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A B S T R A C T

Cellulose nanocrystals (CNCs) were obtained from grape pomace through chemical and physical pretreatments.
Bleached cellulose pulp was subjected to acid hydrolysis (AH) for 30 or 60min and an ultrasound treatment to
obtain CNCs (AH30S and AH60S). Compositional analyses of untreated (UGP) and pretreated (PGP) grape pomace
showed the effectiveness of pretreatment in removing non-cellulosic components, recovering 80.1% cellulose in
PGP (compared to 19.3% of UGP). Scanning and transmission electron microscopies were used to evaluate the
CNCs morphology. AH in combination with ultrasound treatment led to needle-shaped structures and apparently
more dispersed suspensions. Crystallinity index and thermal stability were studied by X-ray diffraction and
thermogravimetric analysis, respectively. The AH60S sample presented high aspect ratio, crystallinity and
thermal stability. CNCs toxicity was evaluated by exposing Caco-2 cells to CNCs suspension and evaluating their
viability. Results showed that CNCs are non-toxic, opening the opportunity for their use on food and pharma-
ceutical applications.

1. Introduction

A key issue for a sustainable agriculture is the rational use of re-
sidues and by-products from the agricultural processes. Viticulture
generates each year nine million tons of pomace, which is about 20%
(w/w) of the total grapes used for wine production (Goula, Thymiatis, &
Kaderides, 2016; Teixeira, Baenas, Dominguez-perles, Barros, & Rosa,
2014). Thus, the development of new strategies for the use of grape
pomace can minimize their environmental impact and, at the same
time, add value to this residue.

Grape pomace consists mainly of polysaccharides from plant cell
wall, such as cellulose (Beres et al., 2016; Minjares-Fuentes et al.,
2016), representing an interesting source to produce new materials, as
cellulose nanocrystals (CNCs). Lu and Hsieh (2012b) and Hsieh (2013)
reported the production of CNCs from natural resources, such as grape
skin. CNCs are highly crystalline cellulose nanostructures presenting
interesting properties, such as: low density, surface reactivity, high
aspect ratio and surface area, high biocompatibility and biodegrad-
ability (Brinchi, Cotana, Fortunati, & Kenny, 2013), moving a

millionaire market. According to Market and Market (2018), the na-
nocellulose market is forecasted to achieve $250 Million by 2019. The
rising demand and the use in novel applications have driven the re-
searchers and the industry to explore even more the use of nanocellu-
lose.

Currently, acid hydrolysis and physical processes are widely used
for the production of CNCs from cellulosic materials (Lu & Hsieh, 2010,
2012a, 2012b; Johar, Ahmad, & Dufresne, 2012; Jiang & Hsieh, 2013;
Oun & Rhim, 2015; Moriana, Vilaplana, & Ek, 2016). Depending on the
composition of the raw cellulose, pretreatment, and disintegration
process used, CNCs with different features are obtained, such as dia-
meter, length, crystallinity index and thermal decomposition tempera-
ture.

In the last years different approaches have been presented for the
production of CNCs. Reddy and Rhim (2014) studied the CNC pro-
duction from mulberry paper pulp by acid hydrolysis followed by ul-
trasound treatment, resulting in mulberry pulp CNC with stem or
spherical shape with a diameter of 40–50 nm and a length of
200–350 nm. Kallel et al. (2016) also reported acid hydrolysis followed

https://doi.org/10.1016/j.carbpol.2018.03.023
Received 6 November 2017; Received in revised form 21 February 2018; Accepted 12 March 2018

⁎ Corresponding author.
E-mail address: mimichelin@ceb.uminho.pt (M. Michelin).

Carbohydrate Polymers 192 (2018) 327–336

Available online 13 March 2018
0144-8617/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/01448617
https://www.elsevier.com/locate/carbpol
https://doi.org/10.1016/j.carbpol.2018.03.023
https://doi.org/10.1016/j.carbpol.2018.03.023
mailto:mimichelin@ceb.uminho.pt
https://doi.org/10.1016/j.carbpol.2018.03.023
http://crossmark.crossref.org/dialog/?doi=10.1016/j.carbpol.2018.03.023&domain=pdf


by ultrasound treatment to obtain CNC from garlic straw residues; the
CNCs obtained showed a needle-like structure with a mean diameter of
6 nm and length of 480 nm. Li, Yue, and Liu (2012) investigated the
production of CNC through ultrasound treatment from microcrystalline
cellulose. The use of ultrasound resulted in CNCs with a rod-shaped
structure with diameters between 10 and 20 nm and lengths between
50 and 250 nm. Despite the studies carried out involving the CNCs
production from cellulose, only few studies investigated the chemical
composition of the lignocellulosic material (LCM) used, as well as the
purity of the cellulose used to produce the CNCs. Additionally, in the
case of using grape pomace this has never been performed.

