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Macro- and nanodimensional

plant fiber reinforcements

for cementitious composites
Shama Parveen, Sohel Rana and Raul Fangueiro

University of Minho, Guimarães, Portugal

s0010 13.1 Introduction

p0010 The civil construction industry is majorly dominated by cement as the binding

material. Cementitious materials or composites have good compressive properties

but they lack tensile strength. Steel reinforcing bars and synthetic fibers, such as

glass, carbon, poly vinyl alcohol, or aramid fibers, are used to overcome the disad-

vantages of cementitious composites and also to achieve long postcrack behavior.

The use of steel reinforcement makes cementitious materials more susceptible to

environmental attacks causing corrosion. Steel or synthetic fiber reinforcement both

have environmental impacts caused by its production process, which includes high

energy consuming steps and leads to the release of harmful chemicals and gases to

the atmosphere.

p0015 Since 1970, the civil construction sector has been focusing on the sustainability

of structures. Plant fibers are the most promising solution towards sustainability due

to their eco-friendly nature along with good reinforcing performance. Therefore,

over the last three decades researchers and scientists have focused increasingly on

plant-based plant fiber reinforcements. Plant fibers are used in cementitious compo-

sites to increase the postcracking ductility, toughness and fracture energy.1

p0020 Plant fibers have many advantageous properties such as good tensile and flexural

modulus, low density, low coefficient of thermal expansion, and so on. One of the

major problems of plant fibers is the degradation and deterioration of their proper-

ties with time. Therefore, for successful application of plant fibers in cementitious

matrix, the influence of different degradation parameters should also be thoroughly

studied to understand and improve the durability of plant fibers in highly alkaline

cementitious composites.1 Different chemical or physical modifications could also

be performed on the surface of plant fibers to improve their durability.1

p0025 Plant fiber derivatives such as microcrystalline cellulose (MCC), microfibrillar

cellulose (MFC), nanocrystalline cellulose (NCC), etc. and bacterial cellulose (BC)

are now being considered as good options for the reinforcement of cementitious

matrix. Their extraordinary mechanical, thermal, and optical properties can make

them a potential substitute for steel and synthetic fibers.2 Owing to their higher

crystallinity, MCC, NCC, and BC are considered to be much more stable towards

degradation than plant fibers because of their highly crystalline structures and,
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therefore, their utilization within cementitious composites can provide superior

durability as compared to ordinary plant fiber-reinforced cementitious composites.

The application of nanocellulose in polymer composites has been included in this

chapter just to provide the readers with sufficient background information and the

techniques that can be used in cement-based composites.

s0015 13.2 Properties of portland cement

p0030 Concrete generally consists of Ordinary Portland Cement (OPC), which is known

as the principal hydraulic binding agent), coarse aggregates, and fillers such as

sand, admixtures, and water.3,4 The dry portion of Portland cement is composed of

63% calcium oxide, 20% silica, 6% alumina, 3% iron (III) oxide, and small amount

of other materials including some impurities. These materials react with water with

an exothermic reaction forming a mineral glue (known as “C-S-H” gel), calcium

hydroxide, ettringite, monosulfate, unhydrated particles, and air voids. The molecu-

lar structure of C-S-H gel was not fully understood until recently. Researchers at

the Massachusetts Institute of Technology (MIT, USA)5 recently proposed a struc-

ture, and according to that, cement hydrate consists of a long tetrahedral silica chain

and calcium oxide in long range distances, where water causes an intralayer distor-

tion in otherwise regular geometry (Fig. 13.1). The distortion in the structure due to

the addition of water makes the cement hydrate robust.

f0010 Figure 13.1 The molecular model of C-S-H: the blue and white spheres are the oxygen and

hydrogen atoms of water molecules, respectively; the green and gray spheres are inter- and

intralayer calcium ions, respectively; the yellow and red sticks are silicon and oxygen atoms

in silica tetrahedral.

Source: Pellenq et al.5
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s0020 13.3 Properties of plant fibers and nanocellulose

p0035 In recent times, tremendous interest has been paid to various plant fibers (such as

sisal, jute, flax, hemp, coir, etc.) both by the scientific community and industrial

sectors for various applications including civil construction, automobiles, sports,

aerospace, and geotechnical engineering. The global plant fiber composites market

reached 1.6 billion euros in 2010, with a compound annual growth rate of 15% over

the last five years.6 By 2016, plant fiber composite market is expected to reach

2.8 billion euros with a growth rate of 10% (Fig. 13.2).

s0025 13.3.1 Properties of plant fibers

p0040 Plant fibers are low cost, light weight, nonhazardous, eco-friendly, and renewable

materials possessing high specific mechanical properties and require lower energy

during their growth and applications.7 Due to their lower carbon footprint and envi-

ronmental benefits, plant fiber-based products are considered to possess a lower car-

bon footprint and higher sustainability.8�13 Table 13.1 lists the physical and

mechanical properties of various plant fibers and compares them with the com-

monly used synthetic fibers.7,14 Among these fibers, cotton is known to be the most

popular fiber for apparel sectors because of their comfort properties. Other fibers

like sisal, jute, flax, coir, etc. have been mainly used for various technical applica-

tions. Flax fibers show the best mechanical properties among the various plant

fibers. In comparison with the synthetic fibers, plant fibers present much lower

mechanical properties, as can be seen from Table 13.1. However, owing to their

much lower density as compared to synthetic fibers, they present very good specific

mechanical properties (Fig. 13.3) and therefore, are of tremendous interest in appli-

cations demanding light weight.15 Therefore, these materials have huge potential to

f0015 Figure 13.2 Growth in plant fiber composites market.

From: Lucintel, http://www.lucintel.com/lucintelbrief/potentialofnaturalfibercomposites-final.

pdf
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t0010 Table 13.1 Properties of selected plant and synthetic fibers

Type of

fiber

Density

(g/cm3)

Tensile strength

(MPa)

Elastic modulus

(GPa)

Elongation

(%)

Jute 1.3�1.45 393�773 13�26.5 7�8

Flax 1.5 345�1100 27.6 2.7�3.2

Hemp 1.48 514 24.8 1.6

Ramie 1.51 400�938 61.4�128 1.2�3.8

Sisal 1.45 468�640 9.4�22 3�7

Coir 1.15 131�175 4�6 15�40

Cotton 1.5�1.6 287�800 5.5�12.6 7�8

E-glass 2.5 2000�3500 70 2.5

S-glass 2.5 4570 86 2.8

Aramid 1.4 3000�3150 63�67 3.3�3.7

Carbon 1.7 4000 230�240 1.4�1.8

Source: Fangueiro, R.; Rana, S. (Eds.), Natural Fibres: Advances in Science and Technology Towards Industrial
Applications. Springer, ISBN: 978-94-017-7515-1.

f0020 Figure 13.3 Comparison of specific mechanical properties of natural fibers with synthetic

fibers.

