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Abstract

Quaternions, introduced by Hamilton in 1843 as a generalization of
complex numbers, have found, in more recent years, a wealth of appli-
cations in a number of different areas that motivated the design of effi-
cient methods for numerically approximating the zeros of quaternionic
polynomials. In fact, one can find in the literature recent contributions
to this subject based on the use of complex techniques, but numerical
methods relying on quaternion arithmetic remain scarce. In this paper
we propose a Weierstrass-like method for finding simultaneously all the
zeros of unilateral quaternionic polynomials. The convergence analy-
sis and several numerical examples illustrating the performance of the
method are also presented.

1 Introduction

The increasing interest in using quaternions and their applications in areas as diverse as number theory,
robotics, virtual reality or image processing (see e.g. [4, 10, 24, 25, 26]), motivated several authors to consider
extending well-known (complex) numerical methods, in particular root-finding methods, to the quaternion
algebra framework. However, the problem of finding the zeros of quaternionic polynomials turns out to be
much more demanding than the analogous problem over the real and complex fields. Niven, in his pioneering
work, [23], gave a first extension of the Fundamental Theorem of Algebra for the quaternion context, proving
that any quaternionic polynomial of positive degree whose coefficients are located only on one side of the
powers must have at least one quaternionic root. In the aforementioned paper, Niven also proposed a method
for computing the roots of such polynomials. This algorithm is, however, as stated by Niven a “not very
practical” one, due to the need of solving two coupled nonlinear equations for the determination of pairs of
real constants. Later, in [34], the authors, by making use of (a complexified version of) the companion matrix
of the polynomial, turned the ideas of Niven into what can be considered as the first really usable numerical
algorithm.

Nowadays, other quaternionic root-finding algorithms are available that essentially replace the problem of
computing the roots of a quaternionic polynomial of degree n, by the problem of determining the roots of a
real or complex polynomial of degree 2n (usually with multiple roots), relying in this way on algorithms for
complex polynomial root-finding (see [5, 17, 35] and the references therein). Several experiments performed
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2 Weierstrass method for quaternionic polynomial root-finding

by two of the authors of this paper ([8, 22]) have shown the substantial gain in computational effort that can
be achieved when using a direct quaternionic approach to this problem.

The Weierstrass method, also known in the literature as the Durand-Kerner method or Dochev method,
is one of the most popular iterative methods for obtaining simultaneously approximations to all the roots of a
given polynomial with complex coefficients (for a survey on most of the traditional methods for root-finding
we refer to [20]). The method was first proposed by Weierstrass in his famous work [37], where a semilocal
convergence analysis was also provided and later rediscovered and derived in different ways by Durand [7],
Dochev [6], Kerner [18] and Presić [29].

The main purpose of this paper is to present an adaptation of the Weierstrass method to the case of
quaternionic polynomials. By making use of the so-called Factor Theorem for quaternions we derive an
iterative method that shows fast convergence and robustness with respect to the initial approximations.

The paper is organized as follows: in Section 2 we review some basic results on the algebra of real
quaternions and on quaternionic polynomials; Section 3 contains the main results of the paper; after revisiting
the classical (complex) Weierstrass method we derive a generalization to the quaternionic case and prove,
under some natural assumptions, its quadratic order of convergence; in Section 4 we present several numerical
experiments illustrating the results obtained in Section 3; finally, in Section 5 we draw some conclusions and
indicate some future work.

2 Basic results on quaternions

In this section we present a brief summary on the main results on the algebra of real quaternions and on the
ring of polynomials over the quaternions needed in the sequel.

2.1 The algebra of real quaternions

Let {1, i, j,k} be an orthonormal basis of the Euclidean vector space R4 with a product given according to
the multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k.

This noncommutative product generates the well-known algebra of real quaternions H.
Given a quaternion q = q0 + q1i + q2j + q3k ∈ H, its conjugate q is defined as q = q0 − q1i− q2j− q3k;

the number q0 is called the real part of q and denoted by Re q and the vector part of q, denoted by Vec q,
is given by Vec q = q1i + q2j + q3k; the norm of q, |q|, is given by |q| =

√
qq =

√
q20 + q21 + q22 + q23 ; the

inverse of q (if q 6= 0), denoted by q−1 is the (unique) quaternion such that qq−1 = q−1q = 1 and is given by

q−1 =
q

|q|2
.

We say that a quaternion q is congruent to a quaternion q′, and write q ∼ q′, if there exists a non-zero
quaternion h such that q′ = hqh−1. This is an equivalence relation in H, partitioning H in the so-called
congruence classes. We denote by [q] the congruence class containing a given quaternion q. It can be shown
(see, e.g. [38]) that

[q] = {q′ ∈ H : Re q = Re q′ and |q| = |q′|} . (1)

It follows that [q] reduces to a single element if and only if q is a real number. If q = q0+q1i+q2j+q3k is not real,
its congruence class can be identified with the three-dimensional sphere in the hyperplane {(x0, x1, x2, x3) ∈
R4 : x0 = q0}, with center (q0, 0, 0, 0) and radius

√
q21 + q22 + q23 .

2.2 Ring of left quaternionic polynomials

Because of the noncommutativity of quaternion multiplication, one can consider different classes of polynomials
in one quaternion variable, depending on whether the variable commutes with the polynomial coefficients or
not. General polynomials in the indeterminate x are defined as finite sums of noncommutative monomials of
the form a0xa1 . . . xaj . In this work we restrict our attention to polynomials whose coefficients are located
only on the left-hand side of the powers of x, i.e. have the special form

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0, ai ∈ H; i = 0, . . . , n. (2)
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These polynomials are usually called in the literature one-sided or unilateral (left) polynomials. As usual, if
an 6= 0, we will say that the degree of the polynomial P (x) is n and refer to an as the leading coefficient of
the polynomial. When an = 1, we say that P (x) is monic . If the coefficients ai in (2) are real, then we say
that P (x) is a real polynomial and write P (x) ∈ R[x].

