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ABSTRACT: The dislocation core structures and elastic properties
of the insensitive energetic molecular crystal 1,3,5-triamino-2,4,6-
trinitrobenzene (TATB) are investigated as a function of pressure
and temperature. A new method is proposed to compute the
generalized stacking fault surfaces (noted γ-surfaces) and the
complete second-order elastic tensor at finite temperature through
molecular dynamics (MD) simulations. The energy landscapes in the
two glide planes are shown to be similar between 0 and 300 K, thus
leading to almost no modification on the dislocation evolution. A
spreading of the dislocation cores over a hundred Burgers vectors is
observed along the [100] and [010] directions for the edge and screw dislocations at 0 and 300 K, showing that dislocations
should exhibit a very low friction for these glide systems at ambient pressure. For pressures varying between 0 and 10 GPa, the γ-
surfaces’ energy barriers that drive the width of partial dislocations follow the increase of shear elastic constants within the
considered glide planes, thus limiting the changes of the dislocation core structure.

1. INTRODUCTION

1,3,5-Triamino-2,4,6-trinitrobenzene (TATB) is a well-known
highly insensitive energetic molecular crystal used in various
explosive formulations that crystallizes in a triclinic cell of space
group P1.1 It exhibits a very anisotropic thermo-mechanical and
chemical behavior2−4 due to the arrangement in layers of the
two C6H6N6O6 molecules (see Figure 1). Indeed, the strong
intramolecular hydrogen bonding between atoms of adjacent
nitro and amino groups and the hydrogen bonding between
molecules within the basal plane layers contrast with interplanar
interactions, governed by weak van der Waals forces. These two
types of interactions imply anisotropic thermal and mechanical
properties, as suggested by estimations of the second order
elastic tensor,2,5 which predict longitudinal celerity 20 times
faster for the [100] and [010] directions compared to [001].
Despite numerous studies devoted to a better understanding

of TATB behavior under moderate loadings, the mechanisms of
its irreversible deformation still remain poorly understood. Due
to the difficulties to obtain single crystals of compatible size
with standard mechanical testing machines as well as security
constraints, no experimental data is available on, for example,
single TATB crystal under pure uniaxial tension. For these
reasons, the numerical modeling of TATB crystal plays an
essential part in studying its macroscopic behavior. For
example, Mathew et al.6 and Kroonblawd et al.7 studied
through molecular dynamics (MD) simulations its elastic−
plastic response under displacement-controlled nanoindenta-

Figure 1. Crystal structure. TATB unit cell with lattice vectors a, b,
and c, and cell angles α, β, and γ. (a) A 3D representation. (b) x+ view.
(c) y+ view. (d) z+ view.
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tions and under shock. They reported that some studies8 have
suggested the existence of high defect density in grown crystals
of TATB and subtle structural phase transitions under
hydrostatic compression. The generalized stacking fault
energies within the two glide planes have been computed5

using all-atom simulations with a classical force field and
suggested that easy dislocation glide could be present in TATB.
The sensitivity of energetic materials is related to their

capacity to remain stable under mechanical and thermal
loadings. Initiation of detonation in explosive crystals is
believed to occur because of the formation of hot spots.6,9−11

The latter can be created by material defects and plastic
deformation mechanisms that induce energy localization within
the material. Various papers have suggested that void
collapse,12,13 localized heating due to plastic deformation,9

and dislocation pile-up6 are some specific mechanisms that
could involve initiation of detonation. Thus, a detailed
modeling of plasticity is mandatory if one wants to understand
the mechanisms of ignition.
Dislocations are known to be the main mechanism that

control plasticity in crystalline materials but their existence in
TATB has never been assessed. The definition of predictive
MD potentials2,14 is the first step toward the prediction of
dislocation core structures and their mobility. However, the
unusual elastic anisotropy, as well as the very low energy along
the gliding directions, impose one to consider possible large
dislocation cores and thus huge (and expensive) simulation
setup. To overcome this difficulty, a numerical method derived
from the Peierls−Nabarro (PN) model15 called Peierls−
Nabarro Galerkin (PNG, see refs 16 and 17) is considered.
In this method, the dislocation core structure emerges through
the competition of a potential energy (called the γ-surface) and
the elastic energy. It has been used for numerous studies
dedicated to the simulation of complex dislocation core
structures for metals17 or earth mantle materials.18,19

