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Stem Cell-Containing Hyaluronic
Acid-Based Spongy Hydrogels for
Integrated Diabetic Wound Healing

Lucilia Pereira da Silva'"?, Tircia Carlos Santos'?, Daniel Barreira Rodriguesm,
Rogério Pedro Pirraco'"?, Mariana Teixeira Cerqueira'”, Rui Lufs Reis'?, Vitor Manuel Correlo'” and
Alexandra Pinto Marques'

The detailed pathophysiology of diabetic foot ulcers is yet to be established and improved treatments are still
required. We propose a strategy that directs inflammation, neovascularization, and neoinnervation of diabetic
wounds. Aiming to potentiate a relevant secretome for nerve regeneration, stem cells were precultured in
hyaluronic acid-based spongy hydrogels under neurogenic/standard media before transplantation into diabetic
mice full-thickness wounds. Acellular spongy hydrogels and empty wounds were used as controls. Re-
epithelialization was attained 4 weeks after transplantation independently of the test groups, whereas a
thicker and more differentiated epidermis was observed for the cellular spongy hydrogels. A switch from the
inflammatory to the proliferative phase of wound healing was revealed for all the experimental groups 2 weeks
after injury, but a significantly higher M2(CD1631)/M1(CD86™) subtype ratio was observed in the neurogenic
preconditioned group that also failed to promote neoinnervation. A higher number of intraepidermal nerve
fibers were observed for the unconditioned group probably due to a more controlled transition from the in-
flammatory to the proliferative phase. Overall, stem cell-containing spongy hydrogels represent a promising
approach to enhance diabetic wound healing by positively impacting re-epithelialization and by modulating

the inflammatory response to promote a successful neoinnervation.
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INTRODUCTION

Diabetic foot ulcerations (DFUs) are the major cause of
nontraumatic foot amputation worldwide (Edwards et al.,
2008). Many of these DFUs have associated diabetic
peripheral neuropathy that is responsible for an absent sense
of touch, pain, and/or temperature due to injured nerves
(Laverdet et al., 2015). Diabetic peripheral neuropathy in
combination with other factors such as persistent
inflammation, impaired re-epithelialization, misbalanced
metalloproteinases and tissue inhibitor metalloproteinases
levels, and reduced angiogenesis and blood flow have been
implicated in the hindered progression of diabetic wound
healing (Blakytny and Jude, 2009). Treatment of DFUs with
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advanced dressings composed of extracellular matrix (e.g.,
Integra, Integra LifeSciences) or comprising cells and growth
factors (e.g., Graftskin/Apligraf, Organogenesis; or Derma-
graft, Advanced BioHealing) has been shown to accelerate
wound closure (Mulder et al., 2014). Nonetheless, the
mechanisms that aid wound healing progression are not
clearly understood.

A correlation between DFU healing and diabetic periph-
eral neuropathy is yet to be established. This is potentially the
reason why neuropathy has not been directly targeted in the
development of new DFU therapies. So far some works (Kant
et al., 2015; Leal et al., 2015; Moura et al., 2014) have tar-
geted the reduced levels of neuromediators in diabetic
wounds by delivering neuromediators to the wounds, in
order to improve wound re-epithelialization. Others (Blais
et al., 2009; Caissie et al., 2006; Gingras et al., 2003) have
incorporated Schwann cells into skin tissue-engineered sub-
stitutes showing the increased number of nerve fibers,
enhanced nerve migration, nerve growth, and myelin sheath
formation in the grafted tissues. Despite these interesting re-
sults, the isolation and expansion of autologous human
Schwann cells for clinical application can be a challenge.
Stem cells have been posed as a potential alternative.
Nonhuman origin stem cells cultured with a neurogenic
cocktail or in coculture with dorsal root ganglia neurons
differentiated toward a Schwann cell phenotype display
typical functional characteristics of Schwann cells (Caddick
et al., 2006; Kingham et al., 2007; Mahay et al., 2008a,
2008b; Tomita et al, 2012). However, the actual
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differentiation of human-origin stem cells is still controversial
due to the coexpression of glial cell markers and the pro-
duction of neurotrophic factors by undifferentiated stem cells
(Brohlin et al., 2009; Park et al., 2010; Tomita et al., 2013;
Tondreau et al., 2004).