The set of polynomials of the form (2) is a ring with respect to the operations of addition and multiplication
defined as in the commutative case: for any two polynomials P (x) =

∑n
i=0 aix

i and Q(x) =
∑m
j=0 bjx

j ,

P (x) +Q(x) :=

max{m,n}∑
k=0

(ak + bk)xk,

P (x) ∗Q(x) :=

m+n∑
k=0

( k∑
j=0

ajbk−j

)
xk,

with the implicit assumption that ak = 0 for k > n and bk = 0 for k > m. We will denote this ring of
polynomials by H[x]. Naturally, due to the noncommutativity of the quaternionic multiplication, H[x] is a
noncommutative ring. However, if P (x) is a real polynomial, then P (x) commutes with any polynomial in
H[x].

We should also observe that the evaluation map at a given quaternion q, defined, for the polynomial P (x)
given by (2), by

P (q) = anq
n + an−1q

n−1 + · · ·+ a1q + a0,

is not a homomorphism from the ring H[x] into H. In fact, P (x) = L(x) ∗R(x) does not lead, in general, to
P (q) = L(q)R(q).

Remark 1. Since all the polynomials considered will be in the indeterminate x, we will usually omit the
reference to this variable and write simply P when referring to an element P (x) ∈ H[x], the expression P (q)
being preferably reserved for the evaluation of P at a specific value q ∈ H.

We say that a quaternion q is a zero of a polynomial P , if P (q) = 0, and we use the notation ZP to
denote the zero-set of P , i.e. the set of all the zeros of P . Since this work is concerned with the computation
of zeros of polynomials, there is no loss of generality in assuming that the polynomials are monic and we will
do so in what follows.

We now review some basic properties of unilateral (left) quaternionic polynomials needed in the sequel.
The next theorem shows a way of evaluating the product of two polynomials at a given quaternion, without

explicitly performing their product. The proof of the first two results can be seen in e.g. [19] and the last
result is a simple consequence of the definition of the product of polynomials and of the fact that any real
number commutes with a quaternion.

Theorem 1. Let P = L ∗R with L,R ∈ H[x], q ∈ H and h = R(q).

(i) If h = 0, then P (q) = 0 (i.e. if q is a zero of the right factor R, then q is also a zero of the product P ).

(ii) If h 6= 0, then
P (q) = L(q̃)R(q) with q̃ = hqh−1. (3)

In particular, if q is a zero of P that is not a zero of R, then q̃ is a zero of L.

(iii) If L ∈ R[x], then
P (q) = R(q)L(q). (4)

The following result, first proved by Gordon and Motzkin [14], can also be seen in [19].

Theorem 2 (Factor Theorem). Let P ∈ H[x] and q ∈ H. Then, q is a zero of P if and only if there exists
Q ∈ H[x] such that

P (x) = Q(x) ∗ (x− q).

In 1941, Niven [23] proved the Fundamental Theorem of Algebra for unilateral quaternionic polynomials,
establishing that any non-constant polynomial in H[x] always has a zero in H. More general results are
contained in the following theorem.
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Theorem 3. Let P be a monic polynomial of degree n (n ≥ 1) in H[x]. Then:

(i) P admits a factorization into linear factors, i.e. there exist x1, . . . , xn ∈ H, such that

P (x) = (x− xn) ∗ (x− xn−1) ∗ · · · ∗ (x− x1).

(ii) For the factor terms xi referred in (i), we have:

(a) ZP ⊆
n⋃
i=1

[xi].

(b) Each of the congruence classes [xi]; i = 1, . . . , n, contains (at least) a zero of P .

(iii) If
P (x) = (x− yn) ∗ (x− yn−1) ∗ · · · ∗ (x− y1)

is another factorization of P into linear factors, then there exists a permutation π of (1, 2, . . . , n) and
hi ∈ H; i = 1, . . . , n, such that

yπ(i) = hixih
−1
i .

The first result in the above theorem is an immediate consequence of the Fundamental Theorem of Algebra
for quaternionic polynomials and of the Factor Theorem; the proof of the other results can be found in [19]
and [35].

Given a polynomial P (x) =
∑n
k=0 akx

k, its conjugate polynomial , denoted by P (x), is given by

P (x) =

n∑
k=0

akx
k.

It is very simple to verify that, for all P,Q ∈ H[x]:

P ∗Q = Q ∗ P ,
P ∗ P ∈ R[x] and P ∗ P = P ∗ P.

To each quaternion q, we will associate the following polynomial

Qq(x) := (x− q) ∗ (x− q) = x2 − 2 Re q x+ |q|2,

called the characteristic polynomial of q. Since the characteristic polynomial of q only depends on the real
part and norm of q and recalling (1), we immediately conclude that Qq = Qq′ if and only if [q] = [q′]. Note
that Qq is a quadratic polynomial with real coefficients. It can also be shown that the zero-set of Qq is the
congruence class of q, i.e. ZQq

= [q]; see, e.g. [38]. This result already shows that, in what concerns the
number of zeros, polynomials in H[x] can behave very differently from complex polynomials: a polynomial in
H[x] can have an infinite number of zeros. However, as Theorem 3 shows, the zeros of a polynomial of degree
n belong to, at most, n congruence classes in H.

