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Abstract 

The paper discusses the monitoring-based approach unfolded to evaluate the health condition 

of a heritage structure in Portugal. An extensive experimental campaign, including geometric 

survey, visual inspections, damage diagnosis, monitoring and control, is carried out to support 

and evaluate the actions undertaken to re-establish the structural strength. The paper focuses 

on the analysis of case-specific static and dynamic parameters deemed representative of the 

structural behaviour and highlights the benefits associated with the implementation of a 

monitoring-weighed methodology in terms of diagnostics of the system’s vulnerabilities as 

well as control of the effectiveness of the adopted consolidation measures. The results 

demonstrate the feasibility and suitability of this systematic experimental approach for the non-

invasive assessment of the structural fitness of built cultural heritage.   
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1. Introduction and research aim 

The systematic process of observing, tracking and logging data over a period of time in order 

to characterize the health state of structures and to detect any possible change due to damage 

occurrence is referred to as Structural Health Monitoring (SHM). Over years, this tool has 

become very popular in the engineering practice as it helps to improve safety, maintainability 

and lifetime management of structures by combining a variety of sensing technologies that 

enable to perform condition screenings in nearly real-time. Lots of attention has been devoted 

to the dynamic monitoring of structures which allows the estimation of modal features by just 

measuring a few nodal response processes at strategic locations and using wind, traffic and 

micro-tremors as operational conditions. One of the major benefit of dynamic monitoring is 

the possibility to exploit the recorded data for the application of vibration-based damage 

identification techniques which are extremely helpful for early-stage damage identification [1]-

[4]. The monitoring of static parameters, such as strains, deformations, tilts and displacements, 

is another valuable tool for assessing the long-term structural performance and for tracking 

changes in behaviour that are often difficult to spot only with dynamic monitoring. However, 

since system’s properties may change not only because of damage outset, but also because of 

the influence of varying ambient parameters [5], the continuous acquisition and analysis of data 

from the structure becomes fundamental to distinguish and filter out changes caused by 

exogenous factors (e.g. environmental conditions) from changes associated with endogenous 

phenomena (i.e. increasing structural damage) [6]. Unlike the static counterpart, the significant 

amount of events that can be collected through dynamic monitoring is unwieldy, thereby 

calling for automated procedures to speed up the processing time for the modal parameters 

estimation [7]. Most of these procedures are based on the Stochastic Subspace Identification 

(SSI) method [8]-[9], either covariance-driven (SSI-cov) or data-driven (SSI-data), as this 

approach is apt to accurately identify closely spaced modes and is suited to be automated [10].  



Being a non-destructive tool, SHM is particularly recommended when dealing with cultural 

heritage assets, where the need to respect the historical value of the constructions often limits 

the range of applicable techniques for the system characterization [11]. In this case, SHM may 

be employed with a twofold aim, i.e. as both diagnosis and control tool, holding a fundamental 

role throughout the preservation process [12]-[15]. As a diagnosis tool, SHM permits to 

characterize the system fitness, to detect the onset of damage and to study the effect of ambient 

variables on the structural behaviour. As a control tool, SHM is mainly used to follow the 

evolution of structural conditions during/after the execution of consolidation works in order to 

assess the global impact of the intervention and to assist in the evaluation of the effectiveness 

of the adopted remedial measures.  

This papers aims at showing how a systematic monitoring-based approach can truly add a value 

to the investigation on cultural heritage assets, playing a vital role for both diagnosis and 

control purposes and providing a sound basis for any further evaluation of the structural health. 

