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Abstract—Multi-Objective Optimization (MOO) problems
might be subject to many modeling or manufacturing uncer-
tainties that affect the performance of the solutions obtained by
a multi-objective optimizer. The decision maker must perform an
extra step of sensitivity analysis in which each solution should be
verified for its robustness, but this post optimization procedure
makes the optimization process expensive and inefficient. In order
to avoid this situation, many researchers are developing Robust
MOO, where uncertainties are incorporated in the optimization
process, which seeks optimal robust solutions. We introduce a
coevolutionary approach for robust MOO, without incorporating
robustness measures neither in the objective function nor in the
constraints. Two populations compete in the environment, one
representing solutions and minimizing the objectives, another
representing uncertainties and maximizing the objectives in a
worst case scenario. The proposed coevolutionary method is a
coevolutionary version of MOEA/D. The results clearly suggest
that these competing co-evolving populations are able to identify
robust solutions to multi-objective optimization problems.

Index Terms—Robust optimization, coevolutionary Algo-
rithms, worst case minimization

I. INTRODUCTION

Engineering optimization problems are often characterized
by multiple conflicting objective functions on many variables.
The solutions to these problems form the so-called Pareto-
optimal set, representing the tradeoff among the objectives.
The corresponding image of this set in the objective space,
the Pareto front, is characterized by nondominated points, i.e.
improving one objective necessarily leads to deteriorating at
least one of the other objectives. If the objectives admit a
mathematical formulation, approximations of the optimal solu-
tions can be achieved by means of multi-objective techniques.
Among these, Evolutionary Algorithms (EA) [1, 2] present
powerful results in many applications. These stochastic and
bioinspired algorithms are able to find good approximations
to the Pareto front in terms of convergence, while preserving
diversity of the solutions in the estimate.

However, these problems may be affected by different
types of uncertainties, such as noise, model inaccuracies, time
variation, measurement imprecisions, disturbances and other
uncontrolled effects, which might deteriorate the performance

of the designed solutions. The source of these uncertainties
can be related to environmental variations (temperature, hu-
midity, electromagnetic interference, etc), errors in sensors or
measurement equipment, imprecisions in the manufacturing
process or implementation of the numerical solution in the
real world, simplifications or inaccuracies in the model be-
hind the objective and constraint functions, or numerical or
model approximations, since the objective functions can be
approximated by means of experiments or interpolation (ap-
proximation) functions from data [3]. From the practical point
of view, optimal solutions that are sensitive to perturbations
of the variables or parameters of the model are not desirable.
Identifying robust solutions in the estimate of the Pareto set
returned by the optimization process is necessary but also
can become an additional hindrance for the decision-maker,
that should perform a sensitivity analysis of the solutions on
the Pareto front in order to assess their robustness to these
uncertainties. This analysis could be part of the decision-
making process as additional criteria. An alternative to this
post optimization procedure is to incorporate the robustness
requirement in the optimization process, characterizing the
Robust Multi-Objective Optimization (MOO) [4, 5]. The most
used techniques in this area incorporate robustness in two
different ways:

• Modifying the objective functions, using measures such
as averages or deviations;

• Incorporating robustness measures into the problem as
additional objectives or constraints.

Since these approaches incorporate the uncertainties of the
problem in the objective function or in the constraint functions,
it can be applied together with different metaheuristics, such as
evolutionary algorithm and simulated annealing. Nevertheless,
other interesting ideas and approaches have been presented in
the literature, e.g. the use of co-evolutionary algorithms [6], the
definition of new relations of dominance based on robustness
[7, 8] or the use of interval analysis [9].

In this paper we introduce a coevolutionary approach for
Robust MOO, without incorporating robustness measures nei-
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ther in the objective function nor in the constrains. Coevo-
lutionary algorithms are a class of evolutionary algorithms
inspired by the simultaneous evolution of two or more interact-
ing populations. Recently, various engineering problems have
been solved with this approach [10, 11, 12, 13, 14]. Coello
et al. [2] sets coevolution as a reciprocal evolutionary change
between species that interact with each other. Coevolutionary
algorithms can be categorized into competitive or cooperative
algorithms, depending on the nature of the interaction between
individuals. In a competition relationship, both species have a
negative effect on each other since they are competing for the
same resources. In the competitive approach, individuals in
the populations compete among themselves, characterizing an
arms race or the classical predator-prey coevolution. Cooper-
ative coevolution is characterized by a beneficial interaction
between individuals from each population. Typically, cooper-
ative coevolution is used in decomposition of problems into
subproblems, and each population evolves partial solutions to
each subproblem [13]. The cooperation is required to compute
the true fitness of a solution.

