1 type at t = 3, t = 4 and t = 5, respectively. As a result, four

users (U1, U2, U3, and U4) are linked to the meme type M1, as indicated in the bipartite network

in Fig. 23(a). Similarly, user U5 forwards meme type M4 at t = 3, M3 at t = 4 and M2 at t = 5,
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Fig. 23. Schematic illustration of meme popularity dynamics. The system has seven users and four

types of memes, where a meme associated with an individual user corresponds to a cell in microbial

ecology. (a) Bipartite graph representation of users and memes, which are connected by posting or

forwarding actions. (b) Representation of forwarding actions at different time. Each horizontal line

is associated with an individual user and each hexagon represents a meme. For a horizontal line,

a hexagon appearing at a time indicates that a meme (regardless of its type) has been created or

forwarded at this time. (c) The three events that can occur to a meme at a given time, together with

the respective probabilities: PF (t) - the probability of being forwarded, PW (t) - the probability of

being overwritten (exclusion probability), and the survival probability 1− PF (t)− PW (t). (d) An

example of the time evolution of meme popularity, where the green circles represent the posting

or forwarding event, the blue circles define a survival event, and the red circles correspond to an

exclusion event.
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and user U6 forwards type M4 at t = 6. For a meme associated with a user at a given time, it can

be forwarded, be overwritten (excluded), or simply survive, as indicated in Fig. 23(c), which cor-

responds to the three possible events that can occur to a cell in microbial ecology: division, death,

or remaining alive. Figure 23(d) shows an example of the occurrences in time of the three events

for each of the four types of meme. From a population perspective, a meme population starts to

grow when it is first posted. The population size increases when users have forwarded this meme.

Between each pair of consecutive forwarding events, the meme is in the survival state. After the last

forwarding event, the meme is regarded as being excluded or dead.

The population of a type of meme at any time is determined by the numbers of newly forwarded,

excluded, and survived posts. Let F (t), W (t), and S(t) be the number of forwarded, excluded, and

survived memes, respectively, at time t. The meme population at this time can thus be written as

N(t) = S(t) + F (t). (4.1)

The interactions among memes are described by the forwarding and exclusion probability functions,

PF (t) and PW (t), respectively, which determine the values of F (t) and W (t).

4.2.2. Empirical Findings.

The probabilities PF (t) and PW (t) are key quantities in our meme popularity model, which

can be estimated from empirical data. We consider five big empirical data sets: Delicious, Douban

Book, Douban Movie, Douban Music, and Sina Weibo (or Weibo). Details of how memes are de-

fined and how data are recorded are described in Methods. Figure 24 shows the forwarding and

exclusion probabilities for the five data sets. We find it convenient to organize the five data sets

into three groups in terms of their nature: Douban Book, Movie and Music, Weibo, and Delicious.

To make a meaningful comparison, we normalize the time (L) as well as the probabilities PF (L)

and PW (L). Initially, the two normalized probabilities have relatively low values and they begin
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to increase after certain time. This initial “silent” phase corresponds to the lag phase that occurs

before the accumulation phase for cell growth in microbial ecology [150–162], where the growth

and mortality rates are expected to be low at the beginning and increase with time. The striking

phenomenon is that, for the five data sets arising from a diverse variety of social networking con-

texts, the time evolution of the probabilities exhibits quite similar features, suggesting a universal

mechanism underlying the evolution of meme popularity.
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Fig. 24. Evolution of forwarding and exclusion probabilities estimated from empirical data sets. In

each panel, lines and the corresponding shadow areas indicate the average forwarding or exclusion

probabilities, together with the error bars. The time and the probabilities have been normalized to

facilitate a quantitative comparison among the five data sets that arise from different social network-

ing contexts. The probabilities for the group of data sets Douban Book, Movie and Music (a,d), for

Delicious (b,e), and for Weibo (c,d).
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4.2.3. Beyond Biomimicry: Incorporation of Human Interest Dynamics.

While biomimicry can provide pivotal insights into uncovering the laws governing human sys-

tems, certain aspects of the human behaviors are fundamentally absent in any biological system.

In particular, in the context of our present study, while microbial cell evolution provides a base for

constructing models for OSN systems, the former is a purely biological system and the latter are

man-made. There ought to be differences between the two types of systems. Indeed, in spite of the

remarkable agreement among the forwarding and exclusion probability functions across OSN sys-

tems of different nature (Fig. 24), a detailed examination of the evolution of the meme population

N(t) for the three groups of data sets reveals some discrepancies, indicating the need to include

additional factors that are not present in the microbial cell evolution model. Our intuition suggests

incorporating human factors into models of OSN systems. For the dynamical evolution of meme

popularity, the most pertinent factor is human interest.

Meme growth in OSN systems is a human behavior. In general, human behaviors are driven

by human interest. In the past decade or so, there has been a great deal of efforts in modeling and

understanding human behavior and interest dynamics [135, 163–169]. Of particular interest are the

interevent time and event determination statistics such as the distribution of the interevent time of

human behaviors, the distribution of the return time to revisit a particular interest (inter), interest

ranking and transition (inter), and the distribution of the time that an interest lasts (event determina-

tion). Because of the sensitive dependence of human interest on environment factors, it is reason-

able to speculate that the dynamical underpinnings of human interest are random [134, 170, 171],

and this has led to the development of Markovian type of models for human interest where an

individual history of interests (except those in the immediate past) plays no role in his/her present

action [172–174]. However, deviations from the Markovian dynamics were reported [135,175,176].
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For example, a systematic analysis of a number of big online data sets revealed that algebraic

(power-law) scaling behavior characteristic of non-equilibrium complex systems govern both in-

terevent time and event determination statistics associated with human interest dynamics [135,163].

This implies that there are intrinsic dynamical rules underlying the human interest dynamics. It was

hypothesized that there are three basic dynamical rules governing the evolution of human interest:

preferential return, inertial effect, and exploration of new interests, and a mathematical model was

developed accordingly to explain the algebraic scaling laws [135].

To take into account human interest dynamics in constructing our meme popularity model, we

make use of the previously established principles: the burst characteristic of human behavior, the

algebraic distribution of the time required to revisit an interest, and exploration of new interest.

