-

View metadata, citation and similar papers at core.ac.uk brought to you byfz CORE

provided by Universidade do Minho: RepositoriUM

An automated model based approach to mobile UI
specification and development

Anténio Nestor Ribeiro and Rogério Araijo Costa

Departamento de Informatica / Universidade do Minho and HASLab / INESC TEC
Braga, Portugal
anr@di.uminho.pt, rogerio.ar.costa@alunos.uminho.pt

Abstract. One of the problems of current software development lies on the ex-
istence of solutions that address properly the code portability for the increasing
number of platforms. To build abstract models is one efficient and correct way to
achieve this. The Model-Driven Software Engineering (MDSE) is a development
methodology where models are the key for all project lifecycle, from requisites
gathering, through modelling and to the development stage, as well as on testing.
Pervasive computing demands the use of several technical specifications, such as
wireless connections, advanced electronics, and the Internet, as well as it stresses
the need to adjust the user interface layer to each one of the platforms. Using a
model-driven approach it is possible to reuse software solutions between different
targets, since models are not affected by the device diversity and its evolution.
This paper reports on a tool, which is highly parameterizable and driven to sup-
port Model-2-Model and Model-2-Code transformations. Also, instead of using
a predefined technology, the tool was built to be scalable and extensible for many
different targets and also by addressing the user interface layer generation.

Keywords: Model-Driven Software Engineering; Model Transformation; Cross-
Platform Generation; Pervasive software development

1 Introduction

The current trends about software development for mobile platforms, namely mobile
apps development, are mainly focused on the portability for the rising number of devices
to which user interface layers can be developed. This addresses the need to sustain this
development by building abstract models as a mean to have an efficient and scalable
way to achieve our purposes.

As its well known, model driving software engineering supplies a development
methodology where models are the key for the entire project lifecycle, from requi-
sites gathering, through modelling and development stage, as well as on testing. Using
a model-driven approach it is possible to reuse software solutions between different
targets, since models should not be affected by the device diversity and its evolution.

As said previously, actual technologies are developing up at great speed in a di-
versity of areas, such as hardware and software (middleware and user interface layer).
Hardware has been evolving to standardized form factors, more powerful and cheaper,
and software has become more complete, with increased functionalities at the user in-
terface level.

https://core.ac.uk/display/154276328?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 An automated model based approach to mobile UI specification and development

However, this development led to the proliferation of platforms and technologies
where constantly there is new base software with new features, which increasingly im-
pose new restrictions to software portability. For example, each time a new Android
smartphone is released, there is the risk of old released software become uncovered
with problems such as fragmentation or “multiple screens”. This is particularly true
when dealing with the user interface layer source code.

The amount of complexity brought to the software side is only possible to be reason-
ably solved because of the notorious improvements around the development methodolo-
gies, which enables us to deliver software with lower production costs, longer lifecycle,
and higher interoperability. Using models as basis of software development allows the
overcome of the current platform proliferation and it also provides portability for new
platforms that may appear in near future.

Model-Driven Architecture (MDA) [7], proposed in 2001 by the Object Manage-
ment Group (OMG), encompass a set of standards for model-based software devel-
opment. It is intended to support ever-changing business environments, minimising the
software development time and project costs. MDA enables separating the system func-
tionality from implementation details, keeping consistent glue between both elements.

Software development based on MDA starts with high-level models obtained in the
specification phase. Gradually and automatically, the models should be transformed into
more specific (low-level) models until source code is reached. The transition between
models can be achieved by a set of well-defined rules (the models glue). Then, using
a tool, it is possible to achieve automatic code generation from abstract (high-level)
software models.

Tools supported by models make the software development more straightforward,
because it enlaces the software portability, and the developer can choose the abstrac-
tion layer and programming language to be used. It is important to stress that data,
behaviour and user interfaces can be modelled at adequate abstraction levels and then
rely on transformation rules to generate the corresponding source code. Specific efforts
on the development of each one of these layers usually implies that the models were not
properly designed.

This paper uncovers the first results of a model-based tool, MDA SMARTAPP,
which is driven to support highly parameterizable MDA transformation processes. The
tool is to be used in the development of the application’s business and user interface
layers meant to be accessed by mobile apps (in a first approach Android specific) or
hybrid web browser desktop applications.