For the latter studies, the PNG computations were
performed at 0 K to provide an estimate of the so-called
Peierls-stress,20 defined as the ultimate shear stress without
thermal activation. Noting the important dependency of
thermodynamical and mechanical properties with T and
keeping our focus on dislocation existence and core structure,
we propose in the following a method to obtain, through a
PNG calculation, an estimation of dislocation core structure
under nonzero temperature. The understanding of plasticity
mechanisms in TATB single crystal is essential to perform
simulations of plastic deformations at nanometer scale as done
by Koslowski et al., who studied21,22 the role of partial
dislocations and stacking fault ribbons in 3D nanocrystalline
materials depending on the grain size using a phase-field theory
of dislocation dynamics.23

The methodology presented hereby is dedicated to the study
of dislocations in TATB and their thermal and pressure
dependence. MD simulations were used to provide generalized
stacking fault energies and elastic constants, as input parameters
of the PNG method. The second order elastic tensor and the γ-
surfaces have been computed for several (T, P) conditions in
order to predict the structure of edge and screw dislocations
along the two Burgers vectors corresponding to the lattice
vectors a and b. We then discuss the existence of dislocations
and plastic behavior in the last section.
The paper is organized as follows. In the first section, results

from MD simulations of TATB under various conditions and
the methodology proposed to obtain γ-surfaces at finite

temperature and second-order elastic tensor are presented.
The second section is then dedicated to macroscopic
simulations using the PNG model to study dislocation core
structure in TATB. Structures for edge and screw dislocations
along the principal directions of the two glide planes taken in
consideration are investigated.

2. MICROSCOPIC APPROACH

2.1. MD Potentials, Structure, and EOS. All simulations
were performed using the STAMP code.24 The nonpolarizable,
20% scaled-charges force field for TATB initially developed by
Bedrov et al.2 was used with planar, symmetric rigid molecules.
They predicted for the first time TATB elastic constants and
crystal structure evolution in T and P. This force field was
modified by Kroonblawd and Sewell3,4 and used to investigate
the thermal behavior of TATB and more recently to obtain the
first generalized stacking fault surface and to explore the
mechanisms of deformation under nanoindentation.5

Instead of the Ewald summation for the computation of long-
range electrostatic interactions, the Reaction Field25−27

approximation with a 13 Å cutoff and 100.0 for the dielectric
constant ε was used. A Langevin thermostat was used with a
damping constant set to 1.0 ps. The time step for integrating
the equations of motion was set to 1.0 fs for both isochoric-
isoergic (NVE) and isochoric-isothermal (NVT) simulations,
small enough regarding the fact that simulations are performed
with rigid molecules. Repulsion, dispersion, and short-range
electrostatic interactions were computed with a cutoff distance
of 13 Å. All intramolecular nonbonded interactions were
excluded in the implementation of the force field. Finally, the
rigid body dynamics is computed by discretization of equations
of motion following a Velocity-Verlet scheme.28

Discussion on the Choice of Planar and Rigid Molecules.
In a recent work,29 the contribution of molecular flexibility to
the elastic−plastic properties of molecular crystal α-RDX has
been studied. The authors evaluate crystal-scale parameters as
the elastic constants, lattice parameters, thermal expansion
coefficients, stacking fault energies, and the Peierls-stress for the
motion of a dislocation. They show that the mechanical
properties of the α-phase of RDX can be strongly affected by
the flexibility of the constituent molecules. In our case, the ring
of TATB molecules is found to be highly stable, giving the
molecules an almost planar geometry. Because TATB
molecules do not exhibit consequent flexible behavior
compared to the RDX ones, we have chosen to perform our
MD simulations with perfectly planar, symmetric, and rigid
molecules.