The zeros of an unilateral quaternionic polynomial can be of two distinct types, the so-called isolated zeros
and spherical zeros, whose definitions we now recall. Let q be a zero of a given polynomial P . We say that q
is an isolated zero of P if the congruence class of q contains no other zero of P . If q is not an isolated zero
of P , we call it a spherical zero of P . Note that, according to the definition, real zeros are always isolated
zeros. The next theorem gives conditions under which a nonreal zero is a spherical zero (see e.g. [28]).

Theorem 4. Let q be a nonreal zero of a given polynomial P ∈ H[x]. Then, q is a spherical zero of P if and
only if any of the following equivalent conditions hold:

(i) q and q are both zeros of P .

(ii) [q] ⊆ ZP .

(iii) The characteristic polynomial of q, Qq, is a divisor of P , i.e. there exists a polynomial Q ∈ H[x] such
that P = Q ∗ Qq.

Recalling that the congruence classes of nonreal quaternions can be identified with spheres, condition (ii)
justifies the choice of the term spherical to designate this type of zeros. When q is a spherical zero, we also
say that q generates the sphere of zeros [q].



M.I. Falcão, F. Miranda, R. Severino and M.J. Soares 5

3 The Weierstrass method in H[x]

Let P be a complex monic polynomial of degree n with roots ζ1, . . . , ζn and let z
(0)
1 , . . . , z

(0)
n be n given

distinct numbers. The classical Weierstrass method for approximating the roots ζi is defined by the iterative
scheme:

z
(k+1)
i = z

(k)
i − P (z

(k)
i )

n∏
j=1
j 6=i

(z
(k)
i − z(k)j )

; i = 1, . . . , n; k = 0, 1, 2, . . . (5)

If the roots ζ1, . . . , ζn are distinct and z
(0)
1 , . . . , z

(0)
n are sufficiently good initial approximations to these roots,

then the method converges at a quadratic rate, as was firstly proven by Dochev [6]. A complete history and
an improvement of Dochev’s theorem can be found in [32] (see also [31, Sect. 6]). For multiple roots, the
method still converges (locally) but the quadratic convergence is lost; see e.g. [11].

Formula (5) is performed in parallel mode and is often called the total-step mode. The convergence
of the method can be accelerated by using a different variant that makes use of the most recent updated
approximations to the roots as soon as they are available, as follows:

z
(k+1)
i = z

(k)
i − P (z

(k)
i )

i−1∏
j=1

(z
(k)
i − z(k+1)

j )

n∏
j=i+1

(z
(k)
i − z(k)j )

; i = 1, . . . , n; k = 0, 1, 2, . . .

The above variant of the Weierstrass method is usually referred to as the serial , sequential or single-step mode
(see [1] and references therein).

3.1 A quaternionic Weierstrass-like scheme

Our purpose is to adapt the idea of the Weierstrass method to the computation of the zeros of quaternionic
polynomials. So let P be a given monic polynomial of degree n in H[x]. Corresponding to the assumption
imposed in the complex case to guarantee the quadratic convergence of the method – i.e. that the zeros
of the polynomial are simple – we will now assume that the polynomial P has n distinct isolated roots. By
analogy with the complex case, in this situation, we will still say that P has only simple roots. As stated in
the previous section, P can be factorized in the form

P (x) = (x− xn) ∗ (x− xn−1) ∗ · · · ∗ (x− x1), (6)

with the factor terms xi ∈ H. For simplicity, we introduce the following convenient notation, which we borrow
and adapt from [12],

m∏
∗
i=k

(x− αi) := (x− αm) ∗ (x− αm−1) ∗ · · · ∗ (x− αk).

Remark 2. Note that the order of the factors, due to the noncommutativity of the product in H[x], is
important. We also adopt the convention that

m∏
∗
i=k

(x− αi) := 1, whenever k > m.

We first present a simple lemma, relating the roots of P with the quaternions involved in any of its
factorizations.

Lemma 1. Let P be a (monic) polynomial of degree n in H[x] with simple roots and let (6) be one of its
factorizations. Then:

(i) The congruence classes of the elements xj ; j = 1, . . . , n, in (6) are distinct.
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(ii) The roots ζ1, . . . , ζn of P can be obtained from the quaternions x1, . . . , xn as follows:

ζi = Ri(xi)xi
(
Ri(xi)

)−1
; i = 1, 2, . . . , n, (7)

where Ri are the polynomials given by

Ri :=

i−1∏
∗
j=1

(x− xj). (8)

Proof. The fact that the congruence classes [xj ]; j = 1, . . . , n, are distinct is an immediate consequence of the
results in Theorem 3 and of the assumption that P has only simple roots, i.e. it has exactly n isolated roots.
The proof that the roots of P are given by (7) is a simple adaptation of the proof of [19, Proposition 16.3].

Following the idea of the Weierstrass method in its sequential version, we will now show how to obtain
sequences converging, at a quadratic rate, to the factor terms in (6) of a given polynomial P . Then, we will
show how these sequences can be used to estimate the zeros of P .

Theorem 5. Let P be a polynomial of degree n in H[x] with simple roots and, for i = 1, . . . , n; k = 0, 1, 2, . . .,
let

z
(k+1)
i = z

(k)
i −

(
L(k)
i ∗ P ∗ R

(k)
i

)
(z

(k)
i )

(
Q(k)
i (z

(k)
i )
)−1

, (9)

where

L(k)
i (x) :=

n∏
∗

j=i+1

(
x− z(k)j

)
, (10)

R(k)
i (x) :=

i−1∏
∗
j=1

(
x− z(k+1)

j

)
(11)

and

Q(k)
i (x) :=

i−1∏
j=1

Q
z
(k+1)
j

(x)

n∏
j=i+1

Q
z
(k)
j

(x), (12)

with Qq denoting the characteristic polynomial of q. If the initial approximations z
(0)
i are sufficiently close to

the factor terms xi in a factorization of P in the form (6), then the sequences {z(k)i } converge quadratically
to xi.

