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ABSTRACT  

   

The greatest barrier to understanding how life interacts with its environment is the 

complexity in which biology operates. In this work, I present experimental designs, 

analysis methods, and visualization techniques to overcome the challenges of deciphering 

complex biological datasets. First, I examine an iron limitation transcriptome of 

Synechocystis sp. PCC 6803 using a new methodology. Until now, iron limitation in 

experiments of Synechocystis sp. PCC 6803 gene expression has been achieved through 

media chelation. Notably, chelation also reduces the bioavailability of other metals, 

whereas naturally occurring low iron settings likely result from a lack of iron influx and 

not as a result of chelation. The overall metabolic trends of previous studies are well-

characterized but within those trends is significant variability in single gene expression 

responses. I compare previous transcriptomics analyses with our protocol that limits the 

addition of bioavailable iron to growth media to identify consistent gene expression 

signals resulting from iron limitation. Second, I describe a novel method of improving the 

reliability of centroid-linkage clustering results. The size and complexity of modern 

sequencing datasets often prohibit constructing distance matrices, which prevents the use 

of many common clustering algorithms. Centroid-linkage circumvents the need for a 

distance matrix, but has the adverse effect of producing input-order dependent results. In 

this chapter, I describe a method of cluster edge counting across iterated centroid-linkage 

results and reconstructing aggregate clusters from a ranked edge list without a distance 

matrix and input-order dependence. Finally, I introduce dendritic heat maps, a new figure 

type that visualizes heat map responses through expanding and contracting sequence 

clustering specificities. Heat maps are useful for comparing data across a range of 



  ii 

possible states. However, data binning is sensitive to clustering cutoffs which are often 

arbitrarily introduced by researchers and can substantially change the heat map response 

of any single data point. With an understanding of how the architectural elements of 

dendrograms and heat maps affect data visualization, I have integrated their salient 

features to create a figure type aimed at viewing multiple levels of clustering cutoffs, 

allowing researchers to better understand the effects of environment on metabolism or 

phylogenetic lineages. 
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CHAPTER 1 

INTRODUCTION. 

The greatest barrier to understanding the interactions of life and its environment is 

the extreme complexity in which it operates. From the biological side of this relationship, 

the study of life-environment interactions is contingent upon making sense of the changes 

that occur in response to altered environmental conditions. However, the complexity of 

natural systems makes finding ways to collect, analyze, and interpret biological data a 

nontrivial task. Biology research is currently in an era of abundant data collection, 

leading to massive datasets and databases that contain the potential for scientific 

discovery (Wooley & Lin, 2005; Wooley & Ye, 2010). Large scale biological data 

collection is a heterogeneous affair that incorporates components from interconnecting 

biological systems and varying degrees of similarity (Wooley & Lin, 2005). Sequencing 

data in particular, and the methods to collect it, have advanced significantly within just 

the past ten years (Acland et al., 2014; O’Leary et al., 2016; Quail et al., 2012; Wooley & 

Ye, 2010). Genome and metagenome sequences are now routinely assembled, 

comparatively annotated, and uploaded to public databases (Bailey et al., 2014c, 2014a, 

2014b; Bryant & Frigaard, 2006; Swingley et al., 2012). As a result of this data boom, the 

development of methods to study sequencing data complexity, and biological complexity 

in general, is a quickly growing interdisciplinary field (Heo, Kang, Song, & Lee, 2017). 

This dissertation describes work aimed at managing and learning from biological 

complexity through novel experimental designs, analysis methods, and visualization 

techniques in three chapters. 
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The first chapter, Transcriptomics of iron limitation without media chelation in 

the cyanobacterium Synechocystis sp. PCC 6803, examines the effects of iron limitation 

on the photosynthetic metabolism of Synechocystis sp. PCC 6803. Synechocystis sp. PCC 

6803 is a model organism for studying the effects of iron limitation on photosynthetic 

metabolism with well characterized RNAseq and microarray results (Hernández-Prieto et 

al., 2012; Hernández-Prieto, Semeniuk, Giner-Lamia, & Futschik, 2016; Kopf et al., 

2014; Shcolnick, Summerfield, Reytman, Sherman, & Keren, 2009; Singh, McIntyre, & 

Sherman, 2003; Wegener et al., 2010). Previous studies have established differential 

expression trends for both coding and non-coding genome regions that show stress 

responses to iron limitation. However, some individual gene responses are inconsistent in 

their signal across multiple experiments, which could be caused by differences in 

methodologies and growth conditions. In contrast to previous transcriptome experiments 

which all used iron chelators to reduce bioavailable iron, iron limitation was achieved in 

this experiment by supplying an order of magnitude less iron in growth media compared 

to controls. With the methods and results of previous iron limitation Synechocystis sp. 

PCC 6803 transcriptome studies in consideration, it was hypothesized that this non-

chelation iron limitation growth and subsequent analysis methodology would result in 

similar overall transcriptome trends to those of previous reports, particularly those of 

photosynthesis and respiration. However, within these overall trends, some unique 

differences in individual gene expression were expected because of the different iron 

limitation method. By examining iron limitation under alternative methods and growth 

conditions, the confidence in consistent signals resulting from iron unavailability will be 

strengthened and inconsistent signals may be questioned as products of a particular 
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protocol. In this chapter, an experimental design change is being used to reduce the 

complexity of the known Synechocystis sp. PCC 6803 iron limitation transcriptome 

responses. 

The second chapter, Using cluster edge counting to aggregate iterations of 

centroid-linkage clustering results and avoid large distance matrices, describes a novel 

method of improving the reliability of centroid-linkage clustering results (Kellom & 

Raymond, 2017). Sequence clustering is a fundamental analysis tool of molecular 

biology that is being challenged by increasing dataset sizes from high-throughput 

sequencing. Agglomerative algorithms, such as minimum- maximum- and average-

linkage, that have long been relied upon for their accuracy, require the construction of 

computationally costly distance matrices which can overwhelm basic research personal 

computers (Cole et al., 2009; Gronau & Moran, 2007; Huse, Welch, Morrison, & Sogin, 

2010; Larkin et al., 2007). Alternative algorithms exist, such as centroid-linkage, to 

circumvent large memory requirements but their results are often input-order dependent 

(Edgar, 2010). The method of cluster edge counting presented in this chapter effectively 

bootstraps the results of many centroid-linkage clustering iterations into an aggregate set 

of clusters, increasing cluster accuracy without a distance matrix. The novel analysis 

method in this chapter ranks cluster edges by conservation across iterations and 

reconstructs aggregate clusters from the resulting ranked edge list. Aggregating centroid-

linkage clustering iterations can help researchers analyze the complexity of sequencing 

datasets. 

The third chapter, Using dendritic heat maps to simultaneously display genotype 

divergence with phenotype divergence, introduces a new figure type that can visualize 
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heat map responses though expanding and contracting clustering specificities (Kellom & 

Raymond, 2016). The visualization of sequencing data is an integral part of the analysis 

and communication of genomics-based research. A key advance in microbial ecology in 

both modern and ancient ecosystems will be connecting genotypic lineages and metabolic 

components to environmental dynamics. This has become a daunting task in light of the 

burgeoning repositories of -omics sequence data, calling on entirely new methods for 

analyzing and visualizing complex sequencing datasets (Goll et al., 2010; Huson, Auch, 

Qi, & Schuster, 2007; Meyer et al., 2008; Ondov, Bergman, & Phillippy, 2011). The 

effects of environment on biology are often shown as heat maps of sequence abundance, 

where the responses of distinct sequence groups are measured and compared (Wilkinson 

& Friendly, 2009). However, the grouping process of heat map construction is performed 

at a single, often arbitrary, level of inclusiveness. In this chapter, dendritic heat maps are 

introduced to simultaneously display multiple heat maps over a range of binning 

specificities, arranged in a dendrogram-like configuration. Dendritic heat maps can show 

the effects of environment on sequence homology and relative abundance. Importantly, 

tracking changes in relative abundance can be particularly useful for observing the levels 

at which genotypic divergence (cluster branching) correlates with gene expression 

(differing heat map bin response), helping to better understand the effects of environment 

on metabolism or phylogenetic lineages. 

The concluding chapter, Architectural elements of dendrogram and heat map 

visualization, and the display of hierarchical clustering multidimensionality, discusses 

the effects of architectural elements in published dendrograms and heat maps. Input data, 

scale and density, and color, in dendrograms and heat maps are examined with respect to 
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communicating the complexity of clustered datasets and their struggle to display 

multidimensionality. Hidden within nearly every dendrogram or heat map are many 

levels of equally legitimate versions of the same data display. The reality of clustered 

relationships is often more disordered than what is presented by the final dendrogram or 

heat map image, but data are forced into end-point clusters based on identity cutoffs. 

There have been two main strategies to meet the challenge of visualizing 

multidimensionality of clustering data: 1) reorganizing cluster hierarchies by ‘cutting’ 

branches at multiple clustering cutoff levels, and 2) overlaying heat map values over 

dendrogram hierarchies. Overlaying heat maps onto dendrogram configurations shows 

the multidimensionality of nodes and branching points in clustering datasets whereas 

branch cutting methods highlight a selection of multidimensional nodes. Each method 

conveys the complexity and dynamic nature of clustered hierarchical datasets in ways 

that are not possible in traditional dendrograms and heat maps. 
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Abstract 

Synechocystis sp. PCC 6803 is a model organism for studying the effect of iron 

limitation on photosynthetic metabolism and has been used in RNAseq and microarray 

experiments. Previous studies have established differential expression trends for both 

coding and non-coding genome regions that show stress responses to iron limitation. 

However, some individual gene responses are inconsistent in their signal across multiple 

experiments, which could be caused by differences in methodologies and growth 

conditions. By examining iron limitation under alternative methods and growth 

conditions, the confidence in signals resulting from iron unavailability will be 

strengthened and inconsistent signals may be regarded as products of a particular 

protocol. Our experiment, like others, yielded results that indicate ubiquitous 

downregulation of photosynthetic electron transport chain subunits as well as transporters 

that allow H
+
 ions to exit the thylakoid lumen, possibly to maintain a thylakoid 

membrane electrochemical gradient. This widespread gene repression response to iron 

limitation was accompanied by the upregulation of iron acquisition pathways. In contrast 

to previous experiments which used iron chelators to reduce bioavailable iron, we 

achieved iron limitation by supplying an order of magnitude less iron in growth media 

compared to controls. As expected, some of our results do not exactly mirror the results 

from previous studies. We have visualized these iron limitation signals by mapping them 

over the Synechocystis sp. PCC 6803 chromosome. The role of Synechocystis sp. PCC 

6803, and cyanobacteria in general, as primary producers underscores the ecological 

importance of understanding stress induced by various iron limitation growth conditions. 
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Introduction 

Synechocystis sp. PCC 6803 (hereafter referred to as PCC 6803) is a model 

organism for studying iron limitation in cyanobacteria, for which qPCR, microarray, 

RNAseq, and proteomic experiments have characterized its responses (Singh, et al., 

2003; Shcolnick, et al., 2009; Wegener, et al., 2010; Hernández-Prieto, et al., 2012; Kopf, 

et al., 2014; Hernández-Prieto, et al., 2016). In cyanobacteria, iron is essential for 

photosynthesis, respiration, dinitrogen fixation, chromophore biosynthesis, and gene 

regulation, and cells will react to maintain internal homeostasis when it is lacking from 

their environment. Singh, et al., were the first to use a microarray approach to show 

altered transcription of genes for photosynthesis and respiration, transcription and 

translation, transport and binding proteins, and other metabolic functions by PCC 6803 

under iron limitation (Singh, et al., 2003). Two other microarray studies reported iron 

limitation affecting similar metabolic pathways with slight differences from results 

reported by Singh, et al. (2003), which likely stems from differences in methodologies 

(Shcolnick, et al., 2009; Hernández-Prieto, et al., 2012). Growth conditions between these 

two other experiments were similar: Shcolnick, et al. and Hernández-Prieto, et al. used 

the iron-chelator defroxamine B (DFB) to generate iron insufficiency and assessed gene 

expression by PCC 6803 after varying amounts of time (Shcolnick, et al., 2009; 

Hernández-Prieto, et al., 2012). Recently, Kopf, et al., 2014 described the PCC 6803 

transcriptome response with RNA sequencing (RNAseq) and a “transcriptional unit” 

approach under ten different growth conditions, including iron limitation induced by DFB 

addition (Kopf, et al., 2014). They identified iron-stress and transport genes as being 

differentially expressed explicitly during iron limitation and data for other genes shows 



  9 

similar differential expression patterns to that of the microarray experiments. These are 

four examples of iron limitation transcriptome analysis in PCC 6803 performed with 

different methodologies, all yielding slightly different results for individual genes but 

similar overall gene expression patterns.  

The primary goal of our study is to supplement existing transcriptome studies of 

PCC 6803 under iron limitation without media iron chelation. The confidence in 

transcriptome signals is strengthened by an increasing number of reports, while 

transcriptome noise may become more evident with fluctuating results that show 

inconsistencies across studies. In our experiment, the growth conditions, sequencing 

platform, and data analysis methods are different than the methods used in the previously 

mentioned studies. To achieve iron limitation in our experiment, we lowered the iron 

content of the medium by adding an order of magnitude less bioavailable iron, rather than 

using chelators, to induce iron-limited gene expression. This difference in procedure is 

noteworthy because growth in naturally iron-limited settings is likely not the result of 

chelators but instead the lack of sufficient iron input into oligotrophic environments. 

Additionally, DFB, the iron chelator of past experiments, is known to bind to metals 

other than iron and limit their bioavailability (Farkas, et al., 1997; Farkas, et al., 1999). 

There are many sequencing platform options available for transcriptomics, each 

with advantages and disadvantages when it comes to cost, speed, and output, as well as 

access to the technology (Quail, et al., 2012). Each sequencing platform can yield slightly 

different results due to their inherent biases, as can different sample preparation methods 

leading up to sequencing and the analysis done afterward. The most recent PCC 6803 

iron limitation experiment (Kopf, et al., 2014) other than our own used an Illumina HiSeq 
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platform, which is currently widely used, along with Illumina MiSeq, for RNAseq 

because of their accuracy and the number of sequences yielded per run. RNAseq analysis 

methods generally involve mapping (e.g. Scripture (Guttman, et al., 2010), Cufflinks 

(Trapnell, et al., 2010)) and/or assembling (e.g. ABySS (Birol, et al., 2009), 

SOAPdenovo (Xie, et al., 2014)) sequencing reads (Haas & Zody, 2010). Kopf, et al., 

2014 mapped reads to the PCC 6803 genome to identify transcriptional start sites and 

transcriptional units using the program “segemehl” (Hoffman, et al., 2009), which finds 

optimally scored local alignments between sequencing reads and a reference genome 

(Kopf, et al., 2014). 

For our experiment, we sequenced our transcriptome replicates with the Ion 

Torrent sequencing platform. The Ion Torrent sequencer is cheaper than the Illumina 

HiSeq sequencer but the cost is comparable to some of the other Illumina platforms. 

However, the cost per gigabase of Ion Torrent can be more expensive than Illumina 

HiSeq depending on the productivity of the individual machines (Quail, et al., 2012). 

Like Illumina HiSeq, Ion Torrent can yield a large number of sequences of a useful 

length and accuracy for transcriptomics, although typically to a lesser degree (Quail, et 

al., 2012). Sequenced reads were mapped to the PCC 6803 genome using local BLAST to 

identify their corresponding locations with local alignments (Altschul, et al., 1990). This 

process uses the same concept as the program segemehl, but applied in a different way. In 

the results and discussion we compare the results of our transcriptome experiment 

methods to previous reports.  

The secondary goal of the work presented here is to provide an alternate method 

for visualization of genome-mapped transcriptome data. We utilize the plotting Perl 
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package Circos with a custom Perl script to visually map transcriptome expression levels 

to their location on a circular chromosome. This visualization technique is adaptable to 

the use of alternative software and provides a view of regional relative abundances over 

the entire chromosome. 

With the methods and results of previous iron limitation Synechocystis sp. PCC 

6803 transcriptome studies in consideration, we hypothesized that our non-chelation iron 

limitation growth and subsequent analysis methodology would result in similar overall 

transcriptome trends to those of previous reports, particularly those of photosynthesis and 

respiration. However, within these overall trends, we also expected some unique 

differences in individual gene expression because of our different iron limitation method. 

Materials and Methods 

Growth. Synechocystis sp. PCC 6803 was grown in 1.8 L of BG-11 medium pH 

7.8 (Allen, 1968; Stanier, et al., 1971) in 2 L trace metal clean polycarbonate bottles at 

24ºC under continuous aeration with 0.2 μm filtered air and illumination (50 μmol 

photons m
-2

 s
-2

 irradiance). Iron-limited cultures were grown with iron reduced to 1/10 

(1.8 μM) of the control medium, supplied as FeCl3∙ 6H2O. The cultures were grown 

under continuous light as similarly reported in the methods of Kopf, et al. 2014. The cells 

were then harvested and transferred to normal composition BG-11 (control treatment: 18 

μM iron) for 7 days or modified BG-11 (iron limitation treatment: 1.8 μM iron) for 10 

days to assess the effect of iron limitation on physiological processes in PCC 6803. 

Cultures were set up in replicates of six and collected in exponential phase. The growth 

rate of the cultures was monitored via absorbance at 730 nm. 
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Sample preparation. Total RNA was extracted from cultures using the FastRNA 

Pro™ Blue Kit from MP Biomedicals (cat. no. 116025050). DNA in the total RNA 

preparations was degraded using the RTS-DNase from Mo Bio Laboratories (cat. no. 

15200-50). The RNeasy® MinElute Cleanup Kit from QIAGEN (cat. no. 74204) was 

used to purify and concentrate the DNased RNA. rRNA was subtracted from the total 

RNA extractions following the protocol from Stewart et al. 2010. Of the six replicates for 

both the control and iron-limited group, the three of each that contained the highest 

concentration of RNA were amplified using the MessageAmp™ II-Bacteria Kit from Life 

Technologies (cat. no. AM1790). The amplified RNA was then reverse transcribed to 

cDNA using the SuperScript® Double-Stranded cDNA Synthesis Kit (with Superscript® 

III substituted for Superscript® II reverse transcriptase) from Life Technologies (cat. no. 

11917) and sonicated to ~500 bp fragments, confirmed with gel electrophoresis. cDNA 

fragments were then prepared for Ion Torrent sequencing using the Ion Xpress™ Plus 

gDNA and Amplicon Library Preparation kit and the Ion Xpress™ Barcode Adapter 1-16 

Kit from Life Technologies (cat. no. 4471269 and 4471250, respectively). 

Sequencing and processing. The samples were sequenced using the Ion Torrent 

platform with the 316 chipset at the DNA Laboratory at the Arizona State University 

School of Life Sciences. Sequences less than 150 bp in length were filtered out of the 

data. Using local BLAST, any sequences that did not match to the PCC 6803 

chromosome or plasmids at the default e-value of 10 were removed from the data (these 

sequences are either too inaccurate or are from Hymenobacter contamination, addressed 

in the following paragraph), as well as sequence that matched the 23S, 16S, and 5S rRNA 

gene regions (Altschul, et al., 1990). After sequence filtering, sample normalization was 



  13 

performed by random subsampling without replacement to the size of the smallest dataset 

via Perl script, so that all sequencing datasets were equally represented. Sequences have 

been deposited into the National Center for Biotechnology Information’s Sequence Read 

Archive as BioProject PRJNA315016. 

In the results reported here, it should be noted that minor culture contamination 

was detected post-sequencing by the identification of genus Hymenobacter 16S 

ribosomal RNA sequences in all six samples. Sequences that did not map to the PCC 

6803 genome were discarded before subsampling, but it is conceivable that conserved 

genes between PCC 6803 and Hymenobacter could distort count information. While this 

contamination is less than ideal, we have not considered it to be a major concern since we 

have framed the transcriptome responses with comparisons to previous work done with 

iron limitation in Cyanobacteria and PCC 6803. 

