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The maintenance of genetic variation and signal honesty may be explained, in part,

through the genic capture hypothesis in sexual selection biology. Polygenic traits, like

body condition, could help maintain variation in signaling traits under strong, directional

sexual selection while maintaining signal honesty. Here we consider the genic capture

hypothesis in a study of morph-specific condition and free radical effects on signaling

traits (head coloration) in males of a polymorphic lizard, the Australian painted dragon

(Ctenophorus pictus). Males differ in head color (red, orange, yellow, and a “blue” morph

that has no yellow or red pigments). The red and yellow morphs were the first described

and we have previously demonstrated that red morphs are aggressive and dominant

over yellow morphs that are better at sperm completion than the red morphs. Body

condition varied significantly in its relationship with superoxide among the four morphs,

with males in better condition showing higher superoxide levels in “yellow-orange-reds”

morphs (least so in red morphs). Blue morphs contrasted markedly by showing lower

superoxide levels in males in better condition, perhaps facilitated by no (or reduced)

dermal deposition of pigmentation on the head. Color degradation with loss in condition

from yellow to red morphs, suggesting that red morphs are better able to maintain color

with superoxide acting as a potential handicap. This result is consistent with condition-

dependent signal expression and the genic capture hypothesis; males with the more

pronounced signal carry a higher potential cost (higher superoxide levels) when being in

better body condition, while maintaining more vivid coloration (the condition-dependent

trait).

Keywords: ROS, superoxide, body condition, polymorphic species, color maintenance

INTRODUCTION

Genic capture supposes that trait expression depends on overall condition (Rowe andHoule, 1996).
Overall condition is determined by many loci throughout the genome, which makes for a large
mutation target, allowing newmutations to keep pace with erosion by selection (Kodric-Brown and
Brown, 1984; Rowe and Houle, 1996; Tomkins et al., 2004; Kotiaho et al., 2008). Body condition
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reflects the efficient collection, assimilation and deployment of
resources, and depends on the individual’s capacity to cope with
handicaps like infection, injury, parasitism, and environmental
stress throughout ontogeny (Zahavi, 1975; Andersson, 1982;
Hamilton and Zuk, 1982; Folstad and Karter, 1992; Rowe
and Houle, 1996; Hill, 2011). Those individuals that can
allocate comparatively more resources to the development
and maintenance of a colorful display trait, while tolerating
concomitant viability costs, are honestly signaling their quality
to potential mates and rivals in a condition-dependent manner
(Cotton et al., 2004; Velando et al., 2006; Bortolotti et al.,
2009). Thus, the condition-dependent honesty of the signal
ensures that preference for the signal will persist through
evolutionary time (Pomiankowski and Moller, 1995; Lorch et al.,
2003; Tomkins et al., 2004; Kotiaho et al., 2008; Bonilla et al.,
2016). The physiological efficiency of resource collection and
distribution and the capacity to withstand assaults to homeostasis
is underpinned by the conditional and environmental regulation
and interaction of many genes that differ among individuals in a
population (Andersson, 1982; Nur and Hasson, 1984; Rowe and
Houle, 1996; Hill, 2011; Chandler et al., 2013; Bonilla et al., 2016).

Color-polymorphic species are a valuable tool in resolving the
selective forces involved in condition-dependent sexually selected
trait expression in wild populations. Heritable color morphs
often have distinct behaviors and physiology, with associated
differences in selection pressures on an otherwise common
genetic background (Sinervo and Lively, 1996; Pryke andGriffith,
2006; Healey et al., 2007; Pryke et al., 2007; Olsson et al., 2009a,
2007a; reviewed in Huxley, 1955; Wellenreuther et al., 2014).
Colorful traits often fade during the breeding season, which
suggests these traits may have condition-dependent expression
and costly to maintain (Cotton et al., 2004; Grunst et al., 2014;
Reinhart et al., 2015), which are potentially mediated by oxidative
stress (von Schantz et al., 1999; Monaghan et al., 2009; Hõrak
et al., 2010; Garratt and Brooks, 2012; Costantini, 2014; Hung
and Li, 2015) and body condition (Slagsvold and Lifjeld, 1992;
Costantini, 2008; Stephen Dobson et al., 2008). Reactive oxygen
species (ROS) damage DNA, proteins and cell membranes,
triggering cell death and color-fading (Dowling and Simmons,
2009; Costantini, 2010; Olsson et al., 2012).