In particular, we first assume that the time interval τ for an individual to forward the same meme

to other individuals in the OSN system obeys the distribution p(τ) ∼ τ−α, where α > 0 is the

algebraic scaling exponent that is effectively a parameter in our model. Next, we assume that an in-

dividual has the probability ρ·n−β to discover new interests (memes) and the probability (1−ρ·n−β)

to return to previous interests (memes), where 0 < ρ < 1 and β > 0 are two parameters, and n

is the number of hoppings among different interests [135, 168, 169]. Here, the quantities p(τ) rep-

resent the burst characteristic of human behaviors and ρ can be regarded as an event determination

probability, respectively, and the corresponding parameters α and ρ can be determined from data.

Parameters n and β have little impact on the popularity, therefore, we approximate individual’s

event determination activities as ρ to forward new meme and (1− ρ) to forward old meme.

Figure 25 displays the users behaviors extracted from our empirical datasets based on consid-

eration of human interest dynamics. The particular quantity that we examine is the activation rate,

the ratio of the number of activated users at time t to the number of all users involved by this time.
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Figures 25(a-c) show, for all five data sets, the user activation probabilities versus the normalized

time L. We see that, associated with the datasets Douban Book, Douban Movie and Douban Mu-

sic, users exhibit a similar behavior of the activation rates and the three curves can be well fit by

a sigmoid function [Fig 25(a)]. For the dataset Delicious whose activation rate curve is shown in

Fig. 25(b), there exists a “step.” We thus divide the curve into two parts and fit each with a sigmoid

function with distinct parameters. For the dataset Weibo, as shown in Fig 25(c), a single sigmoid

function fits activation curve well. Figure 25(d) shows the distributions of the individual interevent

time from five datasets, which are approximately algebraic with the value of the exponent α ranging

from 1 to 3. Figures 25(e) and 25(f) exhibit the distributions of event determination probability ρ

associated with the data sets Delicious and Weibo. Note that in the data sets Douban Book, Movie

and Music, users tend to visit or comment on an item only once, leading to a high peak in the dis-

tribution of ρ near the unity value. Table 5 summarizes the parameters of the sigmoid functions in

Figs. 25(a-c) and the parameters α and ρ characterizing the interevent time and event determination

activities estimated directly from the data sets. Note that, for the Delicious data set, there are two

fitting parameters, B and C, for the two distinct sigmoid functions.

TABLE 5: Fitting parameters for empirical datasets. Parameters for sigmoid functions are B and

C and parameters characterizing the interevent time and event determination activities are α and ρ.

B and C are normalized through B = B̃
log(T ) and C = C̃

log(T ) , where B̃ and C̃ are obtained from

empirical datasets, T is the length of the time series.

Data Sets B C α ρ

Delicious 0.24 and 0.40 0.80 and 0.80 1.73 0.54

Douban Book 0.07 0.55 1.38 1.00
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Douban Movie 0.07 0.55 1.53 1.00

Douban Music 0.07 0.55 1.46 1.00

Sina Weibo 0.24 0.61 1.50 0.56

4.2.4. Construction of Model for Dynamical Evolution of Meme Popularity.

Our considerations of microbial cell evolution and human interest dynamics in combination with

empirical observations enable a formal construction of a model to describe the dynamical evolution

of meme popularity. We start from a basic model that includes meme diffusion and user activities.

We assumes a fixed group of potential users. At each time step, a random fraction of the users

become active (enabled), and each enabled user can post memes or forward some of the existing

memes. In accordance with the quantitative behaviors extracted from the empirical data sets, we

assume that the fraction of active users (PA(L)) follows a sigmoid function with parameters B and

C:

PA(L) ∼ 1

1 + e−B·(L−C)
. (4.2)

For an active user, the interevent time τ indicating the intervals when this user decides to forward

(post) memes follows a power law distribution with the parameter α. Finally, the user has the

probability (1− ρ) to forward an old meme that he/she has forwarded before and the probability ρ

to forward a new meme. Our hybrid meme diffusion model is illustrated in Fig. 26.

To simulate the model, we consider a fixed group of Nf = 1000 users. At each time step

t, Nf · PA(t) randomly selected users become active. The interevent time distribution and event

determination activities of these users can be modified through changes in the parameters α and ρ.

Specifically, for an activated user Ui, we generate a time series of forwarding actions based on: (1)

the time interval τ that a user has forwarding action follows the distribution p(τ) ∼ τ−α, (2) the
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probability for this user to forward a new meme is ρ and an old meme is (1 − ρ). We then record

the forwarding and exclusion probabilities, as well as the meme popularity at each time for different

choices of the parameters. Note that in the analysis of empirical datasets, to exclude death events

caused by the duration of the datasets, i.e. memes or users get into the datasets late, we truncate F

and W curves at the peak values, which are around 80% of total duration.

4.2.5. Simulation Results.

Our hybrid model has four parameters: B and C which determine the users’ sigmoid activation

rate (Eq. 4.2), α that regulates the inter-event time intervals and ρ that accounts for event determina-

tion activities (probability of exploring new memes). We simulate the model for different choices of

parameters to check the parameter sensitivity of the key quantities representing the model outcome:

the forwarding and exclusion probabilities. We then estimate the four parameters directly from the

five empirical datasets.

Figure 27 shows the simulation results of the forwarding and exclusion probabilities for different

choices of the parameters α, ρ and C. For panels in a row, we modify one parameter and compare

the results, where the nominal parameter values are B = 0.5, C = 0.5, α = 1.5, and ρ = 0.5,

for the reasons that (1) a commonly used sigmoid function has B = C = 0.5, (2) users’ interevent

time distribution exponent α is typically in the range [135] from 1 to 3, and (3) it is reasonable

to assign equal probabilities for both old and new meme when the event determination activities

are not known, leading to the choice ρ = 0.5. A key result of Fig. 27 is that the forwarding and

exclusion probabilities are sensitive to user actions. In the sigmoid activation function, a small

value of C means that the users get activated at an early time, resulting in increased forwarding

and exclusion probabilities at the early time, as shown in Figs. 27(a) and 27(d). In terms of the

interevent time distribution, a large value of α means that the distribution of the interevent time
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is more concentrated, indicating that many users have short τ . This leads to a slow growth in the

forwarding probability at an early time, as shown in Fig. 27(b). While the increment is not dramatic

as compared with that in the forwarding probability, there is a slight delay in the rising of the

exclusion probability in early time when the value of α is large, as shown in Fig. 27(e). Meanwhile,

the forwarding probability changes slightly with different event determination parameter ρ where,

for example, a large value of ρ, which leads to a higher probability to forward new memes, results

in the later increment of forwarding probabilities. And the high probability of new memes indicates

small amount forwarding events per meme on the average, which causes the early increment of

exclusion probabilities. In all six panels, the amplitude of the increase in the forwarding probability

with different parameters are always larger than those of exclusion probabilities. This is because in

simulations, a meme is regarded as being excluded only after the last recorded forwarding actions

so that the influence of user actions on the overwriting action is postponed.

