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Abstract. The finite element simulation is currently a powerful tool to optimize forming processes in order to produce 

defect-free products. Wrinkling and springback are main geometrical defects arising in sheet metal forming. 

Nevertheless, the prediction of such defects requires accurate numerical models. This study presents the experimental 

and numerical analysis of a rail with high tendency to develop both wrinkling (top surface of geometry) and springback 

(flange). The punch force evolution and the final geometry of the rail, evaluated in four different cross-sections, are the 

main variables analysed. Globally, the numerical results are in good agreement with the experimental measurements. 

However, the shape of the wrinkle is significantly influenced by the symmetry conditions considered in the model (1/4 

of the blank). In fact, considering the full model of the blank, the numerical results are in better agreement with the 

experimental ones. On the other hand, the computational cost of the numerical simulation considering the full blank is 

approximately 12 times higher than using 1/4 of the blank. 

1 Introduction  

Sheet metal forming processes are commonly used in the 

automotive industry to produce several metal parts with 

complex geometry [1]. Currently, the major concerns of 

the automotive industry are the environmental protection 

(low fuel consumption and, consequently, low exhaust 

emissions) and the safety specifications. Accordingly, in 

order to meet these requirements, new materials have been 

introduced in car body manufacturing, such as high-

strength steels as well as aluminium alloys [2–4]. 

Nevertheless, these material are more prone to develop 

geometrical defects, namely springback [5]. Another 

important geometrical defect arising in sheet metal 

forming is the wrinkling behaviour, which results from the 

instability under compressive stresses [6]. 

The integration of numerical simulation in the design 

and development of sheet metal forming processes was a 

key factor for the fulfilment of the increasing requirements 

for time and cost efficiency [7, 8]. In fact, the typical 

experimental trial-and-error die design has been 

progressively replaced by the finite element simulation of 

the process. This demands accurate numerical models, 

namely the introduction of new constitutive models [9], 

new types of finite elements [10] and the accurate 

treatment of the frictional contact conditions [11]. Despite 

the many advances in the numerical simulation tools 

development, the accurate prediction of geometrical 

defects still represents a challenge for the simulation [12]. 

For instance, it is known that wrinkling prediction is 

strongly affected by the finite element discretization [6]. 

Also, springback prediction is influenced by the model 

selected to describe the material kinematic hardening 

behaviour [13]. 

This study presents the experimental and numerical 

analysis of a rail with a high tendency to develop both 

wrinkling (top surface of geometry) and springback (at the 

flange), thus representing an additional challenge to 

simulation, due to a possible interaction of effects. The 

experimental procedure is described in Section 2, while the 

adopted finite element code is presented in Section 3. The 

proposed numerical models of the forming process are 

defined in Section 4 and the comparison between 

numerical and experimental results is presented in Section 

5. The main conclusions are outlined in Section 6. 

2 Experimental procedure  

This study deals with the sheet metal forming of a rail, 

which is prone to 2D springback behaviour and wrinkling 

on the top surface. In order to obtain a representative set of 

reference experimental results, required for validation the 

different strategies that may be adopted in the numerical 

simulation, special care was devoted to the standardization 

of the experimental procedure [14]. The experimental 

setup involves a punch, a die and a blank-holder, as shown 

in Figure 1. The forming process comprises three phases. 

In the first one, the die moves downward, clamping the 

blank between the die and the blank-holder with an initial 

90 kN prescribed force. This blank-holder force is defined 

by six nitrogen gas springs (see Figure 1), being all 

connected, in order to assure the same pressure in each of 

them. In the second phase, the die and blank-holder move 
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downward together, forming the part and defining a punch 

penetration of 60 mm. At this stage the gas springs are 

being compressed, thus increasing the blank-holder force 

from 90 to 130 kN. The third phase is the part removal 

from tools, in which the springback or elastic recovery 

takes place (see Figure 2). 

 

 

Figure 1. Experimental tool used to perform the forming 

process [14]. 

 

 

Figure 2. Experimental geometry of the rail after being 

removed from the forming tools. Two holes are trimmed on the 

top of the rail for fixing the part during its measurement. 
 

The blank sheet (mild steel DC06) is a square with 

300.0 mm length and 1.0 mm thickness. The experimental 

tests are carried out with the rolling direction of the blank 

sheet aligned with the longitudinal direction of the rail. In 

order to try to guarantee a correct amount of lubricant and 

its uniform distribution in the blank, the lubrication 

method suggested by Santos et al. [15] was adopted. The 

amount of lubricant (Quaker 6130) is defined as 1.4 

g/m2/face. 

