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A B S T R A C T

This review provides an overview of recent research on electrotechnologies applied to the valorization of
bioresources. Following a comprehensive summary of the current status of the application of well-known
electric-based processing technologies, such as pulsed electric fields (PEF) and high voltage electrical discharges
(HVED), the application of moderate electric fields (MEF) as an extraction or valorization technology will be
considered in detail. MEF, known by its improved energy efficiency and claimed electroporation effects (al-
lowing enhanced extraction yields), may also originate high heating rates – ohmic heating (OH) effect – allowing
thermal stabilization of waste stream for other added-value applications. MEF is a simple technology that mostly
makes use of green solvents (mainly water) and that can be used on functionalization of compounds of biological
origin broadening their application range. The substantial increase of MEF-based plants installed in industries
worldwide suggests its straightforward application for waste recovery.

1. Introduction

Food security and climate changes represent major concerns in the
XXI century. It is estimated that, in 2012, 12.5% of the global popu-
lation was undernourished, and this ratio increased to 15% in devel-
oping countries (FAO et al., 2012). Furthermore, the scarcity of re-
sources demands for a rational use of land, energy, chemicals/fertilizers
and water. Therefore, food security, climate changes, health and sus-
tainability issues jumped into the last decades’ political agenda and
public consciousness.

The multi-valorization of underused bioresources such as agro-food
wastes, forestry surplus, seaweeds or microalgae is therefore a desirable
approach to meet the bioeconomy challenges. In this line of thought,
using biomass as a sustainable renewable feedstock in biorefinery sys-
tems is crucial for the transition from a non-biodegradable fossil
carbon-based economy to a bio-based economy (Ekman et al., 2013).

1.1. Undervalued bioresources

Numerous products can be obtained and/or valorized from different
sources. Exploitable compounds or fractions may include proteins and
peptides, polysaccharides or oligosaccharides, fibers, gum exudates,
lipids, polyphenols, carotenoids and other secondary metabolites with
highly-valued bioactivity. A full (bio)chemical and nutritional char-
acterization and the identification of the relevant fractions for each

resource is the first step in most bioresources valorization strategies.
Most of the compounds or fractions of interest are intracellular, and
appropriate strategies for extraction, separation and further processing
of the different exploitable fractions need to be designed to allow a
financially and environmentally sustainable valorization of relevant
byproducts or wastes (Fig. 1). Target applications cover different sec-
tors such as food, feed, health, cosmetics, bioplastics, biomaterials or
(bio)chemicals. The residual final fraction can feed different conversion
systems of biorefineries such as fermentative processes (to produce high
added-value compounds, bioethanol, bioplastics and/or energy) or
thermochemical processes (pyrolysis) (ElMekawy et al., 2013).

Agro-food and forestry wastes, seaweeds and microalgae are bio-
mass-derived resources that can be valorized in a circular bio-based
economy approach. Food wastes can be divided according to their
source: from vegetable commodities and products or from animal
commodities and products; they can come from different stages in the
food chain including agricultural production, post-harvest handling and
storage, processing, distribution and consumption (Gustavsson et al.,
2011). In a report from 2011, FAO has estimated that ca. of 1.3 billion
ton of food losses and wastes are produced per year (Gustavsson et al.,
2011), coming most of them from vegetable sources (cereals, fruits and
vegetables, roots and tubers and oil crops and pulses). The dairy in-
dustry is responsible for the highest production of animal-sourced
foods, followed by meat and fish industries.

Lignocellulosic residues in biorefineries and green extraction

https://doi.org/10.1016/j.biortech.2018.01.068
Received 15 November 2017; Received in revised form 11 January 2018; Accepted 15 January 2018

⁎ Corresponding author.
E-mail address: rpereira@deb.uminho.pt (R.N. Pereira).

Bioresource Technology 254 (2018) 325–339

Available online 31 January 2018
0960-8524/ © 2018 Elsevier Ltd. All rights reserved.

T

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade do Minho: RepositoriUM

https://core.ac.uk/display/154275887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/09608524
https://www.elsevier.com/locate/biortech
https://doi.org/10.1016/j.biortech.2018.01.068
https://doi.org/10.1016/j.biortech.2018.01.068
mailto:rpereira@deb.uminho.pt
https://doi.org/10.1016/j.biortech.2018.01.068
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biortech.2018.01.068&domain=pdf


methods for phytochemicals from plant-based materials have been
widely studied subjects in the last years and were the aim of several
recent reviews (e.g.(Ameer et al., 2017; Gillet et al., 2017). Never-
theless, plant-based materials are also sources of other potentially ex-
ploitable compounds, including non-animal-sourced protein, enzymes,
polysaccharides (such as pectin or starches), essential oils, coloring or
flavoring agents and dietary fibers.

Animal-based wastes are usually rich in high quality proteins
(Marcet et al., 2016). They are also good sources of proteolytic enzymes
(e.g. pepsin and trypsin), collagen, gelatin, keratin, chitosan (from
shrimp or crab shells), polyunsaturated fatty acids (from fish oil) and
peptone (Baiano, 2014). Further specific applications include the use of
amino acids, hormones, fibrinogen, albumins, insulin, among others.
Lactic acid, oligosaccharides, peptides, proteins and lactulose represent
major compounds present in dairy wastes (Mirabella et al., 2014).

Seaweeds are important marine bioresources being used in human
consumption, hydrocolloids extraction, fertilizers, extracts for cos-
metics and pharmaceuticals, biofuels and wastewater treatment
(McHugh, 2003). The hydrocolloids extraction sector is the main focus
of seaweed processing industry but emerging applications include
production of high added-value bioactive compounds (e.g. anti-oxidant
or anti-tumoral), and the use of seaweed protein for food and feed and
the extraction of pigments for different applications. Besides poly-
saccharides and proteins, carotenoids and phenolic compounds con-
stitute other compounds with potentially important bioactive features.
Such compounds may also be obtained from residues from hydro-
colloids industries and seaweed tides (such as green tides), and from
sustainable seaweed production in integrated multitrophic aquaculture
systems and urban coastal waters using native seaweeds. In both latter
cases, seaweeds are applied as biofilters, using solar energy and the
excess of nutrients to produce high amounts of new biomass while
purifying the effluents (Kim et al., 2014).

The ability of microalgae to fix CO2 has been proposed as a method
of removing CO2 from flue gases (e.g. from power plants) (Abbasi and
Abbasi, 2010). Approximately half of the dry weight of microalgae
biomass is carbon derived from CO2 (Chisti, 2008). Considering the
current carbon emissions’ global market, the valorization of compounds
resulting from microalgae growth appears as a straightforward solution
to help coping with the algal biomass generated from CO2 removal
processes, while providing a renewable source of valuable compounds
that does not compete with forest and does not imply water scarcity or
soil erosion. Microalgae have the extra advantage of showing rapid

growth under optimal conditions. Certain species of microalgae are
extremely rich in lipids (that may exceed 80% in microalgae dry
weight) while others have the ability to produce high levels of carbo-
hydrates (instead of lipids) as reserve polymers (Mussatto et al., 2010).
Furthermore, they can be used as a source of food and feed proteins –
single cell protein (Smetana et al., 2017), pigments for food and cos-
metics or other minor valuable compounds (Matos, 2017).

1.2. Current status of technologies for bioresource valorization

Traditionally, solvent solid-liquid extraction (TSE) is used for most
fractioning processes. The correct choice of solvents to achieve good
extraction yields with a high concentration in the target compound
depends on the target’s solute solubility and polarity. This choice in-
cludes frequently organic compounds such as dichloromethane,
ethanol, and methanol. Heat and/or agitation are usually side-by-side
with TSE, both to increase the solute’s solubility and increase the mass
transfer rate, though minimum damage to the target compound has to
be assured (e.g. avoiding oxidation and/or thermal degradation).
Besides issues such as the molecular affinity between solvent and solute
and mass transfer, other factors should not be overlooked such as the
need for a co-solvent, environmental safety, human toxicity and fi-
nancial feasibility. Traditional water or organic solvent extractions are
time-consuming processes that often require high solvent and energy
consumptions and generate large amounts of waste.

