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Abstract 

Cowpea is a grain legume native from Africa and is a primary source of protein for millions 

of people in sub-Saharan Africa and other parts of the developing world. The main important 

characteristics of this crop include the good protein quality with a high nutritional value, the 

nitrogen-fixing ability, and be more drought- and heat-tolerant than most of its legume 

relatives. In a research perspective, the studies with cowpea are relatively scarce, despite its 

relevance to agriculture in the developing world and its resilience to stress. This review 

provides an overview on different aspects of cowpea, with special emphasis on the molecular 
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markers for assessing genetic diversity, as well as on the biochemical and transcriptomic data 

to evaluate cowpea drought stress tolerance. The integration of both datasets will be useful for 

cowpea improvement, since the research on drought stress tolerance is a major interest for this 

crop in a challenging environment.  
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INTRODUCTION 

 

Cowpea [Vigna unguiculata (L.) Walp.] is a member of Leguminosae family native from 

Africa and is currently one of the most important grain legumes growing in tropical and 

subtropical regions.1–3 This legume has been used in human diet as well as forage for animal 

feeding. For human consumption the most important product is the dry grain that can be 

consumed boiled, fried (as akara), or steamed (as moi moi),4 according to different 

preparations, on salads, snacks, cakes and others. Also young leaves, fresh pods and fresh 

seeds have been consumed in some world regions.4,5 Green organs could be used as vegetable 

and are often served boiled, as well as consumed fried or fresh.5 One of the most important 

characteristics of cowpea is the high nutritive content value in all plant parts.3,4,6 The dry grain 

is rich in proteins (23% to 32%), essential amino acids as lysine (427 mg/g N), and tryptophan 

(68 mg/g N) although low in the sulphur-containing amino acids.7,8 So, cowpea and cereals 

complement each other in terms of amino acids and consequently a diet combining both 

provides a balanced protein intake. The presence of both minerals (iron and zinc) and 
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vitamins (folic acid and vitamin B) has also been reported to be important to prevent birth 

defects during the pregnancy stage.3,9,10 Dry grain is also high in fibre and low in fat.8 Taking 

into account these advantages, an increase of cowpea production and consumption in the 

European Union is highly desirable. Currently, the European Union imports from African 

countries almost all consumed cowpea, more specifically from Niger and Nigeria. During the 

2009-2013 period, the world cowpea planting area was 5 million hectares and the production 

was 12 million tonnes. Africa has been responsible for 95.4% of worldwide cowpea 

production,11 being the drier savannah and the Sahelian region of West and Central Africa 

responsible for producing 72%. Nigeria and Niger are the largest producers with 3.4 and 1.4 

million tons, respectively. In contrast, Europe is only responsible for 0.4% of worldwide 

cowpea production and the European Union have only produced 463 thousand tonnes during 

the period 2009-2013.11  

As revealed by the major producing countries, cowpea has the capacity to grow in low 

fertility soils, which has much to do with the ability of establishing associations with distinct 

microorganisms, mainly nitrogen-fixing bacteria (like rhizobia) and vesicular-arbuscular 

mycorrhizal fungi. Cowpea tolerance to low fertility soils8,12,13 and to a wide range of soil 

pH,14 as well as the adaptation of cowpea to high temperatures and drought,15 makes this 

grain legume crop of interest for facing the predicted environmental changes (e.g., increased 

temperature, reduction of water availability) associated with climate change. This review 

provides an overview of different issues about genomic and transcriptomic studies in cowpea, 

with more emphasis to studies related with genetic diversity and cowpea drought stress 

tolerance that could be useful to integrate in cowpea breeding programs. 

 

CLASSIFICATION AND DESCRIPTION  
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The cowpea cultivated form obtained from the Antilles was first described by Linnaeus as 

Dolichos unguiculatus L., being later classified by Walpers as Vigna unguiculata (L.) 

Walp..16 This diploid species (2n = 2x = 22) belongs to the division Magnoliophyta, class 

Magnoliopsida, order Fabales, family Leguminosae, tribe Phaseoleae, genus Vigna. The 

genus Vigna includes more than 80 species17 and was subdivided into six sections, namely, 

Vigna, Comosae, Macrodontae, Reticulatae, Liebrechtsia, and Catiang.18 Vigna unguiculata 

(L.) Walp. includes annual cowpeas (ssp. unguiculata) and ten wild perennial subspecies 

(Table 1).19 The subspecies unguiculata includes all the domesticated forms (var. 

unguiculata), as well as the wild and weedy forms [var. spontanea (Schweinf.) Pasquet].19,20 

The domesticated forms are subdivided into four cultivar-groups essentially based on seed 

and pod characters.19,21 These cultivar-groups are unguiculata grown as pulse, biflora 

(catjang) used mainly as forage, sesquipedalis (asparagus bean) grown as a vegetable, and 

textilis cultivated for the fibres of its long floral peduncles.19 Pasquet16 also proposed the 

insertion of melanophthalmus (black-eyed pea) as another cultivar-group. 

“Cowpea” is the V. unguiculata most popular worldwide name but local names such as 

black-eyed beans, black-eyed peas, pink-eyes or southern peas (all used in United States of 

America), ‘frijol caupí’ (Spanish speaking countries in America), ‘lobia’ (India), ‘caupi’ 

(Brazil), ‘caupí’ and ‘carilla’ (Spain), ‘niébé’ (French speaking countries of Africa) and 

‘feijão-frade’ (Portugal) are used.  