The relevance of such a methodology is demonstrated taking profit of a real complex example 

belonging to the Portuguese architectural heritage. The presented case-study structure is a 

masonry church which was affected by a serious cracking pattern that could compromise the 

long-term structural stability. Based on accurate investigations and analyses, the building 

pathology was diagnosed and adequate consolidation measures were executed to reinstate the 

sound condition of the system. During and after the works, the structural response was 

monitored to keep under control undesired movements, to discern potential correlations 

between damage and environmental changes and to evaluate the effectiveness of the 

intervention. The sections of the paper are organised so as to follow the entire process of 

‘knowledge accumulation’ that has led to the screening of the structural health, in a progressive 

understanding of the building and its pathology. This process is based on the methodology 

proposed by ICOMOS [16] and consists of four main steps: anamnesis, diagnosis, therapy and 



control. Herein, special attention is given to the diagnostic and control phases, for which the 

structural monitoring represents the mainstay. More in detail, Section 2 gives a brief description 

of the church and its geometrical features; Section 3 describes the damage affecting the fabric 

and its root causes; and Section 4 is devoted to the discussion of the results from the monitoring 

task. The conclusions drawn from the study are reported in Section 5.  

2. Description of the church  

Saint Torcato church (Figure 1) is a Neo-Manueline temple located in a small village in the 

North of Portugal. The church is characterized by a Latin cross longitudinal plan with a central 

nave of nearly 58 m length and 11 m width ending into an apse. Opposite the apse and above 

the main entrance, the choir overlooks the holy space. A transept of about 37 m length and 11.5 

m width intersects the nave at two third of its development. Either limb is covered with a barrel 

vault that leans upon a series of semi-circular arches resting on side bearing columns. A roof 

consisting of wooden trusses protects the vaults beneath. The crossing between longitudinal 

nave and transept is capped with a dome that lays on an octagonal tambour supported by four 

semi-circular arches. Main features of the façade are the splayed portal, the central rose window 

and the top balustrade that bounds the gallery accessible from the gable roof. Two spired towers 

with a rectangular plan of 7.5 m × 6.3 m and a total height of 58 m symmetrically frame the 

façade. Either tower has an inner stone staircase running along the walls up to the level of the 

bells, present only in the western tower.  

The construction of the church started in 1825 and stretched over nearly two centuries, 

involving several building phases [17]. Hence, different materials can be distinguished in the 

fabric. Towers and nave are made of three-leaf walls consisting of outer regular granite 

masonry blocks with thin mortar joints and inner rubble core, whereas apse and main altar are 

built by reinforced concrete walls covered with granite veneer, revealing the recent replacement 

of this part. The thickness of the walls ranges from 1.1 m of the apse to 1.3 m of the nave and 



1.4 m of the towers, while the thickness of the façade tapers upwards varying from 2.3 m to 

1.4 m.  

3. Damage survey and building pathology  

The church exhibited moderate to severe structural damage (Figure 2). The most affected part 

was the façade where a V-cracking pattern arising from the keystone of the portal was observed. 

The major of the two cracks split the façade into two macro-blocks, being as deep as the 

thickness of the wall and reaching over 50 mm width at the tympanum level. Five vertical 

cracks of about 5 mm width were also present on the outer wall of the left side of the gallery. 

Inside the building, beyond the major crack crossing the façade, several cracks were visible in 

the vault beneath the choir and additional cracks were detectable along the weakest links of the 

sidewalls of nave and transept. Besides the cracking pattern, the last laser scanning [18] 

highlighted that the towers of the church were leaning forward in longitudinal direction and 

moving apart in transversal direction. Little hair cracks, probably due to the high compressive 

stresses caused by the load eccentricity associated with the tilting, were observed at the base 

of each tower. 

It is not known when the cracks appeared, but the gypsum marks from 1976 found in the cracks 

prove that the damage originated long time before. In order to investigate the building 

pathology and assess the structural condition of the church, an extensive experimental 

campaign consisting of visual inspections, crack mapping, topographic and geotechnical 

surveys was carried out in 1998 [19]. A simple static monitoring system was also installed to 

check the progress of damage over time: crack meters and demec strain gauges were used to 

monitor the cracks, whereas an optical theodolite and a heavy plummet were used to measure 

displacements and tilting of the towers. The first monitoring results reported a crack opening 

rate of 0.1 mm per year, pointing to the façade as the most active part of the church. In addition, 