Issues such as growing environmental concerns and petroleum
shortage as well as increasing oil price instability caused by geopolitical
conflicts (causing increased costs of chemicals and energy) have
boosted the search for alternative environmentally friendly extraction
and fractioning methodologies, aiming at reducing energy and chemi-
cals consumption, waste generation and operational time, while in-
creasing overall yield, selectivity and quality of the extract. Studied
alternative technologies include accelerated solvent extraction, sub-
critical water extraction, pulsed electric fields, supercritical fluid ex-
traction, enzyme-assisted extraction or digestion and extrusion. The
search for alternative solvents led to the use of ionic liquids, deep eu-
tectic solvents and surfactants, as greener or more efficient options.
However, downstream processing may be a problem as some of these
solvents are not easily separated from the target compounds. Also, re-
newable solvents that can be produced from biomass such as bioe-
thanol, terpenes, glycerol or ethyl lactate are being considered (Chemat
et al., 2012). In addition, the trend is to use the least solvent possible,

Fig. 1. Byproduct valorization chain.
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and ideally to move towards solvent-free technologies. These may in-
clude cold pressing, enzyme-assisted cold pressing, extrusion, solvent-
free microwave-assisted extraction, instant controlled pressure drop or
the use of electrotechnologies, such as the case of pulsed electric fields
(Chemat et al., 2015) or alternating moderate electric fields combined
with ohmic heating.

Process intensification towards improved sustainability, efficiency
and environmental performance could be a highly beneficial approach
to this kind of processes. In fact, a deep knowledge of the spatial,
thermodynamic, functional and temporal domains can be used to ob-
tain the best extraction possible for each system using four approaches,
respectively: structure, energy, synergy and time (Van Gerven and
Stankiewicz, 2009). In particular, instead of the conventional con-
ductive heating with a steam boiler, a large variety of other forms and
sources of energy can be considered for process intensification, in-
cluding ultrasound (US), light, microwaves (MW) and electric fields
(Stefanidis et al., 2014).

The focus of this review will be the on use of electrotechnologies in
the extraction and bioprocessing of biocompounds or fractions from
underused bioresources, aiming at their valorization. Electric fields
processing is particularly interesting due to its versatility, easy scale-up,
membrane electroporation effects and energetic efficiency. Though
both pulsed and non-pulsed electric technologies will be addressed,
special emphasis will be put in ohmic heating (OH) and its moderate
electric fields (MEF), due to their more innovative character and
emergent potential applications to this end.

2. Overview of novel and emerging electrotechnologies

To achieve the goals implicit in the concepts of circular economy
and biorefinery, not only production methods and strategies have to be
rethought, but also the development of new approaches and technolo-
gical solutions is a fundamental requirement. Many technologies have
been developed or applied in the context of bioprocessing and despite
some being available for a considerable time, their industrial applica-
tion has been impaired by limitations as diverse as high costs, opera-
tional problems or lack of control and knowledge of all important
variables (Galanakis, 2013).

Driven by technological advances or by changes in social-economic
circumstances, some of these technologies show steady growth in in-
terest and applications, in both research and industry. These so-called
“novel” or “emergent” technologies hold the potential to change the
paradigm and revolutionize the bioprocessing industry (Golberg et al.,
2016).

A branch of the novel and emergent bioprocess technologies is re-
presented by the electro-technologies, which are based on the appli-
cation of electric current in biomaterials with technological purposes
(Kotnik et al., 2015; Lebovka et al., 2008; Sastry, 2008). The concept of
applying an external electric field (EF) to promote or assist bioprocesses

has been recognized as soon as electricity became a viable technology.
However, with the advances in material sciences, power generators and
process variables understanding and control, it was possible to push
electricity-based technologies as a viable bioprocessing alternative
(Sastry, 2008). These technologies have thrived over the last 30 years
and found diverse applications, as is the case of bioresources valoriza-
tion (Puértolas and Barba, 2016).

The application of an EF on a biological or bio-based system will
result on dissipation of heat, since the system will act as a semi-con-
ductor. Often designated as Ohmic Heating (OH), this is explained by
the Joule effect and provides a fast and homogeneous heating rate
along with high energetic efficiencies (Pereira and Vicente, 2010).
Other consequence of the EF presence is electroporation, as the ex-
posure of cells to an external EF results on the formation of a trans-
membrane potential. When this potential overcomes a value between
0.2 and 1 V, electropermeabilization of the membrane is induced. The
temporal nature (i.e. temporary or permanent) and extent of the per-
meabilization is dependent of variables such as EF intensity, exposure
time, and medium composition, among others (Mahnic ane Miklavc,
2014). The presence of the EF also results on charge-related phe-
nomena, as almost all natural occurring molecules have a built-in
electric charge. Electrophoresis or dielectrophoresis may occur when
these molecules are subjected to continuous or non-uniform EF re-
spectively, enabling to explore electro-kinetic phenomena for focusing,
trapping or fractioning biological material (Wong et al., 2004). The
application of EF may also result on the occurrence of secondary phe-
nomena such as electrochemical reactions, shock wave formation and
light emission (Lebovka et al., 2008).

The use of electrotechnologies brings advantages in different stages
of bioresources valorization as they may promote stabilization of the
biomaterials, endorse or enhance extraction and diffusion of com-
pounds, assist in separation and fractioning, among others (Puértolas
and Barba, 2016; Wong et al., 2004). The success of EF processing in
performing one or more of these tasks will be dependent of the op-
erational parameters and specifications applied, resulting on favoring of
one or more EF-related effects and ultimately defining the technologies
into subcategories (see Table 1). As a result, electrotechnologies can be
classified according to type of electric flow (i.e. direct or alternating
current), application in pulses or not, electric field strength (voltage
applied by the section length), extension of heat deposition, among
others. In this section, the major electrotechnologies applied to ex-
traction and valorization of compounds from bioresources will be de-
fined and addressed according to their specifications and potential
applications.

2.1. Pulsed electric applications

The principle of pulsed electrotechnologies is the application of
electric pulses, generally of high intensity, for short periods of time

Table 1
Main novel and emergent electrotechnologies and its main applications in previous works.

Electric fields Technological common names Main applications

Pulsed Pulsed Electric Fields (PEF) Non-thermal inactivation of microbial cells
Electroporation of cell membranes
Softening tissues and peeling
Extraction of thermal labile biocompounds

Pulsed Ohmic Heating (POH) Thermal extraction of biocompounds
High Voltage Electric Discharges (HVED) Extraction of biocompounds

Non-Pulsed Ohmic Heating (OH) Continuous or batch thermal processing
High-temperature short-time pasteurization and sterilization of materials
Thermal extraction of biocompounds

Moderate Electric Fields (MEF) Non thermal inactivation of microbial cells
Extraction of biocompounds

Electrofiltration Separation of bioproducts
Electrophoresis Protein separation and diagnostics
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(Mahnic and Miklavc, 2014). Following these principles, techniques
such as High Voltage Electric Discharge (HVED), Pulsed Electric Fields
(PEF) and Pulsed Ohmic Heating (POH) have been applied on the
bioresources valorization (Vorobiev & Lebovka, 2016).

2.1.1. High voltage electrical discharges
When a direct high voltage, high current pulse is applied into a li-

quid medium, it results on a sudden energy release accompanied by the
formation of a plasma channel. Consequently, secondary effects such as
shock waves, cavitation, light emission, radical generation will occur as
well (Boussetta and Vorobiev, 2014). HVED promotes heat dissipation
and electroporation; however, the secondary effects resulting from the
high-energy release will have predominance over EF effects (Puértolas
and Barba, 2016). High levels of cellular damage or cellular disin-
tegration can be achieved with this technique, placing it as an inter-
esting alternative to cell inactivation and extraction of intracellular
compounds. On the down side, the nonspecific extraction and release of
all cellular material may impose operational problems (Boussetta and
Vorobiev, 2014). The demand of technological solutions such as high-
energy pulse generators, resistance of the materials to endure and
contain the process and operation limitations (such as operation only in
batch mode) are the main drawbacks of the method (Boussetta and
Vorobiev, 2014; Liu et al., 2011; Puértolas and Barba, 2016).