Cell Parameters Evolution in T and P. Molecules
orientations and center of mass (COM) positions were
obtained through Parrinello−Rahman30,31 simulations for
different temperatures and pressures. P and T coupling
constants were set to 0.1 ps and 1.0 fs, respectively. Starting
with the experimental structure1 to initiate Parrinello−Rahman
simulations, a 3D-periodic 5a × 5b × 7c simulation cell
containing 350 molecules was created. TATB cell parameters
for each (T, P) state were obtained by averaging the values over
the final 150 ps of a 250 ps Parrinello−Rahman simulation. The
averaged lattice parameters are given in Table 1. Uncertainties
correspond to one standard deviation of the mean and were
evaluated following the block averages method.32

It is to be noted that angle α, β, and lattice parameter c
deviate from experiment1 for a few percent and this is probably
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due to the planeness and rigidity imposed to the molecules as
suggested by Pal and Picu recently.29

In Figure 2, cell lengths and cell angles evolution is
represented with P and also the equation of state (EOS) of

TATB. These results are compared to the two experiments
driven by Stevens et al.33 and by Olinger and Cady34, and with
a density functional theory study of Pineau et al.35 for the EOS.
Our results are found to be in a good agreement with literature
even though little differences can be observed on the β-angle
that progresses under 90° contrary to experiments and on the c
length which is 4% smaller, probably due to the planar
symmetry imposed to the TATB molecules. Nevertheless, it
can be observed that the agreement between simulations and
experiments seems to improve for increasing pressures.
Quasi-linear coefficients of thermal expansion (CTE) of 1.95

× 10−4, 1.94 × 10−4, and 3.60 × 10−4 Å/K were deduced from

simulation results for a, b, and c directions, respectively. These
values are consistent with the crystal structure but are shown to
be quite different from those obtained by Bedrov,2 particularly
for the one in the c direction. Yet, experimental data33 for CTE
allow us to observe that our simulation underestimates the
values for the b and c directions while it overestimates the one
in the a direction. In their recent work,29 Pal and Picu
demonstrate that the CTE can strongly depend on molecular
structure and flexibility. In our case, the approximation on the
planeness of TATB molecules and their rigidity (by
constraining dihedral and angular flexibility of the ring,
amino, and nitro groups) may affect significantly the CTE.
The principal aim of this work is to compute elastic constants
and γ-surfaces at the microscopic scale in order to calculate
dislocation core structures at an upper scale, in which the CTE
do not play any role. Thus, the small differences in the crystal
structure compared to the ones published in the literature1,2,5

may not have a strong influence on the general conclusions on
the dislocation core structures of TATB, regarding the
similarities between elastic constants and γ-surfaces obtained
in this work compared to the results of the literature.

2.2. Elastic Tensor in Pressure and Temperature. The
complete second-order stiffness tensor C was obtained through
a large range of T and P. The coefficients were calculated by
fitting a second-order polynomial on a set of elastic-energy
versus strain equations
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where Hooke’s law expression is contained in the third term,
expressing the second-order Cauchy stress tensor σ as a
function of the linearized strains tensor ε and C with V0 the cell
volume. These elastic-energy versus strain curves were obtained
through MD simulations by successive homogeneous deforma-
tions of a 3D-periodic 20a × 20b × 20c simulation cell. No
relaxation was performed after deformation, and therefore the
instantaneous elastic response is measured. This measure is
however comparable to the relaxed response because the
prescribed deformations are too small to induce an important
atomic rearrangement with the noticeable advantage to get rid
of the noise that considerably hinders the measure of an
accurate energy variation. Moreover, a system of 16 000
molecules was taken to improve the ensemble average and
thus the accuracy of the measure. In eq 1, E stands for potential
energy. The system is considered to be isentropic because no
relaxation at all is performed after the strain is applied, that is,
the atomic positions remain unchanged. What is computed is
consequently the isentropic elastic constants Cij

S, that is, the
stiffness implied in acoustic waves for large wavelengths (see
Wallace36). For practical reasons, the notation Cij is used in the
remaining of this paper.
In order to obtain the stiffness matrix for each couple of (T,

P), a new simulation cell was created for each condition.
Starting with the cell parameters obtained with the Parrinello−
Rahman method, a 3D-periodic simulation cell of 20a × 20b ×
20c was considered and thermalized in the NVT ensemble
during 250 ps. The procedure to compute the elastic constants
at finite temperature is the following: once the supercell is

