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In this paper, we present a computing procedure to analyze a network of credit and debt among 
agents (nodes) from a standpoint of balance sheet dependencies. The aim is to develop a method to 
assess thoroughly the sensitivity of the network to potential individual insolvencies. For this pur-
pose, given a state of the network, the insolvency of an agent is assumed and the cascade of pro-
voked insolvencies is simulated. Exploring the matrix definition of the network, this is made sys-
tematically for all agents. Therefore, in only one run of the procedure, all the possible trajectories 
of insolvencies, each beginning in a different agent, are calculated. This allows spotting at a glance 
which agents are “systemically riskier”. Determination of adequate capital levels can be made on a 
case basis by running the procedure repeatedly. This work contributes with two new aspects to the 
existing literature. First, given a known situation of a credit and debt network, a computing proce-
dure is presented that allows to assess the network sensitivity to the exogenous insolvency of any of 
its nodes. Second, continued monitoring of a credit and debt network is computationally feasible. 
This “proof of concept” software can be extended into a tool useful for research and regulation, if 
the relevant information is made available. 

 
Keywords: credit and debt networks, balance-sheet insolvency, insolvency propagation, banking 
networks, systemic risk, financial crisis, Julia programming. 

 
 

1 Introduction 
 
Financial crises and bank failures have been topics of interest for many researchers [9, 
10, 18]. The crisis of 2008 prompted for scientific developments in the field, increasing 
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the contributions and new approaches on both subjects. In a previous work [15], we 
proposed a model, based on the agents’ paradigm, for an inter-banking market network. 
Our main goal was to assess how the structure of credits and debts, assumed a scale-free 
network [19, 28], would behave in the presence of credit and liquidity shocks [11] pro-
ducing bank failures.  

The study of inter-banking markets is of great practical importance and theoretical-
ly rich [22]. However, one can generalize from such inter-banking markets to abstract 
networks of credits and debts. In such a generalization, each node or agent in the net-
work can represent an institution of any kind one may be interested in studying as a 
bank, a firm or even a state. For an example, Battiston et al. present in [6] a study of a 
production network where insolvencies arise because of delayed payments and supply 
failure costs. 

In a generalized credit and debt network, each agent is in debt and (or) in credit 
with respect to some other agents. Solvency or insolvency of an agent can be classified 
as cash-flow insolvency or balance-sheet insolvency [30]. The first arrives when an 
agent does not have a form of payment to settle a debt that falls due. The second hap-
pens when the value of an agent’s assets becomes less than the value of its liabilities. 
The two types of insolvency need not happen simultaneously. The work reported in this 
paper refers to the propagation of balance-sheet insolvency in a credit and debt network. 

The situation initially assumed for the network is all agents being solvent in a bal-
ance-sheet or accounting sense, that is, their equity, or assets minus liabilities, is positive 
or zero. Then, one supposes that for some reason external to the network an agent loses 
assets to the point that its equity becomes negative. Consequently, the agent becomes in-
solvent –in the balance-sheet sense considered – and agents in the network having cred-
its over the insolvent agent lose a fraction (or all) of these assets and eventually also be-
come insolvent. Questions arise on the susceptibility of the network to the propagation 
of insolvencies and on which capital levels and other regulations can prevent or lower 
the probability of such propagation. 

The approach most described in the literature to solve the problem consists in estab-
lishing a connection between properties of the network and some measure of its suscep-
tibility to the propagation of insolvencies. References [5], [7], [8] and [29] are examples 
of it. We propose to supplement this approach with a more direct one. Exploring the fact 
that a network can have a matrix representation, we describe here a procedure to com-
pute all the possible sequences of insolvency, each sequence beginning at an agent or 
node. Given that a sequence has been calculated, one can also compute the number of 
nodes in it and the associated equity or capital losses. This means that by running the 
procedure one can associate to each state of the network the set of conceivable sequenc-
es of insolvency and losses that the state is hypothetically prone. 

For simplicity of analysis we assume that a sequence of insolvency begins in one 
and only one node. Yet, the simulation of sequences of insolvency with several agents 
defaulting simultaneously at the initial instant just requires a different initialization of 
data. So, in fact, the procedure can be used to assess the effects of joint initial defaults. 