Transcriptome mapping and visualization. Chromosome and plasmid positions 

of sequencing reads were determined using local BLAST with the PCC 6803 complete 

chromosome as a database. The positions of the reads were organized using custom Perl 

scripts that captured the hit positions from BLAST output files. Annotation was 

performed by comparing the positions of both coding and non-coding regions on the 

chromosome with the sequencing read positions that were mapped. Plasmids were also 

considered during transcriptome mapping, but ultimately we chose not to map them due 

to the lack of significant expression toward either group in our experiment. With these 

read positions for the three replicates of both conditions, the bin response of Figure 1, 

log2 fold change of Figures 2 and 3, and two-sampled t-statistic for each coding and 

contiguous non-coding region were calculated using equations (1), (2), and (3), 
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respectively. In addition, edgeR was used to calculate an exact test for significance 

(Robinson, et al., 2010). Reads were incorporated into the calculations if any part of it 

overlapped the coding or contiguous non-coding region. 

1)                    
                     

               
 

2)                  
                     

               
 

3)             
                             

 
               

 

              
 

         
 

        

 

Data visualization in Figure 1 was performed by plotting with the Perl package 

Circos (version 0.64) (Krzywinski, et al., 2009). Sequencing reads were mapped and 

stacked onto genome positions at the individual base level with custom Perl scripts. The 

triplicate iron limitation growth datasets were assigned differing red hues, with the 

triplicate control datasets assigned differing blue hues. To prevent significant signals 

from being dwarfed by genes of exceptionally high differential expression and to ensure 

visually appealing image proportions, a log10 ratio was used for visualization and bases 

were mapped to the genome with a maximum count of sixteen, however all analysis was 

performed with full count information. Genome positions were grouped based on gene 

regions or contiguous noncoding regions, where the bin response and t-statistic were 

calculated, as well as an exact test with edgeR. The bin response is plotted as a heat map 

with hues that are partitioned into eleven possible red/blue hues, with the red and blue 

corresponding to a higher count of expressed mRNA transcripts in the iron limitation 

triplicate average or the control triplicate average, respectively. Regions of the 
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chromosome that did not meet the p-value of ≤0.05 (t-statistic of 2.776) in the t-test and 

the exact test have been faded to a lesser color intensity. 

All Perl scripts used here are available in Chapter 2 supplemental file S2. 

Summaries of the results are given in Table 1, Figure 2, Figure 3, and Chapter 2 

supplemental file S1. 

Results 

Transcriptome mapping. In this study, we utilized high-throughput sequencing 

data to map the iron-limited transcriptome of PCC 6803 to its genome and compare iron 

limitation transcript counts to counts from control growth conditions. This technique is 

amenable to analysis of the transcriptome from the level of the entire genome to 

individual bases. Mapping of the transcriptome in the present work was performed at the 

single-base level, by assigning each sequenced read to its corresponding location on the 

~3.5 million base pair genome then counting those reads over the span of individual 

genes and can be viewed in Figure 1. This mapping approach to gene expression analysis 

offers a high resolution view of a PCC 6803 iron limitation growth response that adds to 

what has been previously reported in microarray and proteomic studies but with an iron 

limited response that was induced without iron chelation (Singh, et al., 2003; Wegener, et 

al., 2010; Kopf, et al., 2014). 

The de novo methodology followed in the present work has led to results that are 

largely consistent with previous iron limitation studies (Singh, et al., 2003; Hernández-

Prieto, et al., 2012; Kopf, et al., 2014; Hernández-Prieto, et al., 2016). Although iron 

limitation without chelation resulted in widespread differential expression of genes in 

multiple functional categories, ranging from metabolite biosynthesis to transposon-
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related functions (Table 1), we will center our focus on photosynthesis and respiration 

along with transport and binding proteins. Each of these functional categories contains 

differentially expressed genes that show an apparent iron limitation distress signal 

(Figure 2). In some select co-localization cases of the genes listed in Figure 2, we 

illustrate significant differential gene expression at chromosome regions which are 

referenced in the discussion (Figure 3). However, it should be noted some of the strongest 

individual differential gene expression signals were detected outside of the Figure 2 

categories, in ribosomal proteins, hypothetical proteins, and unknown proteins 

(Supplemental File S1). 
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Tables and Figures. 

 

Table 1 

Differentially regulated protein-coding genes in response to Fe limitation according to 

functional categories as defined in Cyanobase 

General Pathway No. of Genes Differentially 

Expressed 

Genes* 

Amino acid biosynthesis 97 4 

Biosynthesis of cofactors, prosthetic groups, and carriers 125 7 

Cell envelope 67 5 

Cellular processes 80 3 

Central intermediary metabolism 31 2 

Energy metabolism 93 4 

Fatty acid, phospholipids, and sterol metabolism 39 1 

Photosynthesis and respiration 143 33 

Purines, pyrimidines, nucleosides and nucleotides 43 1 

Regulatory functions 156 9 

DNA replication, restriction, modification, recombination, and 

repair 

75 0 

Transcription 30 1 

Translation 168 6 

Transport and binding proteins 200 8 

Other categories 369 18 

Hypothetical protein 1277 28 

Unknown protein 679 12 
   

Total 3672 142 

Non-coding regions (contiguous sequence between genes) 2975 60 

Styled after Table I of Singh et al., 2003 (Singh, et al., 2003). *p-value ≤ 0.05 from both 

t-test and exact test. 
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Figure 1: The PCC 6803 iron limitation and control transcriptomes mapped the 

chromosome. The outer red-hued histogram-like layer shows iron limitation sequencing 

reads mapped and stacked over their corresponding chromosome positions. There are 

three separate red-hues to indicate the difference between the triplicate samples. The 

inner blue-hued histogram-like layer shows control sample sequencing reads mapped and 

stacked over their corresponding chromosome positions, with three different hues as in 
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the iron limitation layer. Each of these two layers display a max read stacking level of 

sixteen sequences for aesthetic reasons, however counts involved in the analysis use true 

count data. The middle ring between the red- and blue-hued histogram-like layers 

represents a heat map over the entire chromosome. Regions with a red heat map hue 

show a gene that has a bin response toward being more highly expressed in the iron 

limitation groups, with a blue heat map hue indicating a bin response toward controls. 

The numbered circular key in the figure interior extends out to the outer edge and 

displays chromosome positions in the scale of millions of bases. Regions of the 

chromosome that did not meet the p-value of ≤ 0.05 have been faded to a lesser color 

intensity. 
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Figure 2: A partial list of differentially regulated genes in response to iron limitation (p-

value ≤ 0.05), separated into Cyanobase functional categories. Blue bars correspond to 

mean transcript counts of control replicates and red bars correspond to iron limitation 
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replicates. Standard deviation error bars are included on all bars. The x-axis for the red 

and blue bars is at the top of the histogram, indicating the mean transcript counts. The 

black line corresponds to the log2 fold change of comparing the iron limitation mean 

transcript counts to the control mean transcript counts, with data points positioned at the 

center of each y-axis row. 

*Our log2 fold change direction agrees with Singh, et al., 2003 (Singh, et al., 2003). 

**Our log2 fold change direction agrees/disagrees with Singh, et al., 2003 depending on 

choice of their timescale (Singh, et al., 2003). 

***Our log2 fold change direction conflicts with Singh, et al. 2003 (Singh, et al., 2003). 

†Our log2 fold change direction agrees with Hernández-Prieto, et al., 2012 (Hernández-

Prieto, et al., 2012). 
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Figure 3: Co-localized gene expression of six significant genome regions of a 

Synechocystis sp. PCC 6803 iron limitation transcriptome. For all six histogram panels, 

blue bars correspond to mean transcript counts of control replicates and red bars 
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correspond to iron limitation replicates. Standard deviation error bars are included on all 

bars and y-axis genome labels with an asterisk indicate statistical significance of a 

difference between the two opposing bars with a p-value ≤ 0.05. The x-axis for the red 

and blue bars is at the top of each graph, indicating the mean transcript counts. The black 

line corresponds to the log2 fold change of comparing the iron limitation mean transcript 

counts to the control mean transcript counts, with data points positioned at the center of 

each y-axis row. A “(+)” or “(-)” on y-axis gene labels indicate that the gene is on the 

opposite strand as the rest of the plotted responses, but was included on the graph due to 

because of its genome proximity. Individual panel descriptions: (A) Phycocyanin gene 

expression at the genome region spanning positions 722,569-728,269 on the negative 

strand, followed by 728,270-728,488 on the positive strand. (B) Allophycocyanin gene 

expression at the genome region spanning 1,430,072-1,431,994 on the positive strand, 

proceeded by 1,429,328-1,430,071 on the negative strand. (C) psbEFLJ operon gene 

expression at the genome region spanning 570,572-571,438 on the positive strand. (D) 

Hypothetical protein ssl2380 and psbU gene expression at the genome region spanning 

297,323-298,081 on the negative strand, proceeded 295,075-297,342 on the positive 

strand. (E) isiAB operon and local hypothetical protein gene expression at the genome 

region spanning 1,515,338-1,519,112 on the negative strand, followed by 1,519,113-

1,519,952 on the positive strand. (F) exbBD operon gene expression at the genome region 

spanning 32,454-33,889 on the negative strand. 
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Discussion 

Synechocystis sp. PCC 6803 photosynthetic electron transport chain. 

Consistent with previous PCC 6803 iron limitation work, photosynthesis molecular 

machinery genes were extensively downregulated. Within statistical significance (p ≤ 

0.05), seven PSI subunit genes (psaA, psaB, psaC, psaD, psaI, psaJ, and psaL), nine PSII 

genes (psbC, psbD, psbD2, psbF, psbL, psbO, psbU, psbV, and psbZ), and ten 

phycobilisome antenna genes (apcA, apcB, apcC, apcE, cpcA, cpcB, cpcC1, cpcC2, 

cpcD, and cpcG1) were downregulated when compared to normal growth conditions. The 

transcriptome data here shows considerable changes to the whole photosynthetic electron 

transport chain (PETC hereafter) gene expression (Figures 2 and 3A-C). 

The PETC in PCC 6803 is bound within the thylakoid membrane and starts at the 

PSII and PSI antenna proteins. The phycobilisome antenna complex collects and converts 

photic energy into electrons to be funneled to the PSII reaction center primary donor 

P680 (and PSI P700). Almost all genes for the two phycobilisome complexes in PCC 

6803, phycocyanin (cpc) and allophycocyanin (apc), were repressed in response to iron 

limitation (Figure 2, rows 23-32), which agrees with previous reports of iron limitation in 

cyanobacteria (Singh, et al., 2003; Sandström, et al., 2002). Due to the high synteny (co-

localization) of these genes, this downregulation signal is easily viewed on the 

transcriptome map of Figure 1 as well as panels A (cpc) and B (apc) of Figure 3, which is 

in contrast to the relatively low synteny genome as a whole. cpc genes can be viewed 

between chromosome bases 724,093-727,465 and apc between 1,430,418-1,431,900 as 

blue-hued Bin responses in Figures 1. The reduced demand for phycobilisome proteins 

could be a result of the iron-dependent chromophore biosynthesis process or simply the 
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reduced amount of major photosystem subunits has reduced the overall light-harvesting 

needs of the cell (Sandström, et al., 2002). 

The isiA gene, encoding the iron-stress chlorophyll binding protein IsiA, was one 

of the few PETC genes to be upregulated in comparison to controls (Figure 2, row 13) 

and has been suggested to act in a photoprotective role with the loss of phycobilisome 

antenna proteins, by dissipating energy into heat to prevent overexcitation of PSII and 

oxidation damage during iron limitation-induced chlorosis (Guikema & Sherman, 1983; 

Sandström, et al., 2001; Wilson, et al., 2007). IsiA has also been suggested to act as a 

chlorophyll store to aid PSII and PSI recovery upon the return of adequate iron uptake, or 

as a light-harvesting complex mainly used in PSII (Pakrasi, et al., 1985; Riethman & 

Sherman, 1988; Michel & Pistorius, 2004). This upregulation of isiA is consistent with 

previous PCC 6803 iron limitation transcriptome studies (Singh, et al., 2003; Hernández-

Prieto, et al., 2012). PsbD and PsbD2 dimerize and bind with chlorophyll α, iron, and β-

carotene to form the P680 reaction center of PSII, which either absorbs photons directly 

or absorbs excitation energy passed from antenna proteins. Under iron limitation that we 

imposed, the P680 dimer and PsbC subunit genes were repressed (Figure 2, rows 16, 17, 

20), possibly to prevent the production of highly reactive singlet oxygen from 

photooxidizing water molecules in the absence of normal anabolic processes (Grossman, 

et al., 1993; Pagliano, et al., 2013). Iron limitation also repressed the gene for the 

manganese-containing PsbO subunit (Figure 2, row 15), which acts to hold the reaction 

center subunits together while maintaining an environment for water photooxidation via 

the oxygen-evolving complex (De Las Rivas & Barber, 2004). Correspondingly, the 

manganese cellular content of our iron-limited cultures was decreased compared to 
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controls [Rivas-Ubach, et al., unpublished]. Also repressed was the iron-containing PSII 

cytochrome subunit PsbV (cytochrome c550) gene (Figure 2, row 14). psbL and psbF of 

the highly conserved psbEFLJ operon were downregulated (Figure 2, rows 21,22) and 

these co-localized genes can be viewed between chromosome positions 570,657-571,354 

on Figures 1 and 3C. The downregulated psbU and psbZ genes (Figure 2, rows 18, 19) 

likely play roles in overall PSII structural stability (Pagliano, et al., 2013). Located near 

psbU, unknown protein ssl2380 gene has no known categorical function but was 

conjointly downregulated between chromosome positions 297,323-297,520 in Figures 1 

and 3D. 

After excitation energy is funneled to the P680 reaction center of PSII to oxidize 

water and increase the electrochemical gradient across the thylakoid membrane, excited 

electrons are passed through plastoquinone and the cytochrome b6f complex. Neither 

plastoquinone nor the cytochrome b6f complex genes were significantly downregulated in 

response to iron limitation in our experiment; however, the iron-rich cytochrome b6f 

complex has been shown to be differentially expressed in PCC 6803 and other 

cyanobacteria subjected to iron limitation (Singh, et al., 2003; Thompson, et al., 2011). 

As electrons move excitation energy through the combination of plastoquinone and the 

cytochrome b6f complex in normal conditions, they transfer H
+
 across the membrane to 

increase the thylakoid membrane electrochemical gradient even further. Once through the 

cytochrome b6f complex, the PETC continues through the copper-containing electron 

carrier plastocyanin (petE), which was upregulated under iron limitation in our 

experiment (Figure 2, row 33), donating electrons to the PSI reaction center P700. 

Interestingly, plastocyanin may have evolved and replaced a heme protein in the PETC 
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during a time when populations of ancestral phototrophs were adapting to shifting ocean 

geochemistry during the Great Oxidation Event (Navarro, et al., 1997; De La Rosa, et al., 

2002). 

PsaA and PsaB dimerize in the P700 reaction center of PSI, accepting electrons 

from the phycobilisome antenna and from plastocyanin. Genes for both subunits of P700 

were downregulated in response to iron limitation (Figure 2, rows 8, 9). Just as with PSII, 

PSI uses the same phycobilisome genes that encode for light-harvesting antennae, which 

were downregulated under iron limitation in our experiment (Figure 2, rows 23-32). IsiA, 

which has a role in the iron limitation PSII stress response, may also play a significant 

role in PSI. In iron-deficient conditions, IsiA binds to chlorophyll and acts as a light-

harvesting complex that substitutes for the downregulated phycobilisomes. (Michel & 

Pistorius, 2004; Boekema, et al., 2001; Bibby, et al., 2001). Most subunit genes of the 

PSI were repressed by iron deficiency in our experiment, including the gene for PsaC 

(Figure 2, row 12) which is responsible for coordinating 4Fe-4S clusters as the terminal 

electron acceptors for the P700 reaction center. PSI subunits PsaL, PsaJ, and PsaI are 

integral membrane subunits whose genes were all repressed (Figure 2, rows 7, 10, 11) in 

our experiment and are not thought to be directly involved with electron transport. 

Subunits PsaD and PsaE act as a docking site for an electron carrier out of PSI, although 

only psaD was significantly repressed by iron limitation in our experiment (Figure 2, row 

6) (Lelong, et al., 1994; Xu, et al., 1994). 

Under normal growth conditions, the PETC ends with the electron carrier 

ferredoxin docking with the PsaD and PsaE subunits to be reduced and become a 

substrate for the reaction catalyzed by ferredoxin-NADP reductase. This process reduces 
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NADP
+
 to NADPH and further increases the thylakoid membrane electrochemical 

gradient. Alternatively, the reduced ferredoxin can transfer an electron back to the 

cytochrome b6f complex via cyclic photophosphorylation (Fork & Herbert, 1993). 

However, under iron limitation, the iron-containing ferredoxin is partially replaced by 

iron-free flavodoxin (Sandström, et al., 2002; Entsch & Smillie, 1972). The replacement 

of iron-containing proteins with iron-free substitutes indicates a lack of intracellular iron, 

which was confirmed with metallomics by a decrease in the iron cellular content and 

Fe:C ratio of our iron-limited cultures [Rivas-Ubach, et al., unpublished]. In previous 

studies and in our experiment, the upregulation of flavodoxin (isiB) and its operon (isiAB) 

sharing gene isiA is one of the strongest signals (Figure 2, rows 13, 34) of iron limitation 

and can be viewed between chromosome positions 1,516,658-1,518,603 in Figures 1 and 

3E (Singh, et al., 2003; Hernández-Prieto, et al., 2012). This upregulation of isiAB is 

accompanied by the upregulation of the copper-containing plastocyanin (petE) in our 

iron-limited cultures, as well as increases of intracellular copper content and the Cu:C 

ratio [Rivas-Ubach, et al., unpublished]. Hypothetical protein ssl0461 gene upregulation 

can be located near the isiAB operon between chromosome positions 1,525,350-

1,515,601 in Figures 1 and 3E, and although ssl0461 has no functional designation it has 

been shown previously to be differentially expressed in PCC 6803 iron limitation (Singh, 

et al., 2003; Kopf, et al., 2014; Singh, et al., 2004). 

F1F0 complex. The electrochemical gradient that is created across the thylakoid 

membrane by the PETC under normal conditions is a useful driving force to create usable 

energy for the cell. The F1F0 complex is a transmembrane protein complex that is bound 

within the thylakoid membrane and often referred to as ATP synthase or ATPase 
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depending on its activity. F1F0 is a highly conserved system that is present in the 

membranes of Archaea, Bacteria, and mitochondria. In phototrophs like Cyanobacteria 

and PCC 6803, F1F0 ATP synthase uses the photosystem produced electrochemical 

gradient by allowing H
+
 ions to flow from higher concentrations within the thylakoid 

lumen out to lower concentrations in the cytosol (Steinberg-Yfrach, et al., 1998). As H
+
 

ions move through the F1F0 ATP synthase complex, it drives a conformational change 

that catalyzes the reaction that adds a phosphate group to ADP yielding ATP, the energy-

carrying unit of the cell (Mitchell, 1961). F1F0 can also act as ATPase, pumping H
+
 in the 

opposite direction across the membrane at the cost of phosphorylation via ATP. 