Proof. Let z
(k)
i be approximations to xi with errors ε

(k)
i , i.e.

ε
(k)
i := xi − z(k)i ; i = 1, . . . , n, (13)

and let
ε(k) := max

i
|ε(k)i |.

We assume that ε(k) is small enough, i.e. that z
(k)
i are sufficiently good approximations to xi. We want to

show that the next iterates z
(k+1)
i are approximations to xi with errors ε

(k+1)
i such that

ε
(k+1)
i = O

(
(ε(k))2

)
.

We will do this by induction on i. For simplicity, we will omit the iteration superscript (k), writing simply zi
for z

(k)
i , εi for ε

(k)
i ,Li for L(k)

i etc. and will replace the superscript (k + 1) by a tilde symbol, using z̃i for

z
(k+1)
i , ε̃i for ε

(k+1)
i , etc.

Step 1: We first prove that the result is true for i = 1, i.e. that we have ε̃1 = O(ε2).
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By making use of (13), we can rewrite the polynomial P (x) as

P (x) =

n∏
∗
j=1

(x− xj) =

n∏
∗
j=2

(x− zj − εj) ∗ (x− z1 − ε1)

=
( n∏
∗
j=2

(x− zj) + E1(x)
)
∗ (x− z1 − ε1),

where E1(x) designates a remainder polynomial consisting of a sum of n− 1 terms of the form

−(x− zn) ∗ · · · ∗ (x− zj−1) ∗ εj ∗ (x− zj+1) ∗ · · · ∗ (x− z2),

(j = 2, . . . , n) with terms with ∗-products involving at least two εj ’s. By using the definition (10) of the
polynomial L1, we can write P (x) in the following form

P (x) =
(
L1(x) + E1(x)

)
∗ (x− z1 − ε1)

= L1(x) ∗ (x− z1 − ε1) + E1(x) ∗ (x− z1 − ε1).

Let L1 be the conjugate of L1, and note that L1 ∗ L1 is precisely the real polynomial Q1 defined by (12).
Hence, if we multiply P (x) on the left by L1 and evaluate the resulting polynomial at the point x = z1, we
obtain, recalling the results (3) and (4) in Theorem 1,(

L1 ∗ P
)
(z1) = −ε1Q1(z1)−

(
L1 ∗ E1

)
(ẑ1) ε1,

where ẑ1 = ε1z1ε
−1
1 . Observing that we may assume that we are working in a bounded domain D of H (a

sufficiently large disk containing all zi) and recalling the definition of E1, it is easily seen that we have

E1(α) = O(ε), ∀α ∈ D

and therefore (
L1 ∗ P

)
(z1) = −ε1Q1(z1) +O(ε2).

Since we are assuming that the congruence classes [xj ] are distinct, then, for sufficiently small ε, |Q1(z1)| is

bounded away from zero and so, by multiplying both sides of the above equality on the right by
(
Q1(z1)

)−1
,

we obtain (
L1 ∗ P

)
(z1) (Q1(z1))

−1
= −ε1 +O(ε2),

or, in other words (cf. (13)),

x1 = z1 −
(
L1 ∗ P

)
(z1) (Q1(z1))

−1
+O(ε2),

which means that the next approximation to x1

z̃1 = z1 − (L1 ∗ P )(z1)
(
Q1(z1)

)−1
is such that

ε̃1 = x1 − z̃1 = O(ε2).

Step i: We now assume that, for j = 1, . . . , i− 1, z̃j approximates xj with an error ε̃j such that ε̃j = O(ε2)
and prove that z̃i is also an O(ε2) approximation to xi.

Using the polynomials

Li(x) =

n∏
∗

j=i+1

(x− xj) and Ri(x) =

i−1∏
∗
j=1

(x− xj)
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we can write

Li(x) =

n∏
∗

j=i+1

(x− zj − εj) =

n∏
∗

j=i+1

(x− zj) + Ei(x) = Li(x) + Ei(x) (14)

and

Ri(x) =

i−1∏
∗
j=1

(x− z̃j − ε̃j) =

i−1∏
∗
j=1

(x− z̃j) + Ẽi(x) = Ri(x) + Ẽi(x), (15)

where Ei and Ẽi are remainder polynomials defined in an analogous manner to E1, with the obvious modifica-
tions. Note that Ei is a sum of terms, all of which involve at least the product by a εj (j ∈ {i + 1, . . . , n})
and Ẽi a sum of terms, all of which involve at least the product by an ε̃j (j ∈ {1, . . . , i− 1}). Therefore

Ei(α) = O(ε) and Ẽi(α) = O(ε2), ∀α ∈ D.

Hence the polynomial P can be written as

P (x) = Li(x) ∗ (x− xi) ∗Ri(x) =
(
Li(x) + Ei(x)

)
∗ (x− zi − εi) ∗

(
Ri(x) + Ẽi(x)

)
.