We are aware that the proposed approach has a character of brute force. However, 
we believe that such an approach is a rational one for this problem, based on two argu-
ments. On one hand, the propagation of insolvencies follows a (strong) non-linear tran-
sition rule; therefore, we can suspect that the dynamical process of propagation will 
show little predictability from knowledge of the network state. Given these properties, 
we expect that this procedure will become useful in the work of non-linear analysis of 
credit and debt networks, by providing fast and complete maps of what can happen. On 
the other hand, determining all possible trajectories of insolvency propagation and asso-
ciated losses appears to be a feasible computational task for interesting numbers of 
nodes in a network. This, besides making it a practical analytical tool, raises the ques-
tion of developing a procedure-based system to monitor actual credit and debt networks. 

Use of the procedure beyond the basic one is possible. For example, the procedure 
can be run with different levels of capital assigned to each agent. Running the procedure 
assuming that all the agents have zero capital corresponds to the most dangerous situa-
tion. Increasing the capital levels step by step generates increasingly safer situations up 
to the point where no more insolvency propagation happens. This use of the procedure 
would allow a regulator to determine which capital levels would be adequate for a net-
work on a near real-time fashion. One could envisage other uses as the theoretical study 
of network properties. Therefore, we believe that we are contributing to the subject that 
together with existing theory may become a useful tool.  

The plan of the paper is as follows. In the next section, we present a literature re-
view. Most of the work on credit and debt networks centers on banks and the inter-
banking market, yet it is clearly relevant to the more abstract approach taken here. Sec-
tion three describes the representation of a credit and debt network in terms of matrices 
and some properties of such network. In section four, we present the computational pro-
cedure used to calculate all the possible insolvency sequences. Section five discusses 
implementation with a focus on execution time varying with programming language, pa-
rameterizations of the network and fraction of recoverable assets. Section six concludes 
depicting some future work. 

 
 

2 Literature Review 
 
Literature on financial crises supplies context and a departure point for the analysis of 
credit and debt networks, from which we have already pointed some important refer-
ences. Economists as Friedman and Schwartz [18], Bernanke [9], Bernanke and Gertler 
[10] produced research relating bank failures and financial crises. Study of the Great 
Depression (GD) was a main concern of theirs, as avoiding a repetition of the GD be-
came a central goal of policy. Between 1929 and 1933, the United States of America 
saw the number of banks decline from over 25,000 to less than 15,000 [18]. The 2008 
crisis showed a relationship between bank failures and financial crises similar to the 
GD. It is commonly referred that the 2008 crisis was triggered by the failure of the 



Lehman Brothers and Bear Stearns investment banks. The reduction in confidence orig-
inated a severe shrinking of bank lending, affecting all industries including banking it-
self [23] and leading to a strong decrease in economic activity.  

Analysis of a bank’s balance sheet is the starting point in the simulation of banking 
networks [12, 13]. The main inspiration for many authors is the model of Allen and Gale 
[2], where one of the first models of a banking network was presented and the conclu-
sion that systemic resilience depends on the structure of relationships was drawn. Fur-
ther studies on network contagion have been produced. Some focus on the asset side of 
the balance sheet – credit shocks – like [27] who studied the resilience of a network in 
case of a general loss of assets among all the banks in the system. Also, [19] studies the 
ability of a central bank to maintain stability.  

Other studies focus on the liability side of the balance sheet – liquidity shocks – like 
[14] who discusses the main function of banks as being to transform deposit maturities. 
Liquidity shocks happen when the funding sources of banks are at risk. Market stress 
levels or fire sales have also been one topic of interest [1]. They happen when there are 
liquidity shortages and a big amount of the same type of asset is put for sale [21]. An-
other topic worth mentioning is the growth of complex financial instruments in the form 
of derivatives. It has been pointed by authors as [26] that their complexity was one of 
the reasons why so many players were unaware of the possible devastating consequenc-
es of a default. A recent study of the systemic risk in Europe is given in [16]. 

The general study of information propagation in social networks has attracted much 
attention, a landmark paper on the subject being [24]. Insolvency propagation can be 
understood as a particular case of constrained information propagation. 