Cowpea is described as an herbaceous warm-season annual plant with a great 

variability in morphology. This crop is autogamous but around 5% outcrossing was reported 

in the cultivated varieties probably due to insect activities.22,17 Its growth habit could be 

prostate (trailing), semi-prostate, semi-erect, erect or climbing, depending mostly on genotype 

but also on photoperiod and growth conditions, being the pattern of growth determinate or 

indeterminate.8,23 This crop is well adapted to a wide range of soil types from sands to heavy, 



5 
 

including low fertility soils.24  Plants grow in an extensive range of temperatures, being 28 ºC 

the optimal temperature. Early flowering cowpea can produce a crop of dry grain in only 60 

days, while longer season cowpeas may require more than 150 days to produce mature pods, 

depending on photoperiod.8  

According to the International Institute of Tropical Agriculture (IITA) and Bioversity 

International (ex-International Board for Plant Genetic Resources, IBPGR), the leaves can be 

classified into four categories: sub-globose, sub-hastate, globose and hastate/lanceolate.23 

Flowers emerge in alternate pairs on racemes at the distal ends of long peduncles, with 

usually two flowers per inflorescence. Flowers have a short life cycle, opening in the early 

day and closing at approximately midday, after which they usually wilt and collapse.25 

Corollas can be purple, mauve-pink, yellow or white.23 Each peduncle commonly develops 

two or three pods and pods differ in size, shape, colour and texture.8 They are cylindrical, but 

could be straight, slightly curved, curved or coiled and when they ripe the colour can vary 

from yellow to brown or dark purple.23 The sub-species/cultivar-group Sesquipedalis (more 

common in Asia) have very long green pods (40 to 100 cm) that are often used as green beans 

(or snap beans),8 while the other groups have standard pods (10 to 25 cm). Seeds differ in size 

and colour, ranging from white, cream, green, buff, red, brown or black and can be kidney, 

ovoid, crowder, globose or rhomboid and are characteristic by the presence of an eye, due to 

the different pigmentations encircling the hilum.23  

Environmental conditions, including photoperiod and growing conditions 

(temperature, rainfall, etc.), can also affect the plant height and morphology.8,24 Cowpea root 

system is dense and well-developed26 and has a beneficial effect on the structure and tilth of 

the topsoil layer. Most root growth occurs within the topsoil layer, but in drought conditions a 

long taproot can grow for reaching the deeper moisture in the soil profile.27 These 
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characteristics furnish cowpea plants with a high resistance to drought in comparison with 

other legumes. 

 

ORIGIN, DOMESTICATION AND DISTRIBUTION 

 

Africa was suggested as the centre of origin of cowpea.28 This belief was not contested, since 

wild cowpea plants have been found in tropical Africa and Madagascar,1 where it was 

presumably domesticated since Neolithic age.29 Pasquet30 suggested that the most likely 

progenitor of domesticated cowpea is V. unguiculata ssp. unguiculata var. spontanea. For 

determining the precise domestication site and the cowpea diversity centres, several studies 

have been performed in the last decades, although a conclusive result has been difficult to 

reach. Several hypotheses have been proposed for cowpea domestication, such as 

Ethiopia,1,31,32 West Africa,33–37 Eastern and Southern Africa.38 Coulibaly et al.19 using 

amplified fragment length polymorphisms (AFLPs) and morphologic data concluded that the 

wild species was originated from Eastern Africa. In this case, domestication should have 

occurred in Northeastern Africa and the domesticated plant was then probably dispersed to 

Western Africa. According to Ng and Padulosi,39 West Africa seems to be the centre of 

diversity of cultivated forms. A ‘diffuse’ domestication in the African savanna after the 

dispersal of cereals was also hypothesized.1,40 This last hypothesis was presented by Harlan,41 

who considered that the cowpea was domesticated in the African Non-Center. Whatever the 

place of domestication, cowpea is an ancient legume that was domesticated by African 

gatherers, cultivators and farmers from its wild forms in Africa dating back to Neolithic 

times.2 During the Neolithic period, the cowpea was first introduced into India, which was 

then considered a secondary centre of cowpea genetic diversity.42 The spread of cowpea in 

Asia occurred at the end of Neolithic period (third millennium BC), where the subspecies 



7 
 

asparagus bean or yardlong (V. unguiculata ssp. sesquipedalis) is still cultivated for long 

immature pods,43 and in America between the sixteenth and seventeenth centuries (AD).44 

Although some reports suggest that cowpea has been cultivated in Europe at least since the 

eighteenth century BC and possibly since prehistoric times,19,45 others suggest that it was only 

introduced in Europe around 300 BC, where it still remains as a minor crop in the southern 

part.17 From Europe, more specifically from Portugal and Spain, this legume was exported in 

the seventeenth century to the New World.17,46 Other important result was obtained by Fang et 

al.46 that provided evidences for the common origin of cowpea germplasm from Asia and 

North America different from the West Africa. However, these authors have mostly used 

breeding lines and consequently the introgression of extra regional germplasm could have 

occurred. Huynh et al.47 analysing a worldwide collection of cowpea landraces and African 

ancestral wild cowpeas by using more than 1200 single nucleotide polymorphism (SNP) 

markers verified that accessions from Asia and Europe were more related to those from 

western Africa, while accessions from Americas appeared more closely related to those from 

Eastern Africa. 

 

EVALUATION OF GENETIC DIVERSITY   

 

Cowpea has been referred as a worldwide crop with more prevalence in tropical areas, 

displaying a high phenotypic/morphological variability.8 Genetic diversity assessment is then 

useful for the preservation and utilization of germplasm resources, as well as for the 

improvement of varieties/cultivars.3 Genetic diversity can be evaluated using morphological 

traits, biochemical and molecular markers. Each of these markers has different applications in 

several areas, such as plant breeding, phylogenetic studies, gene mapping, genetic 
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engineering, micropropagation and genetic resources characterization, and can be used 

individually or combined. 