To validate our model, we set its four essential parameters to the values estimated from real data

and compare the model predicted dynamical evolution of meme popularity with the real one. We do

this for all five big OSN data sets, as shown in Fig. 28, where the growth curves of the normalized

meme popularity with time from the model and from data are displayed. The fitting parameters for

all give datasets are listed in Table 6. The remarkable feature in Fig. 28 is that, regardless of the

disparity in the nature of the data sets and regardless of the characteristic differences in the growth

dynamics of meme popularity, our model predicts behaviors that agree with the actual behavior ac-

curately and in detail. In particular, for the data sets Douban Book, Movie and Music in Fig. 28(a),

the meme popularity grows linearly with time and our model predicts this behavior precisely. For

the data set Delicious, the meme popularity growth curve exhibits an “S-shape” feature, which is

characteristically different from the linear behavior in Fig. 28(a), but the model prediction, which
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is in good agreement with the empirical result, captures this distinct feature unequivocally! For the

growth behavior in Fig. 28(c) from the data set Weibo, the meme popularity exhibits an approxi-

mately exponential behavior over time, and our model still predicts this behavior correctly!

We have also provided analytic results of the model in Methods. We apply Runge-Kutta

method to solve Eq. 4.7 and the results are shown in cyan dash lines of Fig. 28.In both simulated

and analytic models, the parameters (B, C) associated with the users activation function and the

event determination parameter ρ are key to determining the shape of meme popularity growth

curves. Comparing the parameters in Table 6 with those in Table 5, we see that, for each data set,

the fitting parameter values are largely about the values that are directly retrieved from the data,

indicating that fluctuations of the parameters about their “exact” values can be tolerated in our

model without affecting dramatically its prediction. That is, our hybrid model not only predicts

successfully the meme popularity growth dynamics, but also is robust against parameter inaccuracy

and uncertainties.

TABLE 6: Fitting parameters in both simulated and analytic models. B and C are normalized

through B = B̃
log(T ) and C = C̃

log(T ) , where B̃ and C̃ are obtained from empirical datasets, T is the

length of the time series.

Data Sets B C α ρ

Delicious 0.15 0.50 1.50 0.60

Douban Book 0.07 0.50 1.50 0.99

Douban Movie 0.07 0.50 1.50 0.99

Douban Music 0.07 0.50 1.50 0.99
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Sina Weibo 0.20 0.68 1.50 0.60

4.3. Discussion

Recent years have witnessed an unprecedented rapid growth of OSN systems. These systems

have become ubiquitous in the modern society with the tendency to eventually replace many of the

traditional social networks. To understand the dynamics of and the dynamical processes on OSN

systems is of uttermost importance to the well being of the human race in the future. There have

been efforts in analyzing OSN systems in the past few years [132,135–138,141,146,158,177–181].

A common approach is to uncover certain statistical or scaling relations through (big) data analysis,

and then to articulate a quantitative model to reproduce the specific scaling laws (often power-

law scaling). While this approach has indeed yielded great insights into the dynamics of specific

OSN systems, the inconvenient truth is that these systems are diverse and exhibit characteristically

different behaviors even for a single quantity of interest.

A ubiquitous phenomenon with general interest is the growth dynamics of meme popularity

in OSN systems. Our analysis of empirical data from a diverse of array of OSN systems reveals

a lack of common growth behavior: depending on the system the growth dynamics can be linear,

“S-shaped,” or exponential. We ask the following seemingly impossible question: can a univer-

sal model be articulated to capture and predict the characteristically different growth behaviors of

meme popularity? Naturally, in order to produce distinct dynamics, the model must necessarily

contain free parameters whose values depend on the specific system and should be estimated from

data. In spite of this relaxation of constraint, some kind of phenomenological model, as done in

previous works, would not be generally applicable to diverse OSN systems. We are thus motivated

to conceive our model based on the fundamental dynamical elements underlying the growth and
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spread of meme popularity. We find biomimicry to be highly inspirational, effective, and useful for

achieving our goal. Specifically, at one point during our study it striked us that the dynamics of cell

evolution in microbial ecology bear similarities to the dynamics of meme popularity.

In microbial ecology, at any time a cell can experience one of the three events: division, death,

or survival. Likewise, in OSN systems, at any time a meme can be forwarded, can be overwritten,

or can survive. In both contexts, each event is associated with a probability that is a function of time

with free parameters. The close resemblance between cell and meme popularity growth dynamics

provides the microscopic base for a population model of memes. Through data analysis, we find

that the probability functions have the shape of a sigmoid function, with two free parameters that

can be determined from data. However, such a bio-inspired growth model is not sufficient to capture

the detailed dynamical behaviors of meme popularity growth, as the dynamics of the OSN systems

involve human behaviors and can thus be significantly more complex than biological cell growth.

For meme popularity, it is natural to attribute the modeling element beyond cell growth to human

interest dynamics, for which models have been developed recently. Incorporating the ingredient

of human interest into basic cell growth, we end up with a hybrid model that contains four free

parameters - all determinable from data. With the parameter values so estimated, we demonstrate

that our model has the ability to predict the detailed, characteristically distinct growth dynamics

of meme popularity in a diverse array of OSN systems. To our knowledge, this is the first time

that a universal model is successfully developed to capture and predict the dynamical evolution of a

broadly interested quantity characteristic of modern social networking systems.