Despite the potential benefits of using materials at nanoscale, there
are concerns arising from related properties, such as their nano-di-
mension, large surface area and high reactivity, that may represent a
health threat to humans and other organisms (Prasad, Bhattacharyya, &
Nguyen, 2017). In fact, and according to the application (e.g. food), the
toxicological assessment of nanomaterials is essential and should be
addressed. Although several studies in the past decade have resulted in
the development of CNCs with good structural properties from several
sources (Jiang & Hsieh, 2013, 2015; Lu & Hsieh, 2012a, 2012b;
Mueller, Weder, & Foster, 2014; Rosa et al., 2010), only few works

focused on the toxicity evaluation of these products.
In this sense, this study aimed at obtaining CNCs from Pinot Noir

grape pomace, evaluating of the effect of acid hydrolysis and ultrasound
treatments in their structure and physicochemical properties. The
chemical composition of the raw material and cellulose obtained after
the pretreatment steps, which was used to obtain the CNCs, was de-
termined. In the end, the possible toxicity of CNCs was also evaluated.

2. Experimental

2.1. Materials

Pinot Noir grape pomace, from the white wine vinification process,
was kindly donated by the Aurora winery (Bento Gonçalves, RS, Brazil).
The material was transported frozen and stored at −18 °C until pro-
cessing. Minimum essential medium (MEM) was purchased from
Thermo Scientific (United Kingdom). Penicillin/streptomycin, fetal
bovine serum (FBS) and non-essential amino acids were purchased from
Millipore (Germany). PrestoBlue was acquired from Invitrogen (USA).
Sodium pyruvate was purchased from Sigma-Aldrich. Ethanol (96% v/
v, Panreac, Spain), sulfuric acid (95%–98% w/w, Fisher Chemical,

Fig. 1. Scheme of cellulose extraction from grape pomace. Petri plates show the recovered solids at each pretreatment step and Erlenmeyers insets show the
corresponding filtrates.
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Portugal), sodium hydroxide (98.5%, José Manuel Gomes dos Santos
Lda, Portugal), hydrogen peroxide (30% weight, Chem-Lab, Belgium)
were used as received without further purification. The water used was
purified by Milli-Q plus water purification system (Millipore Corporate,
Billerica, USA).

2.2. Extraction of cellulose from grape pomace

Pinot Noir grape pomace was dried at 60 °C for 18 h. After that, the
dried material was processed in a depulper (Bonina 0.25 df, Itametal,
Brazil), where the seeds were trapped in the strainer, and the pomace
was milled (IKA grinder, A11, Staufen, Germany) and sieved to pass
through a 40-mesh screen (untreated grape pomace, UGP). UGP was
conditioned in vacuum-sealed plastic bags, stored at room temperature
and protected from light.

Cellulose was extracted from UGP through the removal of non-cel-
lulosic components according to the procedure reported by Lu and
Hsieh (2012b) with some modifications. Firstly, extractives (e.g. wax,
phenolics, pigments and oils) were removed from dried UGP in a 2 L
stainless steel reactor (Parr Instruments Company, Series 4520 Bench
Top Reactor, Moline, Illinois, USA), using ethanol (0.067 g UGP/mL) at
120 °C for 1 h. The recovered solid material was oven-dried at 70 °C for
24 h and then pretreated with 2% H2SO4 (0.05 g/mL) under constant
stirring at 90 °C for 5 h to hydrolyze acid-soluble polysaccharides and
polyphenolics. After that, it was filtered and washed with water until
neutral pH. The acid pretreated material was further leached with 5%
NaOH (0.05 g/mL) at room temperature for 10 h and continued at 90 °C
for 5 h to dissolve remaining hemicellulose, lignin and other alkali-so-
luble polysaccharides. The alkaline pretreated material was filtered and
thoroughly washed with water until neutral pH. After that, this material
was bleached by 5% H2O2 (0.05 g/mL), pH 11.5 (adjusted with NaOH),
at 50 °C for 8 h, then cooled to room temperature for 15 h to oxidize and
dissolve residual lignin and phenolics. The bleaching effect was en-
hanced by an additional bleaching step for a further 8 h, as described
previously. The final product was washed with water until neutral pH
and the resulting aqueous suspension was quickly frozen at −80 °C in a
sample container and freeze-dried (Alpha 1–4 LD plus, Martin Christ,
Germany).