Several studies have been referring the characterization of cowpea by morphological 

and quantitative traits.16,48–52 This characterization is followed by using a set of descriptors: i) 

parameters related with plant morphology, such as growth habit, leaf type, flower colour, seed 

shape and colour, and ii) parameters related with plant production, namely the number of pods 

and seeds per plant and seed weight. Morphological characterization does not require any 

complex equipment or experiments, being simple and inexpensive to score. These are the 

reasons responsible for the constant use of morphological traits as a first step for evaluating 

genetic relationships. The main disadvantage is that the observed characteristics do not 

exclusively reflect the genotype, but reflects the interaction between genotype and 

environment.53  

The first biochemical marker to be used for genetic diversity analysis was the isozyme 

markers in the 60’s.54 These enzymes differ in amino acid sequence and are encoded by 

different genetic loci (isozymes) or by different alleles at the same locus (allozymes), yet 

catalyse the same reaction.55 Until the end of 80’s, isozymes were the main marker used to 

analyse the genetic variability and taxonomy in plants, helping to define the phylogenetic 

relationships and population genetics. Over the years, several studies were developed in 

cowpea that made use of this biochemical marker. Panella and Gepts56 and Vaillancourt et 

al.57 characterized wild and cultivated accessions of cowpea by using 10 and 26 isoenzyme 

loci, respectively, and concluded that the genetic diversity in the evaluated collections was 

low. Besides isozyme markers, seed storage protein profiling is another method used to reveal 

genetic variation between cowpea cultivars.58–62 Often, in these studies, the obtained results 

were not very conclusive by the lack of domesticated cowpea and progenitor representative 

samples. 
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In comparison with morphological and biochemical markers, DNA molecular markers 

have a set of characteristics that turn them ideal to several studies such as their highly 

polymorphic nature and frequent occurrence in the genome, allowing a direct comparison of 

genetic material in an environmental independent way.54,63 DNA-based molecular markers 

have been extensively used in cowpea genetic diversity research, variety identification, 

phylogenetic analysis, gene mapping, and resource classifications (Table 2). The first study 

using amplified fragment length polymorphism (AFLP) markers in cowpea was performed by 

Coulibaly et al.,19 in which the genetic relationship among a total of 117 cowpea accessions 

[including 47 domesticated cowpeas (ssp. unguiculata) and 52 wild and weed annuals (ssp. 

unguiculata var. spontanea)] was pretended. This study showed that the wild cowpeas were 

more diverse than domesticated ones, also suggesting an Eastern African origin for the wild 

taxon. This result was corroborated by Ba et al.2 using random amplified polymorphic DNA 

(RAPD) markers, and by Ogunkanmi et al.64 with single sequence repeat (SSR) or 

microsatellites markers. The variation within and among cowpea populations from different 

agro-ecological regions and germplasm accessions has been also evaluated using AFLP46 and 

RAPD markers.65–68 In addition, RAPD markers were used to eliminate the putative 

duplicates of Senegal cowpea accessions in a germplasm bank and identify elite varieties.69 

Currently, SSR is the most frequently used molecular marker in cowpea genetic diversity 

analyses, namely in cowpea landraces accessions from China, Africa and other Asian 

countries,70 Korea,71 Ghana,72 Southwestern Nigeria,73 and Senegal,74 where a high genetic 

diversity was observed. To evaluate the genetic diversity of asparagus bean (V. unguiculata 

ssp. sesquipedalis) cultivars from different Chinese geographical origins, SSR markers 

derived from V. unguiculata ssp. unguiculata sequences were used, attesting the 

transferability of SSR markers between these two subspecies.75 In all these studies, SSR 

markers also showed sufficient genetic variance that could be useful for improvement 
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strategies in cowpea. Single nucleotide polymorphism (SNP) markers have gained an 

increasing importance, due to their bi-allelic nature, higher frequency in the genome than 

SSRs and other markers, and to their easily automated genotyping.76 In a study for the 

characterization of 113 cowpea accessions, comprising 108 from Ghana and five from abroad, 

458 SNPs (out of 477) revealed high polymorphism.77 The results suggested an unexpected 

high level of heterozygosity. The chip-based SNP detection technology is being widely used 

in plant genetic applications.78–80 In cowpea, Illumina chip-based SNP detection platforms 

(GoldenGate and more recently iSelect) have been developed and can be very useful for 

molecular characterization,77,81 genetic diversity analysis47,82 and genetic mapping.43,83–85 

Researchers at the University of California, Riverside, in partnership with institutions from 

several African countries have designed a 60,000-assay iSelect BeadArray for cowpea that 

successfully assayed 51,128 SNPs.86  

The combined use of different molecular markers could better assist the evaluation of 

genetic diversity. Diouf & Hilu87 used a combination of RAPD and SSR markers for assessing 

genetic variability of local cowpea varieties and breeding lines from Senegal and identified 12 

polymorphisms due to the broad genome coverage used. The combinations of AFLP and 

SAMPL (selectively amplified microsatellite polymorphic locus) markers,88 as well as AFLP 

and SSR markers,89 were used to determine the genetic variation within and among closely 

related V. unguiculata accessions, while the combined use of RAPD and ISSR markers 

allowed the evaluation of genetic variations of seven Vigna species.90 A combination of 

molecular and classical markers has been considered essential to turn the results of genetic 

diversity more reasonable for genetic cowpea breeding and evaluation of germplasm 

resources.3 The combined use of molecular markers (SSR and ISSR) and classical markers 

(morphological traits) was described to estimate the genetic diversity and relatedness of 23 

asparagus bean (V. unguiculata ssp. sesquipedalis) accessions and 7 accessions of a hybrid 
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between cowpea (V. unguiculata ssp. unguiculata) and dwarf asparagus bean in Thailand.91 

Morphological characters were diverse among most accessions, but their exclusive use did not 

allowed to distinguish between accessions. Indeed, ISSR markers showed higher efficiency 

for estimating the levels of genetic diversity and relationships among the two subspecies than 

SSR markers.91 The combined use of morphological traits, RAPD and ISSR markers was also 

employed for discriminating landraces of cowpea scattered from all Algeria regions92 and 

evaluate the genetic variability and relationships between two cowpea cultivars and nine elite 

genotypes.93  Both studies showed that ISSR markers were better linked to morphological 

variation than RAPD markers. 