From the control point of view, our hybrid model leads to a new framework to understand the

general mechanisms underlying the dynamics of OSN systems and how they may be manipulated or

harnessed. Regardless of the specific features in the OSNs studied in this paper [from bookmarking
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shared networks (Delicious) to interest discovered media (Douban) and microblogging system

(Weibo), they all share the same “microscopic” dynamical elements (e.g., forwarding and exclusion)

that results in certain rapid growth behavior. It is conceivable that the growth dynamics can be

controlled through perturbations to these dynamical elements. This may lead to network design

that, for instance, optimizes meme populations. It is also possible to manipulate the robustness or

resilience of information spreading in OSN systems to external attacks through modulating the for-

warding and exclusion probabilities. Taken together, our work uncovers the fundamental principles

underlying meme popularity in OSNs through the approach of biomimicry in combination with

insights from human behavior dynamics, which may shed lights on further development of social

networks and outstanding issues such as classification, robustness, optimization, and control.

4.4. Materials and Methods

4.4.1. Data Collection.

The massive empirical data sets analyzed in this article are from large-scale online systems:

Delicious, Douban and Weibo. The basic statistical properties of datasets are listed in Table 7,

where the term “Records” represent the number of records in each raw data set, “Memes” denotes

the total number of memes in each raw data set, “Users” indicates the total number of users involved

in each raw data set, and “Durations” is the duration of each processed data set analyzed. The details

of these data sets are described, as follows.

TABLE 7: Basic properties of five data sets studied in this paper.

Data Sets Records Memes Users Durations (Months) References

Delicious 361,928,091 886,405 43,968,955 42 [182]
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Douban Book 20,199,759 455,177 557,879 53 [135]

Douban Movie 65,205,220 504,066 86,503 52 [135]

Douban Music 25,596,271 403,835 395,035 50 [135]

Sina Weibo 3,868,099 224,079 559,979 13 [136]

Delicious: Delicious is a web service focusing on helping users collect bookmarks. Each record

consists of the operation time, user’s ID, Universal Resource Locator (URL) and the tag of URL.

In this data set, the meme was defined as a bookmark, and users’ collections of bookmarks are

regarded as forwarding actions.

Douban: Douban is a major Chinese Social Networking Service website. It allows users to

record information and make recommendations related to books, movies, and music, etc. Each

record contains users id, timestamps and rating action towards item. In this paper, we analyze three

Douban datasets: Douban Book, Douban Movie and Douban Music. We define each rated item as a

meme, and treat each rating action as a forwarding event.

Weibo: Sina Weibo is by far the largest and most popular microblogging website in China: it

is a widely used twitter-like microblogging social network medium with more than 500 million

registered users in China [183]. The appealing features of the data include wide publicity, real-time

availability of information, and message compactness. Similar to Twitter, Weibo attracts users

through all kinds of Breaking news and spotlight topics. All users can see messages, called Weibos

in Chinese, published by concerned users. Given a specific topic of interest, an individual can

participate by retweeting (forwarding) or tweeting (posting) the interesting Weibo [125]. In this

dataset, for each message with the forwarding information, we record the original Weibo id, user

id who forwards this Weibo and created time. Each message represents a meme and forwarding
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action is regarded as a forwarding event.

4.4.2. Theoretical Model and Discussions.

In Eq. 4.1 and Fig. 23, we obtain that memes population at time t depends on the amounts of

survived and forwarded memes. Specifically, the relationship can be characterized by,

N(t) = S(t− 1) + F (t− 1)−W (t) + FA(t).

Here FA(t) is the newly added memes at time t. From this recursive formula we can derive an

ordinary differential equation(ODE) as:

dN(t)

dt
= FA(t)−W (t). (4.3)

In simulation, at each time step we add some users into the system. And the number of new users

obeys sigmoid function. Based on natural human behavior as illustrated in Fig. 26, a portion of

those newly added users contributes to new memes at the same time. The ratio of added new memes

is ρ, so the amount of newly added memes is:

FA(t) = ρNi ·
1

1 + exp
(
−B̃(t− C̃)

) . (4.4)

As defined in the main text, after the last forwarding event, the meme is regarded as being over-

written or exclusive. Since users interevent time intervals follow p(τ) ∼ τ−α. we assume the

distribution of all users’ last inter-event interval also follows p(τ) ∼ τ−α. Similarly, the memes’

last inter-event interval is p(τ) ∼ τ−α. And the exclusive term W (t) in Eq. 4.3 is depended on the

total number of memes added into the system, which can be written as:

W (t) =

∫ t

0

ρNi

1 + exp
(
− B̃(t′ − C̃)

)dt′ · (T − t)−α. (4.5)
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Here T is the final observation time as shown in Fig. 26(a). Substituting Eqs. 4.4 and 4.5 to Eq. 4.3,

we obtain:

dN(t)

dt
= ρNi ·

1

1 + exp
(
− B̃(t̂− C̃)

) − ∫ t̂

0

ρNi

1 + exp
(
− B̃(t′ − C̃)

)dt′ · (T̂ − t̂)−α, (4.6)

where t̂ and T̂ are normalized time and are defined by, t̂ = t·log(T )
T ,T̂ = log(T ). The integral part

of Eq. 4.6 can be theoretic calculated, and the equation becomes:

dN(t)

dt
= ρNi ·

1

1 + exp
(
− B̃(t̂− C̃)

) − ρNi

B̃
·
(
B̃ · t̂− log

(
1 + exp(B̃ · C̃)

)
+ log

(
1 + exp

(
B̃ · (C̃ − t)

)))
· (T̂ − t̂)−α.

(4.7)

Note that this model simplifies lots of things, such as averaging the growth and exclusive pro-

cesses. However, for large quantities of memes and users in OSNs, these approximations are ac-

ceptable. Solutions of the ODE Eq. 4.7 under different choices of B, C, α and ρ adopted from

Table 6 are curves with increasing and decreasing phases. To match the settings in simulation, we

also truncate curves of analytic solutions when they start decreasing, as shown in Fig. 28.

The theoretic curves in Fig. 28 indicate that the analytic model agrees well with simulation

and real data results. In Fig. 28, there are three growth types: linear, ”S-shape” and exponential.