In our experiment, genes for subunits AtpE, AtpH, and hypothetical protein 

sll1321 (Atp1) of the PCC 6803 F1F0 were repressed under iron limitation (Figure 2, rows 

1-3). The epsilon subunit of the F1F0 complex (atpE) is part of the rotor portion of the 

F1F0 complex and may change conformation to act as a ratchet mechanism to inhibit 

ATPase activity, while preserving ATP synthase activity (Laget & Smith, 1979; Tsunoda, 

et al., 2001). The downregulation of the AtpE subunit gene could be a means to prevent 

inhibition of ATPase activity, allowing for active transport of H
+
 ions into the thylakoid 

lumen to maintain the electrochemical gradient during PETC gene repression. An 

electrochemical gradient that exhibits a high pH in the thylakoid lumen is thought to 

participate in non-photochemical quenching, playing a role in photoprotection by 

dissipating energy into heat, a desirable effect during PSI and PSII stress-induced 

repression (Kramer, et al., 1999). The significant downregulation of atpE is in contrast to 

previous reports, which could be attributed to the differences in growth methodologies 

(Singh, et al., 2003; Hernández-Prieto, et al., 2012; Kopf, et al., 2014). The atpH gene is 
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translated into the c chain of the F0 fraction of the F1F0 complex, of which multiple 

copies form the ring in which the F1 fraction rotates. Referred to as the F0c ring, this 

multimer is also part of the rotor movement of F1F0 and its downregulation is consistent 

with previous iron limitation work (Singh, et al., 2003). The hypothetical protein sll1321 

gene is part of the atp1 operon along with atpH and both can be viewed as downregulated 

between chromosome positions 176,255-177,591 in Figure 1. 

Carbon fixation. Synechocystis sp. PCC 6803 fixes inorganic carbon via the 

Calvin-Benson-Bassham Cycle, otherwise known as the “dark” or “light-independent” 

reactions. Only two genes for carbon fixation were differentially expressed in our iron-

limited PCC 6803: the small subunit of ribulose-1, 5-bisphosphate 

carboxylase/oxygenase (RuBisCO), rbcS (downregulated) and the carbon dioxide 

concentrating mechanism protein subunit CcmO, ccmO (upregulated) (Figure 2, rows 4, 

5). RuBisCO is a key enzyme involved in carbon fixation, responsible for carboxylation 

of ribulose-1,5-bisphosphate with intracellular CO2. The observation of repressed 

RuBisCO small subunit gene rbcS is consistent with previous iron limitation work in 

PCC 6803 (Singh, et al., 2003) and our finding of reduced carbon biomass content 

[Rivas-Ubach, et al., unpublished]. Synechococcus elongatus sp. PCC 7942 in iron-

deficient conditions has shown reduced protein levels of the RuBisCO large subunit 

(Michel, et al., 2003). In the leaves of sugar beets, the reduction of RuBisCO protein and 

mRNA levels during iron limitation were correlated with chlorophyll concentrations in 

the cell (Winder & Nishio, 1995). With the repression of photosystem expression, the 

supply of ATP and NADPH that drive the RuBisCO-mediated light-independent 

reactions would be diminished, leading to decreased RuBisCO carboxylase activity 
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(reviewed in (Ashraf & Harris, 2013)). The upregulated carbon dioxide concentrating 

mechanism proteins supply RuBisCO with high levels of intracellular CO2 stores. This 

upregulation could be to compensate for decreased RuBisCO expression. Alternatively, 

increased CO2 could be a means to maintain the electrochemical gradient of the cell, as 

carbon dioxide reacts with water to form carbonic acid, which dissociates into H
+
 and 

bicarbonate. 

Transport and ion binding proteins. An obvious effect of iron limitation on 

PCC 6803 is the upregulation of transport and ion binding proteins that can bring iron 

and other inorganic ions into the cell. Genes for the membrane-bound biopolymer 

transport complex ExbB-ExbD are essential for PCC 6803 inorganic iron uptake (Jiang, 

et al., 2015). Although the ExbB-ExbD complex genes (exbBD operon) have three sets of 

homologs within the PCC 6803 chromosome, one pair was among the most highly 

upregulated (Table 2, rows 35, 36) in our experiment (positions 32,524-33,544 in Figures 

1 and 3F), consistent with previous work (Singh, et al., 2003; Hernández-Prieto, et al., 

2012; Kopf, et al., 2014). Near the differentially expressed exbBD operon, the PCC 6803 

cold stress response-linked (Suzuki, et al., 2001) unknown protein slr1484 gene was 

upregulated (Supplemental File S1). In our iron limitation treatment, three of the four Fut 

genes, futA1, futA2, and futC were upregulated (Table 2, rows 37, 38, 40), which is 

consistent with previous reports (Singh, et al., 2003; Hernández-Prieto, et al., 2012; Kopf, 

et al., 2014; Katoh, et al., 2001). Fe
3+

 is also acquired by PCC 6803 via the Fe
3+

 dicitrate 

transport system Fec; two of the five Fec subunit genes, fecB and fecE, were upregulated 

in our experiment (Table 2, rows 41, 42). These changes in expression of iron uptake 
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genes were correlated with decreased iron cellular content [Rivas-Ubach, et al., 

unpublished]. 

Comparison with previous studies. With the multiple microarray experiments 

mentioned previously and the Kopf, et al. (2014) RNAseq experiment, the broad PCC 

6803 iron limitation transcriptome response is well established. However, while some 

individual genes within the overall iron limitation response show reliable differential 

expression, there are some that do not. Of the 142 differentially expressed genes in our 

experiment, only 26 were consistently reported in the supplemental data tables of 

previous studies (Singh, et al., 2003; Shcolnick, et al., 2009; Hernández-Prieto, et al., 

2012; Kopf, et al., 2014), either because of low significance or possibly absent probes in 

microarray experiments. Varying reports of individual gene regulation across multiple 

experiments is not uncommon. For example, transport and binding proteins in general 

have reliably shown differential expression as a result of iron limitation, however the 

individual gene slr0074 (sufB), which plays a role in Fe-S cluster repair and biogenesis 

(Seki, et al., 2006), has been shown to have log2 fold changes in expression of -1.66 

(Singh, et al., 2003, possibly (B-A)/A fold change as equation and raw microarray 

readings are unreported), 0.46 (Shcolnick, et al., 2009, calculated from supplemental 

data), 1.23 (Hernández-Prieto, et al., 2012, reported in supplemental data), and 4.34 

(Kopf, et al., 2014, calculated from supplemental data). Our results yielded a sufB log2 

fold change of 0.63 which did not meet the ≤0.05 p-value thresholds of either a t-test or 

an exact test (described in the Methods and results available in Supplemental File S1). 

The genes of the suf operon have been shown to function during oxidative stress in the 

assembly of Fe-S clusters used in the electron transport carrier ferredoxin and in 
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photosystem I (Hernández-Prieto, et al., 2012; Nachin, et al., 2001; Takahashi & 

Tokumoto, 2002). Examples like this point out the importance of meta-analysis studies 

like that of (Hernández-Prieto, et al., 2016) but also suggest that more data is needed 

from both repeat iron-limitation experiments as well as alternate iron-limitation methods 

to consolidate our understanding of iron limitation in PCC 6803 and photosynthesis 

metabolism in general. 

Conclusions 

Synechocystis sp. PCC 6803 grown under iron limitation without iron chelation of 

growth media showed a strong signal of repressed photosynthetic electron transport chain 

genes, which likely had the effect of decreasing the influx of H
+
 ions into the lumen and 

potentially disrupting the electrochemical gradient across its membrane. Maintaining this 

electrochemical gradient is important for many cellular processes including the 

photoprotection of PSI and PSII; thus, F1F0 and specific transport and binding proteins 

were differentially expressed to possibly favor maintenance of H
+
 stores within the 

thylakoid lumen. Growth under iron limitation also caused the upregulation of iron 

acquisition genes in an attempt to meet metabolic iron demands. 

As expected, the non-chelation iron limitation transcriptome responses of our 

experiment are generally in accordance with previous studies, with some differences in 

individual gene responses detected. Although our iron limitation resulted in widespread 

differential expression of genes in multiple functional categories, ranging from 

metabolite biosynthesis to transposon-related functions (Table 1), we centered our focus 

on photosynthesis and respiration along with transport and binding proteins. Each of 

these functional categories contained differentially expressed genes that show an apparent 
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iron limitation distress signal (Figure 2). However, some of the strongest individual 

signals were detected outside of these categories, in ribosomal proteins, hypothetical 

proteins, and unknown proteins (Supplemental File S1). The described iron limitation 

differential expression transcriptome regions in our experiment and in previous iron 

limitation studies are strengthened by their consistent reports from multiple iron 

limitation protocols. Differential expression that differs in our experiment from previous 

studies could be explained by the approaches taken for growth and data analysis, in 

which case further study is needed to determine if the response is truly caused by iron 

limitation or is an artifact of a particular methodology. The transcriptome results reported 

here complement a study on metabolomics and cellular composition from these same 

PCC 6803 cultures (Rivas-Ubach, et al., unpublished). 

In addition, the high-resolution transcriptome mapping technique that we 

performed (Figure 1) can be applied to other microbial genomes. Genomes with a high 

level of synteny should display regions of differential expression that are clearly 

discernible to the naked eye, even more so than what is seen for the relatively low-

synteny genome of Synechocystis sp. PCC 6803. Just as there are many ways to study 

transcriptomics, there are many ways to visualize the results. Studying and presenting 

data in with novel methodologies may help to elucidate new conclusions about repeated 

subjects. 
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Abstract 

Sequence clustering is a fundamental tool of molecular biology that is being 

challenged by increasing dataset sizes from high-throughput sequencing. The 

agglomerative algorithms that have been relied upon for their accuracy require the 

construction of computationally costly distance matrices which can overwhelm basic 

research personal computers. Alternative algorithms exist, such as centroid-linkage, to 

circumvent large memory requirements but their results are often input-order dependent. 

We present a method for bootstrapping the results of many centroid-linkage clustering 

iterations into an aggregate set of clusters, increasing cluster accuracy without a distance 

matrix. This method ranks cluster edges by conservation across iterations and 

reconstructs aggregate clusters from the resulting ranked edge list, pruning out low-

frequency cluster edges that may have been a result of a specific sequence input order. 

Aggregating centroid-linkage clustering iterations can help researchers using basic 

research personal computers acquire more reliable clustering results without increasing 

memory resources. 
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Introduction 

Agglomerative clustering is a useful tool to bin sequencing datasets based on 

sequence similarity, but the increasing use of high-throughput sequencing technology is 

creating datasets large enough to make clustering impractical for some computers and/or 

clustering methods. The most basic and widely used sequence clustering techniques are 

agglomerative, creating hierarchical bins via joining algorithms such as minimum-, 

maximum-, and average-linkage, with average-linkage being the most popular due to its 

perceived accuracy (Cole et al., 2009; Gronau & Moran, 2007; Huse, Welch, Morrison, 

& Sogin, 2010; Larkin et al., 2007). One drawback to these methods is that they require 

the construction of exhaustive distance matrices containing relative difference 

information between all possible pairwise sequence comparisons. After a distance matrix 

is constructed, the average-linkage algorithm bins sequences into clusters if the mean 

distance between all cluster member sequences is at or above the chosen clustering cutoff 

level, with minimum- and maximum-linkage using alternative binning requirements. 

Distance matrix construction is a key computational bottleneck in agglomerative 

clustering. For large datasets, the computational needs of their distance matrices can 

exceed computer memory limits, especially for researchers using standard personal 

computers. Centroid-linkage clustering circumvents the need for a distance matrix at the 

cost of being input-order dependent, but this also makes the centroid-linkage algorithm 

faster and more memory-efficient for large-scale datasets than its agglomerative 

counterparts (Edgar, 2010). Since centroid-linkage clustering relies only on single 

pairwise sequence comparisons read in input file order, randomizing the order in which 

comparisons are made and centroids assigned can affect cluster-sequence distribution. A 
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graphical example of how sequence input order can affect cluster-sequence distribution 

can be found in Figure 1 of (Kellom & Raymond, 2016). This means that depending on 

the sequence input order, a specific cluster edge between two sequences may or may not 

form, affecting sequence-cluster membership. To address this challenge, some have 

considered ordering input sequences by length or abundance, with some programs 

employing these techniques natively, like CD-HIT (Fu, Niu, Zhu, Wu, & Li, 2012). 

Sorting sequences by length ensures that cluster centroids contain maximum information 

and thus cluster members can be binned more accurately. Conversely, abundance sorting 

approaches accuracy with the assumption that abundant sequences are more likely to 

represent functionally relevant clusters. However, both of these sorting methods still 

produce results that are dependent on a single, and to some degree, arbitrary input order. 

This is discussed further in the Discussion section. 

Standard clustering concepts still apply to centroid-linkage, more closely related 

sequences are more likely to form an edge and be assigned to the same cluster. Over 

enough iterations of input randomization and clustering, edges that represent closely 

matched sequences will appear in the majority of iterations. By keeping track of all of the 

edges and ordering them by most frequently formed throughout the iterations, we can 

essentially form an ordered list of the most closely related cluster edges. From this 

ordered list of cluster edges, we can piece back together the clusters and make sure that 

sequences end up binned in clusters where they have the most representative cluster edge. 

The purpose of this protocol is to provide biology researchers without access to 

sufficiently high-performance computing with a means to obtain sequence clustering 

results that do not require the construction of large distance matrices while also not being 
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solely dependent on sequence input order. This process of random input order centroid-

linkage clustering over multiple iterations, breaking down the resulting clusters into their 

individual edges, counting those edges, and then reconstructing aggregate clusters from a 

ranked edge list effectively bootstraps aggregate cluster edges from input-order 

dependent clusters and increases the reliability of centroid-linkage results. 

This methodology is beneficial when the amount of available random-access 

memory (RAM) cannot contain the distance matrix being made, preventing 

agglomerative clustering processes from completing. For example, using traditional 

agglomerative clustering algorithms and a centroid-linkage algorithm in the program 

USEARCH (www.drive5.com/usearch/) allows for different limits on the maximum 

number of input sequences. Maximum-, minimum-, and average-linkage algorithms were 

only able to process ~10000 sequences past the distance matrix step on our 120 Gb 

RAM-containing computer, capacity beyond what is typically thought of for a standard 

computer. By eliminating the need for a distance matrix, the number of sequences that the 

centroid-linkage algorithm is able to process is only limited by the size of the file that can 

be read into memory (> 1000000 for our 120 Gb RAM computer). Importantly, these 

results do become input-order dependent. By avoiding distance matrices and writing edge 

lists and edge counts to text files in disk space (rather than storing in memory), the 

aggregation process is slower than agglomerative clustering but it is also more likely to 

finish before running out of necessary memory. 

For comparison, the centroid-linkage algorithm was able to complete clustering of 

10000 sequences in four seconds on our computer, while the minimum-, maximum-, and 

average-linkage algorithms each took eighteen seconds and the aggregation process took 
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an hour and twenty-two minutes. As the number of sequences in a dataset increases, the 

runtime of the aggregating algorithm increases drastically (detailed in Anticipated 

Results). The increased time is to be expected because not only is it waiting for multiple 

iterations of centroid-linkage clustering to complete, but it must also count and store all 

cluster edges. Although slower than average-linkage algorithms that use distance 

matrices for accuracy, this aggregation method is more likely to complete before running 

out of memory space. Likewise, as datasets and iterations increase, so does the amount of 

necessary disk storage. For our largest dataset of one million sequences over 101 

clustering iterations, approximately 170 GB of data was written in the form of small 

individual text files. With this cost in speed and storage, aggregating multiple iterations 

of the efficient centroid-linkage algorithm increases the confidence of cluster-edge 

distribution for datasets that are too large to be clustered with comprehensive distance 

calculations. 

Materials and Methods 

The procedure outlined here includes the use of specific clustering and scripting 

programs but similar programs should work just as well. The choice of which programs is 

determined by user preference. The important details are to use a program that performs 

centroid-based clustering, or some other distance-matrix independent algorithm, and use 

a scripting language to perform the following aggregation procedure with the resulting 

clusters. The annotated Perl script used by the authors is supplied as Chapter 3 

Supplemental File 1 (http://www.jbmethods.org/jbm/rt/suppFiles/153.). Kolmogorov-

Smirnov comparisons between different clustering methods and the aggregation process 

were performed in R with ks.test of the R Stats Package (r-project.org). 
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Sequence indexing. Sequences are first given a numerical identifier (Sequence 

Numerical Identifier hereafter) by indexing the sequence order of the original input, 

avoiding potential downstream filename parsing errors. For the sake of speed, this index 

is stored in RAM as a hash table (Index Hash hereafter) with the sequence header as the 

key and the Sequence Numerical Identifier as the value (defined as hash{key} = value in 

Perl), but could be created and accessed in disk storage if desired. Typically, the amount 

of memory needed for this index is considerably smaller than what would be needed for a 

clustering distance matrix. It is very important during this indexing step for each of the 

input sequence headers to be unique so that later sequence header recall from their 

corresponding numerical identifiers can be done accurately. The sequences used to 

demonstrate the anticipated results originate from an unpublished metatranscriptome 

dataset with a mean sequence length of 98 bases and their origin is not important for the 

explanation of this methodology. Any natural dataset should yield similar clustering 

results to those seen in Figure 1. 

Clustering. Over sufficient iterations (the authors here chose 101 iterations), 

clustering is performed with the USEARCH (version 8.0.1517_i86linux64) “-

cluster_fast” command at a 0.95 clustering threshold and clusters are written to separate 

files using the “-msaout” command (Cluster Files hereafter) (Edgar, 2010). The authors 

here chose 101 iterations (counting from 0 to 100) because the results were stable at this 

number. In general, more iterations will lead to more stable results, and larger datasets 

will need more iterations. Determining the appropriate number of iterations is specific to 

each individual case. The USEARCH “-cluster_fast” command utilizes centroid-based 

clustering and avoids creating computationally costly distance matrices at the cost of 
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being input-order dependent. To mitigate the effects of input-order dependence, the 

sequence FASTA-formatted input file is first reordered randomly prior to clustering and 

downstream edge counting for each iteration. The Sequence Numerical Identifiers created 

in step 1 are not altered by the randomization process. Depending on the dataset, a 

smaller number of iterations may result in aggregate clusters that are dependent on those 

randomized clustering input files. 

Edge compiling. After clustering has completed for the chosen number of 

iterations, Cluster Files are accessed to begin counting edges. Singleton clusters 

containing only one sequence and no edges are ignored by the counting process, and this 

minimum edge parameter can be increased to speed up the compiling/counting process at 

the cost of comprehensiveness. Singletons and low-edge-count clusters are not typically 

represented in large aggregate clusters. 

 To avoid storing edge counts in RAM, which can quickly reach capacity for large 

datasets in typical research personal computers, edges are written to files in disk storage 

(Edge File hereafter) with the numerically lesser Sequence Numerical Identifier as the 

filename of the Edge File (Hub hereafter) and the higher Sequence Numerical Identifier 

as a line in the Edge File (Node hereafter) so that a specific edge’s count from the 

iterations can be obtained by counting the number of times a Node Sequence Numerical 

Identifier is found in an Edge File, this is important for the downstream edge counting. 

Edge counting. For each compiled Edge File, the counts of specific Nodes for 

each Hub are stored in new files with filenames that represent their count (Count File 

hereafter). This counts the number of times a specific edge appears by writing the Hub 

and Node on a single line, never exceeding the number of chosen iterations. 
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Reconstruction. Aggregate clusters are reconstructed from the edges contained in 

Count Files, starting with the highest Count File (edges that were found the most in the 

iterations, typically equal to the number of iterations) and working down toward the 

lowest Count File. For the reconstruction algorithm, four hashes are created. First, the 

Index Hash created in step 1. Second, the inverse of the Index Hash, so that Sequence 

Numerical Identifiers are stored as keys and sequence headers as values (referred to as 

Inverse Index Hash in the algorithm below). Third, an aggregate cluster hash where keys 

are a numerical identifier assigned to clusters (Cluster Numerical Identifier hereafter) and 

values are lists of the sequence headers contained in each cluster (referred to as 

Aggregate Cluster Hash in the algorithm below). Fourth, a hash that tracks which Cluster 

Numerical Identifier (value) each hub and node are stored (key) (Tracking Hash in the 

algorithm below). For each edge of Hub and Node Sequence Numerical Identifiers, 

aggregate clusters are reconstructed using the following algorithm and then written to an 

output file: 

1) Skip to the next edge if both the Hub and Node have 

already been assigned to clusters in the Tracking Hash. 