Here we assessed the relationship between a measure of
resources (body condition: BCI), superoxide levels and the
maintenance of head coloration in a wild color-polymorphic
lizard. This species, the Australian painted dragon (Ctenophorus
pictus), has been the subject of extensive investigations in
oxidative stress and sexual selection biology. In our study
population, there are four genetically determined male morphs
(Figure 1; Red, Orange, Yellow and Blue; Olsson et al., 2012).
These morphs fluctuate in frequency across years but at least
three (red, yellow, and orange) have been demonstrated to
have similar reproductive success in the wild (Olsson et al.,
2007a). Morph color is important for social behavior and sexual
selection, and most research to date has been conducted on
the red and yellow morphs. Red morphs are more aggressive
and have higher testosterone than yellow morphs (Healey et al.,
2007; Olsson et al., 2007b). Yellow morphs have relatively
larger testes than red morphs, which allows them to gain more

FIGURE 1 | Male Ctenophorus pictus in the Yathong population exhibit

four head color morphs (clockwise starting from the upper left): Red;

Orange; Yellow; and Blue. Photo by CRF.

than three times greater paternity in direct sperm competition
trials against red morphs in the lab (Olsson et al., 2009b).
However, this yellow morph advantage in sperm competition
does not translate to the field, presumably because red morphs
efficiently defend both territories and mates, which precludes
sperm competition (Olsson et al., 2009a). Males, regardless of
morph, whose territory borders that of a red morph, had lower
BCIs relative to those who did not have a red neighbor suggesting
red-morph aggression is costly/stressful for his neighbors (Healey
and Olsson, 2009). However, red morphs may also pay a
cost for their aggressiveness and high testosterone, because
non-specific superoxide is higher in red morphs than yellow
morphs when mitochondria are maximally active as revealed
when manipulated by a biochemical stressor (CCCP) in vitro
(Olsson et al., 2009c). Although head color is in part carotenoid-
based, dietary manipulation of carotenoids does not mediate a
relationship between superoxide and bright colouration (Olsson
et al., 2008). Nevertheless, experimental lowering of superoxide
using a superoxide dismutase mimetic (EUK 134) reduces color
fading over the breeding season (Olsson et al., 2012), suggesting
superoxide production is linked to color degradation. Given these
differences between the two best described morphs, we might
expect different aspects of condition (e.g., BCI and superoxide)
to vary among these morphs due to past selection to optimize
the different morph-specific reproductive strategies and to be
reflected in color-fading sexually active males.

The overarching question in this work is: How do condition
and superoxide constrain signal quality on different genetic
backgrounds represented by the different morphs?

We focus our predictions on the two morphs for which
we have the most information: Yellow and red. Given the
relationship between color morph and associated reproductive
tactics, superoxide and BCI, we predicted that the red morph
with correlated suite of traits forged by an evolutionary
history of higher aggression (Healey et al., 2007; Olsson et al.,
2007a,b) would have evolved the capacity to better ameliorate
a trade-off between body condition and level of superoxide.
Furthermore, because territoriality and aggressiveness is costly,
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color maintenance would rely on condition through the breeding
season. Thus, yellow morphs are predicted to show a negative—
and redmorphs a positive—relationship with body condition and
color maintenance.

METHODS

Animal Collection/Husbandry
Lizards were caught (N = 72, October 2014, 17 Blue, 9 Orange,
20 Red, and 26 Yellow males) at Yathong Nature Reserve,
New South Wales (145◦35′; 32◦35′) and were brought back to
holding facilities at the University of Sydney. At capture, male
morph type was assigned by eye based on previously established
categorizations (Olsson et al., 2007a): While “yellow-” and “red-”
morphs were described first based on their head color, “orange”
morphs have head-color in between red- and yellow morphs,
typically with yellow around their mouth, and a red-orange head
color, while blue morphs are males without an obvious head
color and seem to lack pigments associated with yellow or red.
Nevertheless, morph-assignment by eye is repeatable within and
between researchers in the field (Sinervo and Lively, 1996; Olsson
et al., 2007a). Individuals were kept individually in tanks (60 ×

60 × 50 cm) and haphazardly assigned to three different rooms
on a 12:12 h (light:dark) light regime and were fed crickets and
mealworms to satiation.