The non-linear character of insolvency propagation in credit and debt networks can 
give rise to somewhat surprising results. In [7] and [8], Battiston et al. observe that di-
versifying risk can, counter-intuitively, lead to increased systemic risk. The more recent 
papers [5], Battiston and Caldarelli, and [29], Roukny et al., summarize many results of 
applying network analysis to the issue of financial stability. They point that in order to 
better control systemic risk contagion, besides creating sufficient capital ratios, it is nec-
essary to increase monitoring of the interrelated dimensions of interconnectedness, 
complexity and correlation all together, including more detailed information on who 
owes who. In fact, as we hope to show, having such detailed information would allow 
assessing the stability properties of a credit and debt network in real-time. 

 
 

3 Representing a Credit and Debt Network as a Matrix 
 
It is well known that a directed or undirected graph can be equivalently represented as a 
square matrix with as many lines as nodes of the graph. If the i, j entry of the matrix is 
non-null, it represents the (i, j) edge from node i to node j. If the graph is undirected then 
the (i, j) edge equals the (j, i) edge and both entries must be equal. 



A network of debt (credit) can be represented by a simple, directed graph, or a ma-
trix, if one takes in account between two entities in the network one relation of the form: 

 “x owes y the amount of –X” or owes (x, y, –X)  (1) 
The relation can be represented as an arrow from x to y with an associated non-null 

value of –X. In a matrix, it would be entered as the –X value at the (x, y) cell. 
A debt relation from a to b is also a credit relation from b to a: 

   owes(x, y,−X ) ⇔ has_credit( y,x, X )   (2) 

In a credit matrix collecting the credits of the agents in the network, the value X 
would be entered at the (y, x) cell. 

Let us assume that among five agents, a, b, c, d and e, the following instances of the 
relation hold at a given moment:   

owes(a, c, –66),   owes(a, d, –98),  owes(a, e, –53), 
owes(b, c, –69),   owes(b, e, –67), 
owes(c, a, –97),   owes(c, d, –83),    
owes(d, b, –89),  owes(d, e, –65), 
owes(e, a, –69),  owes(e, b, –68), 

This can be seen as a network of credit and debt among the four agents. The debt 
matrix is as follows: 

 

  

D =

a
b
c
d
e

0 0 −66 −98
0 0 −69 0

−97 0 0 −83
0

−69
−89
−68

0
0

0
0

−53
−67

0
−65
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (3) 

We observe that each entry in the debt matrix would appear in a balance sheet as a 
liability. In the case of a bank, it could be a loan of reserves from another bank. 

The credit matrix corresponding to (3) is as follows: 

 

  

C =

a
b
c
d
e

0 0 97 0
0 0 0 89
66 69 0 0
98
53

0
67

83
0

0
65

69
68
0
0
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

 (4) 

We observe that each entry in a credit matrix appears in a balance sheet as an asset. 
In the case of a bank, it could be a loan to another bank. 

In all generality, we have that the following equalities hold for credit and debt ma-
trices:  

 
 

C = −DT

D = −CT
  (5) 



The above definitions of the debt and credit matrices allow that two agents simulta-
neously lend to and borrow from each other; in the example, this happens for the pairs 
(a, c), (a, e) and (b, e). Summing matrices C and D, one gets what we call the net posi-
tion matrix NP of agents: 

  NP = C + D = C −CT = D − DT   (6) 
We observe that such matrix must be skew-symmetric. The example would yield: 

 

  

NP =

a
b
c
d
e

0 0 31 −98 16
0 0 −69 89 1
−31 69 0 −83 0
98 −89 83 0 −65
−16 −1 0 65 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (7) 

The matrix NP summarizes all the net credits and debts among agents. In Figure 1, 
we represent a corresponding network. To each arrow we associate a pair of symmet-
rical numbers: the first one, positive, is the credit held by the agent or node that the ar-
row points to; the second one, negative, is the debt of the agent or node that the arrow 
departs from. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1- Graph representation of the credit-debt network with net position matrix in (7). 

