
Pereira et al. BMC Bioinformatics (2015) 16:142
DOI 10.1186/s12859-015-0544-x
SOFTWARE Open Access
Pydna: a simulation and documentation tool
for DNA assembly strategies using python

Filipa Pereira1, Flávio Azevedo1, Ângela Carvalho1, Gabriela F Ribeiro1, Mark W Budde2 and Björn Johansson1*
Abstract

Background: Recent advances in synthetic biology have provided tools to efficiently construct complex DNA
molecules which are an important part of many molecular biology and biotechnology projects. The planning of
such constructs has traditionally been done manually using a DNA sequence editor which becomes error-prone as
scale and complexity of the construction increase. A human-readable formal description of cloning and assembly
strategies, which also allows for automatic computer simulation and verification, would therefore be a valuable tool.

Results: We have developed pydna, an extensible, free and open source Python library for simulating basic
molecular biology DNA unit operations such as restriction digestion, ligation, PCR, primer design, Gibson assembly
and homologous recombination. A cloning strategy expressed as a pydna script provides a description that is
complete, unambiguous and stable. Execution of the script automatically yields the sequence of the final
molecule(s) and that of any intermediate constructs. Pydna has been designed to be understandable for biologists
with limited programming skills by providing interfaces that are semantically similar to the description of molecular
biology unit operations found in literature.

Conclusions: Pydna simplifies both the planning and sharing of cloning strategies and is especially useful for
complex or combinatorial DNA molecule construction. An important difference compared to existing tools with
similar goals is the use of Python instead of a specifically constructed language, providing a simulation
environment that is more flexible and extensible by the user.

Keywords: Next generation cloning, Cloning simulation, Bioinformatics, Homologous recombination
Background
Modern biology experiments often require and depend on
the construction of new DNA molecules for expression of
a protein or for other cellular manipulations. While in the
past, small DNA constructs incorporating few parts were
common, the complexity of new constructs has grown
with advancing technology. Recently, several DNA assem-
bly protocols have been published allowing the in-vivo [1]
or in-vitro [2] assembly of large DNA molecules, com-
monly referred to as “next generation cloning”. These pro-
tocols often describe the assembly of ten to twenty PCR
generated DNA fragments into a complex construct.
The in-silico planning of these constructs is still often

done manually using a DNA sequence editor. The plan-
ning stage usually results in an ad hoc natural language
description of a cloning strategy. The complexity of these
* Correspondence: bjorn_johansson@bio.uminho.pt
1CBMA, Campus de Gualtar, University of Minho, Braga, Portugal
Full list of author information is available at the end of the article

© 2015 Pereira et al. This is an Open Access a
(http://creativecommons.org/licenses/by/4.0),
provided the original work is properly credited
creativecommons.org/publicdomain/zero/1.0/
strategies results in risk of cloning strategy errors and
omissions. The translation of the cloning strategy into a
DNA sequence is dependent on human translation, which
contributes to the incompletely documented or ambigu-
ous DNA cloning strategies found in literature.
A recent example of next generation cloning protocols

described the assembly of a metabolic pathway consist-
ing of three genes permitting S. cerevisiae growth on the
pentose sugar xylose [1]. Briefly, genes were fused with
promoter and terminator sequences by fusion PCR and
each promoter-gene-terminator subsequently joined into
a vector by in-vivo recombination. Fifty-nine primers
were required for the assembly, the sequences of which
were given as supplementary data to the article. Our
attempt to recreate the assembly in-silico revealed that
the sequences of three primers were incomplete in such
a way that they do not anneal with the designated tem-
plate, possibly due to truncation of primer sequences.
rticle distributed under the terms of the Creative Commons Attribution License
which permits unrestricted use, distribution, and reproduction in any medium,
. The Creative Commons Public Domain Dedication waiver (http://
) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s12859-015-0544-x&domain=pdf
mailto:bjorn_johansson@bio.uminho.pt
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/