the results from optical theodolite and plummet revealed that both towers were leaning towards 



west but with different inclination ratios. Merging this information with the outcome of the 

geotechnical survey, it was concluded that the main cause triggering the cracks and the 

separation movements of the towers was the differential soil settlement in the strata underneath 

towers and façade. Although the digging of two pits uncovered the presence of good quality 

foundation made of large-size granite blocks under the towers, the soil profile surveyed during 

the investigations showed heterogeneity and variability of the layers along the longitudinal 

section of the church [19]. The temple stands on a slope which is levelled by a landfills bank, 

thus the steady bedrock layer is very close to the foundation in the apsis and transept areas, but 

it goes deeper and deeper while proceeding towards the front of the temple. Here the soil is 

mostly composed of sands and non-cohesive layers, whose poor mechanical characteristics get 

worse when approaching the western area. This explains why the floor of the church was 

sinking from the transept towards the front façade and why this phenomenon was accentuated 

under the western tower.  

4. Monitoring and control 

Once the analysis of the ‘symptoms’ shed light on the root causes of the damage affecting the 

church, ad hoc strengthening measures were planned and executed (04/2014 – 07/2015) [20]. 

The strengthening design focused on three main aspects, viz.: (1) elimination of differential 

soil settlements; (2) restraint of towers leaning and attenuation of tensile stresses responsible 

for the cracking of the façade; and (3) restore of material continuity. To this end, 

the consolidation measures involved the installation of micro-piles along the foundation sides 

of both towers, the placement of post-stressed tie rods to link the towers, and the injection of 

cracks. The works schedule is summarized in Table 1. Given the importance to evaluate the 

effects of the works on the global behaviour of the system, a continuous dynamic monitoring 

was carried out during and after the structural intervention. The outcome of the dynamic 



monitoring task is discussed next, after the results from the static monitoring system which is 

following the evolution of cracks opening and towers tilting since April 2009.  

4.1 Description of the monitoring systems 

A systematic monitoring-based approach requires an a priori planning of the key features to 

extract, the type and location of sensors to use, the number of events to record and the duration 

of the signal acquisition. For this study, based on the results of the experimental campaign, 

cracks opening rate, towers tilting and natural frequencies were identified as key parameters to 

monitor for assessing the structural health. Thus, two long-term monitoring systems were 

installed in the church, one static and the other dynamic.  

The equipment of the static monitoring system was composed of:  

 Two crack meters (CR1 and CR2), with a measurement range of 12.5mm and a 

resolution of 0.01mm, installed to monitor the V-cracking pattern of the façade. CR1 

monitored the crack on the inner side of the wall, whereas CR2 monitored the crack on 

the outer side; 

 Four uniaxial tilt meters (TL1 to TL4), with a measurement range of ±1.5º and a 

resolution of 0.03º, located on top of the towers at the bells level and positively oriented 

to North and East. The out of plumbs towards East-West and North-South were 

respectively measured by TL1 and TL2 for the eastern tower and by TL3 and TL4 for 

the western tower; 

 Two surface temperature sensors (TS1 and TS2), with a measurement range varying 

from ‒20°C to +100°C and a resolution of 0.2°C, installed in the front façade. TS1 

registered the temperature of the inner side of the wall (nearby CR1) and TS2 registered 

the temperature of the outer side of the wall (nearby CR2). Such a distribution allowed 

to evaluate the effect of the temperature gradient on the cracks; 



 One combined sensor to measure air temperature (AT) and relative humidity (RH). 

The temperature range was between ‒20°C and +70°C with a resolution of 0.2°C, 

whereas the relative humidity range varied from 0% to 100% with a resolution of 2%; 

 One data logger (D) for data acquisition provided with Global System for Mobile 

(GSM) communications to enable data remote downloading by phone line and located 

inside a protection box at the truss level (vault extrados).  