 
With the representation above, the sum of assets and liabilities or net worth with re-

spect to the network of each agent equals the sum of the corresponding row in the NP 
matrix. Assuming that the net worth of all agents is represented by a vector nw and the 
existence of an operation ‘sum_rows’, we would get for the example: 

a 

b 

c d 

e 

(31, –31) 
(16, –16) 

(89,  
–89) 

(1,  
–1) 

(69, –69) 

(83, –83) 

(65, –65) 
(98,  
–98) 



 

   

nw = sum_rows(NP) =

a
b
c
d
e

−51
21
−45
27
48

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (8) 

If we assume now that the out of the network equities of the agents is registered in a 
vector on, it follows that the accounting state, as, of all agents is given by: 

    as = sum_rows(NP)+ on = nw + on   (9) 

Let us assume that the out of the network equities or capital positions of the agents 
in the example are given by on = [51, –21, 45, –27, –48]T. Then, we would have: 

 

   

as =

a
b
c
d
e

−51
21
−45
27
48

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

+

a
b
c
d
e

51
−21
45
−27
−48

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

=

a
b
c
d
e

0
0
0
0
0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (10) 

An agent will be insolvent if its as value is negative and solvent otherwise. As it 
stands out, if one assumes that the state of a credit and debt network is given by the pair 
(NP, on), then determining the accounting situation of all the agents or nodes amounts 
to the computation indicated in (9). However, there is an aspect that deserves clarifica-
tion. 

Over a credit-debt network, the sum of assets must equal the symmetric of the sum 
of liabilities. Let the network have I agents or nodes, A(i) and L(i) be the assets and lia-
bilities of agent or node i. Summing over the I nodes yields: 

 
  

A(i)
i=1

I

∑ = − L(i)
i=1

I

∑   (11) 

This must be so because any single asset of an agent i must conversely be a liability 
for an agent j and a single liability of an agent i must conversely be an asset for an agent 
j. 

Now, let us assume that the network completely represents the credit and debt rela-
tions of all agents or, equivalently, no credit or debt relation of any agents fails to be 
represented in the network. If all agents in the network are solvent, or have non-negative 
equity, nw(i) = A(i) – L(i) ≥ 0, it follows that equity must be zero for all agents: 

 
  

A(i)
i=1

I

∑ = − L(i)
i=1

I

∑ → ∀i, A(i)− L(i) ≥ 0→∀i, A(i)− L(i) = 0( )   (12) 



Another way to see this is to observe that the equality of absolute values of total as-
sets and total liabilities implies that if an agent has positive equity another one must 
have negative equity: 

 
  

A(i)
i=1

I

∑ = − L(i)
i=1

I

∑ → ∃i, A(i)− L(i) > 0→∃j, A( j)− L( j) < 0( )   (13) 

In this study, we want to consider departing situations where all the agents are sol-
vent and some may have positive equity – as in fact agents do. This implies that one as-
sumes that the network represents the agents only partially, i.e., it represents completely 
the credit-debt relations among agents, but not all the relations that the agents may have. 
The vector on referred above stores the values of external or out of the network equity. 
One observes that for the accounting state of all agents to be zero, on must be the sym-
metrical of nw, as in the example (10). 

 
 

4 Calculating all the Possible Sequences of Insolvency Propagation 
 
We now ask: given a state of the network (NP, on), can we assess the associated risk? 
We propose to answer the question by simply calculating all the possible sequences of 
insolvency propagation that can begin with each agent i becoming insolvent because its 
on(i) value changes so that the sum as(i) = nw(i) + on(i) becomes negative. 

 
 

4.1 The accounting state of agents 
 
The computing procedure that we present calculates the accounting state of each agent i 
in discrete time k as as(i, k) At instant k = 1, all agents are supposed to be solvent, that is 

   ∀i,as(i,1) ≥ 0 . At instant k = 2, one agent j is supposed to become insolvent by an exog-
enous change in on(j), that is    ∃!i = j,as( j,2) < 0 . 

