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Abstract. In this paper, a comparison between results furnished by a 3D FE upper bound limit analysis and experimental 
results for some reinforced masonry arches tested at the University of Minho (Portugal) is provided. While the 
delamination from arches support can be modelled only in an approximate way within limit analysis, the aim of the paper 
is to accurately reproduce the change in the failure mechanism observed in experimentation, due to the introduction of 
strengthening elements. Both experimental and numerical results showa clear change in the failure mechanism and in the 
corresponding ultimate peak load. A set of simulations is also performed on reinforced arches previously damaged, to 
investigate the role played by the reinforcement within a proper repairing procedure. Good correlation with experimental 
work and numerical simulations is achieved. 
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INTRODUCTION 

The need for designing an efficient and non-invasive reinforcement intervention is a key issue to all technicians 
involved in the reconstruction and rehabilitation of buildings before and after structural damage. The structural 
analysis and rehabilitation of masonry constructions represent one of the most challenging aspects related to the 
protection and the maintenance of ancient and historical buildings. 

Masonry arches and vaults representimportant constructive elements of ancient buildings all over the world. 
Additionally, many ancient arches and vaults are of considerable historical and architectural importance. 

Among innovate techniques to rehabilitate deteriorated structures, there has been an increasing interest in fibre 
composite materials, commonly known as fibre reinforced polymers (FRP). The specific application of FRP in 
construction is highly attractive and cost-effective due to durability improvement, reduced life-cycle maintenance 
costs and also savings from easier transportation and enhancement of on-site productivity. During the last decades, 
considerable efforts have been done into the FRP application and effectiveness as material to enhance local and 
global structural behavior, particularly when hazard events occur such as earthquake effects. 

The current paper deals with the experimental and numerical analysis of masonry arches reinforced with FRP 
strips at the intrados and at the extrados. 

As well known, limit analysis is a valuable alternative to expensive non-linear FE simulations and has been 
widely used for the analysis at failure of masonry structures [1]. The adoption of an upper bound approach combined 
with FEM seems particularly suited for the prediction of FRP–masonry behavior prone to collapse. The limit 
analysis approach used here is based on the use a perfectly-plastic material response for masonry and for the 
FRP/masonry interface, i.e. softening effect and limited ductility cannot be considered [2] and [3]. 

Comparisons with experimental evidence confirm that the limit analysis approach proposed represents a valuable 
tool for predicting failure mechanisms and collapse loads of masonry arches reinforced with FRP strips. 

The paper is organized as follows:2nd section describes the masonry arches characteristics, FRP glass materials 
(GFRP) used and the adopted experimental setup. The heterogeneous FE model adopted is outlined in the 3rdsection, 
wherealso numerical simulation results are critically discussed and compared with experimental data. Closing 
remarks are outlined in the last section. 
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EXPERIMENTAL SET-UP AND CONSTITUENT PROPERTIES 

In scale models are used for the experimentation. The purpose related with the use of scaled models is not to 
perform a scale analysis but rather to achieve a faster construction process and an easier testing setup. The quality of 
the results is not affected by not using similarity laws and the results remain valid for the use of numerical and 
analytical tools, with the restriction of not been able to extrapolate results directly to bigger, real arches. 

Twelve arches were built, using 59 brick courses and with a semicircular shape with a span of 1500 mm. The 
single ring thickness was equal to the brick height, 50 mm, (thickness/span  1/30) see Figure 1a. 

All arches were constructed over a wooden mould keeping constant intrados mortar joint thickness of 
approximately 10 mm. All arches were tested two weeks after its construction. Further construction details can be 
found in [4]. 

For easier reference the masonry arches were designated within the following nomenclature divided in four main 
categories: 

 Unreinforced arches, US-n 
 Localized reinforcement on unreinforced tested arches, LS-n 
 Continuous reinforcement at the extrados, CSE-n and 
 Continuous reinforcement at the intrados, CSI-n. 

The letter n stands for the sequential specimen’s number. A detailed description of all masonry arches tests is 
presented in Table 1; this table includes width of strips applied on each masonry reinforced arch. 