The location of the devices is schematized in Figure 3a. To catch daily temperature variations, 

all records were taken with a sampling rate of one per hour (24 events per day).  

The dynamic monitoring system consisted of:  

 One strong motion recorder (R) with 16-bit ADC analyser provided with batteries and 

installed on top of the western tower (Figure 3b);  

 One tri-axial force balance accelerometer (A) with a bandwidth from DC to 100 Hz, 

a dynamic range ±1 g, a sensitivity of 10 V/g and an operating temperature range of 

−20°C70ºC. Accelerometer and strong motion recorder were connected by cable. The 

final resolution of both sensor and analyser was 8 μg.  

As the force balance accelerometer was not enough to monitor the dynamic behaviour of the 

church in terms of mode shapes, only the global modal parameters (frequencies and damping 

coefficients) are analysed in this study. According to the results of a former OMA [21], the 

mode shapes of interest of the church are those associated with the towers movements, whose 

frequencies fall within the range 2 - 3 Hz. Thus, the signals were acquired with a sampling rate 

of 100 Hz every two hours. In detail, the first two modes are associated with in-phase bending 

modes of the towers in transversal and longitudinal directions, while the third and fourth 

frequencies correspond to out-of-phase bending modes [21]. To comply with the time window 

length requirements (i.e. acquisition time not less than 1000 - 2000 times the structure’s 

fundamental period), the total duration for the dynamic acquisition was fixed to 600 s. 



Moreover, to avoid undesirable harmonics in the signals, the recorder was set to start 

registering data after the hourly bells ring. 

4.2 Static monitoring: results and discussion 

The analysis of the static monitoring data embraces a period of 6 years (29/04/2009  

28/04/2016), involving a total number of 58993 events. This tool was employed to monitor the 

evolution of damage over years; to control the occurrence of unstable phenomena or further 

damage mechanisms before and during the structural intervention; and to understand whether 

ambient variables affect the statics of the system. The outcome is presented in two parts: the 

first part shows the results relevant to the period preceding the structural intervention, whereas 

the second part discusses the results obtained during and after the works. 

4.2.1. Static monitoring before the structural intervention 

Figure 4 shows the evolution of cracks opening and towers tilting before the works execution 

(04/2009  04/2014). As it can be seen, the cracks behaviour features a positive linear trend 

over years, meaning that the cracking pattern has not recovered but worsened with time, 

pointing out the need for corrective measures. The cracks width keeps increasing with an 

average opening rate of 0.1 mm/year, reading a higher growth rate for the exterior crack (CR2). 

Regarding the tilt data, it is noticed that both towers feature in-phase cyclic oscillations either 

in longitudinal (N/S) and transversal (E/W) directions with a common trend in leaning towards 

West-South. Greater oscillation amplitudes (responsible for the separation movements of the 

façade) are found for the western tower, reading maximum tilting values of 0.94 mm/m in West 

direction and 0.75 mm/m in South direction. These values describe relative displacements as 

the original inclination of the tower is unknown, but, assuming that the towers had no initial 

imperfection in verticality, the actual displacements can be derived from the 3D laser scanning 

conducted in 2014 [18]. Based on the surveyed points cloud, the tower featuring greater 

inclinations is always the western one, with tilting values of 5 mm/m in West direction and 3 



mm/m in South direction. Considering the towers as rigid bodies undergoing pure rotation 

about a fixed axis at the bottom of the foundation, the top displacements result equal to 0.26 m 

and 0.15 m in transversal and longitudinal directions, respectively, with rotation angles of 0.29° 

and 0.17°. Being these values within the threshold limits identified through the stability 

analysis of the tower [22], no alarm was issued but the visual appearance of the monument 

resulted compromised, calling for remedial measures.  