Beginning in instant k = 3, first the NP matrix is updated to reflect the changes in 
assets and liabilities resulting from the insolvencies occurring at k – 1. Second, the ac-
counting state of agents that were solvent at k – 1 is recalculated according to Eq. (9). 
More precisely, assuming that the NP matrix is now understood as a function of time 
NP(k): 

 
   
as(i,k −1) ≥ 0→ as(i,k) = sum_row i, NP(k)( ) + on(i)   (14) 

The accounting state of agents that were insolvent at k – 1 is kept unchanged. Cal-
culations are repeated until no more insolvencies show up. 

It is useful to consider the out of network equity values on(i) as the sum of two par-
cels:  

    on(i) = oe(i)+ p(i)   (15) 



We define oe(i), offset equity, to be the symmetrical of the net worth nw(i) of agent 
i at instant k = 1: 

 
   
oe(i) = −sum_row i, NP(1)( )   (16) 

We name p(i) the “initial capital” of agent i because the value of p(i) is the amount 
of “cushioning” against insolvency that agent i disposes if it loses net worth as a result 
of other agents becoming insolvent. 

 
 

4.2 Reassignment of assets after insolvency 
 
We must clarify which assumption is to be used regarding what happens to assets and li-
abilities of other agents when an agent becomes insolvent or how the matrix NP(k) is 
going to be updated. We assume that if an agent i becomes insolvent at instant k then its 
creditors can recuperate only a fraction α of the assets owned by i at instant k – 1, with 
α ∈[0, 1]; its debtor agents experience a corresponding gain of liabilities, if any. 

If an agent i becomes insolvent then the representing node in the network is deleted 
together with the arrows coming from and going to the node. In terms of the matrix 
NP(k), this translates in zeroing all non-zero entries in the ith row and the ith column. 
According to the value of α  considered, other arrows (or the corresponding entries in the 
matrix NP) may need to be changed. 

If α equals zero, no changes need to be done: creditors lose all the assets corre-
sponding to credits on agent i and debtors gain the symmetrical of all liabilities corre-
sponding to debts to agent i.  

If  α is greater than zero, we suppose that the assets are going to be divided by the 
creditors. Let us suppose that at instant k – 1 agent i had M(i) assets and N(i) liabilities, 
each represented by an arrow: 

 
  
A(i) = am

m=1

M ( i)

∑ (i) = − li (m)
m=1

M ( i)

∑   (17) 

 
  
L(i) = ln

n=1

N ( i)

∑ (i) = − ai (n)
n=1

N ( i)

∑   (18) 

With an abuse of notation, one takes m and n as indexes, based on i, for debtor and 
creditor nodes. Therefore, in expression (17) am(i) represents the value of the asset that 
agent i owns from agent m. Likewise, li(m) represents the corresponding symmetrical li-
ability that agent m owes to agent i. In expression (18) ln(i) represents the value of the li-
ability that agent i owes to agent n. Likewise, ai(n) represents the corresponding sym-
metrical asset that agent n owns to agent i. 

Upon deletion of node i, the absolute values of arrows from each m node to the n 
nodes in instant k will be increased according to: 



 

  

α A(i) ≤ −L(i)→ am(n) = αam(i)
ai (n)
A(i)

= −ln(m)

α A(i) > −L(i)→ am(n) = am(i)
ai (n)
A(i)

= −ln(m)
  (19) 

If the recoverable assets are less than or equal to liabilities, then each recoverable 
asset – αam(i) – is divided among creditors according to the credit fraction of each – 
ai(n)/A(i). If the recoverable assets are greater than liabilities, then each asset is divided 
among creditors according to the ratio of the credit of each to total assets. 

For an example, consider that at instant k = 1 agent d in the network represented in 
Fig. 1 becomes insolvent. The matrix NP(1) being given in (7), it follows that the the 
matrix NP(2) would get the following values corresponding to α = 0 and  α = 0.5: 

 

  

NP(1) =

a
b
c
d
e

0 0 31 −98 16
0 0 −69 89 1
−31 69 0 −83 0
98 −89 83 0 −65
−16 −1 0 65 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

NP(2)|α=0 =

a
b
c
d
e

0 0 31 0 16
0 0 −69 0 1
−31 69 0 0 0
0 0 0 0 0

−16 −1 0 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

NP(2)|α=0.5 =

a
b
c
d
e

0 −28 31 0 48
28 0 −45 0 1
−31 45 0 0 −18
0 0 0 0 0
−48 −1 18 0 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (20) 

 
 

4.3 The iterating loops 
 
We now give a general account of the procedure. Its main data structure is a three di-
mensional array AS(i, j, k) where accounting states are recorded along agents in the net-
work (i dimension), along agents initially assumed to become insolvent as a result of an 
exogenous loss (j dimension) and along discrete time (k dimension). 