Superoxide
On December 16th, 2014 lizards were weighed (±0.01 g),
measured snout-to-vent (SVL; ±1 mm), and body condition
was calculated as residuals from a mass-SVL regression. At the
same time, blood was collected in a capillary tube after gently
perforating the vena angularis in the corner of the mouth using a
sterile 18 ga. needle. These males were sexually active (i.e., mated
with females).

Quantifying Superoxide
The samples of peripheral blood (70 µl) were diluted with
9 volumes of phosphate buffered saline (PBS; 137mM NaCl,
2.7mM KCl, 1.5mM KH2PO4, 8mM Na2HPO4, pH 7.4) and
stored on ice prior to analyses, which were completed within
4 h of sampling. Prior to staining, diluted blood was diluted a
further 50-fold with PBS and then centrifuged (300 g for 5 min)
to pellet cells; each cell pellet corresponded to 10 µl of whole
blood. Cells were resuspended in 100 µl of PBS containing 5 µM
MitoSOX Red (MR; Molecular Probes, Invitrogen, USA). MR
was added from stock solutions in dimethylsulfoxide (DMSO);
the final concentration of DMSO was 0.2 % (v/v) or less.
Cells were subsequently incubated at 37◦C for 30 min, then
washed with PBS by centrifugation as described above and held
on ice until analyzed by flow cytometry; 50,000 events were
acquired for all samples. Flow cytometry was performed using
a Becton Dickinson LSR II, with excitation at 488 nm and
emitted fluorescence collected using band pass filters of 575+/−
13 nm. Data were acquired and analyzed using FACSDiva v4.0.1
(BectonDickinson, Sydney, Australia) and FloJo (v8.4.6; TreeStar
Inc., USA) software, respectively. On the basis of forward angle
laser scatter and side angle laser scatter, a number of blood cell

populations were discerned; the results obtained were similar
for all these populations. For each sample, the arithmetic mean
fluorescence for all 50,000 cells acquired was determined using
FloJo software and used to compare between samples and
treatments. The accuracy of flow cytometry result from samples
from the same individuals has been measured in a separate
experiment (see Olsson et al., 2008 for further details), involving
14 males with a correlation coefficient between samples of r =
0.97, (P < 0.0001). Thus, our flow cytometry technique can be
argued to be highly consistent.

Coloration
Colouration (hue) was quantified at the start of the study
period and >3 months later (March 26th, 2015) using digital
photography, following standard published methods (e.g.,
McGraw et al., 2002; Oh and Badyaev, 2006; Lendvai et al., 2013).
Painted dragon skin does not reflect in the UV, thus techniques
that rely on visible-light are sufficient to capture variation in
coloration in this species. Using a Nikon D810, two separate
photographs were taken of the left side of the head at each
time point in standardized conditions and digital images were
imported into Adobe Photoshop to extract hue, brightness and
saturation values (in the HSB color space). Because Photoshop
assigns hue values around a 360◦ color wheel, with red set at 0,
higher hue scores denote more yellow individuals. Thus, positive
values in the change of coloration during this period reflect a
decrease in coloration while negative values reflect an increase
in coloration during period. To visualize the correlation between
coloration and condition on the same scale (negative to positive),
we plotted color data in two ways, as raw data (Figure 3A), and
as the relationship between body condition and the inverse of
Photoshop color scores (Figure 3B), which we find a somewhat
more intuitive relationship to interpret (thus, a higher inverse
value represents a more vivid color). Values for the two images
of each lizard/time point were averaged for statistical analyses
(repeatability= 0.99, Aitken et al., 1989).

Statistics
Data were analyzed using SAS 9.4 with all analyses performed
on raw Photoshop data. We used generalized linear mixed
models to: (1) assess the relationship (i.e., interaction) between
superoxide and morph with body condition as a covariate, and
(2) assess the relationship (i.e., interaction) betweenmorph, body
condition and final colouration (initial coloration was included
as a covariate to account for individual differences in hue). Our
analyses target among-morph differences in the relationships
between our response variables, superoxide and coloration, and
body condition. Thus, we are specifically looking for effects at
the interaction level between these parameters. We included
the room where the lizards were housed as a random factor
in each model to account for any undetected differences in
environmental factors that might affect metabolism, superoxide
production or body condition. Flow cytometry analysis is
consistent and robust within, but not among, sampling bouts, we
therefore report ROS data from the onset but not as a difference
between the onset and the end of the study period. Coloration
is the net outcome of a time-dependent process, not of a spot

Frontiers in Ecology and Evolution | www.frontiersin.org 3 February 2017 | Volume 5 | Article 1

http://www.frontiersin.org/Ecology_and_Evolution
http://www.frontiersin.org
http://www.frontiersin.org/Ecology_and_Evolution/archive


Friesen et al. Color, Condition and Free Radicals

reading of a parameter, such as condition, that is assessed at
the same time color is measured. The time lag in color change,
compared to other phenotypic traits that modifies color, would
strongly argue that earlier measurements are muchmore likely to
accurately predict color at the end of this process.

