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Abstract 

Earth has been a traditional building material to construct structures in many different continents. In particular, adobe buildings are 
widely diffused in South America, and in Peru where form part of the cultural identity of the nation. Nowadays, the knowledge of 
existing adobe buildings is far from a complete understanding of the constructive system and a structural health monitoring (SHM) 
can quantify and reduce uncertainties regarding their structural performance without causing damage to the buildings. In this 
process, the implementation of automatic tools for feature extraction of modal parameters is desirable. In particular, the automation 
is important because, during a long-term monitoring, a huge amount of data is recorded and the direct check of the data of the user 
is not possible. The present work is focused on the development of an automated procedure for managing the results obtained from 
the parametric identification method, in particular from the Data-Driven Stochastic Subspace Identification method, which requires 
an automatic interpretation of stabilization diagrams. The work presents a fully automated modal identification methodology based 
on the following steps: (i) digital signal pre-processing of the recorded data; (ii) modal parameter identification using models with 
varying dimensions; (iii) automatic analysis of the stabilization diagram with the application of soft and hard validation criteria and 
the use of hierarchical clustering approach to eliminate the spurious modes; and (iv) automatic choice of the most representative 
values of the estimated parameters of each clustered mode: natural frequency, damping and mode shape. The developed algorithm 
was firstly tested with an inverted steel pendulum to check the accuracy and sensitivity, and subsequently, an earthen wall built in 
PUCP Structure Laboratory was analysed to determine its dynamic behaviour. The developed algorithm shows high percentages 
of detected frequencies and high sensitivity to the environmental and structural changes. 
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1. Introduction 

Vibration-based Structural Health Monitoring (SHM) allows the extraction of the modal parameters of a structure 
(natural frequencies, damping ratios, modal shapes) which is useful for increasing the level of knowledge of its 
structural system and for predicting and localizing damage. In case of checking the safety state of large structures, an 
automatic and continuous monitoring system is required to be implemented. Nowadays, different ambient-excitation-
based methodologies are available and known as Automated Operational Modal Analysis (AOMA). The main 
challenge of AOMA, when processing the results in time domain, is the automatic interpretation of the stabilization 
diagrams to separate the physical modes from the spurious ones [1]. This challenge is commonly dealt with the 
empirical observation that physical modes are stable and close together at every system order. Traditionally, user-
defined thresholds are fixed to separate physical from mathematical modes and, then, the physical modes are 
summarized in a stabilization diagram to manually select the structural modal parameters [2]. 

The aim of this paper is to evaluate the automatic identification of the developed AOMA algorithm, focused firstly 
on the Data-Driven Stochastic Subspace Identification method (SSI-Data) to generate the stabilization diagram. The 
methodology considers then a cleaning step with hard/soft criteria and a grouping step with automatic hierarchical 
approach to eliminate the spurious modes. Finally, a step where the modal parameters are automatically chosen is 
introduce to make the methodology fully automatic.  

The paper is organized as fallows. Section 2 describes the evaluated methodology. Section 3 describes the case 
study and the obtained results. Section 4 concludes the paper. 

2. Proposed methodology for the automatic identification of the modal parameters 

The proposed methodology considers two stages: a preliminary frequency-domain analysis for verifying the quality 
for the acquired signals and ranges for the expected results and then an automatic time-domain analysis for the final 
system identification.      

 The frequency-domain analysis uses the averaged auto power spectrum of the time signal [3] to determine its 
frequency content. Graphically, the results are plotted in a spectrogram, which is an intensity graph correlating the 
predominant frequencies vs time (or number of recorded event). This methodology is useful as first step of the dynamic 
analysis for its complete absence of interaction with the user and for its low time-consuming.  

Subsequently, a time domain analysis is used to estimate quantitatively the modal parameters. Firstly, a digital 
signal pre-processing of recorded data is applied (decimation and filtering according necessities), and then, the data 
is processed with the SSI-Data method [4]. The SSI-Data interpretation is carried out through the stabilization diagram 
for which a large range of model orders is analyzed. To decrease the time consumption of the algorithm only even 
numbers for the model order are used considering that stable poles will still remain aligned. The modes of the 
stabilization diagram are initially analyzed and partitioned in two groups with the application of hard and soft 
validation criteria [5]. Four hard validation criteria are used according to equations (1) and (2): 

