
1 INTRODUCTION 

Single screw extrusion is a major processing tech-
nology in the plastics industry. It is also an important 
unit operation of other key polymer processing tech-
niques such as injection molding and blow molding. 
The process consists in converting solid pellets at the 
inlet into a homogeneous melt that is forced at the 
highest possible rate through a shaping die, yielding 
an extrudate with the required cross-section. In daily 
practice, process designers and engineers must define 
the best screw profile and/or the most adequate set 
of operating conditions for a given product/polymer 
system. This is a challenging task due to two major 
reasons. First, the thermomechanical environment 
developing inside an extruder is complex, including 
non-isothermal flow of solids, melting, mixing (both 
distributive and dispersive) and non-isothermal melt 
flow in the screw and die channels. Secondly, the 
performance of the system is described by a number 
of objectives (mass throughput, degree of mixing, 
melt temperature at the die exit, etc.) that must be 
satisfied simultaneously, albeit some of them being 
conflicting (e.g., mass throughput and mechanical 
energy consumption). 

Trial-and-error procedures for defining the screw 
profile and the operating conditions to yield the best 
performance are still commonly used in practice. Au-
tomatization of this process can be achieved through 

optimization methodologies (Covas et al. 1999; Po-
tente and Zelleröhr 1996). Such an approach entails 
coupling an optimization algorithm with a process 
modelling routine that computes the performance ob-
jectives for a given set of operating conditions and/or 
system geometry.  

Approaching the optimization of screw extrusion 
from a multiobjective optimization perspective gives 
rise to a set of optimal solutions known as Pareto set. 
In order to come up with a unique solution, the Deci-
sion Maker (DM) must express his/her preferences at 
some point of the optimization. These preferences 
can be articulated before, after or during the run of 
the optimization algorithm.  

In this work, multiobjective optimization of screw 
extrusion is addressed with MOEA and incorporating 
two decision making support methods. The first is 
based on the relative importance of the objectives, 
which is relatively straightforward. The second is 
concerned with the ability of the solutions to tolerate 
small perturbations in the design variables, an issue 
that is particularly relevant to extrusion. 

2 POLYMER EXTRUSION 

In order to achieve the ultimate goal of forcing a melt 
at high rate through a shaping die, the extruder must 
efficiently fulfill a number of tasks including being 
able to receive raw materials in different physical 
forms and convey them forward, melting the material 
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in a relatively short screw length, ensuring sufficient 
dispersive and distributive mixing, generating the 
pressure required for the melt to flow through the die 
at the desired output, etc. 

Most extruders consist of an Archimedes-type 
screw, with diameter D, rotating inside a hollow bar-
rel with length L. A lateral opening in the barrel al-
lows the inlet of material through the hopper, while 
the shaping die is coupled to the opposite end. Both 
barrel and die contain heater bands. Often, the screw 
has three geometrically distinct sections with lengths 
L1, L2 and L3, respectively. The feed section up-
stream has constant channel depth ( ). The channel 
depth of the next section compression) decreases lin-
early (between  and ). The metering section 
downstream has a shallower channel (constant 
depth ). The screw helix is defined by its pitch ( ) 
and flight thickness ( ). The operating conditions set 
by the operator include screw rotation speed (N) and 
barrel/die temperature profile ( ). The relevant ma-
terial data include physical (friction coefficients, sol-
ids and melt density, etc.), thermal (heat conduction 
coefficients, melting temperature, heat capacity, etc.) 
and rheological properties (non-Newtonian viscosi-
ty). 

As the solid material progresses from the hopper 
until it emerges from the die, it experiences a se-
quence of distinct thermomechanical environments:1) 
gravity flow of particles in the; 2) friction dragging of 
the particles along the screw together with conduc-
tion heating from the barrel; 3) melting of a thin layer 
of material near to the inner barrel wall; 4) progres-
sive melting of the remaining material, following a 
mechanism involving segregation of the melt and 
surviving solids; 5) viscous dragging of the molten 
material with pressure generation; 6) pressure flow 
through the die (Rauwendaal 1986). Each of these 
steps can be treated mathematically by constitutive 
equations relating to mass, momentum and energy 
conservation, together with a rheological law, cou-
pled to the relevant boundary conditions. A global 
process description is obtained by linking adjacent 
steps with appropriate boundary conditions. Then, 
for a given set of inputs, the model predicts mass 
output, , average melt temperature at die exit, 

, mechanical power consumption, , 
length of screw required to melt the polymer, , 
degree of distributive mixing (in terms of the average 
deformation induced, ), etc. Details of the 
modeling routine and of its experimental validation 
can be found elsewhere (Gaspar-Cunha 2000). 