Source: Rana and Fangueiro.15
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reduce the consumption of nonrenewable, nonenvironmentally friendly, and energy-

consuming materials, such as concrete, metals, or synthetic fibers, in the above

applications.

s0030 13.3.2 Properties of micro- and nanocellulose

p0045 Cellulose is an abundant biopolymer, and with the progress in nanotechnology the

nano form of cellulose, i.e., nanocellulose has gained tremendous attention. The ter-

minology MFC was first coined in the early 1980s when ITT Rayonier issued

patents and publications based on a totally new nanocellulose composition.16,17 In

later years MFC was modified by acid hydrolysis to obtain NCC. Nanocellulose has

now become a good alternative for other nanomaterials in various applications due

to its remarkable mechanical properties, transparency, ability to form chiral nematic

structures, and above all, owing to its lower health risk, environmental friendliness,

and biodegradability.18,19 Researchers are working with nanocellulose in diverse

fields. It can act as a reinforcing agent for various matrices because of excellent

mechanical properties, as well as due to the presence of free hydroxyl groups which

can be modified according to the needs. Nanocellulose is also being explored in the

biomedical field for drug delivery, enzyme immobilization, tissue culture, etc.

Because of its transparency and barrier properties it can be utilized in packaging

and as transparent flexible films.18,19 Nanocellulose can be obtained by mainly two

different approaches: a top-down approach and a bottom-up approach, as presented

in Fig. 13.4.

Nano cellulose

Top down approach Bottom up approach

Mechanical defibrillation
of cellulose fibers

Selective hydrolysis of
cellulose fibers

Acetobacter xylinum +
saccharides (iguchi)

Micro fibrillar cellulose
(MFC)

Micro crystalline
cellulose (MFC)

Bacterial cellulose
(BC)

Continuous gel of
bacterial cellulose

Chemical modification /
enzymatic modification +

mechanical treatment

Nano fibrillar cellulose
(NFC)

Nano crystalline
cellulose (NCC)

Colloidal cellulose

f0025 Figure 13.4 Different approaches for production of micro- and nanocellulose.
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p0050 The top-down approach involves enzymatic or chemical/physical processes to

isolate nanocellulose from wood and forest/agriculture residues. In the bottom-up

approach nanocellulose is obtained from glucose by bacteria. The isolated cellulosic

materials with one dimension in the nanometer range are referred to as nanocellu-

lose. Nanocellulose can be categorized as nanowhiskers or NCC and nanofibrillar

cellulose (NFC). When plant products are subjected to strong acid conditions com-

bined with sonication, they produce nanowhiskers or NCC. Nanowhiskers are rod-

like structures resulting from the hydrolysis of noncrystalline domains. The dimen-

sion of the nanowhiskers depends on the source of cellulose; their length ranges

between 100�300 nm.18�26 On the other hand, when plant products are subjected to

high mechanical shearing without undergoing the hydrolysis steps, it results in NFC.

The lateral dimension of NFC lies in the range of 10�30 nm. They are generally

present in bundles, in which the individual fibril’s lateral dimension is 5 nm.18�26

The production method of nanocellulose is presented in Fig. 13.4 and the properties

of nanocellulose have been compared with other materials in Table 13.2.

s0035 13.4 Processing of plant fiber-reinforced
cementitious composites

p0055 Due to the corrosion problem of steel, there is an increasing need for alternative

reinforcing materials for cementitious composites which can replace steel rebars.

Following the use of various synthetic fibers, concrete has been also reinforced

with various plant fibers, such as bamboo, coconut, sisal, flax, etc., for developing

cost-effective and sustainable building constructions. However, prior to the use of

t0015 Table 13.2 Comparison of properties of nanocellulose with other
high strength materials

Material Density

(g/cm3)

CTE

(1026/K)

axial

Tensile strength

(GPa) axial

Elastic modulus

(GPa)

Axial Transverse

Crystalline

cellulose

1.6 0.1 7.5 120�220 11�57

Kevlar-49 Fiber 1.4 2 3.5 124�130 2.5

Clay

nanoplatelets

� � � 170 �

Carbon

nanotubes

� � 11�63 270�950 0.8�30

Boron

nanowhiskers

� 6 2�8 250�360 �

Source: Moon, R.J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure,
Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40, 3941�3994.
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plant fibers in cementitious materials, they require various surface treatments,

which have been discussed in Section 13.4.1.

s0040 13.4.1 Surface treatment of plant fibers

p0060 More commonly, plant fibers are treated with various chemicals such as alkali,

water repellents, silane, peroxides, permanganates, etc. to reduce their moisture

absorption and to improve their compatibility with various matrices.27 Table 13.3

lists some commonly practiced chemical surface treatment methods of plant fibers

and associated advantages.

s0045 13.4.2 Plasma surface treatment and grafting process

p0065 Although quite efficient, the chemical surface treatment methods are not environ-

mentally favorable due to production of waste chemicals and effluents. Recently,

plasma surface modification has come out as a clean and dry surface modification

technique of various polymeric fibers including plant fibers.28�30 Plasma treatment

can alter the surface characteristics in the nano scale without changing the bulk

properties of the fibers.28

p0070 Industrial scale atmospheric plasma treatment machines have been developed for

surface treatment of plant fibers in bulk at high processing speeds. Besides improv-

ing surface functionalities, wettability, as well as better plant fiber/matrix interfacial

t0020 Table 13.3 Selected chemical surface treatment methods of plant
fibers27

Type of

treatments

Advantages

Alkali treatment Removal of lignin and hemicellulose, increases fiber tenacity,

increase in surface roughness of fibers

Acetylation Reduction of moisture absorption, improvement of chemical

resistance and durability

Etherification Introduction of desired chemical groups to enhance compatibility

with different matrices

Peroxide treatment Improvement of interface, decrease in moisture absorption,

increase in fiber tenacity

Benzoylation Decrease in plant fiber’s hydrophilic nature

Acrylation Significant improvement of fiber/matrix interface through covalent

bonding

Silane treatment Significant improvement of fiber/matrix interface through covalent

bonding

Permanganate

treatment

Decrease in plant fiber’s hydrophilic nature

Graft

copolymerization

Introduction of desired groups to enhance compatibility with

different matrices and improvement of fiber/matrix interface
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properties, plasma treatment could also improve the mechanical properties of plant

fibers.28,30 This opened the doorway of utilizing some newly explored plant fibers

such as Quiscal in technical applications through improvement of their surface and

mechanical properties by plasma treatment. Fig. 13.5 shows the atmospheric plasma

treatment process and improvement of mechanical properties of Quiscal fibers

through treatment with atmospheric plasma.30

p0075 Although plasma treatment can provide different types of functionalized surface

depending on the type of gas used in the plasma reactor (air, oxygen, nitrogen, etc),

this technique has limitations in terms of variety of surface modifications and stabil-

ity of surface functional groups. Therefore, grafting of various polymers has also

been carried out at the plasma functionalized surfaces in order to produce various

stable functional groups as per the applications. This process, known as the plasma-

induced grafting process, has been used recently by researchers to modify some

plant fibers used in the apparel sectors, such as cotton, wool, silk, etc., to introduce

flame retardancy properties.31,32

p0080 However, this process contains a chemical reaction step (grafting) and therefore,

is associated with environmental pollution. The grafting step can be eliminated

using the plasma polymerization process in which surface activation and

High voltage

Ceramics electrodes
Banana fibers

Working gas air

Rubber roll

20

15

10

5

0
0 0.5 1 1.5 2

Elongation (mm)

Untreated

Untreated

90 kJ m–2

90 kJ m–2 180 kJ m–2

180 kJ m–2

2.5 3 0.0

5.0

10.0

15.0
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%
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e 
(N
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30.0

35.0

Fat, wax and
impurities
Moisture regain

Continuous fabric transmission device

(A)

(B) (C)

Power
source

f0030 Figure 13.5 Schematic of continuous atmospheric plasma treatment process for plant fibers

(A), improvement in fiber tenacity (B), and removal of fiber impurities at different plasma

treatment doses (C).