The recovered cellulose was designated as PGP (pretreated grape
pomace). Fig. 1 is a schematic representation of the process. To cal-
culate the yield, the initial dry mass of UGP used for the cellulose ex-
traction process and the final dry mass of PGP were taken into account.

2.3. Cellulose hydrolysis

Cellulose isolated from grape pomace was hydrolyzed using
64–65wt% sulfuric acid (0.05 g cellulose/mL) at 45 °C, under me-
chanical stirring, for 30min or 60min, and named AH30 and AH60,
respectively. The times used for acid hydrolysis were based on the lit-
erature; a maximum of 60min was used to avoid a longer reaction time
and the prolonged exposure of cellulosic materials to acid, once it could
lead to the digestion of the crystalline domains of PGP and thus to a
decrease in the crystallinity of CNCs (Martínez-Sanz, Lopez-Rubio, &
Lagaron, 2011). The acid hydrolysis was stopped by diluting it 10-fold
with ice water. The recovered material was washed with water until to
pH 4.0, when a colloidal suspention was formed. This suspention (su-
pernatant) was dialyzed using regenerated cellulose dialysis mem-
branes with 8 kDa molecular weight cut off (Orange Scientific, Belgium)
against ultrapure water until reaching neutral pH. After that, AH30 and
AH60 samples were processed with a probe-type ultrasound (Vibra
Cell™ Sonicator, USA) in an ice bath for 10min (cycles of 5 s on and 2 s
off), at 40% power, and named AH30S, and AH60S, respectively.

The samples were kept refrigerated (7 °C) for stability studies and
transmission electron microscopy (TEM) or freeze-dried (Alpha 1–4 LD
plus, Martin Christ, Germany) for scanning electron microscopy (SEM),
thermogravimetric, X-ray diffraction and toxicity analyses. The initial

dry mass of PGP (cellulose) used in the acid hydrolysis and the final
mass after freeze-drying were taken into account to calculate the yield.

2.4. Characterization

2.4.1. Compositional analysis
Solid materials (UGP and PGP) were milled and/or sieved to a

particle size of 40 mesh for compositional analysis. Approximately 0.3 g
of material was hydrolyzed with 3mL of 72% (w/w) H2SO4 for 1 h at
30 °C, followed by a quantitative post-hydrolysis with 4% (w/w) H2SO4

(by adding 84 g of ultrapure water) at 121 °C during 60min. After hy-
drolysis, the insoluble material was recovered by filtration and dried at
105 °C, while the hydrolysates were quantified by high-performance
liquid chromatography (HPLC) regarding to monosaccharides content
(glucose, xylose and arabinose) and acetic acid. Klason lignin was
considered the insoluble material minus ash and protein contents. For
determination of ash content, the solid material was taken in a crucible
and kept in a muffle furnace at 575 °C for 24 h (Sluiter et al., 2008). The
protein content was calculated based on the nitrogen content estimated
with Kjeldahl method, multiplied by a factor of 6.25.

2.4.1.1. High-performance liquid chromatography (HPLC). Acid
hydrolysates were filtered through 0.45 μm syringe filter and
automatically injected (JASCO Intelligent Sampler AS 2057 Plus) in a
Metacarb 87H column (300× 7.8mm, Varian, USA) preheated to 60 °C
by a thermostatic column compartment (Chrompack Instruments AG,
Neuheim, Switzerland). The mobile phase (0.005M H2SO4 in ultrapure
water filtered through 0.2 μm Millipore® nylon filter and degassed) was
pumped at a flow rate of 0.6mL/min through a JASCO 880 PU pump.
Sugars and acetic acid were analyzed with a refractive index (RI)
detector.

2.4.2. Transmission electron microscopy (TEM)
A drop of 10 μL of the samples were deposited onto TEM grids

(ultra-thin carbon film on Lacey carbon support film, 400 mesh,
Copper, Ted Pella Inc., USA) and the liquid excess was removed with a
filter paper after 2min. The samples were observed using a JEM-2100
transmission electron microscope (JEOL, Japan) operated at a 200 kV
accelerating voltage. TEM micrographs were analyzed using the public
domain software ImageJ and the size and aspect ratio of the samples
were calculated. A minimum of 30 measurements was performed for
each analysis.

2.4.3. Scanning electron microscopy (SEM)
The samples’ surface morphology was evaluated through SEM using

a Quanta FEG 650 (FEI USA). Dry samples were affixed on aluminum
stubs covered by carbon ribbon, and then coated with gold and ob-
served using an accelerating voltage of 5 kV under vacuum conditions.

