
Name of Scientific area: SOFTWARE ENGINEERING

USE ARDUINO AS A MODBUS SLAVE OVER RTU

Jose Domingos Senra Simoes, A65378@alunos.uminho.pt, Mechanical Eng. Student

Andre Monteiro Fernandes, A65381@alunos.uminho.pt, Mechanical Eng. Student

Eurico Augusto Rodrigues de Seabra, eseabra@dem.uminho.pt, Mechanical Eng. Professor

ABSTRACT

The purpose of this article is to accomplish various appointed objectives. The objectives of this article

include: to become acquainted with the Modbus RTU protocol, to implement the Modbus RTU

protocol onto an Arduino Uno microcontroller as a slave and to test the Arduino Uno slave using a

free Modbus master program. The Arduino Uno slave must be fully configurable where the user can

set all the Modbus communication parameters such as slave ID, parity, communication rate, number

of stop bits, etc. The user must also be able to assign values or variables to a particular coil or register

regardless of the order of the previously used coils or registers. The Arduino slave must also

communicate with the master over a RS232 connection.

KEYWORDS

Arduino, Modbus, slave, RTU, RS232, Serial Communication

1 Introduction

The Modbus RTU protocol is a widely used protocol to communicate with devices. Industrial devices

like temperature and pressure sensors, generators, printers and many others use the Modbus protocol

to send the readings or to read from a central computer or master device. Since the Arduino Uno

microcontroller is so versatile and flexible, it would be interesting to try to use it as a slave device

which would read sensor data to send over Modbus and also read data over Modbus to activate or

deactivate LEDs or actuators. This would be a great way to learn about the Modbus RTU

communication protocol as well as to test its functionality and reliability.

2 Contextualization

2.1 Modbus

Modbus is an industrial protocol that was developed in 1979 by Modicon, Incorporated, to make

communication possible between industrial automation systems and Modicon programmable controllers.

(Cyburt, n.d.) Originally implemented as an application-level protocol intended to transfer data over a serial

layer, Modbus has expanded to include implementations over serial, TCP/IP, and the user datagram protocol

(UDP). (National Instruments, 2014) Thus making it a standard communications protocol for electronic

devices. (McCrohan, 2011)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154276828?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The MODBUS protocol follows a client/server (master/slave) architecture where a client requests data from a

server. The client can also send data to the server. The client initiates a process by sending a function code that

denotes the type of operation to execute. The operation performed by the MODBUS protocol defines the

process a controller uses to request access to another device, how it will respond to requests from other devices,

and how errors will be detected and reported. The MODBUS protocol establishes a common format for the

layout and contents of message fields.

Figure 1 Master and Slave, request and response communication (National Instruments, 2014)

During communication on a MODBUS network, the protocol determines how each controller will know its

device address, how a device recognizes a message addressed to it, how the device determines the kind of

action to be taken, and how the device extracts any data or other information contained in the message.

(National Instruments, 2009) Masters can address individual slaves, or it can send a broadcast message to all

slaves where every listening slave receives the message. A slaves replies to all queries that are addressed

individually to them, but never respond to broadcast queries. (Cyburt, n.d.)

Controllers communicate using a master/slave technique where only the master can start a query or

transactions. The other devices, the slaves, respond to the master by supplying the demanded data or by

performing the action demanded in the query. Typically, the master is a human machine interface (HMI) or

Supervisory Control and Data Acquisition (SCADA) system (National Instruments, 2014) or other devices

which may include host computers(running appropriate application software)/processors and programming

panels. Typical slaves include programmable logic controller (PLC), or programmable automation controller

(PAC) (National Instruments, 2014), I/O transducer, valve, network drive, or other measuring devices. (Cyburt,

n.d.) (National Instruments, 2009)

A query from a master device consists of a slave address (or broadcast address), a function code representing

the desired action, any required data pertaining to the function and an error checking field to check for message

corruption. (Cyburt, n.d.) When the Master sends a message to the Slave, it is the function code field which

informs the server of what type of action to perform. (Real Time Automation, n.d.)

A slave's response is comprised of fields affirming the slave’s address, the function executed, any data needed

to be returned to the master in accordance with the function and an error checking field for message corruption.

