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A B S T R A C T

This work reports a computational study, focused on graphene (G) and graphene oxide (GO) interfaces with
titanium dioxide (TiO2), and an experimental assay on the photocatalytic activity of TiO2/G and TiO2/GO na-
nocomposites in the degradation of two different pollutants: methylene blue and ciprofloxacin. Both carbon
nanostructures were compared due to their different chemical structure: GO is a G derivative with oxygen
functional groups which should promote a closer chemical interaction with TiO2 nanoparticles. Computational
models of the fundamental properties of the composites indicated potentially improved photocatalytic activity
compared to TiO2, namely lower band gaps and charge carrier segregation at the interfaces. These fundamental
properties match qualitatively experimental results on methylene blue, which was more effectively degraded by
TiO2/G and TiO2/GO nanocomposites than by pure TiO2 under UV light. In contrast, the same nanocomposites
were found to be less efficient to degrade ciprofloxacin than pure TiO2 under visible and UV light. Therefore, this
work showcases the relevance of an efficient matching between the catalyst and the molecular properties and
structure of the pollutant.

1. Introduction

Water contamination is one of the most serious environmental is-
sues, as many hazardous micropollutants, such as heavy metals, phar-
maceuticals, dyes, fertilizers, and pesticides are increasingly being re-
leased into the watercourses [1–3]. Since these pollutants present high
toxicities and thus constitute a threat to fauna and flora, it is essential to
develop efficient techniques for water decontamination [4,5].

Semiconductor-based heterogeneous photocatalysis is one of the
most promising processes for the treatment of contaminated water.
Among the available catalysts, titanium dioxide (TiO2) presents the
most suitable properties: it is chemically and biologically inert, stable,
non-toxic, cheap and easy to produce [6,7]. However, it has an energy
band gap (3.2 eV for the anatase phase and 3.0 eV for the rutile phase)
with photoexcitation in the ultraviolet (UV) range. This translates to a
reduced spectral activation with natural light since UV radiation

corresponds to just 5% of the solar spectrum.4 Further, the re-
combination of photogenerated electron-hole pairs is high, which re-
sults in reduced photocatalytic efficiency [4,8].

Several strategies have been attempted to tailor TiO2's band gap and
to reduce the electron-hole recombination to overcome these limita-
tions, namely doping TiO2 with metallic [9], no-metallic [10], and rare
earth elements [4], and mixing TiO2 with other nanomaterials [8]. One
particularly promising approach lies on the mixing with graphene (G)
and graphene oxide (GO) to develop TiO2 nanocomposites (designated
by TiO2/G and TiO2/GO, respectively), as these composite materials
have been found to present improved electronic and optical properties
for photocatalysis.

TiO2/G and TiO2/GO nanocomposites have been produced by sol-
vothermal [11], hydrothermal [12,13] and one-step colloidal blending
[14] methods. These nanocomposites have been assessed for the de-
gradation of pollutants, namely: methylene blue (under UV and visible-
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light irradiation) [12,14], risperidone (using artificial sunlight and
visible radiation) [13], naphthenic acids [11] methyl orange and di-
methyl phthalate [15] (both under UV irradiation). In these studies,
high photocatalytic efficiency was found which was attributed to in-
creasing adsorption of the pollutants onto the nanoparticles surface and
to increased separation of charge carriers, which effectively inhibits
recombination. Computationally, DFT studies regarding the electronic
properties of TiO2/G interfaces have been reported addressing the in-
terfaces of TiO2 surfaces/slabs for the anatase [16,17] and rutile crystal
phases [18] with one graphene adlayer. In all these studies, it was
found that these interfaces show a reduced band gap and at the same
time promote separation of charge carriers at the interfaces.

Few of the reported works to date relate the photocatalytic effi-
ciency with the G/GO concentration, and none of them compares the
performance of the TiO2/G with the performance of the TiO2/GO na-
nocomposites. Further, although the properties of TiO2/G interfaces
have been computationally calculated previously, the properties of
TiO2/GO interfaces are yet to be determined.

Therefore, the present work comprises a complementary computa-
tional and experimental investigation of the photocatalytic activity of
TiO2/G and TiO2/GO nanocomposites with different contents of gra-
phene and GO. These nanocomposites were used to degrade a dye
(methylene blue - MB) and an antibiotic (ciprofloxacin – CIP), under UV
and visible-light irradiation, to evaluate and compare their photo-
catalytic performance. Moreover, this is, to the best of our knowledge,
the first study that uses these nanocomposites to degrade antibiotics,
even though these represent a serious concern to the environment due
to their toxicity and the increased risk of new antibiotic-resistant mi-
croorganisms [3]. Also, the fundamental electronic properties of TiO2/
G and TiO2/GO interfaces were also computed through density func-
tional tight-binding method to rationalize the results.

