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Abstract. Software maintainers are often challenged with source code
changes to improve software systems, or eliminate defects, in unfamiliar
programs. To undertake these tasks a sufficient understanding of the
system (or at least a small part of it) is required. One of the most time
consuming tasks of this process is locating which parts of the code are
responsible for some key functionality or feature. Feature (or concept)
location techniques address this problem.

This paper introduces Conclave, an environment for software analy-
sis, and in particular the Conclave-Mapper tool that provides a feature
location facility. This tool explores natural language terms used in pro-
grams (e.g. function and variable names), and using textual analysis and
a collection of Natural Language Processing techniques, computes syn-
onymous sets of terms. These sets are used to score relatedness between
program elements, and search queries or problem domain concepts, pro-
ducing sorted ranks of program elements that address the search criteria,
or concepts. An empirical study is also discussed to evaluate the under-
lying feature location technique.

1 Introduction

Reality shifts, bug fixes, updates or introducing new features often require source
code changes. These software changes are usually undertaken by software main-
tainers that may not be the original writers of the code, or may not be familiar
with the code anymore. In order to carry out these changes, programmers need
to first understand the source code [43]. This task is probably the main challenge
during software maintenance activities [9].

Software reverse engineering is a process that tries to infer how a program
works by analyzing and inspecting its building blocks and how they interact to
achieve their intended purpose [8,30]. Many of these techniques rely on mappings
between human oriented concepts and program elements [35]. These are often
used to locate which parts of the program are responsible for addressing specific
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domain concepts [3], and are usually referred in the literature as feature location
techniques [12].

Programming languages unambiguous grammars limit the sentences that can
be used to write software. Still some degree of freedom is given to the program-
mer to use natural language terms (e.g. program identifiers, constant strings or
comments). These terms can give clues about which concepts the source code is
addressing, and the meaningfulness of these terms can have a direct impact on
future program comprehension tasks [24]. Most of the programming communi-
ties promote the use of best practices and coding standards that usually include
rules and naming conventions that improve the quality of terms used (e.g. the
”Style Guide for Python Code” 1). Feature location techniques that exploit such
elements are typically described as textual analysis, often combined with static
analysis [12].

This paper introduces Conclave2, a system of tools for software analysis,
with special focus on Conclave-Mapper3, a tool that provides a technique to
measure semantic relatedness between source code elements, and elements sup-
plied by the maintainer as query searches. It allows the creation of mappings
between source code and real world concepts, facilitating feature location ac-
tivities. The main goal of this system is to provide programmers with insight
and information about software packages to enhance program understanding
activities and ease software maintenance tasks.

Conclave-Mapper uses source code static analysis to extract data from
source code (e.g program identifiers, function definitions). The extracted data
is loaded to an ontology that represents the program. Other ontologies can be
added to the system if available (e.g. the problem domain ontology, dynamic
traces information). Using a set of Natural Language Processing (NLP) tech-
niques and textual analysis, kind-of Probabilistic Synonymous Sets (kPSS) are
computed for every element present in the ontologies, and a scoring function is
used to measure the semantic relatedness4 between them. The main output of
this tool are ranks – sorted by relevance – of program elements that are prone
to address some specific real world domain concept. This tool also provides a
Domain Specific Language (DSL), for writing search queries.

In the next section related work, and some state-of-the-art feature location
techniques are discussed; Section 3 gives a brief overview of the Conclave
environment; and Section 4 describes in more detail the Conclave-Mapper
tool. Section 5 describes the experimental validation held to evaluate the feature
location technique, including results discussion. Finally, Section 6 includes some
final remarks and trends for future work.

1 http://www.python.org/dev/peps/pep-0008/ (Last accessed: 29-01-2014).
2 http://conclave.di.uminho.pt (Last accessed: 27-01-2014).
3 http://conclave.di.uminho.pt/mapper (Last accessed: 27-01-2014).
4 In ontologies the term similarity is used to refer how similar two concepts are, and
is usually based on a hierarchy of is-a relations, in the context of this work concepts
can be related in many ways, hence the adoption of the term relatedness.

http://www.python.org/dev/peps/pep-0008/
http://conclave.di.uminho.pt
http://conclave.di.uminho.pt/mapper
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2 Related Work

Program Comprehension (PC) is a field of research concerned with devising
ways to help programmers understand software systems. In the context of PC,
feature (or concept) location is the process of locating program elements that
are relevant to a specific feature implementation. This is typically the first step
a programmer needs to perform in order to devise a code change [3, 28, 35].