𝜉𝜉𝑖𝑖 > 𝜉𝜉𝑚𝑚𝑖𝑖𝑚𝑚, 𝜉𝜉𝑖𝑖 < 𝜉𝜉𝑚𝑚𝑚𝑚𝑥𝑥           (1) 
𝑓𝑓𝑖𝑖 > 𝑓𝑓𝑚𝑚𝑖𝑖𝑚𝑚, 𝑓𝑓𝑖𝑖 < 𝑓𝑓𝑚𝑚𝑚𝑚𝑥𝑥          (2) 

where 𝜉𝜉𝑖𝑖 and 𝑓𝑓𝑖𝑖 are, respectively, the damping ratio and the frequency of an identified vibration mode. With these 
criteria, an upper and lower limit is applied in order to focus the analysis in a specific range of interest. The soft 
validation criteria consists on verifying frequencies 𝑑𝑑(𝑓𝑓𝑘𝑘) and damping ratios 𝑑𝑑(𝛽𝛽𝑘𝑘) distances,  modal shapes (using 
MAC [6]) and then the complexity of the identified mode shapes. The distance criteria is defined according to 
equations (3), (4) and (5): 
 𝑑𝑑(𝑓𝑓𝑖𝑖

𝑘𝑘) < 𝑓𝑓𝑖𝑖
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𝑘𝑘−1                     (3) 
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2⁄              (5)  
where 𝑓𝑓𝑖𝑖, 𝜉𝜉𝑖𝑖, and 𝜙𝜙𝑖𝑖 are, respectively, the frequency, the damping ratio and the mode shape of an identified vibration 
mode. The superscript is associated to the model order and the subscript to each mode identified by each model order. 
This criteria is a comparison between consecutive model orders, and it uses the empirical observation that physical 
modes have similar modal properties at every model order. The last soft validation criteria is based on the mode shape 
complexity and takes into consideration that when a structure is proportionally damped, the mode shape components 
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numbers for the model order are used considering that stable poles will still remain aligned. The modes of the 
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where 𝜉𝜉𝑖𝑖 and 𝑓𝑓𝑖𝑖 are, respectively, the damping ratio and the frequency of an identified vibration mode. With these 
criteria, an upper and lower limit is applied in order to focus the analysis in a specific range of interest. The soft 
validation criteria consists on verifying frequencies 𝑑𝑑(𝑓𝑓𝑘𝑘) and damping ratios 𝑑𝑑(𝛽𝛽𝑘𝑘) distances,  modal shapes (using 
MAC [6]) and then the complexity of the identified mode shapes. The distance criteria is defined according to 
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 𝑑𝑑(𝑓𝑓𝑖𝑖
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where 𝑓𝑓𝑖𝑖, 𝜉𝜉𝑖𝑖, and 𝜙𝜙𝑖𝑖 are, respectively, the frequency, the damping ratio and the mode shape of an identified vibration 
mode. The superscript is associated to the model order and the subscript to each mode identified by each model order. 
This criteria is a comparison between consecutive model orders, and it uses the empirical observation that physical 
modes have similar modal properties at every model order. The last soft validation criteria is based on the mode shape 
complexity and takes into consideration that when a structure is proportionally damped, the mode shape components 
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lie on a straight line in the complexity plane[7]. The complexity of a mode shape can be measured with the Modal 
Phase Collinearity (MPC) where a MPC closer to 1 indicates a correspondence to physical modes while values close 
to 0 indicates spurious results. The MPC for mode 𝑖𝑖 is defined according to equation (6) as follows [8]: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = [2 ( 𝜆𝜆1

𝜆𝜆1+𝜆𝜆2
− 0.5)]

2
          (6) 

where 𝜆𝜆1 and 𝜆𝜆2 are the  eigenvalues of the variance-covariance matrix. The modes that fulfill the previous validation 
criteria go to a next stage that consists in the grouping of the similar modes in a same cluster with the application of a 
hierarchical clustering algorithm [9]. Firstly, each mode is considered a cluster. Subsequently, the closest clusters are 
combined into a new aggregate one considering the distance between the clusters (this is a user-defined parameter). 
In this work, a distance criteria determined by frequencies is used as cluster maxima distance. When all the modes are 
included in a cluster, a cut level is selected to divided the clusters with a small amount of modes with the other ones. 
The idea is that the clusters with a small amount of mode represent spurious modes, and therefore, they can be 
eliminated. This limit is not a fixed parameter because it is possible that spurious modes can pass the clustering filter 
(in the case of high environmental noise) or real modes can be filtered (especially if the structure is not well excited). 
In the present application, good results were achieved with a variable clustering limit calculated considering the root 
mean square (RMS) based limit as a filtering criteria. The final stage is the selection of a single value of the modal 
parameters in each cluster. In this work, the pole with the highest MPC is chosen as the final result. Fig.1 shows the 
main steps of this methodology. 
 