Source: Relves et al.30
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polymerization occur simultaneously. Plasma polymerization has been extensively

used in anticorrosive surfaces and scratch resistance, chemical barrier, and water

repellent coatings, since this is a clean and green (no solvent) process, reliable,

reproducible, and suitable for wide varieties of monomers, different surfaces, and

sample geometries.33,34 Recently, plasma polymerization of hexamethyldisiloxane

and tetramethyldisiloxane on to polyester and high performance fibers have been

reported to impart superhydrophobicity and heat resistance properties.33,34

Therefore, plasma polymerization process can also be utilized for plant fibers to

create varieties of surface chemistries and topographies.

s0050 13.4.3 Dispersion of micro- and nanocellulose

p0085 This section will help the readers to have a general idea about the nanocellulose

dispersion techniques, and to know the application potential of these techniques for

cementitious composites as well. These are general dispersion techniques used for

mainly aqueous system, various solvents and polymer matrices. The dispersion of

nanocellulose within cementitious composites has not been much studied. On the

other hand, Section 13.4.4 contributes some information about nanocellulose disper-

sion within a cementitious matrix.

p0090 NCC (nanowhiskers) have excellent mechanical and physicochemical proper-

ties.19 NCC can be used in various sectors due to its advantageous properties (such

as high surface area, interesting mechanical and optical properties), renewability

and abundance. The properties of nanomaterials can be fully explored when they

are well dispersed within the matrix. Incorporation of NCC in aqueous medium,

solvents, or polymeric resin is carried out using physical or chemical techniques, as

shown in Fig. 13.6.19 In some cases, both physical and chemical techniques are

used to obtain better dispersion in the matrix. Typically, NCC are produced as

aqueous suspensions.

p0095 The dispersion of NCC in hydrophobic resins, therefore, requires evaporation of

water. Drying of NCC can be achieved through a freeze drying or spray drying

process.35�41 However, NCC tend to agglomerate during the drying process. The

formation of agglomerates can be reduced by optimizing the rate, time period, and

temperature of drying, and also by surface modification of NCC.35�41

f0035 Figure 13.6 Classification of NCC dispersion techniques.
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s0055 13.4.3.1 Chemical modification of micro and nanocellulose

p0100 Chemical modification of NCC is performed to make desirable changes on the sur-

face to widen its application in various matrices and solvents. Surface modification

of NCC increases the compatibility with hydrophobic matrices and nonpolar sol-

vents by decreasing the surface energy. NCC contain three hydroxyl groups in each

pyranose ring. The hydroxyl group present on the 6th position is the primary

hydroxyl group, which is more susceptible to any type of chemical modification.42

The chemical modification techniques can be classified as noncovalent and covalent

techniques. Noncovalent modifications are mostly carried out using surfactant or

polymer coating. Surfactants/polymer coatings are adsorbed on the surface of NCC

without affecting the chemical morphology and therefore, securing the integrity and

strength of NCC. Covalent modifications include acetylation, esterification, cationi-

zation, silylation, fluorescence labeling, polymer grafting, etc.

s0060 13.4.3.2 Noncovalent modification of micro and nanocellulose

p0105 Noncovalent modification of MCC was first reported by Heux et al.43 MCC was

dispersed in aqueous suspension with the help of an anionic surfactant (acid phos-

phate ester of alkyl phenol ethoxylate) using MCC-surfactant ratio of 4:1. The

resultant surfactant coated MCC was freeze dried in the form of pallets. The surfac-

tant coated MCC pallets were easily dispersed in nonpolar solvents using ultrasoni-

cation energy for a small duration.43 A similar procedure was also followed by

Ljungberg et al.44 and Fortunati et al.45 for the dispersion of NCC.44,45 Researchers

also used cationic surfactants to form a stable dispersion in organic solvents.

Kaboorani et al.46 and Salajkova et al.47 used quaternary ammonium surfactant,

hexadecyltrimethylammonium (HDTMA) bromide, in aqueous medium to obtain

surfactant coated NCC. Surfactant coated NCC suspensions were then centrifuged

to eliminate excess surfactant from the NCC surface and then freeze dried to obtain

dried NCC powder.46,47 Cationic surfactant coated NCC can be easily dispersed in

low polar solvents like tetrahydrofuran (THF). Another quaternary ammonium sur-

factant, cetyltrimethylammonium bromide (CTAB) has also been utilized due to its

good adsorption onto NCC surface. According to Beaupré et al.,48 almost 60% of

surface hydroxyl groups were covered by CTAB when used at 5�7.5 wt% with

respect to NCC. CTAB coated NCC has been used for drug deliveries.48 Nanometal

synthesis can also be done on the NCC surface using CTAB.49 The density and par-

ticle size of metal nanomaterials synthesized on NCC surface were controlled by

CTAB concentration, pH, and the reduction time.48�50 The use of cationic alkyl

ammonium surfactants, didecyldimethylammonium bromide (DMAB) and CTAB,

have also been reported to prepare NCC Pickering emulsions.51 The use of nonionic

surfactant is also common to disperse NCC in hydrophobic polymer matrices. Kim

et al.52 used sorbitan monostearate to improve the dispersion of NCC in THF.

Sorbitan monoesterate was found to improve the stability of NCC dispersion within

hydrophobic polystyrene matrix.52 Recently, 2,2,6,6-tetramethylpiperidine-1-oxyl

(TEMPO)-oxidized NCC whiskers were dispersed using Pluronic surfactants

(Pluronic L61 and L121) for fabrication of epoxy nanocomposites.53 The use of
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Pluronic led to better NCC dispersion and NCC/epoxy interfacial interactions,

resulting in improved mechanical and thermal properties of the nanocomposites.

s0065 13.4.3.3 Covalent functionalization of micro- and nanocellulose

s0070 Acetylation and esterification
p0110 Acetylation and esterification of NCC have been carried out using a number of

methods. In one of these techniques, acetylation was performed by treating fibrous

as well as homogeneous NCC with acetic anhydride and acetic acid.54 In case of

fibrous NCC, acetylation only occurred in the cellulose chains present on the sur-

face of NCC, which surrounded the unreacted NCC core. On the other hand, uni-

form acetylation was obtained in case of homogeneous NCC caused by the progress

of acetylation reaction into the core, owing to dissolution of surface acetylated cel-

lulose. In another method, an NCC suspension was mixed with an aqueous emul-

sion of alkyenyl succinic anhydride and the mixture was subjected to freeze drying

and heating to perform acetylation of NCC.55 Reaction with vinyl acetate in the

presence of potassium carbonate catalyst has also been used to perform surface

acetylation of NCC whiskers.56 An increase in the reaction time, however, led to

complete destruction of the crystalline structure of NCC whiskers. A combined

method of NCC synthesis and functionalization has also been developed recently.57

A mixture of acetic acid, hornificated cotton linters (HCL), and organic acids was

used for the single-step synthesis and functionalization of NCC through the Fischer

esterification process, as presented in Fig. 13.7. Gas phase esterification of NCC

through evaporation in a large excess of palmitoyl chloride has also been

f0040 Figure 13.7 Single-step synthesis and functionalization of NCC through the Fischer

esterification process.

Source: Braun and Dorgan.57
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reported.58 Refluxing of hydrolyzed NCC in organic acid chloride is another

approach for the esterification of NCC.59 This method did not affect the crystalline

core of NCC and resulted in grafting of NCC with organic fatty acids of different

aliphatic chain lengths.

s0075 Cationization
p0115 Recently, a one-step process of cationization of NCC surface has been developed.