Pereira et al. BMC Bioinformatics (2015) 16:142 Page 2 of 10
Authors sometimes submit sequences which reflect the
final result of the cloning strategy to a public database such
as Genbank. While helpful, the strategy is still separate from
the final result and intervening steps are not available for in-
spection or for another lab to build upon. This ambiguity
and incompleteness is both unfortunate and unnecessary
since the whole DNA construction process is deterministic,
as there is typically only one desired way for the DNA frag-
ments to combine and one final DNA sequence.
Properly documenting and in-silico simulation of con-

structs is crucial during the development phase of new
genetic constructs. In the case of deterministic constructs
that do not rely on random assembly, the theoretical final
sequence is necessary for confirmation by restriction
digestion which is a faster and more cost effective method
to confirm the structure of DNA assemblies [3]. A solu-
tion to these problems is a strategy description that is both
readable by humans and executable by a computer to
simulate the individual steps of the protocol as well as the
end result. Here we describe pydna, which is a software
tool that was developed to provide high level computer
simulation of DNA manipulation procedures and aid the
design of complex constructs. Pydna contains functional-
ity for automated primer design for homologous recom-
bination cloning or Gibson assembly as well as DNA
assembly simulation. Pydna include data types to describe
double stranded DNA and the most common unit opera-
tions performed to manipulate DNA.
Pydna can aid in the design of DNA constructions and

at the same time be a compact, self contained, unambigu-
ous plan for almost any subcloning or DNA assembly
experiment. Pydna allow the mixing of different kinds of
assembly protocols with classical restriction endonuclease
cut and paste cloning. The execution of the code verifies
the accuracy and completeness of the described strategy.
All intermediate results are automatically generated and
can easily be inspected. Strategies described in pydna are
easy to modify if necessity arises. For instance, a strategy
may have to be modified due to for example a particular
DNA fragment being refractory to PCR amplification.
Pydna would allow simply redesigning primers and reexe-
cute the pydna code to verify that the strategy and all
downstream steps are still correct. A strategy designed by
hand would require all steps downstream of the modifica-
tion to be reassessed.

Implementation
Pydna was implemented exclusively in Python and depends
mainly on the Biopython [4] and NetworkX [5] packages.
Source code [6] and installers [7] are available for all systems
supporting Python. Distributions of pydna are built using an
automatic build system [8] which also executes a large test
suite (66% coverage) that is always executed before each
new release, to maintain code quality. An interactive
python environment with pydna installed is available on-
line [9] which allow execution of small pydna examples
without software installation. Static examples are also
available through a IPython notebook accessible through a
web browser without the need to install software [10].
Most of the pydna functionality is implemented as

methods for the Dseqrecord class, which was designed to
hold sequence information necessary for describing a
double-stranded DNA molecule. Objects of the Dseqre-
cord class can also hold metadata, such as Genbank acces-
sion numbers and features tables. The Dseqrecord class
supports sequence file reading, writing and downloading
from Genbank. Much of the Dseqrecord functionality
reflects that of the SeqRecord class of Biopython [4].
A powerful way to make use of pydna is to install the

free Anaconda Scientific Python distribution [11] provid-
ing the spyder scientific python development environment
[12] in combination with the IPython [13] interactive shell.
Detailed installation instructions of both Anaconda and
pydna can be found in Additional file 1. A compressed
folder containing a comprehensive collection of examples
are available in Additional file 2.
The source code of pydna contains extensive documenta-

tion for most functions and classes. These comments are
automatically built into a documentation suit after each re-
lease and can be accessed online without installing pydna
[14]. Questions, comments and bug-reports should be di-
rected to the pydna mailing list [15].
Results and discussion
Interactive usage
This section will show examples of pydna interactive usage
aiming at assembly primer design and assembly simulation.
Examples are given as excerpts from an interactive session
using the enhanced IPython shell. User input are preceded
by the “In” prompt with a line number such as “In [1]:”
while the system response is preceded by the out prompt
“Out” like “Out [4]:”. The example below shows three Gen-
bank records downloaded from Genbank and stored as
Dseqrecord objects.