2. Experimental methods

2.1. Computer model

Computations were performed with Self Consistent Charge Density
Functional Tight Binding (SCC-DFTB) Hamiltonian, with the tiorg
parameters set, using the software DFTB+ (version 1.2.2) [19]. The
DFTB Hamiltonian shows a higher computational efficiency than DFT
methods and therefore is ideal for the study of large systems [20,21].

The structure and electronic properties of the pristine materials and
the TiO2/G and TiO2/GO interfaces were computed and compared.
Interfaces between TiO2 surface slabs and graphene/GO sheets were
built using Virtual NanoLab software (version 2015.1) from
QuantumWise. For the TiO2 slabs, the most thermodynamically stable
surfaces of anatase (101) and rutile (110) were computed with two
atomic layers. Suitable commensurate graphene and GO layers were cut
and interfaced with the slabs. For simplicity, the GO model considered
in this study assumed a full, two face, functionalization of the graphene
with epoxy C-O functional groups with a ratio C:O of 2. Interfaces of
anatase/graphene (A/G), rutile/graphene (R/G), anatase/GO (A/GO)
and rutile/GO (R/GO) were studied. The number of atoms contained in
TiO2 slabs and graphene/GO layers, as well as the commensurate su-
percell dimensions and strains of the interfaces, are listed in Table 1.

For all cases, a vacuum slab of approximately 15 Å perpendicular to the
interface was considered. The use of the DFTB Hamiltonian allowed the
modeling of a larger system than those reported in the literature
[16–18] with lower strain values, i.e., higher commensurability.

Geometry optimization of the interfaces was performed through the
conjugate gradient method, considering a maximum force of 10−4 Ha/
Bohr. The atoms of the bottom layer of the TiO2 slab were fixed at the
bulk positions. Two different Monkhorst-Pack meshes were used, one
for the geometry optimization and a denser one to compute the elec-
tronic properties and the adhesion energy. The charge transfer iso-
surfaces were computed with the waveplot software (version 0.3.1).
Details of the meshes used are presented in the supplementary in-
formation.

3. Materials

TiO2 (P25 - AEROXIDE) nanoparticles (kindly provided by Evonik
Industries®). Graphite flakes (99.99%) and all the remaining chemicals
were supplied by Sigma-Aldrich and used as received. The water used in
all the photocatalytic experiments is ultra-pure (Millipore).

3.1. Preparation of TiO2/G and TiO2/GO nanocomposites

Graphene oxide (GO) was produced by the chemical exfoliation of
graphite flakes, according to the method suggested by Hummers and
Offeman [22,23]. Briefly, 7 g of KMnO4 was added to a suspension
containing 50mL of concentrated H2SO4 and 2 g of graphite. The re-
sulting mixture was magnetically stirred for 2 h and then treated with a
solution of H2O2 (30 wt % in water) until the gas evolution ceased.
After that, the suspension was intensively washed, first with a diluted
solution of HCl (0.1 mol/dm3) and then with distilled water by filtra-
tion. Finally, the solution was centrifuged and dried by lyophilization to
obtain the GO. The quality of the GO flakes was evaluated by AFM,
Raman and SEM characterization (data not shown).

The graphene was obtained from the reduction of the GO, by adding
2mL of NH2OH (0.1 mol/dm3) to 10mL of a suspension of GO (0.5mg/
mL). After stirring for 30min, the pH was adjusted to 12 by adding an
aqueous solution of NaOH (0.1mol/dm3). Then the suspension was
heated to 80 °C for 1 h and finally washed by centrifugation. The suc-
cess of the GO flakes reduction was accessed by Raman spectroscopy
(data not shown).

The synthesis of the TiO2/G and TiO2/GO nanocomposites was
based on a one-step hydrothermal method described in previous studies
[8,12]. In short, the appropriate amount of graphene/GO (depending
on the wt % of the composites required – namely 0.5%, 1%, 1.5% and
3%) was dispersed in a mixture of 40mL of deionized water and 20mL
of ethanol and stirred by ultrasonication for 1 h. Subsequently, 100mg
of TiO2 were added, and the resulting suspension was stirred for 2 h to
achieve a complete homogenization. After that, 15mL of this suspen-
sion was placed in a Teflon lined autoclave, sealed and heated to 120 °C
during 3 h. The resulting nanocomposites were then washed with
deionized water and freeze-dried to avoid the agglomeration of the
particles.