In is important to note that the query and response messages are both composed of the slave’s address, a

function code, any applicable data in accordance with the function code and an error checking field. If no error

is detected, then the slave's reply contains the requested data. Otherwise, if an error occurs in the received

query, or if the slave is not able to execute the requested action, the slave will reply an exception message as

its response. The error checking field of the message frame sanctions the master to affirm that the contents of

the received message is valid and not fraudulent. Additionally, parity checking is also applied to each

transmitted character in its data frame to check for correctness. (Cyburt, n.d.)

2.1.1 Modbus Data Model

The Modbus-accessible data is kept, in general, in one of four data banks or address ranges in the slave device.

These four data banks are holding registers, input registers discrete inputs and coils. Similarly to most of the

specification, the terms may change depending on the industry or application at hand. For instance, a coils may

be mentioned as a digital or discrete output and a holding register could be denoted to as a output register. The

data banks describe the type and access rights of the data contained within. Slave devices have uninterrupted

access to the data, which is held locally on the slave devices. The accessible data is usually a subsection of the

slave device’s main memory. On the other hand, Modbus masters must request access to this data using

numerous function codes. The behavior of each block is described in Table 1. (National Instruments, 2014)

Table 1 Modbus Data Model Blocks

Memory Block Data Type Master Access Slave Access

Coils Boolean Read/Write Read/Write

Discrete Inputs Boolean Read-only Read/Write

Holding Registers Unsigned Word Read/Write Read/Write

Input Registers Unsigned Word Read-only Read/Write

The blocks have the ability to permit or restrict access to the diverse data elements and also to deliver simplified

means at the application layer to access the different data types. These blocks are totally theoretical. They can

occur as separate memory addresses in a specific system, but may also overlap each other. For instance, the

first bit of the word represented by holding register one may exist in the same location in memory as coil one.

The addressing structure is completely defined by the slave device, its interpretation of each memory block is

a significant part of the device’s data model. (National Instruments, 2014)

2.1.2 Data Model Addressing

The Modbus protocol describes each block as encompassing “an address space of as many as 65,536 (216)

elements.” Modbus describes the address of each data element ranging from 0 to 65,535. Conversely, each data

element is numbered starting at 1 to 65,536. That is to say, holding register 1 is in the holding register block at

address 0 and coil 308 is at address 307 in the coil memory block, and so on for all addresses. (National

Instruments, 2014)

The full memory block ranges allowed by the protocol do not have mandatory usage on any given device. For

instance, a slave device may not need to implement coils, discrete inputs, or input registers and in its place only

use holding registers 150 to 175 and 200 to 225. This is a perfectly acceptable situation, invalid access attempts

would otherwise be treated through exceptions codes. (National Instruments, 2014)

Table 2 Modbus Register Map (Cyburt, n.d.)

Reference Description

0xxxx Read/Write Discrete Outputs or Coils. A 0x reference

address is used to drive output data to a digital output

channel.

1xxxx Read Discrete Inputs. The ON/OFF status of a 1x reference

address is controlled by the corresponding digital input

channel.

3xxxx Read Input Registers. A 3x reference register contains a 16-

bit number received from an external source—e.g. an analog

signal.

4xxxx Read/Write Output or Holding Registers. A 4x register is

used to store 16-bits of numerical data (binary or decimal),

or to send the data from the CPU to an output channel.

 The "x" following the leading or prefix character represents a four-digit address located in the user data

memory. The leading or prefix character is usually implied by the function code sent in the message and is

therefore omitted from the address specifier for a given function. The leading prefix character also identifies

the I/O data type implied by the function. (Cyburt, n.d.)

2.1.3 Serial Transmission Modes

The two serial transmission modes accepted by the Modbus protocol are ASCII and RTU Mode. When

controllers are structured to communicate on a Modbus network using ASCII (American Standard Code for

Information Interchange) mode, every 8–bit byte in a message is sent as two ASCII characters. The main

benefit of this mode is that it permits time intervals of up to one second to take place between characters without

triggering any error codes. (Modicon, 1996)

When controllers are programmed to communicate on a Modbus network using RTU (Remote Terminal Unit)

mode, every 8–bit byte in a message holds two 4–bit hexadecimal characters. The key benefit of this mode is

that its greater character density allows for better data throughput than in ASCII mode for the same baud rate.