Gellan gum spongy hydrogels obtained from gellan gum
hydrogels have distinctive properties, including intrinsic cell
adhesive characteristics, that have proven beneficial in skin
tissue engineering (Cerqueira et al., 2014b; da Silva et al.,
2014a, 2014b). When combined with hyaluronic acid,
spongy hydrogels also exhibited hyaluronidase-mediated
biodegradation that resulted in hyaluronic acid content-
dependent neovascularization of ischemic mice hind limb
(da Silva et al., 2016). Moreover, an enhanced effect over the
neovascularization of excisional skin wound was observed
when microvascular endothelial cells and human adipose
stem cells (hASCs) were entrapped in gellan gum-hyaluronic
acid (GG-HA) spongy hydrogels (Cerqueira et al., 2014b).

In this context, we hypothesized that hASCs precondi-
tioned in neurogenic medium would acquire a Schwann
cell-like phenotype with the ability to release neurotrophic
factors, which are essential for nerve repair. Thus, hASCs
cultured within GG-HA spongy hydrogels in the selected
neurogenic conditioning medium would function as a neu-
rotrophic factor-producing platform, ultimately promoting
nerve formation in diabetic skin wounds. It was also envi-
sioned that the angiogenic HA fragments released from the
spongy hydrogels, associated with the hASCs’ capacity to act
as a modulator of inflammation, would have an extended
effect on balancing the inflammatory state of the wounds.
For this purpose, the neurotrophic secretome of hASCs
cultured in the standard and neurogenic media was
evaluated before entrapment within GG-HA spongy hydro-
gels. Stem cell-containing GG-HA spongy hydrogels pre-
cultured in standard and selected neurogenic conditioning
media were implanted in diabetic mice excisional skin
wounds, and the capacity of the generated constructs to
modulate inflammation and angiogenesis and promote neo-
innervation was assessed to confirm the potential of the
proposed approach to treat DFUs.

RESULTS
hASCs phenotype and secretome before and after
conditioning
In standard culture conditions, hASCs displayed the charac-
teristic mesenchymal stem cell phenotype; more than 90% of
the population expressed CD105, CD90, and CD73, and was
negative for the hematopoietic markers CD31, CD34, and
CD45 (Supplementary Table ST online). In addition, more
than 95% of the hASCs expressed immature (nestin) and
mature (glial fibrillary acidic protein, p75, and S100B) glial
cell markers (Supplementary Table S1 and Figure 1a), char-
acteristic of neurogenic lineages.

hASCs were preinduced to the neurogenic lineage with B-
mercaptoethanol (BME) followed by retinoic acid (RA)
exposure, and then induced to a Schwann cell-like pheno-
type with specific differentiation components and mitogens
such as glial growth factor-2, forskolin, platelet-derived
growth factor-AA, and basic fibroblast growth factor,
following a previously described method (Brohlin et al.,
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2009), described as neurogenic conditioning medium B.
Although this was our reference medium, cells kept prolif-
erating after the preinduction with BME and RA. Thus, to
achieve a cell population similarly exposed to BME and RA,
these factors were maintained during culture in the pres-
ence (medium A) and absence (medium C) of basic fibro-
blast growth factor, which is responsible for cell
proliferation (Figure 1b). Cells exposed to neurogenic con-
ditioning media A and C showed a more polarized
morphology in relation to cells cultured in standard and
conditioned medium B (Figure 1c). Moreover, when
cultured in neurogenic conditioning medium A, the number
of cells expressing CD105 and CD73 decreased, respec-
tively, to 75—85% and to 93% (Supplementary Table S1).
Independently of the neurogenic conditioning media, no
significant changes were observed regarding the expression
of the Schwann cell-associated markers nestin, glial fibril-
lary acidic protein, p75, and S100B (Supplementary
Table S1), which were already highly expressed by hASCs.
No significant alterations in the secretome of hASCs were
detected after the neurogenic conditioning (Figure 1d).
However, a tendency for a higher release of brain-derived
neurotrophic factor (55.56 + 30.00 to 31.33 + 18.85 pg/
ml) and ciliary neurotrophic factor (1.67 +0.23 to —1.17 +
0.31 ng/ml) from hASCs cultured in conditioning medium B,
and of glial cell-derived neurotrophic factor (47.50 =+
9.92—24.58 £ 3.82 pg/ml) from hASCs in conditioning
medium A, relative to unconditioned hASCs was observed
(Figure 1d).