In this process, epoxypropyltrimethylammonium chloride (EPTMAC) was grafted

to the NCC surface.60 The grafting occurred as a result of nucleophilic addition

reaction of alkali-activated hydroxyl groups of NCC to the epoxy group of

EPTMAC. The surface charge of NCC changed from negative to positive due to

this grafting process and, as a result of positive surface charges, a stable aqueous

suspension was obtained. The use of mild alkaline conditions in this process did not

affect the original morphology or crystal structure of NCC.

s0080 Functionalization with fluorescein isothiocyanate
p0120 For fluorescence bioassay and bioimaging applications, which are based on tracking

of localization of the fluorophores, NCC has been covalently functionalized with

fluorescein-50-isothiocyanate (FITC).61 For this covalent functionalization, a three-

step reaction route has been used, as shown in Fig. 13.8.

p0125 In the first step, NCC surface was functionalized with epoxy functional groups

through reaction with epichlorohydrin. In the second step, primary amino groups were

introduced by opening the epoxy rings through reaction with ammonium hydroxide.

f0045 Figure 13.8 Scheme for functionalization of NCC with FITC.

Source: Doug and Roman.61
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In the final step, covalent bonding of FITC with NCC was achieved through reaction

of primary amino groups of NCC with isothiocyanate groups present in FITC. The

functionalization of NCC with FITC was confirmed through UV-Vis spectroscopy

from the absorption peaks of FITC in the wavelength range of 450�500 nm.

s0085 Functionalization with silanes
p0130 Partial silylation of NCC whiskers has been carried out using a series of alkyldi-

methylchlorosilanes containing alkyl groups ranging from isopropyl to n-butyl,

n-octyl and n-dodrecyl.62 When the degree of substitution (DS) was between 0.6

and 1, the silylated NCC whiskers were dispersed easily in medium polarity sol-

vents like acetone and THF. No change in morphology or crystal structure was

observed when DS was maintained below 0.6. However, when DS was increased

above 1, the structural integrity was disrupted. According to the model developed

by the researchers, silylated NCC at low DS maintained its structural integrity and

was hydrophilic (as shown in Fig. 13.9). When the DS was moderate, the surface

of NCC was hydrophobic and it could be dispersed in THF (Fig. 13.9). And lastly,

when the DS was high, the surface chains were solubilized and silylation pro-

gressed into the NCC core, resulting in disruption of the crystal structure of NCC

f0050 Figure 13.9 Model explaining the silane functionalization of NCC at: (A) low DS showing

onset of surface functionalization; (B) moderate DS showing surface functionalization; and

(C) high DS showing disruption of NCC core.

Source: Goussé et al.62
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(Fig. 13.9). In addition to the above process, trimethyl silylation of NCC surface,

derived from BC, has also been reported.25

s0090 TEMPO-mediated oxidation and functionalization
p0135 TEMPO-mediated oxidation has been used to functionalize NCC with carboxylic

groups.63�65 This functionalization is carried out using TEMPO reagent in a NaBr

and NaOCl environment by specifically oxidizing the primary hydroxymethyl

groups.66 Only 50% of the surface hydroxymethyl groups are oxidized in TEMPO-

mediated oxidation, keeping the secondary hydroxyl groups intact. TEMPO-mediated

oxidation is shown schematically in Fig. 13.10. This functionalization resulted in bet-

ter aqueous dispersion of NCC due to electrostatic repulsion between the carboxylic

groups and the resulting suspension showed a liquid-crystal-like behavior.

p0140 The degree of oxidation of NCC in TEMPO-mediated oxidation process could

be controlled by varying the molar ratio of NaOCl over the anhydroglucose unit of

hydrolyzed cellulose. Higher NaOCl molar ratio resulted in higher oxidation degree

and carboxyl content; however, excessive oxidation led to the degradation of amor-

phous region of NCC affecting the structural integrity.67 Once NCC is functiona-

lized with carboxyl groups, it can be further grafted with various polymers to

obtain different functionalities. Preparation of a “brush polymer” through grafting

of poly (ethylene glycol) on to carboxyl functionalized NCC (obtained from

TEMPO oxidation) has been reported.68 In a recent study, NCC, after TEMPO-

oxidation and amine grafting with tuned charge density, was used to control the

morphology and stability of silver nanoparticles in aqueous suspensions.69

s0095 Functionalization through polymer grafting
p0145 Functionalization of NCC surface through polymer grafting has been frequently

reported. In one approach, polymer chains were grafted to the NCC surface (known

f0055 Figure 13.10 Schematic of TEMPO-mediated oxidation of NCC.

Source: Habibi et al.66
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as “grafting to” approach), whereas in the second approach, polymer chains were

grown on the NCC surface (known as “grafting-from” approach) through a graft

polymerization process. In the first approach, polycaprolactone (PCL) of different

molecular weights was grafted to NCC through the isocyanate-mediated coupling

reaction.21 At higher grafting density, crystallization of PCL on NCC surface was

observed. Grafting of polyurethane onto NCC surface using the same approach has

also been reported.70 Carboxylated NCC, obtained through TEMPO oxidation,

could be grafted with polymers through the peptide coupling reaction. Through this

approach, grafting of PEG-NH2 on to TEMPO-oxidized NCC surface was carried

out through EDC/NHS [1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydro-

xysuccinimide] carbodiimide chemistry at room temperature.68 The same approach

has also been utilized for grafting of DNA to the NCC surface.71 Grafting of

maleated polypropylene onto NCC surface has also been reported.44 NCC with ther-

mos reversible aggregation behavior, which can be used for designing stimuli-

responsive bio-based materials, was prepared through grafting of thermo-responsive

polymers onto NCC surface via a peptidic coupling reaction.72

p0150 In the graft polymerization approach (i.e., “grafting-from”), polymer chains have

been grown on the NCC surface through the atom transfer radical polymerization

(ATRP) process. In this process, first the hydroxyl groups of NCC surface were

esterified with 2-bromoisobuturyl bromide (BIBB). In the second step, the selected

monomers were polymerized. The grafting process on NCC surface could be con-

trolled very precisely using this surface initiated ATRP technique.73 The monomers

which have been graft polymerized on NCC surface include styrene and

N, N-dimethylaminoethyl methacrylate.74�76 Azobenzene polymers were also

grafted to NCC surface to produce a novel amphotropic hairy rod-like system exhi-

biting thermotropic and lyotropic liquid crystalline properties.77 Another approach

which has been tried for graft polymerization on NCC surface was through ring-

opening polymerization. PCL was grafted to NCC through this approach using stan-

nous octoate (Sn(Oct)2) as the grafting and polymerizing agent.21 The use of micro-

wave irradiation was also used to improve the grafting efficiency onto the NCC

surface.78,79 Attempts were also made to use a novel in situ solvent exchange

method for grafting of long-chain isocyanate groups onto NCC whiskers.80

s0100 13.4.4 Dispersion of micro- and nanocellulose within
cementitious matrix

p0155 Due to the lack of research studies in the field of nanocellulose-reinforced cementi-

tious composites, very little information is available on the dispersion of nanocellu-

lose within cementitious matrix. The hydrophilic nature and water retention

capability of NCC and MCC influence the yield stress of cement paste and hydra-

tion kinetics of cementitious composites. A suspension of MCC in water was pre-

pared by Hoyos et al.81 to study the amount of water absorbed by MCC. The

aqueous suspension of MCC was prepared by mixing 0.5 g of MCC in 3 mL of

water. The suspension was kept for three days at 25�C and centrifuged at 3000 rpm
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for 25 min to segregate the two phases. The saturated MCC samples were then

quantified for the absorbed water. It was observed that MCC absorbed 230% of

water with respect to its mass and 100% with respect to its volume. A similar pro-

cedure of MCC saturation was also adopted to prepare MCC-reinforced cementi-

tious composites. Saturated MCC suspensions were prepared by adding MCC in an

adequate amount of water and storing the suspension for two days. Then, the satu-

rated MCC suspension was mixed with cement in a Hobart planetary mixer and

additional water was added during the mixing process.81 Cao et al.82 used dispersed

NCC (5.38 wt.%. cellulose nano crystals (CNCs) in water) obtained from the sulfu-

ric acid hydrolysis of cellulose fibers. 0.81% surface of NCC was grafted by sulfate

groups, which ensured homogenous dispersion of NCC in aqueous suspension.