 
 
 
 
 
 
 
 

Fig. 1.  Summary of the proposed automatic modal identification algorithm (a) Original data; (b) Filtered data by soft/hard validation criteria;    
(c) Hierarchical clustering approach; (d) Selection of the modal parameters. 

3. Validation experiments with laboratory case studies   

3.1. Inverted steel pendulum 

A SDOF structure given by an inverted steel pendulum was used as a tool to evaluate the performance of the 
developed algorithm when dealing with historical data consisting of over 2000 files. The pendulum built in laboratory 
was 1.85m height with a 60x40 mm cross section and a heavy steel plate at the base to assure adequate support 
conditions (Fig.2a). The structure allows the addition of masses at its top through steel plates (Fig.2b).  

The accelerometers installed were PCB 393B31 uni-axial sensors model with a dynamic range of ±0.5 g and 10 V/g 
sensitivity, with a frequency range of 0.1-200 Hz and a weight of 210 g (Fig.2c). These sensors include a thermal 
jacket for outdoor protection. The accelerometers were connected to a multi-channel system, cDAQ-9234 (24-bit 
resolution, 102 dB dynamic range and anti-aliasing filters) (Fig.2d). Three of these accelerometers were in the top 
metallic plate of the pendulum and one more was placed in the half height. The recording parameters were set to 250 
Hz of sampling rate and 360 seconds of sampling time with a recurrence of 20 minutes (a total of 2120 events were 
recorded). The data processing parameters were set as shown in Table 1. These were selected considering the 
recommendation of [10]. 

 
 Table 1 – Used parameters. 

Sampling rate 
Number of channels 
Decimation factor 

250 Hz 
4 
1 

 Frequency range 
𝑑𝑑(𝑓𝑓𝑖𝑖𝑘𝑘) 

 Damping range 

1-100 Hz 
0.05 
5-1E-5 

𝑑𝑑(𝜉𝜉𝑖𝑖
𝑘𝑘) 

Min MAC  
Min MPC 

2 
0.9 
0.9 

Model Order range 
 

20-100 
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The frequency-domain results in Fig. 2e show the presence of 2 clear frequencies in the range between 5-15 Hz. 
To test the accuracy of the algorithm a steel plate was added to the top of pendulum from the 530th to the 1160th event. 
Fig. 2e shows a clear variation of the natural frequencies during this test which is a good indicator of the sensitivity 
of the proposed methodology for identifying small differences in frequencies.  

 

 

 

 

 

Fig. 2. (a) Geometric details of the pendulum (units: meters); (b) Steel laboratory pendulum; (c) PCB 393B12 – accelerometer sensor; (d) Used 
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lie on a straight line in the complexity plane[7]. The complexity of a mode shape can be measured with the Modal 
Phase Collinearity (MPC) where a MPC closer to 1 indicates a correspondence to physical modes while values close 
to 0 indicates spurious results. The MPC for mode 𝑖𝑖 is defined according to equation (6) as follows [8]: 
𝑀𝑀𝑀𝑀𝑀𝑀𝑖𝑖 = [2 ( 𝜆𝜆1

𝜆𝜆1+𝜆𝜆2
− 0.5)]

2
          (6) 

where 𝜆𝜆1 and 𝜆𝜆2 are the  eigenvalues of the variance-covariance matrix. The modes that fulfill the previous validation 
criteria go to a next stage that consists in the grouping of the similar modes in a same cluster with the application of a 
hierarchical clustering algorithm [9]. Firstly, each mode is considered a cluster. Subsequently, the closest clusters are 
combined into a new aggregate one considering the distance between the clusters (this is a user-defined parameter). 
In this work, a distance criteria determined by frequencies is used as cluster maxima distance. When all the modes are 
included in a cluster, a cut level is selected to divided the clusters with a small amount of modes with the other ones. 
The idea is that the clusters with a small amount of mode represent spurious modes, and therefore, they can be 
eliminated. This limit is not a fixed parameter because it is possible that spurious modes can pass the clustering filter 
(in the case of high environmental noise) or real modes can be filtered (especially if the structure is not well excited). 
In the present application, good results were achieved with a variable clustering limit calculated considering the root 
mean square (RMS) based limit as a filtering criteria. The final stage is the selection of a single value of the modal 
parameters in each cluster. In this work, the pole with the highest MPC is chosen as the final result. Fig.1 shows the 
main steps of this methodology. 
 