Feature location techniques are usually organized by types of analysis: (a)
dynamic analysis, which is based in software execution traces, and examines
programs runtime (e.g. [1, 13, 40, 44]); (b) static analysis, based on static source
code information, such as slicing, control or data flow graphs (e.g. [7,27,39]); and
(c) textual analysis, explore natural language text found in programs like com-
ments or documentation. This last type can be based on Information Retrieval
(IR) methods (e.g. [4,5,26]), NLP (e.g. [18,41]), or pattern matching (sometimes
also referred as grep-like) based approaches (e.g. [14]). For more details about
different trends and other approaches please refer to surveys [12] and [44].

The Conclave-Mapper underlying feature location technique uses a com-
bination of static and textual analysis, and ontologies. Examples of other ap-
proaches that explore the same combination of analysis include: in [47], Zhao et
al use a static representation of the source code named BRCG (branch-reserving
call graph) to improve connections between features and computational units
gathered using an IR technology; in [17], Hill et al present a technique that ex-
ploits the program structure and also program lexical information; in [36], Ratiu
and Florian establish a formal framework that allows the classification of redun-
dancies and improper naming of program elements, which is used as a based to
represent mappings between the code and the real world concepts in ontologies;
in [16], Hayashi et al proposed linking user specified sentences to source code,
using a combination of textual and static analysis domain ontologies. Other ap-
plications of ontologies in software engineering in [15].

State-of-the-art feature location approaches involve combining techniques tak-
ing advantage of having data produced from different types of analysis (e.g.
[23, 26]).

3 Conclave Overview

The Conclave environment provides a set of tools to perform software analysis.
The main system workflow is divided in three main stages: (a) collecting data;
(b) processing collected data and loading ontologies; and, (c) reasoning about
data in the ontologies and providing views of computed information. Figure 1
illustrates this workflow, and the next sub-sections describe in more detail the
different stages. All the tools implemented in the context of this system are
modular (or work as plugins), and some provide web-services, so that they can
be used as standalone applications, or composed together to create more complex
applications or workflows (like the one illustrated in Fig. 1).
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Fig. 1. Overview of the major stages of the Conclave system workflow

3.1 Collecting Data

This is the first stage of the main workflow; its goal is to collect data from a
software package, and any kind of problem specification if available. It takes as
input the complete package (and other available documents) and produces as
output an heterogeneous collection of resources. The processing tools involved
in this stage can use different type of analysis: static source code analysis (e.g.
parsing code to extract identifiers and static call graphs), dynamic analysis (e.g.
execution traces), etc.

Any analysis can be used to collect information, and produce a resource. In
the context of this work, some tools were implemented to provide some initial
data to the system and contribute to PC in general, here are some examples:

Conc-clang: is a static analysis tool, based on the clang compiler library [22]
for gathering identifiers and static functions calls information for C/C++

programs;
Conc-antlr: is a static analysis tool, based on the ANTLR parser genera-

tor framework [31], for gathering program identifiers information for Java

programs;
Conclave-IdsProcessor: provides a tool for splitting program identifiers,

mainly because programmers tend to use abbreviations and word combi-
nations to name program elements (like variables or functions), these need
to be split and expanded to improve feature location techniques [10, 11].

The heterogenous set of tools used during this stage produce a multitude of
resources in distinct formats. In order to take advantage of all these results all
this information needs to be conveyed to a common format, more suitable for
querying and processing. Ontologies were adopted as a common target format.
Building ontologies from collected data is done during the second stage, which
is discussed in the next section.
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3.2 Normalizing Information, Populating Ontologies

The main goal of this stage is to convey the data collected during the previous
stage into the system ontologies. The input of this stage is a collection of re-
sources, and the output is a set of populated ontologies. Usually three ontologies
are populated for each software package:

Program Ontology: abstract representation of some key program elements
(e.g. methods, functions, variables, classes);

Problem Ontology: concepts and relations in the application domain;
World � Ontology: runtime effects of executing the program (e.g. program

run traces).