In the proposed competitive approach, we create two popu-
lations that compete in the environment, one representing the
design variables and another representing uncertainties. These
populations interact in the computation of the fitness values.
The population of variables is evolving towards the Pareto
front considering the uncertainties of the second population,
while the population of uncertainties is evolving towards dete-
riorating the estimate of the Pareto front through perturbations
to the variables or to parameters of the objective functions. The
proposed co-evolutionary method is a co-evolutionary version
of MOEA/D [15]. The results presented in the experiments
clearly suggest that these competing co-evolving populations
are able to identify robust solutions into multi-objective opti-
mization problems.

This work is organized as follows. Section II is a review of
robust multi-objective concepts, multi-objective evolutionary
algorithm and co-evolutionary algorithms. Special attention is
given to the MOEA/D algorithm. Section III presents the pro-
posed competitive coevolutionary algorithm, a coevolutionary
version of MOEA/D developed for worst case minimization.
Results and discussion are presented in Section IV.

II. BACKGROUND

A. Robust Optimization

An important reference in robust design is the work de-
veloped by the Japanese engineer and statistician Genichi
Taguchi [16], with influential contributions to industrial statis-
tics and process quality engineering. According to Taguchi
[16], quality is measured by the deviation that a functional
characteristic presents with respect to its expected value. In
this way, a process is said to be robust when it is less sensitive
to disturbances in its parameters. Zang et al. [17] defined
signal factors as the parameters of a process that determine
the configurations to be considered in the robust design, noise
factors as factors that are hard to control, causing variability
in the system, and control factors as those factors that should

be optimized in order to reduce the sensitivity of the system
to the noise factors. Consider f(s, z, x) as a response vector
for a determined set of values, where s, z and x represent
respectively the signal factors, the noise factors and the control
factors. The mathematical formulation presented by Zang et al.
[17] for the robust design is given by:

x̂ = arg min
x

(
max
s∈V

Ez
[
|f(s, z, x)− t|2

])
(1)

where t was the desired response and E was the statistical
expectancy (in z), hence characterizing the robust design as a
min-max problem.

Later, Deb and Gupta [18] classified the robustness of a
solution according to the way the optimization problem was
formulated. In the case of single objective optimization, i.e.
the minimization of a function f(x) ∈ R with x ∈ S:
• A robust solution of Type I is obtained through the

minimization of the mean value of f(x) in the defined
neighborhood Bδ(x). In other words, a robust solution
is characterized by formulating the problem as the mini-
mization of a mean effective function

feff =
1

|Bδ(x)|

∫
y∈Bδ(x)

f(y)dy,

where |Bδ(x)| is the hypervolume of the neighborhood
Bδ(x).

• A robust solution of Type II is obtained when the
perturbation is considered by adding constraints to the
problem, which is formulated as the minimization of the
function f(x) subject to

||fp(x)− f(x)||
||f(x)||

≤ η,

where the perturbed function fp(x) can be the mean ef-
fective function feff (x) or the worst case value observed
in the neighborhood Bδ(x).

In the same paper, Deb and Gupta [18] extended these defi-
nitions to multi-objective problems, also presenting benchmark
functions for Robust MOO.

Jin and Branke [3] presented a classification of sources of
uncertainties in optimization problems, based on how these
affect the optimization process:
• Presence of noise in the evaluation of objective functions;
• Sensitivity of the solution (in the objective space) to per-

turbations in the variables (design space). Those solutions
that are immune to this are called robust solutions;

• Fitness function approximations, in cases where the func-
tion is expensive to evaluate or the analytical expression
is not available;

• Time variations of the objective functions, such that the
function, and accordingly its minima, change with time.

The authors provided an overview of the main techniques
utilized in each case, for instance, implicit or explicit means
of the functions, modifications in selection and self-adaptation
in evolutionary algorithms, and others [3].



Goh et al. [5] investigated problems with the presence of
noise and robust optimization problems, classifying the ways
how robustness measures are included in the optimization
process as: (i) incorporating noise and/or robustness measures
in the variables of the problem as in [4, 19]; (ii) considering
these factors as additional objectives to be optimized.