Table 1. Unit Cell Parameters from MD Parrinello−Rahman
Simulations and Experimental Values at Ambient Conditions

experiment this work deviation (%) uncertainties (σ)

a (Å) 9.010 9.009 −0.01 1.2 × 10−3

b (Å) 9.028 9.041 0.14 9.1 × 10−4

c (Å) 6.812 6.570 −3.55 5.9 × 10−4

α (deg) 108.58 103.34 −4.83 7.8 × 10−3

β (deg) 91.82 88.34 −3.79 1.5 × 10−2

γ (deg) 119.97 120.70 +0.61 6.8 × 10−3

Figure 2. Pressure dependence of TATB cell lengths (a), cell angles
(b) at 300 K, and cold curve (c) from MD simulations compared with
experiment and density functional theory data.
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thermalized, we randomly pick about 50 stable configurations
among the final 100 ps of the NVT simulation. We then strain
these configurations to obtain the elastic−energy versus strain
curves (around 50 for each stiffness tensor component) that are
gathered and averaged in order to obtain a single “mean”
energy curve for each elastic constant, much more representa-
tive of the supercell elastic state due to the applied strain. The
strains were prescribed to the supercell while maintaining the
center of mass (COM) of each molecule at the same position in
terms of fractional coordinates. As TATB crystallizes in a
triclinic structure, 21 elastic coefficients are needed to obtain
the complete stiffness matrix. Therefore, 21 homogeneous
deformation types had to be applied for the homogeneous
deformation method. The six diagonal components of C were
determined by applying pure stretch or pure shear and the
nondiagonal components by imposing a combination of both.
The elastic energy versus strain curves were determined for
strains ranging between −0.5% and +0.5% with a 0.1% step.
Two errors have to be considered here. The first comes from
the average of multiple elastic−energy versus density curves
and is lower than 2% while the second is due to the fitting and
is always lower than 1.2%.
Results for 300 K and 0 GPa. The complete second-order

elastic tensor at ambient conditions, which clearly reflects the
anisotropic behavior of TATB, is given in the Supporting
Information. This anisotropy is consistent with the crystal
structure because deformations along a and b directions involve
strong hydrogen bonding whereas only weak van der Waals
forces act along the c direction. Analogous reasoning can be
made concerning the shear coefficients (C44, C55, and C66) and
the dilatation ones (C12, C13, and C23), which are in agreement
with our measures that give C66 ≫ C44, C55 and C12 ≫ C13, C23.
Furthermore, elastic constants have been computed by Mathew
et al.5 and Bedrov et al.2 through hybrid MD−Monte Carlo
simulations using the Parrinello−Rahman strain fluctuation
formula.37 Overall, the same anisotropy was observed and the
results are in good agreement even if an higher value for C33
was obtained in our case.
Pressure Dependence of the Elastic Coefficients. In Figure

3 shows the dependence of the elastic coefficients with
pressure. The ratio between the Cij at 10 GPa and the Cij at
0 GPa remains constant, thus leading to the same elastic
anisotropy. The complete elastic tensors over the P and T total
ranges investigated are provided in the Supporting Information.
2.3. γ-Surfaces and Minimum Energy Paths. The γ-

surface is a potential energy calculated by prescribing a gliding f
along the dense plane of a perfect crystal. In order to minimize
the energy, an additional relaxation is usually considered in the
direction perpendicular to the gliding surface (see ref 5 for a γ-
surface in TATB at 0 K). Because of this relaxation, and
consistently with common practices that use γ-surface to
calculate dislocation core structure without thermal activation,
this potential is calculated at 0 K only.
Because dislocation structure calculated at 0 K could differ

from the one obtained in temperature, we present in the
following a method to define a γ-surface that can be used to
calculate dislocations core structure at finite temperature.
A measure at finite temperature requires an average over an

ensemble of configurations representatives of the state of the
system. However, for a γ-surface computation the additional
constraint on particle locations hinders dynamical evolution,
now restricted to the direction perpendicular to the glide plane.
To overcome this limitation, we propose to perform the

sampling over the equilibrium state at finite temperature before
deformation. The deformation is then instantaneously applied
to this set of configurations and the final energy is computed as
the average of the energies of the deformed systems over this
ensemble. Assuming ergodicity, this ensemble of configurations
is equivalent to a large system. A crystal of 20a × 20b × 20c is
then considered.
A nonorthogonal basis (a, b, c) defines the crystal lattice. A