2.4.4. Stability of the samples
Stability of the cellulose suspensions obtained after acid hydrolysis

(AH30 and AH60) and acid hydrolysis plus ultrasonic treatment (AH30S

and AH60S) was analyzed after 30min and 7 days’ storage at 7 °C,
through the observation of precipitate formation or the maintenance of
the homogeneous suspension.

2.4.5. X-ray diffraction (XRD)
Crystallinity of the samples was determined by XRD, using a Bruker

D8 Discover diffractometer equipped with Ni filtered Cu-Kb radiation
source of 40 kV and 40mA. Samples were scanned in the range of 5–50°
(2θ), (10°/min), with a step size of 0.02° and step time of 1 s under
room temperature. The crystallinity index (CrI) was determined ac-
cording to Segal, Creely, Martin Jr, and Conrad (1959), using the Eq.
(1).
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where I002 is the intensity of maximum diffraction of crystalline region
at about 2θ=22.5°, and Iam is the intensity of diffraction attributed to
the amorphous region at about 2θ=18°.

2.4.6. Thermogravimetric analysis (TGA)
TGA was performed using a thermogravimetric analyzer

PerkinElmer 4000 (PerkinElmer, Portugal). About 8.5mg of the sam-
ples were loaded in ceramic pan and heated from 20 to 550 °C at a
heating rate of 20 °C/min under a nitrogen atmosphere. The samples’
weight loss was recorded as a function of temperature and character-
ized by a TG curve. The derivative thermogravimetric (DTG) curve was
used to emphasize the temperature zone where each phenomenon oc-
curred.

2.4.7. Cytotoxicity assessment
The cellular compatibility of AH30S and AH60S samples was assessed

using the Caco-2 human colon epithelial cancer cells (ATCC, HTB-37)
and PrestoBlue (Nowak et al., 2017). The cells (passage 25–30) were
cultured in minimum essential medium (MEM), supplemented with
20% fetal bovine serum, 0.11 g/L sodium pyruvate, 1% non-essential
amino acids and 1% penicillin/streptomycin. The cells were kept at
37 °C and 5% CO2. For the cell viability assay, Caco-2 cells were seeded
onto 96-wells plates at a density of 10,000 cells per well and left ad-
hering overnight. After adhesion, the culture medium was removed and
replaced by the samples diluted in the culture medium at different final
concentrations: 0.05mg/mL and 0.20mg/mL.

Samples were dispersed in ultrapure water using magnetic stirring,
followed by a treatment with ultrasonic bath during 15min (37 KHz
and 104W), and exposed to ultraviolet light during 30min for ster-
ilization. The water dispersions of samples were diluted in the culture
medium (20%, v/v) to obtain the test concentrations. A negative con-
trol was performed using cells growing in the culture medium with 20%
(v/v) of ultrapure water (considered as 100% cell viability). The 30%
DMSO was used as a positive control. The samples were incubated for
24 h or 48 h with 10% PrestoBlue, a resazurin-based solution (final
concentration 0.01mg/mL), is a cell permeable redox indicator used for
cell viability in proliferation and cytotoxicity assays (Nociari, Shalev,
Benias, & Russo, 1998). PrestoBlue was added simultaneously with
samples, since resazurin is not toxic, to provide adequate sensitivity
(Ansar Ahmed, Gogal Jr, & Walsh, 1994; Xu, McCanna, & Sivak, 2015).

The fluorescence intensity, that is proportional to the cell viability,
was measured using a Microplate Fluorescence Reader (Synergy,
BioTek H1, USA) at an excitation wavelength of 560 nm and an emis-
sion wavelength of 590 nm. The percentage of cell viability was ex-
pressed as the percentage of fluorescence in treated cells (samples at
different concentrations) in relation to the percentage of fluorescence of
cells growing in the culture medium with 20% (v/v) ultrapure water.

3. Results and discussion

3.1. Isolation of cellulose

Cellulose from grape pomace was extracted through a five-step of
pretreatment including organic solvent extraction, acid and alkaline
pretreatments, and two consecutive bleaching steps, as presented in
Fig. 1 (the light-yellow color of the pulp after bleaching II probably
results from the remaining lignin). Each 100 g of UGP led to 10.2 g of
pretreated grape pomace (PGP), most of which consisted of cellulose
(80.1%), being the non-cellulose components such as hemicellulose and
lignin, efficiently removed from UGP (Table 1). The obtained extraction
yield (≈10%) was lower than the value reported by Lu and Hsieh,
(2012b), which obtained an extraction yield of 16.4% for cellulose from
grape skin using a similar extraction protocol. However, Jiang and

Hsieh (2015) presented extraction yields in the same range of values
obtained in this work. They used acidified NaClO2/KOH route or al-
kaline NaOH/H2O2 route to pretreat tomato peels and obtained yields
of 13.1% and 11.3%, respectively. These results show the influence of
the type of residue and the extraction process used in the extraction
yield.