Pydna provides short representations of Dseqrecord ob-
jects indicating topology (linear “-” or circular “o”) and
length. The Dseqrecord object YEp24PGK describes a cir-
cular 9637 bp yeast expression plasmid, while the cyc1 de-
scribes the 330 bp linear CYC1 yeast gene. The gfp object

Pereira et al. BMC Bioinformatics (2015) 16:142 Page 3 of 10
contains the eGFP gene from the plasmid pUG35. The
eGFP gene is present on the antisense strand of the vector,
so it is transformed to its reverse complement using the
reverse_complement() method.
Sequences can be cut using restriction enzymes pro-

vided by the Biopython package [4] which is automatic-
ally installed with pydna:

The linearize method cuts the plasmid at the unique
BglII site in the example above. The result is a 9641 bp
linear sequence. The linearized plasmid appears larger
(9641 bp) than the circular (9637 bp) since the digestion
produced cohesive ends. The details of the sequence can
be inspected using the seq property of the object.

Assembly primer design
Several protocols have been developed allowing the sim-
ultaneous directed assembly of a large number of DNA
fragments into a final construct in one step. Homolo-
gous recombination (HR) and Gibson assembly [2] are
two commonly used techniques. HR has been used to
assemble large metabolic pathways and up to 25 bacter-
ial genome DNA fragments [16]. DNA fragments to be
joined are typically transformed into an organism with
an efficient HR machinery such as S. cerevisiae. In-vivo
HR between transformed DNA fragments is thought to
occur mainly by the single strand annealing pathway
[17]. Thirty to fifty nucleotides of homology are re-
quired for S. cerevisiae to efficiently join fragments, and
these regions of homology should occur at or near the
DNA ends of the molecules to be joined.
Gibson assembly is a protocol for joining DNA frag-

ments in-vitro by treatment with a mixture of T5 exo-
nuclease, DNA polymerase and Taq DNA ligase. Gibson
assembly requires 20–40 bp of perfect homology be-
tween 3’ and 5’ ends for fragments to be joined. The T5
exonuclease chews back each fragment in the 5’-3’
direction so that the remaining 3’ single stranded over-
hangs can anneal. Gaps are filled and nicks sealed by
polymerase and ligase.
The few lines of pydna code shown so far have estab-

lished three linear DNA fragments, the expression
vector YEp24PGK, which was linearized with BglII, and
the cyc1 and gfp genes. These three fragments could be
joined together to form an expression construct where
the cyc1 is fused to GFP at its three prime end. A com-
mon way to accomplish this fusion is to PCR amplify
the fragments with tailed primers designed to add
stretches of flanking homology to each fragment. Pydna
provides the pydna assembly_primers function in order
to automatically design tailed primers for a series of
DNA fragments. The pydna code below automatically
designed primers for assembly by Gibson assembly or
HR. Melting temperatures and the size of the desired
overlaps between sequences can be controlled by op-
tional arguments to the function. The algorithm tries to
create primers with balanced melting temperature for
the annealing region. The vector backbone is indicated
with the keyword vector as primers for this sequence is
not normally desired. Primers will be designed for the
assembly in the given order, so order and orientation of
fragments fed to this function are important.

The last three nucleotides of the cyc1 gene containing the
stop codon are removed using the slice notation common
for Python sequences ([:-3]). The p1, p2, p3 and p4 objects
contain the sequences of the newly designed primers.
PCR simulation
Pydna offers powerful PCR simulation where tailed
primers and inverse PCR on a circular template are sup-
ported. Genbank features associated with the template se-
quence are preserved if they are fully contained in the PCR
product. In the example below, we use the two primers
pairs from the previous section to create two PCR products
in the form of Amplicon objects. These objects store rich
information about the PCR simulation, such as the DNA
region where the primer anneals, melting temperature of
each primer and also a suggested PCR program.