 

Genetic mapping and marker-assisted selection 

 

Currently, the construction of the cowpea genetic map is mainly based on the use of efficient 

molecular markers, such as SSR and SNP, which show sufficient genetic variability.43,83,84,94–

97 A consensus genetic linkage map using EST-derived SNPs led to the integration of 928 

markers into a cowpea genetic map spanning 680 cM with 11 linkage groups (0.73 cM of 

average marker distance).98 These authors reported a significant macrosynteny with Glycine 

max and Medicago truncatula genomes, and some microsynteny with Arabidopsis thaliana 

genome. The first genetic map of asparagus bean based on SNP and SSR markers was 

reported by Xu et al..43 This map consisted of 375 loci mapped on 11 linkage groups, with 

191 loci detected by SNP markers and 184 loci by SSR markers. The development of a high-

density genetic map offers a powerful tool for analysing the inheritance of target genes, 

monitoring specific genes or genomic regions transmitted from parents to progeny.3 Using the 

recently developed Illumina iSelect genotyping assay for cowpea, Muñoz-Amatriain et al.85 

genotyped five biparental RIL populations and developed a consensus genetic map containing 
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over 37,000 SNPs mapped to ~3,200 bins in ~800 cM. These results are being used to 

genetically anchor an initial whole-genome shotgun (WGS) assembly of the cowpea 

accession IT97K-499-35. To this assembly, sequences from about 4,000 minimal tiling path 

BACs are being incorporated with the aim to increase the number of anchored scaffolds and 

help resolve the order within recombination bins. 

The biotechnology based on such genetic maps and use of DNA markers brings a great 

hope in cowpea breeding, as specific molecular markers could be used to select target traits 

with marker assisted selection (MAS).17 The association of 18 SNPs with seed size in cowpea 

varieties from Ghana suggested that these molecular markers could be useful for marker 

assisted breeding of larger seeded cowpea plants.99 Performing a RFLP analysis of 29 

polymorphic markers, among 14 drought-tolerant genotypes, it was possible to find a 

correlation between seven RFLP markers and different drought-related cowpea phenotypes.100 

The additional use of other high-density DNA markers in the genome could speed even more 

the selection process in breeding programs. For breeding to resistance to the parasitic weed 

Striga gesnerioides, SSR101 and AFLP102,103 markers have been used. Similarly, SNPs have 

been used to identify markers associated to cowpea resistance to foliar thrip.104 The asparagus 

bean rust disease, caused by the fungus Uromyces vignae, was also associated to a specific 

AFLP marker that can now be effectively used for MAS.105 Sequencing and analysis of the 

gene-rich hypomethylated portion of the cowpea genome was performed by Timko et al.106 

More than 250,000 gene-space sequences reads (GSRs) were generated, thus providing a 

source of functional markers for detailed comparative studies of cowpea with other plant 

species and positional cloning of key genes of agronomic interest.  

 

TOLERANCE TO DROUGHT STRESS 
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Drought is one the most severe environmental stresses with major impact on plant 

development and productivity thus causing serious agricultural yield losses.107,108 Drought 

tolerance is a complex trait defined as the ability of plants to live, grow, and reasonably 

produce with limited soil water supply or under periodic water deficiencies.109 Mitra110 

grouped the plant mechanisms used to cope with drought stress into three groups: drought 

escape, drought avoidance and drought tolerance. Crop plants could use more than a single 

mechanism to cope with drought stress. One of the most important food legumes in tropical 

and sub-tropical regions, where drought is a major constraint for production due to low and 

erratic rainfall, is cowpea. Indeed, some authors pointed cowpea as one of the most tolerant 

crops to drought, due to its capacity of growing in areas with no irrigation facilities and 

irregular rainfall.24,111–113 This tolerance has been attributed to the three drought tolerance 

mechanisms,112 although several drought avoidance mechanisms were extensively described, 

including deep rooting, strong stomatal sensitivity, reduced growth rate, leaf area reduction, 

delayed leaf senescence, hastened or delayed reproductive cycle, osmotic adjustment and 

sensitive moisture remobilization to the upper leaves and growing tips.109,113 Since cowpea 

has the ability to tolerate severe drought conditions and displays a relatively small nuclear 

genome size (estimated at ~620 Mb), this legume has been considered as an ideal model to 

study the molecular mechanisms of drought tolerance in crops.112  

 

Morphological, biochemical and physiological traits for drought  

 

Changes of morphological, biochemical and physiological traits in response to drought stress 

for several V. unguiculata cultivars have been reported.114–117 The root system or rooting 

pattern are closely related to drought-tolerance mechanisms in legume crops.118,119 To evaluate 

and screen cowpea drought-tolerance, several parameters of the root system have been used, 
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such as root length density, rooting depth and root dry matter.119 To examine cowpea drought 

tolerance ability, water potential, relative turgidity, diffusion pressure deficit, chlorophyll 

stability index measurements, or carbon isotope discrimination are typically evaluated.109,120 

However, most of these methods have the disadvantage of being slow, laborious, expensive, 

and influenced by environmental conditions.109,112 Slabbert et al.114 tested and proposed other 

methods to screen cowpea for drought tolerance, such as proline accumulation, 2,3,5-

triphenyltetrazolium chloride (TTC) assays, cell membrane stability (CMS), relative water 

content (RWC), leaf water potential (LWP), leaf area, chlorophyll a and b contents, 

chlorophyll fluorescence, carotenoids content, evaluation of anti-oxidative responses through 

enzyme activities determination [superoxide reductase (SOD), glutathione reductase (GR), 

ascorbate peroxidase (APX)], as well as the early drought screening at the seedling stage 

(wooden box technique). Altogether, these methods pretend to evaluate the most typical 

changes that occur in plants after a drought imposition.  