Although, every message must be transferred in an uninterrupted stream of data. (Modicon, 1996)

Table 3 Serial transmission modes ASCII vs RTU (Real Time Automation, n.d.)

 Modbus/ASCII Modbus/RTU

Characters ASCII 0…9 and A..F Binary 0…255

Error check LRC Longitudinal Redundancy Check CRC Cyclic Redundancy Check

Frame start character ‘:‘ 3.5 chars silence

Frame end characters CR/LF 3.5 chars silence

Gaps in message 1 sec 1.5 times char length

Start bit 1 1

Data bits 7 8

Parity even/odd none even/odd none

Stop bits 1 2 1 2

In RTU mode, messages start with a silent interval of at least 3.5 character times. This is easily implemented

as a function of the communication baud rate that is used on the network. The first field sent in the packet is

the device address. The packet must have all fields transmitted in hexadecimal, 0–9 and A–F. Network devices

supervise the network bus uninterruptedly, which includes during the ‘silent’ breaks. Following the last

transmitted character of a message, a similar break of at least 3.5 character times marks the conclusion of the

message. A new message can then initiate after this wait time. The whole message frame must be transferred

as an continuous stream of data. If a quiet break of more than 1.5 character times arises before the frame

transmission ends, the receiving device flushes the incomplete message received and assumes that the

following byte received will be the address field of a new message. Likewise, if a new message initiates prior

to the termination of the 3.5 character times following the previous message, the receiving device will consider

it as a continuation of the preceding message. This event will originate an error, as the value in the final CRC

field will not be effective for the concatenated messages. (Modicon, 1996)

A typical message frame is shown below.

START ADDRESS Function DATA CRC

CHECK

END

3.5 char

times

8 BITS 8 BITS N x 8 BITS 16 BITS 3.5 char

times

In the Modbus protocol, it is directly stated that “The quantity of registers to be read, combined with all the

other fields in the expected response, must not exceed the allowable length of a Modbus messages of 256

bytes." (Courvelle, 2002)

2.1.4 Address Field Handling

The address field of a message frame contains two characters (ASCII) or eight bits (RTU). Valid slave device

addresses are between 0 – 247 (decimal). The individual slave devices are assigned addresses between 1 and

247. A master addresses a slave by placing the slave address in the address field of the message. When the

slave replies to the query, it places its own address in this address field of the response to let the master know

which slave is responding. Address 0 is used as a broadcast address, which all slave devices recognize but do

not respond to. (Cyburt, n.d.)

2.1.5 Function Field Handling

The function code is the second field of a message frame; it contains two characters (ASCII) or eight bits

(RTU) of data. Valid function codes range between 1 and 255 (decimal). Of these, some codes are applicable

to all Modicon controllers, while some codes apply only to certain models, and others are reserved for future

use. When a message is sent from a master to a slave device the function code field tells the slave what kind

of action to perform. (Cyburt, n.d.) The most used function codes and the most relevant for this project are

listed in Table 4.

When the slave responds to the master, it uses the function code field to indicate either a normal response or

that some kind of error occurred called an exception response. For a normal response, the slave simply echoes

the original function code sent by the master. For an exception response, the slave returns a code that is

equivalent to the original function code with its most–significant bit set to a logic 1. In addition to its

modification of the function code for an exception response, the slave places a unique code into the data field

of the response message. This tells the master what kind of error occurred, or the reason for the exception. The

master device’s application program has the responsibility of handling exception responses. (Cyburt, n.d.)

Table 4 Function codes and description (Cyburt, n.d.)

01 Read Coil Status Reads the ON/OFF status of discrete outputs (0X references, coils) in the

slave. Broadcast is not supported.

02 Read Input Status Reads the ON/OFF status of discrete inputs (1X references) in the slave.

Broadcast is not supported.

03 Read Holding

Registers

Reads the binary contents of holding registers (4X references) in the slave.

