
Aspect Oriented Parallel Framework for Java

Bruno Medeiros and João L. Sobral

Departamento de Informática, Universidade do Minho, Braga, Portugal
{brunom,jls}@di.uminho.pt

Abstract. This paper introduces aspect libraries, a unit of modularity
in parallel programs with compositional properties. Aspects address the
complexity of parallel programs by enabling the composition of (multi-
ple) parallelism modules with a given (sequential) base program. This
paper illustrates the introduction of parallelism using reusable parallel
libraries coded in AspectJ. These libraries provide performance com-
parable to traditional parallel programming techniques and enables the
composition of multiple parallelism modules (e.g., shared memory with
distributed memory) with a given base program.

1 Introduction

OpenMP and MPI are arguably the most relevant instances of the shared mem-
ory (SM) and distributed memory (DM) parallel programming paradigms (PPP),
respectively. With the increase of clusters of multicore machines it is common to
combine MPI with OpenMP to provide a hybrid solution. However, parallelism
related concerns (PRC) are known for being crosscutting concerns (CCC) [1],
so it is frequent to mix them up with domain application concerns, jeopardizing
the application maintenance and evolution. This mixing up of concerns is known
by tangling (i.e., code that implements more than one concern) and scattering
(i.e., concern that is spread out over multiple modules). Most PPP provide high-
level abstractions for a specific programming model. Hence, to exploit clusters
of multicores it might be necessary to combine different PPP that leads to more
code tangling and scattering issues.

00: void MD (..){
01:...
02:forces = particles.getForces();
03:globalID = processID + threadID * numProcess;
04:totalWorkers = numProcess * numThreads
05:for(pA = globalID pA=0;pA < sizeP; pA+=totalWorkers pA++)
06: for(pB = pA + 1; pB < sizeP; pB++)
07: if(distance(pA, pB) < radius){
08: forcesAB = callForcesParticles(pA,pB);
09: forces[pA] += forcesAB;
10: forces[pB] -= forcesAB;// Newton's 3rd Law
11: threadForces[threadID][pA] += forcesAB;
12: threadForces[threadID][pB] -= forcesAB;
13: }
14:callThreadBarrier();
15:threadForceReduction();
16:callThreadBarrier();
17:if (threadID == masterThread) processForceReduction();
18:} ...

Fig. 1: MD - Hybrid parallelisation (Processes + Threads).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154277095?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1 presents a hybrid parallelisation of a molecular dynamic (MD) simu-
lation to illustrate the tangling and scattering issues. In this code forces between
pairs of particles (pA and pB) within a given radius are calculated and updated.
The outer loop iterations are divided by all threads of all processes (line 05) and
since the forces’ updates might cause data races, each thread uses a local array
to save the particles’ forces (lines 11 and 12). In the end threads call a local
barrier and reduce their work to the master thread (line 15). Lastly, the master
thread of each process will perform a force reduction among them (line 17). The
black, blue and red lines of code are related to the sequential, multi-thread and
multi-process concerns, respectively. The gray lines are sentences that existed in
the sequential version but were excluded from the parallel version.

Figure 1 shows that adding parallelism into the sequential code made it more
complex and harder to understand. If the developer wants to change the mapping
between particles and threads/processes to improve the load balancing, he has
to rewrite the code. Moreover, if the optimisations are duplicated elsewhere this
means that any modification to its reasoning provokes code changes in different
locations of the application. This exposes the inherent problem of the lack of
modularity of such solutions. A better design solution is the encapsulation of
the threads and processes parallelisation into independent modules.

This paper shows an approach to develop high performance hybrid parallel
Java applications without polluting its source code. Initially Java programmers
develop their sequential base code and further on add parallelism modules. These
modules are added in a non-invasive fashion and their PRC are inserted at com-
pile/load time. The modules are pluggable, which allows testing different types
of parallelism without rewriting the base code every time. Performance porta-
bility is addressed by supporting SM and DM libraries that can work together
or separately to address the specificities of each target platform.

The next section discusses how our parallel libraries address the PRC and
presents their implementation that mimics the current mainstream PPP. Section
3 presents performance results. Section 4 compares this work with related work.
Finally, section 5 concludes the paper.

