

Response Surface Optimization of the

View metadata, citation and similar papers at core.ac.uk

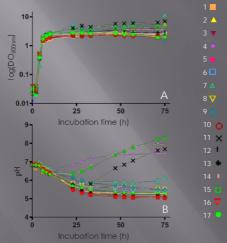
brought to you by T CORE

provided by Universidade do Minho: RepositoriUN

Elastin-Like Polymers by E. coll

Silva, D., 1 Padrão, J., 1 Machado, R., 1 Teixeira J., 2 Casal, M., 1 Nobre, A.1

¹Centro de Biologia Molecular e Ambiental (CBMA) - Departamento de Biologia, Universidade do Minho, *Campus* de Gualtar, 4710-053 Braga, Portugal ²Departamento de Engenharia Biológica, Universidade do Minho, *Campus* de Gualtar, Braga, portugal


Introduction

Elastin-Like Polymers (ELP's) are a family of proteins based on repetitive pentapeptide sequences having smart and extremely biocompatible behavior. The Response Surface Methodology (RSM) was employed in order to improve the production of both, biomass and ELP's, in an auto induction medium previously designed by us and named BEPS Medium (Bacterial Elastomeric Polymer Synthesis). The nutrients yeast extract, lactose and glycerol were the factors subjected to this statistical treatment.

Objective

Optimization of the culture medium, in batch fermentation, for the production of GAG₂₂₀ by E. coli.

	A:Glycerol (g L ⁻¹)	B.Lactose (g L ⁻¹)	C:Yeast Extract (g L-1)

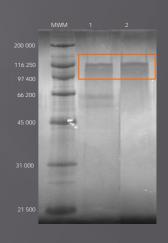
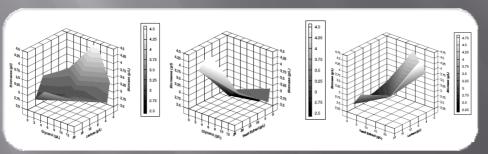
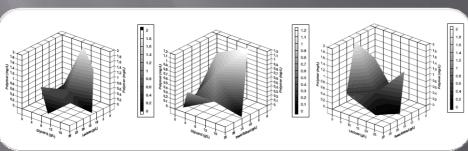



Figure 2 – SDS-PAGE electrophoresis of the polymer GAG_{220} . MWM – Molecular Wheight Marker, Lane 1 – Sample of CCD 10; Lane 2 – Sample of CCD 11.

m а



Conclusions

A model for the response biomass was achieved:

Biomass = 3.38 + 0.056 A - 0.17 B + 0.63 C

P O

Lactose has negative effects on biomass and GAG₂₂₀ production but glycerol and yeast extract are essencial nutrients for this propose.