4. Materials characterization

Scanning electron microscopy (SEM) characterization was per-
formed with an FEI Quanta 650 FEG microscope, equipped with an
INCA 350 spectrometer from Oxford Instruments for energy dispersive X-
ray spectroscopy (EDX). A small amount of powder was placed in
copper tape and observed under 20 kV.

To identify the vibrational modes of the nanocomposites, Fourier
transform infrared spectroscopy (FTIR) was performed in attenuated
total reflectance (ATR) mode, using a PerkinElmer Spectrum Two IR
Spectrometer and considering 64 scans, with a resolution of 4 cm−1.

Diffuse reflectance spectroscopy (DRS) was performed by a

Table 1
Number of atoms, supercell dimensions and strain, considered in the construction of the
interfaces.

Interface TiO2 atoms G/GO atoms Supercell dimensions Strain

A/G 240 144 51.48× 7.43× 35 Å3 0.80%
R/G 360 224 30.03× 19.82×35 Å3 0.11%
A/GO 312 264 (176 C) 10.36× 49.33×35 Å3 0.42%
R/GO 252 216 (144 C) 46.60× 8.97× 35 Å3 0.80%
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Shimadzu UV-2501 PC apparatus equipped with integrating spheres.
These measurements allowed to estimate the band gap of the photo-
catalysts, by converting the reflectance spectra to absorption Kubelka-
Munk units through equation (1) [24]:
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RF( ) is the Kubelka-Munk function and ∞
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diffuse reflectance.
The crystallinity of the samples was accessed through X-ray dif-

fraction (XRD) using a Philips PW 1710 diffractometer with a Cu source
(Kα, λ=1.5045Å) operating at 40 kV and 30mA, at room tempera-
ture.

The specific surface area, pore volume, and pore size were assessed
by BET (Brunauer–Emmett–Teller) using a Micromeritics Instrument
Corp. (Gemini V2.00).

4.1. Photocatalytic experiments

The photocatalytic activity of TiO2 composites with different G and
GO content were evaluated through the degradation of methylene blue
(MB) and ciprofloxacin (CIP) aqueous solutions (0.015mmol/l) at
pH∼ 4, under UV and visible light. For this, 50 mg of the catalysts were
added to 50mL of solution and magnetically stirred in the dark for
30min, to achieve the adsorption-desorption equilibrium. Afterward,
the UV photocatalytic degradations were carried out using a home-
made photoreactor equipped with six 8W mercurial fluorescent lamps,
from Philips, with a flux of 1.6–1.7mW/cm2 and an excitation peak of
365 nm, placed at 10 cm above the solution. For the visible light ex-
periments, an Ingenieurburo Mencke & Tegtmeyer GmbH sun simulator,
with a flux of 9.8mW/cm2, was used. In this case, the light source was
placed 21 cm above the solution.

For both the experimental setups, the reaction rate and efficiency of
the degradation were determined by monitoring the intensity of the
main absorbance peaks of MB (664 nm) and CIP (276 nm), using a
Biotek Cytation3 spectrophotometer. The experiments revealed that the
degradation of both solutions fitted to a pseudo-first-order reaction,
Langmuir–Hinshelwood model, expressed by equation (2): [25].

= −

C
C

ktln
0 (2)

where C0 and C represent the concentration of the pollutant at time
0min and at time t, respectively, and k is the first-order rate constant of
the reaction.

5. Results

5.1. Computational modeling

Modelled structures of the interfaces A/G and A/GO are presented
in Fig. 1a and Fig. 1d, respectively, while for the R/G and R/GO in-
terfaces the structures obtained are shown in the supporting informa-
tion. Equilibrium distances measured between the top of the TiO2 slabs
and the graphene/GO layers are listed in Table 2. These distances
ranged between 2.53 Å, for the A/GO interface, and 2.92 Å, for the R/
GO one.

The interfacial adhesion energy, defined as the difference between
the total energy of the interface and the sum of the energies of the TiO2

slab and the graphene/GO layer, was calculated for all systems. The
values obtained, per carbon atom, are also presented in Table 2. For all
the interfaces, the adhesion energy was negative, which indicates that
these are thermodynamically stable. Adhesion energies were three/four
times larger for the TiO2/G interfaces than for the TiO2/GO ones, which
is mostly because graphene layers are perfectly flat and, therefore,
TiO2/G interfaces should be more stable thermodynamically.