2 Parallel Libraries with AspectJ for hybrid parallelism

To solve the PRC problem we provide SM and DM libraries in AspectJ to be used
as an extra layer of modularisation, promoting a modular approach. AspectJ [3]
provides modules that can be added to the base program without polluting it
with CCC. With AspectJ it is possible to modify the static structure of an ap-
plication as well as its execution flow in a non-invasive fashion. This language
allows the capture of join points (using pointcuts), spread across a base pro-
gram, to add behavior to them (using advices). This behavior is explicitly added
(e.g., at compile) through code transformations performed by AspectJ’s internal
mechanisms, providing a solution to deal with the tangled and scattering prob-
lems. Since multiple transformations can be applied to the same base program,
the language allows to specify hybrid parallelisations. However, AspectJ restricts

the granularity and the type of join points that can be triggered. Therefore, some
base programs might need to be adapted to expose potential join points.

Our approach identifies three main components, the base program, the aspect
libraries and the concrete aspect, represented in the Figure 2 by blue, red and
black colors, respectively. Each library is represented by an abstract aspect that
is connected with external APIs (e.g Java Threads, OpenMPI ...) in a reusable
and decoupled manner. Thus, programmers can easily interchange between dif-
ferent external APIs. Furthermore, since the libraries will be used with different
applications, they cannot depend on join points of a specific application. Thus,
these libraries are composed by abstract aspects that encapsulate behavior and
state transversal to their sub-aspects and abstract pointcuts without explicitly
defined join points. Later on, for each application, those abstract aspects are
extended by concrete ones that encapsulate state and behavior specific to the
target application. The mapping between the abstract pointcut and the join
points to be intercepted is defined in the concrete aspect. The concrete aspect
works as a bridge between the core of the library of aspects and the target appli-
cation. Finally, from the application point of view, in some cases it is necessary
to expose join points using our design rules. This kind of approach is known in
requirements engineering as scaffolding [11] .

Base	
Program	

Concrete	
DM	 Aspect	

Abstract	 DM	
Library	

Abstract	 SM	
Library	

extends

extends

DM	 external	 API	

SM	 external	 API	

implements SM interface

implements DM interface

Concrete	 SM	
Aspect	

Fig. 2: Aspect Libraries: Overview.

The SM library is influenced by OpenMP and provides many of the its con-
structs, such as: critical, single, master, barrier, parallel for (dynamic, static ...),
tasks and so on. It is possible to specify how objects behave among threads,
allowing to declare them as private, shared, to be reduced and so on. The SM
library uses a threads-executors pool created after intercepting the main method
of the target application. Whenever a thread reaches a parallel region it requests
from the initial pool a new team of threads and becomes the master this team.

The DM library will run as many instances as the number of processes re-
quested using the SPMD execution model of MPI. This library provides con-
structs implemented on top of MPI calls, thus offering constructs such as: -
Allreduce, gather, scatter, broadcast and many others. Moreover, offers con-
structs that are not provided by the MPI standard, for example: parallel for
(with static round-robin, static by blocks and dynamic distributions) and distri-
bution of 2D arrays using several strategies.

With the parallel libraries, the developer can use its own data or our data
API with extra features, such as: different types of broadcast of a matrix among
processes (e.g., by lines ...); accessing arrays with high-level abstractions (e.g.,
gets/sets ...); pre-programmed reduction functions for arrays and matrixes.

Similar to OpenMP and MPI, our libraries do not check for data depen-
dencies, race conditions, or deadlocks. Nevertheless, the libraries guarantee the
correctness of their aspects and advices, and of the user concrete aspects, as
long as they follow our designing rules. As far as AspectJ is concerned, with our
approach the user only specifies well defined pointcuts and/or inter-type dec-
larations. This reduces the complexity of using the libraries and facilitates its
correctness.

2.1 Design rules

In our approach domain experts develop sequential code and apply, if necessary,
soft design rules1 that enable the introduction of PRC and are a key to enable
the composition of parallelism modules. The design rules are the same to every
application and work with any of our parallel aspect libraries.

Our first design rule states that PRC should be encapsulated into methods.
In this manner, PRC can be uniquely identified and additional behavior can
be easily (un)pluged. This rule is also applied over loops to be parallelized.
Performance-wise, since such methods can be declared as final, the compiler will
most-likely inline its calls.