NCC-reinforced cement composites were prepared by mixing diluted NCC suspen-

sions (0.1�3.8 wt.% w.r.t. cement) and water with cement with the help of a vac-

uum mixer. The vacuum mixer was set at the speed of 400 rpm for 180 s, and there

was a pause after 90 s for scrapping the mixture from the bowl. The vacuum mixer

was used to minimize the air entrapment during the mixing process and it also

maintained the consistency of cement pastes.82

s0105 13.5 Properties of plant fiber-reinforced cementitious
composites

s0110 13.5.1 Influence of plant fibers on the properties of
cementitious composites

s0115 13.5.1.1 Influence of plant fibers on flow behavior of cement

p0160 It has been observed that the incorporation of plant fibers within cement mixtures

reduces its workability, depending on the fiber volume fraction and aspect ratio.83,84

The decrease in cement flow behavior caused by addition of plant fibers is attrib-

uted to their hydrophilic nature and absorption of water from the cement mixture.

Therefore, in order to obtain a cement mixture with sufficient workability, either

researchers needed to treat the surface to reduce their hydrophilicity or they presatu-

rated or increased the water/cement ratio used, taking into account the water

absorption of the plant fibers.85

s0120 13.5.1.2 Influence of plant fibers on setting time of cement

p0165 Plant fibers have shown a negative effect on the hydration behavior of Portland

cement.86�90 The reasons ascribed for this effect are (1) production of soluble sugars

resulting from hydrolysis of lignin and partial solubilization of hemicellulose. Calcium

compounds produced within the cementitious matrix due to dissolution of sugars

retards the hydration process; (2) pectins present in plant fibers act as the inhibitor for

the growth of calcium silicate hydrate (CSH); (3) carbohydrates and hemicelluloses

present in wood and plant fibers decrease the rate of hydration of cement. The nega-

tive effect of plant fibers on cement hydration can be reduced through the addition of
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pozzolan, treatment of plant fibers to remove lignin, increased curing temperature,

addition of chemical accelerators and supplementary materials, etc.85

s0125 13.5.1.3 Influence of plant fibers on plastic shrinkage

p0170 The addition of plant fibers was found to be beneficial to reduce plastic shrinkage

and associated crack development in cement mortar.91�95 The evaporation of water

from the exposed surface of fresh mortar mixes results in volume contraction,

which is known as the plastic shrinkage. Plant fibers could reduce considerably the

maximum width and area of cracks, formed due to plastic shrinkage, owing to

abridgement of cracks by fibers, reduced rate of settlement of particles, and

decreased bleeding induced by fibers.95

s0130 13.5.1.4 Influence of plant fibers on drying shrinkage

p0175 Drying shrinkage is a very important property of cementitious composites influenc-

ing their durability. Drying shrinkage results from the loss of capillary water from

the hardened cement mixture, leading to contraction and crack formation within

concrete. According to the previous studies, the addition of plant fibers, such as

sisal, to cement mortar increases its drying shrinkage.93,96 This could be attributed

to the high moisture absorption of plant fibers and also the increased porosity of

mortar because of the addition of plant fibers. However, drying shrinkage of mortar

strongly depends on the type and quantity of plant fiber, their surface characteristics

and moisture absorption behavior. For example, Fig. 13.11 shows the influence of

sisal and coconut fibers on the drying shrinkage of cement.

f0060 Figure 13.11 Drying shrinkage of cement containing sisal and coconut fibers (W, water

cure; DC, damp cloth-cured; PDC, pressure1 damp cloth-cured; M1, mortar mix; M1S225,

mortar mix with 2% sisal; M1S325, mortar mix with 3% sisal; M1C225, mortar mix with 2%

coconut fiber; M1C325, mortar mix with 3% coconut fiber).

Source: Toledo Filhto et al.93
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p0180 It can be observed that the addition of 2% and 3% of sisal fiber to the mortar

mix led to an increase in drying shrinkage by 10% and 27%, respectively, in the

case of water cured samples. Also, the drying shrinkage of composites containing

3% of sisal fibers was 8.2% higher than those reinforced with coconut fibers.93

s0135 13.5.1.5 Influence of plant fibers on mechanical properties

p0185 Reinforcement of cementitious matrix with plant fibers can significantly influence

its mechanical properties.97�106 Among the various properties, the impact resistance

of cement mortar could be significantly improved through reinforcement of plant

fibers, particularly coir fibers due to their higher elongation at break and higher

toughness as compared to other plant fibers.85 Impact resistance of cement mortar

was improved by 18 times as compared to the unreinforced mortar specimens using

coir fibers.85 Table 13.4 lists the flexural strength and toughness of mortar rein-

forced with different plant fibers. It can be observed that the flexural toughness of

mortar increased with the fiber volume fraction of plant fibers, while the optimum

fiber volume fraction to achieve high flexural strength was 0.08�0.1. Among the

plant fibers, due to its high aspect ratio and consequently high specific surface area,

abaca fibers led to a strong improvement of cement flexural properties.85

s0140 13.5.2 Effect of micro- and nanocellulose on the properties
of cementitious matrix

s0145 13.5.2.1 Influence on flow behavior of cement paste

p0190 The mini slump test is performed for the analysis of flow behavior of cement to

check the workability, according to Standard ASTM: C-143. In the freshly prepared

cement paste, small particles interact via colloidal forces, such as Van-der Waals,

electrostatic repulsion, steric hindrance, and hydrogen bonding, and some bigger

particles interact via direct contact like friction or collisions. The yield stress (τ0) is
the stress necessary to break those interactions and separate the particles.81 MCC

(3 wt.% w.r.t. cement)-reinforced cement paste showed an increase of τ0 by 2.6

times over plain cement paste. This may result in an increase of energy costs in

construction. However, for certain construction applications, a higher τ0 is neces-

sary; for example, in rigid pavements where the fresh paste should retain its shape.

