
Gaspar data-centric framework

Rui Silva and J. L. Sobral

Centro ALGORITMI, Braga, Portugal

Abstract. This paper presents the Gaspar data-centric framework to
develop high performance parallel applications in Java based on a map
pattern of computation. The framework provides an efficient data Appli-
cation Programming Interface(API) that supports data tiling and flexible
data layout. Data tiling and layout control enables the improvement of
data locality, which is essential to foster application scalability in modern
multi-core systems. This paper shows that the framework performance
in modern multi-core systems is comparable with pure Java code.

Keywords: Java; locality optimisations; parallel application; pattern

1 Introduction

The high performance in modern computers is achieved by exploiting parallelism
and accessing data efficiently. The memory hierarchy of multi-core systems is
quite sophisticated whose a behaviour is hard to predict. Finding the best data
locality optimisations is a arduous task as it usually requires testing different
approaches and parameters. The effectiveness of each optimisation may depend
on the particularities of a given platform, compiler and even the application
input data.

This paper presents the Gaspar data-centric framework aiming to provide
a system where data locality optimisations can be quickly implemented. The
framework is based on a map pattern of computation which provides an uniform
mechanism to express parallelism over data tiles and includes a set data locality
optimisations that can be used in applications to improve performance. Further-
more, the user can develop application-specific locality optimisations by using
the provided data API.

The next section describes the framework data API and the map pattern of
computation and section 3 provides result of performance evaluation. Section 4
discusses related work and section 5 concludes the paper.

2 Data-Centric Framework

One challenge of the framework is to enabled the selection of the data layout
without compromise the performance. The framework provides two generic ap-
proaches to enable data locality improvements/tuning: i) encapsulates the data

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154277207?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 Gaspar data-centric framework

into framework provided collections supporting different data layouts and access-
ing the data using iterators that hide the concrete data layout; and ii) computa-
tion is expressed by a map & reduce pattern of computation over the framework
data collections enabling changes to the order of accessing the data. The next
two subsections describe these mechanisms.

2.1 Data Application Programming Interface

The data layout has extreme importance in modern computer architectures to
deliver high performance. Common data layouts are Array of Pointers (AoP),
Array of Structures (AoS) and Structure of Arrays (SoA). For illustrative pur-
poses, this paper uses the implementation of a Molecular Dynamics simulation
(MD) taken from the Java Grande Forum(JGF)[8]. The most computationally
expensive part of the code is the computation of forces between all particles,
which requires access to the particle position(x,y,z) (Figure 1).

//AoP layout

forceParticle(...){

xi = p1.x;

yi = p1.y;

zi = p1.z;

(...)

}

//SoA layout

forceParticle(..., int id){

xi = p1.x[id];

yi = p1.y[id];

zi = p1.z[id];

(...)

}

//Generic layout

forceParticle(...){

xi = p1.getX();

yi = p1.getY();

zi = p1.getZ();

(...)

}

Fig. 1: Force computation using specific layouts and the generic layout supported
by the framework.

The best data layout frequently depends on the platform and/or on the
computational pattern [4]. Traditional approaches require changes to the base
program in order to use a different data layout (e.g. see Figure 1, AoP and SoA
layout). The framework data API provides a high level interface to access data
while providing performance similar to tuned implementations. The API hides
the concrete data layout (see Figure 1 Generic layout).

The framework currently supports two types of data structures (Figure 2a):
i) the gCollection is a raw set of data; ii) the gMatrix is a set of data organised
by rows and columns.

The framework provides a data layout generator tool that uses a data model
(Unified Modeling Language) given by the user (e.g., Particle specification) and
generates all required interfaces and classes. Thus, it is possible to develop a
program without details about the data layout and later select a collection im-
plementation with the most appropriate data layout (e.g., AoP, AoS or SoA).
Figure 2b provides an example of two classes generated from the Particle inter-
face defined in the MD case study.