The majority of the hASCs entrapped within GG-HA
spongy hydrogels were alive and distributed throughout
it, colonizing the whole structure along the culture
(Figure Te). Moreover, in the 3D spongy hydrogels, the
secretome of the hASCs cultured in the selected condi-
tioned medium A did not change in relation to uncondi-
tioned hASCs (Figure 1d).

Wound closure and re-epithelialization

Although wounds were still open 2 weeks after trans-
plantation (Figure 2a), within this period of time, the
percentage of wound closure for the GG-HA+hASCS-
conditioned to neurogenic medium A (condshASCs)
condition was higher (83.7 £ 11.2%) than for the GG-HA
(56.1 + 28.2%), GG-HA+hASCs (56.4 + 23.4%), and
control (48.6 £ 19.6%) groups (Figure 2b). As the majority
of the wounds were closed 4 weeks after transplantation,
wound closure quantification based on the macroscopic
images was not performed to avoid inaccurate measure-
ments. Wound re-epithelialization assessment 2 weeks after
injury revealed a thin layer of k5 expressing keratinocytes
migrating toward the wound center and a thick layer of k10
expressing keratinocytes in the margins for all the conditions
(Figure 2¢), characteristic of re-epithelialization. At 4 weeks,
a thin and fragile epidermis consisting of one to two layers
of keratinocytes was observed in the control and GG-HA
conditions. In contrast, the wounds treated with cell-
containing GG-HA spongy hydrogels presented a well-
organized and thicker epidermis with a high number of
proliferative keratinocytes in the basal layer, as determined
by ki-67 staining (Figure 2c and d).
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Figure 1. hASC phenotype and secretome. (a) Representative immunocytochemistry images of GFAP, ST00B, p75, and nestin expression. Nuclei were stained
with DAPI (blue). (b) hASCs were subjected to conditioning medium A (condshASC), B (condghASCs), or C (condchASCs) for 2 weeks. (c) Brightfield
representative images of hASCs morphology. (d) Amount of neurotrophic factors released by hASCs cultured in standard tissue culture polystyrene and within
GG-HA spongy hydrogels. Confocal microscopy representative images of () GG-HA spongy hydrogels microstructure and (f—h) hASCs cultured in GG-HA
spongy hydrogels for 21 days evidencing cell (f) distribution, (g) viability (calcein—green, propidium iodide—red), and (h) spreading (phalloidin—red, DAPI—
blue). Scale bar = 100 pm. BDNF, brain-derived neurotrophic factor; bFGF, basic fibroblast growth factor; BME, B-mercaptoethanol; CNTF, ciliary neurotrophic
factor; cond,hASC, human adipose-derived stem cells conditioned to neurogenic medium A; Forsk, forskolin; GDNF, glial cell-derived neurotrophic factor;
GFAP, glial fibrillary acidic protein; GGF-2, glial growth factor-2; GG-HA, gellan gum-hyaluronic acid; PDGF, platelet-derived growth factor; RA, retinoic acid.