Process optimization will be discussed using the 
case studies presented in Table 1 (polymer properties 
and die geometry will remain constant). As indicated, 
optimization concerns finding the best operating 
condition and/or the best screw geometry. For each 
case study, the table indicates the decision variables 
(process parameters) and the objectives (process re-
sponses) taken in. The aim is to maximize mass out-

put,  kg/hr and the degree of mixing, 
, whilst minimizing the length of 

screw required for melting,  m, 
melt temperature at die exit,   
and the mechanical power consumption, 

 W. The range of variation of the 
decision variables is given in Table 2. 

  
Table 1 Optimization case studies. 
Case Decision Variable Objectives 

Operating  conditions 
1             

 

2 
 

3       
 

4 
 

5             All  
Screw geometry 

6               
7 

       

8             All   
Both  

9       
 

10        

11       All  
 

Table 2 Decision variables: operating conditions and screw 
geometry. 
 Variable Range Units 

Operating  
conditions 

 [10, 60] rpm 
 [150, 210] °C 
 [150, 210] °C 
 [150, 210] °C 

Screw  
geometry 

 [100, 400] mm 
 [170, 400] mm 
 [5, 8] mm 
 [2, 5] mm 
 [30, 42] mm 
 [3, 4] mm 

3 MULTIOBJECTIVE OPTIMIZATION 
 

To search Pareto optimal solutions, the present 
study relies on the Non-dominated Sorting Genetic 
Algorithm (NSGA–II), which is a well-established 
state-of-the-art MOEA (see Deb et al. (2002)). Mod-
ifications were necessary to the calculation of the fit-
ness values. During the search, population members 
are sorted according to these values. 

3.1 Relative importance of objectives 
This preference information is expressed by defin-

ing the weight vector whose components sum up to 
1, with each component   expressing how the -th 
objective is important to the DM. The solution that 
best meets the DM preferences is determined by the 



Weighted Stress Function Method (WSFM) (Ferreira 
et al. 2007). The weighted stress function can be de-
fined as: 
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WSFM can be used for both minimization and 
maximization problems, though Equation (1) assumes 
maximization of the objectives. All objectives must 
be normalized, so that their values are in the range 

 and all components of the ideal objective vec-
tor are equal to . Given the weight vector 

 specifying the relative importance 
of the objectives and the set of solutions 

, the solution that best meets the 
preferences can be found by solving: 

 

 
(6) 

 

 

Thus, the fitness of the -th population member 
can be formulated as: 

 

 
(7) 

where  is the rank based on the Pareto dom-
inance. Smaller fitness values are preferred. 

3.2 Robustness of solutions 
The robustness issue is addressed by the following 
steps (Gaspar-Cunha et al. 2014): 

(i) Calculation of a variance-based measure of the 
-th individual with respect to the -th objectives, 

: 
 

 

(8) 

where  is the number of neighbors, , whose dis-
tance in the decision space, , in not greater than 

. This distance can be calculated as: 
 

 

(9) 

Since multiple objectives are considered, the ro-
bustness measures of individual objectives are com-
bined: 

 

 

(10) 

(ii) Calculation of the distance metric for diversity 
preservation: 

 

 

(31) 

where  is a sharing function that takes into 
account the distance in the objective space, , be-
tween the -th population member and all its neigh-
bors, . This sharing function it can be calculated as: 
 

 

(12) 

where  is a constant to be determined experi-
mentally. 

(iii) Calculation of the global fitness value of the -
th population individual, : 

 

 
(43) 

where  is the rank based on the Pareto domi-
nance relation and  is the dispersion parameter that  
determines the degree to which robustness influences 
global fitness (Gaspar-Cunha et al. 2014). Smaller 
fitness values correspond to a better performance. 



4 RESULTS AND DISCUSSION 

4.1 DM based on importance of objectives 
To examine the influence of the relative importance 
of the objectives on the optimization results, various 
combinations of weights were considered, namely 

 For 
three representative combinations of weights, Figures 
1-3 display the results considering output and power 
consumption as objectives. 
As expected, Figure 1 (constant screw geometry) 
shows that, for a fixed weight vector, solutions con-
verge to a specific Pareto optimal region whose loca-
tion depends on the settings of For 

, the focus of the search is mainly on max-
imizing the output, whereas for  this criteri-
on is somewhat neglected and NSGA-II aims mostly 
at finding solutions that minimize power consump-
tion.  

As shown in Figure 2 (constant operating condi-
tions), NSGA–II fails to identify solutions along a 
Pareto front. Instead, they converge to the same re-
gion. This suggests that it is difficult to control out-
put and power only by means of screw geometry. In 
4fact, these objectives are not only conflicting, but 
mostly dependent on screw speed and barrel temper-
ature. 

Figure 3 concerns the simultaneous optimization 
of all variables to obtain the most adequate screw 
geometry and operating set point. NSGA-II is able to 
locate distinct Pareto optimal regions for  and 

, depending on the relative importance at-
tributed to each objective. Higher Q and lower Pow-
er are obtained when comparing with the results for 
the preceding case studies (approximately 50% and 
10%, with respect to Figure 1, 20% and 90%, re-
spectively, in relation to Figure 2). This is consistent 
with expectations, as handling more parameters of-
fers more control over the process.  

Although not shown here, similar trends were ob-
served for the remaining case studies.  
 