The evolution of both the punch and the blank-holder 

force was recorded by load cells placed under each gas 

spring and under the punch. The punch displacement is 

experimentally evaluated through a displacement 

transducer. At least five tests were performed in order to 

check the reproducibility of the experiments. Accordingly, 

a representative result is selected, for each measurement 

under analysis. At the end of the second phase of the 

forming process, two holes are punched on the top of the 

rail, as seen in Figure 2. These holes are used to obtain a 

reference position in the jig, which was defined for 

experimental measurements. The definition of the 

coordinate system used in the evaluation of the cross-

section profiles of the rail is coincident with one of the 

holes, as shown in Figure 3. For this geometry, four cross-

section profiles are defined, which are marked in Figure 3. 

Five sets of measurements are performed for each cross-

section at every 3 mm [14].  

 

   

Figure 3. Definition of the four cross-sections used to evaluate 

experimentally and numerically the final geometry of the rail. 

3 DD3IMP – static implicit FE code  

The in-house static implicit finite element code DD3IMP 

[16], which has been specifically developed to simulate 

sheet metal forming processes, is adopted in the present 

study to carry out the numerical simulations. The 

mechanical model takes into account large elastoplastic 

strains and rotations, while the evolution of the 

deformation process is described by an updated 

Lagrangian formulation. 

3.1 Variational principle  

The rate form of the equilibrium equations and boundary 

conditions can be expressed by the principle of virtual 

velocities [17] in the form: 

  (1) 

where V denotes the domain occupied by the body and S 

represents the surface on which the external forces  are 

prescribed.  denotes the virtual velocity field, L is the 

velocity gradient tensor and D is the strain rate tensor, 

which is the symmetric part of L. The Jaumann derivative 

of the Cauchy stress tensor σ is given by: 

  (2) 

where  stands for the time derivative of the Cauchy stress 

tensor and W is the total spin tensor (antisymmetric part of 

L). 

3.2 Constitutive material models 

The elastoplastic constitutive model adopted considers 

isotropic elastic behaviour and anisotropic plastic 
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behaviour. The differential form of the constitutive 

equation is given by: 

  (3) 

where  is the fourth-order tensor that defines the 

elastoplastic modulus in the current configuration, 

according to the adopted constitutive model. The 

expression for this tensor depends of the algorithms 

adopted in the integration of the constitutive model and the 

type of relation considered between the states at the 

beginning and at the end of the loading increment. Thus, it 

is possible to consider the tangent elastoplastic modulus or 

the consistent elastoplastic modulus. 

Several advanced yield criteria and work hardening 

laws (constitutive models) have been implemented in 

DD3IMP to allow a better description of the different 

material mechanical behaviour [13,18]. In each load step, 

an explicit approach is used to calculate the trial solution, 

which is adjusted using a generalization of the rmin strategy 

[19]. In order to guarantee the equilibrium of the 

deformable body, this trial configuration is successively 

corrected using an implicit method. The Newton–Raphson 

method is used to solve the nonlinear system of equations 

arising from the spatial and temporal discretization of the 

weak form. Some high performance computing techniques 

have been incorporated to take advantage of multi-core 

processors, namely OpenMP directives in the most time 

consuming branches of the code [20]. 

3.3 Frictional contact conditions  

The modelling of the blank with solid elements allows the 

accurate evaluation of the contact forces and the through-

thickness gradients (stress and strain) [21]. On the other 

hand, the forming tools are considered rigid and their outer 

surfaces are modelled by Nagata patches [22]. The friction 

between the blank and the forming tools is described by 

the classical Coulomb’s law. The frictional contact 

problem is regularized through the augmented Lagrangian 

method [23], leading to a mixed system of equations 

involving both displacements and contact forces as 

unknowns [24]. The Newton–Raphson scheme is used to 

solve, in a single iterative loop, the non-linearities 

associated with both the contact and the elastoplastic 

behaviour of the deformable body [16]. 

4 Numerical model   

In order to analyse the influence of the symmetry 

conditions on the wrinkling phenomena, two distinct finite 

element models are studied. The first one considers only 

1/4 of the blank due to geometric and material symmetry 

conditions of the forming process. On the other hand, the 

entire forming process is simulated in the second model. 

Further, in the full model, both the sheet and the rolling 

direction are rotated 1º with the Ox direction, which 

induces non-symmetrical conditions on the forming 

process.  