As the complex regulatory processes of drought adaptation involves the control of 

water flux and cellular osmotic adjustments via the biosynthesis of osmoprotectants,108 such 

compounds determination has often been used for screening tolerant cowpea genotypes. The 

osmoprotectants are classified into three major groups: amino acids (e.g. proline), 

polyol/sugars (e.g. trehalose, fructans, mannitol), and quaternary amines (e.g. glycine 

betaine).121–123 However, these compounds are not accumulating in all plant species in 

sufficient amounts to avoid adverse effects of drought stress.122,124 Studies in drought stress 

cowpea and osmoprotectants are still scarce. But, the application of chitosan in drought stress 

cowpea plants has been described to allow the maintenance of osmotic balance.125 

Physiological changes related with photosynthesis and stomatal conductance have also 

been frequently used in drought evaluation studies. Indeed, one of the processes largely 

affected by water deficit is photosynthesis, due to a decline of stomatal conductance that 
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limits the carbon assimilation, as well as due to biochemical and photochemical 

adjustments.126,127 The dynamics of photosynthesis (A), stomatal conductance (gs) and 

intrinsic water-use efficiency (WUE=A/gs) were evaluated in 14 cowpea genotypes over a 

period of drought and post-stress.128 Under water stress conditions, a decrease in 

photosynthesis and stomatal conductance accompanied with an increase in the intrinsic water-

use efficiency was detected in all genotypes, although differences between genotypes were 

found.128 When cowpea genotypes, differing in drought resistance, were subjected to three 

distinct water stress conditions (unstressed, moderate and severe stressed), an increase on root 

biomass and a reduction on chlorophyll content were detected with water stress imposition.115 

One of the main regulators of plant drought tolerance is the abscisic acid (ABA) that, 

not only regulates many essential processes of plant development, including the inhibition of 

germination and control of stomatal closure, but also several adaptive responses to a variety 

of environmental stresses.129,130 Kulkarni et al.131 studying the response of six cowpea 

cultivars to drought stress suggested that the intrinsic capacity for ABA synthesis could play 

an important role in regulating stomatal conductance. ABA accumulation is higher in 

drought-stressed plants than in unstressed plants.112 In cowpea, some studies have been 

developed to understand the role of ABA in the drought tolerance.132,133 

As membranes are the key targets of degradative processes induced by drought, 

membrane integrity parameters have also been used for assessing drought stress severity. A 

decrease in membrane lipid content was reported under water stress,134 which seems to be 

correlated to the inhibition of lipid biosynthesis and stimulation of lipolytic and peroxidative 

activities.135,136 The degradation of membrane lipids and the enzymatic antioxidant activity 

seem to be a useful method to evaluate the level of plant drought stress. However, data are 

still scarce in cowpea.111,114,136–138 
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Agbidoco et al.112 suggested that the most suitable parameters for screening a large 

number of cowpea lines for drought tolerance are the measurements of chlorophyll 

fluorescence, stomatal conductance, ABA and free proline levels. Besides these parameters, 

the wooden box screening for drought tolerance at the seedling stage and delayed leaf 

senescence (DLS) could be interesting to evaluate and determine drought tolerance. 

Physiological, biochemical and agronomic responses to water deficit at flowering stage of 

cowpea detected an increase of canopy temperature and proline content, as well as a decrease 

of gaseous exchanges and starch content that eventually affect the yield components with 

exception of seed number per pod.139 

The knowledge transfer between plant species and cultivars should be taken with care, 

since differences in drought tolerance were detected when evaluating distinct plant species or 

cultivars. For example, a comparison of physiological responses to drought between Vigna 

unguiculata and Phaseolus vulgaris demonstrated that both species significantly differ in the 

responses evaluated by leaf gas exchange parameters.140  

 

Drought tolerance genes 

 

Transcriptomic studies have been developed to identify genes, pathways and processes 

important in controlling plant response to multiple abiotic or biotic stresses, thus providing 

candidate targets for stress tolerance improvement.141 Many cowpea drought-related genes 

have been deduced from previously recognized candidate genes for drought tolerance in other 

related species, and were then confirmed by their differential expression in drought-stressed 

versus non-stressed cowpea plants. On the other hand, studies on the differential expression of 

cowpea genes in experimental plants subjected to different levels of water privation have led 

to the identification of cowpea genes involved in drought responses.112  
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Many cowpea genes are now recognized as being involved in drought responses 

(Table 3). Using a differential screening method, Iuchi et al.142 isolated 24 cDNA clones that 

corresponded to dehydration-induced genes from a cowpea variety (IT84S-2246-4) displaying 

a high drought tolerance. These cDNA clones represented ten different genes, nine of which 

were specifically induced by dehydration stress. Five of these drought-associated genes were 

further characterized (CPRD8, CPRD14, CPRD22, CPRD12 and CPRD46),(142,143) being 

followed by the description of two additional drought-inducible genes all from the same 

cowpea variety (VuNCED1 and VuABA1).(132) VuNCED1 encodes a 9-cis-epoxycarotenoid 

dioxygenase that catalyses a key step in ABA biosynthesis, while VuABA1 encodes a 

zeaxanthin epoxidase132 involved in another important key step of ABA biosynthesis. Indeed, 

zeaxanthin epoxidase has been reported as required for resistance to osmotic and drought 

stress, ABA-dependent stomatal closure and regulate the expression of stress-responsive 

genes.144  

According to the degradation of membrane lipids that occur under drought stress 

conditions,134 several other cowpea drought-related genes are recognized to be involved on 

lipid metabolism. El-Maarouf et al.135 isolated and characterized the cowpea VuPLD1 gene 

that encodes a phospholipase D, which is the main enzyme responsible for the drought-

induced degradation of membrane phospholipids. In a drought stress susceptible cultivar, 

phospholipase D activity and VuPLD1 expression were highly stimulated by drought stress, 

while remained unchanged in a tolerant cultivar.135 From the leaves of the same cultivars, 