Broadcast is not supported

04 Read Input Registers Reads the binary contents of input registers (3X references) in the slave.

Broadcast is not supported

05 Force Single Coil Forces a single coil (0X reference) to either ON or OFF. When broadcast, the

function forces the same coil reference in all attached slaves

06 Preset Single Register Presets a value into a single holding register (4X reference). When broadcast,

the function presets the same register reference in all attached slaves.

15 Force Multiple Coils Forces each coil (0X reference) in a sequence of coils to either ON or OFF.

When broadcast, the function forces the same coil references in all attached

slaves

16 Preset Multiple

Registers

Presets values into a sequence of holding registers (4X references). When

broadcast, the function presets the same register references in all attached

slaves

2.1.6 Data Field is Handling

All data addresses in Modbus messages are referenced to zero. The first available data item is addressed as

item zero. For example, a coil known as coil 0001 in a programmable controller, is addressed as coil 0000 in

the data address field of a Modbus message. (Cyburt, n.d.)

The data field is constructed using sets of two hexadecimal digits (ASCII) or using data bytes (RTU) according

to the network’s serial transmission mode. The data field of the message sent from a master to slave devices

holds additional information that the slave must use to be able to carry out the assigned function code. This

information can consist of items like coil and register addresses, the quantity of items to be handled, and the

count of all the data bytes in the field. For example, if the master requests a slave to read a group of holding

registers (function code 03), the data field specifies the starting register and how many registers are to be read.

(Cyburt, n.d.)

2.1.7 CRC and Parity Field Handling

The Modbus protocol utilizes two techniques for error checking: parity checking of the data character frame

(even, odd, or no parity), and frame checking within the message frame (Cyclical Redundancy Check in RTU

Mode, or Longitudinal Redundancy Check in ASCII Mode). (Cyburt, n.d.)

For parity checking, a Modbus slave can be configured for even parity, odd parity or for no parity checking.

This setting regulates how the parity bit of the data frame is established. If even or odd parity checking is

chosen, the number of “1” bits in the data portion of each character frame is counted. Each character in RTU

mode contains 8 bits. The parity bit will then be written as a 0 or a 1, to result in an even (even parity), or odd

(odd parity) total number of “1” bits in each message. (Cyburt, n.d.)

The CRC error checking field of a message frame is composed of a 16-bit value (two 8-bit bytes) that contain

the product of a Cyclical Redundancy Check (CRC) calculation which was performed on the message contents.

The CRC value is computed by the transmitting device and is concatenated to the message as the last item, the

low order byte is appended first, followed by the high-order byte. Therefore, the CRC high-order byte is the

last byte to be transmitted from the message. The receiving device computes a new CRC value during the

reception of the message and tries to match the calculated value to the one received in the CRC field of the

message. If the two values differ from one another, an error will generated to notify about the inaccuracy.

(Cyburt, n.d.)

If an error does not occur, the data field of the answer from the slave to the master encompasses the data

requested by the master. If an error is present, the data field contains an exception code that the master device

or application can use to conclude the next action to be taken. (Cyburt, n.d.) The Modbus exception codes

available are listed in Table 5

Table 5 Modbus Exception Codes (Cyburt, n.d.)

Code Exception Description

01 Illegal Function The function code received in the query is not allowed or invalid.

02 Illegal Data

Address

The data address received in the query is not an allowable address

for the slave or is invalid.

03 Illegal Data Value A value contained in the query data field is not an allowable value

for the slave or is invalid.

04 Slave Device

Failure

An unrecoverable error occurred while the slave was attempting

to perform the requested action.

05 Acknowledge The slave has accepted the request and is processing it, but a long

duration of time is required to do so. This response is returned to

prevent a timeout error from occurring in the master.

06 Slave Device Busy The slave is engaged in processing a long-duration program

command. The master should retransmit the message later when

the slave is free.

07 Negative

Acknowledge

The slave cannot perform the program function received in the

query. This code is returned for an unsuccessful programming

request using function code 13 or 14 (codes not supported by this

model). The master should request diagnostic information from

the slave.

08 Memory Parity

Error

The slave attempted to read extended memory, but detected a

parity error in memory. The master can retry the request, but

service may be required at the slave device.