 

 

4.1. Material behaviour  

The mechanical behaviour of the mild steel DC06 is 

assumed elastoplastic. The elastic behaviour is considered 

isotropic and constant, which is described by Hooke’s law 

with Young’s modulus of 210 GPa and Poisson ratio of 

0.30. Regarding the plastic behaviour, the isotropic 

hardening is described by the Swift law, which is 

combined with kinematic hardening of Armstrong–

Frederick type. The yield stress defined by the Swift law 

is given by: 

  (4) 

where K, and n are the material parameters, while  

denotes the equivalent plastic strain. The kinematic part of 

the work hardening [25], i.e. the evolution of the back-

stress tensor X, is described by: 

  (5) 

where  characterizes the saturation value of X, while 

the material parameter  characterizes the rate of 

approaching the saturation. The equivalent effective stress 

is denoted by , while the deviator of the Cauchy stress 

tensor is represented by . 

The material parameters of the Swift law combined 

with kinematic hardening were identified using 

experimental results of a uniaxial tensile test as well as 

monotonic and Bauschinger simple shear tests, all of them 

performed with specimens cut along the rolling direction 

[26]. The five material parameters of the isotropic–

kinematic hardening law are listed in Table 1. The adopted 

model provides a satisfactory fit of the experimental data 

(DC06), as highlighted in the stress-strain curves presented 

in Figure 4. 

 

 

Figure 4. Comparison of the stress-strain curves predicted by 

the material model with the experimental ones for uniaxial 

tensile test, simple shear and Bauschinger simple shear after 

20% forward shearing [26].  
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Table 1. Material parameters for the isotropic–kinematic 

hardening described by Swift law (DC06). 

Y0 [MPa] K [MPa] n CX Xsat [MPa] 

122.2 435.0 0.219 1.45 116.7 

 

In order to deal with the anisotropic behaviour of the 

metal sheet, the Hill’48 yield criterion and the associated 

flow rule are adopted. Accordingly, the equivalent 

effective stress is defined by the quadratic yield function: 

 (6) 

where  stands for the components of the effective stress 

tensor in the axes of orthotropy. The six material constants 

F, G, H, L, M and N are calculated from the experimental 

r-values obtained by uniaxial tensile tests carried out at 

three different orientations with respect to the rolling 

direction. The obtained values are presented in Table 2. 

Table 2. Anisotropy parameters for the Hill’48 yield criterion 

(DC06). 

F G H L M N 

0.264 0.283 0.717 1.500 1.500 1.279 

4.2 Sheet and tools discretization  

The blank is discretized with 8-node hexahedral finite 

elements associated with a selective reduced integration 

scheme [27]. Since the prediction of wrinkling phenomena 

in sheet metal forming simulation requires a fine mesh [6], 

a regular mesh is adopted in the Oxy plane (element size 

of 1.0 mm in the central region), as shown in Figure 5. The 

discretization of the blank comprises two layers of finite 

elements through the thickness, which enable an accurate 

prediction of the forming forces and the springback [13]. 

Hence, the modelling of the full blank comprises 130,000 

finite elements, while 1/4 of the blank requires 32,500 

finite elements (see Figure 5). 

 

 

Figure 5. Discretization of the blank (1/4) using 32,500 

hexahedral finite elements (2 layers through the thickness).  

The geometry of the forming tools is modelled by 

Nagata patches [22], where the nodal normal vectors 

required for the contact surface smoothing approach are 

evaluated through the IGES file [28]. The discretization of 

the three tools involved in the numerical simulation is 

presented in Figure 6. The surface of the punch is 

described by 660 patches, the blank-holder comprises 300 

patches and the surface of the die is discretized by 805 

patches. 

 

 

Figure 6. Discretization of the forming tools using Nagata 

patches. 

4.3 Friction model  

The friction coefficient is influenced by a wide set of 

parameters, such as: (i) micro and macro geometry of 

contacting surfaces; (ii) sliding velocity; (iii) contact 

pressure and (iv) temperature. Thus, an advanced friction 

models is adopted in the present study, where the friction 

coefficient μ is function of the normal contact pressure 

[29]. The evolutional law for Coulomb’s friction 

coefficient is defined by a Hockett-Sherby law: 

  (7) 

where A, B, m and n are numerical fitting parameters, while 

P is the normal contact pressure.  