From Table 6, we see that those three growth curves only differ in parameter B,C, and ρ. First we

discuss the effects ofB and C on meme popularity curves. B and C are parameters in the activation

sigmoid function. B parameter controls the shape of sigmoid function, C controls the value of L

when the activation rate reaches 0.5 in Eq. 4.2. So large C results in a late reaching at the half of

the total meme popularity. And large B value leads to sharp slope of sigmoid function. In other

words, the increasing rate for popularity becomes fast in the region when the normalized time L is

close to C value. Therefore, large B and C lead to the popularity start growing at a later time with

rapid increasing, which forms an exponential increasing curve as shown in Fig. 28(c). Similarly,

when B and C are in the mid ranges, such as B is around 0.15 and C is around 0.5, the popularity
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curve starts increasing at an early time, reaches maximum rate at the late of time, then the exclusion

decrease almost have the same rate with newly added increase rate. This forms the “S-shape” growth

curves as illustrated in Fig. 28(b). And when B is small and C in mid ranges, the slope variations

in sigmoid function are sluggish, which makes the grow curve of meme popularity approximates

to linear. Meanwhile, the second term of Eq. 4.7 represents meme’s exclusive numbers. When t̂ is

small, this exclusive term only adds a small modification to meme’s popularity; when t̂ is close to

T̂ , this term plays an important role in the growth curves. ρ has a really simple effect, large ρ leads

to a large absolute popularity, and small ρ leads to a small absolute popularity, and will not affects

the growth shape. In reality, when ρ is very small, such as around 0.02, due to stochastic fluctuation

the growth shape maybe will different.(refer to comparison between Fig. 28(a), (c) and (b)).
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Fig. 25. Users behaviors extracted from the empirical data sets based on consideration of human-

interest dynamics. (a-c) Activation curves (the fraction of users activated at normalized time L)

together with the error bars for the three groups of empirical data, where the yellow, blue, red, green

and purple solid lines and the corresponding shadow areas represent the average activation rates and

error bars for Delicious, Douban Book, Douban Movie, Douban Music, and Weibo, respectively.

The black dash curves are the fitted sigmoid functions. For (a), the user activation curves from the

three data sets: Douban Book, Movie and Music, strikingly coincide with each other at a detailed

level, which can fit by a single sigmoid function. For the data set Delicious in (b), a plateau in the

user activation curve emerges, which can be fitted by two distinct sigmoid functions. For the data

set Weibo in (d), the activation curve can be fit by a single sigmiod function. (e) Distribution of

the parameter α characterizing the interevent time for all five datasets, where the two dashed lines

indicate two distinct slope values. (e,f) Distributions of the parameter ρ characterizing the event

determination activities from the data sets Delicious and Weibo, respectively. See Table. 5 for fitting

parameters.
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Fig. 26. A schematic illustration of the proposed biomimicry based hybrid meme diffusion model

incorporating human interest dynamics and empirical observations. (a) At each time step t, a frac-

tion of users are selected to be activated based on a sigmoid curve. (b) For a selected user Ui, the

activities occur at different times according to the probability p(τ) ∼ τ−α, where τ is the interval

between two adjacent forwarding actions. (c) At time t, the selected user Ui has the probability

ρ to forward a new meme and the probability (1 − ρ) to forward an old meme. The model is

hybrid because (1) the dynamical evolution of the memes follows the rules of microbial cell diffu-

sion (biomimicry), and the probabilities p(τ) and ρ are from the human interest dynamics with key

parameters extracted from actual data.
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Fig. 27. Time evolution of the forwarding and exclusion probabilities generated from our hybrid

model. Normalized probabilities for (a,d) different values of C in the users activation sigmoid

function, (b,e) different values of α in the statistical distribution of user interevent time, and (c,f)

different values of ρ in the user event determination probabilities. In all panels, the solid lines and

the associated shadowed area indicate the average values and the error range.
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Fig. 28. Test of the predictive power of the proposed model: comparison between model pre-

dicted and real grow curves of meme popularity. Dashed and solid curves represent model predic-

tion and the results from the real data, respectively: (a) linear growth of meme popularity for the

Douban Book, Douban Movie and Douban Music OSN systems, (b) an “S-shape” type of growth

behavior from the data set Delicious, and (c) an approximately exponential growth curve for the data

set Weibo. The four key model parameters B, C, α, and ρ are estimated from data. The remarkable

feature is that, regardless of the characteristically different growth behaviors in the meme popu-

larity associated with diverse OSN systems, both simulated and theoretical models are capable of

giving accurate prediction. Details of theoretical modeling are summarized in Methods, parameters

in solving Eq. 4.7 are T = 1000 and dt = 0.01. Fitting parameters are summarized in Table. 6
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5 . MULTISTATE MODEL OF WNT SIGNALING PATHWAY IN NEURAL PROGENITOR

CELLS

5.1. Introduction

Researchers have found that in neural development, canonical WNT signaling pathway regulates

the patterning along the anterior-posterior axis of the CNS (Central Nervous System) [184–191].

When the WNT ligands bind to the frizzled receptor, it initiates a cascade of events which include the

activation of β-catenin. The accumulation of β-catenin would facilitate the activation of WNT target

genes, which are then involved in the differentiation of Neural Progenitor Cells (NPCs). A recent

study demonstrates that a gradient concentration of WNT signaling results in the heterogeneity

of neurons from forebrain to midbrain, hindbrain and spinal cord [189]. In the experiment, they

integrate TCF Optimal Promoter to clonal human embryonic stem cell. The cell lines uses GFP

reporter as a homogeneous response to WNT signaling, which indicates that the level of WNT

signaling is characterized by GFP expression. As shown in Fig. 29, in undifferentiated hESCs, GFP

reporter is inactive at day 1; and at day 7, a heterogeneous pattern of GFP expression is observed in

Neural Progenitor Cells (NPCs). In the experiment, NPCs are sorted by GFP level. Cells with low

GFP levels would differentiate into neurons that form forebrain (anterior), cells with medium GFP

levels would differentiate into neurons that form midbrain and those with high GFP levels would

differentiate into neurons that form hindbrain and spinal cord (posterior).