 
 
 
 
 
 
 
 

Fig. 1.  Summary of the proposed automatic modal identification algorithm (a) Original data; (b) Filtered data by soft/hard validation criteria;    
(c) Hierarchical clustering approach; (d) Selection of the modal parameters. 

3. Validation experiments with laboratory case studies   

3.1. Inverted steel pendulum 

A SDOF structure given by an inverted steel pendulum was used as a tool to evaluate the performance of the 
developed algorithm when dealing with historical data consisting of over 2000 files. The pendulum built in laboratory 
was 1.85m height with a 60x40 mm cross section and a heavy steel plate at the base to assure adequate support 
conditions (Fig.2a). The structure allows the addition of masses at its top through steel plates (Fig.2b).  

The accelerometers installed were PCB 393B31 uni-axial sensors model with a dynamic range of ±0.5 g and 10 V/g 
sensitivity, with a frequency range of 0.1-200 Hz and a weight of 210 g (Fig.2c). These sensors include a thermal 
jacket for outdoor protection. The accelerometers were connected to a multi-channel system, cDAQ-9234 (24-bit 
resolution, 102 dB dynamic range and anti-aliasing filters) (Fig.2d). Three of these accelerometers were in the top 
metallic plate of the pendulum and one more was placed in the half height. The recording parameters were set to 250 
Hz of sampling rate and 360 seconds of sampling time with a recurrence of 20 minutes (a total of 2120 events were 
recorded). The data processing parameters were set as shown in Table 1. These were selected considering the 
recommendation of [10]. 

 
 Table 1 – Used parameters. 
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0.9 
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The frequency-domain results in Fig. 2e show the presence of 2 clear frequencies in the range between 5-15 Hz. 
To test the accuracy of the algorithm a steel plate was added to the top of pendulum from the 530th to the 1160th event. 
Fig. 2e shows a clear variation of the natural frequencies during this test which is a good indicator of the sensitivity 
of the proposed methodology for identifying small differences in frequencies.  
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accelerometers installed and the data acquisition system have the same characteristics as in the previous case study. 
Two accelerometers were placed in one face at the top of the wall for measuring the out of plane behavior and one 
extra sensor was placed also in the top but in transverse direction. The data acquisition parameters were set as 256 Hz 
of sampling rate, 600 seconds of sampling time and the recurrence of events of 1 hour (a total of 2900 of events were 
recorded in 4 months). Table 2 shows the used parameters for the time-domain analysis. 

Table 2 – Used parameters. 
Sampling rate 
Number of channels 
Decimation factor 

256 Hz 
2/3 
1 

Frequency range 
𝑑𝑑(𝑓𝑓𝑖𝑖𝑘𝑘) 
Damping range 

1-100 Hz 
0.05 
5-1E-5 

𝑑𝑑(𝛽𝛽𝑖𝑖𝑘𝑘) 
Min MAC 
Min MPC 

2 
0.9 
0.9 

Model Order range 
 

20-150 
 

 
The frequency-domain results in Fig. 4c show the presence of six frequencies in the range between 0-80 Hz. An 

interesting trend is detected in any case in several frequencies, which is certainly due to the drying effect in the adobe 
structural system.  

 

Fig. 4. (a) The three full-scale adobe walls; (b) Geometric details in mm and accelerometer positions of the adobe wall;   (c) Frequency-domain 
approach. 
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64 Hz and 76 Hz) and confirms the trend, detected in the previous analysis, in all the six frequencies (with more clear 
results in the higher frequencies). Furthermore, in Fig.5b a zoom of the increase of the fifth frequency is presented 
where the frequency increases from 49Hz until 59Hz. Additionally, a zoom of the daily frequency variation of the 
fourth frequency due to the environmental conditions is shown in Fig.5c. This range variation is of about 1 Hz (from 
33.75 to 34.75 Hz). The same sensibility is shown also in the other frequencies where the daily range variation is about 
0.2 Hz, 0.5 Hz, 0.7 Hz, 2 Hz and 3 Hz for respectively the first, the second, the third, the fifth and the sixth frequency. 
Finally, the percentage of each detected frequency in function of all the data recorded and the percentage of the 
spurious frequencies in function of the identified frequencies were calculated. The first, the second, the third, the 
fourth, the fifth and the sixth frequency were detected respectively in 99.8%, 79.7%, 98.7%, 97.2%, 70.1% and 22.8% 
of all the recorded data. The spurious modes were 8.6% of all the detected frequencies.  
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4. Conclusions 