The density of States (DOS) were computed in the optimized

geometries, to characterize the electronic structure of the interfaces,
and are presented in Fig. 1b and e, for the A/G and A/GO systems, and
in the supporting information. In both cases, the presence of the gra-
phene/GO leads to significant changes in the DOS of the composites,
with the introduction of new energy states inside the band gap of TiO2.
For the A/G interface, the energy gap, calculated as the energy differ-
ence between the lowest unoccupied orbital and the highest occupied
orbital, is null as the graphene Fermi Energy matches the upper valence
band of TiO2. This band is composed mainly of O 2p and Ti 3d states of
the TiO2, whereas the lower conduction band consists of delocalized C
2p states of the graphene. Analogous results were also obtained for the
R/G interface. On the other hand, the A/GO interface has a band gap of
1.79 eV, and in this case, the transitions are expected to occur from the
O 2p and Ti 3d states of the TiO2 to the C 2p and O 2p states of the GO.
These results were similar to the obtained for the interface R/GO, with
a lower gap of 1.31 eV.

Charge density difference maps of the interfaces A/G and A/GO are
presented in Fig. 1c and f, respectively (charge density maps for the
different interfaces are shown as supplementary material – Table 1).
Additionally, in supplementary material, Fig. S1 illustrates the Opti-
mized geometries, the density of states and charge density differences
of all the materials interfaces (Anatase/G, Rutile/G, Anatase/GO and
Rutile/GO). The blue isosurfaces correspond to regions of charge ac-
cumulation, while the yellow isosurfaces represent spaces of charge
depletion. For all interfaces, separation of charge carriers was observed,
with an accumulation of electrons in the TiO2 slab and of holes in the
graphene/GO layers. The average charge transfer per adlayer atom to
the TiO2 surface slabs, for all the interfaces constructed, are listed in
Table 2. The calculated values ranged between 8×10−7 e/atom, for
the R/GO interface, and 7× 10−4 e/atom, for the A/G one.

6. Materials characterization

SEM analysis of the samples TiO2, TiO2/G 1%, 3% and TiO2/GO 1%,
3% was performed. The results obtained for the nanocomposites with
3% of graphene and GO are presented in Fig. 2. These images show the
presence of TiO2 agglomerates, and due to the high amount of TiO2

compared with the carbon nanosheets, the latter are less visible. Also, it
is expected that during the hydrothermal treatment the TiO2 nano-
particles completely adhere to their surfaces. Even so, it is also possible
to identify some GO sheets for the TiO2/GO 3% composite, amplified in
the upper right corner of Fig. 2b.

The elemental composition of the TiO2/G 3% and TiO2/GO 3%
nanocomposites was determined by EDX. The results, shown in Fig. 3a,
allowed to identify the presence of carbon (C), oxygen (O) and titanium
(Ti), which can all be addressed to the nanocomposites.

XRD was performed to access their crystalline properties.
Diffractograms obtained for pure TiO2, TiO2/G 3%, and TiO2/GO 3%
nanocomposites are shown in Fig. 3b. The diffraction peaks observed
are appropriately identified. All of them correspond to the character-
istic TiO2 crystal planes, in both anatase, A, (25°, 38°, and 48° peaks)
and rutile, R, (the 27° peak) crystal phases (JCPDS cards 21–1272 and
21–1276, respectively [26]). The expected peaks of graphene (23°-24°)
or GO (7°-12°) were not found [27], probably due to their low con-
centration in the composites. Using Match software (version 1.10b), the
weight ratio of anatase and rutile phases was estimated from XRD
spectra. The results, listed in Table 3, indicate that the initial TiO2

powder is composed of roughly 80% anatase and 20% rutile (in good
agreement with the specifications values of the Aeroxide P25 particles.
The produced nanocomposites present an anatase content ranging from
73.8% to 77.2% and a rutile content ranging between ≈23% and 26%.

FTIR-ATR measurements were performed to assess the chemical
interactions within the composites. The spectra obtained for the TiO2,
TiO2/G 3%, and TiO2/GO 3% samples are shown in Fig. 3c. The most
prominent absorption bands observed correspond to water O-H
stretching modes (at 3350 cm−1 and 1640 cm−1) and Ti-O-Ti bonds
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(the broadband at wavenumbers between 500 cm−1 and 900 cm−1).
Additionally, for the graphene/GO nanocomposites, it is also possible to
identify the peaks corresponding to hydroxyl C-OH (1425 cm−1) and
epoxy C-O (1150 cm−1) stretching modes [8,28]. These bands are more
intense for the TiO2/GO composites but are also observed for the TiO2/
G ones, which may be due to the incomplete reduction of the GO during
the synthesis of the graphene. The high transmittance band found be-
tween 1000 and 450 cm−1 shifts to lower wavenumbers for the TiO2/G

3% and TiO2/GO 3% nanocomposites, which indicates the interaction
between TiO2 nanoparticles and G/GO, bonds Ti–O–Ti and Ti– O–C.