Results presented in Table 1 show that this process satisfactorily
allowed the extraction of cellulose from untreated grape pomace (UGP)
for the further acid treatment, allowing the access of the acid to the
amorphous structure of cellulose, which is blocked by large amounts of
hemicellulose and lignin.

3.2. Cellulose nanocrystals yield

Grape pomace cellulose (PGP containing 80.1% of cellulose) was
hydrolyzed with 64–65 wt% sulfuric acid for 30min (AH30) or 60min
(AH60) and microcrystalline cellulose (MCC) was obtained. Production
of MCC from cellulose by using mineral acids, such as sulfuric acid, was
also reported by Thoorens, Krier, Leclercq, Carlin, and Evrard (2014).
The samples (AH30 and AH60) containing MCC were submitted to an
ultrasound treatment (AH30S and AH60S) to obtain the CNCs (see Sec-
tion 3.3). The CNCs yields for AH30S and AH60S were 27.56% and
20.96%, respectively. These values are higher than that reported in
other works. Jiang and Hsieh (2015) reported a yield of 15.7% for CNCs
obtained from tomato peel cellulose, while Lu and Hsieh (2012a) re-
ported a yield of 6.4% for CNCs from rice straw cellulose, using similar
conditions. Many factors can influence the CNCs yield, such as acid
concentration, reaction time, cellulose amount per acid volume used in
the process (Nascimento et al., 2016) and the purity of cellulose (Xie
et al., 2016). In this case, the highest yield obtained in this study may
be associated to the lower cellulose concentration used in this work,
0.05 g/mL, compared to 0.114 g/mL used in the other works (Jiang &
Hsieh, 2015; Lu & Hsieh, 2012a). The lower cellulose concentration
leads to a higher effect of the acid in its amorphous parts, improving
cellulose depolymerization and therefore increasing CNCs yield.

3.3. Transmission electron microscopy analysis

The size and morphology of the samples obtained after acid hy-
drolysis (AH30 and AH60) and further ultrasound treatment (AH30S and
AH60S) observed by TEM suggest that acid hydrolysis provided partial
depolymerization of cellulose into MCC (Fig. 2A and C), while ultra-
sound led to a disaggregation of MCC forming the cellulose nanocrystals
– CNCs (Fig. 2B and D). The cavitation generated by ultrasound can
disrupt the interactions in the cellulose matrix, essentially connected
through hydrogen bonds. Thus, ultrasound makes cellulose in the liquid
environment to be intensely agitated, allowing a change in its network
(Chen et al., 2011).

In AH30S and AH60S samples needle-shaped structures were ob-
tained, with a typical CNC morphology, as reported elsewhere (Jiang &
Hsieh, 2015; Martins et al., 2015; Teixeira et al., 2011). The needle-
shaped CNCs showed lengths of 307 nm and 323 nm and diameters of
8 nm and 7 nm for AH30S and AH60S samples, respectively, reproducing
L/D ratios of 38 and 46. These result allow their classification as CNCs,
which according to TAPPI, Standard Terms and Their Definition for
Cellulose Nanomaterial, WI 3021 (2011), must present diameters be-
tween 3 and 10 nm and a L/D ratio higher than 5. Martínez-Sanz et al.
(2011) reported similar L/D values for CNCs obtained from bacterial
cellulose. The diameter and length of CNCs decreased for higher
treatment time (from 2 h to 69 h of acid hydrolysis and further neu-
tralization), however the L/D values of CNCs did not change.

The structure and properties, particularly the length and diameter of
CNCs, depend on several factors such as the source of the original
cellulose and the extraction process, which includes all pretreatments
and disintegration or deconstruction processes (Moon, Martini, Nairn,
Simonsen, & Youngblood, 2011; Peng, Gardner, & Han, 2012). Studies
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on morphology of cellulose nanoparticles obtained from different
sources have shown tendency to aggregate, presenting high L/D ratio
(Chen, Liu, Chang, Cao, & Anderson, 2009; Costa et al., 2015).