The remaining document is structured as follows: in section 2 it is exposed some re-
lated work; in section 3 it is presented how Model-2-Model transformations are achieved;
section 4 is related to MDA SMARTAPP model editor; in section 5 it is presented the
tool architecture; section 6 is related to the case study; and section 7 presents the con-
clusions.

An automated model based approach to mobile UI specification and development 3
2 Related Work

To build a mature model-based tool, such as MDA SMART, it is important to overcome
two major different points of view: what is expected from a model-based tool, and what
could be done to support efficiently models transformation.

In a model-based tools space, there are some highly evolved tools, being the Out-
Systems Platform!, or the IBM Rational Software Architect? two successful examples
of such tools. Usually, these tools provide development environments with simple and
high quality rendered interfaces, and a lot of features for drag-and-drop modeling. As a
result, users becomes more concerned about the envisaged solution, instead of the im-
plementation details. However, highly evolved tools have a restricted structure, and the
user has sometimes some difficulty to custom and expand beyond their ’sandbox”. And
the advantage of model portability is many times fully dependent on the tool ecosystem
and not properly interoperable.

Several MDA implementations have already been proposed in the past [5, 6]. In [2],
for example, it is done a study on the applicability of MDA in the development of large-
scale software. As a result, the study proved that MDA based approaches increases
the quality and quantity of the deliverables and reduces the overall cost once it allows
people to interact at a more abstract point of view. It is also important to note that using
MDA models provides for some durability and resistance because they are not affected
by the proliferation of available middlewares.

In [1] the development of a Fujaba [8] plugin to support Business Process Modeling
(BPM) tasks is presented. The main goal is to port BPM models for UML activity
diagrams and vice versa through Fujaba mechanisms "MoRTEn” (ModelRound-Trip
Engineering) and "MoTE” (Model Transformation Engine). To support the transforma-
tions it was implemented a mechanism of Triple Graph Grammars (TGG) [12] in order
to achieve bi-directionality and incremental model processing.

In [13] a prototype for the semi-automatic construction of Web Information Systems
(WIS) was built. The objective is to achieve the tool architecture through other existent
tools and some Model-Driven Development (MDD) components.

The most successful initiatives of MDA supported tools are the ones which use
Domain-Specific Language (DSL) approaches to define model transformations. Here
the tools are divided in several domains such as mobile devices, web services and ap-
plications, and standard desktop solutions.

Another work worth of mention is the one presented by Vaupel et. al. [14]. It
presents a modelling language and an infrastructure for the model driven development
of Android apps. It also uses Ecore meta-models and it provides model transformation
and source code generation using the Eclipse plugins. It defines a meta-model for the
business layer, one for the user interface and another for specifying the application’s
behaviour. It uses simplified meta-models, in order to cope with complexity, for the
transformation stages. One major difference from our approach is the fact that it only
supports the transformation for Android applications not covering both the Web and
hybrid clients.

"http://www.outsystems.com/
2 http://www.ibm.com/developerworks/rational/products/rsa/

4 An automated model based approach to mobile UI specification and development

3 Model to Model Transformation Engine

There are tools that manage web, mobile and desktop development at the same concep-
tual level. Even inside each one of these categories not all the existing tools support,
or can be extended to the plethora of possible technological targets. In order to achieve
this compatibility degree is the main objective of MDA SMARTAPP, a tool that allows
the using of models and provides a way to support transformations for different target
device families.

The kernel of MDA SMARTAPP is based on a model to model (Model-2-Model)
transformation mechanism, the M2M Engine. The main purpose of M2M Engine is to
iterate over all models of a MDA standard architecture until the models reach low-level
abstraction layers. This is particularly useful when addressing the user interface con-
trols and widgets, knowing that at model level the developer needs that technological
particularities will not change the models, allowing to keep the discussion at a reason-
ably high and abstract level.

The DSL approach has been repeatedly used in model-based tools. There are well
known cases where using a DSL become a success, such as is the case of ATLAS Trans-
formation Language (ATL) from ATLAS Model Management Architecture (AMMA)
platform.