UV/Vis reflectance of all samples was accessed by DRS and the
spectra obtained for pure TiO2, and for TiO2/G 3% and TiO2/GO 3%
composites are presented in Fig. 3d. The results show that all the
samples reflect approximately 10% of the light when the incident ra-
diation has a wavelength lower than 300 nm. For incident wavelengths
in the range 400–800 nm, the reflectance of pure TiO2 is higher than
90%, Further, for this range, TiO2/G and TiO2/GO composites present
reflectance values below 30% and 40%, correspondingly. These ob-
servations are in good agreement with the dark gray color of the na-
nocomposites powders and suggest that the these might be photo-
catalytically active under visible radiation. The band gap of the
samples, estimated from DRS spectra by converting the reflectance to
Kubelka-Munk units through equation (1), are shown in the inset graph
of Fig. 3c.

The values obtained for all the nanocomposites are listed in Table 3
and reveal that the energy gap decreases with increasing wt % of gra-
phene/GO in the composites. Furthermore, TiO2/GO samples show a

Fig. 1. Optimized geometries (a), (d), total and partial density of states (b), (e) and charge density differences (c), (f) of the interfaces A/G (a)–(c) and A/GO (d)–(f) with an isovalue of
0.0005 e/Å3. The vertical dashed lines represent the Fermi energy.

Table 2
Equilibrium distance, adhesion energy, gap energy and G/GO charge per atom calculated
for all interfaces.

Interface Equilibrium
distance (Å)

Adhesion energy
(eV/C atom)

Gap energy
(eV)

G/GO charge
(e/atom)

A/G 2.87 −0.028 0 7×10−4

R/G 2.91 −0.021 0 2×10−5

A/GO 2.53 −0.006 1.79 3× 10−4

R/GO 2.92 −0.008 1.31 8× 10−7

Fig. 2. SEM micrographs, amplified 10 000 (background images) and 100 000 (insets in the lower left corner) times of TiO2/G 3% (a) and TiO2/GO 3% (b) nanocomposites.
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lower band gap (comprised between 2.35 eV and 2.80 eV, depending on
the GO content) than the TiO2/G ones (between 2.75 eV and 2.94 eV)
and, in both cases, these values are inferior to pure TiO2 (3.08 eV).

The BET specific surface area (SBET) of TiO2 and GO/TiO2 samples
(0.5, 1, and 3%) was also assessed (supplementary material – Table 2).
The results show that the SBET increases with increasing amount of GO.
As G is obtained from GO, values for the G/TiO2 nanocomposites should
reflect the same trend.

6.1. Photocatalytic experiments

The investigation of the photocatalytic activity of composites TiO2/
G and TiO2/GO under UV radiation through the degradation of MB and
CIP aqueous solutions, at room temperature. The assessment of pollu-
tants concentration by monitoring the values of the maximum UV–Vis
absorbance peaks for 60min. For both solutions, the results obtained
using pure TiO2 and different nanocomposites with G and GO are
plotted in Fig. 4. The degradation kinetics for all the samples are shown

in supplementary material (Figs. S2 and S3). The apparent reaction rate
(k), calculated from the slope of the exponential curve of the con-
centration plot, and the removal efficiency (both in the UV irradiation
period) for all samples are listed in Table 4.

Before the photocatalytic activity tests, a systematic study was
performed to the adsorption process (Supplementary material, Fig. S4),
confirming the complete saturation of the nanocomposites in the
first≈ 10min in the dark with the MB solution, under mechanical
agitation. For the photocatalytic assays, 30min in the dark for ad-
sorption-desorption were used to assure a complete saturation of the
nanocomposites. Concerning the photocatalytic tests (Fig. 4) large ad-
sorption of MB dye onto the nanoparticles surface was observed during
these 30min, for nanocomposites with higher concentrations of G and
GO. Moreover, TiO2/GO nanocomposites showed higher adsorption of
MB than the TiO2/G ones. For the TiO2/GO 3% sample, most of the dye
was adsorbed onto the catalyst in the equilibration step which pre-
vented the measurement of its photocatalytic activity. The enhanced
adsorption of MB is justified by the fact that it is a cationic dye and so it
is positively charged in solution. In turn, the presence of carboxylic
moieties on the GO surface will favor the electrostatic interaction be-
tween the dye and the catalyst surface. A similar but less marked be-
havior was observed with the CIP solution (Fig. 4b), as CIP showed a
lower affinity for the nanocomposites than the MB. This can be ratio-
nalized as CIP is also charged in solution but zwitterionic [29]. It is to
notice that the increasing adsorption capability of the nanocomposites
with increasing amounts of GO and G, is correlated with the corre-
sponding higher specific surface areas (SBET).