If the network has N agents or nodes, then AS dimensions must have sizes of N, N, 
and N + 2, the last one being required by the longest possible sequence of insolvency 
propagation being of length N (although that is seldom the case). The main computa-
tional work of the procedure is to “populate” the array, fully on dimensions i and j and 
up to the length required in dimension k. 

In Fig. 2 we present a possible visualization of an AS array as an example. 
 

 
 

i 

j 

k 

k = 1 

i = 1 

j = 1 



 
 
 
 

Figure 2 – Graphical depiction of an AS array for a network with five agents. In the visible “sheet”, cor-
responding to j = 1, evolution of the network with NP matrix in (7) is shown, for α = 0 and zero initial 
capital for all agents, implying AS(:,1,1)= 0. At instant k = 2 agent i = 1 – named ‘a’ in (7) – becomes 
insolvent. Further accounting states of agents are computed until k = 5, when propagation of insolvency 
stops. 

 
While calculation of the accounting state values is necessary, other information 

may be deemed more interesting. We have considered three items: 
– The N sequences of insolvency propagation corresponding to the N possible ini-

tial exogenous insolvencies. These are stored in a vector of strings S, each string con-
taining the sequence of nodes becoming insolvent. 

– The number of nodes in each sequence, stored in a vector nF. 
– The loss in equity in each sequence, stored in a vector mL. 
For the exemplifying computation partially depicted in Fig. 2, the values of these 

items are: 

 

  

S =

1;4;2;
2,3;1;4;
3;1,4,2;
4;2;5;
5;1,2;3,4;

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

nF =

3
4
4
3
5

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

mL =

−138
−188
−130
−112
−136

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥

  (21) 

Inside strings, a semicolon separates two nodes that became insolvent at successive 
time instants; commas separate nodes that become insolvent at the same time instant. 

We present now a pseudo-code description of the procedure, assuming that all the 
variables referred in the code have been initialized. 

 
1 for j=1 to N 
2   set AS(:,j,1)  
3   set AS(:,j,2) 
4   S(j)=’j’ 
5   k=3 
6   while (sign(AS(:,k-1,j)) != sign(AS(:,k-2,j))) 
7     compute NP(j,k) 
8     for i=1 to N 
9       compute AS(i,k,j) 
10       append to S(j) string(i) if node i became insolvent 
11     end i 



12     k=k+1 
13   end while 
14   compute nF(j) 
15   compute mL(j) 
16 end j 
 
The outer ‘for’ loop started in line 1 computes in sequence the evolutions of the 

network beginning with exogenous insolvency of node j. Lines 2 and 3 set the values for 
the AS columns for instants 1 and 2. Line 4 records the first insolvent node in S(j). The 
‘while’ loop started in line 6 is executed if the signs of columns k – 1 and k – 2 of AS in 
the jth “sheet” being computed are different, signaling that propagation of insolvencies 
did not end yet. In line 7 the value of the NP(k) matrix is determined according to sub-
section 4.2 above. Then in line 8 a ‘for’ loop starts that goes through all nodes establish-
ing the accounting status for each at instant k and updating the S(j) string if it is the case. 

Calculation of the AS values is necessary, but, depending on the output one wants, 
actually storing all of them in memory can be avoided, drastically reducing memory re-
quirements for large N. The above description of the procedure was written for clarity of 
presentation – actual implementation can be more complicated. 

 
 

5 Aspects of Implementation 
 

In this section we discuss implementation with a focus on the execution time of the pro-
cedure. If this is going to be used as a tool for the study and monitoring of real net-
works, execution time is a critical property. 