Our rule to data states that PRC objects have to implement our interfaces.
Those interfaces are used as market interfaces to identify objects that our li-
braries should intercept and perform actions (e.g., reductions). The declaration
that an object implements our interfaces is coded in the concrete aspect instead
of the target object. In this manner objects are not polluted with PRC. This is
possible using the inter-type declaration mechanism of AspectJ. In SM this de-
sign rule is applied to objects that require to become private to threads, whereas
in DM is applied to objects used in data communication among processes.

2.2 Illustrative Example

01: void MD (..){
02: forceCalculation(0, sizeP, 1, ...);
03: }
04: ..
05: void forceCalculation(int begin, int end, int step, ...){
06: ...
07: forces = particles.getForces();
08: for (pA = begin; pA < end; pA += step)
09: for(pB = pA + 1; pB < sizeP; pB++)
10: if(distance(pA, pB) < radius){
11: forcesAB = callForcesParticles(pA,pB);
12: forces[pA] += forcesAB;
13: forces[pB] -= forcesAB;
14: }
15:} ...

Fig. 3: MD - Code transformation.
1 All the designing rules presented have been formally written and detailed in order to

guide the programmer with the transformations and with the aim that in the future
they can be automated. However, for reasons of lack of space its formal description
was omitted in this article.

Figure 3 illustrates the use of the loop design rule in the sequential version
of the code of Figure 1, whereas Figure 4 presents the concrete aspects with the
join points that will be intercepted to add the requested behavior by DM and
SM libraries. In the concrete aspects the programmer expressed the intentions: -
of statically dividing the outer loop iterations within method forceCalculation()
among processes (line 03 of Figure 4) and among their threads (line 11) and at
the end of it performing a data reduction among threads (line 12) and among
processes (line 04); - that particles’ forces are objects that will became private
(line 09) and used during processes communication (line 01) - that the getForces
method will return a private thread copy (line 13) and that this data will be
used in processes communication (line 05) as well.

00: public aspect DM_Concrete extends abstract_DM_Library {
01: declare particles.forces implements DMInterface
02: ...
03: public pointcut staticParallelFor (...) : (call (void forceCalculation(...)));
04: public pointcut reduction() : (call (void forceCalculation(...)));
05: public pointcut commData() : (call (... getForces()));
06: }
07: ...
08: public aspect SM_Concrete extends abstract_SM_Library {
09: declare particles.forces implements SMInterface
10: ...
11: public pointcut staticParallelFor (...) : (call (void forceCalculation(...)));
12: public pointcut reduction() : (call (void forceCalculation(...)));
13: public pointcut privateData() : (call (... getForces()));
14:} ...

Fig. 4: Distributed Memory and Shared Memory concrete aspects.

The SM and DM libraries can be use separately or together, such as the case
of the MD example of Figure 3. In this hybrid example, after intercepting the
main method, the DM and SM libraries will create data related to the processes
and their pool of threads, respectively. Since, the object particles implements
the SM and DM interfaces, the SM library will create a copy of the particles’
forces for each thread and the DM library will save a reference of particles’
forces of the master thread. Before entering the forceCalculation() method the
DM library will intercept its arguments and modify them in order to assign
the iterations of its loop (line 08 of Figure 3) to the processes. The SM library
will then further divide those iterations by the threads. When the getForces()
method is intercepted the SM library will caught its object reference, match this
reference in an internal hashmap and return the correspondent copy assigned to
the current thread. After the forceCalculation() method finishes its work, the SM
library will internally reduce all the forces among threads and save its result in
the reference to the particles’ forces object corresponding to the thread master.
Finally, the DM library will perform, among processes, a global reduction of each
master thread result.

3 Performance evaluation

This section evaluates the libraries performance, against Java-based implemen-
tations using traditional PPP (i.e., non-modular). The test platform is a cluster
with two machines connected by a Gigabit Ethernet. Each machine has two E5-
2695v2 processors, each processor with 12 cores connected to a memory bank

(a NUMA with 24 physical cores per machine with 48 hyper-threading). The
cluster runs Cent OS 6.3, OpenJDK 1.8.0 20 and OpenMPI 1.8.4.

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	
20	
22	
24	

Crypt	 	 LUFact	 	 Series	 	 SOR	 	 Sparse	 MD	 MC	 Ray	

Sp
ee
du

p	

JGF	 MT	

Aspect	 SM	

JOMP	

Fig. 5: JGF, JOMP vs AspectJ SM library.