There are two important details about this stage. The first one is the for-
mat and technology chosen to store the ontologies. A RDF based triple-store
technology was adopted to store the data. This allowed for a scalable and
efficient method for performing storing and querying operations, and also al-
lows to export the data in several community accepted ontology formats (e.g.
OWL, RDF/XML, Turtle) [19,21]. Querying facilities are also readily available;
for instance, SPARQL is a querying domain specific language for RDF triple-
stores [32, 34].

Although these technologies provide scalable and efficient environments for
handling information, development wise, they are far from the abstraction de-
sired by the applications level implementation. To overcome this problem the On-
tology ToolKit (OTK)5 was implemented, which provides an abstraction layer on
top of the RDF technology, to develop ontology-aware applications. In practice,
when applications developers want to perform an ontology related operation, in-
stead of using triple-store low level primitives, they can use the abstraction layer.
To motivate for the development of this abstract framework, consider the mod-
ern Object-Relational Mappers (ORM) in the context of relational databases.
Which provide an abstraction layer and interface for programming languages
to handle data (stored in databases) as objects, allowing the development of
applications regardless of the underlying database technology used [20].

The second important detail is the data semantic shift. Resources tend to
produce raw data, but the data stored in the ontologies conveys a richer semantic.
Most resources require a specific tool to read the resource data, and translate
it to information that is ready to store in the ontology, i.e. follows the semantic
defined by the ontology. OTK has also proven useful to implement this family
of tools.

A simple example to illustrate the previously discussed details follows. Imagine
the Conc-clang tool was used to process a C source code file, included in a
software package. The raw output of this tool is something like6:

Function,source.c::add::6,add,,source.c,6,8

5 Implemented as a set of libraries for the Perl programming language.
6 For more examples please visit the tool website:
http://conclave.di.uminho.pt/clang (Last accessed: 27-01-2014).

http://conclave.di.uminho.pt/clang
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This line by itself conveys small to none semantic of the data being included
in the final resource. In loose english this line states that: ”in the ’source.c’
file there is a ’Function’ definition which has a identifier represent by ’add’ that
starts in line ’6’ and ends in line ’8’”, and this is the kind of semantic that
needs to be conveyed to the ontological program representation of the program.
The Program Ontology has a class to represent instances of elements that are
functions in the source code, another for identifiers, and the line numbers are
stored as data proprieties 7. To illustrate the use of OTK, the following snippet
illustrates a simplified version of the required code to load this information to
the Program Ontology.

use OTK;

my $ontology = OTK ->new($pkgid , ’program ’);

$ontology ->add_instance (’add’, ’Function ’);

$ontology ->add_instance (’add’, ’Identifier ’);

$ontology ->add_data_prop (’add’, ’hasLineBegin ’, 6, ’int’);

$ontology ->add_data_prop (’add’, ’hasLineEnd ’, 8, ’int’);

$ontology ->add_obj_prop (’add’, ’inFile’, ’source.c’);

The Program Ontology used is in line with other authors’ proposed descrip-
tions (e.g. [37, 45, 46]). This also eases future integration processes with other
tools that followed those same approaches. Figure 2 illustrates a subset of the
class hierarchy exported to OWL. Once all the data is stored in the ontologies,
the reasoning layer can be used to relate informations gathered from different

Fig. 2. Program ontology sub-set of the class hierarchy

7 Although a triple-store RDF approach is used to store the actual information, we
are using OWL vocabulary and specification to make clear the aimed semantics for
the program representation [2].



122 N.R. Carvalho et al.

elements and domains to build semantic bridges between elements. More details
about this stage are discussed in the next section.

3.3 Reasoning and Views

During this stage more knowledge about the system is build and provided to
the system end-user. The tools in this stage use as input the ontologies built
during the previous stage, and generally fall in one of the two categories, either
they: (a) process information to compute new information and knowledge about
the system – usually in this case the tool output is new content added to the
ontologies; or (b) information or knowledge suitable for visualization is built – in
this particular case the final output of the tool is a view for the package system.

Querying the ontology, and adding information if necessary, can easily be done
using the OTK framework. Also note that the tools in this stage are language
agnostic, in the sense that data about the source code (language dependent) has
already been gathered, and OTK tools do not depend anymore on the source
language. For example, if a tool processes identifiers, to get a list of the program
identifiers simply query the Program Ontology using OTK, as follows:

use OTK;

my $ontology = OTK ->new($pkgid , ’program ’);

my @identifiers = $ontology -> get_instances (’Identifier ’);

Conclave-Mapper, described in detail in the next section, is an example of
tools that are used during this stage.