The procedure has three inputs to consider: the NP matrix with size N2, N being the 
number of agents or nodes, the p vector with size N and the parameter α. This last one 
can be given as a vector of size N, one value for each node, but in this reported imple-
mentation we used a single value for all nodes. The reason is that considering an α dif-
ferent from zero actually introduces a significant overhead as the values of the arrows 
going to an insolvent node must be recalculated and “spread” over several nodes. Never-
theless, it makes little difference if the procedure reads the α value from a single 
memory position rather than from a vector. Furthermore, recoding the implementation to 
have an α value for each node is a simple task. 

Execution time depends on α in an on-off fashion. If α is different from zero, there 
is overhead, but this is independent of the α value. That is not the case for N: as funda-
mentally the procedure computes the values of a three-dimensional array whose size 
grows with N in all dimensions, it is to expect that the execution time grows proportion-
al to N3 or higher. Therefore we realized a set of tests to get an indication of the execu-
tion times of the procedure along several values of number of agents N, average degree, 
fraction of recoverable assets α and capital p . In one of the tests, we made an empirical 
study of computational complexity. 



 
 

5.1 Test conditions 
 

All the tests were made in a MacBookAir6,2 with an Intel i5 2-core processor and 64-bit 
OSX. The Geekbench Browser [20] gives to this machine a score of 5162 points. In 
comparison, the highest scored Apple machine in the Geekbench is a MacPro with an 
Intel Xeon 12-core processor scoring 32140 points. This indicates that substantial room 
for improving execution time exists just by upgrading the hardware, without considering 
parallel computation schemes. 

We conducted several tests to get an assessment of the relation between execution 
time versus the number of nodes and the average degree of the network. The network 
topology considered in the tests was of the random type [17]. We chose random net-
works because they are easy to generate. They also appear as a benchmark against 
which to assess the question of execution time in more specialized topologies of interest 
in the analysis of credit and debt networks, as the scale-free [4] and community [25] 
ones.  

Given that networks will be represented by matrices, it does not appear that execu-
tion times be sensitive to the topology of the network being studied with this procedure. 
A network is represented as entries in a square matrix, therefore the number of rows and 
the number of non-null entries should mostly determine the computational load.  

In all the network configurations used for tests of execution time, the random gen-
erator seed was fixed, so that the values generated for the network were the same for the 
same conditions. Values of credits and debts were constrained to the interval  
[–100, 100]. 

Execution times were read from timing instructions available in the languages used 
for coding the procedure and set in seconds. Their values showed a wide dispersion, 
therefore they must be considered an indicative sampling. Except where noted, the pre-
sented values were calculated as an average of four runs. 

The language and environment firstly used for coding was Scilab [32]. After some 
tests, it became obvious that execution times in this environment were unsatisfactory 
even for a moderate number of nodes. This led us to recode the procedure in Julia [31], a 
young language already tested for an economic study [3]. After comparing the execution 
times reported in Table 1, we made all subsequent tests with the Julia implementation. 

 

Table 1: Sampled execution times of the procedure for implementations in Julia and Scilab. 
The networks generated had an average degree of 20 and we set α = 0 and p = 0. 

Language Execution time for 100 nodes (s) Execution time for 200 nodes (s) 
Julia 0.12 0.90 

Scilab 2.7 12. 

 



 
5.2 Execution times for the implementation in Julia 
 
The goal of the first test, reported in Table 2, was to assess the sensitivity of execution 
time to varying average degree. Using a network with 100 nodes and varying average 
degree from 20 to 100, we concluded that for α = 0 execution time is fairly constant and 
for α ≠ 0 it increases mildly with average degree.  

Table 2: Sampling of execution time of the procedure for a network with 100 nodes, varying average 
degree, two values of α and p = 0. 

Average degree 20 40 60 80 100 
Execution time for α = 0 (s) 0.12 0.12 0.12 0.12 0.11 
Execution time for α = 0.5 (s) 6.1 8.1 9.2 9.7 10. 

 
 
In the second test we considered a network with constant average degree of 20 and 

capital of zero. Values for the number of nodes going from 100 to 1000, for α = 0, and 
from 100 to 400, for α ≠ 0, are presented in Table 3.  

Table 3: Execution time of the procedure for a network with varying number of nodes, average degree 
of 20, two values of α and p = 0. 