2.1.8 Electrical and Mechanical Interfaces

The electrical interface is what connects the master to all the slaves. There are two most common ways of

doing this which is by using the RS 232 or the RS 485 interface. The RS 232 interface is mainly a peer to

peer interface which means that it connects the master to just one slave (MODBUS.ORG, 2012), but it is

capable of connecting up to 10 slaves to the master. It uses full duplex communication which means that the

Rx and the TX packets flow through separate lines. The slaves should not be places further than 15 m. (50

ft.), otherwise the signal could become too weak to be read by the slaves. The RS 232 interface is also very

vulnerable in noisy environments, the signal is considered low between 3-15 v. and high between -3-(-15) v.

The RS 232 interface consists of typically 3 wire which are the Rx, TX and the GND wires. (Real Time

Automation, n.d.)

The RS 485 interface is a multi-drop connection, meaning that it connects to many devices, in this case up to

32 slaves. It uses half duplex communication, so it can only send or receive information at a time. After the

master sends the packet, it must switch the drivers so that it can start listening to the slave’s response. The

interface has high noise immunity and the connection can span up to 350 m. (1000 ft.). The RS485 interface is

a 2 wire where one is the RX/TX line and the other is the GND line. (Real Time Automation, n.d.)

(MODBUS.ORG, 2012)

The two most common connectors found on devices for these interfaces are the DB-9 connector and normal

pin out connectors for manual wiring connections. Although the RJ45 connector could also be used as a serial

connector, it is mainly used as a network connector for Modbus TCP (National Instruments, 2013)

2.2 Arduino

2.2.1 Connections

The microcontroller used for this project was an Arduino UNO. The Uno is a microcontroller board based on

the ATmega328P. It has 14 digital input/output pins and 6 of these can be used as PWM outputs, 6 analog

inputs, a 16 MHz quartz crystal, a USB connection, a power jack, an ICSP header and a reset button. It contains

everything needed to support the microcontroller.

“The Uno can be programmed with the Arduino Software (IDE). The Uno board can be powered via the USB

connection or with an external power supply. The power source is selected automatically. Each of the 14 digital

pins on the Uno can be used as an input or output, using pinMode(), digitalWrite() and digitalRead() functions

in the Arduino IDE. The pins operate at 5 volts and each pin can provide or receive 20 mA as recommended

operating condition and has an internal pull-up resistor (disconnected by default) of 20-50k ohm. A maximum

of 40mA is the value that must not be exceeded on any I/O pin to avoid permanent damage to the

microcontroller.” (Arduino, n.d.)

Some pins on the Arduino have specialized functions digital pins 0 and 1 are used for RX and TX serial

communication respectfully. They are used to receive (RX) and transmit (TX) TTL serial data. These pins are

connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip. Pins 2 and 3 are external

interrupts, these pins can be setup to trigger an interrupt in the code when the value becomes low, high or when

it starts to rise or fall or even when the value changes using the attachInterrupt() function. This function comes

in very handy when connecting optoelectric sensors to the Arduino to count a motor’s RPM. Pins 3, 5, 6, 9, 10,

and 11have PWM (Pulse Width Modulation) functionality which provide 8-bit PWM output with the

analogWrite() function. (Arduino, n.d.)

The Uno has 6 analog inputs, labeled A0 through A5, each of which provide 10 bits of resolution or 1024

different values. By default, the analog pins measure from ground to 5 volts, though is it possible to change the

upper end of their range using the AREF pin and the analogReference() function. The AREF pin allows the

user to change the reference voltage for the analog inputs. (Arduino, n.d.)

2.2.2 Communication

“The Uno has a number of facilities for communicating with a computer, another Uno board, or other

microcontrollers. The ATmega328 provides UART TTL (5V) serial communication, which is available on

digital pins 0 (RX) and 1 (TX). An ATmega16U2 on the board channels this serial communication over USB

and appears as a virtual com port to software on the computer. The 16U2 firmware uses the standard USB

COM drivers, and no external driver is needed. However, on Windows, a .inf file is required. The Arduino

Software (IDE) includes a serial monitor which allows simple textual data to be sent to and from the board.