Multiplying both sides of the last equality on the left by Li and on the right by Ri and evaluating at
x = zi, we obtain(
Li ∗ P ∗ Ri

)
(zi) =

(
Li ∗ Li ∗ Ri ∗ Ri ∗ (x− zi − εi)

)
(zi) +

(
Li ∗ Ri ∗ Ri ∗ Ei ∗ (x− zi − εi)

)
(zi)

+
(
Li ∗ Li ∗ (x− zi − εi) ∗ Ẽi ∗ Ri

)
(zi) +

(
Li ∗ Ei ∗ (x− zi − εi) ∗ Ẽi ∗ Ri

)
(zi),

where we made use of the fact thatRi∗Ri is a real polynomial and hence commutes with any other polynomial.
Observing that Li ∗ Li ∗ Ri ∗ Ri is the real polynomial Qi, using again the results (3) and (4) in Theorem 1
and having in mind the form of the remainder polynomials Ei and Ẽi, we can write(

Li ∗ P ∗ Ri
)
(zi) = −εiQi(zi)−

(
Li ∗ Ri ∗ Ri ∗ Ei

)
(ẑi)εi +O(ε2)

= −εiQi(zi) +O(ε2), (16)

where ẑi = εiziε
−1
i . Multiplying by (Qi(zi))

−1 on the right and observing, once more, that |Qi(zi)| is
bounded away from zero, we obtain(

Li ∗ P ∗ Ri
)

(zi) (Qi(zi))
−1

= −εi +O(ε2)

or, equivalently, recalling the definition of the errors εi,(
Li ∗ P ∗ Ri

)
(zi) (Qi(zi))

−1
= zi − xi +O(ε2)

showing that
z̃i = zi −

(
Li ∗ P ∗ Ri

)
(zi) (Qi(zi))

−1

is an O(ε2) approximation to xi, which is precisely the result that we wanted to establish.

Remark 3. We should observe that, for each i = 1, . . . , n, formula (9) for the computation of the ap-

proximation z
(k+1)
i to xi involves the polynomials R(k)

i and Q(k)
i which make use of the already computed

z
(k+1)
1 , . . . , z

(k+1)
i−1 , i.e. the method here described can be seen as a generalization of the sequential version of

the Weierstrass method. A careful analysis of the proof, namely the deduction of formula (16), shows that the

use of the updated z
(k+1)
j ; j = 1, . . . , i− 1, when computing z

(k+1)
i , is essential for establishing the quadratic

order of convergence of the method.

We now show how, with some additional little effort, one can use the iterative scheme (9)–(12) to produce,
not only the factor terms, but also the roots of the polynomial.
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Theorem 6. Let P be a monic polynomial of degree n in H[x] with simple roots and let {z(k)i } be the
sequences defined by the Weierstrass iterative scheme (9)–(12) under the assumptions of Theorem 5. Finally,

let {ζ(k)i } be the sequences defined by

ζ
(k+1)
i := R(k)

i (z
(k+1)
i ) z

(k+1)
i

(
R(k)
i (z

(k+1)
i )

)−1
; k = 0, 1, 2, . . . , (17)

where R(k)
i are the polynomials given by (11). Then, {ζ(k)1 }, . . . , {ζ

(k)
n } converge quadratically to the roots

of P .

Proof. We start by first recalling that the roots ζi; i = 1, . . . , n, of P are related to xi in (6) through (7), i.e.

ζi = Ri(xi)xi
(
Ri(xi)

)−1
; i = 1, . . . , n,

with Ri defined by (8).

Next, denote by ε
(k+1)
i the errors in the approximations z

(k+1)
i to xi and let ε(k+1) := maxi |ε(k+1)

i |. We
will show that

ζ
(k+1)
i = ζi +O(ε(k+1)).

This, conjugated with the results of Theorem 5, will prove the assertion of the theorem.

Similarly to what we did in the proof of Theorem 5, we will simply write z̃i for z
(k+1)
i , ε̃i for ε

(k+1)
i , ε̃

for ε(k+1), ζ̃i for ζ
(k+1)
i and Ri for R(k)

i . Taking into account that the polynomials Ri in (8) are exactly the
same polynomials presented in (15), we can write

Ri(x) = Ri(x) + Ẽ i(x)

and therefore

Ri(xi) = Ri(xi) +O(ε̃).

Expressing Ri(x) in the expanded form
∑i−1
j=1 r̄jx

j , it follows at once that

Ri(xi) = Ri(z̃i + ε̃i) +O(ε̃) = Ri(z̃i) +O(ε̃). (18)

Combining the fact that both |Ri(xi)| and |Ri(z̃i| are bounded away from zero with the result (18), we can
conclude that (

Ri(xi)
)−1

=
(
Ri(z̃i)

)−1
+O(ε̃). (19)

Finally, result (7) together with (18), (19) and the assumption (17) gives

ζi = Ri(xi)xi
(
Ri(xi)

)−1
=
(
Ri(z̃i) +O(ε̃)

)(
z̃i + ε̃i

)((
Ri(z̃i)

)−1
+O(ε̃)

)
= Ri(z̃i) z̃i

(
Ri(z̃i)

)−1
+O(ε̃)

= ζ̃i +O(ε̃),

which is precisely the result we want to prove.

3.2 Computational details

We now summarize the proposed algorithm for computing the roots of a given quaternionic unilateral polyno-
mial P of degree n and make some practical comments regarding its implementation.



10 Weierstrass method for quaternionic polynomial root-finding

Quaternionic-Weierstrass algorithm

Input:

- polynomial coefficients

- initial values z
(0)
i

- error tolerances ε1, ε2

- maximum number of iterations kmax

1. Set ζ
(0)
i = z

(0)
i

2. For k = 1, 2, . . . until Stopping Criterion is true

(a) Compute z
(k)
i , by means of (9)-(12).

(b) Compute ζ
(k)
i , by means of (17) and (11).