second orthogonal basis (x, y, z) is defined by using the
convention such that a is aligned with x, b is lying in the (x, y)
plane and c is oriented in the upper Cartesian half-space and
makes angles of β and α with a and b, respectively. The TATB
cell contains two different slip planes P1 and P2, and thus two
γ-surfaces have to be computed.
For each couple of parameters (T, P), a 3D-periodic crystal is

built from the cell parameters obtained with the Parrinello−
Rahman simulation and equilibrated in the NVT ensemble for
about 100 ps. The crystal is then split at P1 location
(respectively P2) and an instantaneous glide in the (x, y)
plane is applied to the upper part. In order to compute the
energy, the periodicity along the z-direction is removed because
the displacement breaks the system symmetry.

Figure 3. Evolution of the nine orthotropics stiffness coefficients of
TATB crystal at ambient temperature.

http://pubs.acs.org/doi/suppl/10.1021/acs.jpcc.6b11576/suppl_file/jp6b11576_si_001.pdf
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It is worth mentioning that such “in temperature” γ-surface is
not periodic, that is, the energy after a displacement a could be
different from the energy without displacement, as each
molecule has a different position and orientation. In order to
minimize this discontinuity, we chose to compute the energy of
16 different configurations corresponding to 16 lattices
centered on the stable configuration ([−2a, +2a], [−2b,
+2b]). This additional average decreases the discontinuity by 2
orders of magnitude, down to 0.5%.
γ-surfaces for the basal plane of TATB at 0 K, ambient

conditions, and for five equally spaced pressures were
computed. Because a glide of a[100], b[010] or the transverse
direction (∝ [110]) restores the initial structure, it can be
interesting to investigate the thermal and pressure effect over
the energetic barriers for these directions. The 0 GPa γ-surfaces
computed with rigid molecules for the P1 and P2 basal plane at
0 K are represented in Figure 4 and are comparable to the ones
recenlty obtained by Mathew et al.5 In Figure 4, different γ-
surfaces are represented. The comparison of the (0 GPa, 300
K) case with the (0 GPa, 0 K) suggests that the main effect of
temperature is a slight smoothing of intermediate minima and
energetic barriers. Because the lattice parameters are not
subjected to noticeable changes when performing MD
Parrinello−Rahman simulations at 300 K, the interplanar
distance between the glide planes remains almost identical,
leading to no modification of the γ-surfaces shape.
The γ-surfaces shape (see Figure 4) does not experience a

strong evolution under pressure, consistently with the high
stability of the triclinic structure of TATB. This can be checked
on the minimum energy path (MEP) plots computed for a
gliding of a[100] and b[010] by using the string method38 for
different pressures (see Figure 5). In these MEP graphs, the
energy values have been normalized by an estimation of the
average shear constant within the glide plane (estimated by the
Birch coefficients (see eq 3, below) (B44 + B55)/2) in order to
measure the equilibrium between elastic and inelastic energy.
By shifting the different normalized energy curves, one can
notice that the energy barriers (i.e., the difference between the
stable and unstable stacking fault energies) evolution follows
the stiffness, which emphasizes that the anisotropy is not
enhanced as well as the partial dislocations core width.
Existence of multiple minima along the MEP that are not

located along the straight glide line is a strong indication that
the dislocation core is composed of several partial dislocations

with partial Burgers vector noncolinear to the dislocation
Burgers vector. In Figure 5, the stable stacking fault energies are
slightly increasing with pressure, which will have an impact on
the partial dislocations equilibrium splitting. This point is
further discussed in the next section dedicated to the modeling
of dislocation core structure by the PNG model. It is interesting
to differentiate the γ-surfaces with respect to the two-
dimensional vector f lying in the plane in order to obtain the
surface density of forces σn. It represents an estimation of the
necessary von Mises shear stress required to activate
homogeneous gliding, that is, without moving dislocations.
Along the two MEPS the maximal von Mises stress approaches
700−800 MPa at ambient state (0 GPa, 300 K), which is
comparable to the ratio C55/6.