Inflammatory host response

inflammatory exudate that infiltrated the GG-HA spongy

GG-HA spongy hydrogels were well integrated in the wound
site 2 weeks after transplantation (Figure 3 and  condition, but it was almost absent at week 4 (Figure 3 and

Supplementary Figure S1

online). The presence of an

hydrogels was observed at week 2 independently of the

Supplementary Figure S1), confirming the progression of the
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Figure 2. Wound closure and re-epithelialization 2 and 4 weeks after transplantation of GG-HA, GG-HA +hASCs, and GG-HA + condAhASCs into diabetic mice full-
thickness wounds. (a) Representative images of the wounds and (b) respective percentage of wound closure. Scale bar = 5 mm. Control corresponds to an empty wound.
(c) Representative immunohistochemistry images of k5, k10 (scale bar = 200 pm), and ki-67 (scale bar = 50 pm) expression in the wound center. Epidermis thickness
quantification in the wound center (d) 2 and (e) 4 weeks after transplantation. Each measurement represents the average for each animal, and the dashed line represents the
average of diabetic mice skin. On the top of the symbols is indicated the total of re-epithelialized wounds per analyzed animals. condahASCs, human adipose-derived stem
cells conditioned to neurogenic medium A; GG-HA, gellan gum-hyaluronic acid.
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healing cascade. Matrix deposition and organization was
improved in the presence of GG-HA spongy hydrogels less,
irregularly distributed collagen deposition was observed for
the control, whereas a more organized collagenous dermis
was observed for all the other conditions. Moreover, the
material was barely detected 4 weeks after injury, only small
fragments being perceived in the middle of the dermis
(Figure 3 and Supplementary Figure S1), which demonstrated
that the material degradation did not negatively influence
healing. The observed inflammatory infiltrate was largely
composed of macrophages (Figure 4a). Significantly higher (P
< 0.001) percentages of CD163™ anti-inflammatory macro-
phages were observed in nontreated wounds (21.63 =+
14.59%, control), in comparison with all the other conditions
(16.97 £ 12.79%, GG-HA+hASCs; 10.52 £+ 11.67%, GG-
HA+condahASCs) except for the higher percentage of
CD163" cells (28.06 + 19.39%) observed in the GG-HA
group (Figure 4b). Moreover, significantly lower (P < 0.001)
percentages were observed for GG-HA+cond,hASCs than
for the GG-HA and GG-HA+hASCs conditions, as well as for
GG-HA+hASCs in comparison with GG-HA. The presence of
CD86™ proinflammatory macrophages was also significantly
lower (P < 0.001) for all the groups (11.26 + 12.73%, GG-
HA; 11.82 + 16.24%, GG-HA+hASCs; 1.1 + 2.2%, GG-
HA+condAhASCs) relative to the control (24.49 £ 19.71%)
(Figure 4c). Moreover, significantly lower (P < 0.001) per-
centages were observed for GG-HA+condshASCs in com-
parison with GG-HA and GG-HA+hASCs. A significantly
higher (P < 0.05) CD163%/CD86" ratio was observed for
the wounds treated with GG-HA-+cond,hASCs in relation
to the control, demonstrating a switch from the inflammatory
to the proliferative phase of healing (Figure 4d).

Neovascularization and neoinnervation

Neovascularization was not very different among the tested
conditions (Figure 5a), except for the significantly higher (P <
0.001) vessel density observed for the GG-HA condition in
relation to the control, both at 2 and 4 weeks after trans-
plantation (Figure 5b).

The analysis of the expression of protein gene product 9.5
(Figure 6a) revealed that most of the nerves in the epidermis
of the control and GG-HA conditions were swollen and
discontinuous in opposition to the longer and continuous
nerves found in the epidermis of the wounds treated with
cell-containing GG-HA spongy hydrogels in particular for
the GG-HA-+hASCs group (Figure 6a). Moreover, a higher
number of intraepidermal nerve fibers were quantified in the
epidermis of the wounds of the GG-HA+hASCs group
(Figure 6b). A reduced presence of Remak bundles with
lower number of axons was also observed in the dermis of
the control condition in relation to the other groups
(Figure 6a).