In this study the L/D ratios obtained are considered high as sug-
gested by Moon et al. (2011), a factor relevant for CNCs’ applicability.
The performance of reinforced materials depends on the efficiency with
which the mechanical stress is transferred from an external energy
source to the reinforcement phase through the matrix. In this way, the
quantity and quality of the interfacial area becomes important. A high
L/D ratio improves the contact surface of the material with the matrix,
therefore CNCs presenting a high L/D ratio have an enhanced ability to
sustain uniformly the mechanical stress on the matrix (Klemm et al.,
2011). In fact, it has been reported that cellulose structures with dif-
ferent L/D ratio present different mechanical properties. One example
is MCC that presents an elastic modulus in the axial direction of 25 GPa
while CNCs values can go up to 105 GPa (Rusli & Eichhorn, 2008).

Thus, the ultrasound treatment seems to be essential to obtain
adequate CNCs, and longer ultrasound treatment times may allow ob-
taining CNCs with high L/D ratio.

3.4. Scanning electron microscopy analysis

The samples, initially dispersed in an aqueous medium, were free-
ze–dried for SEM analysis. The images obtained showed interconnected
structures (Fig. 3), that for MCC (AH30 and AH60) were densely ag-
glomerated (Fig. 3A and C). This is likely due to the strong hydrogen
interactions between cellulose crystals (Peng et al., 2012). Fig. 3B and
D shows the structural changes after the ultrasound treatment (AH30S

and AH60S samples). Although ultrasound yielded a less agglomerated
structure, the rapid freezing process of CNCs suspensions followed by
freeze–drying still resulted in interconnected network structures. These
results were also observed by Jiang and Hsieh (2015) for lyophilized
samples of CNCs obtained from tomato skin.

3.5. Stability of the samples

The stability of MCC (AH30 and AH60) and CNC (AH30S and AH60S)
samples in suspension was analyzed after 30min and 7 days after
treatment. Only acid hydrolysis (MCC samples), regardless the time of
treatment, was insufficient to ensure the homogeneous dispersion of the
cellulose crystals in water, and precipitation was observed 7 days after

Table 1
Chemical composition of untreated (UGP) and pretreated grape pomace (PGP), expressed as percentage of dry raw material weight.

Samples Cellulosea (%) Hemicellulose (%) Klason lignin (%) Protein (%) Ash (%) Othersb (%)

UGP 19.30 ± 0.67 7.20 ± 0.50 15.60 ± 0.28 17.29 ± 0.02 3.58 ± 0.24 37.03
PGP 80.10 ± 1.75 n.d. 4.30 ± 2.55 0.35 ± 0.03 4.71 ± 0.51 10.54

n.d.: not detected.
a Estimated from the glucan content.
b Calculated by difference (includes unidentified components).

Fig. 2. Transmission electron microscopy of the samples obtained by acid hydrolysis of cellulose for 30min (AH30) and 60min (AH60), followed by further ultrasound
treatment (AH30S and AH60S, respectively). (A) AH30; (B) AH30S; (C) AH60; and (D) AH60S.
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treatment (Fig. 4). The ultrasound treatment increased the dispersion
stability and no precipitation was observed after 7 days of storage (CNC
samples). In fact, ultrasound energy, transferred to cellulose chains
through cavitation, gradually disintegrated the crystalline cellulose
from micron-sized particles (MCC) into nano-sized particles (CNCs)
(Chen et al., 2011; Tischer, Sierakowski, Westfahl Jr, & Tischer, 2010)
and thus increased suspensions stability. These results were also re-
ported by Khawas and Deka (2016), which observed a reduction in the
size of the nanofibers with a substantial increase in the dispersion of
nanofiber suspension, after ultrasonic treatment.

3.6. X-ray diffraction analysis

The XRD patterns of UGP and PGP showed the maximum intensity
of the diffraction peak of the (200) plane at 2θ=22.5° (data not
shown). Peaks around 15.0° and 22.5° (verified in cellulose-rich PGP)
indicate typical pattern of cellulose I (Jiang & Hsieh, 2015). Comparing
the diffraction patterns between both samples, it is possible to observe
well defined and high intensity peaks in the PGP diffractogram than in
the UGP diffractogram, confirming the high cellulose amount (crystal-
line component) in the PGP sample, as observed in the chemical com-
position (Table 1).

Table 2 presents the CrI values for all samples, showing that crys-
tallinity increased from UGP to PGP due to the cellulose purification
mainly attributed to the removal of amorphous hemicellulose and
lignin, leading to the realignment of cellulose molecules (Li et al.,
2009). These CrI values are in agreement with cellulose isolated from
garlic straw (68%) (Kallel et al., 2016), rice (61.8%) (Lu & Hsieh,
2012a), wood (73.5%) (Li & Renneckar, 2011) and cotton (65%) (Lu &
Hsieh, 2010). From the CrI values, it is possible to observe the increase
in crystallinity in samples treated with acid hydrolysis (AH30 and
AH60), which is explained by the partial depolymerization and removal
of the amorphous regions of the cellulose from the PGP sample. In this

process the hydronium ions penetrate into the amorphous regions of
cellulose promoting the hydrolytic cleavage of glycoside bonds, and
thus releasing the individual crystallites. The realignment of mono-
crystals may occur during the aggregation forming the CNCs, leading to
the increase of samples crystallinity (de Souza Lima & Borsali, 2004; Li
et al., 2009).