4 Conclave-Mapper Feature Location Approach

Conclave-Mapper is an application that relies on data computed by other
tools (see Sec. 3.1 and 3.2), to create relations between elements of any of the
ontologies available for a given package. The input for this application is a set of
ontologies, and either a search query, or a mapping query; and the output is a
sorted rank of element relations, or a mapping of element relations respectively.
The Program Ontology represents the elements of the program, a software main-
tainer can ask the application to compute the relations between elements in the
program and either a set of keywords provided in a search query, or elements
in other ontologies (e.g. Problem Ontology) using a mapping query. In the first
case, the result is a sorted rank of the program elements that are related with the
keywords provided in the search query, and in the latter a matrix of relatedness
score between the elements selected from both ontologies. Both can be used to
find which parts of the code are responsible for implementing a domain concept
– feature location.

Before discussing function implementations, a formal description of the data
types required for creating each output follows8:

8 Haskell syntax is used to describe the data types and functions discussed; some
details have been slightly simplified to improve readability.
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type Rank = [Entry]
data Entry = Entry { score :: Float , element :: Element }

This defines a Rank as a collection of Entry, where each Entry contains the se-
mantic relatedness (score), between the element (element) and the query search
(more details about how this score is calculated in Sec. 4.2). The type Element ,
represents an instance in any ontology (if elements of the Program Ontology
are being used all other data is also available: source file, begin and end line,
identifier, etc.).

dataMap = Map { rows :: [Element ], cols :: [Element ], cells :: [Cell ] }
data Cell = Cell { row :: Int , col :: Int , score :: Float }

This defines a Map as a matrix, with an Element for each row and column;
each Cell in the matrix (besides its position information) contains the semantic
relatedness measure (score) for the corresponding elements (more details on how
score is calculated in Sec. 4.2).

The application implements two main functions to compute each one of the
available output types. The locate function creates a Rank and is defined as:

locate :: Query → Rank
locate q = let elements = getElements q

entries = [ Entry score e | e ← elements, computeScore q e ]
in Rank entries

This function, given a Query, computes a Rank , by iterating over all the elements
being analyzed (defined by the search query), and for each element computing
a semantic relatedness score, and adding it to the Rank as a new Entry. The
element set being searched and the scoring function are defined by the search
query (see Sec. 4.2 for details).

The mapping function creates a Map and is defined as:

mapping :: Query → Query → SFunction → Map
mapping q1 q2 f = let rows = getElements q1

cols = getElements q2
i = 0
j = 0
cells = [ Cell i j (f r c) |

r ← rows , c ← cols ,
i ← i + 1, j ← j + 1 ]

inMap rows cols cells

This function, given two queries (of type Query), and a scoring function
(SFunction), calculates a matrix of elements where each cell includes the relat-
edness score between the corresponding row and column element. This provides
a matrix of relations between all selected (program, application domain, etc.)
elements, that can be sorted by relevance. Figure 3 illustrates a possible view of
these mappings, highlighting the best relevance ranking between the application
domain and functions.
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Fig. 3. A mapping produced by Conclave-Mapper: on the left the Problem Ontology
can be used to constrain the concepts being searched, on the right the Program Ontol-
ogy can be used to constrain the range of which program elements are being analyzed,
and in the center the resulting rank sorted by relevance

The Query type used before describes a query supplied by the user (a pre-
defined set of queries is also available via the system interface). A DSL was
developed to describe these queries (either search or mapping); this language is
discussed in the next subsection.

4.1 The Query Language

In order to compute rankings and mappings at least one query is required. This
section describes the DSL that was devised to create such queries. Each query has
at least three main components: (a) keywords; (b) domain and range constrains
(e.g. search only functions, or variables); and, (c) the scoring function used to
compute the relatedness score between the elements (some of these have default
values).

The DSL query language allows two major types of queries: (a) simple strings;
or (b) complex queries where a set of proprieties that define the query are sup-
plied in the form of PropriertyName=PropriertyValue9. To distinguish simple
queries from complex, the latter are enclosed in square brackets ([ ]). To in-
troduce possible queries and proprieties a set of query examples are presented
next.