Therefore, for these applications MCC reinforcement will be ideal.81 Cao et al.82

studied using a nanorheometer the influence of NCC [or CNC] vol.% on yield

stress, as shown in Fig. 13.12. According to them, at lower NCC concentration

(0.02�0.04 vol.% w.r.t cement), the yield stress decreased as compared to plain

cement paste with the increase in NCC concentration. But on further increase in the

NCC concentration, the yield stress again started to increase and at 0.3 vol.% of

NCC (w.r.t. cement) the yield stress reached the value similar to that of plain

cement. With a further increase of NCC (1.5 vol.% w.r.t. cement) the yield stress

increased significantly as compared to plain cement paste. This contradictory

behavior between 0.02�0.04 vol.% of NCC could be explained based on various
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t0025 Table 13.4. Mechanical properties of cementitious composites rein-
forced with plant fiber

Type

matrix

Fiber type Fiber

content

(%w/w)

Fiber

aspect

ratio

Flexural

strength

(MPa)

Flexural

toughness

(kJ �m22)

Paste � 0 � 11.86 3.7 0.046 0.01

Refined softwood

sisal kraft pulp

4 53 19.26 1.9 0.646 0.09

8 23.56 0.8 1.326 0.11

12 25.06 2.1 1.936 0.42

Unrefined waste

sisal kraft pulp

4 122 16.56 0.6 0.396 0.06

8 21.56 1.6 0.926 0.13

12 20.36 1.4 1.416 0.20

Unrefined banana

kraft pulp

4 127 15.56 1.3 0.216 0.03

8 19.56 1.4 0.536 0.08

12 20.16 2.5 1.016 0.15

Unrefined

eucalaptus

kraft pulp

4 61 15.66 0.8 0.296 0.04

8 21.46 0.9 0.826 0.11

12 22.26 1.3 1.506 0.18

Sisal strand

refined

bamboo kraft

pulp

4 89 14.46 1.0 0.586 0.17

2 10.96 1.5 0.076 0.01

4 12.16 1.3 0.156 0.02

6 16.26 1.0 0.236 0.02

8 17.46 0.9 0.326 0.03

10 18.66 1.2 0.456 0.07

12 19.26 1.5 0.546 0.05

14 21.86 1.7 0.706 0.06

Refined abaca

kraft pulp

2 400 17.56 2.0 0.476 0.10

4 21.86 2.1 0.936 0.254

6 26.36 1.6 1.766 0.48

8 27.36 3.2 2.086 0.33

10 24.76 3.9 2.196 0.78

Mortar Unrefined sisal

kraft pulp

0.5 0.256 0.02

1 9.26 0.7 0.456 0.03

1.5 9.96 0.8 0.626 0.07

2 11.36 0.8 0.846 0.08

4 12.76 1.2 1.646 0.17

6 15.96 1.2 2.056 0.29

8 16.76 1.0 2.496 0.47

10 15.06 1.7 2.476 0.46

12 10.36 1.6 3.076 0.58

Source: Onuaguluchi, O.; Banthia, N. Plant-based Natural Fiber Reinforced Cement Composites: A Review, J. Cem.
Concr. Compos. 2016, 68, 96�108.
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interactive forces present between NCC particles during mixing with cement. At

lower concentration, NCC particles behaved like cement admixtures (e.g., polycar-

boxylate) and promoted the degree of cement hydration by dispersing cement parti-

cles through steric stabilization mechanism. This resulted in lower yield stress as

compared to plain cement paste. But, with the increase in NCC concentration, NCC

particles started to agglomerate and the force required to break these agglomerates

was very high, resulting in high yield stresses.82

s0150 13.4.5.2.2 Influence on hydration and mechanical properties
of cementitious composites

p0195 It was observed that incorporation of 3 wt.% of MCC decreased the mechanical

properties, such as flexural and compressive strength, of cementitious composite in

a normal curing period of 28 days.81 During accelerated curing conditions, which

resulted in a higher degree of cement hydration, the above mechanical properties

of MCC-reinforced cement just reached the values of plain cement mortar. As

MCC could retain water due to its hydrophilic nature, at higher temperature (dur-

ing accelerated curing) it released water leading to a greater formation of hydration

products.81 According to Cao et al.82 NCC behaved as a water reducing agent at

lower concentration (0.2 vol.%) and helped to disperse cement particles. The

degree of hydration increased with the addition of an adequate amount of NCC. It

was observed that NCC% could only be increased up to 0.5% as further increases

resulted in the segregation of particles. The increase in flexural strength was 20%

f0065 Figure 13.12 Influence of NCC content (% by volume) on the yield stress of mortar paste.

Source: Cao et al.82
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and 30% in 3 and 7 days, respectively, with the addition of 0.2% of NCC

(Fig. 13.13).

p0200 The improvement of flexural strength due to NCC addition was attributed to the

improved hydration of cement owing to the steric stabilization of cement particles

and short circuit moisture diffusion.82 The short circuit diffusion was the penetra-

tion of water from the hydrated part of CSH (more dense part) to the unhydrated

part with the help of NCC particles leading to better hydration,82 as shown in

Fig. 13.14.

s0155 13.5.2.3 Effect on microstructure of cementitious composites

p0205 According to C. G. Hoyos et al.81, MCC cement composites possess strong inter-

face between MCC and hydration products of cement. The available hydroxyl

groups of MCC can form hydrogen bonding with the hydration products of cement.

MCC remains saturated with water and therefore, the CSH phase (cement hydration

product) growing near MCC can utilize the water bound with MCC. Moreover, the

size distribution of MCC is similar to CSH crystals making MCC a

suitable reinforcement for cementitious matrix. The microstructure of MCC-

reinforced cement is presented in Fig.13.15.

f0070 Figure 13.13 Improvement of mortar’s flexural strength due to CNC addition (WRA, Water

reducing agent; CNC, Cellulose nanocrystals; B3B, Ball on three ball flexural testing

method).

Source: Cao et al.82
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f0075 Figure 13.14 Schematic diagrams explaining the short circuit diffusion mechanism: (A)

plain cement mortar and (B) mortar reinforced with CNC.

Source: Cao et al.82
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s0160 13.6 Challenges with plant fiber-reinforced cementitious
composites

s0165 13.6.1 Variability in plant fiber properties

p0210 One of the inherent drawbacks of plant fibers is the variability of proper-

ties.85,107�109 The variability of their physical and mechanical properties mainly

originates from the variation in their chemical structure and composition, such as

cellulose content, degree of polymerization, orientation of molecular chains, crystal-

linity, etc.85,107�109 These parameters are highly dependent on the growth condi-

tions of the plant and also on the fiber extraction methods. Therefore, fibers

extracted from different parts of the plants or grown in different locations and

weather conditions present huge variability in their length, cross-sectional area, and

mechanical properties.85,107�109 An example of variability of plant fiber diameter is

presented in Fig. 13.16. The distribution of diameter of 100 fibers, presented in

Fig. 13.16(A), shows high variability among the different fibers. Even, within the

f0080 Figure 13.15 FE-SEM image of cement-based materials with 3 wt.% of MCC at different

magnifications.

Source: Hoyos et al.81
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f0085 Figure 13.16 Variability of diameter of banana fibers: (A) frequency diameter distribution

and (B) diameter variation along the fiber length.

Source: Mukhopadhyay et al.107
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same fiber, the diameter varies significantly along the length of fiber, as shown in

Fig. 13.16(B). Besides chemical structure and composition, the mechanical proper-

ties of plant fibers were found to be highly dependent on the testing parameters,

such as strain rate. A higher speed of testing and higher strain rate resulted in brittle

failure mechanism and lower tenacity as compared to a lower strain rate which led

to ductile failure of fibers, resulting in higher tenacity.107

p0215 High variability of plant fiber properties is a problem when developing products

based on plant fibers. The prediction of properties and product designing become

difficult. For structural applications, a higher safety margin is required when plant

fibers are used as the reinforcement of cementitious composite-based structures.

s0170 13.6.2 Hydrophilicity of plant fibers

p0220 Plant fibers are hydrophilic owing to the presence of functional groups such as

hydroxyl in their structure.110 Therefore, plant fibers absorb a considerable amount

of moisture from the surrounding environment. The moisture absorption capacity of

plant fibers depends mainly on their chemical composition and crystallinity.