In the framework data API, data access is performed using the interface gIt-
erator (see Figure 3), which points to an element in a collection. Each collection
implements the methods begin() and end(), that provide iterators to the first
and last element. The iterator provides an inc() method to advance to the next



Gaspar data-centric framework 322/04/16 18:14

Page 1 of 1file:///Users/ruiantoniosilva/Downloads/ClassDiagram.svg

gCollection

gCollection<E>
<<interface>>

begin() : gIterator<E>
end() : gIterator<E>
get(index : int) : E
set(e : E,index : int)
map(r : F,m : F,s : F,data,gCollection)
split(nparts : int) : gCollection
reduce() : E

gIterator<E>
<<interface>>

positionArray() : int
get() : E
inc()
clone() : Object
isLess(it : giterator) : boolean
sync(it : giterator)
newOperation()

gMatrix<E>
<<interface>>

beginRows() : gIterator<gCollection>
endRows() : gIterator<gCollection>
beginColumns() : gIterator<gCollection>
endColumns() : gIterator<gCollection>
get(row : int,column : int) : E
set(e : E,row : int,column : int)

(a) Data API

gCollection

gCollect ion<E>
< < i n t e r f a c e > >

gI terator<E>
< < i n t e r f a c e > >

Particle
< < i n t e r f a c e > >

getX() : double
getY() : double
getZ() : double
(...)

gCollectionParticleAoS

data[] : double

gIteratorParticleAoS

gCollection : gCollectionParticleAoS
position : int

Framework API User defined

Framework generated

(b) Package for the MD AoS

Fig. 2: Gaspar data centric framework API

data element and an isLess() method that compares two iterators. Iterators also
provide the sync() operation which synchronises the position of two iterators.

Iterator it = one.iterator();

while(it.hasNext()) {

Particle p = it.next();

xj = p.getX();

yj = p.getY();

zj = p.getZ();

(...)

}

gIterator it = one.begin();

for(; it.isLess(one.end());

it.inc()){

xj = ((Particle) it).getX();

yj = ((Particle) it).getY();

zj = ((Particle) it).getZ();

(...)

}

Fig. 3: Comparison between Java iterators and framework gIterator

2.2 Map Pattern

The most common data locality optimisation is the use of data tiles to improve
temporal locality [2]. This optimisation requires the creation of additional loops
to process data tiles. Moreover, multiple levels of tiling (to address multiple
levels of cache) must be implemented by nesting multiple loops, which can be
error-prone. Furthermore, it is common to introduce parallelism by running one
or more of these loops in parallel [9].

The framework provides a map pattern that address both tiling and par-
allelism within a single mechanism. The map pattern divides a gCollection
into multiple collections (multiple tiles), applies a mapMethod to each sub-
collection (tile) and invokes the reduceFunction to join the generated/processed
sub-collections (tiles). The mapMethod can be any method that iterates over
a framework collection. The framework provides common implementations for
split and reduce functions over gCollections (data tiles). Map operators can be



4 Gaspar data-centric framework

nested in order to implement multi-level tiling. In this case, different tiling or-
ders can be quickly experimented by simply changing the nesting order of map
operators.

Map operators can be executed in parallel by just changing the sequential
map operator to a parallel map operator. In that case, the processing of sub-
collections can be allocated to each thread in different ways, the framework
currently offers block, cyclic and dynamic allocation.

The map pattern can generate additional data copies that can lead to inef-
ficient implementations. The framework data API enables two mechanisms to
improve performance of map operators: virtual collections and lazy copying. The
framework offers several splitter and reducer functions in order to use these op-
timisations. One implementation creates a physical copy of the data, which can
improve the spatial locality (an operation also known as packing). This imple-
mentation has the option to do the packing of all sub-collections when the split
function is called or when the each sub-collection is accessed (i.e., lazy packing).
Virtual collections avoid performing additional data copies by creating collec-
tions and iterators that are virtual views of the original data.