In addition to these methodologies, other ideas had been
presented in the literature. Li et al. [6] presented a coevo-
lutionary algorithm for the robust design of a permanent
magnet machine, considering the worst case minimization. The
worst case minimization consists in the following optimization
problem:

min
x∈X

{
max
u∈U

f(x, u)

}
(2)

in which f(x, u) is the objective function, x represents the
design variables, u represents the uncertainties. However,
their coevolutionary approach is limited to single objective
optimization.

Soares et al. [9] presented an interval based multi-objective
evolutionary algorithm for robust optimization ([I]MOEA),
assuming robustness as insensitivity to variable perturbations.
The uncertain parameters are represented with intervals, which
results in solution objectives also being represented with
intervals. The comparison of solutions is done in the worst-
case scenario values of objectives, that is, the values at the
border of an interval.

B. Multi-objective optimization

A constrained multi-objective optimization problem (MOP)
can be defined as [1, 15]

Minimize F (x) = (f1(x) . . . fM (x))
subject to x ∈ X ⊂ Rn

gj(x) ≥ 0, 1 ≤ j ≤ J
hk(x) = 0, 1 ≤ k ≤ K

 (3)

where X is the decision or design space, F (X) ⊂ RM
is the objective space, fi(x) are the objective functions,
gj(x), j = 1, . . . , J are the inequality constraints, and
hk(x), k = 1, . . . ,K are the equality constraints. The
constraints of the problem define the feasible region in the
decision space and the corresponding image in the objective
space.

Multi-objective Evolutionary Algorithms (MOEA) [1, 18,
15] have been successful methods to obtain an approximation
of the Pareto front of a MOP. These techniques have been
applied in many different fields. In MOEA, new solutions
are generated at every iteration from the application of se-
lection and genetic operators on an existing population. The
performance of solutions is assessed with a fitness function
or comparison procedures. Usually, an external population
preserves the best estimate of the Pareto front found so far
and it is updated accordingly [1].

However, MOEA do not guarantee the robustness of the
solutions, which is desirable in many practical applications,

given the presence of uncertainties. Robust optimization seeks
for feasible and efficient solutions, that would be less sensitive
to perturbations to the variables or parameters of the objective
functions [20, 21, 22, 23].

C. MOEA/D

An efficient strategy used in some MOEA is decomposi-
tion, in which the MOP is divided into scalar optimization
subproblems. One important example of algorithm following
this strategy is MOEA/D, proposed by Zhang and Li [15]. In
MOEA/D, a set of vectors Λ = {λi ∈ F (X); 1 ≤ i ≤ P},
with population size P , is generated before the optimization.
These vectors will direct the optimization process. Each indi-
vidual of the population is associated to a vector λj , which is
minimized according to one of the methods below:
• Weighted Sum: Considers a convex combination of the

objectives, which should be minimized in the scalar
problem defined by:

minimize gws(x|λ) =

M∑
i=1

λifi(x) (4)

with λ = (λ1, . . . , λM ) and
∑M
j=1 λj = 1

• Tchebycheff: Considers the minimization of the scalar
problem defined by

minimize gte(x|λ, z?) = max
1≤i≤M

{λi|fi(x)− z?|} (5)

with λ = (λ1, . . . , λM ) and z? = (z?1 , . . . , z
?
M ), z?i =

min fi(x).
• Boundary Intersection: Considers the minimization of

the scalar problem defined by

minimize gbi(x|λ, z?) = d1 + θd2 (6)

with d1 =
||(F (x)− z?)Tλ||

||λ||
, d2 = ||F (x)−(z?+d1λ)||

and θ > 0 is a penalty factor.
In each of the strategies above, the MOP is decomposed into

the simultaneous minimization of scalar subproblems defined
by g, in which the search is restricted to a group of individuals
in the neighborhood Bε(x) associated with an element λi ∈ Λ.