DISCUSSION

Although in patients with nonassociated pathologies, the
origin of impaired skin healing is mainly caused by external
factors—most commonly infection and pressure—non-
healing diabetic skin wounds are further linked to specific
factors, such as persistent inflammation, impaired re-
epithelialization, misbalanced levels of metalloproteases,
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and tissue inhibitor metalloproteases (TIMPs), and reduced
angiogenesis and blood flow (Falanga, 2005). The use of stem
cells to treat diabetic wounds has been showing promise
(Heublein et al., 2015). Although the correlation between the
diabetic peripheral neuropathy (Pittenger et al., 2004), the
decline of angiogenic molecules (Beer et al.,, 1997;
Bruhn-Olszewska et al.,, 2012; Luo and Chen, 2005;
Quattrini et al., 2008; Thangarajah et al., 2009), and the
reduced endothelial progenitor cell proliferation and homing
to the injury site (Costa and Soares, 2013) is yet to be
established, it might be one way to explore the development
of new therapies. Considering this, the known hASC features
(Glenn and Whartenby, 2014; Wang et al., 2014), and our
previous results with hASCs-containing GG-HA spongy
hydrogels in terms of neovascularization of skin wounds
(Cerqueira et al., 2014a, 2014b), we propose an integrated
tissue engineering strategy that modulates inflammation and
angiogenesis, and promotes neoinnervation of diabetic
wounds.

The implantation of GG-HA spongy hydrogels into diabetic
mice full-thickness wounds elicited similar effects to those
previously observed by us in a nondiabetic excisional wound
model (Cerqueira et al., 2014a, 2014b). Fundamentally, GG-
HA spongy hydrogels accelerated wound closure in relation
to control, whereas the incorporation of hASCs, including in
the GG-HA+cond,hASCs condition considered in this work,
lead to an increase in the thickness of the neoepidermis
relative to the GG-HA. Considering the high number of
proliferative keratinocytes observed in the basal layer of the
fully stratified neoepidermis, this effect of the hASCs seems to
tackle one of the issues of diabetic keratinocytes, which,
although highly proliferative, fail to differentiate (Jude et al.,
2002; Usui et al., 2008), thus fostering re-epithelialization.
These results are in agreement with others that similarly
showed that stem cell-containing hydrogels accelerated
wound closure (Kim et al., 2016; Xu et al., 2013) and
increased neoepidermis thickness (Xu et al., 2013) in relation
to the control. The ability of GG-HA spongy hydrogels to
decrease the amount of macrophages in the wound site and
prompt a switch from the inflammatory to the proliferative
phase of wound healing was demonstrated by the higher ratio
of anti-inflammatory M2 (CD163") to proinflammatory M1
(CD86™) macrophages, encountered 2 weeks after injury.
From the few works that have focused on this analysis,
N-isopropylacrylamide hydrogels were also shown to signif-
icantly reduce, at days 5—7 after treatment, the amount of
CD86™ macrophages in Leprdb type Il diabetic mice exci-
sional wounds (Chen et al., 2015). Moreover, a diminished
incidence of mononuclear cells (Upadhyay et al., 2014), in
particular macrophages (Reyes-Ortega et al., 2015), has also
been observed in hydrogels with antioxidant and/or anti-
inflammatory properties. Hence, the observed progression
of the healing cascade in the GG-HA group seems to be
related to a direct effect of HA fragments on macrophages,
which was previously shown to activate an NF-kB/I-KBa.
autoregulatory loop in murine macrophages (da Silva et al.,
2015; Jiang et al., 2007; Noble, 1996), inducing that
phenotype switch. Interestingly, improved outcomes
were observed for the GG-HA+hASCs condition, as
demonstrated by the higher M2/M1 macrophage ratio in
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Figure 3. Representative H&E and Masson’s Trichrome images 2 and 4 weeks after transplantation of GG-HA, GG-HA +hASCs, and GG-HA + cond,hASCs
into diabetic mice full-thickness wounds. Control corresponds to empty wound. *GG-HA spongy hydrogel. Scale bar = 200 pm. condshASCs, human adipose-
derived stem cells conditioned to neurogenic medium A; GG-HA, gellan gum-hyaluronic acid; H&E, hematoxylin and eosin; MT, Masson’s trichrome.