2.1.2. Pulsed electric fields
In PEF applications, high voltages (kV range) are applied in pulses

of short duration (nano or micro-seconds) with the main objective of
causing electropermeabilization (Kotnik et al., 2015). Operational
parameters define the efficiency of the technique, being the EF strength
commonly described as the most relevant (Raso et al., 2000). By in-
creasing the EF strength, the electroporation effect can move from the
enlargement of existing pores to the formation of new ones with tem-
porary or permanent character, even affecting intracellular structures,
and leading to cell lysis – electroplasmolysis. Nonetheless, other factors
are relevant to the success and efficiency of the technique, such as wave
shape, number and duration of pulses, temperature, product and media
characteristics (Mahnic and Miklavc, 2014). Pulse duration and number
of pulses are usually addressed as independent variables, but their
conjugation defines the effective treatment time and according to some
authors, they are, along with EF strength, the defining factor of PEF
efficiency (Raso et al., 2000). Most of the actual PEF systems operate
under square wave and alternate directional pulses. Square pulses are
more effective and energetically more efficient, and by alternating the
polarity operational problems such as polarization next to the elec-
trodes, electrolytic reactions and electrode erosion, as well as medium
contaminations with metal release are reduced (Elsayed and
Mohammed, 2016).

PEF is conventionally addressed as non-thermal process despite
some heat deposition being always present, resulting in temperature
increase to significant levels. When necessary, the process is generally
kept at temperatures below the necessary to cause enzymatic and mi-
crobial inactivation (Golberg et al., 2016). More recently, a trend to
conjugate thermal effects and electric pulsed applications through
Pulsed Ohmic Heating (POH) treatments has been gaining expression,
especially in extraction processes. It has been reported that the con-
jugation of moderate or high temperatures with the electroporation
effects can enhance extraction processes (Parniakov et al., 2016;
Parniakov et al., 2014; Puértolas and Barba, 2016). In fact, significant
work has been developed in POH where low EF strength pulses of
longer duration have demonstrated advantageous on the pre-treatment
and extraction of biological materials (Pereira et al., 2016a; Praporscic
et al., 2005; Saberian et al., 2017a).

The full implementation of PEF processes is still impaired by lim-
itations as the cost of pulse generators, lack of well standardized pro-
tocols, reliability and duration of the systems and bulk capacity
(Golberg et al., 2016; Puértolas & Barba, 2016).

2.2. Non-pulsed applications

Non-pulsed applications are techniques where the electric current
flows on a unidirectional flow (DC) or periodically reverses direction
(AC) without interruption for a significant period of time. Despite DC
techniques being relevant in bioprocess applications, particularly se-
paration techniques such as electrophoresis, electrofiltration or cross-
flow electrofiltration, the focus of this work is on extractions and
functionalization of bioresources. Therefore, DC process will not be
further addressed.

Applications involving AC usually fall under the specification of
Moderate Electric Fields (MEF) where a low EF (generally between 1
and 1000 V) and defined wave shape (typically sinusoidal or square) is
applied (Sastry, 2008; Varghese et al., 2012). Electric frequency is a
relevant parameter in these processes, dictating efficiencies and af-
fecting process reliability. Under low frequencies, electrochemical re-
actions may be an issue as they can result in the formation of radical
species, corrosion and erosion of the electrodes. The use of frequencies
above 15–20 kHz eliminates these problems as electrochemical reac-
tions are completely eradicated (Pataro et al., 2014).

MEF and OH terms are often used in an interchangeable way but it
is important to adopt a clear definition. OH will always be a side effect
of the application of electric fields on a semi-conductive material: if the
medium where MEF is applied has enough conductivity and the process
takes place for sufficient time, significant heat deposition will take
place through the Joule effect, thus occurring OH. For the purposes of
this article OH will be mainly referred to thermal processing, while MEF
will be used to give emphasis on electrical effects either when thermal
aspects are attenuated or compared in a similar basis. OH resulted
possibly in the most successful case of an electrotechnology with in-
dustrial application, being significantly widespread and commercially
available throughout the food industry as a pasteurization technology
(Jaeger et al., 2016). However, under the MEF field range, permeabi-
lization and extraction enhancement processes are still relevant
(Lebovka et al., 2005; Pereira et al., 2016a; Sensoy and Sastry, 2004).
Processes as the mentioned POH or pure MEF processes, either with OH
or without association of thermal effects, are gaining expression on
reported applications about the valorization of bioresources. Though
PEF is still the most referred technology in the literature for extraction
purposes, the less demanding operational conditions of MEF, as well as
the associated heating features, electric generators, electrode materials
and control systems may contribute to a facilitated implementation of
this technology, compared with the more challenging high energy
pulsed applications (Fig. 2).

3. Extraction of biocompounds using electrotechnologies

3.1. Pulsed electric fields and high voltage electrical discharges

In the last decades electrotechnologies have been used for the ex-
traction of biocompounds from different raw materials, mainly agro-
industrial wastes (see Table 2). Pulsed electric filed (PEF) and high
voltage electrical discharge (HVED) are the most referred electro-
technologies used for the extraction of compounds with added value.

In particular, PEF was successfully used in different matrices to
improve extraction processes of added-value compounds like pectin,
polyphenols and anthocyanins.

The residues from the wine industry are largely studied, as they are
known to be rich in polyphenols. Boussetta and co-authors did ex-
tensive work on the reutilization of grape pomace for extraction of
polyphenols, using different electrotechnologies, concluding that PEF
used for extraction of polyphenols from whole or ground grape seeds
increases the yield of extraction (e.g. Boussetta et al., 2012a). More-
over, it was concluded that a mixture of ethanol and water is more
efficient during PEF extraction, compared to the solvent alone (i.e. only
water or only ethanol). Those authors concluded that cell membrane
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damage was mostly a result from the use of ethanol solution together
with PEF and that the extraction process is improved when the electric
field strength is increased up to 20 kV/cm and the temperature is higher
(50 °C). Puértolas et al. (2010) used PEF for the extraction of antho-
cyanins and phenols during the maceration step of wine production at
pilot-plant scale, running in continuous. PEF treatments increased the
extraction of polyphenols and anthocyanins during the maceration step,
achieving the desired concentrations of these compounds in half of the
time compared to the control process.

PEF were also applied in the extraction of compounds from other
vegetable sources, including polyphenols from fresh tea leaves (Zderic
and Zondervan, 2016) or betanine (a pigment) from red beetroot (López
et al., 2009), also with significant reductions in the extraction time (e.g.
up to five times for betanine when compared to non PEF-treated sam-
ples). The amount of extracted polyphenols depended not only on the
settings of the PEF treatment (electric fields and total treatment times),
but also on the relaxation time between pulses (Zderic and Zondervan,
2016).

In the case of microalgae cells, PEF was applied in the extraction of
protein and carbohydrates with disappointing results: the electropora-
tion effect was not sufficient to release a substantial amount of in-
tracellular proteins. PEF treatments, even when combined with tem-
perature, are not able to disintegrate sufficiently the resistant algal cells
and to release protein and carbohydrates in yields comparable to bead
milling, at least with the used experimental conditions (Lam et al.,
2017, Postma et al., 2016).

HVED was also used in different extraction applications and poly-
phenol extraction from grape pomace and other winemaking residues
(e.g. skins, stems, seeds or vine shoots) was addressed by different
authors (e.g., Boussetta et al., 2011, Boussetta et al., 2012a, Boussetta
et al., 2012b, Liu et al., 2011, Rajha et al., 2015), with significant im-
provements in both extraction time and amount of extracts. The effects
of the energy input, the electrode distance gap, liquid-to-solid ratio,
extraction time and temperature, type of solvent are variables that can
be considered. The extraction yield generally increased with the
number of discharges. In the case of vine shoots, the mechanical,
electrical and chemical effects of HVED over polyphenols extraction
from vine shoots with different initial specific surface areas were stu-
died by Rajha et al. (2015). Different mechanical effects and high en-
ergy inputs (up to 609.5 kJ/kg) of HVED had no influence over the
polyphenol content of the extracts. Even though the high-energy inputs
induced higher ozone production, there was no apparent degradation of
the polyphenols. This was explained with the high polyphenol content

of the vine shoot extracts and their capability of scavenging free radi-
cals.

HVED was applied not only in laboratory scale but also at pilot
scale. Boussetta et al. (2012b) compared the PEF treatment between a
1 L scale equipment and a 35 L pilot scale equipment. In both pilot and
laboratory scales the use of electrical discharges increased the extracted
polyphenol content about 7 times, when compared with the control.
However, it was concluded that the energy output has a limit beyond
which the polyphenol extraction decreases and this has to be considered
for scale-up purposes. For all the materials tested, this energy limit was
smaller for the laboratory scale than for the pilot scale, but results
varied in accordance with the resistance of the material used for the
extraction process. For example, grape stems are constituted of lig-
nocellulosic material that makes them more resistant to electrical dis-
charges, compared to grape skins.