ATL, proposed by the Group ATLAS INRIA & LINA, was aimed to implement
Meta-Object Facility (MOF)/Query-View-Transformationg (QVT) [10, 11] request stan-
dard from OMG. It’s a hybrid language since it allows rules construction on both imper-
ative an declarative paradigms. In a declarative way, simple mappings are implemented
in a straightforward way. The imperative way to use the language is mostly used for
higher complexity definitions.

The ATL virtual machine is properly equipped with a well-developed Object Con-
straint Language (OCL) [9] architecture. This feature provides flexibility in models ma-
nipulation (and respective meta-models) allowing it to cope with more complex models.
Moreover, models can present problems in the transformation process, and these could
be difficult to resolve if there is not a significant support from the OCL side.

As presented on Figure 1, ATL operational context follows a MOF [10] compliant
architecture. In this context, the input model (A) is translated to the output model (B)
through a well defined set of ATL rules (ModelA_to_ModelB). The input model (A), the
output model (B), and the set of ATL rules (ModelA_toModelB) conforms to the M2
(level) meta-models, MetaModel:A, MetaModel:B, and ATL, respectively. All three M2
meta-models are bridged by the (M3) MOF meta-meta-model.

E“ _______ ______ \ conlorms bo
I
i - ! - _>

s [Mctal‘u'l::rdel a| | ATL | [Momhjlodel; 8| wm;
Y 0 -
3 T . |
E. | Model : A] |Mudem_m_r~.-1c.de|a| I Model ; B | termste
S |

[@

Fig. 1. EMF ATL - Operational context

An automated model based approach to mobile UI specification and development 5

MDA SMARTAPP takes advantage of this MOF compliant architecture to be exten-
sible and scalable. For a new Model-2-Model configuration there is the need to provide
the input and the output meta-model (written in the Ecore format), and the ATL set of
rules. With only these three elements it is possible to achieve software portability for
any device configuration.

4 M(odel) Editor

In order to give the end user a friendly environment to edit the models we devel-
oped a small scale graphical editor. The graphical editor component was built using
the JGraph? library. This library presents good usability patterns, with a rich look and
feel, it is well documented, and it has become used with success in a series of success-
ful case studies [1]. However, it should be noted that our aim is not to replace other
tools that can be used for model edition and manipulation, but to provide for prototyp-
ing purposes the means to easily create a model. We believe that most developers will
use their preferred tool for model creation and through the existing formats for model
interchange the models can exchanged with other applications.

In addition to the most well known functionalities, JGraph also provides a mecha-
nism to implement the model validation. It is possible to reuse this mechanism to build
”a priori” a model checker, and therefore by using this functionality , MDA SMAR-
TAPP can validate the user actions and their conformity to the UML’s meta-model. For
example, it doesn’t allow the user to specify an implementation of an UML class with
respect to other class, as it should have been done to an interface definition.

In [2] is reported how hard and unmanageable is to restart a sequence of model
transformations because of delayed detected errors. That is even more evident when
dealing with very large and complex models, with a magnitude of several thousand
objects (business and interface objects) as discussed in [3].

5 Tool Architecture

MDA SMARTAPP is intended to support the bottom layers from the MDA architecture:
Platform Independent Model (PIM), Platform Specific Model (PSM) and source code.
Therefore, this tool provides one component dedicated for PIM models manipulation;
one component for the PIM to PSM transformations; and one component for source
code generation taking the PSM models as input. All three were designed to be abstract
components, and can be extended by specific configurations.

The first component, the M(odel) Editor, is responsible for capturing the visual in-
formation (objects and locations) that describes the memory model representation. Sim-
ilar to a CASE tool, this includes model manipulation according to the respective meta-
model context. Also, it allows for a design environment with good usability patterns
and without the need to the user to develop any source code.

The tool core component, the M2M Engine, is accomplished with an ATL configu-
ration. This component is responsible for managing models definitions and to execute
the instantiated Model-2-Model transformations.

Shttp://www.jgraph.com/

6 An automated model based approach to mobile UI specification and development

The third component, the M2C Engine, covers the last step of a MDA architecture,
and by using a template approach the PSM models are translated into source code.