Pereira et al. BMC Bioinformatics (2015) 16:142 Page 4 of 10
Assembly simulation
Pydna can automatically simulate the joining of DNA
fragments by HR or Gibson assembly:

The statement above assembles the PCR products cre-
ated before and stores the result in an assembly object
(asm). The assembly algorithm is implemented in three
steps. In the first step, a pairwise comparison of all se-
quences is performed to find shared homologous subse-
quences. The shared homologies are found using a pure
python implementation of the fast suffix array string
comparison algorithm by Kärkkäinen and Sanders [18].
Homologies are added to each sequence as metadata in
the form of Genbank features (Figure 1A) which can be
inspected graphically using a sequence editor.
In the second step a graph is created where overlapping

sequences form nodes and sequences between overlapping
sequences nodes form edges (Figure 1B). The edges of
each linear fragment (5’ and 3’) are also added as nodes to
the graph. The graph capabilities of Pydna are based on
the widely used and thoroughly tested NetworkX graph
package [5].
In the third and last step, all possible linear and circular

paths are traced through the graph and the sequence of
each assembly product is established. Linear graphs are all
graphs between the 5’ and 3’ edges (Figure 1C and D). It is
important to note that the assembly algorithm relies solely
on the primary sequence of the DNA fragment with no
additional constraints. The conceptual separation of the
design and simulation phases that pydna can provide, im-
proves flexibility and transparency of the simulation. All
the data is stored within the Assembly object which can
be inspected in a number of ways:

The representation of the asm object above provides a
short report including the number of sequences ana-
lyzed, how many of these that share homologies. The
representation also states the shortest limit considered
as homology (25 bp) and whether or not internal over-
laps were considered in addition to terminal overlaps. In
the example above, one circular and nine linear recom-
bined sequences were found. These are available through
two properties of the asm object, linear_products and
circular_products.

In the above statement the circular recombination prod-
uct is returned as an object of the Contig class. The Contig
class implements various methods and properties that
allow the inspection of how the sequences were assembled.
The figure method gives an text based figure outlining
how the sequences were assembled for rapid inspection.

The figure above shows the circular molecule resulting
from the assembly of the three sequences. The fragments
were joined by stretches of 35 bp or 36 bp homology.
A circular molecule can be assembled from a set of exist-

ing linear sequences in several ways, if there are circular
sub graphs within the main graph. Figure 1E shows a selec-
tion of five sequences with homologies represented by
boxes with different patterns. The sequences share homolo-
gies in such a way that the resulting graph has two circular
sub graphs. Pydna handles these by allowing one turn of
each circular subgraph. In this way, the largest possible as-
sembly product is always reported in addition to the two
circular sub graphs (Figure 1E). This may not reflect the
most likely outcome of an actual experiment, where prod-
ucts with the lowest number of participating DNA frag-
ments are likely to be more common. However, this
information is useful to catch errors in the assembly strat-
egy on the planning stage.
Pydna scripts
Pydna can also be used to create stand alone python
scripts describing a cloning or assembly project. A
pydna script can serve as a compact documentation of a
cloning strategy. This section describe simulation of
three different cloning strategies. The two first strat-
egies, (YEp24PGK-XK and pGUP1), were adapted from
literature and thus represent how existing cloning

Figure 1 The pydna assembly process. A) A number of sequences (Dseqrecord objects) are fed to the algorithm and analyzed for overlapping sequences.
These are added to the sequences as sequence features (striped boxes). B) A graph is constructed where the overlapping sequences are represented by
nodes and intervening sequences are represented by edges. Two special nodes, 5′ and 3′ are added, so that the graph can be used to trace both linear
and circular recombination products. C) A circular or linear (D) recombination product was found and assembled. E) Five sequences share homologous
sequences so that the resulting graph has two circular sub graphs. All three circular graphs are returned where the largest is the combination of the two
smaller sub graphs.