It is stressed that the structural performance of historic buildings can also be adversely affected 

by environmental conditions [23], [24]. As a rule, masonry expands when temperature rises 

and contracts when temperature falls. Thermal contraction on the material surface without a 

corresponding change in its interior temperature can cause a thermal differential and potentially 

lead to cracking. If cracks already exist, temperature fluctuations cause the cracks to open and 

close accordingly. In order to comprehend whether ambient variables may influence the 

damage scenario of the church, crack and tilt data are plotted along with temperature and 

relative humidity. The results are displayed in Figure 5, where the relationship between 

monitored quantities is expressed through the coefficient of correlation r. Unlike crack CR1, 

crack CR2 shows a higher environmental variability (Figure 5a-b), being located on the exterior 

side of the façade and therefore directly exposed to seasonal fluctuations of temperature and 

relative humidity. As the temperature goes down (warm-cold cycles), the crack width 

increases; as the temperature goes up (cold-warm cycles), the crack width decreases. From a 

physical viewpoint, this phenomenon is due to the cracks closure/opening associated with the 

thermal expansion/contraction of the masonry material with rising/decreasing temperature. 

Owing to the thermal inertia of the masonry walls, small phase shifts are also observed between 

temperature variation and CR2 trend. On the contrary, no correlation is found between crack 

growth rate and relative humidity. Concerning the towers oscillation (Figure 5c-f), a direct 

relationship with temperature fluctuations is remarked. The towers rotate towards North/East 



when temperature decreases and lean towards South/West when temperature increases. This 

phenomenon effects both towers, but the western tower is the one featuring a stronger 

temperature influence, reading values of r nearly equal to the unit. Although less strong (r < 

0.50), a direct correlation between towers tilting and relative humidity is found as well. 

4.2.2. Static monitoring during and after the structural intervention 

The evolution of cracks opening during and after the strengthening works is illustrated in 

Figure 6. It is highlighted that in the period ranging between the micro piling (June/July) and 

the beam underpinning (November/December) the crack meters record abrupt jumps, reading 

an increase of crack width of about 1.7 mm for CR2 and of nearly 1.4 mm for CR1. Although 

modern drilling techniques used for micro piling are very neat and do not produce any harm to 

structures, excessive vibrations in cohesionless soils can induce overall ground movements and 

propagate to the surface and adjacent areas. In the present case, the substantial cracks opening 

monitored during drilling operations is ascribed to the soil loosening originated from excessive 

ground disturbance. In fact, as the piling works stop and both towers and foundation anchoring 

systems become operating through the tie rods activation, the trend stabilises and the crack 

growth is arrested (Figure 6a).  

In what concerns the environmental effects on the damage pattern associated with the cracks, 

no relation is found with respect to seasonal variations of ambient parameters (Figure 6b-c). 

Yet, quite a strong correlation is registered between cracks opening and daily variations of 

environmental conditions (Figure 6d-e), especially in terms of temperature (r ≈ −0.81): when 

the temperature drops off, the material shrinks and the cracks width increases, whereas  when 

the temperature rises, the material expands and the cracks width decreases. As expected, the 

ambient fluctuations sensibly affect the damage pattern of the church during the works, being 

the cracks still active. On the contrary, after the activation of the anchoring systems and the 

injections of cracks, no further influence of ambient conditions on the cracking pattern is found.   



Analysing the tilt data (Figure 7), it is deduced that the towers movements do not feature any 

significant change of trend during the works execution, being the tilting rate steady throughout 

the intervention. Although the monitored time span was likely not enough to catch the tilting 

turnabout expected after the activation of the anchoring system, it is plausible that towers 

oscillations suffered much more from varying environmental conditions rather than other 

phenomena. This is confirmed by the plots in Figure 7 which show a significant correlation 

between towers tilting and air temperature (r > −0.95), much stronger than the one with relative 

humidity (r < 0.45).  

4.3 Dynamic monitoring: results and discussion 

The dynamic monitoring of Saint Torcato church was carried out in three campaigns performed 

between 11/02/2014 and 23/08/2015, collecting a total number of 4743 events (Table 2). Main 

objectives of the dynamic monitoring are the evaluation of the efficiency of the strengthening 

works and the analysis of the environmental effects on the system’s dynamics. 