Developer ybrld Full Offline Parsistence
T w Mobile and Computer Applications
Limited Web Access Connectivity
B M Online/Offline Persistence
Web

Persistence File : Web Services
M2M Engine & M2C Engine Web Pages _ o
CPU/MEMORY Intensive Applications

Desktop , -
™ '“ Mabile and Computer Applications
A L o + Mo Web Connectivity
M Editor

Fig. 2. MDA SMARTAPP - Tool logical architecture

MDA SMARTAPP supports UML?2 for the PIM layer and Java and Android for the
PSM and source code layer. Also, there are considered three main output targets (Figure
2): Web applications, Hybrid clients with a server side and a client side components,
and Desktop applications. Although the definitions of web and desktop applications are
self-explanatory, it is important to define what we understand by hybrid applications.
Hybrid applications are applications built specifically for native platforms (namely An-
droid, i0OS, or others) that exchange information with the server side using standard
web protocols (eg. Web Services). At this stage we use Java as the platform for desktop
applications and server side components and Android code will be generated to run in
the mobile devices.

6 Case Study

As a proof of concept our case study is a simple Field Force Automation (FFA) appli-
cation. The application objective is to retrieve lists of technical information shaped for
different use cases. The biggest challenge in this domain lies on the definition of a us-
able Graphical User Interface (GUI) for the mobile devices, specially the smaller ones,
that force the developer to think very carefully about the usability and the user experi-
ence. There’s another significant challenge that arises from the fact that the source code
portability is important especially when dealing with such constraints with the target
hardware and base software.

This case study was solved with one unique abstract model, that later was derived
for desktop (Java) and mobile (Android) applications.

First it was necessary to develop some primary MDA SMARTAPP features: this
includes an UML2 domain editor (the M Editor component), UML to Java model trans-
formations (the M2M Engine), and finally the source code generation for Java and An-
droid targets (the M2C Engine).

For the UML2 domain editor it was developed a graphical view (V) of UML2 model
using the JGraph library. This view is supported by a bespoke controller (C) and the

An automated model based approach to mobile UI specification and development 7

UML2 meta-model* application program interface (M) available in the Eclipse plat-
form.

To support the Model-2-Model transformation, it was considered a simplification
of Java meta-model, in order to reduce the number of entities and relationships. Some
ATL rules were specified, and strengthened with OCL definitions. In this particular case
OCL allowed us, for example, to ensure that the UML2 packages are well unfolded to
Java packages (Figure 3), or the name of any Java element respects the reserved words,
although other more complex restrictions could have been specified.

The source code generation of the user interfaces, from both desktop and mobile
clients, was derived from the UsiXML [4] models of the interface layer.

helper context UML!Namespace def: getExtendedName () : String =
if self._namespace.gcllsUndefined() then "

elae if self.namespace.oclIsEindQf (UML!Model) then "'

elae self.namespace.getExtendedName() + '.°"

endif endif + gelf.name;

Fig. 3. UML2 to Java ATL rule - UML2 to Java package unfolding

Once we had a robust Java meta-model, two sets of Velocity templates were devel-
oped for Java and Android technologies. Since it is possible to build multiple template
fragments and choose at runtime what best fits on the target device, it is possible to
overcome the slight differences from similar targets with one unique PSM meta-model.

For our FFA application the simplified domain model is presented in Figure 4 and
it depicts the core business entities: the worker, the service and the client.

Team Service Type
teamiD Integer <>_. | - description :String 0.* |- berew?tlon.sftnng
800smartphoneNumber -Integer 0.%|- done :Boolean = false - description :String

priority :Integer = 0

;

Worker LineAccount Client
ISP
workerlD :Integer linelD :Integer
name “String e address String <> - clientiD Integer
name :String — name :String
phone Number :Integer address Sl

Fig. 4. Simplified domain model of a FFA application.

The domain model is transformed into a PIM model derived from the transforma-
tions needed to ensure the necessary compliance to the Java meta-model. Figure 5 shows
MDA SMARTAPP platform independent model for the FFA application.

‘nttp://www.eclipse.org/modeling/mdt/?project=uml2

An automated model based approach to mobile UI specification and development

FFA Domain Model
Team Service Type

teamiD Integer description -String e | ebbrevaton Sting
800smartphoneNumber “Inleger 0.7 :‘;::wﬂm::_'zbe - desoription :Siring
Viorker 1 LineAccount —

- worklriD :Integer linelD :Integer

- namdl -String 5 address. -Sring <~ clentiD Integer

nems S - gps ‘String - name :Sfring
- phone Number Inieger address :String

v

A number as first character is a valid UML2 field identifier, but not
for both Java and Android technologies.