Number of nodes 100 200 400 800 1000 

Execution time for α = 0 (s) 0.12 0.75 5.3 51.  110.  
Execution time for α = 0.5 (s) 5.9 85. (1) 1300. (1) –– –– 
(1) Execution time of one run only. 

 
 
The execution times registered are plotted in Figure 2 for α = 0 and for α ≠ 0. In 

both graphics, parabolic curves of expression an⋅nodesn, where n = 3, 4, 5, are also plot-
ted. These curves include the last sample. The samples obtained suggest that for α = 0, 
execution time grows faster than N3, but slower than N4. For α ≠ 0, execution time ap-
pears to grow with N4. 

 



Fig. 2 – Execution times plotted for α = 0 (left) and α ≠ 0 (right), together with curves a3 ⋅nodes3 (up), 

a 4⋅nodes4 (middle), and a 5⋅nodes5 (down). 

The tests above supposed capital p being equal to zero for all agents. This is a com-
puting worst case as the number of insolvencies is maximal. In the last test we assessed 
what happens when capital is increased for all agents from zero to the maximal absolute 
value generated for credits and debts (100). Table 4 records execution times for  α = 0 
and α ≠ 0 together with average number of insolvencies for each case, again for a net-
work of 100 nodes and average degree of 20. When capital is 100, insolvencies are lim-
ited to the initial ones, determined exogenously to the network. Execution times dimin-
ish markedly with the number of insolvencies if α ≠ 0. An interesting behavior to be 
studied elsewhere is the suggestion that, in the same capital conditions, reassigning as-
sets lowers the number of insolvencies. 

 

Table 4: Sampling of the procedure’s execution times for a network with 100 nodes, average degree of 
20, two values of α and varying p. 

Value of capital p 0 20 40 60 80 100 

Execution time for α = 0 (s) 0.12 0.14 0.15 0.17 0.18 0.04 
Average number of insolvencies 72. 67. 61. 53. 38. 1.0 
Execution time for α = 0.5 (s) 6.1 4.9 2.0 0.40 0.07 0.07 
Average number of insolvencies 63. 42. 21. 4.8 1.2 1.0 

 
 

6 Conclusions and Future Work 
 
The aim of the research reported in this paper was to develop a computing procedure to 
assess the sensitivity of a credit and debt network to individual insolvencies originated 
outside the network. For this purpose, given a state of the network, all the possible tra-
jectories of insolvencies beginning in a single insolvency are computed and relevant in-
formation from each trajectory is recorded. 

We use a representation of the network state consisting of a matrix NP, recording 
the net credit and debt positions of agents, and a vector p, recording their capital posi-
tions. With this data as input, the possible evolutions of the accounting states of agents, 
starting in single, exogenous insolvencies, are computed and the associated sequences of 
insolvency and values of equity variation are recorded. The computed evolutions depend 
on the assumed fraction, α, of recoverable assets belonging to insolvent nodes. 

It comes out that the programming of the procedure allows for considering simulta-
neous initial defaults of agents by suitable setting initial data. Therefore, this situation 
can also be studied with this tool. 

While the procedure potentially generates most relevant information, it is of a brute 
force character. Therefore, its execution times were tested in a range of situations. In the 



tests realized, it showed up that the procedure can be used for the study or monitoring in 
a real-time fashion of networks with up to 200 nodes if α ≠ 0 and up to 1000 nodes if 
 α = 0, without special hardware provisions and with the present level of refinement. An 
empirical study of computational complexity suggests that execution time grows faster 
than N3, but slower than N4 for α = 0; it grows with N4 for α ≠ 0. 

Three lines of future research appear now. The first will be to make a formal study 
of the procedure convergence. The second will be to assess the possibility of computing 
only changes to already computed evolutions on the basis of point information arrival. 
So, assuming that information about two agents changing their credit and debt relation 
arrives, or a new node in the network is created, one would only “propagate” the “per-
turbations”, rather than recalculating all the possible evolutions. 

A third line of future research, of a more conceptual character, will be to investigate 
the extension of the procedure to a more general framework that will consider cash-flow 
insolvency in addition to the balance-sheet insolvency considered here. 
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