The extraction of modal parameters is carried out through an automatic processing algorithm 

implemented in MATLAB [25] and based on the data-driven Stochastic Subspace 

Identification method (SSI-data) [8]. Particular attention is given to the choice of the model 

order since the selection of small system orders can hinder the identification of weakly excited 

modes, but the choice of inappropriate large system orders can result in the appearance of many 

spurious modes. For the present application, after testing different values of model order in the 

range 20-100, a maximum model order of 50 is chosen. To sort out stable poles (physical 

modes) characterized by nearly identical frequencies, damping coefficients and mode shapes, 

from mathematical poles (spurious modes) which tend to exhibit lack of coherence between 

these quantities, a clustering analysis is adopted [26]-[27]. The final physical modes are 

selected based on the fulfilment of two clustering criteria, i.e. the Frequency Assurance 

Criterion (FAC) and the Modal Assurance Criterion (MAC): 
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As only one measurement position is used for the dynamic monitoring, the MAC criterion is 

adopted as a relative modal amplitude comparison of the pole-weighted mode shape component 

identified in each iteration. Before starting the automatic estimation process, a pre-processing 

stage is carried out: first, signals are decimated with factor 5 and resampled at 20 Hz; then, a 

linear 7 sample leading and 10 sample lagging moving average is applied to remove spikes and 

drop-outs; lastly, the signals are de-trended and the undesired frequency components are 

filtered out through a 4th-order high-pass butterworth filter with cutoff frequency of 1Hz, 

followed by a 4th-order low-pass butterworth filter with cutoff frequency of 25Hz. This 

operation reduced the number of data points to 11800 and made the identification more 

accurate in the frequency range of interest (0-5 Hz). Although the total number of output 

channels recorded by the single force balance accelerometer was 3 (one per direction), the 

output signal in vertical direction is not considered due to low-amplitude acceleration response. 

The acquisition and data processing parameters adopted for the modal features extraction are 

summarized in Table 3. Note that control parameters and threshold values are established 

according to the results of a few events manually analysed via traditional Frequency Domain 

Decomposition (FDD) [28] and in compliance with the results of the previous OMA [21]. 

The datasets not matching the sorting criteria imposed by the control values are automatically 

discarded during the process. Notwithstanding this, a success rate of 93% is reached.  

The automated dynamic identification allowed to track the first four vibration modes of the 

church, which are the most important for the scope of the paper since they are associated with 

the towers movements (see Section 4.1). The statistics of the estimated modal parameters are 

given in Table 4 together with the ones concerning the environmental variables monitored 



during the same time span. The table includes mean value, standard deviation, coefficient of 

variation (CV) and extreme values (min, max) of each quantity. The magnitude of the ambient 

noise level is expressed by the Root Mean Square (RMS) of the two in-plane acceleration 

channels and is found to be rather low throughout the monitoring period (RMSavg = 0.004 mg), 

reading only a few peaks during the drilling execution (RMSmax = 0.045 mg). Unlike damping 

values, natural frequencies are much better estimated, being the corresponding standard 

deviations and coefficients of variation very low (σ = 0.01 Hz; CV < 0.6%).  

Figure 8a presents the evolution of the four identified natural frequencies from February 2014, 

two months before the works began, till August 2015, one month after the works were over. 

Although all data were pre-processed to improve the outcome of the modal estimation, the 

frequencies result quite scattered. In the authors’ opinion this might be the consequence of a 

low SNR due to the inadequacy of some of the dynamic system’s components, which 

unfortunately could not be upgraded. Notwithstanding that, there are a few aspects that can still 

be caught in the chart and are worth exposing. To help the interpretation of the results, the chart 

is repeated by overlapping both frequency and crack evolution and marking the main phases of 

the structural intervention (Figure 8b). It is observed that during the first monitoring campaign, 

which lasts till the casting of the reinforced concrete beams for the foundation underpinning 