2) If the Hub has already been assigned to a cluster in the 

Tracking Hash (implying with step 1 that the Node has not 

been assigned yet): 

a) Get the Cluster Numerical Identifier value that the 

Hub Numerical Identifier key has been assigned to 

in the Tracking Hash. 
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b) Get the sequence header value for the Node 

Numerical Identifier key from the Inverse Index 

Hash and append it to the value for the Cluster 

Numerical Identifier (from step 2a) key in the 

Aggregate Cluster Hash. 

c) Append this Node Numerical Identifier key - 

Cluster Numerical Identifier value pair to the 

Tracking Hash. 

3) If the Node has already been assigned to a cluster in the 

Tracking Hash (implying with step 1 that the Hub has not 

been assigned yet): 

a) Get the Cluster Numerical Identifier value that the 

Node Numerical Identifier key has been assigned to 

in the Tracking Hash. 

b) Get the Sequence Header Value for the Hub 

Numerical Identifier key from the Inverse Index 

Hash and append it to the value for the Cluster 

Numerical Identifier (from step 3a) key in the 

Aggregate Cluster Hash. 

c) Append this Hub Numerical Identifier key - Cluster 

Numerical Identifier value pair to the Tracking 

Hash. 
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4) If neither the Hub nor Node have been previously assigned 

to a cluster in the Tracking Hash: 

a) Create an Aggregate Cluster Hash pair with a 

Cluster Numerical Identifier as the key and the 

sequence headers for the Hub and Node Numerical 

Identifiers from the Inverse Index Hash as the 

value. 

b) Append the Hub Numerical Identifier key - Cluster 

Numerical Identifier value to the Tracking Hash. 

c) Append the Node Numerical Identifier key - Cluster 

Numerical Identifier value to the Tracking Hash. 

d) Assign the next Cluster Numerical Identifier to be 

+1 greater than the current one (to create a new 

cluster). 

This aggregating process is displayed as a flowchart in Figure 1. 
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Figure 1: Flowchart of aggregating algorithm. Two scenarios are represented in the 

flowchart: One of the sequences for the current edge has already been assigned to a 

cluster from a previous edge according to the Tracking Hash (Blue); Neither sequence 

from the current edge has been assigned to a cluster according to the Tracking Hash 

(Red). A third scenario where both sequences of an edge have already been assigned to a 

cluster is not shown since that edge would be skipped in the algorithm. The processes in 

the flowchart have been numbered and described: (1) Using the Sequence Numerical 

Identifier of the already clustered sequence of the paired edge, obtain the Cluster 

Numerical Identifier from the Tracking Hash. (2) Using the Sequence Numerical 

Identifier of the non-clustered sequence of the paired edge, obtain its sequence header 

from the Inverse Index Hash and append it to the sequence header list value for the 
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Aggregate Cluster Hash key of the Cluster Numerical Identifier from 1). (3) Append the 

non-clustered Sequence Numerical Identifier and Cluster Numerical Identifier from 1) to 

the Tracking Hash to finalize it as a clustered sequence. (4) Both Sequence Numerical 

Identifiers of the non-clustered pair are used to obtain their sequence headers from the 

Inverse Index Hash and assign them to a new Cluster Numerical Identifier key in the 

Aggregate Cluster Hash. (5) Both Sequence Numerical Identifiers are paired with their 

Cluster Numerical Identifier and appended to the Tracking Hash. 

Results 

Each individual iteration of centroid-linkage clustering with randomized inputs 

should yield cluster distributions that are similar but not identical. Depending on the 

sequence input order, some sequences will not be clustered with the same matches for 

every iteration. Alternatively, some sequences will be so closely matched to other 

sequences that they will be grouped together in all or nearly all iterations. With enough 

iterations, the most prominent and closely-matched edges will appear more often than 

distant edges. Since these closely-matched sequences are likely to have edges that appear 

often, they will be among the first to be built into the aggregate clusters with the 

procedure outlined above.  

 Aggregating the results of many iterations of centroid-linkage clustering builds 

clusters from high-consensus edges while cutting out low-consensus edges. The edges are 

ranked from highest to lowest consensus which is then followed in the aggregation 

process. This process generally results in the aggregate maximum cluster size being 

smaller than some clusters of the individual iterations, especially for larger sequence 

datasets, as seen in Figure 2 for a dataset of one million sequences. The number of 
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clusters produced by the aggregation process and a single iteration of centroid linkage 

clustering is shown Table 1 for multiple dataset sizes, which includes the data plotted in 

Figure 2. Sequences of low-consensus edges that are trimmed out by the aggregating 

process are either binned to clusters where they are part of a higher-consensus edge or 

they are binned as a single-sequence cluster. However, the two cluster distributions 

remain the same, as shown with Kolmogorov-Smirnov test in Table 1. Total runtime 

(which includes the 101 iteration of clustering) for this one millions sequence dataset was 

120:36:56 (Hours:Minutes:Seconds). For datasets of other sizes: 5000 sequences, 

00:43:11; 10000 sequences, 01:21:46; 50000 sequences, 01:50:33; 100000 sequences, 

03:58:32; 500000 sequences, 54:44:34. 
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Figure 2: Cluster distributions of the individual iterations of centroid-linkage clustering 

(blue data points) and the aggregate clusters (red data points) for a dataset of one million 

sequences. Both axes are displayed in a logarithmic scale. 
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Table 1 

Comparison of the number of non-singleton clusters between a single centroid-linkage 

iteration and the aggregate for datasets that range from 5,000 to 1,000,000 sequences. 

The fourth column is Kolmogorov-Smirnov D statistic comparisons between centroid 

(single iteration) and aggregate cluster distributions for the six dataset sizes, as well as 

the data plotted Figure 2. The 1,000,000 sequences dataset had an estimated P value of 

0.2468, the 500,000 sequences dataset had an estimated P value of 0.4174, and all others 

had an estimated P value of 1, indicating for all datasets that the null hypothesis of the 

data having the same distribution cannot be rejected. Kolmogorov-Smirnov comparisons 

were performed in R with ks.test of the R Stats Package (r-project.org). 

Dataset Size 

(sequences) 

Centroid Iteration Aggregate Kolmogorov-

Smirnov P value 

5000 172 174 1 

10000 423 424 1 

50000 1155 1212 1 

100000 2693 2899 1 

500000 17456 20728 0.4174 

1000000 37487 311326 0.2468 

 

 The cluster distribution of the aggregate clusters follows the same pattern seen in 

the individual iterations, suggesting that the aggregation process does not drastically alter 

the cluster distributions of the centroid-linkage iterations to the point of being 

unrepresentative, as seen in Figure 3. In contrast, minimum-, maximum-, and average-

linkage clustering algorithms yield a cluster distribution that varies more substantially 

from the centroid-linkage algorithm in Figure 3. Table 2 shows Kolmogorov-Smirnov D 

statistics for pairwise comparisons between the cluster distributions shown in Figure 3. 
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The table shows that the centroid method distribution’s least distant comparison is with 

the aggregate cluster distribution, with an estimated P value which does not allow us to 

reject the null hypothesis of having the same cluster distributions. This means that the 

aggregation process does reconstruct centroid-linkage cluster distribution instead of 

creating its own distinct cluster distribution. The data plotted in Figure 3 is also displayed 

in tabular format in Table 3. 
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Figure 3: 10000 sequences dataset cluster distributions for the aggregated clusters of 

Figure 1, as well as single clustering runs of centroid-, minimum-, maximum-, and 

average-linkage algorithms from USEARCH. The graph displays counts of all non-

singleton clusters. The x-axis shows the size of the clusters produced from the five 

different methods, i.e. the number of sequences in each cluster. The y-axis shows the 

number of clusters that were produced of the sizes displayed on the x-axis. 
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Table 2 

Kolmogorov-Smirnov P value table for each pairwise comparison between results of the 

methods plotted in Figure 3. Kolmogorov-Smirnov calculations include singleton 

clusters, which are not plotted in Figure 3. No pairwise comparison estimated P value 

was smaller than 0.6284 (Minimum-Maximum comparison) meaning that the null 

hypothesis of the data having the same distribution cannot be rejected. Kolmogorov-

Smirnov comparisons were performed in R with ks.test of the R Stats Package (r-

project.org). 

 Centroid Aggregate Minimum Maximum Average 

Centroid 1     

Aggregate 1 1    

Minimum 1 1 1   

Maximum 0.7833 0.7833 0.6284 1  

Average 0.9103 0.9103 0.7833 1 1 
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Table 3 

Tabular format of the data plotted in Figure 3. 

Cluster Size Aggregate Centroid Minimum Maximum Average 

1 8606 8608 8997 9167 9135 

2 258 258 183 226 220 

3 79 77 33 39 41 

4 37 38 17 25 25 

5 20 20 11 9 10 

6 1 1 3 4 4 

7 4 4 3 4 2 

8 5 5 3 2 5 

9 2 2 3 2 2 

10 2 3 2 1 2 

11 3 2 2 1 1 

12 3 3 5 1 1 

13 1 1 0 0 1 

14 3 3 1 0 0 

15 1 1 2 0 0 

16 1 1 0 0 0 

18 0 0 1 0 0 

21 0 0 1 0 0 

23 2 2 1 0 0 

25 0 0 1 0 0 

34 1 1 1 0 0 

46 1 0 0 0 0 

47 0 1 0 0 0 

58 0 0 1 0 0 

 

As mentioned in the introduction, pre-sorting sequences by length ensures that 

cluster centroids contain maximum information and thus cluster members can be binned 

more accurately. Conversely, abundance pre-sorting approaches accuracy with the 

assumption that abundant sequences are more likely to represent functionally relevant 

clusters. The aggregation process that we introduce clusters sequences with their most 

frequent edge counterpart from multiple iterations of random input-order centroid 
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clustering. Our approach to accuracy is focused on the edges, using iterations of random 

input-order clustering to create a sorted, or ranked, edge list. Qualitatively, this has the 

effect of creating accurate clusters when presorting a sequence dataset by 

length/abundance is not sufficient or not possible. 

As a simple example, a mock dataset of ten 100-base sequences populated via 

introducing one or zero random substitutions into a duplicate of the previous sequence 

was clustered using the aggregation process. In this dataset, listed below in FASTA 

format, with substitutions as capital letters, sequences mock0 and mock1 were identical, 

mock2 and mock3 were identical, and mock5 and mock6 were identical leading to a total 

of seven unique sequences. Sorting this mock sequence dataset by length or abundance 

does not yield a clear pre-sorted input. The aggregation process clusters mock0 and 

mock1 together and mock2-mock9 in a separate cluster. The edges between the 

sequences in these clusters occurred in 101/101 iterations of random input-order centroid 

clustering. Edges that connect the two clusters occurred in only 58/101 iterations, making 

them less of a priority in the aggregation algorithm. Length or abundance pre-sorting this 

mock dataset could yield either the single or double cluster distribution from the 

individual iterations depending on which sequence is chosen as the centroid sequence. 

Pre-sorting datasets with similar properties would yield clustering results that are close to 

a single random input-order iteration. Listed below are the mock DNA sequences 

described in the paragraph above. 

>mock0 

gaacaatgcattgtcattgctacaccgtttacatattacagagctttgcgcataagttcaacagcaccctggtcagctagagcacga

tagcgcagcccct 
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>mock1 

gaacaatgcattgtcattgctacaccgtttacatattacagagctttgcgcataagttcaacagcaccctggtcagctagagcacga

tagcgcagcccct 

>mock2 

gaacaatgcattgtcatAgctacaccgtttacatattacagagctttgcgcataagttcaacagcaccctggtcagctagagcacg

atagcgcagcccct 

>mock3 

gaacaatgcattgtcatAgctacaccgtttacatattacagagctttgcgcataagttcaacagcaccctggtcagctagagcacg

atagcgcagcccct 

>mock4 

gaacaatgcattAtcatAgctacaccgtttacatattacagagctttgcgcataagttcaacagcaccctggtcagctagagcac

gatagcgcagcccct 

>mock5 

gaacaatgcattAtcatAgctacaccgtttacatattacagagctttgcgcataagttcaacagcaccctggtGagctagagcac

gatagcgcagcccct 

>mock6 

gaacaatgcattAtcatAgctacaccgtttacatattacagagctttgcgcataagttcaacagcaccctggtGagctagagcac

gatagcgcagcccct 

>mock7 

gaacaatgcattAtcatAgctacaccgtttacatattacagagcCttgcgcataagttcaacagcaccctggtGagctagagca

cgatagcgcagcccct 

>mock8 
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gaacaatgcattAtcatAgctacacAgtttacatattacagagcCttgcgcataagttcaacagcaccctggtGagctagagc

acgatagcgcagcccct 

>mock9 

gaacaatgcattAtcatAgctTcacAgtttacatattacagagcCttgcgcataagttcaacagcaccctggtGagctagagc

acgatagcgcagcccct 

Discussion 

 Since this aggregation process sacrifices speed to use less memory than 

agglomerative clustering while improving centroid-linkage clustering, the method can be 

much slower for large datasets. In addition, since data is written to disk storage instead of 

RAM, large datasets can require a large amount of available disk space, as mentioned in 

the final paragraph of the Introduction section. While the lengthier completion time and 

large amount of required disk space are drawbacks to this method, the aggregation 

process will eventually finish if these conditions are acceptable to the user. 

 Alternative methods for improving centroid-clustering results include presorting 

the input sequences either by length, unique sequence abundance, or combination of the 

two (Edgar, 2010; Ghodsi, Liu, & Pop, 2011). Figure 4 shows a comparison of the cluster 

distribution for the aggregated clusters, randomly sorted centroid-linkage, and length 

sorted centroid-linkage (sorted with the –sort option in USEARCH). Figure 4 and Table 4 

(which shows the data in tabular format) show the cluster distribution from the 

aggregation process is closer to the distribution of the randomly sorted centroid-linkage 

than the length sorted, although not significantly so. However, both of these sorting 

methods (length and abundance) still produce results that are dependent on a single, and 

to some degree, arbitrary input order, while the aggregating process attempts to find the 



  59 

average result of many possible input orders. A possible middle ground would be to 

incorporate the results from presorted clustering to weight the aggregation inputs with as 

many iterations of presorted cluster distributions as desired. For example, if a user 

wanted to make sure that length sorted centroid-linkage was represented in the final 

aggregated cluster distribution, they could include length sorted results in place of one or 

more of the randomly sorted iterations. Unfortunately, just as between length and 

abundance sorted methods, it is difficult to say which method is definitively ‘better’ for 

most datasets. 
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Figure 4: 10000 sequences dataset cluster distributions for the aggregated clusters of 

Figure 1, as well as single clustering runs of centroid- and length sorted centroid-linkage 

algorithms from USEARCH. The graph displays counts of all non-singleton clusters. The 

x-axis shows the size of the clusters produced from the five different methods, i.e. the 

number of sequences in each cluster. The y-axis shows the number of clusters that were 

produced of the sizes displayed on the x-axis. All pairwise comparisons between results 

of the methods plotted in Figure 4 had Kolmogorov-Smirnov P value of 1, meaning that 

the null hypothesis of the data having the same distribution cannot be rejected. 
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Table 4 

Tabular format of the data plotted in Figure 4. 

Cluster Size Aggregate Centroid Length sorted centroid 

2 258 258 268 

3 79 77 68 

4 37 38 37 

5 20 20 16 

6 1 1 9 

7 4 4 1 

8 5 5 5 

9 2 2 2 

10 2 3 4 

11 3 2 2 

12 3 3 5 

13 1 1 2 

14 3 3 1 

15 1 1 1 

16 1 1 1 

17 0 0 1 

19 0 0 1 

23 2 2 1 

27 0 0 1 

34 1 1 1 

46 1 0 0 

47 0 1 0 

 

 In conclusion, Aggregating randomly sorted centroid-linkage clustering results 

into a single distribution mitigates the consequences of input-order dependence in 

centroid-linkage clustering. The process described here primarily uses disk storage 

instead of RAM, which can have the consequences of long run times and requiring a 

large amount of available disk space. However, these consequences may be acceptable to 

researchers using a dataset that is too large for the distance matrices of agglomerative 

clustering methods. Centroid-linkage circumvents the need for constructing large distance 
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matrices at the cost of input-order dependence. Methods exist to correct for this input-

order dependence, such as presorting input sequences by length, unique sequence 

abundance, or combination of the two. While these methods may improve on the results 

of a single randomly sorted input order, they still represent a single, and to some degree, 

arbitrary input order. By aggregating the results of many randomly sorted iterations of 

centroid-linkage, the final result will not be dependent on any single input order. This 

method provides an alternative to the results from presorted centroid-linkage clustering. 
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Abstract 

The advancement of techniques to visualize and analyze large-scale sequencing 

datasets is an area of active research and is rooted in traditional techniques such as heat 

maps and dendrograms. We introduce dendritic heat maps that display heat map results 

over aligned DNA sequence clusters for a range of clustering cutoffs. Dendritic heat 

maps aid in visualizing the effects of group differences on clustering hierarchy and 

relative abundance of sampled sequences. Here, we artificially generate two separate 

datasets with simplified mutation and population growth procedures with GC content 

group separation to use as example phenotypes. In this work, we use the term phenotype 

to represent any feature by which groups can be separated. These sequences were 

clustered in a fractional identity range of 0.75 to 1.0 using agglomerative minimum-, 

maximum-, and average-linkage algorithms, as well as a divisive centroid-based 

algorithm. We demonstrate that dendritic heat maps give freedom to scrutinize specific 

clustering levels across a range of cutoffs, track changes in phenotype inequity across 

multiple levels of sequence clustering specificity, and easily visualize how deeply rooted 

changes in phenotype inequity are in a dataset. As genotypes diverge in sample 

populations, clusters are shown to break apart into smaller clusters at higher identity 

cutoff levels, similar to a dendrogram. Phenotype divergence, which is shown as a heat 

map of relative abundance bin response, may or may not follow genotype divergences. 

This joined view highlights the relationship between genotype and phenotype divergence 

for treatment groups. We discuss the minimum-, maximum-, average-, and centroid-

linkage algorithm approaches to building dendritic heat maps and make a case for the 
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divisive “top-down” centroid-based clustering methodology as being the best option 

visualize the effects of changing factors on clustering hierarchy and relative abundance. 
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Author Summary 

 The visualization of sequencing data is an integral part of the analysis and 

communication of genomics-based research. A key advance in microbial ecology in both 

modern and ancient ecosystems will be connecting genotypic lineages and survival 

strategies to environmental dynamics. This has become a daunting task in light of the 

burgeoning repositories of -omics sequence data, calling on entirely new methods for 

analyzing and visualizing complex biogeochemical datasets. The effects of environment 

on biology are often shown as heat maps of sequence abundance, where the responses of 

distinct sequence groups are measured and compared. However, the grouping process of 

heat map construction is performed at a single, often arbitrary, level of inclusiveness. 

Here, we introduce dendritic heat maps that simultaneously display multiple heat maps 

over a range of binning specificities, arranged in a dendrogram-like configuration, to 

show the effects of environment on sequence homology and relative abundance. 

Importantly, tracking changes in relative abundance can be particularly useful for 

observing the levels at which genotypic divergence (cluster branching) correlates with 

gene expression (differing heat map bin response), helping to better understand the 

effects of environment on survival strategies and genotypic lineages. 