The map pattern is currently implemented by an high-order function intro-
duced in Java 8 (i.e., a function that accepts pointers to methods). The map
operator has the following interface: MAP(splitFunc, mapMethod, reduceFunc,
gCollection). Figure 4 illustrates the map pattern applied to the force method
of our illustrative case. This case requires nesting to two map patterns. The
splitg2 divides the collection into virtual sub-collections. Each task calculates
the interactions of all particles with first sub-collection, and repeats the process
for other sub-collections. The splitg1 divides again the collection and process
the interaction of particles from sub-collections with the particles from another
sub-collection.

parameters = gCollection.map(md::splitg1,

(Object m) -> gCollection.map(

md::splitg2, md:: force, md::reduceg2, m),

md::reduceg1, parameters)

Fig. 4: Force computation applying tiling optimization

3 Performance evaluation

This section evaluates the framework performance on a server machine with two
12-core Xeon E5-2695v2 (NUMA memory), using OpenJDK 1.8.0 25.

The first case study is a Matrix Multiplication, we compare code in plain Java
with use of the framework. The kernel used is the same in both implementations,
as well as the tiling optimisation. The Framework with tiling is based on the map
operator described in section 2.2. Figure 5a shows the relative performance of
tiling and lazy packing. The data API introduces a small overhead. In the plain
Java implementation, tiling improves the performance, but with a traditional



Gaspar data-centric framework 5

map pattern implementation that advantage is lost. The introduction of lazy
packing provides a performance comparable to a plain Java implementation.
The figure also provides time for lazy packing of all matrices (A, B and C) and
only for matrix C, which was tested by simply changing split functions.

Figure 5b presents the relative performance of this version against other well-
known pure Java implementations (the reference implementation is the JBLAS
implementation). The framework provides the best pure Java implementation
and up to 0.95 times the performance of the JBLAS implementation (JBLAS
provides 0.70 times of the peak performance on this machine).

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

1.4	  

1.6	  

Pure	  Java	   Framework	   Pure	  Java	  
with	  8ling	  

Framework	  
with	  8ling	  

Framework	  
with	  8ling	  
(lazing	  All)	  

Framework	  
with	  8ling	  
(lazing	  C)	  

re
la
%v

e	  
pe

rf
or
m
an

ce
	  

(a) Java vs Framework

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

1024	   2048	   4096	  

re
la
%v

e	  
pe

rf
or
m
an

ce
	  

matrix	  size	  

EJML	   Jama	   JBlas	   Commons	  Math	   Framework	   Framework	  with	  >ling	  

(b) Performance of Java libraries

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

1.4	  

1024	   2048	   4096	  

re
la
%v

e	  
pe

rf
or
m
an

ce
	  

matrix	  size	  

iijjkk	   iikkjj	   jjiikk	   jjkkii	   kkiijj	   kkjjii	  

(c) Differents tile orders

0

5

10

15

20

25

1 3 6 9 12 15 18 21 24

sp
ee
d-‐
up

threads

Ideal Pure	  Java	  with	  tiling Framework	  with	  tiling

(d) Parallel versions

Fig. 5: Matrix Multiplication benchmark

Tuning performance is a hard task and finding the best matrix implementa-
tion requires experimentation, since there are three nested loops in the Matrix
Multiplication. In the framework, the experimentation can be quickly performed
by adding a nested map. Figure 5c illustrates the relative performance using the
ti, tj, tk order as reference, by changing the map nesting order. The best order
also depends on the input size. In the framework this can be addressed by using
different map nests for each input size.

A parallel version of the Matrix Multiplication is developed by replacing one
map implementing the tiling with a parallel map. Figure 5d presents the speed-
up obtained with this implementation and the comparison with an equivalent



6 Gaspar data-centric framework

implementation in plain Java. The performance of both implementations is very
close and both scale linearly up to 12 processors. However, for 24 threads exists
a performance penalty in both versions, caused by load unbalance (some threads
process one more block than the others) and caused by the NUMA architecture..