Figure 4. γ-surfaces for TATB at 0 K and 0 GPa for P1 (a) and P2 (b) planes. The 300 K P1 plane γ-surfaces at 0 GPa (c) and 10 GPa (d). MEP
along [100] and [010] directions obtained with the string method are represented on the bottom left image.

Figure 5. Energies along MEP normalized by shear elastic coefficients
along [100] (a) and [010] (b) for the studied range of pressures.
Curves have been shifted to highlight their similar evolution.

http://dx.doi.org/10.1021/acs.jpcc.6b11576


We have considered planar and rigid molecules for our MD
simulations in order to compute elastic constants and γ-
surfaces. Results presented in the literature for both stiffness
tensor2,5 and γ-surfaces5 have been obtained through MD
simulations with flexible molecules. Because our results with
rigid molecules are similar to those obtained previously with
flexible molecules both for γ-surfaces and elasticity, we consider
our hypothesis to be justified, thus allowing to use these results
as input of an upper-scale simulation such as a dislocation core
structure computation.

3. DISLOCATION CORE STRUCTURE

The Peierls-Nabarro-Galerkin method is a technique developed
to calculate complex dislocation core, e.g., when the core is
spread along different nonparallel glide plane,17 with very
complex crystallographic structure,18 or submitted to a dynamic
loading.17 These calculations are performed without temper-
ature, which is consistent with the measure, by using the PNG,
of the dislocation activation stress, only defined at 0 K.
One can notice however that the vibration frequency of a

dislocation is several orders of magnitude lower than the
frequency of atomic vibrations. A time-scale separation could
thus be introduced between the dislocation core structure and
the molecules positions and orientations at equilibrium. This
opens the way to the definition of γ-surfaces at finite
temperature that can be used in a PNG dislocation core
structure calculation.
3.1. Peierls−Nabarro−Galerkin Model. The PNG model

associates a generalized Peierls−Nabarro (PN) model with an
element-free Galerkin method, a method comparable to finite-
element techniques. The classical PN model assists in the
minimization of the total energy functional split in an elastic
part and an interplanar potential computed from the γ-surface,
leading to the dislocation core structure. The interplanar
potential for the PNG method is the γ-surface from which the
elastic part has been removed. Two distinct fields are
introduced: a three-dimensional displacement field u and a
two-dimensional one η lying in the plane of the γ-surface. A
solution (i.e., a dislocation core structure) is finally obtained

through the energy minimization with respect to u and η of the
energy functional :

∫ ∫ηε ηε η= ∇ − ∇ − +
     

Eu B u r r
1
2

( ) ( )d [ ]d
V
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0 0
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inelastic energye
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where Ee and Eisf are the elastic energy and the inelastic stacking
fault energy (also called the “crystalline energy”), respectively,
B is the Birch coefficients (or stress/strain) tensor39 which is
deduced from the elastic tensor C with the following
formulas36,40

δ δ δ δ δ δ= − + −PB C ( )ijkl ijkl jl ik il jk ij kl (3)

where P is the pressure (P > 0 for compression).
The determination of Eisf depends on material properties and

governs the inelastic behavior of the dislocation core. This
energy is built such that the computed total energy from the
continuum fields exactly equals Egsf, leading to a minimization
relation connecting these two energies.16 Thus, the only input
here are the generalized stacking fault energies Egsf obtained by
independent MD calculations of block-sliding configurations,
and the complete second order stiffness tensor C obtained by
MD calculations of homogeneous deformations. An interpola-
tion is performed on the γ-surfaces (inferred by MD
simulations) in order to obtain a much more refined
representation of Egsf. The interpolation error has been set to
0.5 mJ·m−2, leading to a very accurate interpolation of the γ-
surface.