The RX and TX LEDs on the board will flash when data is being transmitted via the USB-to-serial chip and

USB connection to the computer (but not for serial communication on pins 0 and 1).” (Arduino, n.d.)

The Arduino environment can be extended through the use of libraries, just like most programming platforms.

Libraries provide extra functionality for use in sketches, e.g. working with hardware or manipulating data. A

number of libraries come installed with the IDE, but the user can also download or create their own. (Arduino,

n.d.) There many Arduino libraries out there that can help and simplify an Arduino sketch. (electronhacks,

2014)

3 Project Development

For this project the Arduino had to be programmed, the physical connections had to be made to the computer’s

serial connection and the Arduino slave had to be tested using a Modbus master program.

3.1 Programming

When programing the Arduino Uno to function as a Modbus RTU slave, various libraries were found that

allowed for a faster implementation of the protocol to the Arduino microcontroller and seamless connection to

other code being executed by the microcontroller that will furnish the values to the coils and registers. Some

of the encountered libraries include:

 Simple Modbus (Bester, 2012)

 Simple Modbus Slave (Andreapiovesan, 2014)

 Arduino Modbus RTU Slave Library (GNU Operating System, 2012)

 Modbusino (Stephane, 2012)

 Modbus Master/Slave for Arduino (Smarmengol, 2016)

 Modbus Library for Arduino (Sarmento, 2015)

The library chosen to use is the Arduino Modbus RTU Slave Library. This library was chosen due to the

availability of its very well documented information and example Arduino sketches. (electronhacks, 2014) The

other libraries were not ideal for various reasons, of which most importantly, most did not support all the

necessary Modbus functions (1,2,3,4,5,6,15 and 16) required by the objectives. Most libraries also assign each

variable value in the Arduino sketch a register or coil and the numbering is done automatically in the order that

the variables appear in the sketch. With these libraries it would not be possible to skip a coil or register and not

assign it a value. The Arduino Modbus RTU library does support all the Modbus function delimited in the

objectives and allows the user to manually assign a variable value to any register or coil and allows for registers

and coils to be skipped and not used.

When programming with the library in the Arduino IDE, all the coil and register addresses used in the program

must be declared at the top of the sketch using the regBank.add(address) command follower by the address

with the correct data prefix (0,1,3 or 4). After which the user can set the initial coil and register values to

whichever desired initial value using the command regBank.set (address, initial value). If the initial values are

not important to the user, then this part can be left blank where the program will automatically assign a zero to

any register or coil where the initial value has not been set.

In the Arduino IDE, the registers and coil values can be retrieved using the command regBank.get(address).

The addresses can also be written to using the same command as the initial value command,

regBank.set(address, value). These commands can be used directly with variable in the Arduino code. In fact,

the register and coil addresses should be viewed as regular variables where they are present in the slave’s

memory and can be regularly read and written to.

When implementing the Modbus RTU library protocol in an Arduino sketch the user must make sure that the

Arduino cycles through the sketch in less time than the timeout response time from the Modbus master. When

the master sends a query to the slave, it expects to receive a response from the slave within a certain timeframe

otherwise it assumes that the query was not delivered and conveys an error message. If the Arduino slave is

executing the sketch for too long, the slave cannot see that there is a query from the master in the buffer and

will not respond in time. For this not to happen, the user is adviser to not use delays or create loops in the code

where the execution could get interrupted. For more complex programs, multitasking might be necessary to

allow various processes to run at the same time by multiplexing. (Earl, Multitasking the Arduino Part 1, 2015)

(Earl, Multitasking the Arduino Part 2, 2015)

3.2 Connections

For the Modbus master (computer) to communicate with the Arduino slave, it will need a communication cable.

This communication cable will need to be a USB to RS232 serial cable like the one pictured in Figure 2. This

USB to Serial Port Adapter provides a bi-directional bridge between USB bus and RS-232 serial port peripheral

device. The user must note that when using this type of cable for the first time a driver must be installed,

otherwise data will not flow through it. (BotnRoll, n.d.)

Figure 2 USB to Serial cable (BotnRoll, n.d.)