Introduction 

 Advances in sequencing technology and –omics research has led to rapid growth 

in sequencing datasets, and techniques to visualize and analyze the data are struggling to 

keep up. New avenues of research that expand on traditional techniques are being 

explored with much room for further advancement, as software development attempts to 

meet the demands of elucidating important aspects of such large and complex datasets 
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like metagenomes or metatranscriptomes. One of the most fundamental steps for analysis 

of any sequence dataset is annotation and classification into hierarchies, which can be 

achieved via sequence comparison tools such as USEARCH, the Ribosomal Database 

Project (RDP) Classifier, the Basic Local Alignment Search Tool (BLAST), RapSearch2, 

and Phylosift (Camacho et al., 2009; Cole et al., 2014; Darling et al., 2014; Edgar, 2010; 

Zhao, Tang, & Ye, 2012). While all of these tools do well at the annotation of sequences, 

there is a well-known classification bias that comes with limited databases that do not 

contain true representatives of every sequence (Wooley, Godzik, & Friedberg, 2010). The 

development of more efficient and accurate comparison tools is an area of active 

research, and understanding the results of these tools in the context of in vivo dynamics is 

of great interest. MEGAN is one of the more well-known software options for 

metagenomic analysis and visualization of sequence comparison results, as are some 

web-based platforms such as MG-RAST, METAREP, and Krona (Goll et al., 2010; 

Huson, Auch, Qi, & Schuster, 2007; F. Meyer et al., 2008; Ondov, Bergman, & Phillippy, 

2011). The fundamentals of traditional techniques such as heat maps and dendrograms 

are at the root of all these recent software advances, where hierarchy and relative 

abundance are represented through branching and value indicators, respectively. Here, we 

explore a method of creating dendritic heat maps (DHMs) that combines heat maps and 

dendrograms in order to visualize phenotype divergence alongside genotype divergence. 

We use the term phenotype to represent any feature by which groups can be separated 

(e.g. physical traits, locations, growth conditions, etc.). Importantly, DHMs are not 

limited to sequence data and can be used to describe changes in group inequity and 

clustering hierarchy for any data that can be hierarchically ordered and compared (e.g. 
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microarrays, phylotype counts, species richness, etc). However, here we exclusively 

examine their application toward sequence datasets. 

 Heat maps are useful for comparing data across a range of possible states, 

allowing viewers to intuitively see differences and similarities in data subset responses. 

Canonically, each data point is expressed as a color, with hue intensity representing its 

bin response, or position within the data range (Wilkinson & Friendly, 2009). Likewise, 

sections on a heat map can also represent bins of data, where individual data points have 

been grouped together based on similarity and their corresponding heat map color is a 

result of their combined response (Sneath, 1957). Clustering, especially of DNA, RNA, 

or protein sequences, is commonly used for data binning and is based on sequence 

identity or homology. For instance, 16S rRNA heat maps are frequently used to compare 

relative abundances of sequences between multiple samples, allowing visualization of the 

presence and absence of taxa across samples or populations (Cho et al., 2012; Koenig et 

al., 2011; Wu et al., 2011). With genomic and transcriptomic data, binning and 

visualization on heat maps can be used to compare and contrast gene and transcript 

abundances, with the most common use of heat maps being visualization of changes in 

gene expression across different sample treatments or conditions (Nodine & Bartel, 2012; 

Schloissnig et al., 2013; The Cancer Genome Atlas Research Network, 2013). 

 However, heat map bin response for a data point can change depending on the 

level of specificity, defined by the cutoff level at which that data is binned and visualized. 

By altering the binning specificity level, data bin assignment can be rearranged, 

potentially changing their heat map bin response. Traditional heat maps only work at a 

single specificity level and limit viewers to one representation of the data. For instance, 
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heat maps that depict clustering of 16S rRNA gene sequences are typically done at a 97% 

identity level. Choosing an appropriate specificity level then becomes crucial to not 

obscuring the important features of the data with bins that are too specific or too broad. 

For example, bins that are too specific for a transcriptome dataset can result in fractured 

count information with many clusters identified as the same target sequence. Conversely, 

bins that are too broad for a transcriptome dataset can result in clusters containing 

multiple transcript groups. Both of these scenarios can be problematic if only one cutoff 

level is being displayed. 

 Our motivation for this work is to visualize sequence dynamics in a way that 

captures important variations in the data and is scalable across a large range of data sizes. 

We also wanted to explore a technique that is independent of annotation and instead 

performs analysis and visualization of sequence information, leaving annotation as a final 

step, since sequence reference databases are dependent on the quality and focus of 

previous work. To these ends we improve on current techniques in three areas: 

 

1. Freedom to scrutinize specific clustering levels across a range of cutoffs. 

2. Ability to track changes in state across multiple levels of sequence clustering 

specificity. 

3. Ease to visualize how deeply rooted changes in state are in a data set. 

 

 DHMs are particularly useful where similarities in a dataset occur across a 

multitude of scales, such as in homology-based clustering of the large number of 

sequences found within a microbial community. Because the sequences within a complex 
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community can range from being extremely well conserved to very poorly conserved, our 

method will allow the simultaneous visualization of homology clusters at many different 

cutoffs. Importantly, tracking changes in relative abundance bin response can be 

particularly useful for observing the levels at which genotypic divergence (cluster 

branching) correlates with phenotypic divergence (differing heat map bin response) for a 

population. 

To demonstrate this approach, we generate artificial datasets that use simplified 

mutation and growth processes in biological communities. The first dataset starts with 

100 identical 100-bp DNA fragments which all mutate with random single base 

substitutions over fifteen iterations. The second dataset is used exclusively with the “top-

down” method due to its size and begins with a 100-bp DNA fragment, allowing it to 

mutate and duplicate, then iterating the mutate-and-duplicate process on progeny DNA. 

The end result is a population of tens-of-thousands of DNA molecules derived from a 

common ancestor, each showing varying degrees of conservation. Clustering and 

visualization of changes of state are used to track relative abundance bin responses for 

populations of different nucleotide usage (GC content) as various subpopulations evolve 

for both datasets. Using these simulated datasets, we discuss the potential of DHMs to 

describe data across varying levels of complexity. 

Methods 

Sequence Generation. 

Mutation Lineage Data Set. Random base substitutions were performed on a set 

of 100 artificially-generated 100-bp DNA sequences over fifteen iterations. Base 

substitutions are allowed to occur at the same position more than once. At iteration zero, 
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all 100 sequences are identical with 50% GC content; at iteration fifteen they have the 

least homology with 15 random base substitutions having occurred in each sequence. At 

each iteration all 100 sequences were grouped based on ≤ or >50% GC content and 

output to FASTA files. The ≤ or >50% GC content group sizes were kept relatively even 

by restarting the sequence generation if the count difference between the two groups 

exceeded 20 sequences ( |Group1-Group2|>20 ) (20% of the total dataset). This group 

evening was done to ensure a good representation of each group for an effective 

demonstration of DHMs. 

Population Growth Data Set. Additional FASTA files of fifteen generations 

started from a single randomly-generated sequence, which was subsequently propagated 

by duplicating each sequence once with a random base substitution and once without at 

each generation of population growth, reaching 2
15

 sequences after fifteen generations. 

The artificial growth process created fifteen separate, but related, datasets to demonstrate 

the ability of top-down centroid-based clustering to handle larger datasets for DHM 

construction. The artificially-generated 100-bp DNA sequences were grouped based on ≤ 

or >50% GC content. The ≤ or >50% GC content group sizes were kept relatively even 

by restarting the sequence generation if the difference between the number of sequences 

for the two groups became greater than 5% of the total amount of sequences ( |Group1-

Group2|>Total*0.05 ). This group evening was done to ensure a good representation of 

each group for an effective demonstration of DHMs. 

Clustering. 
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 Bottom-up agglomerative clustering. For each incremental 0.01 fractional 

identity (“-id”) cutoff between 0.75 and 1.0, clustering of sequences was performed using 

USEARCH (version 8.0.1517_i86linux64) (“-cluster_agg”) with linkages min, max, and 

avg. 

Top-down divisive clustering. For the each 0.01 -id cutoff between 0.75 and 1.0, 

clustering of sequences was performed using the USEARCH UCLUST algorithm 

(version 7.0.1090_i86linux64) (“-cluster_fast”), which performs centroid-based 

clustering. Counts of duplicate sequences were recorded with “-derep_fulllength” (Edgar, 

2010). Clustering at each cutoff -id was done in a stepwise fashion, starting from the 

initial FASTA file for 0.75, then using the clusters from the previous cutoff as inputs for 

0.76-1.0. Since the USEARCH command “-cluster_fast” performs centroid-based 

clustering in the order of the input FASTA file, input sequences were first multiple 

aligned using Clustal Omega (described later) and arranged to ensure that the most 

distantly related and potentially cluster splitting “centroid” sequences were listed first in a 

staggered order (conceptualized in Figure 1). This ordering process was performed by a 

script that reads from opposite ends of the multiple alignment and is unnecessary for the 

“bottom-up” approaches since binning is done through the use of a distance matrix. A 

brief example of the top-down clustering is available in Chapter 4 supplemental file S1. 
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Figure 1: Sequence input ordering. Graphical representation of the binning effect of 

using alignment-ordered versus staggered sequence input order for “top-down” centroid-

based clustering. Shaded rectangles represent sequences, where the shade consistently 

portrays a specific sequence throughout the diagram. The multiple alignment on the left 

shows each of the sequences ordered based on fractional identity, where nearby 

sequences are more closely related than distant ones, and distributed evenly across a 

fractional identity range of 0.1. For both aligned and staggered input ordering, sequences 

are read from top to bottom by the UCLUST algorithm of USEARCH and either placed 

in a cluster that has the best match to the centroid sequence above the given identity 

cutoff, or is made the centroid sequence of a new cluster if a match cannot be found. In 

this diagram, centroid sequences are the top sequences of each cluster. With the aligned 
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input order, it is shown that some sequences can be binned in clusters that do not contain 

their closest centroid match. The staggered input places sequences in correct bins 

essentially by first defining all centroid sequences. 

Alignment. Clustal Omega (Version 1.2.0) with tree-output ordering and default 

alignment parameters and heuristics was used for multiple alignment of FASTA files 

(Sievers et al., 2011). Manipulation of the multiple alignment and clustering files were 

performed via Perl scripts, which are available in Chapter 4 supplemental files S2 and S3. 

This multiple alignment was used to order the lowest -id cutoff (0.75) clusters, then the 

sequences contained within them. For each -id cutoff from 0.76 to 1.0, the order was 

determined by the arrangement of the previous -id cutoff. In the “top-down” method, this 

alignment was also used to order the clustering input files in a staggered fashion (Figure 

1). Alignment is important for preserving the radial position of each sequence at each 

cutoff level/ring in the DHMs so that the position of any given sequence is preserved 

from its center out to its circumference. Starting the clustering cutoff range at a minimum 

value of 0.75 was done because the USEARCH manual states that the UCLUST 

algorithm is effective at identities of ~75% and above for nucleotide sequences, but 

dendritic heat maps in general are not limited to this cutoff range and should aim to show 

as large a clustering cutoff range as possible. 

Dendritic heat map construction. Visualization of the clusters at each cutoff and 

their arrangements was performed using the Perl package Circos (version 0.64) 

(Krzywinski et al., 2009). For each -id cutoff ring, cluster sizes are determined by number 

of sequences within each cluster. The heat map hues are partitioned to have gradual 

changes with twenty-three possible categories (two sequential 11-color Brewer palettes 
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and white) and is determined by the logarithmic value of the ratio of sequences from each 

group, log((Group1 +1)/(Group2 +1)). The log of the ratio is used because in typical 

clustering datasets, the vast majority of the clusters are relatively small and a few are very 

large. Without using the log of the ratio, smaller clusters with an interesting bin response 

would be assigned a neutral hue and only the largest clusters would have the most 

luminous hues. A log transformation of the ratios puts all bin responses on a more 

relatable scale while still showing their distinctions in ratio. Red hue indicates relative 

abundance bin response toward Group 1(GC≤50%) and blue hue indicates relative 

abundance bin response toward Group 2 (GC>50%), with white indicating a neutral bin 

response. A red-white-blue color scheme was chosen here because it is more color-blind 

friendly, however any color scheme can be used. Hue luminosity corresponds to the 

strength of the heat map response. A darkly colored wedge at the 0° position acts as a 

key, displaying the opposite ends of the heat map hues possible for each ring. The 

minimum and maximum heat map values in this wedge are equal at their absolute values 

and are important for normalizing the hue distribution throughout the entire DHM. A 

brief example of DHM construction is available in Chapter 4 supplemental file S1. 

Results/Discussion 

 Dendritic heat map. To make relationships that may emerge across hierarchical 

cutoffs more apparent, heat maps at each cutoff level are aligned, so that clusters may be 

directly compared across multiple cutoff levels. By aligning and clustering DNA 

molecules across these multiple cutoff levels, the aligned heat maps take on a radial 

dendrogram configuration. This is particularly useful, as the branching of a cluster into 

progressively more fine-grained clusters can be tracked and further annotated with heat 
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map bin responses to reveal salient features of the clusters. To visualize DHMs, we make 

use of a Perl-based software package called Circos that was developed to address 

challenges in visualizing large genomic data sets and creates circular heat maps from 

position and value data (Krzywinski et al., 2009). In the case of DHMs, circular heat 

maps allow for the placement of exterior ring heat map bins to be fanned out, giving them 

more space than interior ring bins where the need for space is less critical. While a useful 

tool for generating images, Circos is illustration software that is dependent on user-

formatted input files and is not designed to analyze raw data or arrange heat maps. 

Therefore, we have developed Perl scripts (available in Chapter 4 supplemental files S2 

and S3) to align and convert clustering data derived from large scale sequence datasets to 

Circos-ready input files. 

 Figure 2 shows the average-linkage DHM for the fifth mutation from the mutation 

lineage data set generated as described in the methods section. The feature that is 

immediately recognized is the heat map color variation in different regions of the figure, 

displaying the relative abundance bin response of GC content groups (neutral – white; 

Group 1 bin response (GC≤50%) – red; Group 2 bin response (GC>50%) – blue) for each 

cluster. The decision to use red and blue hues was aided with the use of ColorBrewer 

palettes (http://colorbrewer2.org/) to represent values as a colorblind-friendly alternative 

to the red-green color scheme that is a popular heat map motif (Brewer, 2003). However, 

RGB color codes were eventually used to select hues outside of ColorBrewer palettes. 

Navigating through the figure, the innermost ring represents clusters at the most lenient 

fractional identity cutoff of 0.75, stepping out in increments of 0.01 at each ring to a final 

identity cutoff of 1.0. Simultaneously displaying a range of heat maps that change with 
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specificity level gives a more accurate view of how the data is skewed than any single 

heat map can provide individually, due to the fact that heat map bin response for a data 

point can change direction depending on the level of specificity at which the data is 

binned. In a natural data example, central rings with lower cutoffs would be associated 

with broad groupings such as phyla or gene superfamilies, while the increasingly strict 

cutoffs at the peripheral rings would represent more specific identifiers (e.g. same 

genus/species, gene families/subfamilies). Studies that involve natural data sets might not 

be grouped based on GC content, but rather some separation that is relevant to the 

questions being asked or conditions being measured (and that could be easily substituted 

into a DHM). For our purposes, using GC content as a phenotype is a convenient method 

for creating and tracking relative abundance bin responses of two distinct groups while 

also forcing a correlation between genotype and phenotype for these artificially generated 

datasets. 
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Figure 2: Dendritic heat map. Dendritic heat map representing the fifth mutation step of 

the simulated mutation lineage data generated as described in the methods and clustered 

using the average-linkage algorithm of the “bottom-up” method. The darkly colored 

wedge at the 0° position represents the minimum (red) and maximum (blue) possible heat 

map relative abundance bin responses, GC≤50% and GC>50% respectively. White space 

in the heat maps represents clusters with neutral bin response. Rings, starting at the 

center, represent clusters of sequences for identity cutoffs of 0.75 to 1.0. Clusters, 
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including single-sequence clusters, are plotted in a radial range that is conserved from the 

clusters from which they were derived. High resolution versions of all DHMs in this 

manuscript are available in Chapter 4 supplemental files S2 and S3. 

 

 The more subtle feature of Figure 2 is the dendrogram-like layout of the figure 

rings. The aligned configuration of the rings preserves the relationships of a dendrogram, 

where nearby clusters and sequences are closer relatives than distant clusters. The more 

central in the diagram a cluster divergence occurs, the more distantly related those 

clusters are to one another. Since each ring is aligned to adjacent rings, large clusters 

gradually divide into smaller and more specific clusters moving out from the center. In 

Figure 2, many of the clusters in the exterior rings contain single-sequence clusters that 

have a conserved radial range from the more interior clusters they derive from. Some 

clusters contain sequences that are highly conserved and their membership does not 

change over a wide range of clustering cutoffs, as seen at around the 11 o’clock position 

of Figure 2. Also important to point out are cases where bin response changes in direction 

and not just intensity. At about the 3 o’clock position of Figure 2, interior rings contain a 

large blue (mostly GC>50% sequences) cluster that gradually divides toward the exterior 

rings. These clusters divide, some of their bin responses change from blue (mostly 

GC>50% sequences), to the neutral white, to red (mostly GC≤50% sequences). The 

darkly colored wedge at the 0° position represents the minimum (red) and maximum 

(blue) possible heat map relative abundance bin responses, GC≤50% and GC>50% 

respectively. This wedge at the 0° position serves two functions. First, the wedge serves 

as a legend for the minimum and maximum heat map bin responses. Second, the wedge 
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separates the most distantly related clusters at opposite ends of the DHM. Without a 

separation, it may be easy to confuse the clusters at opposite ends of the dendrogram 

layout as closely related. White space in the heat maps represents clusters with neutral 

bin response. 

 Overlaying phenotype shifts on genotype divergence creates a way to visually 

compare how deeply rooted observed phenotype ratios are across multiple genotypes. 

Displaying how deeply rooted a response is can be informative in many comparative 

studies that seek to better understand both the general and more finely detailed structures 

of the data by elucidating divergence points. Work that focuses on multi-scale genomic 

changes, such as experimental evolution of microbial or viral populations, would benefit 

from the visualizations of DHMs (Blount, Barrick, Davidson, & Lenski, 2012; J. R. 

Meyer et al., 2012). 

 Bottom-up hierarchical clustering. For agglomerative, or “bottom-up,” 

approaches where clusters are joined by incrementally decreasing the sequence identity 

required to bin sequences together, we contrasted minimum-, maximum-, and average-

linkage algorithms, all common graph metrics. Briefly, these methods differ in how 

connections between cluster elements (i.e. the edges connecting various nodes within a 

cluster) affect cluster membership. Minimum-linkage, sometimes referred to as nearest 

neighbor, only requires a single edge between two clusters above a specified cutoff 

before they can be joined, regardless of the other edge relationships (Florek, 

Łukaszewicz, Perkal, Steinhaus, & Zubrzycki, 1951; Sneath, 1957). Maximum-linkage, 

sometimes referred to as complete-linkage or farthest neighbor, requires all elements of a 

cluster to have a cutoff-agreeing edge to all elements of a joining cluster (Williams & 
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Lance, 1967). Average-linkage, sometimes referred to as mean linkage or unweighted 

pair group method with arithmetic mean (UPGMA), requires the mean of all cluster 

element edge distances to meet the clustering cutoff before they can be joined (Sokal, 

1958; Williams & Lance, 1967). However, all of these agglomerative linkage methods 

yield relatively poor results when compared to a divisive method, mainly due to cluster 

joining requirements (discussed in detail below) as opposed to cluster splitting 

requirements. 