(11/02/2014 – 21/11/2014), all natural frequencies feature a decreasing trend. As the structure 

was damaged and the cracks width was increasing, frequency downshifts are evident at this 

stage. But, when the anchoring system becomes operational, the structural stiffness begins to 

increase leading in turn to an increase of the frequency values, as evidenced by the results from 

the second (09/01/2015–15/04/2015) and third (21/07/2015–23/08/2015) monitoring 

campaigns. This outcome visibly reflects the structural improvement obtained with the adopted 

strengthening measures. Table 5 summarizes the average frequency values estimated before 

and after the activation of the anchoring system. The most significant changes concern the first 



two modes, whose frequencies increase up to 3.3% and 1.7%, respectively, after the 

intervention. A sample of two-month evolution of the natural frequencies relevant to these two 

modes is presented in Figure 9, together with the variations of ambient noise, temperature and 

relative humidity for the same period. Both modal frequencies show a moderate correlation 

with the daily variations of temperature and humidity, whereas no direct relationship is found 

with ambient noise during the works execution. Still, it cannot be excluded that the dependence 

of natural frequencies on air humidity is only apparent and mainly originates from the inverse 

correlation between humidity and temperature, which turns out to be the main driver behind 

the changes in the structural features. As cracks tend to close with rising temperature, the 

system results stiffer and this is ultimately reflected into the increase of the frequency values, 

being modal and physical parameters directly related. 

As mentioned before, the high level of background noise in the dynamic data combined with 

the low amplitude of the signals led to scattered frequencies, thus an accurate analysis of the 

ambient variability of the system’s frequencies over the entire monitoring period could not be 

performed but for the first frequency, being the one with the highest percentage upshift. Indeed, 

the plot of the frequency-temperature relationship for the first mode (Figure 10a) exhibits a 

clear variation of the regression line following the activation of the anchoring system, with the 

range of temperature variation being almost the same. Analogous considerations can be made 

concerning the frequency-humidity relationship (Figure 10b), even though the correlation 

between the two quantities is lower. Despite the scatter in the modal parameters estimation 

caused by the low SNR, the distinction between frequency values associated with damage and 

no-damage scenarios is appreciable. Both the arrangement of the frequency–temperature and 

frequency-humidity points before and after the anchors activation and the variation of the 

regression lines indicate that the observed frequency shifts are permanent, confirming that the 



adopted strengthening measures have been effective in restoring the sound condition of the 

church.   

5. Conclusions 

The paper has shown the importance of a monitored-based approach to the evaluation of the 

structural fitness of built cultural heritage. The added value that this key tool can bring to the 

investigation process on historic assets is exemplified through a real case-study structure, a 

masonry church in Portugal. Because of differential soil settlements, the building was affected 

by severe structural damage which needed to be contained. Thus, ad hoc strengthening 

measures were designed and put into practice. Before, during and after the intervention, the 

system’s response was tracked through structural monitoring. The static monitoring enabled to 

control the damage evolution over years, to check the occurrence of unstable phenomena 

during the consolidation works and to analyse the environmental variability of the structural 

behaviour. Complementary, the dynamic monitoring allowed to supervise the progress of 

damage and appraise the effectiveness of the structural intervention. It is evinced that, when 

efficiently implemented, monitoring-weighed approaches can unlock a great potential and play 

a leading role in terms of preventive conservation and maintenance of heritage structures. 
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Table 1 – Works schedule of the structural intervention in Saint Torcato church. 
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 Complementary works  Cracks injections   

 

  



Table 2 – Data collection campaigns of the continuous dynamic monitoring. 

Description Time Span Number of recorded events 

1st Campaign 11/02/2014 – 21/11/2014 3317 

2nd Campaign 09/01/2015 – 15/04/2015 1029 

3rd Campaign 21/07/2015 – 23/08/2015 397 

   

Total  4743 

 

  



Table 3 – Acquisition and data processing parameters for the automated modal identification. 