relation to the GG-HA condition, evidencing an advanced
state of resolution of the inflammatory phase. To our knowl-
edge, this is the first reported evidence of additional macro-
phage polarization elicited by stem cells in hydrogels,
because the outcomes attained by other works (Chen et al.,
2015; Xu et al., 2013) were comparable with the respective
control. This can be explained by the capability of GG-HA
spongy hydrogels to support the adhesion of hASCs, poten-
tiating their modulatory secretome through the release of
inflammatory mediators, such as IL-6, granulocyte macro-
phage colony-stimulating factor, and prostaglandin E2, that
are known to play a role in the M1 to M2 switch (Glenn and
Whartenby, 2014). Furthermore, an even higher M2/M1
macrophage ratio was observed for the GG-
HA-+cond,hASCs condition. This can be related to residual
RA, used in the neurogenic conditioning medium, and which
has been used to suppress inflammation in chronic inflam-
matory diseases (Stevison et al., 2015). The accelerated
resolution of the inflammatory phase observed for the stem
cell-containing GG-HA spongy hydrogel groups relative to
the GG-HA condition is also in agreement with the dimin-
ished vessel density observed for those groups. Considering
the reduced angiogenesis and blood flow (Siperstein et al.,
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1968), the inactivation and diminished chemoattraction of
immune cells, and reduced release of inflammatory media-
tors (Bruhn-Olszewska et al., 2012; Maruyama et al., 2007;
Naghibi et al., 1987; Zykova et al., 2000) that lead to the
resolution of persistent inflammation in diabetic nonhealing
wounds, these results can be of major significance for the
development of improved therapies. The differentiation po-
tential of stem cells toward a Schwann cell-like phenotype is
a current subject of research due to the difficulties in isolating
and expanding human Schwann cells. However, the expres-
sion of Schwann cell phenotypic markers by hASCs and the
similar neurotrophic secretome (Brohlin et al., 2009; Park
et al.,, 2010; Tomita et al., 2013; Tondreau et al., 2004)
raises several issues regarding the differentiation of these cells
into a nerve-regenerating lineage. We postulated that the
conditioning of hASCs with neurogenic medium before
transplantation would benefit nerve repair mainly due to their
secretome, which was shown to be enriched in glial
cell-derived neurotrophic factor in 2D cultures. This was
however not confirmed in the precultured 3D spongy
hydrogels that correlate with the failure of our hypothesis
and the absence of a superior neoinnervation in the
GG-HA+condahASCs  condition.  Nonetheless,  higher
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Figure 4. Macrophage recruitment and polarization 2 weeks after transplantation of GG-HA, GG-HA +hASCs, and GG-HA + cond,hASCs into diabetic mice
full-thickness wounds. Control corresponds to empty wound. (a) Representative immunohistochemistry images against CD86 and CD163 (arrow heads)
and quantification of the percentage of (b) CD163" and (c) CD86™ cells, and (d) respective ratio. Each symbol represents the percentage of positive cells
quantified in each acquired image. On top of the symbols the total number of analyzed animals is identified (*P < 0.05, ***P < 0.001, relative to control). Scale
bar = 50 pm. condshASCs, human adipose-derived stem cells conditioned to neurogenic medium A; GG-HA, gellan gum-hyaluronic acid.

intraepidermal nerve fiber values were obtained in the
GG-HA+hASCs, in agreement with other works that similarly
reported the beneficial effects of stem cells in the treatment of
peripheral neuropathy (Fairbairn et al., 2015; Han et al,,
2015; Sowa et al., 2016). The differences observed between
the GG-HA+condahASCs and GG-HA+hASCs conditions
might be associated with the amount of neurotrophic factors
released by inflammatory cells that were reported to signifi-
cantly improve nerve repair (Elkabes et al., 1996; Hikawa
and Takenaka, 1996), demonstrating a beneficial effect in
modulating inflammation over axon regeneration (Benowitz
and Popovich, 2011).