 
TABLE 1. Experimental summary of masonry arches tested. 

 
Specimen 

GFRP strip 
width , w (mm) 

Force, 
F (kN) 

Resistance 
increase 

(%)III 

Sustained 
displacement 

(mm) 
Intrados Extrados Maximum AverageII 

US-1 
US-2 

- 
- 

- 
- 

1.43 
1.92 1.68 - 0.5 

LS-1 
LS-2 

150.0 
150.0 

3.18 
2.73 2.96 76 0.9 

CSE-1 
CSE-2 

- 
- 

100.0 
100.0 

2.51 
3.82 3.17 89 15.5 

CSE-3 
CSE-4 

- 
- 

160.0 
160.0 

3.62 
3.26 3.44 105 28.8 

CSI-1 
CSI-2 

100.0 
100.0 

- 
- 

4.26 
4.63 4.45 165 35.9 

ICSI-3 
ICSI-4 

100.0 
100.0 

- 
- 

5.41 
3.81 4.61 174 32.7 

I Handmade FRP-based spike anchors were used in addition to the FRP strips. 
II (US-1+US-2)/2 = Av 
IIIinc(%) = 100× (S-Av)/Av 
 
All masonry arches specimens were tested by means of a servo-controlled machine mounted with a 25 kN cell 

capacity; the jack was positioned at the middle of the arch width. The load was applied at the quarter span (lateral 
view), as shown in Figure 1.The arches without reinforcement failed through the formation of a typical four-hinge 
mechanism. Collapse occurred in a brittle fashion for very small displacements. All reinforcement arrangements 
tested led to an increase of the load bearing capacity, but localized reinforcement does not seem to be a suitable 
strategy as it does not change the initial failure mechanism. On the other hand, this particular masonry arches test is 
considered as the most representative real case study of retrofitting among all the variants analyzed in this work. 

For the masonry arches reinforced at the extrados, the first hinge was formed beneath the applied load, whereas 
the other two hinges appeared afterwards at the supports. Sliding of one part of the arch with respect to the other, 
along a mortar joint close to its support characterized the failure of this series due to insufficient shear resistance. 
Detachment of the FRP from the masonry substrate involving ripping of a thin layer of brick and mortar, as shown 
by post-mortem inspection, characterize the masonry arches reinforced at the intrados. Two of the hinges were 
formed at its supports and the third hinge appeared at the extrados opposite loading side, on the right half of the 
arch. Failure was determine by the successive detachment of the two strips. Reinforcement applied at the extrados 
provides the higher deformation capacity prior to failure, endowing arches with an important ductility behavior of 
this masonry arches reinforcement type. 
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limit analysis procedure adopted allows a fast and reliable estimation of both collapse loads and failure mechanisms, 
both in absence and presence of FRP strengthening in various configurations.It therefore may represent a valuable 
tool for all practitioners interested in an inexpensive estimation of the increase of the load carrying capacity that may 
be obtained with the introduction of a suitable strengthening intervention. 

 
(a) 

 
(b) 

FIGURE 2. Masonry arches. Numerical deformed shape at collapse in absence of reinforcement (a), and with continuous 
extrados reinforcement CSE-n (b). 

CLOSING REMARKS 

A heterogeneous FE limit analysis approach for the fast evaluation of collapse loads and failure mechanisms of 
FRP–reinforced masonry circular arches has been presented, basing on a huge amount of experimental results 
obtained at the University of Minho (Portugal).The aim of the present experimental and numerical investigation was 
focused on obtaining the following objectives: 
 Characterization of the structural behavior of unreinforced and reinforced masonry arches monotonically loaded, 

including the softening regime, which is usually absent from literature; 
 Assessment of the influence of the reinforcement arrangements on the mechanical behavior and failure mode in 

terms of load capacity, ductility, and failure modes; 
 Consistently reproduce the change in the failure mechanism observed inexperimentations due to the introduction 

of reinforcement elements, such as FRP, in presence of curved surfaces (i.e. where delamination strength may be 
variable [8]). 
The predictions provided by the FElimit analysis model proved to be effective and approximate reasonably well 

the experimental information. 
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