RESULTS

The interaction effects between condition and superoxide, and
between condition and coloration, were significant and we
therefore refrain from further reporting and discussing lower
level effects (such as morph differences in response variables;
Supplemental Material).

Superoxide
The relationship between superoxide levels and body condition
depended on morph [morph x condition: F(3, 64) = 3.82, P =

0.014]. When the significant morph-condition interaction was
evaluated in a comparison between morphs with the yellow
morph set to zero, the red and bluemorphs showed a significantly
lower slope effect of condition on level of superoxide than did
yellow morphs, whereas orange morphs were not significantly
different to yellow, baseline morphs. However, importantly,
whereas males in the yellow-red spectrum showed an increase in
superoxide levels with elevated condition, blue morphs exhibited
relatively less superoxide with increasing condition (Figure 2).
The baseline level (yellow morph) set to zero by the SAS software
were tested separately for a relationship between condition and

superoxide level, which was confirmed to be significant and
positive (β = 0.72 ± 0.21, SE, P = 0.002, n = 26; Table 1).
Thus, in summary, yellow morphs suffer from a steeper increase
in superoxide with higher body condition index. Blue morphs
(i.e., lacking in yellow-red skin pigmentation), is the only
morph showing lower levels of superoxide when in better body
condition.

Coloration
We first ran univariate analyses of relationships between hue
measurements at the end of the season (response variable)
and the beginning of the season (predictor). Interestingly, this
relationship was significant for all males in the yellow-red
spectrum (regression coefficients, β = 0.59–0.84, 0.0003 < P <

0.0001), that is, more colorful males early in the season are also
more colorful toward the end of the mating season, whereas blue
morph coloration at the end of the study period was unrelated to
that at the beginning of the study period (β = 0.047, P = 0.788).

In the combined data set, Hue was significantly affected
by the interaction between morph and body condition (F =

3.38, P = 0.0237). Thus, the morphs differed in how well they
maintained head color at elevated body condition (i.e., significant
morph x condition interactions; Table 2). Overall, males in better
condition had lower raw Photoshop hue values (Figure 3A).
However, one morph—yellow—contrasted markedly against the
rest of the morphs by showing a positive relationship between
body condition and Hue data (β = 1.21 ± 0.41, SE, P = 0.008, n
= 26), and, thus, in effect showed a poorer, more brownish, less

FIGURE 2 | The relationship between body condition and superoxide. Superoxide increases with body condition in yellow, orange, and red males (steepest in

yellow males) and decreases with higher body condition in blue males.
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TABLE 1 | Proc Mixed, SAS 9.4 analysis of morph and condition

interaction effects on superoxide levels.

Solution for Fixed Effects

Effect Revmorph Estimate Standard

error

DF t-Value Pr > |t|

Intercept 5.4485 0.2033 64 26.80 < 0.0001

Morph BLUE −0.8517 0.3263 64 −2.61 0.0113

Morph ORANGE −0.7673 0.4116 64 −1.86 0.0669

Morph RED −0.1844 0.3082 64 −0.60 0.5518

Morph YELLOW 0 − − − −

Condition (Cond) 0.7249 0.1818 64 3.99 0.0002

Cond*Morph BLUE −0.9566 0.3035 64 −3.15 0.0025

Cond*Morph ORANGE −0.4127 0.3299 64 −1.25 0.2155

Cond*Morph RED −0.6059 0.2400 64 −2.52 0.0141

Cond*Morph YELLOW 0 − − − −

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F-Value Pr > F

Morph 3 64 2.90 0.0418

Cond 1 64 4.44 0.0390

Cond*Morph 3 64 3.82 0.0139

vivid, yellow coloration (Figure 3B). The morphs may overlap
slightly in hue however, in Photoshop the hue value takes into
account the Chroma (or color).