 There are obvious visible differences between the three linkage algorithms used to 

cluster the DHMs of Figs. 3-5. In all of these “bottom-up” agglomerative algorithms, 

each cluster starts out as a group of identical sequences or a single sequence. Those 

clusters of identical sequences are then joined as the clustering cutoff is gradually 

decreased using the chosen linkage algorithm. As a result, the outermost ring 

(representing 100% sequence identity) for each respective mutation DHM contains the 

same clustering breakdown, but possibly in a different configuration due to the ring 

alignment process. However, the clustering breakdown for the joined clusters of the 

interior rings is subject to the clustering algorithm and is not the same for each mutation 

step. For example, the interior rings of the seventh mutation step (panel 7 of Figure 3-5) 

for each agglomerative algorithm appear different. 
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Figure 3: Dendritic heat maps from bottom-up minimum-linkage hierarchical clustering 

of a mutating population. Dendritic heat maps representing 0 through 15 mutations of the 

simulated mutation lineage data generated as described in the methods and clustered 

using the minimum-linkage algorithm of the “bottom-up” method. Panel zero represents 

the most homologous set of sequences (identical) and panel fifteen represents the least 

homologous set of sequences (fifteen base substitutions). The darkly colored wedge at the 

0° position of each dendritic heat map represents the minimum (red) and maximum (blue) 
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possible heat map relative abundance bin responses of all dendritic heat maps displayed, 

GC≤50% and GC>50% respectively. White space in the heat maps represents clusters 

with neutral bin response. Rings, starting at the center, represent clusters of sequences for 

identity cutoffs of 0.75 to 1.0. Clusters, including single-sequence clusters, are plotted in 

a radial range that is conserved from the clusters from which they were derived. High 

resolution versions of all DHMs in this manuscript are available in Chapter 4 

supplemental files S2 and S3. 
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Figure 4: Dendritic heat maps from bottom-up maximum-linkage hierarchical clustering 

of a mutating population. Dendritic heat maps representing 0 through 15 mutations of the 

simulated mutation lineage data generated as described in the methods and clustered 

using the maximum-linkage algorithm of the “bottom-up” method. Panel zero represents 

the most homologous set of sequences (identical) and panel fifteen represents the least 

homologous set of sequences (fifteen base substitutions). The darkly colored wedge at the 

0° position of each dendritic heat map represents the minimum (red) and maximum (blue) 
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possible heat map relative abundance bin responses of all dendritic heat maps displayed, 

GC≤50% and GC>50% respectively. White space in the heat maps represents clusters 

with neutral bin response. Rings, starting at the center, represent clusters of sequences for 

identity cutoffs of 0.75 to 1.0. Clusters, including single-sequence clusters, are plotted in 

a radial range that is conserved from the clusters from which they were derived. High 

resolution versions of all DHMs in this manuscript are available in Chapter 4 

supplemental files S2 and S3. 
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Figure 5: Dendritic heat maps from bottom-up average-linkage hierarchical clustering of 

a mutating population. Dendritic heat maps representing 0 through 15 mutations of the 

simulated mutation lineage data generated as described in the methods and clustered 

using the average-linkage algorithm of the “bottom-up” method. Panel zero represents the 

most homologous set of sequences (identical) and panel fifteen represents the least 

homologous set of sequences (fifteen base substitutions). The darkly colored wedge at the 

0° position of each dendritic heat map represents the minimum (red) and maximum (blue) 
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possible heat map relative abundance bin responses of all dendritic heat maps displayed, 

GC≤50% and GC>50% respectively. White space in the heat maps represents clusters 

with neutral bin response. Rings, starting at the center, represent clusters of sequences for 

identity cutoffs of 0.75 to 1.0. Clusters, including single-sequence clusters, are plotted in 

a radial range that is conserved from the clusters from which they were derived. High 

resolution versions of all DHMs in this manuscript are available in Chapter 4 

supplemental files S2 and S3. 

 

 The minimum linkage algorithm of Figure 3 produces figures that give the 

appearance of relatively well-conserved clusters. The transition from a single cluster to 

multiple clusters occurs at higher identity cutoffs than that of the other algorithms. This 

apparent overestimation of sequence conservation is expected with the minimum linkage 

algorithm since clusters are easily joined, only requiring one sequence from each cluster 

to match one another at the clustering cutoff level. This method has a well-known 

drawback called the chaining phenomenon, where clusters that have been joined may 

share only a single close relationship edge while all other edges are very distant 

(Williams & Lambert, 1966). The chaining phenomenon certainly affects the results of 

Figure 3, especially during the earlier mutations, as it would for many single-linkage 

DHMs, making single-linkage less than ideal for many data sets. 

 Figure 4, which was constructed using the maximum-linkage algorithm, contains 

non-joining cluster segments as mutations progress. While maximum-linkage clustering 

avoids the chaining phenomenon by requiring all cluster members to have an edge to all 

other members, it is also an underestimation of sequence conservation and some clusters 
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never join with others for the given cutoff range. This algorithm can be simplified by 

considering only the furthest edge distance, since all other pairings would be more 

closely related. In many clusters, a member may be very distantly related to any member 

of another cluster, regardless of potentially other members in its cluster. This is exactly 

what can be seen in some mutation iterations in Figure 4, where clusters containing more 

than one sequence never form edges with all members of another cluster for any given 

cutoff value, thus never joining. 

 Like Figure 4, Figure 5 contains many non-joining cluster segments. Using the 

average-linkage algorithm of Figure 5, clusters are joined if their mean edge distance for 

all pairs meets the clustering cutoff requirements. The result is similar to the maximum-

linkage algorithm because all members of the clusters have an effect on the mean edge 

distance that dictates if joining will occur. However, average-linkage can be thought of as 

joining clusters by their “center of cluster mass” instead of a single distant edge, lowering 

the requirements for joining from that of maximum-linkage and yielding a more accurate 

apparent sequence conservation. 

 Due to the chaining phenomenon, minimum-linkage clustering will often be a less 

than ideal choice for constructing DHMs, although it will still produce a valid DHM. 

Maximum- and average-linkage algorithms remain viable alternatives, however their 

propensity to form non-joining cluster segments and the underestimation of sequence 

conservation by maximum-linkage also makes them less than ideal. In terms of 

information gained, it is not likely that a non-joining cluster segment does much to aid in 

visually comparing how deeply rooted a phenotype is across multiple genotypes. Like 

dendrogram building in general, the algorithm used often comes down to user preference. 
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However, the need to construct a distance matrix, a step that can require large amounts of 

computer memory and time, and a propensity for creating non-joining cluster segments 

makes all three “bottom-up” approaches less than ideal for large data sets. 

 Top-down hierarchical clustering. The algorithms of the “bottom-up” 

approaches require constructing a distance matrix from pairwise identity or similarity 

calculations between all sequences, which for large datasets can lead to impractically 

large memory or computational time requirements. For this reason, we implemented a 

“top-down” hierarchical clustering method that splits clusters by incrementally increasing 

the sequence identity required to bin sequences, similar to previously described divisive 

methods (Macnaughton-Smith, Williams, Dale, & Mockett, 1964; Sokal, 1958). The 

“top-down” approach does not require a large comprehensive distance matrix to be built 

and uses centroid-based clustering, where clusters are split if multiple cluster “centroid” 

elements can be separated with the given clustering cutoff. Centroids are then used as a 

database for a sequence search algorithm to assign closest matching sequences or new 

centroids if the closest match is out of the cutoff range (Edgar, 2010). The dendritic heat 

maps of Figure 6 were constructed using a top-down approach. A brief example of the 

top-down clustering is available in Chapter 4 supplemental file S1. 
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Figure 6: Dendritic heat maps from top-down hierarchical clustering of a mutating 

population. Dendritic heat maps representing 0 through 15 mutations of the simulated 

mutation lineage data generated as described in the methods and clustered using the “top-

down” method. Panel zero represents the most homologous set of sequences (identical) 

and panel fifteen represents the least homologous set of sequences (fifteen base 

substitutions). The darkly colored wedge at the 0° position of each dendritic heat map 

represents the minimum (red) and maximum (blue) possible heat map relative abundance 
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bin responses of all dendritic heat maps displayed, GC≤50% and GC>50% respectively. 

White space in the heat maps represents clusters with neutral bin response. Rings, starting 

at the center, represent clusters of sequences for identity cutoffs of 0.75 to 1.0. Clusters, 

including single-sequence clusters, are plotted in a radial range that is conserved from the 

clusters from which they were derived. High resolution versions of all DHMs in this 

manuscript are available in Chapter 4 supplemental files S2 and S3. 

 

 The most fundamental difference between the “top-down” and all three “bottom-

up” algorithms is that the DHM is created by splitting clusters, rather than joining them. 

The figure is constructed by first assigning sequences to clusters at the lowest cutoff 

level, which corresponds to the innermost ring on all DHMs, then splitting those clusters 

for subsequent DHM rings as the clustering cutoff is incrementally increased. 

 The advantages of the “top-down” centroid-based clustering approach over 

“bottom-up” approaches are speed, memory requirements, and a more intuitive view of 

sequence conservation as data size increases. Circumventing the construction of a 

distance matrix has obvious advantages in speed and memory requirements for 

sufficiently large data sets, where a distance matrix becomes impractically large. The 

apparent sequence conservation of the “top-down” DHM is more intuitive in that it 

avoids the chaining phenomenon of single-linkage and also avoids the non-joining cluster 

segments of maximum- and average-linkage, potentially leading to more informative 

observations of the level at which genotype divergence (cluster branching) has an effect 

on phenotype divergence (relative abundance visualized via differing heat map bin 

response). The “top-down” approach has a slight bias away from forming non-joining 
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cluster segments because clusters must pass a threshold to be split, rather than having to 

pass a threshold to be joined as is the case with “bottom-up” approaches. 

 In all cases, including the three “bottom-up” approaches, sequence length and 

homology can have significant effects on the clustering layout of DHMs. Shorter 

sequences and also less homologous sequences would result in more non-joining clusters, 

while the opposite conditions would result in more cluster joining. In a study that tracks 

sequence homology of different lineages, as is simulated in our mutation data set, non-

joining cluster segments would appear sooner in data sets with shorter sequences and 

faster mutation rates. Therefore, there are potential data conditions where even the “top-

down” approach yields less-informative DHMs. 

 Summary tables of the sequence and cluster counts from the mutation dataset 

DHMs are provided as an Excel document in Chapter 4 supplemental file S3, showing 

different bin distributions for each of the algorithms which affects their appearance. As 

previously described with the DHM appearances, the tables reiterate that the minimum-

linkage algorithm bins sequences together more readily than the others, while the 

maximum-linkage and average-linkage algorithms are more exclusive. The centroid-

based algorithm, which does not use a distance matrix to determine cluster similarity, 

occupies a binning inclusiveness middle ground between the three others. It is our 

opinion that the moderate inclusiveness of centroid-based clustering, as well as its ability 

to cluster larger datasets (described in more detail in the following section), makes it the 

best option of the four to construct DHMs. However, just as each of those clustering 

algorithms is a valid technique, each of the DHMs that are constructed from their clusters 

is also valid. 
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 Dendritic heat maps of a growing population. DHMs can be scaled to fit a wide 

range of dataset sizes while maintaining their dendrogram layout. Figure 7 shows DHMs 

of the artificially generated dataset that simplifies mutation and growth as substitutions 

are introduced without fatal consequences into generations, displaying an increasing 

complexity (as described in the methods section as the population growth data set). Up to 

fifteen generations, including the initial sequence at generation 0, are shown as individual 

DHMs. The number of total sequences doubles for each generation, increasing data size 

and complexity exponentially. This dataset is used to show the scalability of DHMs. 
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Figure 7: Dendritic heat maps from top-down hierarchical clustering of a growing 

population. Dendritic heat maps representing generations 0 through 15 of the simulated 

population growth data generated as described in the methods and clustered using the 

“top-down” method. The darkly colored wedge at the 0° position of each dendritic heat 

map represents the minimum (red) and maximum (blue) possible heat map relative 

abundance bin responses of all dendritic heat maps displayed, GC ≤50% and GC>50% 
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respectively. White space represents clusters with neutral bin response. Rings, starting at 

the center, represent clusters of sequences for identity cutoffs of 0.75 to 1.0. Clusters, 

including single-sequence clusters, are plotted in a radial range that is conserved from the 

clusters from which they were derived. High resolution versions of all DHMs in this 

manuscript are available in Chapter 4 supplemental files S2 and S3. 

 

 The DHM for generation 0 represents the simplest possible cluster configuration, 

displaying information for only a single sequence. For a fixed sequence length as in the 

artificial data used here, there is a theoretical final cluster distribution, where mutations 

have progressed to a point where additional sequences can no longer be unique. The 

cluster distribution for the DHM of this theoretical endpoint would appear symmetrical, 

and all evolutionary paths end at this same fixed endpoint cluster distribution. The 

number of unique sequences in the endpoint cluster distribution is calculable at b
n
, where 

b is the number of possible base choices and n is the total number of bases used in the 

simulated DNA sequences. The generations that are displayed in Figure 7 are snapshots 

into one of the many pathways toward the theoretical endpoint cluster distribution of b
n
 

unique sequences. This theoretical endpoint holds true for traditional dendrograms as 

well, however DHMs have the added dimension of displaying relative abundance 

information (heat map bin response). The random qualities built into our sequence 

generation with the added dimension of heat map distribution yields many DHM 

colorations for the fixed endpoint cluster distribution discussed above. 

 Drawing parallels to natural data, for every set of samples, there is also a 

theoretical fixed endpoint cluster distribution. While natural data does not have fixed 
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sequence lengths, there is likely a range of lengths that are allowed by evolutionary 

pressures and there would be many possible evolutionary paths toward the endpoint 

cluster distribution (Wang, Hsieh, & Li, 2005; Xu et al., 2006). However, the difference 

with a natural data set is that generations are determined by evolutionary processes that 

are much more complex than random non-lethal base substitutions (Krebs, Goldstein, & 

Kilpatrick, 2009; Mitchell-Olds, Willis, & Goldstein, 2007). Essentially, the artificial 

data set endpoint would display every possible lineage while natural data would have 

fatal dendrogram branches trimmed out of the endpoint cluster distribution, likely in a 

non-symmetrical distribution. The complexity that is common in natural samples would 

likely yield many possible DHM colorations, similar to an artificial data set. For these 

reasons, it is not unreasonable to use artificially-generated data to show DHMs of 

population growth. 

 Figure 7 is an informative way to introduce the evolutionary context of DHMs, 

where each displays a multi-level snapshot into the phenotype history of a sample. Each 

snapshot represents a view from the same evolutionary path, one of the many paths 

toward the theoretical endpoint. As each generation doubles in size, in many cases it is 

easy to visually track the growth and divergence of individual clusters from generation to 

generation. As new unique sequences are added, new clusters in the outermost ring are 

created and inner clusters diverge to account for their addition. Likewise, when duplicate 

sequences are added, their respective sections increase in width, which represents cluster 

size. Phenotype divergences occur deeper into the DHMs as generations progress and 

population genotypes diverge. Eventually, we are able to see increasing fracturing of 

genotypes and phenotypes as the total population becomes more complex. While 
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something similar to Figure 7 could be recreated with experimental evolution datasets, a 

natural dataset would yield only a single DHM unless a time component is involved. 

However, even with a time element involved, it is unlikely to find a natural sample as 

simple as the earliest generations of Figure 7. 

 Application. Recently, DHMs were used to describe large and complex microbial 

community sequence data from aquatic pumice samples, where the goal was to show 

microbial habitat preference at multiple levels of taxonomical classification (Elser et al., 

2015). While seemingly a straightforward task of counting homologous sequences for 

each habitat, the problem of similarity cutoff choice can influence how sequences are 

binned and ultimately expressed in a heat map. In Figure 8 (Figure 3 of Elser et al., 2015) 

(original copyright 2014, Applied and Environmental Microbiology), sequences maintain 

the same radial position throughout each of the DHMs. For nearly all sequences, the 

strength, and sometimes direction, of their heat map expression changes depending on the 

specificity of the clustering cutoff used to bin them. Figure 9 (Figure 4 of Elser et al., 

2015) (original copyright 2014, Applied and Environmental Microbiology) shows 

histograms of the same data being binned according to Ribosomal Database Project 

taxonomic classifications (Elser et al., 2015). Essentially, these histogram bar heights 

translate to heat map color intensity and convey the same information in different 

formats. Of course, binning based on taxonomic classification does not exactly represent 

binning based on sequence identity, but it can be a close and familiar approximation. The 

issue with clustering cutoff choice is perfectly represented in Figure 9 (Figure 4 of Elser 

et al., 2015), where depending on the level at which sequences are binned, the scale of 

the “Skew Line” axis changes to accommodate the range in relative abundance bin 
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response, which translates to heat map color and intensity. DHMs on the other hand 

embrace this effect of clustering specificity on binning and bin response, where it is used 

to show the effect of homology on heat map response. 
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Figure 8. Figure 3 reused from Elser et al. 2014 with the kind permission of ASM. 

Dendritic heat maps displaying habitat preferences for multiple levels of phylogenetic 

clades across multiple time points and locations. Reprinted from (Elser et al., 2015) under 

a CC BY license, with permission from AEM, original copyright 2014. 
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Figure 9. Figure 4 reused from Elser et al. 2014 with the kind permission of ASM. 

Histograms displaying the strongest habitat preferences for the phylum, order, and genus 

taxonomical levels of four sample types. A skew line is used to show the relative strength 

of habitat preference. Reprinted from (Elser et al., 2015) under a CC BY license, with 

permission from AEM, original copyright 2014. 

 

In a publication by Eisen et al., heat maps are used to describe Saccharomyces 

cerevisiae genome microarray data for a series of time points (Eisen, Spellman, Brown, 

& Botstein, 1998). Each row in Figure 10 (Eisen et al., 1998 Figure 1) (original copyright 

1998, The National Academy of Sciences) represents individual genes, which in terms of 

binning are sequences at 100% identity or a fractional identity clustering cutoff of 1.0, 

and each column represents a time point. Figure 10 (Figure 1 of Eisen et al., 1998) shows 

rows being clustered and arranged based on their heat map response and a dendrogram is 

provided to display the cladistics of row bin responses, not row sequence identity, which 

is useful for displaying clades of similar patterns of expression. However, the goal of 

DHMs is to display the effect of sequence homology and genotype clades with phenotype 

heat map bin responses. Two important differences between the DHMs introduced in this 

work and many published traditional heat maps, including those in Eisen et al., are the 

inclusion of multiple heat maps for a single sample (represented by a column in Eisen et 

al., 1998) and sequence identity rather than heat map expression pattern determining row 

arrangement (or radial position in the case of radial heat maps). If we were to convert the 

work of Eisen et al. into DHMs, each column of Figure 10 (Figure 1 of Eisen et al., 1998) 

would have their own DHM with multiple levels of clustering arranged by sequence 
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identity so that we could see how well the heat map expression pattern for a gene is 

conserved among its homologs. It would be possible to create a separate cladogram that 

represents bin response pattern similarity (or dissimilarity) using Bray-Curtis 

dissimilarity, however this is beyond the scope of the work presented here (Bray & 

Curtis, 1957). 
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Figure 10. Figure 1 reused from Eisen et al. 1998 with the kind permission of PNAS. 

Heat map displaying data from a time course of serum stimulation of primary human 

fibroblasts. Reprinted from (Eisen et al., 1998) under a CC BY license, with permission 

from PNAS, original copyright 1998. 