Regarding the degradation of MB, the period under UV irradiation
(from 0 to 60min), nanocomposites show a higher photocatalytic per-
formance than pure TiO2, with larger concentrations of G or GO con-
tributing to the faster degradation of the dye (Table 4). The only ex-
ception was the TiO2/GO 1% composite that presented the lowest rate
of degradation (0.064 min−1). For all the tested nanocomposites, MB
was fully degraded after ≈30min under UV irradiation.

Fig. 3. EDX spectra (a), XRD patterns (b), FTIR-ATR spectra (c) and DRS spectra (d) of pure TiO2, TiO2/G 3% and TiO2/GO 3% composites.

Table 3
- TiO2 crystalline phases, estimated from XRD spectra, and gap energies, assessed from
DRS spectra, of the produced samples.

Sample TiO2 crystalline phases Gap energy (eV)

%Anatase %Rutile

TiO2 81.6 18.4 3.08
TiO2/G 0.5% 76.2 23.8 2.94
TiO2/G 1% 75.9 24.1 2.94
TiO2/G 1.5% 76.3 23.7 2.89
TiO2/G 3% 75.3 24.7 2.75
TiO2/GO 0.5% 75.2 24.8 2.80
TiO2/GO 1% 73.8 26.2 2.64
TiO2/GO 1.5% 75.6 24.4 2.53
TiO2/GO 3% 77.2 22.8 2.35

P.M. Martins et al. Composites Part B 145 (2018) 39–46

43



Photocatalytic tests using CIP solution revealed that the tested na-
nocomposites are less efficient in degrading this pollutant than the
powdered TiO2 under UV irradiation. Furthermore, it was also observed
that the degradation of the CIP was slower than that of the MB: after
60min of exposure to light, a considerable amount of CIP (between
24% and 35% of the initial concentration) was still present. Moreover,
the reaction rates and the photocatalytic degradation efficiencies
measured for CIP were similar, irrespectively of the G and GO con-
centration present in the nanocomposites. The reaction rates of the
composites range between 0.010 min−1 and 0.016 min−1, and their
removal efficiencies range from 50% to 67%.

Furthermore, photocatalytic degradation of the CIP solution was
also studied under visible-light irradiation, considering the TiO2/G and
TiO2/GO nanocomposites. The results obtained are plotted in Fig. 5,
and the corresponding values of the reaction rate and removal effi-
ciency are listed in Table 4.

Under these conditions, nanocomposites also present a lower pho-
tocatalytic activity than pure TiO2. In fact, a large amount of CIP (be-
tween 32% and 59% of the initial concentration) was measured in the
solution after 180min of irradiation. The values of the reaction rates
and removal efficiencies (alike with UV light) were low and similar for
both composites studied (TiO2/G and TiO2/G) and did not vary sig-
nificantly for different G and GO contents. In particular, reaction rates
of the composites assumed values between 0.002 min−1 and 0.003
min−1, while the removal efficiencies after 180min were comprised
between 32.51% and 42.99%.

7. Discussion

In this study, complementary computational and experimental as-
says were performed to evaluate the photocatalytic efficiency of TiO2/G
and TiO2/GO nanocomposites.

Through computational modeling, interfaces between a TiO2 surface
slab (both in anatase and in rutile crystal phases) and a G or GO layer
were constructed, and their electronic properties were determined.
Similar TiO2/G interface models were previously studied using density
functional theory (DFT) by Ferrighi et al. [17] and Li et al. [16] (in-
terfaces between anatase (101) and graphene) and by Du et al. [18]
(interfaces between rutile (110) and graphene). In contrast, the use of
DFTB method in this work allowed the construction of larger interfaces
than the reported by those authors, with a considerably higher number
of atoms and, subsequently, being highly commensurable and pre-
senting very low strains. On the other hand, to the best of our knowl-
edge, no studies have addressed the computational modeling of TiO2/
GO interfaces. In this case, it is important to note that there is no unique
structure for GO, since the conditions and methods of production in-
fluence the number, type and distribution of the functional groups of
GO [30,31]. In this work, for simplicity, a model where graphene was
completely functionalized with epoxy C-O groups was considered to
evaluate the effect of oxidation on the fundamental properties of TiO2/
GO interfaces.

For both A/G and R/G interfaces, the distances measured between
the TiO2 slab and the graphene sheet after geometry optimization agree
well with the values reported. In particular, the separation calculated

Fig. 4. Photocatalytic degradation of (a) MB and (b) CIP under UV-light irradiation using pure TiO2, TiO2/G 0.5%, TiO2/G 3%, TiO2/GO 0.5% and TiO2/GO 3% nanocomposites.