DISCUSSION

Our results paint a complex picture of morph-specific differences
in levels of superoxide (and the potential for oxidative stress)
and its relationship to body condition and coloration. Coloration
is primarily generated by carotenoid and pteridine pigments
in Australian Painted dragons and evidence suggests that the
allocation or absorption of these two pigments might be
connected with ROS biology and the antioxidant machinery
(Oettl and Reibnegger, 2002; Costantini et al., 2008; Tomášek
et al., 2016). Thus, individuals who constantly are able to
allocate substantial amounts of these pigments to maintain skin
pigmentation during the breeding season might not be able
to use them as antioxidants and would suffer from increased
levels of oxidative stress. Olsson et al. (2012) have previously
shown in this species that the rate of color fading was not
related to the overall ROS levels (non-specific ROS) but was
negatively correlated with superoxide levels and color fading
was prevented by supplementation with a superoxide dismutase
mimetic.

Our analyses were designed to quantify among-morph
differences in the relationships between condition and two
response traits, level of superoxide (to capture a potential
oxidative stress), and coloration (to assess robustness of
coloration in terms of these ROS costs from a handicap
perspective). A practical difficulty in the study of condition-
dependent traits is that condition is not directly quantifiable
(Green, 2001; Hill, 2011; Milenkaya et al., 2015). Conceptually,

TABLE 2 | Proc Mixed analysis in SAS 9.4 of effects on Inverse Hue at the

end of the study period.

Solution for Fixed Effects

Effect Morph Estimate Standard

error

DF t-Value Pr > |t|

Intercept 0.007397 0.001217 33.7 6.08 < 0.0001

Morph BLUE 0.000641 0.000435 61.3 1.47 0.1459

Morph ORANGE −0.00005 0.000549 61.8 −0.09 0.9309

Morph RED 0.000705 0.000469 61 1.50 0.1383

Morph YELLOW 0 − − − −

Condition (Cond) −0.00053 0.000247 62.5 −2.14 0.0359

Cond*Morph BLUE 0.001003 0.000415 61.3 2.42 0.0187

Cond*Morph ORANGE 0.000961 0.000427 61.4 2.25 0.0281

Cond*Morph RED 0.000803 0.000309 61.3 2.60 0.0117

Cond*Morph YELLOW 0 − − − −

InvHue, Start 0.6555 0.05010 61 13.08 < 0.0001

Type 3 Tests of Fixed Effects

Effect Num DF Den DF F-Value Pr > F

Revmorph 3 61.4 1.35 0.2670

Cond 1 62.6 1.09 0.3013

Cond*Morph 3 61.3 3.38 0.0237

Inv Hue, Start 1 61 171.20 <0.0001

Lower Inverse Hue values in Photoshop suggests “poorer” color, e.g., more “brownish”

yellow.

condition depends on the genetic background and gene by
environment interactions that allow for physiological efficiency
and the capacity to manage environmental stress (Hill, 2011;
Bonduriansky et al., 2015). A body of evidence linking BCI
and other physiological parameters would allow us to fully
understand the costs of condition-dependent trait expression
(Hill, 2011; Isaksson et al., 2011). Furthermore, studying the
genetics linking indices of condition to sexually selected traits
is easiest in lab models (e.g., Drosophila; Bonduriansky et al.,
2015), which will rarely allow for evolutionary inferences in
natural habitats and free-living populaitons. This is where color-
polymorphic species may be convenient models.

Polymorphic species are conspicuous because they have
obvious differences in physical features that are “skin deep”
(e.g., pattern and color), but they also often exhibit different
reproductive strategies that are the product of correlated
selection on behaviors and physiology. The relationship between
superoxide levels and BCI depended on morph, and was
strongest in yellow morphs suggesting a complex link between
resource allocation and superoxide (Monaghan et al., 2009; Hill,
2011; Garratt and Brooks, 2012). Redmorphs showed the weakest
relationship between BCI and superoxide (i.e., slope closest to 0;
see Figure 2), suggesting that the relationship between resource
allocation toward or away from particular physiological processes
is dependent on the genetic background of the individual
(Tomkins et al., 2004), this is consistent with the genic capture
hypothesis.
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FIGURE 3 | (A) The raw values of Photoshop Hue data depicts significantly more vivid coloration in red, orange, blue males, than yellow males, and significantly

poorer coloration with increasing body condition in yellow males. (B) The inverse of Photoshop Hue data depicts significantly more vivid coloration in red, orange, blue

males, than yellow males, and significantly poorer coloration with increasing body condition in yellow males.