Stopping Criterion:
(

max
i

∣∣ζ(k)i − ζ(k−1)i

∣∣ < ε1 and max
i

∣∣P (ζ
(k)
i )
∣∣ < ε2

)
or k = kmax.

Ouput: Factors x̃i = z
(k)
i and roots ζ̃i = ζ

(k)
i .

Choice of initial approximations

In the classical case, Weierstrass method seems in practice to converge from nearly all starting points (see
[20] and the references therein for details). The numerical experiments that we have conducted also show the
robustness of the quaternionic version of the method in what concerns the choice of initial approximations. In
any case, there are some aspects that should be taken into account.

First, for formula (9) to be meaningful, a first requirement one has to have in mind when choosing the

initial approximations z
(0)
1 , . . . , z

(0)
n is that all of them belong to distinct congruence classes. This does not

necessarily guarantee that, in the course of the computations, two approximations do not fall into the same
congruence class, although this is very unlikely to happen. In such a case, a small perturbation of the initial
guesses should be sufficient to regain convergence.

Second, it is, naturally, convenient to select the initial approximations from a region where the xi in any
factorization of the polynomial P are known to lie. Since the xi and the roots ζi of P have the same norm,
bounds on |ζi| are also valid for |xi|. Moreover, since P (x) ∗ P (x) is a real polynomial1, whose roots ri also
have the same norm as the roots ζi of P (this is an immediate consequence of Theorem 2 in [35] and the
characterization of the congruence classes given by (1)), one can use any known result on bounds on (complex)
polynomial roots to obtain a region from where the initial approximations should be selected.

Non simple zeros

The proof of Theorem 5 was done under the assumption that the roots ζ1, . . . , ζn of the polynomial (6) are
simple, i.e. that [ζi] 6= [ζj ] for all i 6= j, or, equivalently, [xi] 6= [xj ] (cf. Lemma 1). When [xi] = [xj ] for some
i 6= j, the characterization of the zero-set of the polynomial can be done taking into account the following
two results.

Lemma 2. If x1, x2 ∈ H and h = x2 − x1, then

(x− x2) ∗ (x− x1) =

{
(x− h−1x1h) ∗ (x− h−1x2h), if h 6= 0

(x− x1) ∗ (x− x2), if h = 0.

Proof. The result follows by simple manipulation; see also [35] for a different, but equivalent result.

1The use of the polynomial P (x) ∗ P (x) goes back to the work of Niven [23].
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Lemma 3. Consider a quadratic polynomial factorized in the form

P (x) = (x− x2) ∗ (x− x1),

where x1, x2 ∈ H \ R and [x1] = [x2].

(i) If x1 6= x2, then the only zero of P is x1.

(ii) If x1 = x2, then x1 generates the sphere of zeros [x1], i.e. x1 is a spherical zero.

Proof. See e.g. [26].

The problem of finding a natural definition of multiplicity for zeros of quaternionic polynomials is a rather
complicated task and as a consequence one can find in the literature different (not always equivalent, see [9])
concepts of multiplicity [2, 3, 13, 26, 36]. In the case (i) above, we will say that x1 is a root with (isolated)
multiplicity equal to two. For example, the polynomials (x+ 1− i) ∗ (x+ 1 +k) and (x+ 1 +k) ∗ (x+ 1 +k)
both have ζ = −1− k as a root with multiplicity two.

Returning to the case of a general polynomial of degree n of the form (6), we consider, for simplicity, that
[xi] and [xj ] are the only non-distinct congruent classes. Using Lemma 2, we can freely move the factors
(x− xi) and (x− xj) to the right of the factorization without changing the set of congruence classes so that
in the new factorization

P (x) = (x− yn) ∗ (x− yn−1) ∗ · · · ∗ (x− y2) ∗ (x− y1) = Q(x) ∗ (x− y2) ∗ (x− y1)

we have [y1] = [y2]. Observe that all the roots of the n − 2 degree polynomial Q are simple and, therefore,
the complete characterization of the roots of P can be done applying Lemma 3 to the quadratic polynomial
(x− y2) ∗ (x− y1).

We considered the application of the quaternionic Weierstrass method to several examples of polynomials
having double (isolated) or spherical roots and, in all the cases, we have observed the following: when y1 is a
double isolated root (y1 6= y2), the behavior is analogous to the one observed in the classical case, i.e. the rate
of convergence drops to one; on the other hand, if y1 is a spherical root, the iterative scheme produces two
distinct roots ζ1 and ζ2 belonging to the congruence class [y1] and still shows a quadratic order of convergence.

4 Numerical examples

In this section we present several examples illustrating the performance of the quaternionic Weierstrass method
introduced in Section 3.

All the numerical experiments here reported were obtained by the use of the Mathematica add-on appli-
cation QuaternionAnalysis [21] designed by two of the authors of this paper for symbolic manipulation of
quaternion valued functions. A collection of new functions, including an implementation of the Weierstrass
method described in this paper, has been recently developed to endow the aforementioned package with the
ability to perform operations in the noncommutative ring of polynomials H[x].

Example 1. Our first test example is a polynomial which fulfills the assumptions of Theorem 6. In fact, it is
easy to see that the polynomial

P (x) = (x+ 2i) ∗ (x+ 1 + k) ∗ (x− 2) ∗ (x− 1) ∗ (x− 2 + j) ∗ (x− 1 + i), (20)

has only simple roots, namely

ζ1 = 1− i, ζ2 = 1, ζ3 = −1− 29
39 i + 14

39 j−
22
39k,

ζ4 = 2, ζ5 = − 224
113 i−

30
113k, ζ6 = 2− 2

3 i−
1
3 j + 2

3k.