The MOEA/D is summarized in the following steps:
1) Initialization:

a) Create an empty external population EP, which
stores the estimates of the Pareto front;

b) Generate initial population X = {x1, . . . , xP },
with P individuals;

c) Generate P weight vectors Λ for the scalar sub-
problems;

d) Calculate the Euclidean distance between any two
weight vectors and, for each λi, find the T
closest vectors. Create a neighborhood B(i) =
{i1, . . . , iT } referring to λi1 , . . . λiT , which are the
T closest weight vectors to λi. Associate each
individual to a single weight vector according to
the distance in the objective space or randomly.



e) Evaluate X , making FV i = F (xi);
f) Initialize the estimated utopian solution z =

(z1, . . . zM ), with a problem-specific method. Here
we set zi = min fi(x

j) with xj ∈ X .
2) Evolutionary cycle: In each iteration, for each individ-

ual xi do:
a) Select two indices at random k, l from B(i). Gen-

erate new offspring xc with the genetic operators.
b) Update z = (z1, . . . zm): if zj > fj(xc) for any

j = 1 . . . ,m then do zj = fj(xc).
c) Update the neighboring solutions: for each j ∈

B(i), if g(xc|λj , z) ≤ g(xj |λj , z) then set xj = xc
and FV j = F (xc).

d) Update EP .
The reference point z in 2b is related to the scalar subprob-

lems. In minimization problems, this point corresponds to the
smallest value in all objectives, that is, z = (z1, . . . , zm) with
zi = min fi(x).

Note that each individual in the population is evolving to
minimize one sub-problem. The minimization of each sub-
problem can potentially lead to a Pareto-optimal solution. The
search process uses information from solutions to those similar
sub-problems, those that belong to the neighborhood B(i) of
xi.

III. COEVOLUTIONARY ROBUST MOEA/D
(C-RMOEA/D)

The idea behind the proposed method, called Coevolution-
ary Robust MOEA/D (C-RMOEA/D), is the employment of
a coevolutionary approach for the solution of robust MOP
considering the worst case minimization. The method is based
on the basic MOEA/D but under a coevolutionary scheme.
The choice for MOEA/D is explained by its characteristic
decomposition of the multi-objective problem into scalar sub-
problems. The decomposition facilitates the implementation of
a coevolutionary approach as it will be shown below.

At each iteration of the evolutionary cycle, two instances
of optimization problems are concurrently approached. The
population of individuals representing the candidate solutions,
X = {x1, . . . , xP }, is evolving towards the minimization
of the function g given the values of perturbations in the
population ∆. On the other hand, the population ∆ is evolving
towards the maximization of the function g given the values
in X . These two processes are in conflict or competition with
one another. In other words, the population X , related to the
design variables, and the perturbation population ∆ compete in
the environment defined by the robust MOP, see the flowchart
in Fig. 1 for details.

Therefore, C-RMOEA/D works with two populations, X ,
representing the candidate solutions for the design variables,
and ∆, representing perturbations added to the design variables
and/or perturbations in parameters of the functions, both
with size P . For each xi = (xi1, . . . , x

i
n) ∈ X there is a

corresponding δi = (δi1, . . . , δ
i
q) ∈ ∆ with δij ∈ [−ε, ε].

After the initialization steps of C-RMOEA/D, the evolu-
tionary cycle begins for both populations. For each xi ∈ X ,

Fig. 1. The two instances of the worst case robust optimization: at each itera-
tion, the design variables and the uncertainty perturbations are evolved causing
the minimization of the function g in one direction and the maximization in
the opposite direction. These two processes are in conflict or competition with
one another. In other words, the population X , related to the design variables,
and the perturbation population ∆ compete in the environment defined by the
robust MOP.

two neighboring individuals xia and xib are selected in the
neighborhood B(i). After that, an offspring is created with the
application of the genetic operators (crossover and mutation),
producing a new solution xic. In this case, we are trying to
minimize the subproblem given by:

min
x

g(x|δi, λi, z) (7)

Notice that in (7), we use the perturbation vector δi. There-
fore, we should update the neighboring solutions as follows:
for each j ∈ B(i), if

g(xic|δj , λj , z) ≤ g(xj |δj , λj , z)



then set xj = xic and FV j = F (xic, δ
j).

Analogously, for each δi ∈ ∆, two neighboring individuals
δia and δib are selected in the neighborhood B(i). An offspring
δic is produced, which is related to the maximization of the g
function:

max
δ

g(δ|xi, λi, z) (8)

In (8), we use the variable xi in order to evaluate δ.
Similarly, we update the neighboring vectors as follows: for
each j ∈ B(i), if

g(δic|xj , λj , z) ≥ g(δj |xj , λj , z)

then set δj = δic and FV j = F (xj , δic).
Notice that one population is minimizing g given the values

of the perturbations, while the other population is maximizing
g given the values of the variables. These two competing
process happen for each pair of xi ∈ X and δi ∈ ∆ and for
each λi ∈ Λ. The decomposition approach in MOEA/D makes
the coevolutionary approach simpler, since we evolve the
perturbations and the variables considering each subproblem
independently.