These two types of electrotechnologies are frequently studied si-
multaneously in a PEF vs HVED approach (Barba et al., 2015a,
Boussetta et al., 2012a, Carbonell-Capella et al., 2017, Grimi et al.,
2014, Parniakov et al., 2016; Parniakov et al., 2014; Parniakov et al.,
2015, Sarkis et al., 2015a, Sarkis et al., 2015b). Again, fruit and wine
making residues are among the most studied sources of extracts. For
instance, besides grape and wine making residues, papaya peels and
seeds, as well as mango peels and blueberries were studied for the ex-
traction of nutritionally valuable and antioxidant compounds (Barba
et al., 2015a, Parniakov et al., 2016; Parniakov et al., 2014; Parniakov
et al., 2015). PEF and HVED were used for the extraction of proteins,
polyphenols, anthocyanins and carbohydrates. A comparison between
PEF and HVED allowed concluding that the best extraction efficiency
was achieved generally when HVED was used, except for the extraction
of anthocyanin from blueberries. However, the use of HVED has lim-
itations: the electrical discharges may produce chemical products from
electrolysis and free reactive radicals, which can reduce the beneficial
properties of the nutritionally valuable and antioxidant compounds.
Furthermore, colloidal stability may also be reduced. Nevertheless,
when HVED was used for pectin recovery from sugar beet pulp
(Almohammed et al., 2017), for instance, no significant changes in
functional groups and chemical composition were detected.

In the case of blueberries, Barba et al. (2015b) confirmed the ca-
pacity of PEF to achieve a selective extraction of different soluble
biomolecules, proposing the use of multi-stage assisted extractions,
such as PEF+HVED or PEF+ supplementary extraction+HVED. The
first step would extract sensitive compounds (such as anthocyanins)
and subsequent steps would extract more resistant compounds. Multi-
stage assisted extraction was also proposed to obtain extracts from
Stevia rebaudiana, rich not only in steviol glycosides but also in phenolic
compounds (Barba et al., 2015b). It was demonstrated once again that
HVED improved the extraction of polyphenols, especially caffeic and
chlorogenic acids.

Another case where PEF gave better results that HVED was in the
extractions of stevioside, rebaudioside A and chlorophyll b from stevia
leafs (Carbonell-Capella et al., 2017). Nevertheless HVED was still more
efficient in the extraction of phenolic compounds and chlorophyll a.
The treatments with PEF had to be combined with ethanol to achieve
comparable performance. Ethanol will allow enhanced solubilization of
the membrane bilayers, thus increasing the total phenolic content in the
extracts. Finally, the authors concluded that despite the good results
showed by application of HVED technology, more investigation is
needed before a scale-up of the process in the industry can be achieved.

PEF and HVED can also be applied as a pre-treatment of oil ex-
traction. Sarkis et al. (2015b) used PEF and HVED as a pretreatment of
oil extraction from sesame seeds with the goal of damaging sesame
seeds cells before oil extraction by pressing. PEF and HVED treatments
increased the oil yield by 4.9% and 22.4%, respectively, as compared to
the control sample. However, when HVED was applied considerable
amounts of oil were lost in the water used for the electrical treatment. It
is important to mention that the use of electrotechnologies did not

Fig. 2. Electrical pulsed and non-pulsed protocols for extraction procedures; moderate
electric fields (MEF), ohmic heating (OH), pulsed electric fields (PEF), high voltage
electric discharges (HVED); pulsed ohmic heating (POH).
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Table 2
Main results published on the application of electrotechnologies to improve the extraction processes of valuable compounds.

Matrix Extracted
compounds

Optimum extraction parameters Reference

Electrical Time/
Temperature

Solvent

Ohmic heating (OH) Gac aril Essential oil
Carotenoids

20 kV; 50 Hz-1MHz n.a. 50 °C Hexane Aamir and Jittanit, 2017

Prangos ferulacea
Lindle

Essential oil
Terpenic
compounds

120 V; 50 Hz 73min; ≈99 °C Water (hydrodestillation) Damyeh and Niakousari,
2016

Pulicaria undulata Essential oil
Terpenic
compounds

220 V; 50 Hz 61min; ≈99 °C Water (hydrodestillation) Damyeh and Niakousari,
2017

Myrtus communis Essential oil 220 V; 50 Hz ≈26min; ≈99 °C Water (hydrodestillation) Gavahian et al., 2013
Thymus vulgaris L. Essential oil 220 V; 50 Hz ≈24min; ≈99 °C Water+ 1% NaCl

(hydrodestillation)
Gavahian et al., 2012

Peppermint Essential oil 220 V; 50 Hz ≈20min; ≈99 °C Water+ 1% NaCl
(hydrodestillation)

Gavahian et al., 2015

Shirazi thyme Essential oil 220 V; 50 Hz ≈32min; ≈99 °C Water+ 1% NaCl
(hydrodestillation)

Gavahian et al., 2011

Oregano Essential oil 220 V; 50 Hz 31min; ≈99 °C Water+ 2.85% NaCl
(hydrodestillation)

Hashemi et al., 2017

Jerusalem artichoke
tuber

Inulin 200 V; 20 kHz 30min; 75 °C Water Khuenpet et al., 2017

Black rice bran Anthocyanins 50–200 V/cm n.a.; 105 °C Water Loypimai et al., 2015
Colored potato Polyphenols 25 kHz; 15 V/cm 10min; 90 °C Water+KCL Pereira et al., 2016
Orange juice Anthocyanins

Pectin
50 Hz; 15 V/cm 30min; 90 °C Water Saberian et al., 2017

Pulsed electric field
(PEF)

Grape pomace Polyphenols
Anthocyanins

40 kV; 0.5 Hz; 13.3 kV/
cm; 0–564 kJ/kg; – pulses
(10 µs)

n.a.; 22 °C Water Barba et al., 2015b

Blueberries Polyphenols
Anthocyanins

1–5 kV; 10 Hz; 1–10 kJ/
kg; – pulses (20 µs)

n.a.; 20–23 °C – Bobinaitė et al., 2015

Tomato Carotenoids 3.8 kV; 0.33 Hz; 600
pulses (350 μs of total
pulses)

n.a.; 40–45 °C – Bot et al., 2018

Norway spruce
Bark

Polyphenols 40 kV; 0.5 Hz; 20 kV/cm;
200 pulses (10 µs)

10min; 20 °C Water+ 0.01M NaOH Bouras et al., 2016

Grape seeds Polyphenols 40 kV; 0.33 Hz; 20 kV/cm;
400 pulses (10 µs)

n.a.; 50 °C 50% ethanol Boussetta et al., 2013

Stevia Steviol glycosides
Polyphenols
Flavonoids
Chlorophylls
Carotenoids

40 kV; 0.5 Hz; 20 kV/cm;
178 kJ/kg; 200 pulses
(10 µs)

n.a.; 50 °C 50% ethanol Carbonell-Capella et al.,
2017

Spearmints Polyphenols 20mV; 100 kHz; 3 kV/cm;
99 pulses (10 µs)

n.a. Mannitol solution (followed
by 80% ethanol extraction)

Fincan, 2015

Potato peels Steroidal alkaloids 10 Hz; 0.75 kV/cm; 200
pulses (3 µs)

n.a.; 13–16 °C Methanol Hossain et al., 2015

Red prickly pear Colorants 40 kV; 0.5 Hz; 20 kV/cm;
50 pulses (10 µs)

n.a.; 20 °C Water (followed by 1 h
water extraction)