9 Keywords are only used for search queries by the locate function, and are ignored
when creating maps.
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The simplest possible query that can be written is a simple string, where the
words that represent features or concepts being search are concatenated together
using blank spaces, for example:

"color"

"color schema"

These queries search for elements that are closely related with the words "color"
(or also "schema"). By default, a score is computed for all the Program Ontology
elements (functions, variables, classes, etc.), and the scoring function used is kpss
(scoring functions are discussed in detail in Sec. 4.2).

The program maintainer when initially addressing a possible bug fix, may be
interested in searching functions (or methods) only. The class propriety can
be used to constrain the subclass of elements that are being retrieved from the
ontology. The following query performs a search for the words "color" and
"schema", but only analyses elements that are instances of the class Function
(remember the ontology definition in Sec. 3.2, and that the Program Ontology
is the default ontology for selecting elements):

[ word=color word=schema class=Function ]

This means that the elements of the resulting rank are only instances of func-
tions, because the query constrains the search domain of the locate function.
Another example, can be searching for variables, by selecting the class Variable,
this includes all the members that are instances of the class Variable and also
instances of all sub-classes of Variable (e.g. Parameter, LocalVariable), i.e.
the resulting rank includes all kinds of variables in the original program:

[ word=color class=Variable ]

Particular types of variables can be selected, for example searching only local
variables:

[ word=color class=LocalVariable ]

Another important propriety that can be defined is the scoring function, i.e. the
function that will compute the semantic relatedness score between the keywords
searched and each of the selected elements, this is done using the score propriety.
For example, the query:

[ word=color class=Variable score=levenshtein ]

uses the levenshtein word distance algorithm [25], to compute the score. By
default, the scoring function based on kPSS is used.

So far, the illustrated queries have been computing scores between elements
(e.g. functions, variables) and a set of words. But more complex comparisons may
provide more accurate rankings. The aggr propriety allows a query to define the
name of a relation (defined in the ontology) to compute a score not only between
each selected elements, but also including a set of elements that are related to
them. The query:
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[ word=color class=Function score=levenshtein aggr=inFunction ]

for example, analyses all the functions, and for each function also considers all
the elements that are related with that function by the relation inFunction

(defined in the ontology). This relation is used to link all the local variables
and parameters to all the functions (or methods depending on programming
language) where they are defined and used. In practice, the score for each element
(function) is the average between computing the score for the element itself, and
the score for every local variable and parameter defined in that function.

The scores used by the locate and mapping functions are calculated by the
function defined in the query, and are discussed in the next section.

4.2 Scoring Functions

The score between two elements (or an element and a word) quantify how close
they are semantically related. This score is used to sort the ranks computed by
the locate function by relevance, or to highlight the cells that express close relat-
edness between elements in the matrixes computed with the mapping function.

The main scoring function available in the Conclave system is the kpss
function (used by default), and is based on kPSS, which defines a formalism to
describe synonymous sets based on Probabilist Synonymous Sets (PSS) [6, 42].
These define synonymous sets based on statistical analysis of parallel corpora.

A kPSS of order n is formally defined as a set of orders; a synonymous set
corresponds to each order n (where n ∈ N), which is defined as a list of Term .
Each Term contains a word and a probability:

type kPSS = [Order ]
dataOrder = Order { n :: Int , synsen :: [Term] }
data Term = Term { word :: String , prob :: Float }

The sum of all the probabilities in every synonymous set, for every order is
always equal to 1. A kPSS can be built for any given word, and usually only up
to order 3. Every time a new order is added, probabilities need to be normalized
so that the invariant is kept valid. The first order contains the original word
itself only, the second order synset contains only words directly derived from
the original word (e.g. lemma, inflection), and the third order contains terms
extracted from the PSS for the same word. Table 1 illustrates the kPSS for the
word ”inserting”.

Once a kPSS is available for a pair of words, the relatedness score between
these words can be calculated. The kpss function is used to compute this score
(as a Float) and is defined as:

kpss :: kPSS → kPSS → Float
kpss k1 k2 =

∑
[min (prob x ) (prob y) |

x ← flatten k1, y ← flatten k2, word x == word y ]

This function iterates over the flattened version of the kPSS, and sums the
minimum probabilities for terms that are common. The flattened version of the
kPSS is simply a single list of terms. The flatten function is defined as:
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Table 1. kPSS of order 3 for the word ”inserting”

Order (n) n = 1 n = 2 n = 3

SynSet
(word → prob)

inserting → 0, (3) insert → 0, 1(6) inserted → 0, 023
insertings → 0, (3) enter → 0, 039

insertion → 0, 063
inserts → 0, 014

(...)

flatten :: kPSS → [Term]
flatten kpss = concat [ synset order | order ← kpss ]

Other scoring functions can be used to produced different ranks and mappings.
The levenshtein function is another example, this calculates the score as the
word distance between terms. Another function implemented in the system is
the match function (this helps simulating techniques based on grep10), that
simply returns 1 if the words match, or 0 otherwise. The next section describes
the experimental evaluation done to empirically verify the advantages of the use
of kPSS.