A

B

C

z

1

2

Fig. 2. Illustration of the competitive coevolution in C-RMOEA/D.

Fig. 2 illustrates the competitive coevolutionary process in
the objective space. After an offspring xic is created, point A is
updated to point B, which decreases the value of g given λ1, z.
After that, in the evolutionary cycle of ∆, it might happen that
the point B is updated to point C, which increases the value of
g given λ1, z. This alternating process lead to a robust estimate
of the Pareto front, considering the worst case analysis. The
estimated front contains those solutions that minimize the
objectives in the worst case of the perturbations. In one
evolutionary cycle, the individuals in X are adjusted according
to (7). The estimated Pareto front moves towards the utopian
solution in the direction of the front shown in green line. In
the evolution of ∆, the perturbations are adjusted according to
(8). The estimated Pareto front moves away from the utopian
solution, in the direction of the front shown in blue line,
because the new perturbations found increase the objective
function values. By repeating this process, until convergence
criteria are met, we can find an estimate of the robust Pareto
front, i.e., an estimate that is good even considering the worst
case scenario of perturbations for each specific point.

Given that C-RMOEA/D is just an extension of MOEA/D,
its implementation is very simple, as presented below.

1) Initialization:
a) Create an empty external population EP, which

stores the estimates of the Pareto front;
b) Generate initial population X = {x1, . . . , xP },

with P individuals;
c) Generate population ∆ = {δ1, . . . , δP }, with P

individuals;
d) Associate each individual in X to an individual in

∆.
e) Generate P weight vectors Λ for the scalar sub-

problems;
f) Calculate the Euclidean distance between any two

weight vectors and, for each λi, find the T
closest vectors. Create a neighborhood B(i) =
{i1, . . . , iT } referring to λi1 , . . . λiT , which are the
T closest weight vectors to λi. Associate each
individual to a single weight vector according to
the distance in the objective space or randomly.

g) Evaluate X , making FV i = F (xi, δi);
h) Initialize the estimated utopian solution z =

(z1, . . . zm), with a problem-specific method. Here
we set zi = min fi(x

j , δj) with xj ∈ X .
2) Evolutionary cycle:

a) For each individual xi do:
i) Generate an offspring xic with the genetic op-

erators.
ii) Update the neighboring solutions: for each j ∈

B(i), if

g(xic|δj , λj , z) ≤ g(xj |δj , λj , z) (9)

then set xj = xic and FV j = F (xic, δ
j).

b) For each δi ∈ ∆ do:
i) Generate an offspring δic with the genetic oper-

ators.
ii) Update the neighboring solutions: for each j ∈

B(i), if

g(δic|xj , λj , z) ≥ g(δj |xj , λj , z) (10)

then set δj = δic, FV
j = F (xj , δic).

c) Update EP .

IV. RESULTS AND DISCUSSION

A. Test problems

In order to verify the efficacy of C-RMOEA/D, the bench-
mark functions ZDT1 and ZDT2 proposed by Zitzler et al. [24]
and TP2, TP2 and TP4 proposed by Gaspar-Cunha et al. [25]
were used in this study. In all these functions the perturbation
vector is δi = (δi1, . . . , δ

i
q) ∈ ∆ with δij ∈ [−0.025, 0.025].

The choice of ε is a parameter defined by the Decision Maker
and ε = 0.025 makes the algorithm search for robust solutions
in a range of length 2ε = 0.05 around the optimal solutions
by the worst case minimization approach. Considering the



size of the variable range (xi ∈ [0, 1] in all problems), the
obtained solutions sets the trade off between the highest value
of the goals at an interval of 5% of the range of the variables
around the optimal value x?. As the first objective in ZDT1
and ZDT2 functions is f1(x, δ) = x1 + δ1, the uncertainty of
x1 is transmitted to this goal, establishing an uncertainty in
the objective space.
• ZDT1:

min
x∈[0,1]

max
δ∈[−0.025,0.025]

{
f1(x, δ) = x1 + δ1
f2(x, δ) = g × h (11)

where:

g = 1 +
9

n− 1

n∑
i=2

(xi + δi)

h = 1−
√
f1/g

• ZDT2:

min
x∈[0,1]

max
δ∈[−0.025,0.025]