To connect the Arduino slave to the serial cable, an adapter must exist that transforms the TTL (Transistor-

Transistor Logic) signal from the RX and TX pins of the Arduino to an RS232 serial signal with a DB9 female

connector. The converter in Figure 3 was the one chosen to be implemented. The converter contains 4 pins to

be connected to the Arduino slave device. The VCC and the GND pins should be connected to the +5v and the

GND pins on the Arduino slave respectfully. The RX and TX pins should be connected to the RX and TX pins

on the Arduino board which are digital pins 0 and 1 respectfully. (BotnRoll, n.d.)

The Arduino Uno only has one set of RX and TX pins. When programming the Arduino from the Arduino IDE

the Rx pin has to be removed from the TTL to RS232 serial converter, otherwise the Arduino will cause an

error since it would be receiving two signals over the same pin thus conflicting with the board programming.

A way around this would be to programmatically assign two other pins to be secondary RX and TX pins used

for the Modbus communication (Dewey-Hagborg, n.d.)

Figure 3 RS232 to TTL converter (and vise-versa) (BotnRoll, n.d.)

Other components that were connected to the Arduino slave device include potentiometers, switches, LEDs

and an LCD display. These components were used to represent other components and simulate their signal

output (potentiometers and switches) to be interpreted by the Arduino slave. The LCD display showed values

programmed into the Arduino sketch and the LEDs would indicate when a potentiometer went over a certain

threshold. All these components would be reading and writing to the coil and register addresses. (Arduino,

n.d.)

3.3 Testing

To test the Arduino as a Modbus RTU slave, a master device had to be acquired. For this case two very useful

Modbus RTU master freeware programs were used. The two programs used are the QModMaster and the

Modbus PLC Simulator.

According to Elbar, “QModMaster is a free Qt-based implementation of a Modbus master application. A

graphical user interface allows easy communication with Modbus RTU and TCP slaves.” QModMaster

includes a bus monitor and a bus log for monitoring and examining all traffic flow on the bus. (elbar, 2016)

Modbus PLC Simulator started one weekend as a test program while developing a SCADA/HMI with Modbus

RTU and TCP/IP and afterward came in useful testing an embedded gnu-Linux device too. (Zaphodikus, 2009)

Although the Modbus PLC Simulator was a great program to verify the obtained results, it did not have a useful

graphical user interface like QModMaster. QModMaster allowed the user to view the bus monitor which shows

all the data sent and received over the serial pot. Another major advantage was that it allowed the user to specify

what data types the dada was in, i.e. Boolean, integer, etc.

4 Conclusions

Using QModMaster, a Modbus master simulator program, communication to and from the Arduino slave was

successful. All functions (1,2,3,4,5,15 & 16) were tested and verified on all data types (coils, holding registers,

etc.). Initially, the QModMaster program indicated that only about 60% of the sent data packets were getting

responses. But after working around the delay function in the Arduino IDE, the program cycle time was cut

dramatically to below the Modbus master’s timeout time which boosted the received number of packets to

100%, making this a very reliable communication protocol.

It is very easy to see why the Modbus protocol is the most frequently used and most implemented protocol in

the industry. Because it is so widely used in almost every industrial setting, it has a plethora of useful

information available on a public scale. The Modbus protocol might not be the best protocol available today

as far as information goes, but it is a very cheap and easily adaptive protocol that can fit any project and uses

a minimal amount of wiring to communicate between master and slave.

It was a very gratifying and rewarding experience to be able to communicate to a “homemade” Modbus slave

device over the Modbus protocol and have information flow in both directions. This idea could be expanded

to control everyday appliances at home, a home security system or even the backyard sprinklers or a

greenhouse. For better integration, the user should also create the Modbus master device in a way to allow it

to autonomously control all the slaves connected to it.