Conclusion 

 DHMs represent a novel and powerful tool for visualizing correlations in 

genotype and phenotype changes across evolutionary space and time, and will ultimately 

help decipher dynamic processes in complex, natural communities such as 

metatranscriptomes, where similarities occur across a multitude of scales. The “top-

down” approach that we outline here provides an efficient method of constructing DHMs 

that display phenotype relative abundance divergence with homology divergence and is 

the method that we recommend for most cases, however, any hierarchical clustering 

method can be used for DHM construction. While this paper discusses the application of 

DHMs in an exclusively nucleic acid sequence context, their range is certainly not limited 

to sequence information and can be used in any dataset that has a pair of groups that 

share underlying traits. 
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Abstract 

 Dendrograms and heat maps are well-established figure types that excel at 

visualizing hierarchies in clustered datasets. As the number of tools to create these figures 

continues to grow, it is important to consider the architectural elements that make 

successful dendrograms and heat maps. Data communication effectiveness is the result of 

coordinating input data with figure scale and color to support the graphical flow of 

information. However, even under optimal conditions, neither can properly convey the 

inherent multidimensionality of complex clustered data. In response, novel figure types 

that combine fundamental features of dendrograms and heat maps are used to fill the 

multidimensionality data visualization gap. In this chapter, the effects of architectural 

elements in published dendrograms and heat maps are examined with respect to their 

function of communicating complexity. The subject of multidimensionality that these 

figure types struggle to display is explained and two strategies to reveal multiple levels of 

clustering datasets are discussed. 
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Introduction 

Dendrograms and heat maps are staples of data visualization, especially in 

communication of biological data. Methods to calculate and construct these figure types 

continue to advance in speed, precision, and accuracy as technology continues to 

facilitate collection of more and more complex datasets. When pushed to the extremes, 

the basic forms of dendrograms and heat maps reach the limits of conveying data 

hierarchies, becoming overcrowded and confusing. The best case scenario for these 

overcrowded figures is that overall data trends emerge, but any scrutiny of the small 

details may be nearly impossible. In response to the limits of these figure types, 

dendrogram and heat map elements are being developed into figures that display different 

properties, finding novel uses for classical concepts. 

Ideally, the visualization of dendrograms and heat maps should be intuitive and 

engaging. Ultimately, viewers should be able to understand the figures being presented 

but also agree that the figures add constructive context to scientific reports. From The 

Visual Display of Quantitative Information by Edward R. Tufte, “What is to be sought in 

designs for the display of information is the clear portrayal of complexity. Not the 

complication of the simple; rather the task of the designer is to give visual access to the 

subtle and the difficult - that is, the revelation of the complex” (Tufte, 1983). However, 

due to the large and complex nature of many datasets, distilling information into 

graphical designs is not always a simple task. As a result, multiple strategies exist to 

simplify datasets and are sometimes employed to create more visually appealing figures 

(Gisbrecht & Hammer, 2015; Laczny et al., 2015; Laczny, Pinel, Vlassis, & Wilmes, 

2014; Liu, Maljovec, Wang, Bremer, & Pascucci, 2017; Ma & Sun, 2015).  
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There are a plethora of available programs, scripts, web-based applications, etc. 

available for clustering data and creating dendrograms and heat maps. A quick search of 

available options can yield an overwhelming amount of results with each seeking to 

either improve on the accuracy and/or efficiency of clustering, or provide new methods of 

constructing these figures. Since the new year (2017), methods such as dendrogram 

seriation (Arief, DeLacy, Basford, & Dieters, 2017), RNAscClust (Miladi et al., 2017), 

PhyD3 (Kreft, Botzki, Coppens, Vandepoele, & Van Bel, n.d.), GGTREE (Yu, Smith, 

Zhu, Guan, & Lam, 2017), and more, have emerged as opportunities to improve on data 

analysis and visualization. Rather than review the growing body of software, a potentially 

more meaningful discussion lies in the universal factors that affect dendrogram and heat 

map design: input data, scale and density, and color. These three elements of dendrogram 

and heat map design reflect the layers of figure architecture that “organize and order the 

flow of graphical information” (Tufte, 1983). Following a discussion of these design 

elements and examples of their impact in published figures, we look into recent 

innovations of using dendrogram and heat map concepts to create figures capable of 

alternate analyses. This path of data visualization is important for the advancement of 

science communication, adding available options to explain complicated subjects. 

Dendrogram and Heat Maps 

Dendrograms. Dendrograms are diagrams used to display hierarchical clustering. 

The essential components of dendrograms are: nodes, branches, branching points (or 

internal nodes), and in some cases a root. Nodes (represented by A and B in Figure 1) are 

the endpoints of dendrograms that represent either a single data point or a group of 

individual data points that share an elementary level of relatedness. Branches 
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(represented by C and D in Figure 1) are the lines that connect nodes to each other and 

usually a medial branching point (represented by E in Figure 1) or many branching points 

depending on the level of hierarchical complexity between the nodes. A root (represented 

by F in Fig. 1) is the base of the tree, serving as the top-level commonality between all 

data points in the dendrogram. Some dendrograms are unrooted, in which case nodes and 

braches can only be referenced to each other instead of a single common basal branch. 

 

 

Figure 1: A simple dendrogram with labeling of dendrogram components. (A) and (B) 

are nodes. (C) and (D) are branches. (E) is a branching point, or internal node. (F) is the 

root. 

 

It is also important to note the concept of “distance” that is often directly or 

indirectly associated with dendrograms. In brief, distance is a measure of relatedness 

between any two points on a dendrogram; points that have a large distance between them 

are less related to each other than points that have a small distance separation. On 

occasion, calculated distances are only accurately represented along a single dimension 

so that branch spacing and orientation accommodates labeling. For example, a 
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rectangular tree can be laid out in an orientation of the root on the left and nodes flush 

against a y-axis on the right, consisting of evenly spaced node labels. The x-axis in this 

design is a distance scale, so that only horizontal branch lines include a measure of 

distance. In general, all dendrograms share the feature that longer branching paths equate 

to larger distances, even if the branching paths are not scaled to a specific distance 

metric. Depending on the methods of dendrogram construction and the types of data 

involved, a distance metric may be calculated to scale branch lengths and proportionally 

represent exact distance estimates between any two points. 

Heat maps. Heat maps are graphs used to display response differences of a 

dataset. For the heat map in Figure 2, there are three essential components: x-axis, y-axis, 

and matrix. In general, the variables of the x-axis and y-axis are interchangeable, 

meaning the axis labels could be swapped with no effect on the data interpretation. In this 

example, one axis containing samples is being compared to the other axis containing 

conditions. The resulting matrix of these pairwise axes comparisons provides a visual of 

response differences between each combination, which could be correlation or abundance 

information. 

 While the matrix heat map orientation of Figure 2 is widely used in biology and 

science in general, there are many heat map orientations that exist. The defining feature 

of all heat maps is the color scale that indicates the range of possible data values. 

Opposing ends of the color scale represent opposing ends of the data being represented, 

with intermediate colors representing intermediate data values. 
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Figure 2: A simple matrix heat map with labeling of heat map components. In this figure, 

rows (Sample A, Sample B) represent individual data points or groups of data points 

whose response was measured. Columns (Condition C, Condition D) represent stimuli 

that my produce a measurable response from the row data points. The numbered matrix 

(1-4) represents measured responses relative to each other. In this grayscale example, the 

darkest and lightest shaded squares would represent opposite extremes in response, with 

the more neutral shades representing more moderate responses. 

Design 

Data. Scientific pursuits accumulate many different types of data and not all are 

amenable to the same visualization techniques. If a dataset is small or simple enough, 

data can be added directly into text results or discussion without the consequence of 

confusing readers. However, scientific datasets are often large and complex, requiring 

organization to facilitate comprehension. Some datasets can be communicated in their 

raw form, or arranged into a table, but many datasets are communicated more effectively 

with the use of a graph or figure to highlight important data features. At the broadest 

level of characterization, qualitative and quantitative data are used to measure variables 

or record observations that can be reported and add meaning to discussion topics. Both 
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types of data can be used to create dendrogram and heat map figures, although 

quantitative data is more commonly used. 

Qualitative data. Qualitative data is descriptive of categorical properties, usually 

measured in a nominal or ordinal scale. A nominal scale is used to categorize unmeasured 

data with names or words, such as the names of individuals. Data on an ordinal scale is 

ranked categorically in a specific order without a standard of measurement, such as 

“mostly disagree; neither agree nor disagree; mostly agree,” etc. Binary data can also be 

considered as qualitative as it is a very limited form of categorical options. In the context 

of dendrograms and heat maps, qualitative data may limit construction and visualization 

to abundances of categorical responses or presence/absence information. For 

dendrograms, this can complicate distance calculations since an absolute distance 

measurement would require a quantitative substitution model (Schloss, 2010). However, 

it is possible to create a measure of relative distance with data commonalties 

(Hetherington et al., 2015). In fact, tree-of-life dendrograms were once commonly 

constructed using qualitative anatomy similarities, a practice that is now virtually 

exclusive to fossil remains (Wolfe, Daley, Legg, & Edgecombe, 2016). Heat map 

visualizations of qualitative data would almost certainly require some form of content or 

thematic analysis to quantify qualitative and categorical properties, since they require 

data that is hierarchical and standardized to be directly comparable (Vaismoradi, 

Turunen, & Bondas, 2013). 

Quantitative data. Quantitative data is descriptive of measured quantities and is 

the basis of most heat maps and dendrograms which are designed to display magnitudes 

of distance and comparisons. Quantitative data is well-suited for data visualization in 
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general because of the ability to directly compare and scale measured values through 

calculated distances, fold changes, statistics, etc., which can then be graphed relative to 

other quantitative data metrics. Perhaps the most difficult challenge that heat maps and 

dendrograms face is the ever increasing size of quantitative datasets. The first hurdle is to 

analyze these massive datasets, which has led to a growing field of developing new 

clustering methods that minimize the use of computational time and resources (Edgar, 

2010; Fu, Niu, Zhu, Wu, & Li, 2012; Ghodsi, Liu, & Pop, 2011; Gronau & Moran, 2007; 

Huse, Welch, Morrison, & Sogin, 2010; Kellom & Raymond, 2017). In the current state 

of dendrogram and heat maps visualization methods, the only effective means of dealing 

with such large datasets is by data reduction before the visualization process. Very large 

visualizations of hierarchical data are widely considered impractical, with some 

estimating the upper limits of displayable data points to be around 200 (Jackson, 1997; 

Morris, Asnake, & Yen, 2003; Schonlau, 2004). 

Scale and density. Scale and density are two factors that dictate the shape of 

dendrogram and heat map visualizations. The scale of the data, which can be thought of 

as the scope or range, influences visualization choices relating to perceived distances or 

differences between data points. The main challenge of visualizing very large datasets is 

representing the data in a way that is accurate and complete, while also intuitive and 

uncluttered (Krzywinski, Birol, Jones, & Marra, 2012). Providing scale references gives 

context to the illustrated data points, and large data visualizations almost invariably 

require the ability to compare scales to be more coherent. 

The density of a figure in relation to data scale affects figure comprehension by 

allowing or restricting information assimilation within the figure space (Tufte, 1983). 
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Figure density can refer to information density of the overall image or local areas within 

the larger picture, both meanings are relevant to the design of dendrograms and heat 

maps. Depending on the scale of the figure, large datasets may require information dense 

visualizations for accurate depiction. With a limited amount of space in figure design, the 

potential for overcrowding is ever present. Dendrograms and heat maps that are either too 

dense or not dense enough can lead viewers to question the credibility of the data being 

shown. 

Use in dendrograms. Dendrograms are the visualization of data clustering and 

can take any shape so long as they maintain the basic structure of Figure 1. 

Conventionally, dendrograms in science publications are displayed as linear or radial 

with only occasional amorphous or sprawling designs. Both linear and radial 

dendrograms each have visualization advantages and disadvantages that are closely 

associated with the scale of the dataset and density of the figure. 

Figure 3 contains four examples of dendrograms that are either linear or radial, 

and are of varying scales. Figure 3A from Han et al., 2017 (Han, Liu, Wang, & Liu, 

2017) is a linear dendrogram depicting relatedness between five populations of Vicia 

ramuliflora and Vicia unijuga, which are species of flowering legume plants known as 

vetches. Although it may be inferred from the small number of nodes that Figure 3A uses 

a relatively small scale and the five populations of these two species are closely related, 

the dendrogram does not contain a scale reference to make that conclusion based on the 

figure alone. The only inferences that can be made from this figure are the hierarchical 

relationships of each population to the others, which was the authors’ intent and the 

simplicity of the dendrogram lends itself to. This particular dendrogram was created with 
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a method that assumes branch lengths from root to each node are equal, which means that 

the lack of a distance scale is acceptable since node pairs are assumed to be equidistant 

(Felsenstein, 2004). Similar lacking of scales can create deceptive diagrams if care is not 

taken to explain the purpose of the dendrogram. If the dendrogram is meant to show 

distances between populations of clusters, a scale reference is absolutely needed. 

Figure 3B from Du et al., 2013 (Du, Pan, Tian, Li, & Zhang, 2013) is an unrooted 

radial dendrogram of protein family member homologs from three plant genera. Unlike 

Figure 3A, Figure 3B contains a scale reference which enables distance comparisons 

between dendrogram locations. By supplying a scale reference, this figure very 

effectively gives a sense of magnitude to each of the branches among the three classes of 

homologs. The amount of spacing given to the scope of this dataset constitutes an 

uncluttered view of all branches and nodes, making it very easy to tell that the Class III 

cluster has less intra-cluster diversity than either Class I or Class II, and that some nodes 

in the overall dendrogram are more distantly related than others. This sense of scale is 

further emphasized artistically by the sizes of the class labeling arcs, albeit in a non-

rigorous fashion. 

Labeling arcs are also used in Figure 3C from Sehgal et al., 2015 (Sehgal et al., 

2015) in a radial dendrogram of germ cell genetic material (germplasm) accessions from 

four lines of spring bread wheat. The labeling arcs are used to show six clusters of 

germplasm and the intra-cluster diversity. In contrast to Figure 3A, these branch lengths 

are not assumed to be equidistant and an observable range of distances are depicted. The 

labeling arcs and branch lengths in Figure 3C are unable to be compared to a distance 

scale, since no distance scale exists. Therefore, the only conclusions that can be inferred 
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from this dendrogram are that some node and/or cluster pairs are more distantly related 

than others, and that some clusters have less intra-cluster diversity than others. In 

practice, the data scope of this figure makes it difficult to make distance comparisons of 

specific nodes and/or clusters. The authors have sacrificed small scale comprehension to 

present overarching trends, which makes the functional scale of this visualization more 

similar to the populations of Figure 3A than the homologs of Figure 3B, despite the 

individual branches for each gene accession. 

Figure 3D from Wen et al., 2012 (Wen, Franco, Chavez-Tovar, Yan, & Taba, 

2012) is another example of sacrificing small scale scope to show overarching trends, in 

an arguably less effective format. Figure 3D is a linear dendrogram representing 

relationships between tropical maize germplasm accessions, plotted with comparable 

branch distances and a distance reference. Similar to Figure 3C, the external branches are 

considerably longer than most internal branches, indicating relatively low intra-cluster 

similarity and high inter-cluster similarity between neighbors. Many branching points 

between the clusters in Figure 3D clearly exist but are compressed to accommodate long 

external branches, making them difficult to examine or compare to the reference scale. 

The scale of the data in this figure creates a visually dense design that could inhibit 

comprehension. The purpose of this figure appears to be highlighting the disparity 

between genotype (cluster) and geographic sampling region (color), at which it succeeds 

since there is a general absence of contiguous blocks of single external branch colors. 

However it is difficult to hone in on specific clusters or geographic regions in this 

crowded dendrogram design. 
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Figure 3: Dendrogram examples of scale and density. A) Figure 4 from Han et al., 2017 

depicting populations of Vicia ramuliflora and Vicia unijuga (Han et al., 2017). B) Figure 

2 from Du et al., 2013 showing protein family member homologs from three plant genera 

(Du et al., 2013). C) Figure 3 from Sehgal et al., 2015 illustrating spring bread wheat 

germplasm accessions (Sehgal et al., 2015). D) Figure 2 from Wen et al., 2012 portraying 

tropical maize germplasm accessions (Wen et al., 2012). 
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Use in heat maps. Heat maps are often closely associated with dendrograms as 

seen in Figure 4, where one or both axes are attached to a dendrogram that displays 

row/column hierarchy. The axes categories on heat maps are commonly presented as 

dendrogram nodes, illustrating hierarchical relationships of axes values for added data 

context. Figure 4A from Xue et al., 2017 (Xue et al., 2017) is a small scale heat map 

from a study of aplysin intervention/protection in a rat model of ethanol-induced liver 

injury. This heat map depicts gut microbiome bacterial genera (rows) abundances in 

response to control, alcohol model group, or aplysin intervention group (columns left to 

right respectively). The information density of this figure is relatively low, making it easy 

to compare individual data points in the heat map grid to each other and the measured 

scale bar. The purpose of this heat map is to differentiate the major and minor gut 

microbiome genera in each of the treatment groups. The heat map appears to be ranked so 

that more abundant genera are oriented at the top of the figure with less abundant genera 

at the bottom, clustering by subpopulation size. Columns are also arranged by row 

response similarity to reveal treatment group similarity. This heat map effectively 

communicates small scale differences and similarities between rows and between 

columns for which it was designed. 

Figure 4B from Wang et al., 2016 (Wang et al., 2016) is a heat map with a scale 

that serves a different purpose than that of Figure 4A. This large scale heat map is used to 

show synaptic protein correlation from Alzheimer’s disease patients (post-mortem brain 

tissue) while testing an algorithm for graphical model construction. In this figure, red 

indicates stronger correlation between expression of proteins and white indicates weaker 
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correlation. Due to the data scale and information density of this figure, small scale 

scrutiny is nearly impossible. Instead, the intent of this figure is to show modules of 

highly interconnected proteins within the larger biological network, of which two distinct 

groupings can be seen in the figure. This high level view of the data in effect converts a 

283x283 peptide correlation heat map into a 2x2 biological network module heat map, 

with the ability to view overall correlation within the module comparisons. 

Like dendrograms, balancing data scale with visualization density is crucial to the 

effect of heat maps. Figure 4 presents two opposite extremes of heat map scale and 

density. Figure 4A displays a relatively small scale dataset in a low density visualization, 

which is useful for individual row and/or column comparison. Figure 4B is the result of 

adding rows and columns to eventually create a large scale heat map. The comparisons in 

Figure 4B are so complex that the image becomes information dense, and blocks of 

comparison values among sorted axes translate to a large scale heat map with low 

density. A heat map with unsorted axes at the scale of Figure 4B could be unintelligible, 

since individual heat map comparisons are lost within the bigger picture, sacrificing small 

scale scope to show overarching trends. 
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Figure 4: Heat map examples of scale and density. A) Figure 7 from Xue et al., 2017 

showing aplysin intervention/protection in a rat model of ethanol-induced liver injury 

(Xue et al., 2017). B) Cropped Figure 4 from Wang et al., 2016 illustrating synaptic 

protein correlation from Alzheimer’s disease patients (Wang et al., 2016). 

 

Color.  The use of color in diagrams is a widely used form of figure labeling. 

Color scheme is a critical component of figure design that can enhance or distort the 

display of information. Both of the examples in Figures 1 and 2 (more evidently in Figure 

2) are represented in grayscale, meaning they use only white, black, and shades of gray as 

intermediates. Grayscale has the advantage of simplicity, while also avoiding issues that 

may arise from printing or color vision deficiencies, both needing to be considered, albeit 

printing concerns are increasingly situational with the digitization of scientific journals. 
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 Color vision deficiencies are classified at three severity levels, stemming from the 

three types of color vision photoreceptors in the human eye: anomalous trichromacy 

(mild), dichromacy (moderate), monochromacy (severe) (Simunovic, 2010). The most 

common form of color vision deficiency is red-green color vision deficiency (either 

trichromacy or dichromacy), affecting ~8% of males and ~0.4% females, thus warranting 

the most consideration (Birch, 2012). Avoiding the use of red-green color schemes on 

figures meant to differentiate data will help to communicate data to a large proportion of 

color vision deficient individuals. 

Even without issues that may arise from limitations on printer inks and color 

vision deficiencies, the color scheme of a figure must depict easily distinguishable data. 