Pereira et al. BMC Bioinformatics (2015) 16:142 Page 5 of 10
strategies can be formalized with pydna. The last ex-
ample is an advanced assembly project of a two gene
metabolic pathway conferring the ability of S. cerevisiae
to grow on the disaccharide lactose. The lactose meta-
bolic pathway was constructed using a combination of
both cut and paste cloning and homologous recombin-
ation. Pydna scripts describing all examples are available
in supplementary file 2.

Construction of the YEp24PGK-XK vector by restriction
digestion and ligation
The construction of the E. coli/S. cerevisiae shuttle vector
YEp24PGK_XK expressing the S. cerevisiae xylulose kinase
gene was described by Johansson and co-workers [19]. The
strategy is outlined in Figure 2. Briefly, the XKS1 gene from
S. cerevisiae was amplified by PCR using primer1 and
primer3, adding restriction sites for BamHI to the ends
of the PCR product by tails added to the primers. The
PCR product was digested with BamHI and ligated to
the YEp24PGK plasmid (Genbank accession Z72979)
that has previously been digested with BglII which cut
the plasmid in one location and is compatible with
BamHI. The following pydna script initiates the primer1
and primer3 sequences which were published [19],
downloads the XKS1 gene sequence from Genbank, and
simulates PCR. The resulting PCR product is digested
with BamHI and only the middle fragment is retained.
The YEp24PGK plasmid is downloaded from Genbank
and digested with BglII. The digested fragments are
then combined and ligated to form a circular DNA

Figure 3 Outline of the cloning strategy described for the construction

Figure 2 Outline of the cloning strategy described for the construction of YEp24PGK-XK. The Saccharomyces cerevisiae XKS1 gene was amplified
by PCR from chromosomal DNA using primers 1 and 3. The PCR product was digested with BamHI and the flanking stuffer fragments removed.
The vector YEp24_PGK was digested with BglII and the linear vector and the digested PCR product were ligated together using T4 DNA ligase
resulting in the YEp24PGK_XK vector. The supplementary data contains a pydna script that will automatically assemble the YEp24PGK_XK vector.

Pereira et al. BMC Bioinformatics (2015) 16:142 Page 6 of 10
molecule. The cloning strategy can be described in
twelve lines of pydna code:

The resulting circular sequence YEp24PGK_XK is
11452 bp long. The script only references sequences
from Genbank, which provide a stable repository for
sequences so the only information necessary to recreate
the YEp24PGK_XK vector sequence is contained in the
script.
of pGUP1. The Saccharomyces cerevisiae GUP1 gene was amplified with
primers GUP1rec1sens (green) and GUP1rec2AS (red). The plasmid
vector pGREG505 was digested with SalI that cuts the vector in two
locations flanking the HIS3 marker. The PCR product is joined by in-vivo
homologous recombination to the linear vector fragment aided by
short stretches of homology introduced in the PCR process.
Construction of the pGUP1 vector by homologous
recombination
The construction of the vector pGUP1 by homologous
recombination was described by Bosson and co-workers
(14). The strategy is outlined in Figure 3. The open read-
ing frame of the S. cerevisiae gene GUP1 (YGL084C) was
amplified by PCR using tailed primers GUP1rec1sens
and GUP1rec2AS. The plasmid pGREG505 was digested
in two locations with restriction endonuclease SalI,
removing the HIS3 marker gene. The tailed primers in-
troduced terminal sequences with homology to the ends
of the linearized vector. The two fragments were joined
by homologous recombination creating the pGUP1

Pereira et al. BMC Bioinformatics (2015) 16:142 Page 7 of 10
plasmid. The following Pydna script simulates the strat-
egy in eleven lines of code:

The resulting circular pGUP1 plasmid has 9981 base
pairs. In this example, the pGREG505 plasmid sequence
is read from a local file as this sequence is not available
from Genbank.