5 Experimental Validation

The previous sections describe the underlying technique used in the Conclave
system for feature location, based on kPSS. This section describes the prelimi-
nary evaluation done, to verify if this technique introduces benefits over other
common techniques. In current available IDEs, common search facilities provided
to the users, are still grep-like approaches, so the following research question was
formulated:

RQ1: How does the kpss scoring function performs, when compared to the
match scoring function, for finding relevant elements of the code given a
search query?

To help answering this question the following experience was performed:

Step 1: in order to ease the process or replicating this experience the benchmark
provided by Dit et al11 for the jEdit12 editor (version 4.3) was used, instead
the devising a new data set. The benchmark contains a set of 150 bug reports,
including the function set that was changed to resolve the bug (refered as
the gold set) – more details about the benchmark in [12];

Step 2: the title for each bug report was extracted, stop words13 were removed,
and the resulting set was archived as keywords;

10 http://www.gnu.org/software/grep/ (Last accessed: 29-01-2014).
11 http://www.cs.wm.edu/semeru/data/benchmarks/ (Last accessed: 29-01-2014).
12 http://www.jedit.org/ (Last accessed: 29-01-2014).
13 Common words that tend to express poor semantics (e.g. “the”, “a”, “too”) [29].

http://www.gnu.org/software/grep/
http://www.cs.wm.edu/semeru/data/benchmarks/
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Step 3: for each bug report, the locate function to compute a rank was called,
using the match scoring function, the keyword set computed in Step 2, and
setting as range the Function program element;

Step 4: replicate Step 3 but using the kpss scoring function;
Step 5: calculate the effectiveness measure for each resulting rank.

The effectiveness measure is calculated by analyzing the computed rank in
order, and its value is the first position of the rank that is a relevant function.
Functions that are part of the set of functions changed to resolve the bug (the
gold set) are considered relevant. The rank position can be compared for dif-
ferent scoring functions to measure which rank produced the best results. This
approach was also used in [33] and [38] for comparing feature location techniques
performance.

The results of this experience are presented in Table 2. They show that for
this software package the kPSS based scoring approach produced a better result
55 times, outperforming the 22 better results achieved by the simple match
function. The remaining times either both approaches scored the same, or none
of the relevant functions were found in the resulting rank.

Table 2. Results of the experimental validation

Scoring
Function

Analysed
Bugs

Better Eff.
Measure

match 150 22
kPSS 150 51

Although these results are satisfactory, they do not provide enough empirical
data to generalize the performance of kPSS based techniques. Also, the keywords
used to build the queries and the functions gold sets are a threat to validity
because: (a) the keywords set was built automatically from reports titles that
sometimes lack relevant terms, or use only ambiguous words (e.g. ”bug”), a
human would be more prone to devise a set of terms (after reading the report)
that would create a more accurate rank; (b) sometimes, when fixing bugs, the
actual defect is really not related to the concepts functions are addressing, which
translates in changing code unrelated to search queries.

6 Conclusion

Many PC techniques benefit from mappings between the source code and prob-
lem domain concepts. These relations help the programmer quicker understand
the source code, and discover which areas of the code need changing to address
a specific feature or bug fix.

Many tools and techniques can be used to gather information about the
program and the problem domain. Using ontologies allows the combination of
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heterogenous results and data in a single representation format. Applications
can take advantage of a panoply of tools available (e.g. inference engines, de-
scriptive logics, OTK-like frameworks), to perform data analysis and relate el-
ements in different domains. kPSS based feature location is a sound example
of such applications. The OTK framework for abstracting ontology operations
from the underlying technology has proven a valuable asset during applications
implementation.

The main trends for future work include devising new scoring functions, as
well as combinations of approaches to improve results. And also, design practical
experiments to compare Conclave-Mapper with other state-of-the-art feature
location techniques.
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