White space s a valid UML2 field identifier, but not
for both Java and Android technologies.

Graphical Model View / Tree Model Viiew / Textual Model View / Persisted Model

e 8]
atarmiagon Svig P Creates/ Edits / Saves B cmml wersicne®1.0% encodingm®windows-1252"7>
Seacrpbon Ginng | Ldl My XM xmi i veras .1 mimTHEED: [/Schena . on] . OTG/E
A <TML:Documentation xm 1s3ILTIMICEeCavi01zhnbz0" exporte
m!a;pm = <UML:Model tayQHXCEeGawB0l zhnbz()'
Baoh q\e‘,ﬁ <packagedElerer ype="TRL: Package”
- [~ ceens roapes <packagedtlement rpe="TNL:Class" |
= Towm EA_Model 'BAID_$4CATDEO_0112_4744_8007
v (@ EAM ,'pv--.::t:t::rn:irm:al\u-:ﬂﬂnjlr:l:!
* @ EA_toce i o0 3

¥ (@ ipackagecEiement (Packageimpi)j (name. EA_Model

* (@ [packagecElement (Classimpl] tname: C
¥ (@ [ownegamitute (Propertyimel)] (name:
. (Lteralt

S="EAID_6ASIFIZ6_SIAF_413f_9425

» EA_Moo sem"IML: Li beral Ul imi tedllatura
» [packagedElement (Packageimpl] (name: Domain Wodel, wsibity, <unse="TML: Li teral Tnteger® xmi: ide"k

] L nai
¥ (@ fownecamitute (Propertyimpl] (name:
L7 uppervalug (LAstalUnlimaedtiatural

> (Propestytmpil] (name: clientD, s il
| luppervialue (LiteralUnkmitedhaturalimed)] -(name: <un:
| fowervalue (Literalintegerimpd)] (name: <unsst>, visibi

» [ownedatrisute (Propestyimgl]] (name: name. wsidility. privat

] inay
v (& fownegAmitute (Propertimelil tnarme:

1 (Literatunk i-(name: <unsets
| BowerVakue (Literalintegerimpl)] {name: <unsets, visibilty <unset

» [ownedAtiribute (Propestyimpl)] ‘(name- address. wsibility pevate) (it

Fig. 5. PIM model construction.

The platform specific model, the PSM, will use the same target language (Java), so
it is not necessary to change the existing UML model. Figure 6 shows the PSM model
for the FFA application.

| UMLZ (PiM) | <ownedRAttribute xmi:type="uml:Property" name="phone Number' xmi:ids='
] <type xmi:idref="EAID D3DED2A2 3EGF 4a01 9C2E CRB1E3A97198"/>
<lowerValue xmi:type="uml:LiteralInteger" xmi:id}'EAID LIO00015
M2M Transformation — imi 17 1id=" A
<upperValue xmi:type="uml:LiteralUnlimitedNaturally xmi:id="EAID
Java (PSM] </ownedAttribute>

else
self.substring(l, 1) -> regexReplaceAll('["a-zR-Z_$1','_'")
+ self.substring(2, self.size()) -» regexReplaceill ('["a-zA-Z_$0-9]','_"})
endif

Every metaclass transformed s validated through
the target technology rules.

<packagedComponent x2i:type="JAVA3:Class" name="LineAccol

<members xsi:type="JAVA3:Field" In this example the «phone Numbers UML2

Identifier Is redefined Into «phone_Number »

<merbera xsi:type="JAVA3:Field"
e : Java Identifier since the Java nomenclature do
<merbers xsi:type="JAVA3:Field"
i not allow white spaces.

<merbers xsi:type="JAVA3:Field" nam phone_Number" type="/2"/>

<merbers x3i:type="JAVA3:Field" name="fromAssoc Client" isPublic

<membera xai:type="JAVA3:Field" name="fromAssoc ISP" isPublic="t

</packagedComponent

Fig. 6. PSM model construction.