Parameters Description Value 

Acquisition parameters Sampling rate [Hz] 

Signal duration [s] 

Sampling interval [h] 

100 

600 

2 

Processing parameters 

  

State-space model order 

Decimation factor  

Frequency range [Hz] 

Damping range [%] 

FAC threshold  

MAC threshold 

Frequency control vector 

50 

5 

2.0 – 3.0 

0.1 – 5.0 

0.05 / 0.05 / 0.03 / 0.02 

0.90 

[2.13  2.58  2.82  2.95] 

 

  



Table 4 – Statistics of ambient variables and global modal parameters monitored from 

11/02/2014 to 23/08/2015. 

Results 
AT 

[°C] 

RH 

[%] 

RMS 

[mg] 

ω1 

[Hz] 

ξ1 

[%] 

ω2 

[Hz] 

ξ2 

[%] 

ω3 

[Hz] 

ξ3 

[%] 

ω4 

[Hz] 

ξ4 

[%] 

Average 16.55 68.22 0.004 2.15 1.47 2.61 1.55 2.84 1.46 2.94 1.38 

St. Dev. 5.25 15.69 0.003 0.012 0.48 0.013 0.47 0.012 0.46 0.01 0.42 

CV [%] 31.75 23.00 73.20 0.55 32.95 0.48 30.08 0.42 31.76 0.31 30.20 

Maximum 28.78 101.09 0.045 2.26 4.63 2.71 4.28 2.96 4.14 3.00 4.08 

Minimum 5.58 17.48 0.002 2.03 0.14 2.46 0.17 2.70 0.14 2.70 0.30 

 

  



Table 5 – Average frequency values before and after activating the tie rods of the foundation 

strengthening system. 

Mode  
Average Frequency [Hz] 

Δω [%] 
Before tie rods activation After tie rods activation 

1st Mode 2.12 2.19 + 3.3 

2nd Mode 2.59 2.64 + 1.7 

3rd Mode 2.83 2.85 + 0.9 

4th Mode 2.93 2.95 + 0.7 

 

  



  
(a) (b) 

 
(c) (d) 

  

Figure 1 – Church of Saint Torcato: (a) general view; (b) plan; (c) façade; and (d) East front. 
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Figure 2 – Structural damage in the church: (a) crack pattern of the façade and choir vault; (b) 

details of the cracks; and (c) possible collapse mechanism [18]. 

  



 
(a) 

 
(b) 

Figure 3 – Distribution of the monitoring systems: (a) static and (b) dynamic equipment.  
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Figure 4 – Static monitoring of cracks opening and towers tilting before the works execution 

(r and R2 indicate the coefficients of correlation and determination, respectively). 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 5 – Variation of cracks opening and towers tilting versus temperature (AT) and 

relative humidity (RH) before the works execution (the coefficient r indicates the correlation 

between crack or tilt data and ambient variables). 
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(a) 

 

  
(b) (c) 

  
(d) (e) 

Figure 6 – Static monitoring during and after the structural intervention: (a) evolution of 

cracks opening rate; variation of cracks width with respect to (b-c) seasonal and (d-e) daily 

fluctuations of temperature and relative humidity. 
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Figure 7 – Variation of towers tilting versus temperature (AT) and relative humidity (RH) 

during and after the works execution (the coefficient r indicates the correlation between tilt 

data and ambient variables). 
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(b) 

Figure 8 – Evolution of (a) the identified natural frequencies during the structural 

intervention and (b) comparison with the cracks evolution. 
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Figure 9 – Close-up of the time evolution of (a) ambient noise, relative humidity and air 
temperature with respect to (b) the natural frequencies of the first two modes of the church 

from 12/05/2014 till 23/07/2014. 
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(a) 

 

(b) 

Figure 10 – Variation of (a) frequency-temperature correlation and (b) frequency-humidity 

correlation for the first mode before and after the activation of the anchoring system. 

 

 

View publication statsView publication stats

https://www.researchgate.net/publication/316190919