The MD benchmark from the JGF (using an AoP layout) was implemented
in the framework and tested with different data layouts (gXoX versions). The
speed-up to the sequential SoA version (the more efficient) of each version is
presented in Figure 6b. The AoP layout scales poorly due to the lack of data
locality and because its sequential version is the slowest. The performance of
the framework AoP implementation is similar to one of JGF. The SoA version
provides the best performance.

The data layout can interplay with tiling. The framework provides a flexible
mechanism to develop custom tiling approaches by implementing case-specific
split/reduce functions for the map. A custom tiling approach is required for MD
benchmark since there is a nested loop, where the inner loop depends on the
current iteration of the outer loop. Figure 6a presents performance by composing
the different data layouts of MD with tiling.

0	  

0.2	  

0.4	  

0.6	  

0.8	  

1	  

1.2	  

1.4	  

gAoP	   gAoS	   gSoA	   gAoP	   gAoS	   gSoA	  

Small	   Large	  

re
la
%v

e	  
pe

rf
or
m
an

ce
	  

md	  size	  and	  layout	  

no	  5ling	   small	  5ling	   medium	  5ling	   large	  5ling	  

(a) Layout and tile

0	  

5	  

10	  

15	  

20	  

25	  

1	   3	   6	   12	   24	  

sp
ee
d-‐
up

	  

threads	  

Ideal	   AoP	   gAoP	   AoS	   gAoS	   SoA	   gSoA	  

(b) Parallel versions

Fig. 6: Molecular dynamic benchmark

For a small particle set, the AoS is the best layout and tiling improves the
performance. Performance of AoP and AoS are very close for medium tiles.
However, tiling does not improve the SoA version, which presents the worst
performance. On the larger size, the SoA is the best version and, in this case,
it benefits from applying tiling. Fortunately the framework provides an infra-
structure where locality optimisations can be tested and implemented, which
provides a fast mechanism to implement and study this kind of optimisations.

4 Discussion and Related work

There is a number of techniques to automatically improve locality by changing
the Java Virtual Machine(JVM). Hirzel et. al. [4] evaluated a technique based
on sorting objects during garbage copying, which places objects in consecutive
memory addresses to improve spatial locality. This technique still maintains the



Gaspar data-centric framework 7

AoP. Wimmer et. al. [11] propose an improvement to the JVM to automatically
inline object fields by placing the parent and children objects in consecutive
memory places and by replacing memory accesses by address arithmetic. Nie et.
al [7] propose the Java vectorisation interface to explicitly expose data paral-
lelism in programs enabling explicit vectorisation. These works require changes
to the JVM implementation and there is no known system that supports data
tiling.

OpenACC and Mint [10] are two programming frameworks that provide
OpenMP like directives to support the loop tiling by a specific loop clause. The
Gaspar data-centric framework provides a more flexible approach, for instance,
it is easily change the tiling order or change the data layout.

The Java 8 parallel streams provide an API that resembles to map operators,
but they are based on Java iterators and do not support data tiles and different
layouts. The proposed framework uses a more sequential-like way of expressing
map operators and is part of a larger effort to provide OpenMP-like programming
in Java [6].

This paper shows that the map pattern is more suitable to express parallelism
when the base program benefits from tiling [5]. The framework data API is
similar to Standard Template Library(STL), but in STL there is a difference
between a pointer (iterator) and the element pointed to. Thus, to access an
element, pointer dereference must be used so it is not possible to automatically
transform an iterator to the element pointed to. This will make it more difficult to
encapsulate the data layout, without introducing a concept similar to interfaces
in Java. Other approach is to hide the distribution and parallelism concepts in
skeletons. STAPL[3, 12] and FastFlow[1] provide skeletons to simplify the code
and improve performance. In STAPL, the skeletons express data distribution
and parallelism, it is and based in STL iterators. Although, both frameworks do
not support multiple data layout.