0	
2	
4	
6	
8	
10	
12	
14	
16	
18	
20	
22	
24	

Crypt	 	 LUFact	 	 Series	 	 SOR	 	 Sparse	 MD	 MC	 Ray	

Sp
ee
du

p	

JGF	 MPI	

Aspect	 DM	

Fig. 6: JGF MPI vs AspectJ DM library.

48.45	
46.02	
42.67	

37.52	

0	

10	

20	

30	

40	

50	

60	

0	 20	 40	 60	 80	 100	

Sp
ee
du

p	

Processing	 elements	 (process/thread)	 	

C	 -‐	 MPI	 +	 OpenMP	 Java	 Invasive	 -‐	 Hybrid	 	
Aspect	 Libraries	 -‐Hybrid	 Java	 Mpi	 only	

Fig. 7: MD MPI vs Hybrid version.

11.58	

8.07	

10.79	

10.71	

0	
2	
4	
6	
8	

10	
12	
14	

0	 20	 40	 60	 80	 100	

Sp
ee
du

p	

Processing	 elements	 (process/thread)	 	

C	 -‐	 MPI	 +	 OpenMP	 Java	 Invasive	 -‐	 Hybrid	 	
Aspect	 Libraries	 -‐Hybrid	 	 Java	 Mpi	 only	 	

Fig. 8: MM MPI vs Hybrid version.

The first test uses JGF [2] section2 and section3 multi-threaded benchmarks
(JGF MT) as the comparison base. Performance results are the speedup relative
to the JGF sequential code and also includes a JOMP2 version. In most bench-
marks the performance is comparable (Figure 5), in some cases our SM library is
faster on others is slower. This behavior happens because performance is sensible
to many platform details. Overall our library is 1.05x slower due to overheads
introduced by aspects and the application of the design rules. The JOMP im-
plementation is 1.2x slower and does not provide a MD implementation. The
second test uses JGF MPI benchmarks (JGF MPI) as the base of comparison.
In most benchmarks the performance of our DM library is better (Figure 6) due
to a faster implementation than the one provided by the JGF (1.4x faster).

The third test evaluates the impact of composing the SM and DM libraries
using two machines (24 cores each with 48 hyper-threading). The Figure 7 com-
pares the performance of the base Java MD (with half a million particles sim-
ulation) using only MPI processes against three hybrid versions using: i) Java
threads and MPI (non-modular); ii) our SM and DM aspect libraries (modular);
iii) using a C version of i) with MPI and OpenMP. The hybrid versions use
one MPI process per machine, each composed by multiple threads (from 1 to 48
threads in total). The C version presents the best speedup for 96 processing ele-
ments (48x). Our version has a small overhead compared with the non-modular
Java version, but both versions have performance close to the C. Using the full
processing available the pure MPI version has the worst performance (37x), due
to the overhead of inter-process communication. With traditional PPP, moving

2 The implementation of OpenMP for Java

from this version to a hybrid version requires changes to the base program. In our
approach changes are made by simply modifying the parallelism modules to be
composed with the base program. The hybrid version uses a static loop schedul-
ing among MPI process and a dynamic loop scheduling among the threads within
a process. After a few tests we concluded that this strategy provides the best
performance. With our approach, testing various scheduling strategies simply
required a change of the pointcut in SM and DM concrete aspects. In contrast,
a non-modular design requires invasive changes to the base program (e.g. Figure
1). The MD case study scales well with the number of cores. However, with the
last test (Figure 8) that evaluates the performance of a parallel matrix mul-
tiplication (using 8192 x 8192 size matrices) it does not scale so well, since it
requires more communication among processes. In this test the C version also
presents the best performance with 11.58x speedup for 96 processing elements
closely follow up by our Java aspect version (10.71x). Finally, the performance
of both Java hybrid versions are also better than pure MPI versions.

4 Related work

Although annotations based approaches such as OpenMP and JOMP3 [4] allow
the division between domain concerns and PRC, it is restricted to the basic
PRC. Sophisticated approaches required the use of explicit constructs, such as
threads ids, object locks and so on. Furthermore, not only those annotations
are still tangling with the base code, limiting its composability and modularity
properties, but also deal only with SM PRC. Those problems are even worse with
MPI libraries where only communication functions are provided (e.g, missing
task distribution) which are explicitly added into the source code. Our SM and
DM aspect libraries overcome those limitations by providing design rules to make
the code parallel-awareness without breaking its sequential semantic. Further
on, using concrete aspects as neutral zones where PRC can be expressed using
a pointcut based style language. Providing an overall approach that allows to
easily compose multiple PPP (e.g. SM and DM) without the need to learn two
different programming languages syntaxes and fully decoupling the base code
from the parallel code promoting a more cleaner and modularized approach.