Matos et al.136 isolated a VuPAT1 (putative patatin-like) gene that encodes for galactolipid 

acyl hydrolase. A rapid increase of VuPAT1 expression was also observed in the susceptible 

cultivar under drought conditions, while the tolerant exhibited lower levels of transcripts. 

These results suggest that drought stress in cowpea stimulates the hydrolysis of galactolipids, 

the main components of chloroplast membrane. VuPAP-α and VuPAP-ß are two cDNAs 
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encoding putative phosphatidate phosphatases (PAPs) that were cloned from cowpea leaves 

by Marcel et al..145 PAP plays a role in the enzymatic cascade that leads to membrane lipid 

degradation under environmental stresses or senescence.137 Marcel et al.145 revealed that gene 

expression of VuPAP-α remained very low during drought treatments, being strongly 

stimulated after rehydration. On the other hand, VuPAP-ß expression did not vary in plants 

submitted to water stress by withholding irrigation, but increased rapidly in air desiccated 

leaves.  

Metabolic and adaptive processes, in which the adaptation to drought stress is 

included, comprise the regulation of protein degradation through the use of protease-specific 

inhibitors146 and cellular protection against oxidative damage through the regulation of anti-

oxidant enzymes and free radical scavengers.147 The expression of cowpea cystatin (cowpea 

leaf protease inhibitor; VuCI) gene, evaluated at mRNA (Northern analysis) and protein 

(Western analysis) levels, suggested that two cystatin transcripts producing two distinct 

polypeptides would lead to a multiplicity of forms related to multiple biological roles.146  

A noticeable activation of cowpea antioxidant metabolism has been detected under 

progressive water stress by studying drought-related genes. The cloning and sequencing of 

two new cDNAs encoding a putative dual-targeted (dtGR) and a cytosolic (cGR) glutathione 

reductase (GR) from cowpea leaves was performed by Contour-Ansel et al..138 The 

expression of both genes in cowpea leaves of drought-sensitive and drought-tolerant plants 

subjected to different drought stress conditions revealed that up-regulation of cGR expression 

is directly related to the intensity of stress in both cultivars, but dtGR expression was different 

in susceptible and resistant cultivars. The results revealed the participation of GR in drought 

responses of both cowpea cultivars, which in susceptible cultivar involves both GR genes.138 

The expression of other antioxidant enzyme genes (ascorbate peroxidases; APX) was also 

studied in cowpea response to progressive drought, rapid desiccation and application of 
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exogenous ABA. Four new cowpea cDNAs encoding putative cytosolic (VucAPX), 

peroxisomal (VupAPX), chloroplastic (stromatic VusAPX) and thylakoidal (VutAPX) 

ascorbate peroxidases were isolated and characterized.111 When the expression levels of 

VucAPX and VupAPX were followed in drought-tolerant and sensitive cultivars, an increase in 

steady-state transcripts levels was observed in response to rapid water loss and exogenous 

ABA treatment in drought-sensitive cultivar, while no significant changes in drought-tolerant 

cultivar were registered. Also, the VusAPX gene expression was strongly stimulated at low 

levels of water stress in drought-tolerant cultivar. The higher expression of all these genes in 

tolerant cultivars, comparatively to sensitive ones, suggested once more that cowpea is a 

drought-tolerant species compared to other crops, indicating that even the more sensitive 

cultivars have some level of resistance to water deficits.111 Two other well-recognized stress-

related genes, GST (glutathione-S-transferase) and PR-1 (pathogenesis-related-protein-1), 

were identified in cowpea by suppression subtractive hybridization (SSH) using drought-

tolerant and susceptible lines.148 Silva et al.149 followed the effect of drought and heat stresses 

on cowpea nodules by evaluating the differential gene expression, using a cDNA-AFLP 

approach, and identified 14 differentially expressed nodule stress responsive genes. These 

genes are involved in different metabolic processes, five (VuNSR4, VuNSR10, VuNSR44, 

VuNSR47 and VuNSR49) of which were related with the nodule protection under abiotic stress 

conditions as revealed by their expression levels.149 

 

MicroRNA drought regulation 

 

MicroRNAs (miRNAs) regulate gene expression at posttranscriptional level through the 

recognition of target RNAs by nearly perfect base complementary. Several functional 

analyses have demonstrated that miRNAs are involved in a variety of plant developmental 
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processes and play important roles in plant resistance to abiotic and biotic stresses.150,151 From 

two cowpea genotypes, one drought-tolerant and another drought-sensitive, 157 miRNAs 

were identified, 44 of which were drought-associated, being 30 upregulated and 14 

downregulated in drought conditions. Cowpea miRNAs from leaves and roots of plants 

subjected to drought treatment were also identified and validated by real-time-quantitative 

PCR.152 The results demonstrated that the same miRNAs in different tissues respond 

differently to drought stress. Both studies suggest that miRNAs could play an important role 

in cowpea response to drought stress by regulating the expression levels of drought-related 

genes.  