In this work, a fully automatic modal identification algorithm using hard and soft validation criteria and automatic 
hierarchical clustering approach was evaluated with months of recorded data to test its efficiency and accuracy. The 
results indicate a high efficiency of the hard and the soft validation criteria in the cleaning of the stabilization diagram. 
Furthermore, the use of an automatic hierarchical clustering approach with a not fixed group limit that has the mean 
feature of being flexible and to change automatically acquisition for acquisition is able to increase the elimination of 
spurious modes without deleting the real ones. It is shown by the high percentages of the detected frequencies; 99.9% 
and 94.3% are the percentages of the times that the first two frequencies of the pendulum are detected in function of 
all recorded data, and 99.8%, 79.7%, 98.7% and 97.2% are the percentages for the first four frequencies of the adobe 
wall. Moreover, the amount of not-deleted spurious modes in function of the real detected frequencies is 8.4% in the 
case of the steel pendulum and 8.6% in the case of the adobe wall. These results show the subsequent need to introduce 
an additional step to improve these percentages. 

In addition, the inverted steel pendulum and the adobe wall results show that the algorithm is able to identify 
dynamic parameters with a very useful sensibility in the case of frequency changes due to mass or stiffness variation 
or due to environmental effects. It is possible to observe changes of frequency with a sensibility of 0.05 Hz due to 
environmental conditions and also to measure numerically the influence of these conditions for every identified 
frequency. Furthermore, the high sensibility of the algorithm is able to measure quantitatively the variation of each 
frequency in the case of mass or stiffness changes. Additionally, in the case of adobe wall, it is possible to calculate 
exactly the hardening period and to understand the frequencies that are more affected to this process. 

Finally, the similar accuracy and sensibility of the algorithm in the case of the inverted steel pendulum and the 
adobe wall, built starting from the production of the adobe blocks, make the developed algorithm a useful tool for 
monitoring adobe buildings and for reducing uncertainties regarding their structural performance.  
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accelerometers installed and the data acquisition system have the same characteristics as in the previous case study. 
Two accelerometers were placed in one face at the top of the wall for measuring the out of plane behavior and one 
extra sensor was placed also in the top but in transverse direction. The data acquisition parameters were set as 256 Hz 
of sampling rate, 600 seconds of sampling time and the recurrence of events of 1 hour (a total of 2900 of events were 
recorded in 4 months). Table 2 shows the used parameters for the time-domain analysis. 

Table 2 – Used parameters. 
Sampling rate 
Number of channels 
Decimation factor 
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2/3 
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4. Conclusions 

In this work, a fully automatic modal identification algorithm using hard and soft validation criteria and automatic 
hierarchical clustering approach was evaluated with months of recorded data to test its efficiency and accuracy. The 
results indicate a high efficiency of the hard and the soft validation criteria in the cleaning of the stabilization diagram. 
Furthermore, the use of an automatic hierarchical clustering approach with a not fixed group limit that has the mean 
feature of being flexible and to change automatically acquisition for acquisition is able to increase the elimination of 
spurious modes without deleting the real ones. It is shown by the high percentages of the detected frequencies; 99.9% 
and 94.3% are the percentages of the times that the first two frequencies of the pendulum are detected in function of 
all recorded data, and 99.8%, 79.7%, 98.7% and 97.2% are the percentages for the first four frequencies of the adobe 
wall. Moreover, the amount of not-deleted spurious modes in function of the real detected frequencies is 8.4% in the 
case of the steel pendulum and 8.6% in the case of the adobe wall. These results show the subsequent need to introduce 
an additional step to improve these percentages. 

In addition, the inverted steel pendulum and the adobe wall results show that the algorithm is able to identify 
dynamic parameters with a very useful sensibility in the case of frequency changes due to mass or stiffness variation 
or due to environmental effects. It is possible to observe changes of frequency with a sensibility of 0.05 Hz due to 
environmental conditions and also to measure numerically the influence of these conditions for every identified 
frequency. Furthermore, the high sensibility of the algorithm is able to measure quantitatively the variation of each 
frequency in the case of mass or stiffness changes. Additionally, in the case of adobe wall, it is possible to calculate 
exactly the hardening period and to understand the frequencies that are more affected to this process. 

Finally, the similar accuracy and sensibility of the algorithm in the case of the inverted steel pendulum and the 
adobe wall, built starting from the production of the adobe blocks, make the developed algorithm a useful tool for 
monitoring adobe buildings and for reducing uncertainties regarding their structural performance.  
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