Skeleton4 [6] frameworks provide compositional proprieties, with Lithium [7]
being a Java example of such framework. In this kind of framework, it is nec-
essary to create classes that will represent tasks to be done and instantiate a
particular skeleton to coordinate the task execution. This approach has two main
limitations: 1) the base program is polluted with scaffolding code to redirect ex-
ecution the skeleton framework; 2) skeletons only encapsulate simple parallelism
models (e.g., farm, pipeline ..).

In [1, 9] aspect oriented programming was used to decouple PRC from domain
concerns and encapsulate it in separate modules, to do so [9] used a template-

3 A proposal OpenMP for Java.
4 Concept proposed to encapsulate the details of a particular parallelism exploitation

pattern.

based language. The work in [8] used reusable aspects to encapsulate concur-
rency patterns. Our work differs from these, by providing libraries (SM and
DM) with competitive performance and easy to be composed (hybrids), that
mimic OpenMP and MPI constructs for Java. In our approach the join point
model for loops of [10] could have been used to avoid applying design rules into
parallelizable loops. However, method refactoring of loops promotes independent
development since the parallelisation modules depend on this explicit API. Al-
though this approach might appears drastic at first, in reality PPP like Intel
Parallel Task Library [5] follow the same strategy and some languages (e.g., R
and Haskell) have higher order functions that can be seen as loop encapsulation.

5 Conclusion

The paper presented an alternative modularisation strategy where PRC are en-
capsulated as aspects modules. We use the potentialities of AspectJ to support
composition of multiple aspect libraries with the same base program to provide
efficient hybrid solutions. Performance results show that the framework provides
a competitive performance comparing with handcrafted approaches. Moreover,
the hybrid versions shown to be faster than versions using only DM.

Future work will focus on the introduction of mechanisms to support paral-
lelism using aspects for other platforms (e.g., GPUs and GRID). Furthermore,
it is expected the creation of name conventions and preprocessing tools to the
automatization of the design rules.

References

1. Sobral, J., Incrementally Developing Parallel Applications with AspectJ, IPDPS06
2. J.Smith, J.Bull and J.Obdrzlek, A Parallel Java Grande Benchmark Suite, SC 2001
3. Kiczales G., Hilsdale E., Hugunin J., Kersten M., Palm J., Griswold W. G., An

Overview of AspectJ. ECOOP 2001, Springer Verlag LNCS vol. 2072, pp. 327-353
4. J.Bull and M.Kambites, JOMP an OpenMP-like interface for Java, JAVA ’00 ACM
5. D. Leijen, W. Schulte, and S. Burckhardt. 2009. The design of a task parallel library

SIGPLAN Not. 44, 10 (October 2009), 227-242
6. Cole, D., Algorithmic Skeletons: structured management of parallel computation,

Pitman/MIT press, 1989.
7. Aldinucci, M., Danelutto, M., Teti, P., An advanced environment supporting struc-

tured parallel programming in Java, Future Gener. Comput. Syst. 19, 5 (2003)
8. Cunha, C., Sobral, J., Monteiro, M., Reusable Aspect-Oriented Implementations of

Concurrency Patterns and Mechanisms, AOSD06, Bonn, Germany, March 2006.
9. Gonçalves, R. and Sobral, J. 2009. Pluggable parallelisation. in Proceedings of the

18th ACM International Symposium on HPDC 09 Munich, Germany, 11-20
10. Harbulot B., Gurd J. A join point for loops in AspectJ. In Proceedings of the 5th

international conference on AOSD ’06. ACM, NY, USA, 63-74.
11. Chitchyan, R., Greenwood, P., Sampaio, A., Rashid, A., Garcia, A. F., and da

Silva, L. F. Semantic vs. syntactic compositions in AO requirements engineering:
an empirical study. In AOSD (2009), K. J. Sullivan, Ed., ACM, pp. 149160.