An automated model based approach to mobile UI specification and development 9

Figure 7 illustrates the source code generation for both the Java and Android plat-
forms.

<packagedComponent xzi:type="JAVA3:Class" name="LineAccount" isPuk
) <merbers xsi:types="JAVA3:Field" name="lineID" types"/2"/>

—¥ <members x3i:type="JAVA3:Field" name="address" type="/3"/>

=t <members xsi:type="JAVA3:Field" name="gps" type="/3"/>

<merbers xsi:cype="JAVA3:Field" name="phone Humber" type="/2"/>
<members xsi:type="JAVA3:Field" name="fromAssec_Client" isFublic
<merbers xsi:cype="JAVA3:Field" name="fromAssoc ISP" isPublic="t

</packagedComponent>
Java Source Code Android Source Code
(Template) (Template)
#ElementSig($JavaClass) class S$JavaClass,getName () €?xml version="l.0" encoding="utf-£7i>
{ <manifest xmlns:android="http://schemas.android.com/apk/re
i package="com.app”
#foreach($field in $JavaClass_Filds) android:versicnCode="1"

android:versionName="1.0">

#set < die android:mi on="7" />
#sec (Sincial = "§ 1vel 1 1) ") §#
#ElementSig(Sfield) Stype Sname § <application
i android:name="3$BaseAndroidApplame”
#end android:icon le/ic_1 o
7 android:label="@string/app name" >
<activicy
/" android:name="$BaseAndroidApphctivizy™
* Auto generated class '$JavaClass.getMame()' ¢ android:label="@string/spp name” >
s <intent-filter>
public $JavaClass.getiame() () <action android:name="android.intent,.actic
{ super(); } <category android:iname="android.intent.cac

Fig.7. Source code generation for Java and Android.

Using the same template’s strategy, and starting from a UsiXML model, the source
code for the user interface layer is also generated. Figure 8 shows the usage of templates
to generate this layer.

M Bl GUI (CUI) Dertved Model

S
4 i == sane

Java Templates Androld Templates
22 //Preset variables declaration = e ey
23 18 public veid enCreate (Bundle savedInstanceState)
24|) #foreach(fid in SFrameElems.keySet()) -0 !
agl| e ar Button next = null;
26| #oec(Svar = §{FromeElems.get(§id) 1) - 4
27 privacte #swingObiType (Svar) Sidy 1%
28/ L sena 20 super,onCreate (savedInscanceState)
29 // End of variables declaratien an setContentView (R.layout.main) ;
n #foreach(fent in SEntitiesViews)
2 //Entity Variables declaration next = (Button) findViewById(R.id.&{ent)Viaw)?
33| #mec(fesc = ‘") next.setOnClickListener (new View.OnClickListene:
M|E] #fozreach($efID in $FieldaType.keySet ()) t
as private javax.swing.Jlabel §(efID)_desc = new jav public void enClick(View view)
3| #e <
» #iC("#Islisc (§Fields get (§ iD))™ == "true™) Intent myIntent = new Intent (view,getCo
£ Javax.swing.JTable §{ i, 2 = new javax. startActivityForResult (myIntent, 0):
39 javax.swing.JScrollPane 35_S{efID)_tablevals = ne]
|| e
4| #ielse}
42 private javax.swing.JTexthrea §{efID)_val = new 3

Fig. 8. User interface source code generation for Java and Android.

10 An automated model based approach to mobile UI specification and development

7 Conclusions

In this paper a model-based tool for hybrid systems development was presented. Through
a DSL configuration the MDA SMARTAPP tool can translate abstract models in imple-
mentations artefacts for web, hybrid and desktop targets.

This paper described the first results of a model-based tool, MDA SMARTAPP,
meant to support highly parameterizable MDA transformation processes. The tool is to
be used in the development of business layer and user interface layers of applications
that can be reached using mobile apps (in a first approach it is Android specific) or
hybrid web browser desktop applications. Specifically, it supports PIM (Platform Inde-
pendent Model) manipulation, PIM to PSM (Platform Specific Model) transformations,
and automatic source code generation for both web and mobile clients. MDA SMAR-
TAPP does the setup of a robust, extensible, and scalable model-based tool architecture
where its skeleton is independent from any platform domain, having its main core based
on model transformations.