5 References

Andreapiovesan. (2014, 01 20). Arduino modbus master/slave communication. (Automation Corner)

Retrieved from https://automationcorner.wordpress.com/2014/01/20/arduino-modbus-masterslave-

communication/

Arduino. (n.d.). Arduino - ArduinoBoardUno. (Arduino) Retrieved from

https://www.arduino.cc/en/main/arduinoBoardUno

Arduino. (n.d.). Interfacing with Hardware. (Arduino) Retrieved from

http://playground.arduino.cc/Main/InterfacingWithHardware

Arduino. (n.d.). Libraries. (Arduino) Retrieved from https://www.arduino.cc/en/Reference/Libraries

Bester, J. (2012, 05 02). simple-modbus. (Google Code Archive - Long-term storage for Google Code Project

Hosting.) Retrieved from https://code.google.com/archive/p/simple-modbus/

BotnRoll. (n.d.). RS232-TTL Converter . (BotnRoll) Retrieved from http://www.botnroll.com/en/rs232-e-

rs485/596-rs232-ttl-converter.html?search_query=rs+232&results=9

BotnRoll. (n.d.). USB To RS232 Serial Port Adapter. (BotnRoll) Retrieved from

http://www.botnroll.com/en/rs232-e-rs485/834-usb-to-rs232-serial-port-

adapter.html?search_query=rs+232&results=9

Courvelle, M. (2002, 11 10). Maximum Amount of Holding Registers per request. (Control.com) Retrieved

from http://control.com/thread/1026161502#1026161502

Cyburt, B. (n.d.). Introduction to Modbus. (Acromag, Inc) Retrieved from

http://www.automation.com/library/articles-white-papers/fieldbus-serial-bus-io-

networks/introduction-to-modbus

Dewey-Hagborg, H. (n.d.). RS232. (Arduino) Retrieved from

https://www.arduino.cc/en/Tutorial/ArduinoSoftwareRS232

Earl, B. (2015, 10 13). Multitasking the Arduino Part 1. Retrieved from https://cdn-

learn.adafruit.com/downloads/pdf/multi-tasking-the-arduino-part-1.pdf

Earl, B. (2015, 01 09). Multitasking the Arduino Part 2. Retrieved from https://cdn-

learn.adafruit.com/downloads/pdf/multi-tasking-the-arduino-part-2.pdf

elbar. (2016). QModMaster. Sourceforge. Retrieved from

https://sourceforge.net/projects/qmodmaster/files/?source=navbar

electronhacks. (2014). Arduino Modbus PLC / RTU. Electron Hacks. Retrieved from

http://www.electronhacks.com/2014/04/arduino-modbus-plc-rtu/

GNU Operating System. (2012, 05 05). arduino-modbus-slave. (Google Code Archive - Long-term storage

for Google Code Project Hosting.) Retrieved from https://code.google.com/archive/p/arduino-

modbus-slave/

McCrohan, J. (2011). Arduino Modbus RTU ADC. Dublin, Ireland: dereenigne.org. Retrieved from

http://dereenigne.org/arduino/arduino-modbus-rtu-adc

MODBUS.ORG. (2012). Modbus over Serial Line Specification & Implementation guide. MODBUS.ORG.

Modicon. (1996, June). Modbus Protocol Reference Guide. North Andover, Massachusetts. Retrieved from

http://modbus.org/docs/PI_MBUS_300.pdf

National Instruments. (2009). Introduction to MODBUS. National Instruments. Retrieved from

http://www.micronor.com/products/files/AN112/AN112_NIModbusTutorial.pdf

National Instruments. (2013). Serial Quick Reference Guide. National Instruments. Retrieved from

http://www.ni.com/pdf/manuals/371253e.pdf

National Instruments. (2014, 08 01). The Modbus Protocol In-Depth - National Instruments. (National

Instruments) Retrieved from http://www.ni.com/white-paper/52134/en/

Real Time Automation. (n.d.). Modbus RTU Protocol Overview. (Real Time Automation) Retrieved from

http://www.rtaautomation.com/technologies/modbus-rtu/

Sarmento, A. (2015, 11 11). Modbus Library for Arduino. (GitHub) Retrieved from

https://github.com/andresarmento/modbus-arduino

Smarmengol. (2016, 02 27). Modbus-Master-Slave-for-Arduino. (GitHub) Retrieved from

https://github.com/smarmengol/Modbus-Master-Slave-for-Arduino

Stephane. (2012, 12 11). Modbusino. (GitHub) Retrieved from https://github.com/stephane/modbusino

Zaphodikus. (2009). Modbus PLC Simulator. East London, South Africa. Retrieved from

http://www.plcsimulator.org/Home