The CrI values also increased for longer treatments and with ultra-
sound treatment (AH30S and AH60S samples). This indicates that the
ultrasound breaks the amorphous regions remaining in the samples and
also reorganizes and enriches the crystalline cellulose regions. From the
XRD patterns, it was also possible to conclude that, during both the
chemical and the ultrasound treatments, the crystalline structure of
cellulose did not change, since all diffractograms presented pattern
characteristic of cellulose I (results not shown).

3.7. Thermogravimetric analysis

Fig. 5 shows the thermogravimetric behavior reflecting the samples
thermal stability. All samples present a small weight loss in the
25–150 °C region, corresponding to the evaporation of the absorbed
water (Khawas & Deka, 2016). Fig. 5A shows that the UGP components
present an initial degradation temperature (Tonset) around 254 °C, due
to the low decomposition temperature of hemicellulose, lignin, and
pectin (Morán, Alvarez, Cyras, & Vázquez, 2008), reaching the max-
imum degradation temperature (Tmax) at 346 °C, representing the pyr-
olysis of cellulose. On the other hand, the PGP components showed
Tonset at about 275 °C (mainly residual lignin, Table 1), with Tmax at
347 °C. Thus, the highest Tonset observed for PGP is associated with the
removal of lignin (Alemdar & Sain, 2008; Chen et al., 2011), as ob-
served in chemical composition (Table 1) and higher CrI (Table 2) of
PGP.

AH30 and AH60 samples presented a Tmax of 364 °C and 242.5 °C,
respectively (Fig. 5B and C, respectively). It has been reported that the

Fig. 3. Scanning electron microscopy of the samples obtained by acid hydrolysis of cellulose for 30min (AH30) and 60min (AH60), followed by further ultrasound
treatment (AH30S and AH60S, respectively). (A) AH30 (10,000×); (B) AH30S (5000×); (C) AH60 (5000×); and (D) AH60S (1000×).
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activation energy of the degradation of cellulose is significantly reduced
by the introduction of sulfate groups through the hydrolysis step with
sulfuric acid (Jiang & Hsieh, 2015; Roman & Winter, 2004; Xie et al.,
2016). The presence of sulfate groups is related to the increase of cel-
lulose amount, acid concentration and time of hydrolysis (Roman &
Winter, 2004). Therefore, the lower Tmax obtained for AH60 sample can
be explained by the high amount of sulfate groups presented in this
sample, due to the longer hydrolysis time used (60min).

Regarding the samples treated with ultrasound, AH30S had similar
TG profile to the AH30, with the curves overlapping with Tmax at 365 °C,
indicating that ultrasound treatment did not affect the thermal stability

of the sample acid hydrolyzed for 30min (Fig. 5B). In the samples
obtained with 60min of acid hydrolysis, two main degradation events
between 200 °C and 400 °C were observed, indicating different de-
gradation levels due to sulfate groups in the cellulose structure.

Fig. 4. Stability of the samples obtained by acid hydrolysis of cellulose for
30min (AH30) and 60min (AH60), followed by further ultrasound treatment
(AH30S and AH60S, respectively) for until 7 days at 7 °C. (A) AH30 and AH60

samples after 30min of storage; (B) AH30 and AH60 samples after 7 days of
storage; (C) AH30S and AH60S samples after 30min of storage; and (D) AH30S

and AH60S samples after 7 days of storage.

Table 2
Crystallinity index of untreated (UGP) and
pretreated grape pomace (PGP), micro-
crystalline celluloses (AH30 and AH60), and
cellulose nanocrystals (AH30S and AH60S).

Samples CrI (%)

UGP 23.50
PGP 62.13
AH30 65.45
AH30S 70.62
AH60 68.89
AH60S 74.89

Fig. 5. Thermogravimetric (TG) and derivative thermogravimetric (DTG)
curves of untreated (UGP) and pretreated (PGP) grape pomace, samples ob-
tained by acid hydrolysis of cellulose for 30min (AH30) and 60min (AH60), and
samples obtained by acid hydrolysis of cellulose for 30min (AH30) and 60min
(AH60) followed by further ultrasound treatment (AH30S and AH60S, respec-
tively). (A) UGP and PGP; (B) AH30 and AH30S; (C) AH60 and AH60S. The dashed
curves represent a derivative weight loss.