Since, in this case, the polynomial roots ζi are known exactly, we replace the stopping criterion based on the
incremental size of the iterations by the following one:

ε(k) := max
i
{ε(k)i } < ε1, with ε

(k)
i := |ζ(k)i − ζπk(i)|,
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Table 1: Quaternionic Weierstrass method for Example 1

k ε
(k)
1 ε

(k)
2 ε

(k)
3 ε

(k)
4 ε

(k)
5 ε

(k)
6 ρ(k)

0 2.7 e−1 6.0 e−2 4.5 e−1 2.0 e−2 8.0 e−2 3.3 e−1 –
1 9.3 e−2 1.8 e−2 7.7 e−2 7.2 e−3 6.0 e−2 3.1 e−2 1.36
2 7.9 e−3 1.9 e−3 5.7 e−3 5.6 e−4 5.3 e−3 1.1 e−3 2.03
3 6.0 e−5 2.0 e−5 4.0 e−5 4.5 e−6 9.2 e−6 3.1 e−7 2.17
4 2.4 e−9 1.5 e−9 3.3 e−9 3.7 e−10 2.0 e−9 2.2 e−13 2.04
5 1.5 e−17 5.3 e−18 1.6 e−17 6.1 e−19 7.5 e−18 8.1 e−26 2.06

where πk is an appropriate permutation of {1, . . . , 6}. Here, we considered ε1 = ε2 = 10−16 and chose initial
approximations so that ε(0) ≤ 0.5.

The Weierstrass method applied to the extended form of P produced, after 5 iterations, the following
approximations to the factor terms (with 15 decimal places2)

x
(5)
1 = 1.(0)− 1.(0)i

x
(5)
2 = 1.(0)

x
(5)
3 = −1.(0)− 0.545454545454545i− 0.181818181818182j− 0.818181818181818k

x
(5)
4 = 2.(0)

x
(5)
5 = −1.587878787878788i− 0.911515151515152j + 0.804848484848485k

x
(5)
6 = 2.(0) + 0.133333333333333i + 0.093333333333333j− 0.986666666666667k

corresponding to the approximate roots

ζ
(5)
1 = 1.(0)− 1.(0)i

ζ
(5)
2 = 1.(0)

ζ
(5)
3 = −1.(0)− 0.743589743589744i + 0.358974358974359j− 0.564102564102564k

ζ
(5)
4 = 2.(0)

ζ
(5)
5 = −1.982300884955752i− 0.265486725663717k

ζ
(5)
6 = 2.(0)− 0.666666666666667i− 0.333333333333333j + 0.666666666666667k

It is interesting to observe that the approximations x
(5)
i to the factor terms lead to a factorization of P

different from (20), but of course in line with Theorem 3 (iii).

Table 1 contains the relevant information concerning the errors in the successive approximations ζ
(k)
i

(k = 0, . . . , 5, i = 1, . . . , 6) to the roots ζi of P . Estimates ρ for the computational local order of convergence
of the method, based on the use of (see e.g. [15] for details)

ρ ≈ ρ(k) :=
log ε(k)

log ε(k−1)

were also computed and are included in the last column of the table.
To illustrate Remark 3 we have also implemented the parallel version of Weierstrass method. In this case,

using the same initial guesses, 9 iterations were required to achieve the same precision. The results presented
in Table 2 clearly indicate the deterioration of the speed of convergence of this version of the method.

2The notation (0) after the decimal point represents a sequence of 15 zeros.
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Table 2: Parallel version of Weierstrass method for Example 1

k ε
(k)
1 ε

(k)
2 ε

(k)
3 ε

(k)
4 ε

(k)
5 ε

(k)
6 ρ(k)

0 2.7 e−1 6.0 e−2 4.5 e−1 2.0 e−2 8.0 e−2 3.3 e−1 –
1 9.3 e−2 2.3 e−2 8.6 e−2 5.9 e−3 5.3 e−3 9.8 e−2 3.26
2 1.7 e−2 4.4 e−3 2.8 e−2 2.0 e−3 2.0 e−2 3.3 e−2 1.47
3 1.0 e−3 4.3 e−4 3.1 e−3 3.1 e−4 2.9 e−3 4.2 e−3 1.60
4 5.0 e−5 1.9 e−5 1.5 e−4 1.2 e−5 2.4 e−4 3.0 e−4 1.48
5 2.2 e−7 1.1 e−7 2.1 e−6 1.0 e−7 7.0 e−6 7.9 e−6 1.44
6 4.5 e−10 2.2 e−10 5.6 e−8 2.5 e−10 6.0 e−7 1.9 e−6 1.12
7 2.5 e−13 1.2 e−13 9.4 e−11 2.0 e−13 1.2 e−8 8.6 e−9 1.39
8 1.6 e−18 1.6 e−18 1.6 e−15 3.7 e−18 2.4 e−12 3.0 e−12 1.45
9 2.0 e−25 1.7 e−25 7.9 e−21 5.5 e−25 1.5 e−17 2.3 e−17 1.44

Our next examples concern situations where the polynomials under consideration have zeros which are not
simple.