Diabetic wound etiology requires a new therapeutic
approach. Herein we propose an integrated approach that
promotes healing but more importantly allows modulating
wound neovascularization and inflammation hyaluronic acid
that seems to positively impact neoinnervation.

MATERIALS AND METHODS

Preparation of hyaluronic acid-based spongy hydrogels
GG-HA spongy hydrogels were prepared from GG-HA hydrogels
after freezing and freeze-drying, as previously described with some
modifications (da Silva et al., 2014b) and indicated in the
Supplementary Materials and Methods online.

Cell isolation, culture, and neurogenic conditioning

hASCs were obtained from Hospital da Prelada (Porto, Portugal),
after patients” written, informed consent and under a collaboration
protocol with the 3B’s Research Group, approved by the ethical
committees of both institutions. Fat tissue was harvested from lip-
oaspirates of three independent healthy donors who underwent
abdominoplasties and processed to isolate hASCs, as previously
described (Cerqueira et al., 2013). Human NF1 Schwann-Like cells
(sNF96.2) were purchased from ATCC and routinely cultured under
the conditions defined by the company. Neurogenic conditioning
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Figure 5. Neovascularization 2 and 4 weeks after transplantation of GG-HA, GG-HA +hASCs, and GG-HA + cond,hASCs into diabetic mice full-thickness
wounds. (a) Representative images of 2 and 4 weeks' tissue sections immunostained against CD31 (arrow heads). Vessel density quantification (b) 2 and (c) 4
weeks after injury, based on CD31 staining. Each symbol represents the vessel density quantified in each acquired image. On top of the symbols the total

number of analyzed animals is identified (*P < 0.05, relative to control). Scale bar = 50 pm. condshASCs, human adipose-derived stem cells conditioned to

neurogenic medium A; GG-HA, gellan gum-hyaluronic acid.

was induced in hASCs at passage 1, as previously described (Brohlin
et al., 2009), with some modifications. Briefly, hASCs (2,000 cells/
cm?) were seeded on culture plates, and after overnight adhesion,
o-MEM (standard medium) containing T mM of BME (Life Technol-
ogies, UK) was added to the cells for 24 hours. Growth medium was
then replaced by a-MEM supplemented with 35 ng/ml of RA (Sigma)
for 72 hours. Cells were then cultured in a-MEM supplemented with:
(i) 126 ng/ml glial growth factor-2 (abcam), 14 pM of forskolin
(Sigma), 5 ng/ml of platelet-derived growth factor-AA (Peprotech), 10
ng/ml of basic fibroblast growth factor (Peprotech), 1T mM of BME,
and 35 ng/ml of RA; (ii) medium A without RA and BME; or (iii)
medium A without basic fibroblast growth factor. Media changes
were performed every 72 hours. Cell morphology was followed
using an inverted microscope (Axio Observer, Zeiss, Germany).