Koubaa et al., 2016

Microalgae
Chlorella vulgaris

Proteins 20 kV/cm; – pulses (2 µs) n.a.; 20 °C Water Lam et al., 2017

Apple pomace Polyphenols 1 Hz; 3 kV/cm; 3.0 kJ/kg;
500 μs of total pulses

n.a.; 25 °C Water Lohani and
Muthukumarappan, 2016

Sorghum flour Polyphenols 1 Hz; 2 kV/cm; 6.96 kJ/
kg; 875 μs of total pulses

n.a.; 25 °C Water Lohani and
Muthukumarappan, 2016

Red beet Betanine 1 Hz; 7 kV/cm; 2.5 kJ/kg;
5 pulses (2 µs)

n.a.; 30 °C McIlvaine buffer López et al., 2009

1Hz; 6 kV/cm; 50 pulses
(3 µs)

n.a. n.a. Luengo et al. 2016

Orange peels Polyphenols 1 Hz; 7 kV/cm;
0.06–3.77 kJ/kg; 20
pulses (3 µs)

n.a. n.a. Luengo et al. 2013

Papaya peels Polyphenols
Proteins
Carbohydrates

40 kV; 13.3 kV/cm; 400
pulses (10 µs)

n.a.; 35 °C n.a.; 35 °C Parniakov et al., 2014

Papaya seeds Polyphenols
Carbohydrates
Isothiocyanates

40 kV; 13.3 kV/cm; 300
pulses (8.3 µs)

n.a. n.a. Parniakov et al., 2015

Microalgae
Nannochloropsis

Polyphenols
Proteins
Carotenoids
Carbohydrates

40 kV; 20 kV/cm; 400
pulses (10 µs)

n.a.; 20–30 °C Water Parniakov et al., 2015

Rosé wines Anthocyanins n.a.; 4 °C n.a. Puértolas et al., 2011
(continued on next page)

C.M.R. Rocha et al. Bioresource Technology 254 (2018) 325–339

330



decrease the quality of the produced oil. PEF and HVED pretreatments
were also applied to the extraction of compounds from the remaining
sesame cake was rich in proteins and polyphenols (Sarkis et al., 2015a).
The conclusions of the work demonstrated that PEF and HVED in-
creased the extraction yields of polyphenols, lignans and protein, also

allowing a reduction in the amount of ethanol used as a solvent for
polyphenol extraction.

In the application of PEF and HVED in extraction of intracellular
components from microalgae (Grimi et al., 2014), these electro-
technologies allowed the selective extraction of water-soluble ionic

Table 2 (continued)

Matrix Extracted
compounds

Optimum extraction parameters Reference

Electrical Time/
Temperature

Solvent

30 kV; 5 kV/cm; 122 Hz;
3.67 kJ/kg; 50 pulses
(3 µs)

Purple-fleshed potato Anthocyanins 30 kV; 3.4 kV/cm; 1 Hz;
8.92 kJ/kg; 35 pulses
(3 µs)

n.a. Water and ethanol Puértolas et al., 2013

Red wine Polyphenols 10 kV; 200 Hz; 5 kV/cm;
3.5 kJ/kg; 1 pulses
(100 µs)

n.a. 30% ethanol Saldana et al., 2017

Sesame seeds Polyphenols
Proteins

40 kV; 0.5 Hz; 20 kV/cm;
40 kJ/kg

n.a.; 50 °C Water Sarkis et al., 2015

Sesame cake Polyphenols
Proteins
Lignans

40 kV; 0.5 Hz; 13.3 kV/
cm; 83 kJ/kg; 100 pulses
(10 µs)

20min; 60 °C
(40 °C proteins)

10% ethanol (50% for
lignans)

Sarkis et al., 2015b

Borage Polyphenols 30 kV; 300 Hz; 5 kV/cm;
6.18 kJ/kg; 50 pulses
(3 µs)

n.a.; 40 °C Acidic water Segovia et al., 2014

Button mushroom Polysaccharide
Polyphenols
Proteins

30 kV; 1 Hz; 38.4 kV/cm;
136 pulses (2 µs)

n.a.; 20 °C Water Xue and Farid, 2015

Bone Calcium 70 kV/cm; 12 pulses
(24 µs)

n.a.; Room
temperature

1.25% citric acid Yin and He, 2008

Rapeseed Polyphenols
Proteins

400 V; 0.5 kHz; 5 kV/cm
(20 kV/cm for proteins);
200 pulses (10 µs)

20min; 50 °C
(20 °C proteins)

75% ethanol (water for
proteins)

Yu et al., 2015

Tea Polyphenols 1.1 kV/cm; 50 pulses
(100 µs)

n.a. Water Zderic and Zondervan,
2016

Moderate electric
field (MEF)

Microalgae
Heterochlorella
luteoviridis

Carotenoids
Lipids

180 V; 60 Hz 10min; 35 °C 75% ethanol Jaeschke et al., 2016

Passion fruit peel Pectin 100 V; 60 Hz 15min; 45 °C Acidic water Oliveira et al., 2015

High voltage
electrical
discharge
(HVED)

Grape seeds Polyphenols 40 kV; 300 pulses (10 µs); n.a.; 50 °C Water Liu et al., 2011
40 kV; 0.33 Hz; 100 pulses
(10 µs)

n.a.; 50 °C 50% ethanol Boussetta et al., 2013

Grape pomace Polyphenols 40 kV; 0.5 Hz; 80 pulses
(10 µs)

60min; 60 °C Water Boussetta et al., 2009

40 kV; 80 kJ/kg 30min; 60 °C 30% ethanol Boussetta et al., 2011
Polyphenols
Anthocyanins

40 kV; 0.5 Hz; 280 kJ/kg n.a.; 22 °C Water Barba et al., 2015b

Sugar beet pulp Pectin 40 kV; 0.5 Hz; 76.2 kJ/kg;
100 pulses (10 µs)

60min; 90 °C Water Almohammed et al., 2017

Flaxseed cake Polyphenols
Lignans

40 kV 60min; 40 °C 25% ethanol Boussetta et al., 2013

Rapeseed Lignin 0.5 Hz; 800 kJ/kg 80min; 200 °C 65% ethanol Brahim et al., 2017
Olive kernel Polyphenols

Proteins
40 kV; 0.5 Hz; 66 kJ/kg n.a.; 25 °C 50% ethanol Rosello-Soto et al., 2015

Papaya peel Polyphenols 40 kV; 35 kJ/kg 272min; 50 °C n.a. Parniakov et al., 2014
Vine shots Proteins

Carbohydrates
Polyphenols

40 kV; 0.5 Hz; 609.5 kJ/
kg; 100 pulses (10 µs)

n.a.; 50 °C Water Rajha et al., 2015

Sesame seeds Essential oil
Polyphenols
Proteins

40 kV; 0.5 Hz; 160 kJ/kg n.a.; 50 °C Water Sarkis et al., 2015

Sesame cake Polyphenols
Proteins
Lignans

40 kV; 0.5 Hz; 83 kJ/kg;
100 pulses (10 µs)

20min; 60 °C
(40 °C proteins)

10% ethanol (50% for
lignans)

Sarkis et al., 2015b

Pomegranate peel Polyphenols 20 kV; 1000 Hz; pulses
(2 µs)

30min; 70 °C Water Xi et al., 2017

Stevia Steviol glycosides
Polyphenols
Flavonoids
Chlorophylls
Carotenoids

40 kV; 0.5 Hz; 178 kJ/kg;
200 pulses (10 µs)

n.a.; 50 °C Water Carbonell-Capella et al.,
2017

n.a., not available.
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components, proteins, microelements, and organic compounds of small
molecular weight. They were however ineffective in the extraction of
pigments (e.g., chlorophylls or carotenoids).

In general, HVED technology is more effective in the extraction of
compounds than PEF technology, as the use of HVED causes shock
waves and cavitation, resulting in mechanical damage of the material
and disintegration of the cell walls. Conversely, when HVED is used
there is a production of oxidizing species (like ozone) that are re-
sponsible for a decrease of the polyphenols content (Boussetta et al.,
2012a; Liu et al., 2011). These effects must be balanced when choosing
the most adequate technology for processing.

3.2. Moderate electric fields and ohmic heating

In the last few years there was an increased interest in using mod-
erate electric fields (MEF) and the corresponding ohmic heating (OH)
for extraction processes. OH presents high heating rates with a precise
temperature control allowing mild processing and preserving nutri-
tional, functional and structural properties. Heat is generated inside the
material to be heated (Joule effect), the heating process does not de-
pend on heat transfer between phases and interfaces, allowing uniform
heating and an extremely rapid heating rate. Furthermore, it also allows
heating of large particulates and fluids at comparable rates, as long as
their conductivities remain similar. Many studies also suggest that the
used MEF have a significant effect on the cell wall permeabilization
(Kusnadi and Sastry, 2012). The process has high energy conversion
efficiencies resulting in lower operational costs and in a more en-
vironmentally-friendly system (Pereira and Vicente, 2010).