Example 2. The polynomial

P (x) = x4 + (−1 + i)x3 + (2− i + j + k)x2 + (−1 + i)x+ 1− i + j + k,

has, apart from the isolated zeros −i + k and 1 − k, a whole sphere of zeros, [ i ]. In this case, since the
spherical roots have the same real part and modulus, we replaced the stopping criterion used in the previous
example by the following one:

ε(k) = max{ε(k)R , ε
(k)
N } < 10−16,

where

ε
(k)
R := max

i
{|Re(ζ

(k)
i )− Re(ζπk(i))|} and ε

(k)
N := max

i
{
∣∣|ζ(k)i | − |ζπk(i)|

∣∣}.
Starting with an initial guess chosen so that ε(0) ≤ 0.15, we obtained, after 5 iterations, the following

approximations:

ζ
(5)
1 = 0.099934477851162i− 0.917198737816235j− 0.385693629043728k

ζ
(5)
2 = −0.799427021998164i− 0.519295977566198j− 0.302073044449043k

ζ
(5)
3 = 1.(0)− 1.(0)j

ζ
(5)
4 = −1.(0)i + 1.(0)k

The spherical root can be identified at once by observing that, up to the required precision, we have

[ζ
(5)
1 ] = [ζ

(5)
2 ], since Re ζ

(5)
1 = Re ζ

(5)
2 = 0 and |ζ(5)1 | = |ζ

(5)
2 | = 1.

The numerical details related to this example are displayed in Table 3. Here the numerical computations
have been conducted with the precision increased to 512 significant digits.

As we can observe from Table 3, the quaternionic Weierstrass method works, produces all the roots
simultaneously with machine precision and exhibits quadratic order of convergence. As expected, for the case
of the spherical root, we obtain convergence to two distinct members of the sphere of zeros.

Example 3. In our last example we address the problem of using Weierstrass method in cases where the
polynomial under consideration has multiple (isolated) roots. The polynomials

P (x) = (x− i) ∗ (x+ 1 + k) ∗ (x+ 1 + k) and Q(x) = (x− i) ∗ (x+ 1− i) ∗ (x+ 1 + k)
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Table 3: Weierstrass method for spherical roots - Example 2

k ε
(k)
1 ε

(k)
2 ε

(k)
3 ε

(k)
4 ρ(k)

0 1.3 e−2 7.1 e−2 7.6 e−2 1.3 e−1 –
1 6.3 e−3 4.5 e−2 6.1 e−3 1.1 e−2 1.52
2 1.2 e−4 9.8 e−4 1.4 e−3 9.7 e−5 2.11
3 9.6 e−8 1.1 e−6 2.6 e−6 1.8 e−8 1.96
4 9.2 e−12 6.1 e−11 1.6 e−11 1.0 e−15 1.83
5 1.4 e−22 9.7 e−22 4.9 e−21 8.0 e−31 1.99

Table 4: Weierstrass method for double roots - Example 3

P Q

ε(k) ρ(k) ε(k) ρ(k)

6.8 e−10 1.05 1.9 e−13 1.03
2.6 e−10 1.04 7.3 e−14 1.03
1.0 e−10 1.04 2.8 e−14 1.03
3.9 e−11 1.04 1.1 e−14 1.03
1.5 e−11 1.04 4.1 e−15 1.03
5.9 e−12 1.04 1.6 e−15 1.03
2.3 e−12 1.04 6.1 e−16 1.03
8.8 e−13 1.04 2.4 e−16 1.03
3.4 e−13 1.03 9.1 e−17 1.03

have one nonreal root with multiplicity one and −1− k as a double root. The approximations to the roots of
P obtained by the use of the quaternionic Weierstrass method are

ζ1 =− 1.(0)− 1.(0)k

ζ2 =− 0.230769230769231i− 0.307692307692308j− 0.923076923076923k

ζ3 =− 1.(0)− 1.(0)k

while, for the roots of Q, we obtained

ζ1 =0.333333333333333i− 0.666666666666667j− 0.666666666666667k

ζ2 =− 1.(0)− 1.(0)k

ζ3 =− 1.(0)− 1.(0)k

As we can observe from Table 4, the behavior of the quaternionic Weierstrass method is very similar to that
one observed for the classical complex case, where the rate of convergence is linear. This table shows ε(k) for
the last 9 iterations of the method together with ρ(k) for both polynomials.

5 Final Remarks

In this paper we proposed a generalization to the quaternionic context of the well-known Weierstrass method
for approximating all zeros of a polynomial simultaneously. Becuase of the structure of the zero-set of a
quaternionic polynomial, the claim that the method we have proposed produces all the zeros simultaneously,
requires an additional explanation. Assuming the convergence of the method to the roots ζ1, . . . , ζn of a
polynomial P of degree n, it is easy to identify ZP , once we test if each element of {ζ1, . . . , ζn} is an isolated
or a spherical zero of P (cf. Theorem 4).
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The quaternionic Weierstrass algorithm is entirely based on quaternionic arithmetic and shows fast conver-
gence for simple and spherical roots. We proved the quadratic convergence of the sequential iterative scheme,
under the assumptions that all the roots of the polynomial are simple, and presented numerical examples
supporting this fact. In [8], it was proved that the same rate of convergence can be achieved by quater-
nion versions of Newton’s method for the so-called radially holomorphic functions [16, p. 234]. None of the
polynomials presented in this section are radially holomorphic or are in the less restrictive conditions of [8,
Theorem 4]. As far as we are aware, the method proposed in this paper is the first numerical method entirely
based on quaternionic arithmetic for which we can observe theoretical and experimental results for general
unilateral quaternionic polynomials.

Several authors have described conditions for the safe convergence of the classical method depending only
on the initial approximations. The history of this problem can be found in [30, 31] (see also [33] and [27]).
This is a very interesting question that we intend to address in the near future, in the quaternionic case.

One can find in the literature several modifications to the classical Weierstrass method which improve the
speed of convergence to multiple roots (see e.g. [11]). It is also in our plans of research to consider adaptations
of such strategies.
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