The four parameters involved in the selected friction 

model (see Table 3) were determined using the flat die test 

[30]. The steel sample is maintained between two small 

flat dies, while the holding force is accurately controlled 

by load cells. The sliding speed is constant and equal to 1.5 

m/min. The normal pressure is kept constant during the 

test. The flat dies were produced using the same steel 

selected for the forming tools and the lubrication 

conditions adopted are also the same (Quaker 6130 using 

1.4 g/m2/face) [30]. Five pressure levels are considered 

during the tests, providing five different values of friction 

coefficient, as shown in Figure 7. The pressure strongly 

influences the friction coefficient. Indeed, the friction 

coefficient is greater at low pressure than at higher 

pressure. The fitting of the measured values by the 
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advanced friction law is presented in Figure 7, showing a 

good agreement between them. 

Table 3. Parameters of the adopted friction law for DC06. 

A B m n 

0.31 0.16 0.61 0.71 

 

 

Figure 7. Evolution of the friction coefficient with the normal 

contact pressure, expressed by the adopted friction law. 

Comparison with experimental data from [30]. 

5 Results and discussion  

The comparison between numerical and experimental 

results is presented in this section, namely the punch force 

evolution and the final geometry of the rail. The 

springback of the flange and the wrinkles on the top of the 

rail are the defects evaluated in the present study. Besides, 

the two finite element models are compared both in terms 

of accuracy and computational cost. 

5.1. Forming forces  

Both the punch and the blank-holder force evolutions are 

presented in Figure 8, comparing numerical and 

experimental results. The numerical blank-holder force 

increases linearly with the punch displacement, which is 

imposed in the numerical model, according with the 

experimental evolution. The predicted punch force 

evolution is identical for both finite element models 

presented. Nevertheless, the experimental value of the 

force is slightly overestimated by the numerical 

simulation, as shown in Figure 8. In fact, the initial slope 

predicted by the numerical simulation is higher than the 

one experimentally measured. The occurrence of 

wrinkling on the top surface of the rail induces a drop in 

the numerical force evolution at approximately 20 mm of 

punch displacement, which is more pronounced in the 

model considering the full blank. 

 

 

Figure 8. Comparison between experimental and numerical 

punch force evolution in the forming of the rail (DC06). 

 

Considering the modelling of the entire blank, the total 

blank-holder force is equally divided by each flange of the 

rail. Thus, the vertical displacement of each flange of the 

blank-holder is adjusted independently in each increment, 

in order to guarantee a linear increase with the punch 

displacement. This procedure allow to obtain identical 

draw-in for each flange and, consequently, symmetry in 

the springback angle. 

5.2 Cross-section profiles  

The final geometry of the rail is evaluated through the four 

cross-section profiles defined in Figure 3, allowing to 

evaluate simultaneously the springback of the flange and 

the wrinkle on the top surface. The geometry of the rail 

after springback, predicted by the finite element simulation 

is shown in Figure 9. The numerical simulation of the 

entire blank provides an unsymmetrical wrinkle, which is 

accordance with the experimental observation (see Figure 

2).  

In order to assess the accuracy of each finite element 

model, the cross-section profiles obtained by numerical 

simulation are compared with the experimental ones. The 

comparison between experimental and numerical profiles 

in the cross-section A (x=15 mm) and B (x=95 mm) is 

presented in Figure 10 (a) and (b), respectively. Regarding 

the cross-section A, the numerical profile is in very good 

agreement with the experimental one. Besides, both 

numerical models (1/4 and full blank) provide identical 

results. Concerning the cross-section B, the numerical 

profile is in good agreement with the experimental one, 

excluding the top surface of the rail, where the two 

numerical models predict distinct geometries (see Figure 

10 (b)). In fact, the wrinkle predicted by numerical 

simulation is symmetric using 1/4 of blank (see Figure 9 

(a)), while it is unsymmetrical using the full model of the 

blank, which in accordance with the experimental result. 

Nevertheless, the geometry of the wrinkle is not perfectly 

defined, as shown in Figure 10 (b). Since the material 

adopted presents a clear anisotropic distribution of the r-

values (see Table 2), a slight rotation the rolling direction 

with the symmetric full blank provides an identical wrinkle 

shape. 

0

0.05

0.1

0.15

0.2

0.25

0 5 10 15 20 25 30 35 40

F
ri
c
ti
o
n
 c

o
e
ff

ic
ie

n
t 
(μ

)

Contact pressure [MPa]

Exp. Data

Friction model (DC06)

0

20

40

60

80

100

120

140

10 20 30 40 50 60 70

F
o
rc

e
 [
k
N

]

Punch displacement [mm]

Exp.