3.2. Dislocation Core in TATB. For all calculations, a 2D
mesh is considered with dimensions 1024 TATB unit cells in
the x-direction (that corresponds to crystallographic direction
a), 256 unit cells in the direction perpendicular to the glide
plane (direction z), and one unit cell in the y-direction. The
nodal resolution is two Element Galerkin nodes per lattice edge
in x- and y-directions (i.e., 2048 × 512 nodes are considered).
Last top and bottom nodes rows have a displacement
constrained in the y-direction and have no constraint in the
x-direction. A discrete dislocation is introduced at the volume

Figure 6. Frobenius norm of |∇η| through the dislocation cores for edge dislocation along [100] (a) and [010] (b) directions and for screw
dislocations along [100] (c) and [010] (d) directions.

http://dx.doi.org/10.1021/acs.jpcc.6b11576


center and its structure relaxed to its minimal energy following
the procedure proposed by Denoual.17 The dislocation
structure is then analyzed in terms of the spreading of the η
field representing the inelastic part of the disregistry.16

Results for the dislocation core at 0 K and ambient
temperature for edge and screw dislocations along
a[100](001) and b[010](001) directions for the two glide
planes are first presented. Then, only the P1 plane is discussed
to illustrate the impact of pressure on edge and screw
dislocations along a and b, because the behavior in the two
glide planes P1 and P2 is very similar regarding their energy
landscape and dissociation paths.
Ambient Pressure [100](001) Dislocations. The dislocation

core structure can be determined by analyzing the Frobenius
norm of the gradient of η, |∇η(x)| (in Figure 6), which
represent the density of Burgers vector. Thus, each peak of
|∇η(x)| represents a partial dislocation, the width of which is
characterized by the full width at half-maximun (fwhm). In all
simulations, dislocations appear to split into several partials
with fwhm around 10 Burgers vectors.
First, it appears that the [100] edge dislocations gliding leads

to a very complex core structure that spreads out over around
125 Burgers vectors at 0 K. The [100] screw dislocations also
exhibit a complex (but thinner) core, spread over 75 Burgers
vectors. Not only are those widths several orders of magnitude
higher than the one that could lead to a measurable dislocation
friction but they also reveal that dislocations in TATB cannot
be considered as discrete lines but rather as ribbon of stacking
faults.
The second set of simulations shows that an increase of T

leads to a reduction of the spreading length for both edge and
screw dislocations. Indeed, values of 75 and 50 Burgers vectors,
respectively, are found, still too high for considering
dislocations as discrete objects.
Ambient Pressure [010](001) Dislocations. The [010] and

[100] dislocations have similar Burgers vector lengths and
energy barriers. A comparable behavior concerning the
dislocation core spreading within the glide plane is then
expected. Here as well, screw dislocations spread over a smaller
distance than edge ones.
The results for the P2 plane depict similar trends. For both

edge and screw dislocations, for the two glide directions and
the two glide planes, dislocations under ambient pressure have
no localized core, and temperature sligthly reduces the core
spreading about approximatively 25−30%.
Effect of Pressure on the Equilibrium Splitting of Partial

Dislocations. Because the PNG model consists in finding the
equilibrium between elastic and stacking fault energy, one can
anticipate how the dislocation core structure is affected by the
pressure. All dislocations seem to split into several partials.
The results (presented in the Supporting Information) show

that the splitting between partials increases with pressure of
about 50% between 0 and 10 GPa. This is consistent with the
trend for dislocation partials to follow the evolution of Gb1b2/
γSF (with G the average modulus, b1 and b2 the norm of the two
Burgers vectors, and γSF the stacking fault energy41).

4. CONCLUSION
The computation of second-order stiffness tensor and an
original method to obtain γ-surfaces in temperature and
pressure through MD simulations allowed us to investigate
dislocation core structures in TATB molecular crystal. Elastic
constants dependence in pressure shows that anisotropy is not

enhanced as the ratio between Cij remains constant as pressure
increases. The γ-surfaces energy landscapes are sligthly
smoothed with temperature but preserve their shape between
ambient pressure and 10 GPa. Dislocations are predicted to
have complex core structures within P1 and P2 planes and to
spread over approximately a hundred of Burgers vectors b with
a splitting into up to four partials (with a width at half-
maximum around 10 b), regardless the plane or the direction.
Screw dislocations are approximatively 30% thinner than edge
ones. Thus, dislocation friction on the lattice is unlikely to play
a dominant role for the viscoplastic behavior of TATB material
for the range of pressures and temperatures explored. The
estimation of the maximum von Mises stress along the MEPS at
ambient conditions is around 800 MPa that defines an upper
bound for the shear stresses within (001) planes.

Second order elastic components for each investigated
couple of (T, P) (PDF)
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