As for pulsed electrotechnologies, extraction of anthocyanins from
different sources is the most common application of OH as an extraction
technology. OH was used in black rice bran with the final goal of pre-
paring a natural food colorant (Loypimai et al., 2015). The treatment
with OH increased the anthocyanins content in the extracts four-fold.
Extracts obtained with OH contained also the highest amounts of
bioactive compounds (α-tocopherol and γ-oryzanol). However, electric
conductivity was a critical issue that needed to be adjusted, as it had a
low initial value due to the high levels of fat. Pereira and co-authors
(Pereira et al., 2016a), studied the effect of OH and MEF intensity in the
extraction of polyphenols and anthocyanins from colored potato. Dif-
ferent operational parameters were considered, such as electric field
strength, temperature and process time on the extraction yields. In-
creased extraction yields were registered at 20 V/cm and heating
(90 °C). At electric field values above a critical value (20 V/cm, in this
case), degradation of the anthocyanins occurred. However, when an
electric field above 20 V/cm was combined with temperatures above
70 °C, an increase of polyphenol extraction yield was noticed. As this
increase in polyphenol yield matches the electrical field at which the
anthocyanins yield decrease, the authors suggested that this is the point
of possible degradation of anthocyanins to its constituent phenolic
acids. The previous results coincided with the results published by other
authors with other materials. Sarkis et al., 2013 reported the antho-
cyanin degradation during conventional and OH extractions of blue-
berry pulp. The degradation of anthocyanins depended on the voltage
used and on the solids content. It was concluded that when lower
voltage levels were used, the degradation can be lower to that obtained
during conventional heating. The use of a high voltage level led to
higher anthocyanin degradation. Nevertheless the use of high-tem-
perature short-time treatments can be combined with electric fields,
with a good extraction yield of anthocyanins (up to 85%) without af-
fecting their quality profile (Pereira et al., 2016a).

OH has been used for the extraction of essential and fatty oils
(Aamir and Jittanit, 2017; Gavahian et al., 2015; Gavahian et al., 2012;
Gavahian et al., 2013; Gavahian et al., 2011; Hashemi et al., 2017; Nair
et al., 2014) or pectins (Saberian et al., 2017b). In all works it was
concluded that the OH is the greenest technology for the extraction in
terms of energy consumption in comparison to traditional techniques

(distillation, hydrodistillation or traditional heating). The use of OH
generally reduced the extraction time and energy consumption, though
extraction times were sometimes similar to those achieved with con-
ventional methods.

The application of OH was not always successful. For instance, the
achieved extraction yields of inulin from Jerusalem artichoke tuber
powder were lower than the conventional heating process (Khuenpet
et al., 2017), though the energy efficiency claim is still valid.

Application of MEF up to 1000 V/cm, may be achieved at sub-lethal
temperatures (< 45 °C), thus without significant ohmic heating effect.
According to the existing literature there are only few works reporting
the use of MEF for extraction of added-value compounds. MEF was used
for the extraction of lipids and carotenoids from microalgae (Jaeschke
et al., 2016). The results demonstrated that carotenoid extraction was
affected by both MEF and ethanol concentration, while lipid extraction
was only affected by ethanol concentration. Moreover, analyses of the
extract showed that the xanthophylls all-trans-lutein and all-trans-
zeaxanthin were the major carotenoids in the extracts.

MEF was also used for pectin extraction from passion fruit (Oliveira
et al., 2015). Even though the extraction yield of MEF was lower than
that of the traditional extraction, the obtained pectin using different
extraction methods had also similar values of galacturonic acid and
esterification degree.

Though the potential is evident, MEF and OH have only marginally
been applied to extract compounds mainly from vegetable tissues, in-
cluding polysaccharides, essential oils and polyphenols, sugar from
sugar beets, potato starch and fruit juice expression (Aamir and Jittanit,
2017; Gavahian et al., 2011; Praporscic et al., 2005; Praporscic et al.,
2006; Saberian et al., 2017b; Seidi Damyeh and Niakousari, 2017; Zhu
et al., 2015). Extraction procedures have been established case by case,
frequently in an empirical way, and the establishment of a correlation
between the chemical properties of the extracts e.g. with the intensity,
frequency and other parameters associated with the application of the
electric field is highly desirable. Electroporation effects under MEF are
still controversial once cell lysis may also result from thermal per-
meabilization of the membranes due to local heating, thus more fun-
damental research about non-thermal effects of MEF is also needed.
Nevertheless, even in the cases where no improvement in extraction
yields is observed, OH will have higher energetic efficiency, which have
a massive importance in thermal processing. Currently, the number of
MEF based plants installed worldwide for thermal processing of foods
(commonly designated by Ohmic Heating Technology) is increasing,
thus it is expected that industrial application of MEF aiming at ex-
traction for waste recovery will be straightforward and, thus, ex-
tensively applied as soon as its advantages are perceived as such by the
industry.

4. Ohmic heating and moderate electric fields in the valorization
of biomass-based by-products

Biomass-based by-products, and in particular agro-food and forestry
wastes and surplus, represent a rich supply of valuable nutrients and
functional biomolecules bringing together the potential needed to be
used as raw material for the development of new food products, and
being thus kept within the food supply chain for human nutrition (Raak
et al., 2017), or to be incorporated in other value chains such as cos-
metics, pharmaceuticals or bioplastics. Successful re-utilization of these
streams and extractable biomolecules will always require a judicious
intervention of strategies and processing technologies for safety and
functional enhancement (Aspevik et al., 2017; Williams et al., 2015).

During the last decade, among the several electro-technologies
available, OH is establishing a solid foothold in several applications in
bioprocesses with regard to the microbiological safety and enzymatic
activation/inactivation as well as bringing new insights to the func-
tionalization of biological products. Table 3 is intended to give a
comprehensive overview about the effects of OH and MEF processing
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on functional aspects of several molecules and living cells.

4.1. Moderate electric fields in the biorefinery context

The conventional biochemical platform for biorefinery approach
may involve several steps such as thermal processing, enzymatic hy-
drolysis and fermentation routes. Application of MEF and internal heat
generation due OH effect allow to make faster thermal treatments, in a
direct, volumetric and uniform way, avoiding issues related with lim-
itations of heat conduction and convection commonly seen with in-
direct heating methods. OH has not a theoretical upper temperature
boundary being well suited for thermal pre-treatments (i.e. microbial
and enzyme inactivation) or thermal hydrolysis processes; high tem-
perature can be attained in a short time processing without the use of
external source of energy, being the only limitation the electrical con-
ductivity of the sample to be treated. At sub-lethal temperatures the
influence of MEF may also trigger different metabolic responses of
enzymes which an important role in biotechnological processing ap-
plications, either by changing functional aspects (e.g. texture in cos-
metics and foods), by catalyzing transformation of by-products or by
hydrolyzing the matrix structure and facilitating the extraction of target
biocompounds or fractions. The possibility of naturally combining
electrical effects (i.e. moderate electric field and tunable electrical
frequency) and ohmic heating treatments (Joule effect) to inactivate
spoiling microorganisms and change functional properties of protein
fractions, carbohydrates and enzymes in a very controlled and sus-
tainable way are attracting attention showing potential to widening up
the range of biotechnological applications in biorefinery far beyond the
extraction of biocompounds.

4.1.1. Biomass microbial stabilization
OH is seen as an alternative thermal method for pasteurization and

sterilization being considered as one of the “emerging high-potential
technologies for tomorrow” (De Vries et al., 2017). Among the several
advantages of this electrical processing aforementioned, which include
short heating times, uniform heating and less over processing (Jaeger
et al., 2016; Vicente et al., 2014), stands out the possibility of enhan-
cing thermal inactivation of microorganisms (including vegetative cells
and spores), which has been extensively reviewed (Cappato et al., 2017;
Jaeger et al., 2016; Vicente et al., 2014). It is consensual that thermal
inactivation is always assured, but the majority of studies points out
additional non-thermal effects in cell death (Baysal and Icier, 2010; Kim
et al., 2017; Park and Kang, 2013; Somavat et al., 2013; Yoon et al.,
2002). Enhanced microbial death kinetics through OH can be explained
either by thermal permeabilization or by electroporation of cell mem-
branes (formation of pores) resembling pulsed electric field treatments
(Aghajanzadeh and Ziaiifar, 2018; Jaeger et al., 2016). Electric effects
contributing to inactivation can rely on the combined use of low elec-
trical frequencies (50–60 Hz) and MEF intensity (< 1000 V/cm) even
when applied at sub-lethal temperatures (Machado et al., 2010).
Knowing that many bioresources, including the majority of agro-food
by-products, seaweeds and microalgae, easily spoil due to their high
moisture levels (Aspevik et al., 2017), the application of electro-heating
technologies figures itself as a valid processing tool to be applied in the
stabilization of biomass streams for further routes of biorefinery flow,
such as fermentation (e.g. sugar-rich substrates).