4.2 DM based on robustness of solutions 
This section focuses the robustness of solutions ra-
ther than their relative importance. This is crucial 
when defining the operating conditions for extrusion, 
since in industrial practice the control system of a 
typical extruder cannot avoid small fluctuations of 
the barrel temperatures during operation. These af-
fect the underlying thermal phenomena, namely con-
ducted and dissipated heat, which in turn may induce 
output instabilities such as surging. 

In the following, the influence of the dispersion pa-
rameter, ε, in equation 13 is investigated. Figure 4 
shows the solutions generated by NSGA-II for case 
study 3. The various plots correspond to different ε 
values. As ε increases, the solutions become better 

distributed along the Pareto optimal region. These 
results evidence response patterns that are useful to 
the process engineer. Mass output of robust solutions 
does not exceed 9 kg/hr, but most robust solutions 
are located in regions with high Q. In turn, this cor-
responds to power consumption. In such circum-
stances, the requirements in terms of robustness can 

Figure 1 Case studies involving operating conditions. 

Figure 2 Case studies involving screw geometry. 

Figure 3 Case studies involving both operating condi-
tions and screw geometry. 

 



be reduced, which can be readily achieved increasing 
ε. In principle, a higher grained resolution of a wider 
region of the Pareto front is accessed. Therefore, ε 
controls the extent of solutions depending on the de-
gree of robustness. This can be particularly useful 
when the DM preferences are incomplete or lack 
precise, which is often the case. 

It should be noted that the location of the Pareto 
front remained unchanged when comparing results 
obtained in the present and previous sections. What 
changed was the focus of the search, which was de-

termined either by the importance of the objectives or 
the robustness of the solutions. 

 

4.3 Best solutions 
Considering the case studies dealing with operat-

ing conditions, Table 3 presents the values of the var-
iables and of the objectives for the solutions having 
the best fitness values for different preferences and 
for robustness. In each case, various solutions meet 
the DM preferences in terms of the relative im-
portance of the objectives, as opposed to the selec-
tion based on robustness, which results in a unique 
solution. This is because in a set of Pareto optimal 
solutions, there is a single best solution with respect 
to robustness, whilst various solutions are the best 
compromise for different set of weights. Moreover, 
the most robust solution is very similar to the one 
where output is most important (weights (0.9 0.1)). 

 
Table 3 Solutions for case studies concerning operating condi-
tions. 

DM Decision variables Objectives 
       

(0.1 0.9) 21.1 209.6 167.2 203.5 3.2 0.1 
(0.5 0.5) 48.2 209.2 182.0 209.3 7.0 0.3 
(0.9 0.1) 59.9 170.0 168.0 208.9 8.8 0.6 

Rob 57.2 154.2 208.5 194.8 8.5 0.5 
       

(0.1 0.9) 16.2 161.5 155.2 150.2 2.3 154.6 
(0.5 0.5) 56.1 175.7 150.5 150.1 7.8 164.1 
(0.9 0.1) 59.9 150.8 158.5 209.8 8.9 202.9 

Rob 59.9 152.5 156.2 150.6 8.5 166.0 
       

(0.1 0.9) 10.5 168.5 201.9 201.0 1.8 243.3 
(0.5 0.5) 39.5 198.1 208.9 206.4 6.1 949.7 
(0.9 0.1) 59.7 162.7 178.0 209.8 8.8 1770.0 

Rob 49.6 193.4 209.9 209.7 7.3 1182.3 
       

(0.1 0.9) 44.9 151.0 171.2 209.8 6.8 235.3 
(0.5 0.5) 42.3 150.6 161.6 209.9 6.4 235.0 
(0.9 0.1) 59.9 151.3 203.1 206.4 9.1 235.0 

Rob 59.5 151.3 203.5 208.9 9.0 238.8 
 

5 CONCLUSIONS 

A design optimization approach was proposed for 
the optimization of plasticating single screw extru-
sion. The aim is to support the process engineer in 
the identification of the solutions with the most de-
sirable characteristics. The proposed methodology 
couples a MOEA with decision maker preferences 
and robustness approaches. First, preference infor-
mation was quantified by attributing weights express-
ing the relative importance of individual objectives. 
Secondly, the robustness of solutions upon small per-

Figure 4 Robustness for case studies involving operating con-
ditions. 

 



turbations in the decision variables was taken into 
consideration. The DM can express his/her prefer-
ences by means of a dispersion parameter controlling 
the extent of the solution in terms robustness. The 
smaller the dispersion parameter, the more robust so-
lutions are obtained. 

Various case studies involving the definition of 
extrusion operating conditions, extruder screw de-
sign and the two together were tackled by the meth-
odology proposed. The results obtained demonstrat-
ed that the outcome is greatly affected by the choice 
of the design variables, thus highlighting the im-
portance of using effective tools to support technical 
decisions concerning extrusion. Simultaneously, the 
trade-offs between objectives provide scientific 
knowledge on major process responses and can also 
contribute to achieving higher extrusion perfor-
mance. 
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