Assembly of the lactose pathway
The advantage of a tool such as pydna is evident for the
planning of larger constructs. An example of this is a heter-
ologous lactose metabolic pathway for S. cerevisiae that was
made from the Kluyveromyces lactis genes LAC4 and
Figure 4 Outline of the strategy to create a lactose metabolic pathway. Six
pYPKa vector linearized using blunt restriction enzymes ZraI, AjiI or EcoRV (
recombination between three PCR products and a linearized pYPKpw vecto
The two expression cassettes were fused by homologous recombination in
LAC12 encoding β-Galactosidase and a lactose permease,
respectively. The genes were combined with three different
promoters from the S. cerevisiae glycolytic genes PDC1,
PGI1 and TPI1. All five sequences were cloned in the posi-
tive selection vector pYPKa at three different locations
using blunt restriction sites specific for the ZraI, AjiI or
EcoRV restriction enzymes (Figure 4A), resulting in six
unique vectors (PGI1 promoter was cloned twice in differ-
ent locations). Six PCR products were generated from the
vectors allowing homologous recombination between three
sequences (Figure 4B and C) and a linear S. cerevisiae vec-
tor (pYPKpw, thick blue line in Figure 4). Finally, linear se-
quences derived from the two yeast vectors were assembled
into one construct (Figure 4D). This strategy has the com-
plexity that is characteristic of multigene assemblies, that
are both difficult to effectively plan and document.
A practical approach for larger projects that do not

involve combinatorial assembly is to separate the con-
struction of each physical DNA molecule in a separate
pydna script. These scripts can be imported into other
scripts describing other molecules as needed using the
module system already present in Python, providing a
way to reuse pydna code.
The lactose pathway was described by nineteen short

pydna scripts (Additional file 2) that documents the
strategy starting from four Genbank sequence entries:
LAC4 (M84410) [20], LAC12 (X06997) [21], pCAPs
(AJ001614) [22] and pSU0 (AB215109) [23]. This
cloning vectors were constructed from five PCR products and the
A). Two S. cerevisiae expression vectors were formed by homologous
r (B and C). The thick blue line represents the linear pYPKpw vector.
to a two gene expression vector (D).

Pereira et al. BMC Bioinformatics (2015) 16:142 Page 8 of 10
example is too computationally intensive for the pydna
live console and requires a local pydna installation. A
cloning strategy expressed as a collection of inter-
dependent pydna scripts can be visualized using a tool
for exploring software dependencies. A graph (Figure 5)
was automatically generated from the pydna scripts with
no extra input. Each node in the graph represents one of
the pydna scripts and the pedigree of each molecule is
easily traced using the graph. Execution of the
pYPK0_PDC1tp_KlLAC4_PGI1tp_KlLAC12_TPI1tp.py
script describing the final pathway (Figure 4D and the
left most node in Figure 5) yields the sequence of the
final construct.
Another way to create an effective workflow for com-

plex constructs is to use the IPython notebook where code
text and results can be freely mixed [24]. The IPython
notebook has gained popularity in the last few years as a
way to develop and communicate scientific calculations
with Python [25]. An example of the same lactose pathway
assembly is available in supplementary file 2.
As proof of concept, the lactose pathway was created in

the laboratory following the described assembly strategy.
The obtained construct supported growth of S. cerevisiae
on lactose (results not shown), which is a carbon source
not naturally metabolized by this organism [26].