Table 13.5 lists the moisture absorption of some selected plant fibers.110

p0225 The high moisture absorption of plant fibers leads to a number of problems

when used for the reinforcement of cementitious materials such as85,110: (1) plant

fibers swell due to absorption of moisture and shrink when moisture is removed

due to dry atmosphere and elevated temperatures. Then, when plant fibers are used

to reinforce cementitious matrix, their frequent swelling�shrinking phenomena

leads to formation of cracks. This leads to reduced mechanical performance and

durability of cementitious composites. (2) High absorption of alkaline solution pres-

ent within the cement mixture leads to degradation of plant fibers with time. These

result in the deterioration of properties of plant fibers as well as plant fiber-

reinforced cementitious composites. (3) If plant fibers are not saturated, during mix-

ing with cementitious materials they absorb considerable amount of water and

reduce the water required for cement hydration. This leads to a reduced degree of

cement hydration and, consequently, poor mechanical performance of cementitious

t0030 Table 13.5 Moisture absorption of plant fibers

Fibers Moisture absorption (%)

Sisal 110

Coconut 93.8

Bamboo 145

Hemp 85�105

Caesar wood 182

Banana 407

Piassava palm 34�108

Date palm 60�84

Source: Pacheco-Torgal and Jalali.110
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composites. (4) Moisture absorption of plant fibers leads to breakage of hydrogen

bonds between the fiber and cementitious matrix and, therefore, weakens the fiber/

matrix interface and, consequently, it deteriorates mechanical strength. Therefore, a

number of fiber surface treatment methods have been tried to reduce the moisture

absorption of plant fibers for applying them in cementitious composites.

s0175 13.6.3 Fiber/matrix interface

p0230 Poor interface between the plant fibers and different matrices present one of the

major problems with plant fiber composites. Poor interface results in inferior load

transfer between fiber and matrix, resulting in lower mechanical performance.

Before discussing interface between plant fiber/cement composites, a brief discus-

sion has been provided about the plant fiber/polymer composite’s interface, just to

provide a general idea about the interface in plant fiber composites. Due to the

hydrophilic nature of the fibers, the interface formed between plant fibers and

hydrophobic polymer matrices is very weak.27 On the other hand, the interface of

plant fibers with hydrophilic matrices can be better as a result of interfacial hydro-

gen bonds. However, as discussed earlier, due to high moisture absorption of plant

fibers, a breakage of interfacial hydrogen bonds occurs in the interfacial region,

weakening the fiber/matrix bonding.

p0235 The interface between different types of reinforcement and brittle cementitious

matrices in different scales is also very weak, which results in pullout when sub-

jected to loading. Fig. 13.17 shows the complete pullout of a bamboo culm from

f0090 Figure 13.17 Pullout test to measure bonding strength between bamboo culm and cementitious

matrix (A) and imprint of bamboo fibers on cementitious matrix after pullout test (B)

Source: Khare.111
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the cement composites, representing a very weak interface. The bonding strength of

this type of bamboo rebars, obtained from pullout testing, is listed in Table 13.6

and compared with steel rebars. It can be observed that the bonding strength of

bamboo rebars is even lower than the smooth steel rebars and much lower than the

rough steel rebars used for construction applications. Therefore, it is highly essen-

tial to improve fiber/matrix bonding in case of plant fiber composites and various

approaches have been tried for this purpose, as discussed in Section 13.6.4.

s0180 13.6.4 Durability of plant fibers and reinforced structures

p0240 Plant fibers are prone to degradation because of their high moisture absorption.

Therefore, the long-term stability of plant fibers and plant fiber-reinforced

cementitious composites is questionable. Additionally, the cement matrix pre-

sents an alkaline environment, which accelerates the degradation of plant fibers

due to the dissolution of lignin and hemicellulose in alkaline solution from

porous water. Fig. 13.18 shows the typical load-deflection curves in 3 point

t0035 Table 13.6 Bonding strength of bamboo and steel rebars with
cementitious matrix

Rebar type Bonding strength (MPa)

Bamboo 0.81

Bamboo with epoxy 0.32

Smooth steel 1.33

Rough steel 6.87

Source: Pacheco-Torgal and Jalali.110
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f0095 Figure 13.18 Load-deflection curves of kraft fiber-reinforced cement composites subjected

to different wet/dry cycles.

Source: Mohr et al.112
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bending mode of kraft pulp (KP) fiber (obtained from Slash pine softwood)-rein-

forced cement composites, subjected to wet/dry cycles.112 The degradation of

fibers due to wet/dry cycles led to 43.5%�52.0% loss of first crack strength,

50.8%�72.4% loss of peak strength, and 97.5%�98.8% loss of postcracking

toughness of cementitious composites. The Scanning electron microscope (SEM)

micrographs (Fig. 13.19) of fracture surface shows significant fiber pullout in

the case of samples without wet/dry cycles, whereas significant fiber rupture

occurred after 25 wet/dry cycles resulting from the brittleness of fibers after the

degradation cycles.

p0245 Different studies which revealed the inferior durability of plant fiber-

reinforced concrete are presented in Table 13.7 and various approaches to

improve the durability of plant fiber-reinforced concrete are listed in Table 13.8.

p0250 One example of improved durability of pretreated plant fiber-cement composites

is shown in Fig. 13.20. It can be observed that kraft softwood pulp (i.e., pulp

obtained through kraft pulping of pine) and cotton linter-reinforced cementitious

composites could provide better resistance to accelerated aging conditions after the

hornification treatment.130

f0100 Figure 13.19 Fracture surface of kraft pulp fiber cement composites showing progression of

fiber degradation: (A) without wet/dry cycles; (B) after 5 cycles; and (C) after 25 wet/dry

cycles.

Source: Mohr et al.112
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t0040 Table 13.7 Deterioration of properties of plant fiber and plant
fiber-reinforced cementitious composites owing to degradation

Type of fibers Degrading conditions Deterioration of properties

Coir, sisal, jute, and

hibiscus fibers

Water, saturated lime,

and sodium hydroxide

(NaOH) solutions

Lignin, hemicellulose, and

cellulose content decreased

significantly.113 Cement mortar

containing the degraded fibers

showed reduced mechanical

strengths

Sisal and coconut

fibers

Alkaline solution Treated fibers completely lost their

flexibility. Mortar containing

treated fibers showed significant

decrease in toughness114

Kraft pulp fiber-

reinforced cement

paste specimens

25 wet/dry cycles Significant loss of mechanical

properties112

Sisal and eucalyptus

fiber-reinforced

roofing titles

Weathering conditions Drastic reduction in toughness of

cement composites115

t0045 Table 13.8 Different approaches to reduce deterioration of perfor-
mance of plant fiber-reinforced cementitious composites owing
to degradation

Approach Strategies Improvement of properties

Use of

supplementary

cementitious

materials to

substitute cement

and reduce

alkalinity

Undensified silica

fume

Reduced degradation of plant fiber

cement-based composites116

Binary and ternary

blends of slag,

metakaolin, and

silica fume

Reducing degradation of pulp fiber

cementitious composites subjected to

wet/dry cycles117

Calcium hydroxide

free cement matrix

Reduced loss of toughness and long-term

embrittlement of sisal fiber-reinforced

cement118

Metakaolin and

calcined waste

crushed clay brick

4 times increase in ultimate bending

strength and 42 times increase in

toughness of sisal fiber-reinforced

cement composites119

Low alkaline ground

granulated blast

furnace slag

cement

Reinforcing coir fibers appeared

undamaged after 12 years120

(Continued)
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Table 13.8 (Continued)