In view of all the above experimental findings, in this study we propose a mathematical

model that characterizes the controlling of WNT signaling pathways towards cell fate along

the anterior-posterior axis of the neural tube, as shown in Fig. 30. Each module in the model

corresponds to a group of Transcript Factors (TFs) or markers with similar functions. The modules

are related to each other by activation or inhibition regulations, which represent positive or negative
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interconnection respectively. While some interconnections are derived from experiment study

findings, others have not yet been observed or verified in experiments. This model uses different

states to describe cell fate decisions and our focus is on which combinations of interconnections

can result in the multistability of NPCs. We perform computational screening on all possible

configurations before searching for triple stable steady states (3 SSSs). Our systematic search

identifies three interconnections with high probabilities of generating 3 SSSs. They are (1)

inhibition from anterior module (A) to receptor module (R); (2) inhibition from anterior module

(A) to WNT module (W); and (3) activation from posterior module (P) to WNT module (W).

Detailed analyses reveal that modifying the strength of regulation between WNT module and

anterior/posterior module can impact the multistability. This is consistent with experiment findings

from a separate work. Moreover, clustering and classification are performed on RNA-seq data

used in a recent study and can provide potential TFs that may form anterior and posterior modules.

Overall, this study proposes a systematic and integrative method to characterize the role of WNT

signals in determining the regional identity of NPCs, and contributes to the studying of human

brain development.

5.2. Results

5.2.1. WNT Controlling Network Model.

To explore the heterogeneity of NPCs under the control of WNT signaling pathway, we propose

a mathematical model that groups genes or proteins into four modules. As shown in Fig. 30(b), “R”

represents genes and proteins that are involved in the process of WNT ligands binding to frizzled

receptors, “W” denotes WNT target genes, “A” stands for anterior markers and “P” corresponds

to posterior markers. In the experiment, when ligands bind to frizzled receptors, the WNT target
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Fig. 29. Endogenous WNT signaling controls NPC differentiation bias. In a recent published exper-

imental study [189], the protocol for differentiation of human Embryonic Stem Cell (hPSC) is: at

day 1, hESCs integrated with GFP reporter have been cultured in suitable conditions. At day 7, hu-

man Pluripotent Stem Cells (hPSCs) differentiate into Neural Progenitor cells (NPCs) which exhibit

varying levels of GFP expression. Then the NPCs are sorted based on the GFP level. At about four

weeks, for cells with low GFPs, they would differentiate into neurons that form forebrain; similarly,

for cells with medium or high GFP levels, they would differentiate into neurons that form midbrain

or hindbrain and spinal cord, respectively. In the experiment, GFP level serves as a direct indication

of the WNT level.

genes are activated, where generally low WNT concentration leads to high expression of anterior

markers, and high WNT concentration results in high expression of posterior markers. Therefore,

in the model, we predefine three interactions between different modules: “R” activating “W”, “W”

inhibiting “A” and “W” activating “P”.

Based on the above assumptions, we further apply a Boolean based computational approach

to systematically search for network structures based on the potential for multistability. We first

enumerate all possible configurations under the predefined structures and interactions (Fig. 31). In

Fig. 30(b), we assume that each unknown interaction (p2, p3, p4, p5 and p6) has two possible types,
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activation or inhibition. Therefore, in total we have 25 = 32 possible topologies. Each topology

represents a potential interaction combination of “R”, “W”, “A” and “P” modules. A four-node

GRN is applied to understand the underlying dynamics. Taking configuration 1 for example, the

dynamical network is mathematically described as,

ẋR = p1 ·
sn

xnW + sn
+ p2 ·

xnA
xnA + sn

+ p3 ·
xnP

xnP + sn
− k · xR,

ẋW = p4 ·
xnR

xnR + sn
+ p5 ·

xnA
xnA + sn

+ p6 ·
xnP

xnP + sn
− k · xW ,

ẋA = p7 ·
sn

xnW + sn
− k · xA,

ẋP = p8 ·
sn

xnW + sn
− k · xP .

(5.1)

Here the dynamical variables (xR, xW , xA, xP ) depict the ensemble gene/protein expression of

each module, k represents the degradation rate, and tunable parameters pi, i = 1, · · · , 8 represent

strengths of interactions. In each GRN, the dynamical behaviors of activation or inhibition are

captured by the Hill function (activation: f(x) = xn/(xn + sn), inhibition: f(x) = sn/(xn + sn)).

In the model, we use k = 1, s = 0.5 and n = 4. For simplicity, here we assume the strength from

“W” to “A” and “P” are equal, p7 = p8.

We perform computational screening on each of the 32 configurations. In each configuration,

for each of the 7 tunable strengths, we examine five possible values: 0.1, 0.2, 0.5, 1 and 5. There-

fore, in total, we have 32 ∗ 57 = 2, 500, 000 different systems. To be consistent with experiment

findings of three regional identity in A/P axis, we calculate the multistability by recording cases

that reach 3 SSSs in each of the 32 configurations under various combinations of interaction

strengths (57 = 78, 125 combinations). The result is illustrated in Fig. 32(a). Here we set 0.01

as a threshold and select configurations with more than 0.01 probability to reach 3 SSSs under

all the 78, 125 combination of strengths. We obtain configurations 6, 14, 22 and 30. Referring to

the list of configurations in Fig. 31, we see that all four selected configurations only differ in p1119



and p3, and they share 6 similar interactions: p2, p4, p5, p6, p7 and p8. Excluding the predefined

interactions p4, p7 and p8, we see that p2, p5 and p6 are important to maintain the 3 SSSs, which

are inhibitions from “A” to “R”, “A” to “W” and activation from “P” to “W”. That is to say, we can

make a tentative guess that negative feedbacks from anterior markers to receptors and WNT target

genes and positive feedbacks from posterior markers to WNT target genes, are important factors

in creating the multistability of 3 SSSs. Later, we will focus on the selected configurations and

perform bifurcation analysis to see how multistability changes with strengths.
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Wnt Target,
Genes
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Add CHIR Add IWP2

Wnt ligands
bind

Posterior Markers

A

A/I
I
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W
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a b
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P1 P2 P3P4

P5 P6

Fig. 30. Illustration of WNT controlling model. (a). Overview illustration of WNT signaling

pathway’s impact on the heterogeneity in anterior/posterior (A/P) regional identity. (b) The corre-

sponding simplified regulation model for the regulation of WNT signaling.