The map pattern of computation provides a safer way of iterating over data
than using the traditional loop-based approach, since, in a map, the loop range
is implicitly derived from the collection size. This avoids many potential errors
of a loop-based approach, specially when multiple levels of tiling are required.

5 Conclusion

This paper presented a Gaspar data-centric framework and how the proposed
data API efficiently supports multiple data layouts and tiling. The performance
results show that the framework can provide implementations that compete with
pure Java implementations. Thus, the framework provides improved trade-off
between programmability and performance. The framework data API was also
designed to make it easy to introduce locality improvements in loops that it-
erate over data in a collection. The provided infra-structure makes it easy to
tests different data layouts and tiling, as well as to develop case-specific locality
optimisations.



8 Gaspar data-centric framework

In future, the tool will provide a performance analyser helping the user to
better layout choice. On the other side it will be included support to more
platforms (example distribute memory).

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: Accel-
erating code on multi-cores with fastflow. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011 Parallel Processing, Lecture Notes in Computer Science, vol.
6853, pp. 170–181. Springer Berlin Heidelberg (2011)

2. Anderson, J.M., Lam, M.S.: Global optimizations for parallelism and locality on
scalable parallel machines. In: Proceedings of the ACM SIGPLAN 1993 Conference
on Programming Language Design and Implementation. pp. 112–125. PLDI ’93,
ACM, New York, NY, USA (1993)

3. Buss, A., Papadopoulos, I., Pearce, O., Smith, T., Tanase, G., Thomas, N., Xu,
X., Bianco, M., Amato, N.M., Rauchwerger, L., et al.: Stapl: standard template
adaptive parallel library. In: Proceedings of the 3rd Annual Haifa Experimental
Systems Conference. p. 14. ACM (2010)

4. Hirzel, M.: Data layouts for object-oriented programs. SIGMETRICS Perform.
Eval. Rev. 35(1), 265–276 (Jun 2007)

5. Medeiros, B., Silva, R., Sobral, J.: Gaspar: a compositional aspect-oriented ap-
proach for cluster applications. Concurrency and Computation: Practice and Ex-
perience (2015)

6. Medeiros, B., Sobral, J.L.: Aomplib: An aspect library for large-scale multi-core
parallel programming. In: Parallel Processing (ICPP), 2013 42nd International
Conference on. pp. 270–279. IEEE (2013)

7. Nie, J., Cheng, B., Li, S., Wang, L., Li, X.F.: Vectorization for java. In: Network
and Parallel Computing, pp. 3–17. Springer (2010)

8. Smith, L.A., Bull, J.M., Obdrzálek, J.: A parallel java grande benchmark suite. In:
Proceedings of the 2001 ACM/IEEE Conference on Supercomputing. pp. 8–8. SC
’01, ACM, New York, NY, USA (2001)

9. Smith, T.M., Van De Geijn, R., Smelyanskiy, M., Hammond, J.R., Van Zee, F.G.:
Anatomy of high-performance many-threaded matrix multiplication. In: Parallel
and Distributed Processing Symposium, 2014 IEEE 28th International. pp. 1049–
1059. IEEE (2014)

10. Unat, D., Cai, X., Baden, S.B.: Mint: realizing cuda performance in 3d stencil
methods with annotated c. In: Proceedings of the international conference on Su-
percomputing. pp. 214–224. ACM (2011)

11. Wimmer, C., Mössenböck, H.: Automatic array inlining in java virtual machines.
In: Proceedings of the 6th annual IEEE/ACM international symposium on Code
generation and optimization. pp. 14–23. ACM (2008)

12. Zandifar, M., Thomas, N., Amato, N., Rauchwerger, L.: The stapl skeleton frame-
work. In: Brodman, J., Tu, P. (eds.) Languages and Compilers for Parallel Com-
puting, Lecture Notes in Computer Science, vol. 8967, pp. 176–190. Springer In-
ternational Publishing (2015)