Approach Strategies Improvement of properties

Pretreatment of plant

fibers

Acetylation and

silane treatment

Reduced moisture absorption of fibers

leading to significant improvement in

fiber/cement bond behavior121

Alkali treatment Improvement of fiber strength, fiber/

cement bonding and toughness of plant

fiber-reinforced cement composites122

Bleaching Removal of residual lignin and

extractives resulting in deterioration of

tensile strength of fibers, increased

fiber softness resulting in better fiber/

cement bond behavior, reduced fiber

pull-out length and ductility of

composites, increased peak mechanical

strength of composites, reduced

durability of composites resulting from

increased mineralization of bleached

fibers123�126

Beating Increases the fiber fineness, softness and

fiber/cement interaction, modulus of

rupture, limit of proportionality, and

modulus of elasticity of cement

composites127,128

Hornification, i.e.,

alternate drying

and rewetting of

fibers to

irreversibly reduce

water retention

Improves fiber/matrix interface,

dimensional stability of plant fibers,

and durability of plant fiber cement

composites129�131

Pyrolysis at 200�C Dehydrates chemical components of

plant fibers, improves surface

roughness and enhances fiber/cement

interfacial bonding132

Specialized

composite

processing

Accelerated

carbonation curing

Reduces alkalinity of cement mixtures,

reduced pore volume due to

precipitation of carbonate products,

improves early strength gain, increases

mechanical strength, increases

durability by improving resistance to

sulfate attack, water absorption, and

chloride ion penetration, provides

environmental benefits133�137
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f0105 Figure 13.20 Compressive strength of cementitious composites reinforced with (A)

untreated kraft pulp (KP) and hornificated kraft pulp (HKP) and (B) untreated cotton linters

(CL) and hornificated cotton linters (HCL); thin lines represent the aged (A) composites.

Source: Claramunt et al.131
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s0185 13.6.5 Dispersion of micro- and nanocellulose

p0255 Dispersion of nanomaterials is one of the primary problems in successful devel-

opment of nanocomposites.138 Nanomaterials form agglomerates owing to strong

attractive forces acting between them and it is a challenging task to disperse

them homogeneously in an aqueous medium or in different matrices. Therefore,

the first and foremost step towards developing nano/microcellulose-reinforced

cementitious composites is to prepare highly homogeneous and stable aqueous

suspensions, which can be subsequently added to the cement mixture. Direct

mixing of micro/nanocellulose powder with cement mixture may not ensure

homogeneous dispersion, as is also observed in case of carbon nanotubes.2 For

practical applications in the civil construction industry, the micro/nanocellulose

suspensions AWE should have high storage stability so that they can be stored

for a long time period before mixing with cementitious materials. As discussed

in Section 13.4.3, micro/nanocellulose can be dispersed in aqueous medium by

various mechanical and chemical methods. Their dispersion stability can be

improved through chemical functionalization or using surfactants. For example,

Fig. 13.21 shows the stable suspensions of MCC prepared using Pluronic F 127

surfactant (BASF)139.

s0190 13.7 Applications

p0260 Plant fibers have huge potential for applications in the construction industry.

Several research studies conducted to date have proved that plant fibers could

be low cost and light weight reinforcing materials for cementitious composites.

The future of micro/nanocellulose-based cementitious composites is also prom-

ising for structural applications. Apart from the reinforcement of cementitious

composites, plant fibers can have other applications in the building industry

f0110 Figure 13.21 Stable microcrystalline cellulose suspensions prepared using Pluronic F 127:

(A) aqueous suspensions; and (B) optical micrograph of 0.5% MCC suspension.

Source: Parveen et al.139
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such as (1) plant fibers can be used as thermal insulation materials in building

construction to conserve energy.140 Plant fiber composites (from cotton and

sunflower stalks) insulation materials exhibited suitable mechanical and thermal

performances, which satisfactorily met the requirements of the Turkish TS 805

EN 601 insulation material application standard.141 The use of nanocellulose-

based aerogel materials to improve thermal and sound insulation in buildings

can be highly effective. (2) Micro/nanocellulose can be used in building con-

struction to significantly reduce the permeability of cement-based materials

and, consequently, to improve their durability.142 (3) Wet sprayed plant fibers

can also be used as a surface curing agent for repairing concrete

infrastructures.143

s0195 13.8 Conclusions and future trend

p0265 Plant fibers show high potential as reinforcing materials of cementitious compo-

sites. Addition of plant fibers showed significant enhancement in the impact resis-

tance, toughness, and strength of cementitious composites. Additionally, they are

advantageous to reduce the plastic shrinkage and associated crack formation of

cementitious matrices. The use of nano- and micro-dimensional plant fibers such

as nano- and microcellulose showed still higher improvements in the performance

of cementitious composites. The problems associated with the plant fibers mainly

come from their high moisture absorption. This led to their negative effect on

cement hydration, drying shrinkage, interface with cement, and durability of

cementitious composites. Therefore, it is highly essential to modify the surface of

plant fibers to reduce their hydrophilicity. Among the various surface treatment

methods, physical techniques such as plasma and corona treatments are much

more favorable over the chemical techniques in terms of environmental pollution

and sustainability. At present, machines for continuous plasma treatment of fibers

and textiles on the industrial scale are available and can be utilized for developing

plant fiber-based cementitious composites. Although micro- and nanocelluloses

show huge potential as a reinforcement of cement, their dispersion still presents a

big concern. Stable and well dispersed aqueous micro/nanocellulose suspensions

could be obtained through their chemical functionalization, which introduces an

additional step in the process. Therefore, more research and developments are

required for successful application of micro- and nanocelluloses within cementi-

tious composites.

p0270 Despite tremendous research work on plant fiber-reinforced cementitious compo-

sites, up until now their practical applications are very few. One of the main pro-

blems in applying plant fibers within cementitious composites is the lack of design

standards on fiber-reinforced concrete. Therefore, considerable effort should be

directed towards developing suitable design codes and guidelines to increase the

application of plant fibers in the civil construction industry.
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and Fracture Behaviour. J. Eng. Fibers Fabr. 2008, 3 (2), 39�45.
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Abstract

Nowadays, the use of plant fibers in the civil construction industry is growing

rapidly due to their low cost, light weight and good specific mechanical properties,

lower health hazard, and environmental benefits. Nanodimensional fibers derived

from plants such as nanocellulose are also getting considerable attention due to their

excellent mechanical properties. This chapter discusses these different types of

plant fibers and their derivatives which have huge application potential in the civil

construction sector. The influence of plant fibers on microstructure as well as on

physical�mechanical properties of cementitious composites are discussed in detail.

The challenges regarding plant fiber processing and dispersion, the fiber/matrix

interface, and the durability of plant fiber-cement composites are also addressed.

The application of nanocellulose in polymer composites has been included in this

chapter just to provide the readers sufficient background information and techniques

to inspire engineered cement-based composites. Finally, the chapter concludes with

the current application of plant fibers in civil construction and the future trends.

Keywords: Plant fibers; nanocellulose; cementitious composites; mechanical

performance
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