5.2.2. Sensitivity and Bifurcation of Multistability.

Bifurcation diagram is an analytical method that can characterize a system’s stable and unstable

steady state behaviors in response to the parameter variations. We use algorithms in MATCONT

package to compute the bifurcation curves [86]. From Fig. 32(a) we see that configurations 6, 14,

22 and 30 yield high potential to reach 3 SSSs in all parameter combinations we have examined.

To gain a deeper insight into these four configurations, we then perform bifurcation analyses on
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Fig. 31. Computational screening of multistate configurations. Each configuration represents a

candidate network structure. Black rectangular highlights four selected configurations with high

probability to reach 3SSSs.

each of them to investigate how the change of each interaction strength influences the number of

states, while other parameters are kept constant in default values as: p1 = 0.1, p2 = 0.1, p3 = 0.1,

p4 = 0.1, p5 = 1, p6 = 0.5 p7 = 5 and p8 = 5.

Figure 32(b) shows bifurcation results in configuration 30, and other 3 selected configurations

have similar results. Here red lines denote stable steady states and dash lines represent unstable

steady states. We see that strengths p1, p2, p3 and p4 all result in 3 SSSs in the value range that we

have numerically examined. In the bifurcation diagram of p5, there is a small range of values that

can only generate 2 SSSs, and majority ranges of values lead to 3 SSSs. On the contrary, for p6,

only a small range of value leads to 3 SSSs, other ranges lead to 2 SSSs or 1 SSS. Lastly, for p7

and p8, we found some interesting phenomena. In these two bifurcation diagrams, the system can

be driven from 1 SSS to 2 SSSs and to 3 SSSs. And the parameter ranges for 2 SSSs and 3 SSSs
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are quite large, which means in the absence of precise control of strength, we can still obtain the

multistability. We further draw 2D bifurcation diagram by modifying p7 and p8 at the same time.

Fig. 33(a) provides an illustration of how the multistability varies with both p7 and p8. Note that

in the model, p7 and p8 represent the interaction from WNT target genes to anterior and posterior

markers respectively. And the modeling results in Fig. 33(a) indicate that these interactions play an

important role in the decision of multistability. Later, we will discuss results in experiments and

how our modeling reflects these findings.
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Fig. 32. Model selection and bifurcation analysis. (a). Probability of reaching 3 SSSs under differ-

ent network configurations. Dash line represents threshold of 0.01. (b). 1D bifurcation of interac-

tion strength P1 to P8. Red lines and black dash lines denote SSSs and UnSSSs respectively.

5.2.3. Model Explains Exogenous Manipulation of WNT Signaling.

In the experiment, exogenous manipulation of WNT signaling pathway can alter the multistabil-

ity in NPCs. In particular, CHIR is an activating drug on WNT, and IWP2 is an inhibitory drug on

WNT. In the model, we link strength p7 with IWP2, and p8 with CHIR. That is to say, when we add

CHIR, the inhibitory strength from SP5 to Anterior is enhanced, so adding CHIR leads to a decrease

in anterior markers expression. Meanwhile, when adding IWP2, the activation from SP5 to posterior

markers is suppressed, and adding IWP2 results in a reduction in posterior marker expression. We
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use a phase diagram to illustrate these two processes. In Fig. 33(b), we use configuration 30 with

parameter settings: p1 = 0.1, p2 = 0.1, p3 = 0.1, p4 = 0.1, p5 = 1, p6 = 0.5 p7 = 5 and p8 = 5.

In the model, when p7 = p8 = 5, the system has 3 SSSs. Adding CHIR indicates an decrease in

p7, which means the system would be driven from 3 SSSs to 2 SSSs to 1 SSS (Path from top right

to top left in Fig. 33(b)). Similarly, if we add IWP2, p8 will decrease, and the system would also be

driven from 3 SSSs to 2 SSSs to 1 SSS (path from top right to bottom right in Fig. 33(b)). When we

apply two drugs simultaneously, the multistability of system is also reflected in the phase diagram.

In particular, consistent with experiment results, as shown in Fig. 33(c), in the presence of 1000

nM IWP2, when the dose of CHIR increases, the system exhibits transitions from 1 SSS (Anterior

only) to 2 SSSs (Anterior and Midbrain) to 2 SSSs (Midbrain to Anterior) and finally reach 1 SSS

(Posterior only). In the model, we obtain similar transition as illustrated in the path from bottom

right to bottom left of Fig. 33(b).

Together, our model supports and reflects experiment results in which the multistability is

controlled by exogenous drugs. Next we will focus on how to identify genes that form each of the

four modules.

5.2.4. Preliminary Results of Gene Classifications.

To further determine genes that belong to each module, we study RNA-sequencing data under

different doses of CHIR at day 7 NPCs and perform clustering. Based on previous experiment

research [192–195], we have predefined three groups of Seed genes, as illustrated in Table 8. Here

Group 1 (G1) represents genes discovered as anterior markers, G2 corresponds to genes identified as

midbrain markers, and G3 stands for genes denoted as hindbrain markers. We plot the dose response

curve for seed genes in each group as shown in Fig. 34(a). From this panel we see that, in general,
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Fig. 33. Modeling and experiment results on modulation of WNT signaling specified NPCs. (a).

2-D bifurcation diagram with respect to the interaction parameters p7, p8 and state xA, where blue

lines denote boundaries among 3 SSSs, 2 SSSs and 1 SSS. (b). Phase diagram of p7 and p8. Orange

circles denote system state, and green arrowhead lines represent transitions from one state to another.

(c). Experiment data of gene expression in A/P-related gene markers in the presence of 1,000 nM

IWP2 and various concentration of CHIR. For each gene, expressions were normalized with respect

to the highest expression value. Data are based on experiment results in a separate work.

forebrain markers expression level is high with low concentration of CHIR (0.0 to 0.05), midbrain

markers exhibit high expression level in low-medium concentration of CHIR (mainly in the range of

0.05 to 0.3), and for hindbrain markers, they start expression at around 0.20 concentration of CHIR

and reach maximum after 0.60 CHIR. The experiment dose response curves produce two findings:

(1) all the markers are valid and represent dynamics of the WNT signaling pathway control, (2) it is

possible to use the dose response curves of seed genes to classify other genes. Based on these ideas,

later, we perform standard clustering and classification on the RNA-seq data.