Diabetic full-thickness excisional wound model
The implantation procedure was approved by the Direccdo Geral de
Alimentacdo Veterindria, the Portuguese National Authority for
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Animal Health, and all the surgical procedures respected the na-
tional regulations and international animal welfare rules. Type |
diabetes was induced in male mice (CD1-ICR from Charles River,
France) by administration of multiple low doses (45 mg/kg) of
streptozotocin (Sigma), according to preexisting protocols (Furman,
2015; O'Brien et al., 2014). After establishing type | diabetes
(>250 mg/d! of glucose), animals were maintained for 3 weeks to
stabilize diabetes and neuropathy progression (Homs et al., 2011).
Mice were divided into 4 groups: (i) empty wound—control; (ii)
spongy hydrogels—GG-HA; (iii) spongy hydrogels with hASCs pre-
cultured in standard culture medium—GG-HA+hASCs; (iv) spongy
hydrogels with hASCs precultured in neurogenic conditioning me-
dium A—GG-HA+cond,hASCs. A total of 60 animals, 5 animals per
condition and per time point (2, 4, and 8 weeks), were used. A 9-mm
@ skin full-thickness excision was created and a donut-shaped 9-
mm silicone splint (ATOS Medical, Sweden) was placed around
the wound to minimize wound contraction. After transplantation of
the constructs, wounds were successively covered with Normigel,
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Tegaderm transparent dressing, and Omnifix. Animals were left to
recover and then kept with food and drinking water ad libitum.

Immunocytochemistry and immunohistochemistry

For immunocytochemistry, cells were incubated with rabbit
antihuman S100B (1:200, Dako, Denmark), mouse antihuman
nestin (1:50, R&D Systems), mouse antihuman p75 (1:50, Santa
Cruz), and mouse antihuman glial fibrillary acidic protein
(abcam, UK) primary antibodies overnight at 4 °C. For immuno-
histochemistry, rabbit antimouse CD31 (abcam), rabbit antimouse
CD86 (Bioss Antibodies), rabbit antimouse CD163 (Bioss Anti-
bodies), rabbit antimouse K5 (Covance), mouse antimouse K10
(abcam), rabbit antimouse ki67 (abcam), and protein gene prod-
uct 9.5 (abcam) were the primary antibodies used. Cells/sections
were then incubated with the secondary antibodies Alexa Fluor
488 or 594, or the universal Alexa Fluor secondary antibody from
the R.T.U. VECTASTAIN Elite ABC Kit (Vector Labs). The peroxi-
dase substrate kit (DAB, Vector Labs) was used according to the
manufacturer’s instructions. The Mouse on Mouse Detection kit
(Vector Labs) was used according to the manufacturer’s in-
structions for the protein gene product 9.5 identification. Nuclei
were stained with hematoxylin (BioOptica, Italy) or DAPI (Bio-
tium). Tissue sections were observed using an Axioimager Z1m
microscope (Zeiss) using Zen 2012 software or Microscope Leica
DM750 (Germany).

Quantification analysis

Wound closure, CD163 and CD86 positive cells, microvessel den-
sity, and intraepidermal nerve fiber quantification details are
included in Supplementary Materials and Methods.
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Figure 6. Neoinnervation of the
epidermis 8 weeks after
transplantation of GG-HA, GG-
. HA+hASCs, and GG-

' HA+ cond,hASCs into diabetic mice
full-thickness wounds. (a)
Representative immunohistochemistry
images against PGP 9.5 evidencing
nerve endings (arrow heads) and
Remak bundles (arrows) and
respective (b) intraepidermal nerve
fiber quantification. Each symbol
' represents the value of IENF quantified
for each animal, and the dashed line
represents |IENF average of diabetic
mice skin. Scale bar = 20 pm.
condahASCs, human adipose-derived
stem cells conditioned to neurogenic
medium A; GG-HA, gellan gum-
hyaluronic acid; IENF, intraepidermal
nerve fibers; PGP, protein gene
product.

GG-HA + condahASCs
A | % 3

Statistical analysis

GraphPad software was used to perform statistical analysis. Data
were analyzed by the Shapiro-Wilk normality test. Data with a
normal distribution were analyzed using one-way analysis of vari-
ance with Tukey’s posttest or Dunnett’s posttest; data that did not
follow a normal distribution were analyzed by the Kruskal-Wallis
test with Dunn’s multiple comparison posttest. Significance was set
to *P < 0.05, **P < 0.01, ***P < 0.001. Results are presented as
mean + standard deviation.
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