Simul. (1/4)

Simul. (full)

Punch

Blank-holder



MATEC Web of Conferences 

 
(a) 

 
(b) 

Figure 9. Final geometry of the rail after springback predicted 

by finite element simulation: (a) 1/4 of blank; (b) full blank 

including the four cross-sections used to evaluate the 

geometrical defects. 

 

 

 
(a) 

 
(b) 

Figure 10. Comparison between experimental and numerical 

profile of the cross-section: (a) A (x=15 mm); (b) B (x=95 mm). 

 

The springback of the rail is quantified in this study by 

the angle between the flange and the horizontal plane. The 

comparison between experimental and numerical values is 

shown in Table 4, for both cross-sections previously 

studied. Since the rail after springback is rather symmetric 

(see Figure 10), the presented values for numerical model 

with the full blank are the average of the two flanges. The 

flange springback angle is slightly overestimated by the 

numerical simulation, as shown in Table 4. The difference 

is about 0.5º in the cross-section A and 1.1º in the cross-

section B. Nevertheless, both numerical models provide 

identical results, as shown in Table 4. Thus, the prediction 

of the flange springback behaviour is not considerably 

influenced by the shape of the wrinkle arising on the top 

surface. 

Table 4. Comparison between experimental and numerical (full 

blank) springback angle of the flange. 

Cross-section Exp. [º] 1/4 model [º] Full model [º] 

A 3.9 4.39 4.40 

B 4.3 5.41 5.37 

 

The profile of the rail measured in the cross-sections 

L1 and L2 (longitudinal direction) is directly dictated by 

the wrinkle arising on the top surface. The comparison 

between experimental and numerical profiles in the cross-

section L1 (y=0 mm) and L2 (y=-30 mm) is presented in 

Figure 11 (a) and (b), respectively. Globally, the numerical 

predictions are in good agreement with the experimental 

measurements. On the other hand, the numerical shape of 

the rail is significantly influenced by the symmetry 

conditions adopted in the finite element model (1/4 

model). Indeed, considering the full model of the blank, 

the numerical results are in better agreement with the 

experimental measurements, as shown in Figure 11. 

 

 
(a) 

 
(b) 

Figure 11. Comparison between experimental and numerical 

profile of the cross-section: (a) L1 (y=0 mm); (b) L2 (y=-30 mm). 

5.3 Computational performance  

The computational performance of the proposed finite 

element models is presented in Table 5. The adoption of 

the numerical model that takes into account the full blank 

leads to a significant increase of both the computational 

time and the number of increments. In fact the 

computational cost of the numerical simulation 

considering the full blank is approximately 12 times higher 
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than using 1/4 of the blank. The same behaviour is 

observed for the number of increments, as shown in Table 

5. This increase of the computational cost is a consequence 

of the higher number of finite elements adopted and the 

numerical complexity required to control the blank-holder 

force independently in each flange. 

Table 5. Computational performance of both finite element 

models. 

 1/4 model Full model 

Nº increments 1823 4839 

Computational time [h] 30.4 384.7 

6 Conclusions 

The application of the numerical simulation in sheet metal 

forming processes has been a key factor for the fulfilment 

of the increasing requirements for time and cost efficiency, 

as well as quality improvement. This study presents the 

experimental and numerical analysis of a rail prone to 2D 

springback and wrinkling defects. The finite element 

results are compared with the experimental ones in order 

to assess the accuracy on the proposed numerical models.  

The punch force evolution and the final geometry of the 

rail, evaluated in several cross-sections, are the main 

variables under analysis. 

Two distinct finite element models are compared in 

this work, both in terms of accuracy and computational 

cost. Due to geometric and material symmetry conditions, 

only one quarter of the blank is considered in the first 

model. On the other hand, the second model takes into 

account the entire blank, which is rotated 1º relative to the 

forming tools. Both numerical models provide identical 

punch force evolutions, as well as flange springback 

angles. However, these two variable are slightly 

overestimated by the numerical simulation. Regarding the 

wrinkle arising on the top surface of the rail, its shape is 

predicted differently by each finite element model. In fact, 

considering the full model of the blank, the numerical 

results are in better agreement with the experimental 

measurements, where the wrinkle tend to be 

unsymmetrical. Nevertheless, the computational cost of 

the numerical simulation considering the full blank is 

approximately 12 times higher than using 1/4 of the blank. 
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