Contrary to what we might predict based on the testosterone-
mediated oxidation hypothesis and our previous results showing
that red morphs have higher testosterone (Olsson et al.,
2007b), the red morphs had lower superoxide levels and
were better able to maintain their coloration than yellow
morphs. Red morphs had the weakest relationship between

superoxide levels and BCI, yet are more aggressive and have
higher testosterone than yellow morphs (Healey et al., 2007;
Olsson et al., 2007b). This is, however, consistent with a
selection history that has optimized mitochondrial function
to reduce superoxide production in the morph with higher
aggression.
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The yellow morphs, the least aggressive morph, had the
poorest color maintenance relative to their body condition, and
this result is probably explained by yellowmorphs also exhibiting
the strongest direct relationship between superoxide levels and
BCI. Yellow morphs may therefore be shunting resources away
from color maintenance (e.g., carotenoids and other nutrients,
or simply energy) to other aspects of physiological condition
or reproduction [sensu 8], while red morphs may prioritize
color expression. Yellow morphs may also have a selection
history with weaker selection on color-maintenance and the
concomitant selection to optimize mito-nuclear interactions that
would reduce superoxide production. Red morphs, conversely,
are more aggressive and win head to head contests with yellow
morphs (Healey et al., 2007). Therefore, there are proven benefits
to red morphs in signaling their “redness,” and thus if resources
are available, it pays to invest in head-color maintenance (and the
genetic background to do so), potentially through an increase in
endogenous antioxidant expression, which may explain why BCI
had a weaker effect on color maintenance in this morph.

Yellow morphs have a reproductive strategy that relies on
post-copulatory sexual selection, i.e., sperm competition (Olsson
et al., 2009b), which may relax selection on color maintenance in
favor of testicular development and perhaps sperm performance
(e.g., longevity). Higher ROS is known to negatively affect sperm
performance (Aitken et al., 1989; Dowling and Simmons, 2009;
Almbro et al., 2011), so it would seem paradoxical for the
morph that relies on a reproductive tactic centerd on sperm
competition to maintain higher superoxide as we saw here.
Although some studies support a positive correlation between
sperm performance and bright coloration (e.g., Evans et al.,
2003; Helfenstein et al., 2010), the overall relationship between
secondary sexual characters and sperm quality is not significant
across taxa (meta-analytic review; Mautz et al., 2013). Of course,
oxidative status cannot adequately be represented by a single
measure, and it is possible that yellow morphs in this study
upregulate endogenous antioxidants which may be protective of
sperm function. Nevertheless, it is unclear whether superoxide
measured in the blood is related to sperm performance in this
species as it is in other lab-raised species (Veskoukis et al., 2009),
and this merits further investigation.

We do not fully understand the behavioral ecology and
reproductive tactics of blue- and orange morphs due to their
recent invasion into this population (Olsson et al., 2007a), so
we can only speculate about them. Nevertheless, blue morphs
appear to be like the red morphs in some aspects of their biology,
including aggressiveness and morph-specific telomere dynamics
(Rollings et al., under review). Orange morphs seem to be

intermediate to red- and yellow morphs in some aspects of their
biology (Healey and Olsson, 2008, 2009). Blue morphs have not
been previously characterized (because of their recent emergence
in our study population), but appear to lack yellow-red skin
pigmentation. One explanation to their starkly contrasting
relationship to superoxide compared to the other morphs is that
blue morphs allocate pigments as systemic antioxidants, which
may explain the co-occurrence of no skin pigmentation and low
superoxide levels with increasing body condition. Interestingly,
blue morphs are also the only males for which color scores are

uncorrelated between early and late in the season, as if pigments
were never dermally deposited and hencemay be why they do not
exhibit any depletion or fading effects through time.

Although our conclusions are necessarily tentative, this study
points us toward the utility of color-polymorphic species for
studying intraspecific condition-dependence as it relates to
alternative reproductive strategies and sexual selection in the wild
(Wellenreuther et al., 2014). Visually identifying an individual’s
genotype in the wild is useful in field studies of sexual selection,
and thus may prove valuable for studies of genic capture in
nature. We suspect that investigation into the reproductive
biology and strategies of these morphs will reveal similar trends.
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