{
f1(x, δ) = x1 + δ1
f2(x, δ) = g × h (12)

where:

g = 1 +
9

n− 1

n∑
i=2

(xi + δi)

h = 1−
(
f1
g

)2

• TP2:

min
x∈[0,1]

max
δ∈[−0.025,0.025]


f1(x, δ) = cos

(
π(x1 + δ1)

2

)
f2(x, δ) = g sin

(
π(x1 + δ1)

2

)
(13)

where:

g = 1 +
10

n− 1

(
n∑
i=2

(xi + δi)

)
• TP3:

min
x∈[0,1]

max
δ∈[−0.025,0.025]

 f1(x, δ) = 1− (x1 + δ1)2

f2(x, δ) = g sin

(
π(x1 + δ1)

2

)
(14)

where:

g = 1 +
10

n− 1

(
n∑
i=2

(xi + δi)

)
• TP4:

min
x∈[0,1]

max
δ∈[−0.025,0.025]

f1(x, δ) =
e(x1+δ1) − 1

e− 1

f2(x, δ) = g ·
[

sin (4π(x1 + δ1))− 15(x1 + δ1)

15
+ 1

]
(15)

where:

g = 1 +
10

n− 1

(
n∑
i=2

(xi + δi)

)
The Pareto front for these benchmark functions is known

analytically, thus it is possible to obtain an estimate of the
robust front by Monte Carlo simulation over the points on
the true Pareto front. This is done by sampling with a
Uniform distribution under a Latin Square different values of
perturbations for each solution on the front and re-evaluating
the objective functions. The worst case corner estimated with
Monte Carlo provides an estimate of the robust front.

In our experiments, C-RMOEA/D was run with the follow-
ing configuration: 300 iterations, population size of P = 2101

for both populations, crossover probability pc = 1 and muta-
tion probability pm = 1

n . Each problem was set with 10 design
variables, i.e., n = 10. Figures 3, 4, 5, 6 and 7 illustrate the
results achieved by C-RMOEA/D.

0 0.2 0.4 0.6 0.8 1
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0.2

0.4

0.6
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1.2

solution

Pareto front

Robust pareto front

Fig. 3. Test problem ZDT1

These figures show the non robust Pareto front of the
original problem, a worst case estimate applied on the non
robust front with Monte Carlo simulation, and the dots rep-
resent the solutions achieved by the proposed method. These
preliminary results are encouraging evidence that the proposed
C-RMOEA/D is able to achieve approximations of the robust
front, without requiring additional function evaluations in
sampling nor any robust measure of the objective functions.
The Pareto front for all problems correspond to x1 ∈ [0, 1]
and xi = 0 for i > 1.

B. Conclusions

Different types of uncertainties, such as noise, model in-
accuracies, time variation, measurement imprecisions, distur-
bances and other uncontrolled effects, are always present
in real applications, affecting the nominal performance of a
design. Directly considering them in the optimization process

1According to the number of weight vectors generated.
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Fig. 4. Test problem ZDT2
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Fig. 5. Test problem TP2

lead to the Robust MOO, bringing benefits to the design
process. However, usual optimization techniques should be
modified and adapted to incorporate robustness requirements
into the problem.

This work considered the worst case scenario for the multi-
objective optimization problem. A competitive coevolutionary
approach based on MOEA/D was introduced for the solution
of robust MOP. The algorithm works with two competing
populations, one representing the design variables and another
representing perturbations added to the design variable or
perturbations in parameters of the objective functions. The
population of individuals representing the candidate solutions
X is evolving towards the minimization of the function g given
the values of perturbations in the population ∆. On the other
hand, the population ∆ is evolving towards the maximization
of the function g given the values in X . These two processes
are in conflict or competition with one another.

The results reported in this paper represent preliminary
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Fig. 6. Test problem TP3
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Fig. 7. Test problem TP4

experiments with the proposed method. These results show the
adequacy and efficacy of the method, being able to converge to
an estimate of the robust Pareto front. Since two populations
are considered in the coevolutionary method, the number of
objective function evaluations is doubled in comparison to
a single population algorithm. Nonetheless, this additional
cost can be small compared to other strategies based on
fitness sampling and robust measures. The proposed method
is promising in the context of robust multi-objective optimiza-
tion, in addition to being an original way of approaching the
problem.
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