Table 4
First-Order Reaction Rate Constants, k, and Photocatalytic Degradation Efficiencies of all
the Samples, Determined After the Degradation Tests of MB and CIP Solutions, Carried
Out Under 60 Minutes of UV Irradiation and 180 Minutes of Visible Light Irradiation.

Sample UV irradiation Visible light irradiation

MB degradation CIP degradation CIP degradation

k (min−1) % k (min−1) % k (min−1) %

TiO2 0.070 95.23 0.022 70.04 0.004 51.62
TiO2/G 0.5% 0.088 94.38 0.014 58.66 0.003 39.94
TiO2/G 1% 0.105 95.08 0.014 66.48 0.002 32.51
TiO2/G 1.5% 0.121 94.79 0.015 63.22 0.003 36.37
TiO2/G 3% 0.160 91.69 0.016 65.99 0.002 35.58
TiO2/GO

0.5%
0.089 93.85 0.013 61.01 0.002 34.14

TiO2/GO 1% 0.064 91.64 0.014 61.09 0.003 42.99
TiO2/GO

1.5%
0.115 85.97 0.014 64.84 0.003 37.75

TiO2/GO 3% – – 0.010 50.08 0.002 33.04
Fig. 5. Photocatalytic degradation of CIP under visible-light irradiation using TiO2/G (a)
and TiO2/GO (b) nanocomposites with different contents of G/GO.
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for the A/G interface was 2.87 Å, while the distances obtained by the
previous authors were comprised between 2.51 Å, using an LDA + U
functional [16], and 2.84 Å, considering PBE-D2 and B3LYP-D func-
tional [17]. For the R/G interface, the 2.91 Å separation determined in
this work is slightly higher than the 2.75 Å measured by Du et al. [18]
through LDA. The smallest separation, of 2.53 Å, was obtained for the
A/GO interface, while the distance measured between the rutile and the
GO in the R/GO interface was 2.92 Å.

Additionally, analysis of the DOS plots obtained for the A/G and R/
G interfaces lead to the observation of new energy states, corresponding
to C 2p orbitals of the graphene, inside the band gap of the TiO2 in full
accordance with the reported in the literature [16–18]. For these in-
terfaces, transitions from the valence to the conduction bands occur
directly from the O 2p and Ti 3d states of the TiO2 to the C 2p states of
the graphene. Similar results were obtained for the A/GO and R/GO
interfaces, where the presence of the GO was responsible for the in-
troduction of new C 2p and O 2p energy states immediately below the
conduction band of the pure TiO2. So, transitions between the O 2p and
Ti 3d states of the TiO2 to this new set of states of the GO could lower
the excitation energy for these interfaces.

Due to the existence of additional energy states, the band gaps of the
interfaces are lower than those of pure TiO2. In particular, the gaps
observed for the A/G and R/G systems were null, although like for
graphene, there are a low number of states at the Fermi Energy. The
energy gaps calculated for A/GO and R/GO interfaces were equal to
1.79 eV and 1.31 eV, respectively, which would correspond to visible
and near-infrared radiation. This means that the photoexcitation of the
electrons of the TiO2/G and TiO2/GO composites can be improved
concerning the one of the TiO2 under solar irradiation. Experimental
measurements, performed by DRS, showed that the band gap of the
nanocomposites is lower than the gap of pure TiO2 but by a smaller
factor. A decrease in the gap energy with the increase of the content of
G and GO in the composites was also observed and is qualitatively in
agreement with the computational calculations. However, the experi-
mental band gap values of the TiO2/G samples were higher than the
gaps estimated for the TiO2/GO composites, contrary to what derived
from the computations. This apparently counter-intuitive observation
might be rationalized considering that the graphene used in the com-
posites was obtained by reduction of the GO and the existence of de-
fects/holes in the carbon network structure is likely [32] and may lead
to extensive band gap opening.

Furthermore, the charge distribution at the interfaces was also
analyzed with computer models which resulted in electrons accumu-
lation in the TiO2 and hole accumulation in the G and GO layers. This
means that there is charge transfer between the TiO2 slab and the G and
GO, resulting in a separation of the charge carriers, which can poten-
tially lead to a reduction of their recombination rate, thus enhancing
the mechanism of heterogeneous photocatalysis.

In short, due to their electronic properties, it is expected that the
TiO2/G and TiO2/GO nanocomposites will possess an enhanced pho-
tocatalytic activity, especially under visible-light irradiation, when
compared with pure TiO2. This improvement results from their lower
energy gap which can allow the quantitative photoexcitation of elec-
trons with solar radiation. Additionally, the separation of the charge
carriers at the interfaces should reduce the electron-hole pair re-
combination rate, and thus should fundamentally enhance the photo-
catalytic performance of these materials when compared with pure
TiO2.