 

CONCLUSION 

 

Global climate changes have an enormous impact on plant diversity patterns with significant 

current negative effects. In Europe, Mediterranean countries are the ones where is expected a 

higher impact of climate changes will be expected, including an increase in drought, high 

temperatures, and water scarcity. Drought is a critical constraint for agricultural production 

yield, which is currently expanding worldwide and affecting an increased number of 

countries. New strategies are thus required to overcome this major challenge in agricultural 

production systems, such as the development of new farming systems and use of undervalued 

crop varieties. Due to its natural tolerance to water scarcity conditions and high temperatures, 

cowpea could be considered as a valued crop for increasingly drought scenarios. Besides 

drought tolerance, cowpea also presents high levels of protein and the capacity to establishing 

symbiotic associations with distinct microorganisms (rhizobia and mycorrhizal fungi, mainly) 

that turns it as an environmentally friendly crop. This legume could also be a useful plant 

model for understanding the mechanisms involved in drought tolerance. The existence of 
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several cowpea varieties and cultivars, displaying different tolerance levels to drought 

conditions, provides an excellent germplasm resource for identifying new candidate genes 

involved in responses to drought stress tolerance and also for being used in future breeding 

programmes. DNA molecular markers have shown to be a good tool for germplasm 

evaluation and selection of the most interesting drought stress/tolerant genotypes. As the 

marker assisted selection (MAS) can facilitate the selection of elite germplasm and accelerate 

plant breeding programs, the identification of the precise position of drought-related known 

genes and of new candidate genes should be done. The integration of data from phenotype, 

biochemical and molecular characterization will help to understand the resilience and 

resistance of cowpea under drought and provide sufficient cowpea knowledge for the 

development of drought-tolerant varieties. For these reasons, cowpea can also be an important 

plant model for the development of other crop varieties more drought tolerant. 
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Table 2 – DNA-based molecular markers that have been used for specific cowpea studies. 

Molecular 

Marker 
Sub-species Objective References 

AFLP V. unguiculata ssp. unguiculata Markers linked to cowpea Ouédraogo et al., 

Species Subspecies Variety Cultivar group 

Vigna unguiculata 

unguiculata 

spontanea 
  

unguiculata 

unguiculata 
biflora 
sesquipedalis 
textilis 
melanophthalmus 

baoulensis   
burundiensis   
letozeyi   
aduensis   
pawekiae   
dekindtiana   
stenophylla   
tenuis   
alba   
pubescens   



41 
 

parasitism resistance  2001153 

V. unguiculata ssp. unguiculata  

V. unguiculata ssp. spontanea 

Phenetic organization and 

genetic diversity 

Coulibaly et al., 

200219 

V. unguiculata ssp. unguiculata Genetic diversity Fang et al., 200746 

V. unguiculata ssp. unguiculata Markers linked to cowpea 

golden mosaic virus 

Rodrigues et al., 

2012154 

RFLP 

V. unguiculata ssp. unguiculata 

Vigna radiata 

Markers linked to orthologous 

seed weight genes 

Fatokun et al., 1992155 

V. unguiculata ssp. unguiculata Markers linked to aphid 

resistance gene 

Myers et al., 1996156 

V. unguiculata ssp. unguiculata Diversity of indigenous 

bradyrhizobia 

Krasova-Wade et al., 

2003157 

V. unguiculata ssp. unguiculata Markers linked to genotypic 

and phenotypic responses to 

seedling-stage drought 

Muchero et al., 

2008100 

RAPD 

V. unguiculata ssp. unguiculata Genetic diversity Fall et al., 200369 

V. unguiculata ssp. unguiculata  Genetic relatedness and gene 

flow 

Nkongolo, 2003158 

V. unguiculata ssp. unguiculata  

V. unguiculata ssp. spontanea 

Genetic diversity Ba et al., 20042 

Vigna unguiculata ssp. 

unguiculata 

Genetic diversity  Zannou et al., 200865 

V. unguiculata ssp. unguiculata 

Phaseolus vulgaris 

Genetic diversity and markers 

linked to cowpea resistance to 

pests weevil pests 

Abdel-Sabour et al., 

2010159 

V. unguiculata ssp. unguiculata Genetic diversity Malviya et al., 201266 

V. unguiculata ssp. unguiculata 

 

Genetic diversity Prasanthi et al., 201267 

V. unguiculata ssp. unguiculata Genetic diversity Patil et al., 201368 

SSR 

V. unguiculata ssp. unguiculata 

V. unguiculata ssp. dekindtiana 

var. pubescens 

Genetic diversity and 

relationships 

Li et al., 2001105 

V. unguiculata ssp. unguiculata Genetic diversity Xu et al., 200770 

V. unguiculata ssp. dekindtiana 

V. unguiculata ssp. ovata 

V. unguiculata ssp. 

kgalagadensis 

V. unguiculata ssp. rhomboidea 

V. unguiculata ssp. Pubescens 

V. unguiculata ssp. mensensis 

Genetic diversity Ogunkanmi et al., 

200864 
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V. unguiculata ssp. grandiflora 