First we filter the genes by a list of 1459 transcription factors [196], after which we obtain 1276

genes. Then we use kmeans method to cluster filtered genes and choose the number of clusters

as 10 which are inferred from the Gap statistic [197, 198]. The clustering result is visualized in

Fig. 34(b) based on t-SNE method. To validate the clustering results, we look back to the groups
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of seed genes, and see whether seed genes in a same group are clustered correctly. The results

are summarized in the second column of Table 8. The table suggests an efficient application of

the clustering. Specifically, G1, which represents anterior related genes, likely belongs to Cluster

9; G2, which denotes posterior related genes, is most concentrated in Cluster 6; and G3, which

consists of genes related to posterior, is represented by Cluster 8. Considering that currently we do

not have any replicates in this experiment data, the clustering approach inevitably bears with some

inaccuracy. But most seed genes in a same group are clustered together, which indicates that, if we

want to find more genes for each group, we can relate to the clustering results.
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Fig. 34. Dose response of seed genes and clustering results. (a). Normalized Trimmed Mean of

M-values (TMM) [199] expression under different doses of CHIR. (0, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5,

0.6, 0.7, 0.8, 0.9 and 1.0, the concentrations were normalized with respect to the highest value).

(b). Clustering results visualized by nonlinear dimensionality reduction method (t-SNE).
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TABLE 8: Seed Genes for classifications.

Group Name Genes and Clustering Results Functions

G1 FOXG1 (10), PAX6 (2), SIX3 (9), EMX2 (9), LHX2 (9) Forebrain

G2 EN1 (6), LHX1(10), LMX1B (6), EGR2 (6) Midbrain

G3 GBX2 (8), CDX2 (8), HOXA1 (8), MSX1 (8), CDX1 (6) Hindbrain

5.3. Conclusion

Numerous studies have shown that the WNT signaling pathway plays an important role in the

differentiation process of neural progenitor cells (NPC). A gradient concentration of endogenous

WNT signaling results in the heterogeneity of neurons from forebrain to midbrain, hindbrain and

spinal cord. In this study, based on the WNT signaling mechanism that regulates anterior-posterior

(A/P) identity, we propose a WNT controlling network model by treating the frizzled receptors,

WNT target genes, anterior/posterior (A/P) markers as different modules. Then we apply Boolean

based ODE modeling to characterize the dynamics within network, while network enumeration and

parameter scanning methods are applied to get a high likelihood of multistability. The analysis

reveals that the inhibition interactions from anterior module (“A”) to receptors (“R”) and WNT

target module (“W”) and activation interaction from posterior module (“P”) to WNT target module

(“W”) are key factors for maintaining multistability. Our model also correctly predicts how the

multistability is controlled by the exogenous modulation of WNT signaling. Moreover, we perform

clustering on RNA-seq data in related experimental study and identify TFs that may belong to

anterior or posterior modules. Our results may shed light on the understanding of the role of WNT

signaling mechanism in the regulation of neural progenitor cells.
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[146] K.-K. Kleineberg, M. Boguná, Evolution of the digital society reveals balance between viral
and mass media influence. Phys. Rev. X 4, 031046 (2014).

[147] T. Zaman, E. B. Fox, E. T. Bradlow, et al., A Bayesian approach for predicting the popularity
of tweets. Ann. Appl. Stat. 8, 1583–1611 (2014).

[148] A. G. Hawkes, Spectra of some self-exciting and mutually exciting point processes.
Biometrika 58, 83–90 (1971).

[149] Q. Zhao, M. A. Erdogdu, H. Y. He, A. Rajaraman, J. Leskovec, Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining (ACM, 2015),
pp. 1513–1522.

[150] H. von Foerster, Some remarks on changing populations. Kinet. Cellu. Prolif. pp. 382–407
(1959).

[151] E. Trucco, Mathematical models for cellular systems the von Foerster equation. part i. Bull.
Math. Biol. 27, 285–304 (1965).

[152] E. Trucco, Mathematical models for cellular systems. the von Foerster equation. part ii. Bull.
Math. Biol. 27, 449–471 (1965).

[153] T. Lu, D. Volfson, L. Tsimring, J. Hasty, Cellular growth and division in the Gillespie algo-
rithm. Sys. Biol. 1, 121–128 (2004).

[154] Z. Kutalik, M. Razaz, J. Baranyi, Connection between stochastic and deterministic modelling
of microbial growth. J. Theo. Biol. 232, 285–299 (2005).

[155] P. Wang, et al., Robust growth of Escherichia coli. Curr. Biol. 20, 1099–1103 (2010).

[156] J. Horowitz, M. D. Normand, M. G. Corradini, M. Peleg, Probabilistic model of microbial
cell growth, division, and mortality. Appl. Envir. Microbiol. 76, 230–242 (2010).

137



[157] E. B. Stukalin, I. Aifuwa, J. S. Kim, D. Wirtz, S. X. Sun, Age-dependent stochastic models for
understanding population fluctuations in continuously cultured cells. J. Roy. Soc. Interface
10, 20130325 (2013).

[158] B. Ribeiro, Proceedings of the 23rd International Conference on World Wide Web (ACM,
2014), pp. 653–664.

[159] D. Antunes, A. Singh, Quantifying gene expression variability arising from randomness in
cell division times. J. Math. Biol. 71, 437–463 (2015).

[160] C. D. Greenman, T. Chou, Kinetic theory of age-structured stochastic birth-death processes.
Phys. Rev. E 93, 012112 (2016).

[161] T. Chou, C. D. Greenman, A hierarchical kinetic theory of birth, death and fission in age-
structured interacting populations. J. Stat. Phys. 164, 49–76 (2016).

[162] S. Widder, et al., Challenges in microbial ecology: building predictive understanding of
community function and dynamics. ISME J. 10, 2557 (2016).

[163] A.-L. Barabási, The origin of bursts and heavy tails in human dynamics. Nature 435, 207–211
(2005).

[164] J. G. Oliveira, A.-L. Barabási, Human dynamics: Darwin and Einstein correspondence pat-
terns. Nature 437, 1251–1251 (2005).
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