4.1.2. Fermentation
Application of MEF during fermentative processes were early re-

ported by Cho et al. (1996), which observed a biological activation
effect on growth Lactobacillus acidophilus under influence of alternating
electric fields. This study reported that the lag period decreased by 94%
under MEF in a fermentation at 30 °C when compared with conven-
tional fermentation method. The possible explanation advanced was
that MEF applied enhanced dislodgement of polar antimicrobials and
other molecules adhered to cell walls and membranes, allowing toTa
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minimize inhibitory action of fresh fermentation medium and thus
improving absorption of nutrients. Strangely, no other relevant studies
on the sub-lethal effect of MEF in microorganisms during fermentative
processes could be found. More fundamental knowledge about influ-
ence of sub-lethal effects of MEF on the metabolic pathways of living
cells should be encouraged, once can bring novel insights on the im-
provement of fermentation routes.

4.1.3. Enzyme-assisted extraction
Contrary to microbial inactivation, information relating to non-

thermal effects of MEF treatments on enzymes is still scarce
(Samaranayake and Sastry, 2016b) and difficult to generalize. The
majority of the results regarding enzymes thermal inactivation in the
presence of different voltage gradients or electric fields suggest that
electric or “non-thermal” effects are enzyme-dependent and may also
vary in accordance with the matrix in which activity assays are being
performed (Samaranayake and Sastry, 2016b; Vicente et al., 2014).
Castro et al. (2004) they suggested that the presence of MEF may in-
terfere with the metallic prosthetic groups present on lipoxygenase and
polyphenoloxidase, causing enhanced inactivation. Jakób et al. (2010)
based on thermodynamic analysis assumed additional inactivation ef-
fects of MEF may be linked with different distributions ions around
enzyme molecules, thus affecting optimal enzymatic environment.
Currently, among the several enzymes, the effects of MEF on catalytic
reactions activated by pectin methylesterase (PME) are attracting at-
tention in bioprocesses and food biotechnology. This enzyme cleaves
the methyl ester bonds in pectin and is thus often used for clarification
of fruit juices and softening of the cell walls of higher plants for the
extraction of valuable fractions (Aghajanzadeh and Ziaiifar, 2018;
Samaranayake and Sastry, 2016a; Sharma et al., 2017). Much in the
same way, OH treatment has been considered as an efficient alternative
to the conventional method of PME inactivation in tomato juice
(Makroo et al., 2017). Recently, Samaranayake and Sastry (2016b)
showed that the application of electric fields of very low intensity
(0.4 V/cm) at a temperature of 65 °C and electrical frequencies ranging
from 1 to 60 Hz gives rise to enhanced inactivation of PME (up to 26%)
in tomato homogenate. At higher electrical frequencies, this additional
inactivation is not observed. It is suggested that low frequencies result
in sufficient motion and displacement of enzyme molecules to increase
the probability of additional collisions with water molecules from the
same environment. The effects of increasing electric fields on PME ac-
tivity were also assessed in tomato homogenate (Samaranayake and
Sastry, 2016a) being shown that at higher temperatures (> 75 °C) the
efficacy of the electric field in PME inactivation increases with in-
creasing field strength up to 10.5 V/cm. Interestingly, a non-thermal
activation effect in PME activity is reported to take place within MEF
treatments at 70 °C (Samaranayake and Sastry, 2016a). Eventually,
MEF may also increase reaction rates by promoting an increased ac-
cessibility of enzymes to the substrate or by enhancing electrophoretic
motion.

It seems straightforward that enzyme inactivation can be increased
when MEF is used, requiring treatments with less holding time and
lower temperature than conventional heating methods due to the
electrical effects, but enzyme activation may also happen. The influence
of electrical variables on enzyme activity – i.e. electric field and fre-
quency – still need more fundamental investigation but at a first in-
stance MEF can offer an opportunity to e.g. regulate enzyme catalysis
during bioprocesses. The combined application of enzymatic hydrolysis
with assisted aqueous extraction using the both MEF and OH effects can
be an interesting approach for the extraction of valued-added com-
pounds.

4.2. Functionalization of extractable biopolymers

4.2.1. Proteins
Protein-rich wastes from animal and plant-derived origin are an

important and profusely available resource but still currently treated as
by-product, being discarded or used for soil fertilization and animal
feed purposes (Aspevik et al., 2017). Food waste materials rich in solids
such as tomato and grape pomace may contain at least 10% (w/w) of
extractable protein in their composition (Hegde et al., 2018). Protein-
containing by-products from the meat industry (e.g. blood and col-
lagen) are also attractive for the production of bioactive peptides
(Ryder et al., 2016). These alternative proteins can be used in human
nutrition due to their interesting biological and functional value, but
generally they do not present the desirable technological and nutri-
tional properties in their native form to be introduced in the food chain
production. During the last decade, the impact of OH and the effects of
MEF have been addressed on whey, soybean and fish muscle proteins,
as well as in some biopolymers of carbohydrate origin with interesting
functional features.

Whey from the production of cheese, and casein that in the past was
seen as a by-product from the dairy industry is now recognized as “an
outstanding example for a successfully processed by-product” (Raak
et al., 2017) and thus an attractive starting material for the develop-
ment of protein-based food ingredients or functional systems (Ramos
et al., 2017; You et al., 2017). Within this context, electro-heating
processing was successfully used to tailor the denaturation of whey
proteins and change the morphology of the produced protein ag-
gregates (Pereira et al., 2016b). This was achieved by turning on OH as
fast as possible, thus reducing the heating charge to achieve a target
temperature, in combination with an increase of the electric field ap-
plied during heating. These electrical-heating treatments favored the
appearance of linear or fibril-like protein aggregates that can act as
important structuring agents for the development of protein gel net-
works which may further be used in the encapsulation of drugs,
bioactive compounds or nutrients. For example, MEF can allow in-
corporating significant amounts of iron (about 33mmol L−1 of ferrous
sulfate) within a whey protein-based hydrogel without affecting nega-
tively the stability of the microstructure of the protein system (Pereira
et al., 2017). Electric fields can also be applied to transform whey
emulsions into gelled protein systems with distinctive properties. It was
pointed out that small structural changes at the nanoscale level imposed
by MEF should not be overlooked, once they can impact the macro-
structural properties of gels made from whey globular proteins, such as
lactoferrin (de Figueiredo Furtado et al.).

Myofibrillar proteins from meat muscles present unique gelling
properties making them one of the most widely used functional in-
gredients in the development of hydrogel systems. During fast OH the
inactivation of proteolytic enzymes rapidly occurs and renders more
myofibrillar protein available to form disulfide bonds, thus stabilizing
gel networks (Tadpitchayangkoon et al., 2012). These authors also
point out that some of these mechanisms need to be better elucidated,
once protein conformational changes, as well as different patterns of
protein denaturation and aggregation induced by MEF may be playing a
role on development of distinctive protein gel networks. Recently, Lu
et al. (2015) that OH treatments can be used to accelerate trypsin and
chymotrypsin inhibitors inactivation to levels of 13% and 53%, re-
spectively and enhance the formation of protein aggregates, due to ei-
ther by thermal, electrical (MEF) or electrochemical effects which can
change the balance and interchange between protein covalent bonds
(SS, disulfide-disulfide) and free thiol groups (SH, sulfhydryl).