V. unguiculata ssp. congolensis 

V. unguiculata ssp. unguiculata Genetic diversity Lee et al., 2009 71 

V. unguiculata ssp. unguiculata Genetic diversity Asare et al., 201072 

V. vexillata 

V. umbellate 

V. glabrescens 

V. aconitifolia 

V. trilobata 

V. angularis 

V. radiata 

V. radiata 

V. radiate var. setulosa 

V. radiate var. sublobata 

V. mungo 

V. mungo var. silvestres 

Genetic diversity and SSR 

transferability between Vigna 

species  

Gupta and 

Gopalakrishna, 

2010160 

V. unguiculata ssp. unguiculata Genetic diversity of cowpea 

cultivars resistant to Striga 

gesnerioides 

Sawadogo et al., 

2010101 

V. unguiculata ssp. sesquipedalis 

V. unguiculata ssp. unguiculata 

Genetic diversity and SSR 

transferability between sub-

species 

Xu et al., 201075 

V. unguiculata ssp. unguiculata Genetic distance and diversity Adewale et al., 201148 

V. unguiculata ssp. unguiculata Genetic map and identification 

of QTLs 

Andargie et al., 201196 

V. unguiculata ssp. unguiculata Markers linked to Yellow 

Mosaic Virus Resistance genes 

Gioi et al., 2012161 

V unguiculata ssp. unguiculata SSR transferability to other 

Vigna species 

Bansal et al., 2012162 

V. unguiculata ssp. unguiculata Genetic diversity  Badiane et al., 201274 

V. unguiculata ssp. unguiculata Genetic diversity Adetiloye et al., 

201373 

 V. unguiculata ssp. unguiculata Genetic diversity Ali et al. 2015163 

SNP 

V. unguiculata ssp. unguiculata Consensus genetic linkage 

maps 

Muchero et al., 200983 

V. unguiculata ssp. unguiculata  

Glycine max 

Linkage mapping and synteny 

to other legumes 

Lucas et al., 201184 

V. unguiculata ssp. unguiculata Markers linked to resistance to 

foliar thrips 

Lucas et al., 2012104 

V. unguiculata ssp. unguiculata Gene pool structure  Huynh et al., 201347 
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V. unguiculata ssp. dekindtiana Phylogenetic relantioships 

V. unguiculata ssp. unguiculata Markers linked to seed size Egbadzor et al., 

201399 

V. unguiculata ssp. unguiculata Genetic diversity Egbadzor et al., 

201452 

 V. unguiculata ssp. unguiculata Genetic mapping and synteny 

of aphid resistance 

Huynh et al., 2015164 

 V. unguiculata ssp. unguiculata Genetic diversity and 

population structure 

Xiong et al. 201682 

 V. unguiculata ssp. unguiculata 

V. unguiculata ssp. spontanea 

Consensus genetic map Muñoz-Amatriaín et 

al. 201685 

 V. unguiculata ssp. sesquipedalis Pod length QTLs Xu et al. 2016165 
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Table 3 – Genes identified as being involved in drought tolerance in cowpea.  

Gene 

designation 

Code 

number 
Gene function Author 

CPRD8 D83970 Response to dehydration stress Iuchi et al. 1996 (142) 

CPRD14 D83971 Response to dehydration stress Iuchi et al. 1996(142) 

CPRD22 D83972 Response to dehydration stress Iuchi et al. 1996(142) 

CPRD12 D88121 Response to dehydration stress Iuchi et al. 1996(143) 

CPRD46 D88122 
Neoxanthin cleavage enzyme involved in 

ABA biosynthesis 
Iuchi et al. 1996(143) 

VuNCED1 AB030293 
9-Cis-epoxycarotenoid dioxygenase involved 

in a key step of ABA biosynthesis 
Iuchi et al. 2000(132) 

VuABA1 AB030295 
Zeaxanthin epoxidase involved in early step 

of ABA biosynthesis 
Iuchi et al. 2000(132) 

VuPLD1 U92656 
Putative phospholipase D, a major lipid-

degrading enzyme in plant 
El-Maarouf et al.1999(135) 

VuPAP-α AF165891 

Putative phosphatidate phosphatase, 

important for the enzymatic cascade leading 

to membrane lipid degradation under 

environmental stresses or senescence 

Marcel et al. 2000(145) 

VuPAP-ß AF171230 

Putative phosphatidate phosphatase, 

important for the enzymatic cascade leading 

to membrane lipid degradation under 

environmental stresses or senescence 

Marcel et al. 2000 (145) 

VuPAT1 AF193067 

Galactolipid acyl hydrolase involved in 

membrane degradation induced by drought 

stress 

Matos et al.2001(136) 

VuC1 AF278573 
Protein inhibitor of cysteine proteinase 

belonging to the papain family 
Diop et al. 2004(146) 

dtGR DQ267474 
Dual-targeted glutathione reductase, a key 

enzyme involved in detoxification of AOS 

Contour-Ansel et al. 

2006(138) 

cGR DQ267475 
Cytosolic glutathione reductase, a key 

enzyme involved in detoxification of AOS 

Contour-Ansel et al. 

2006(138) 

VucAPX U61379 
Cytosolic ascorbate peroxidase, a key 

enzyme involved in detoxification of AOS 

D’Arcy-Lameta et al. 

2006(111) 

VupAPX AY466858 
Peroxisomal ascorbate peroxidase, a key 

enzyme involved in detoxification of AOS 

D’Arcy-Lameta et al. 

2006(111) 

VusAPX AY484493 
Stromatic ascorbate peroxidase, a key 

enzyme involved in detoxification of AOS 

D’Arcy-Lameta et al. 

2006(111) 

VutAPX AY484492 Thylakoidal ascorbate peroxidase, a key D’Arcy-Lameta et al. 
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enzyme involved in detoxification of AOS 2006(111) 

GST  
Glutathione-S-transferase, a well-recognized 

stress-related gene 

Gazendam and Oelofse 

2007(148) 

PR-1  
Pathogenesis-related-protein-1, a well-

recognized stress-related gene 

Gazendam and Oelofse 

2007(148) 

VuNSR4 ABA55727.1 Digalactosildiacilglicerol sintase 1 Silva et al. 2012(149) 

VuNSR10 AAC49405.1 Kinase protein calcium dependent Silva et al. 2012(149) 

VuNSR44 
BAA13541.1 

BAA12161.1 

CPRD12 protein  

CPRD12 protein 
Silva et al. 2012(149) 

VuNSR47 BAA12160.1 CPRD8 protein (“old yellow” enzyme) Silva et al. 2012(149) 

VuNSR49 BAB11932.1 CPRD65 protein Silva et al. 2012(149) 

 