In the experimental assays, TiO2/G and TiO2/GO nanocomposites
degraded MB more efficiently than TiO2 under UV light, as previously
observed by Zhang et al. [12] and Nguyen-Phan et al. [14]. The in-
crease of the photodegradation reaction rates of MB occurred with the
increase in G or GO content. For the same content of G and GO, these
values were very similar for the TiO2/G and TiO2/GO composites.
These results are in good agreement with those obtained by Nguyen-
Phan et al. [14], who observed that an increase in GO content from 1 to

10wt % yielded higher degradation rates of the MB. At the same time,
these results are also in accordance with the computed electronic
properties of these materials.

In contrast with the observations with MB, TiO2/G and TiO2/GO
nanocomposites presented a lower photocatalytic activity under UV
light for CIP degradation than pure TiO2. Furthermore, for this pollu-
tant, the values of the reaction rate constant and removal efficiency did
not change significantly, regardless the different G and GO concentra-
tion tested. Analogous results were obtained when these photocatalysts
were used to degrade the CIP solution under visible-light irradiation.

Computer modeling addresses the fundamental properties of TiO2/G
and TiO2/GO interfaces, and the results indicate that the composites
should have enhanced photocatalytic properties than pure TiO2 nano-
particles due to their electronic properties. The experimental results
have shown that the photocatalytic efficiency is also strongly dependent
on the pollutant molecular properties and chemical structure.
According to literature, the compound to degrade also influences the
dependence of the photocatalytic activity with the content of G/GO. For
example, under UV-light irradiation TiO2/GO nanocomposites, Nguyen-
Phan et al. [14] observed an increase in the degradation rates of the MB
with the increase of GO content from 1% to 10%. In contrast, Yadav
et al. [33] reported that an increase in wt % of GO from 0.25% to 2%
lead to a decrease in the degradation rates of benzene gas.

The well-known adsorption properties of carbonaceous materials
(like G or GO) [14,34], our computational results and the efficient MB
degradation indicate and support the enhanced photocatalytic proper-
ties of the nanocomposites compared with the pristine TiO2. In this
sense, the inefficient degradation of CIP is a consequence of the che-
mical and molecular properties of this compound, and not due to the
catalyst the catalyst. The adsorption of MB and CIP after 30min in the
dark also mirror this idea; it is possible to observe that the adsorption
occurred with MB is significantly higher than with CIP. The adsorption
process is critical for photocatalysis efficiency, in this way, the low
affinity of CIP molecules with the nanocomposites, compromises the
adsorption of CIP into the nanocomposite surface and consequently
reduces the photocatalytic efficiency. The described low adsorption is
even more evident in the G nanocomposites (for MB and CIP de-
gradation), as it becomes more hydrophobic than GO due to the loss of
O groups [35].

These results corroborate the idea that the photocatalytic efficiency
depends not only on the electronic properties of the used photocatalyst,
but it is also highly dependent on the pollutant considered and of its
interactions with the catalyst surface.

8. Conclusions

A comprehensive work enclosing a computational study focused on
TiO2/G and TiO2/GO interfaces, and the experimental photocatalytic
performance of these nanocomposites with different contents of G and
GO was carried out. Computational results of the fundamental elec-
tronic properties of the nanocomposites have shown that these are
potentially more efficient than pure TiO2, due to their lower energy gap
and to the existence of a charge separation at the interfaces, which
reduces the recombination of electron-hole pairs. The nanocomposites
characterization, through SEM, and FTIR confirmed the interaction
between TiO2 nanoparticles and G or GO. Additionally, the reflectance
measurements corroborate the computational results, with lower band
gaps for the nanocomposites (ranging from 2.94 to 2.35 eV) compared
with TiO2 (3.08 eV). Experimental results revealed that the nano-
composites degrade more efficiently the MB than the TiO2, but the
opposite occurs for CIP. These results indicate that the photocatalytic
efficiency depends not only on the properties of the catalyst but also on
the compound to degrade and its favorable/unfavorable interactions
with the catalytic surface. In this situation, CIP does not have an effi-
cient interaction with the nanocomposite surface, which promotes low
adsorption and adverse outcomes for the photocatalytic process.
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Therefore, further theoretical and experimental studies are required
with different pollutants to fully elucidate the mechanism behind the
observed behavior of these composites and to be able to accurately
match photocatalyst properties with specific pollutants for an opti-
mized degradation.
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