The use of models, and the possibility of having them to parameterize the tool,
ensures durability for any software and promote independency on changes of the base
software of mobile devices. We presented a case study that covered this process as well
as makes it possible to strive new application domains, since the tool can work with
new target platforms, such as iOS or other custom fit solutions.

Also, this approach highlighted that with OCL it is possible to create robust and
simple (not simpler) transformation processes, with business rules included, allowing us
to shape better and target specific models, reducing the need to rearrange the generated
lower-lever models.

The use of templates for source code generation allow us to easily reshape models
in order to cover all the implementations variations from an original PSM specification.
The work reported focused on a first set of components developed for MDA SMAR-
TAPP and proves that highly parameterizable and complex user interface apps for mo-
bile platforms can be specified using well known models and the transformations from
models to source code can effectively deliver a ready to deploy product.

Acknowledgments

This work is financed by the ERDF ? European Regional Development Fund through
the Operational Programme for Competitiveness and Internationalisation - COMPETE
2020 Programme within project POCI-01-0145-FEDER-006961, and by National Funds
through the FCT ? Fundag@o para a Ciéncia e a Tecnologia (Portuguese Foundation for
Science and Technology) as part of project UID/EEA/50014/2013.

References

1. Giizide Selin Altan. On the Usability of Triple Graph Grammars for the Transformation of
Business Process Models - An Evaluation based on FUJABA. Master’s thesis, TU Wien,
Austria, 2008.

2. Pedro de Almeida. MDA - Improving Software Development Productivity in Large-Scale
Enterprise Applications. Master’s thesis, University of Fribourg, Switzerland, 2008.

10.

11.

12.

13.

14.

An automated model based approach to mobile UI specification and development 11

. Alexander Egyed. Fixing inconsistencies in uml design models. In Proceedings of the 29th

international conference on Software Engineering, ICSE ’07, pages 292-301, Washington,
DC, USA, 2007. IEEE Computer Society.

. Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent Bouillon, and Victor

Lopez-Jaquero. UsiXML: A Language Supporting Multi-path Development of User Inter-
faces. volume 3425 of Lecture Notes in Computer Science, chapter 12, pages 134-135.
Springer Berlin / Heidelberg, Berlin, Heidelberg, 2005.

. Kun Ma and Bo Yang. A hybrid model transformation approach based on j2ee platform. In

Education Technology and Computer Science (ETCS), 2010 Second International Workshop
on, volume 3, pages 161 —164, march 2010.

. A. Meads and I. Warren. Odintools—model-driven development of intelligent mobile ser-

vices. In Services Computing (SCC), 2011 IEEE International Conference on, pages 448
—455, july 2011.

. J. Miller and J. Mukerji. Mda guide version 1.0.1. Technical report, Object Management

Group (OMG), 2003.

. U. Nickel, J. Niere, and A. Zundorf. The fujaba environment. In Software Engineering,

2000. Proceedings of the 2000 International Conference on, pages 742 745, 2000.

. Object Management Group. Object Constraint Language, v2.0. Technical report,

http://www.omg.org/cgi-bin/doc?formal/2006-05-01, May 2006.

OMG. Meta Object Facility (MOF) Core Specification Version 2.0, 2006.

Q. V. T. Partners. Revised submission for MOF 2.0 Query / Views / Transformations RFP.
Technical report, OMG, 2003.

Andy Schrr. Specification of graph translators with triple graph grammars. In in Proc.
of the 20th Int. Workshop on Graph-Theoretic Concepts in Computer Science (WG ’94),
Herrsching (D. Springer, 1995.

Juan M. Vara. M2DAT: a Technical Solution for Model-Driven Development of Web Infor-
mation Systems. PhD thesis, ETSII, University Rey Juan Carlos, Madrid, Spain, November
20009.

Steffen Vaupel, Gabriele Taentzer, Jan Peer Harries, Raphael Stroh, René Gerlach, and
Michael Guckert. Model-Driven Engineering Languages and Systems: 17th International
Conference, MODELS 2014, Valencia, Spain, September 28 — October 3, 2014. Proceedings,
chapter Model-Driven Development of Mobile Applications Allowing Role-Driven Variants,
pages 1-17. Springer International Publishing, Cham, 2014.