4.2.2. Carbohydrates
Biopolymers of carbohydrate origin, such as chitosan, cellulose,

pectin and starch (among others), can be recovered from a variety of
agricultural commodities and wastes and be valued into new products,
such as edible thin films and coatings to protect fresh or processed foods
as a way to extend their shelf-life (Baron et al., 2017). Currently, some
of these materials, such as chitosan, are also playing an important role
on several applications in the biomedical field and tissue engineering
(e.g. development of scaffolds) due to their biodegradable, non-toxic
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and non-allergenic, and thus biocompatible nature (Ahmed and Ikram,
2016). Souza et al. (2009, 2010) studied the effects of MEF treatments
on transport and mechanical properties of chitosan coatings and films
structure, concluding that an increase in the permeability to water
vapor, oxygen and carbon dioxide, as well as a decrease in surface
roughness can be achieved over conventional methods of production.
More recently, MEF treatments were successfully used to tailor prop-
erties of starch and chitosan films reinforced with microcrystalline
cellulose (Coelho et al., 2017). Results showed that application of MEF
in chitosan lead to more hydrophobic films, with lower water vapor
permeability values and higher tensile strength, corroborating previous
works (Souza et al., 2009; Souza et al., 2010), while MEF-treated starch
films presented a more hydrophilic character and lower tensile
strength, when both were compared with films obtained from con-
ventional methods of production. Overall, the reviewed electrical
treatments seem to have the potential to modify the surface of these
polysaccharide-based films, thus bringing new insights regarding
changes of their biofunctionality and bulk properties that are worthy of
more fundamental investigation.

4.2.3. Lipids
Fats and oils are not able to conduct electricity, working instead as

electrical insulators. This limits the application of electro-heating pro-
cessing to this kind of products, and justifies the scarcity of information
available about electrical effects on lipids. Nevertheless, OH has been
used to produce protein-lipid films from soybean milk, with claimed
advantages on rehydration capacity and film formation rate (Lei et al.
2007). Electric fields applied during OH seem to improve, or at least not
affect negatively, fat stability of products prone to enzymatic or phy-
sical liberation of free fatty acids (Pereira et al., 2008; Nandi et al.,
2017).

5. Processing and energetic aspects

Novel and emerging technologies not only have to prove effective
and advantageous at the processing level; they have to be technically
feasible, sustainable and economically competitive. The major impair-
ments associated with these technologies are always their im-
plementation, as the associated costs tend to be higher than those of the
conventional technologies and there is a lack of operational information
and associated costs (Elsayed and Mohammed, 2016; Pereira and
Vicente, 2010). In order to assess the profitability of a new technology,
several aspects have to be taken into account, such as investment in
equipment, energetic costs, and operational aspects such as efficiency
gains and reduction or elimination of process requirements (e.g. utili-
zation of solvents or mechanical methods to increase extraction).

5.1. Processing demands and scaling

In principle, electrotechnologies are almost linearly scalable and
involve low maintenance costs, since their application does not involve
diffusional processes, mechanical stress or moving parts (Pereira and
Vicente, 2010). However, their industrialization offers some challenges,
as large volumes processing implies larger treatment chambers or flow
rates, larger electrodes surface areas and electrode gaps. Consequently,
the demands on the generators increase, implying high energetic ca-
pacity, increase of output voltage and higher frequency of pulses
(Kotnik et al., 2015). Obtaining power sources capable of high voltage
and current output with defined pulse/wave shape and frequency is still
a challenge (Golberg et al., 2016). Nonetheless, developments in gen-
erators and control systems, along with increasing application of MEF
and PEF systems in the food industry, are contributing for cost reduc-
tion and increase of reliability of these systems. In addition, optimiza-
tion of several factors such as materials used, design of electric treat-
ment chambers and continuous operation mode are pushing these
processes towards industrial feasibility (Golberg et al., 2016; Mahnic

and Miklavc, 2014). In this scenario, HVED is still the less developed
technology, because not only it is the most recent, but also it is the more
demanding in terms of generator specifications and challenging in
terms of materials used and chamber design (Vorobiev and Lebovka,
2013).

5.2. Energy consumption and environmental impact

Electrotechnologies presented here are considered environmentally
friendly once they may eliminate, or at least diminish, the use of water
and thus production of wastewaters (e.g. avoiding the use of steam
systems and boilers), and may use a renewable source of energy (e.g.
hydroelectric power) to produce electricity. Furthermore, in general,
electrical processing needs lower energy consumption compared with
conventional pre-treatment methods and extraction technologies.

The energy input associated with PEF treatment varies with the
material to be treated; commonly it ranges from 1 to 15 kJ/kg in soft
tissues such as pulps and peals. In contrast, conventional treatments
(such as mechanical or enzymatic processing) require from 20 to
100 kJ/kg to achieve similar results (Golberg et al., 2016; Puértolas and
Barba, 2016; Vorobiev and Lebovka, 2010). In hard and resistant ma-
terials such as seeds, PEF energy requirements rise to 100–800 kJ/kg,
placing it on the energetic range of HVED treatments (Boussetta and
Vorobiev, 2014). For HVED, limited data are available and few in-
dustrial or economic studies were performed. However it seems that
despite having similar energetic levels to PEF, HVED is more advanta-
geous for the processing of resistant particulate material as its more
efficient in promoting extraction on these matrices (Liu et al., 2011;
Parniakov et al., 2014).

MEF treatments often involve OH as a thermal process and the en-
ergy requirements will be dependent of the materiaĺs heat capacity and
thermal elevation needed. OH energetic efficiency is above 90% and
compared with the less efficient conventional thermal processing it can
achieve energy savings up to 70% (Pereira and Vicente, 2010; Varghese
et al., 2012). When applied to extraction processes, OH has shown
energy inputs between 30 and 180 kJ/kg (Pereira et al., 2016a), being
significantly higher than PEF and at similar levels of mechanical and
enzymatic processing. However, as a thermal process, OH also achieves
microbial and enzymatic inactivation, but in this case at significant
lower energy inputs than PEF would require (i.e. 40–1000 kJ/kg)
(Vorobiev and Lebovka, 2013).

Higher energetic efficiency will inevitably result in the reduction of
overall energetic consumption. Along with the increase of bioproces-
sing and recovery efficiency, and in some cases reduction or elimination
of solvent use, electrotechnologies are likely to significantly contribute
to reduce the use of non-renewable resources, increase the added value
of wastes and by-products and to the development of a green, sus-
tainable and circular economy.

6. Future challenges

Innovative processing tools are needed to manage and transform, in
a sustainable and profitable fashion, endogenous bioresources and un-
avoidable local wastes into new products and value-added compounds
(e.g. biopolymers, pigments, bioactive peptides, among others), in a
bioeconomical perspective. This is a huge challenge, but an essential
one in terms of economic and environmental benefits, as well as of
public health (Williams et al., 2015). In order to support an emergent
bioeconomy and convey underrated bioresources to the food supply
chain or to other value-added markets (such as cosmetics and phar-
maceuticals), electrotechnologies need also to be economically feasible
and competitive. The core of the successful approach of electro-
technologies processing in valorization of bioresources will be anchored
in the following points: 1) a more fundamental understanding about the
effects of electricity on biological cells, biomacromolecules and biopo-
lymers; 2) a clear differentiation between thermal, electrical and
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electrochemical effects promoted by electrotechnologies, once this
knowledge will allow controlling and designing specific and well-or-
iented treatments; 3) “back to basics”, meaning that fundamental and
ancestral sustainable ways of processing food (e.g. fermentation and
enzymatic catalysis) could be strategically combined with innovative
processing seeking sustainability and synergistic effects; 4) “less is
more”, applied research should be restricted to strong evidences that
valorization will sensibly be cost- and resource-effective when scaled-
up; and 5) a strategy of reverse engineering should be useful for pre-
liminary screening of nutritional and molecular composition of het-
erogeneous food by-products to be valorized, as well as to enhance
knowledge of physical and chemical changes that may occur under
processing using electrotechnologies.

7. Conclusions

Valorization of bioresources encompasses a multidisciplinary ap-
proach that can cover several technological operations from the pro-
cessing point of view, linked with preservation, extraction and trans-
formation. The so-called novel and emergent electrotechnologies fit in
the concept of “Green and Sustainable Processing”, assuring environ-
mental benefits through increasing the overall energy efficiency, water
saving, reduced emissions and reduced use of non-renewable energy
sources. In particular, MEF can be used both as extraction tool and as
functionalization agent of biological compounds broadening their ap-
plication range. The substantial increase of MEF-based plants installed
worldwide suggests that its application for waste recovery will be
straightforward.
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