Color schemes should also avoid the creation of “graphical puzzles” referenced by Tufte, 

1983, where color representation in unintuitive (Tufte, 1983). Sequential color schemes 

like grayscale and color shading are often better at conveying natural visual hierarchy but 

may not adequately disjoint separate data points (Brewer, 2003; Harrower & Brewer, 

2003). Alternatively, distinct colors portray visual hierarchy less intuitively even when 

presented in a logical arrangement such as wavelength, but may be better at 

distinguishing data points and can be arranged to be more qualitative so that adjacent 

colors are sufficiently distinct (Brewer, 2003; Harrower & Brewer, 2003). Figure 5 

demonstrates the color schemes mentioned here. 
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Figure 5: Figure color schemes that can be used to differentiate data. Started from the 

top, the first row shows a grayscale color scheme. The second row shows a color shading 

(white to blue) scheme. The third row shows a scheme of distinct colors that are sorted 

systematically, in this case by wavelength. The last row shows a scheme of distinct colors 

specifically chosen to highlight differences between different data (*Qualitative Scheme 

“6-class Set1” from colorbrower2.org (Brewer, 2003; Harrower & Brewer, 2003)). 

 

Another aspect of dendrogram and heat map labeling which is not discussed 

below since it is less common is the use of patterns (or textures) in place of solid colors. 

In addition to many of the same considerations for color schemes, pattern usage entails its 

own set of variables. Employing patterns for diagram labeling is often done categorically 

since an intuitive hierarchical order is more difficult to achieve than simple color 

adjustments. Sometimes, patterns are used because publication requirements dictate a 

grayscale image and grayscale shading would falsely imply data contiguity or hierarchy. 

If this is the case, care must be taken to avoid creating a graphical puzzle with too many 

patterns that require definition.  
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The choice of an effective color scheme for dendrogram and heat map 

visualizations is largely dependent on its underlying data. It is important to remember that 

coloration of a diagram is a space-efficient form of labeling; every applied color should 

have meaning. Applying color for the sole sake of decoration runs the risk of suggesting 

meaning where there is none, or obscuring data with colorful distractions. A goal of data 

visualization is, as Tufte writes, “Above all else show the data” (Tufte, 1983). However, 

that is not to say that dendrograms and heat maps should not be visually appealing. 

Use in dendrograms. Dendrograms could benefit from any of the color schemes 

in Figure 5, depending on the purpose of the figure. Figure 6 shows four examples of how 

different color schemes are used to convey information. Figure 6A from Tully and 

Potapov, 2015 (Tully & Potapov, 2015) depicts two dendrogram methods comparing 

morphological trait measurements of strains of Folsomia candida, a species of soil 

arthropod commonly known as “Springtails.” As is done frequently with dendrogram 

color schemes, color information is applied to only the nodes of Figure 6A while 

branching shows relatedness between the node colors. With circle size representing 

absolute value magnitude of character trait measurements, binary grayscale (black or 

white) is used to depict positive or negative values. Different shading levels could have 

been used in this figure in place of circle size to illustrate magnitude, but the simplicity of 

black vs. white is an easily perceivable guide to the important differences between 

strains. The authors’ choice of using circle size instead of shading to show measurement 

magnitude puts emphasis on the contrast between positive (black) and negative (white) 

values, which is a binary use of grayscale rather than a gradation grayscale scheme. 
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Figure 6B from Betancur-R et al., 2013 (Betancur-R et al., 2013) shows 

phylogenetic relationships among families of Syngnathiformes, an order of bony fish. As 

in Figure 6A, Figure 6B has a color scheme applied to only dendrogram nodes, using 

essentially a two-color shading scheme from blue to magenta (with a purple intermediate) 

to portray low and high scales of the number of species examined by conserved gene 

sequencing in each family node. Importantly, the use of a two-color shading scheme is 

used in this figure to also differentiate data size values from bootstrap values, which are 

represented with a grayscale scheme. The color shading scheme in this figure serves two 

purposes, to give a sense of scale to the family data sets and provide a categorical 

difference from the bootstrap values. 

Figure 6C from Plazzi et al., 2011 (Plazzi, Ceregato, Taviani, & Passamonti, 

2011) illustrates bivalve phylogeny with order level nodes sorted by a color scheme that 

divides nodes into subclasses. Unlike Figures 6A and 6B, the color scheme of Figure 6C 

is applied to dendrogram branches as well as nodes, conveying subclass branching points. 

The wavelength sorted color scheme illustrates two points; first, it clarifies separation 

between each of the subclasses represented in the dendrogram since distinct hues are 

easily distinguishable. And second, wavelength sorting conveys a linear relatedness 

progression from the top to bottom of the dendrogram. The categorical nature of a sorted 

color scheme is the main strength over grayscale or color shading schemes that are 

generally better at conveying data scaling or progression (Brewer, 2003; Harrower & 

Brewer, 2003).  

Figure 6D from Alibhai et al., 2017 (Alibhai, Jewell, & Evans, 2017) shows the 

relatedness of puma footprints based on a morphological identification protocol and 
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clustering algorithm. Figure 6D uses a qualitative color scheme applied to dendrogram 

nodes and some of the more exterior branches to differentiate puma footprints belonging 

to individual pumas according to the authors’ identification methods. Similar to the 

wavelength sorted color scheme of Figure 6C, this qualitative color scheme successfully 

separates different groups. In contrast to Figure 6C, the color scheme here does not have 

an intuitive order, which means that relatedness inferences must come from the 

dendrogram layout. 
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Figure 6: Dendrogram examples of color. A) Figure 5 from Tully and Potapov, 2015 

depicitning morphological train measurements from strains of Folsomia candida (Tully 

& Potapov, 2015). B) Figure 4 from Betancur-R et al., 2013 showing phylogenetic 

relationships among families of Syngnathiformes (Betancur-R et al., 2013). C) Figure 7 

from Plazzi et al., 2011 illustrating bivalve phylogeny  (Plazzi et al., 2011). D) Cropped 
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Figure 6 from Alibhai et al., 2017 showing puma footprint relationships (Alibhai et al., 

2017). 

Use in heat maps. In the context of heat maps, color schemes need to have an 

intuitive progression that displays a hierarchy of responses, ruling out the use of strictly 

qualitative color schemes as used in Figure 6D. Heat map color schemes need opposing 

ends to represent high and low value extremes of a data range, as well as intermediate 

colors or shades to represent the full dataset. Figure 7 shows four examples of heat map 

color schemes with the innate ability to differentiate a range of data values. The simplest 

of the four examples, Figure 7A from Eneslätt et al., 2012 (Eneslätt et al., 2012), uses 

five distinct grayscale shades in a heat map to show all vs. all (of their experiment) T cell 

marker frequency correlation among human donors. Using a set number of distinct 

shades or colors is a very common complexity reduction practice of heat map 

construction, establishing a small set of colors to plot (and view) instead of a contiguous 

color range normalized to data values. In the case of Figure 7A, a small number of 

distinct grayscale shades are being used categorically, to represent bins of correlation 

coefficient ranges. Since this figure is composed of nonnegative correlation coefficients, 

higher values are of greater importance than lower values and can be quickly discerned as 

darker regions. The one-tailed nature of this dataset is ideal for the fading character of a 

grayscale color scheme (or any single color shading scheme), but not all data are equally 

amenable. 

 Similar to the use of a small number of grayscale bins used in Figure 7A, Figures 

7B from Zhai et al., 2013 (Zhai, Yao, & Wang, 2013) and 7C from Gerzova et al., 2014 

(Gerzova et al., 2014) use a small number of color shaded bins to represent correlation 
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coefficients and fold changes, respectively. However, both Figures 7B and 7C are 

constructed from two-tailed datasets so two color shading schemes are combined to 

portray divergence. The red-green color scheme of Figure 7B illustrates relative gene 

expression levels in mouse cell line cultures in response to different growth media over 

time, relative to a single day of growth in control media. The readily perceivable 

hierarchical aspect that made grayscale successful for heat maps is shared by two-color 

shading schemes. By using two diverging color hues to represent opposite ends of the 

data spectrum instead of the shading of a single hue, the importance of opposing data 

range tails can be more intuitively recognized. One drawback that Figure 7B (and many 

other published heat maps) suffers from is the confusion that could be caused by the 

prevalence of red-green color vision deficiency discussed in Section IIIC. Figure 7C 

circumvents this common color vision complication with the use of a red-blue color 

shading scheme to characterize correlation coefficients between bacterial families and 

antibiotic resistance genes. Unlike Figure 7A, the correlation coefficients of Figure 7C 

include both positive and negative correlation values, indicating the propensity or 

disinclination of a bacterial family to contain a specific antibacterial gene. Like Figure 

7B, this red-blue color shading scheme effectively highlights opposing ends of a two-

tailed dataset with two distinct color hues. 

 Figure 7D from Frank et al., 2010 (Frank et al., 2010) shows an ordered color 

scheme heat map of similarity indices between time points of human axilla (armpit), 

groin, and nares (nostrils) individual microbiome samples as well as nares microbiome 

samples between multiple subjects. The wavelength sorted color scheme of Figure 7D 

provides the hierarchical progression that is required for heat map visualization but the 



  130 

wider range of distinct color hues facilitates a more categorical view of the data range, 

similar to the distinct grayscale shades of Figure 7A. Also, unlike the very clear small set 

of color scheme values seen in Figures 7A-C, the sorted color scheme of Figure 7D is 

much more contiguous, allowing for intermediates between perceived distinct color hue 

categories. The increased complexity of an ordered color scheme that lends itself to the 

distinction of categories also decreases the perceptibility of opposing data tails that is 

featured in diverging two-color shading schemes. 
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Figure 7: Heat map examples of color. A) Figure 8 from Eneslätt et al., 2012 showing T 

cell marker frequency correlation between human donors (Eneslätt et al., 2012). B) 

Figure 2 from Zhai et al., 2013 illustrates relative gene expression levels in mouse cell 

line cultures (Zhai et al., 2013). C) Figure 5 from Gerzova et al., 2014 characterizes 

correlation coefficients between bacterial families and antibiotic resistance genes 

(Gerzova et al., 2014). D) Figure 2 from Frank et al., 2010 shows similarity indices 

between human microbiome samples (Frank et al., 2010). 

 

Innovation 

In section III, we have seen how architectural elements of data, scale and density, 

and color are being used to visualize data trends in the context of dendrogram and heat 
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map strengths. However, with all their strengths dendrograms and heat maps struggle to 

display the multidimensionality of their data, perhaps because we are often forced to 

display data in static images. Hidden within nearly every dendrogram or heat map are 

many levels of equally legitimate versions of the same data display. The reality of 

clustered relationships is often more disordered than what is presented by the final 

dendrogram or heat map image, but data are forced into end-point clusters based on 

identity cutoffs (Kellom & Raymond, 2016). For instance, dendrograms of related genera 

are represented with each genus located at dendrogram nodes. However, not all members 

of the same taxonomy rank, protein family, etc. will cluster at the same level of sequence 

identity/similarity. The nodes of a dendrogram could be clustered at any clustering cutoff, 

each with differing dendrogram configurations and cluster abundances. Heat maps 

struggle in displaying this same concept, but from the opposing end of overlooking 

alternate cluster hierarchies rather than alternate cluster abundances. Every heat map has 

axis values that are dependent on the level of clustering specificity, which means there 

are usually many different heat map visualizations of the data hidden from view. 

A cause of the multidimensionality challenges that dendrograms and heat maps 

struggle with is the concept of undersplitting and oversplitting (Flynn, Brown, Chain, 

MacIsaac, & Cristescu, 2015). Undersplitting creates nested clusters consisting of 

multiple subgroups of differing densities, each with the potential to form their own 

clusters under different clustering parameters (Li, Ye, Li, & Ng, 2010). Nested clusters 

exist because clustering algorithms cannot differentiate between intra-cluster diversity 

and inter-cluster diversity with complete reliability. This is not a slight at current 

clustering algorithms; it may be that making such distinctions for every complex dataset 
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is an impossible task. Since it is known that clustering algorithms can create nested 

clusters, they are sometimes pushed to very strict clustering parameters which can create 

the opposite problem of oversplitting, where multiple clusters represent the same 

functional group. Self-organizing map (SOM) techniques have been adapted to help 

circumvent clustering undersplitting and oversplitting but they do not solve the issue of 

visualizing multidimensionality since they work by reducing dimensionality (Nikkilä et 

al., 2002; Samsonova, Kok, & IJzerman, 2006).  

There have been two main strategies to meet the challenge of visualizing 

multidimensionality of clustering data: 1) reorganizing cluster hierarchies by ‘cutting’ 

branches at multiple clustering cutoff levels, and 2) overlaying heat map values over 

dendrogram hierarchies. 

Restructuring the clustering hierarchies by branch cutting allows for the 

visualization of dendrograms (and heat map matrices) that are not solely dependent on 

clustering cutoffs or self-organization. Instead, branch cutting algorithms scan nodes and 

exterior branches to check for signs of undersplitting or oversplitting derived from 

distance calculations, as well as checks of cluster abundances (Langfelder, Zhang, & 

Horvath, 2008). Branches are then cut or extended based on algorithm scoring. This 

process yields a dynamic set of node clusters that are not beholden to a single clustering 

cutoff, and can be used to create a heat map matrix with the same properties. While this 

process visualizes multidimensionality better than static clustering cutoffs or SOM 

clustering results, it is algorithmically-bound to display a single view of the results that 

may not suit everyone’s needs. An alternative is a user-selected branch cutting process 

that yields nodes from multiple clustering cutoffs, affecting dendrogram shape and heat 
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map matrices (Vogogias, Kennedy, Archaumbault, Smith, & Currant, 2016). Branch 

cutting methods allow for multidimensional choice in data visualization, meaning 

dendrograms and heat maps are not restrained to a single viewing depth of the data. To 

use an analogy, traditional dendrograms and heat maps provide a snapshot view of a data 

clustering level while branch cutting methods create a collage.   

The other strategy to overcome the challenge of visualizing multidimensionality 

in dendrograms and heat maps is to overlay heat map values on dendrogram hierarchies. 

This strategy is not to be confused with often-used practice of orienting the axis values of 

a heat map by means of dendrogram clustering, as seen in Figures 4 and 7C. In this 

configuration, the axis values are represented as nodes on separate dendrograms that are 

used to cluster columns and rows. While this often points out important data trends or 

conveys an extra level of context, it does not illustrate any information that could not be 

displayed if dendrogram and heat map were displayed separately. 

Instead, the strategy of overlaying heat map values on dendrogram hierarchies 

means plotting a heat map response for every cluster (nodes and branching points) 

represented in a dendrogram. An early implementation of this concept was the 

Hierarchical Clustering Explorer (HCE) program (Seo & Shneiderman, 2002). With the 

appropriate data input, HCE can display heat map responses for any given clustering 

cutoff of a dendrogram. This ability makes it easy to browse the multidimensionality of 

the dataset and choose clustering cutoff visualizations that best represent the study 

narrative in static figure publications. Going beyond single clustering cutoff 

visualizations, some recent developments have made figures that assign colored blocks to 

label cluster abundances (or other characteristics) over many dendrogram clustering 
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cutoffs simultaneously (Agrafiotis, Bandyopadhyay, & Farnum, 2007; Ondov, Bergman, 

& Phillippy, 2011). This manner of dendrogram labeling creates a new figure type with 

an intuitive view of cluster characteristics and how they change for each clustering cutoff. 

When this concept is applied with heat maps as dendrogram labels the figures adopt the 

ability of tracking heat map responses though expanding and contracting clustering 

specificity in a single figure, a feature that is missing in standard dendrograms or heat 

maps (Kellom & Raymond, 2016). An influence that contributed to this concept was the 

plotting tool Circos and its prevalent use in showing genome characteristics (Krzywinski 

et al., 2009). One such example is in Figure 8 from den Bakker et al., 2013 (den Bakker 

et al., 2013), showing clade membership (red or blue) of genes for the genomes of 

Listeria monocytogenes strains (rings). While this figure is not arranged in a dendrogram 

configuration, clade membership can be seen to change between each of the strain 

genomes. 
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Figure 8: Figure 3 from den Bakker et al., 2013 showing clade memberships of genes in 

Listeria monocytogenes strain genomes (den Bakker et al., 2013). 

 

Overlaying heat maps onto dendrogram configurations shows the 

multidimensionality of nodes and branching points in clustering datasets whereas branch 

cutting methods highlight a selection of multidimensional nodes, each strategy 

emphasizing multidimensionality from different perspectives. Branch cutting is designed 
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to underscore the idea that complex datasets do not usually have a homogeneous layer of 

pertinent clusters, so visualizations should not be based on clustering cutoffs. Overlaying 

heat maps on dendrogram configurations is designed to track the effects of cluster 

assignment on heat map responses, with the intention of detecting shifting trends in a 

gradational dataset. Each method conveys the complexity and dynamic nature of 

clustered hierarchical datasets in ways that are not possible in traditional dendrograms 

and heat maps.  

Conclusion 

Ultimately, figure design should be focused on the most effective method of 

communicating the narrative that emerges from data analysis. Maximizing the impact of 

a figure will require consideration of potential weaknesses and the options to mitigate 

them. Weaknesses of dendrograms and heat maps can come from design architecture, like 

those discussed in Section III, which affect the graphical flow of information. 

Alternatively, weaknesses can come from choosing a figure type that limits the accurate 

portrayal of the data. Traditional dendrograms and heat maps excel at displaying 

hierarchical relationships of clustered datasets through input data simplification, scale 

and density, and color, but often struggle to convey hierarchy multidimensionality by 

manipulation of these factors alone. In response, figure types have been developed to 

bridge this visualization gap and preserve the useful comparative qualities that are well-

established by dendrograms and heat maps. While the visualization of extremely large 

datasets is still a problem for these new figure types, they have the potential to help locate 

interesting data trends in large datasets and visualize the narrowed down results. 

Innovations that fill the gaps of dendrograms and heat maps do not subvert the usefulness 
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of these long-established figures but they do give additional options for more effective 

science communication. 
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APPENDIX A  

FIGURE PERMISSIONS 

All figures in Chapters 3 (Journal of Biological Methods), 4 (PLOS One), and 5 (various 

PLOS journals) are published under Creative Commons Attribution License, giving 

permission to: A) copy and redistribute the material in any medium or format, and B) 

remix, transform, and build upon the material for any purpose, even commercially. 
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Chapter 4 Figures 8 and 9 are published in PLOS One under Creative Commons 

Attribution License. Figures 8 and 9 are originally published in Applied and 

environmental microbiology with permission given under Creative Commons Attribution 

License:  
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License. Figure 10 is originally published in Proceedings of the National Academy of 

Sciences with permission given under Creative Commons Attribution License:  
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APPENDIX B  

STATEMENT OF PERMISSION FROM CO-AUTHORS 

All co-authors have granted their permission for my use of Chapters 2, 3 and 4. 
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APPENDIX C  

CHAPTER 2 EXCEL FILE OF TRANSCRIPTOME RESPONSES 

Consult attached file Chapter2_Supplemental_File_S1.xlsx using Microsoft Excel 

or other spreadsheet reading software. 
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APPENDIX D  

CHAPTER 2 PERL SCRIPTS 

Consult attached file Chapter2_Supplemental_File_S2.zip. 

  



  159 

APPENDIX E  

CHAPTER 3 CLUSTER AGGREGATION PERL SCRIPTS 

Consult attached file Chapter3_Supplemental_File_1.pl.  
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APPENDIX F  

CHAPTER 4 EXAMPLE OF THE TOP-DOWN CLUSTERING METHOD USED TO 

CONSTRUCT DENDRITIC HEAT MAPS 

Consult attached file Chapter4_Supplemental_File_S1.pdf.  
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APPENDIX G  

CHAPTER 4 PERL SCRIPTS AND DENDRITIC HEAT MAP IMAGES  

 Consult attached file Chapter4_Supplemental_File_S2.zip. 
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APPENDIX H  

CHAPTER 4 PERL SCRIPTS AND DENDRITIC HEAT MAP IMAGES  

 Consult attached file Chapter4_Supplemental_File_S3.zip. 

 

 