C.C.S. Coelho et al. Carbohydrate Polymers 192 (2018) 327–336

333



Moreover, the AH60S showed an increase in Tmax (298 °C) when com-
pared to AH60 (Fig. 5C). Two degradation events were also reported by
Martínez-Sanz et al. (2011) and Silvério, Flauzino Neto, Dantas, and
Pasquini (2013) in CNCs samples. According to these authors the first
peak (in the degradation region) may correspond to the degradation of
amorphous regions which are, therefore, more accessible and sulfated,
and the second peak temperature refers to the degradation of cellulose
less accessible to acid uptake which, not being sulfated, tends to be
more thermally stable.

Results show that thermal stability of the MCC and CNC samples can
be affected by the treatment conditions, suggesting that samples ob-
tained with 60min of acid hydrolysis (AH60 and AH60S) may be limited
to polymer matrices that require processing temperatures around
250 °C.

3.8. Cytotoxicity

The cytotoxicity of materials is routinely evaluated using in vitro
methodologies. Cell lines are often cultivated in contact with test ma-
terials, and after a variable period of time, the cellular metabolic ac-
tivity, proliferation and/or death rates are measured. In this study, the
commercial PrestoBlue, a resazurin-based solution, was used to assess
the cellular viability of human colon epithelial cells (Caco-2) after in-
cubation with CNCs (AH30S and AH60S samples), at different con-
centrations.

Fig. 6 shows that CNCs (AH30S and AH60S) had no effect on the
metabolic activity of Caco-2 cells. All samples exhibited high cell via-
bility up to 48 h of incubation showing the biocompatibility of the
produced CNCs. Few reports address the biocompatibility of CNCs (Lin
& Dufresne, 2014). Some authors reveal no cytotoxic effects. Dong,
Hirani, Colacino, Lee, and Roman (2012) reported no cytotoxic effect of
plant-derived CNCs for a variety of mammalian cells in the concentra-
tion range of 0–0.05mg/mL, up to 48 h. Other authors observed a dose-
dependent cytotoxicity of CNCs. As an example, Ni et al. (2012) re-
ported the cytotoxicity of CNCs prepared from cotton linters, presented
as cellulose nanowhiskers. Low cytotoxicity was observed at low con-
centrations (up to 2.0mg/mL), increasing for higher concentrations
(10mg/mL). In this work, stable dispersions were tested (0.05 and
0.2 mg/mL) to avoid CNCs precipitation over the cells (data not shown)
that may result in artefactual effects (OECD, 2016).

The increasing production of CNCs from different sources and their
application in food has elicited ample discussion about the potential
risks of these materials to human health (Seaton & Donaldson, 2005).
The same properties that make nanomaterials interesting and attrac-
tive, such as the reduced size of the particle, its differentiated form, and
the large surface area, may on the other hand be responsible for their
potentially toxic effects (Paschoalino, Marcone, & Jardim, 2010). Thus,
it is important to assess the toxicity risks of nanomaterial exposure via
ingestion. The results of this study provide a first indication that the
tested CNCs produced from grape pomace are not toxic, and thus are
appropriate for use in food or pharmaceutical applications.

4. Conclusion

The present study demonstrated the potential of the grape pomace,
an abundant agroindustrial residue, to produce cellulose nanocrystals
(CNCs). A key requirement for high CNCs yield is the efficient removal
of non-cellulosic components such as lignin and hemicellulose from
UGP, resulting in a material with high cellulose content. This work
demonstrated that the acid hydrolysis led to the production of micro-
crystalline structures from the purified cellulose, and also considered
the ultrasound treatment as an essential step for the CNCs production.
The CNCs obtained were stable in solution over seven days, presenting
high aspect ratio and crystallinity. These features are determinant for
improving the dispersion capacity of these nanocrystals into food
structures or polymeric matrixes, allowing their application as re-
inforcing materials in packaging materials or gels.

The production scheme presented here to obtain CNCs from grape
pomace, on one hand, can contribute to reduce the waste management
costs of the wine industry, while diversifying the source of materials for
CNCs production. On the other hand, these non-toxic natural materials
can provide a new opportunity for their use on food and pharmaceutical
fields, and these dispersion capacity suggests possible application as
reinforcing materials. Certainly, combined with advanced nano-
technologies such as electrospinning and electrospraying, CNCs-based
nanocomposites can find even more applications in many fields (Li,
Zheng, & Yu, 2017; Wang et al., 2017; Yu, Li, Zhang, &Williams, 2017).
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