Comparison with existing tools
Gibthon (https://github.com/Gibthon/Gibthon), j5 [27],
and RavenCAD [28] are examples of software that were
developed to solve similar problems as pydna, but with
a different approach. Gibthon is free open source, while
j5 and RavenCAD has some licensing restrictions al-
though they are for now free for academic users. The j5
and RavenCAD are online tools which provide high
level functionality such as optimization of cost and part
Figure 5 A dependency graph produced from the Lactose pathway pydna
same name and a “.py” extension. See supplementary data for further deta
reuse. More importantly, both RavenCAD and j5 are
mainly meant to be used through a graphical user inter-
face, although at least j5 can be used remotely as a com-
mand line tool through a series of Perl scripts in
contrast with pydna, which was designed purely as a
command line tool. This can be an advantage or disad-
vantage depending on the chosen workflow. A point
and click graphical user interface (GUI) may have a
lower initial learning threshold, while pydna requires
some knowledge of Python. However, pathway assembly
is inherently complex and a GUI may not be the best
choice for this kind of task. Both RavenCAD and j5 rely
on carefully edited data files for entering raw data, while
a pydna script can be built bottom-up adding complex-
ity gradually, iterating between coding and testing.
RavenCAD leverages a specifically designed rule based
language called Eugene that was designed to provide a
way to create designs as scripts. While these tools are
valuable in many cases, pydna will ultimately be more
flexible has as it is built on top of a general purpose pro-
gramming language. As mentioned, Pydna permit inte-
gration with the IPython notebook, which is a format
for writing dynamic documents where code text and fig-
ures can be combined. This format has quickly gained
traction especially in the scientific computation com-
munity. An example relevant for Biology is the Depart-
ment of Energy Knowledgebase (http://kbase.us) offers
a notebook based environment called “Narrative Inter-
face” that leverage the flexibility of Python for different
kinds of biological problems.
Any part of a pydna script can be modified to reflect

changes made during implementation of the assembly in
the laboratory. For example if a PCR primer that is
generated automatically does not work, a replacement
can be designed and the pydna script can be edited
source files. Each node represents a pydna source code file with the
ils.

https://github.com/Gibthon/Gibthon
http://kbase.us

Pereira et al. BMC Bioinformatics (2015) 16:142 Page 9 of 10
accordingly so that the strategy change is preserved in
the code itself. Ultimately, the choice of tools depend on
the specific requirement of each use case.

Conclusions
The functionality provided by pydna facilitates writing
compact code for describing and simulating cloning or
DNA construction experiments. As the code semantically
mimics molecular biology unit operations, the code is rea-
sonably easy to read even for non-programmers. Execut-
ing the script describing a cloning strategy yields the DNA
sequence of the final construct and all intermediate
sequences if so required. In this way, pydna supports the
same functionality as provided by some dedicated DNA
sequence editors (15). Additionally, the script is a stable,
verifiable and unambiguous description of a sub cloning
experiment or a vector construction protocol that it simu-
lates. This is especially true if the DNA sequences used
are downloaded from Genbank, since Genbank records
are guaranteed to be stable over time.

Availability and requirements
Project name: pydna
Project home page: https://pypi.python.org/pypi/pydna
Operating system(s): Platform independent
Programming language: Python
Other requirements: Python 2.7
License: FreeBSD
Any restrictions to use by non-academics: None

Additional files

Additional file 1: Detailed step by step instructions for the
installation of the Anaconda python distribution on the Windows
operating system and step by step execution of examples
contained in Additional file 2. This file is in OpenDocument Format,
readable by Microsoft Word and LibreOffice writer.

Additional file 2: This compressed file has a folder structure
containing six examples of pydna usage, including the code used
to produce the examples depicted in this article.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
BJ concept, initial design, programming, initial manuscript draft and testing.
MB programming and testing. FP, GR and FA interface design and testing.
ÂC synthesized the lactose pathway. All authors were involved in writing
the manuscript. All authors read and approved the final manuscript.

Acknowledgements
Thanks to Dr. Aric Hagberg Los Alamos National Laboratory, U.S.A and Sérgio
Simões, Universidade de São Paulo, Brasil for help with NetworkX and graph
theory in general. Thanks to Henrik Bengtsson, Dept of Epidemiology &
Biostatistics, University of California San Francisco, U.S.A. for critical reading of
the manuscript. Thanks to the 2013 Bioinformatics 6605 N4 students A. Coelho,
A. Faria, A. Neves D. Yelshyna and E. Costa for testing. This work was supported
by the Fundação para a Ciência e Tecnologia (FCT) [PTDC/AAC-AMB/120940/
2010, EXPL/BBB-BIO/1772/2013]; and the FEDER POFC-COMPETE [PEst-C/BIA/
UI4050/2011]. FA and GR were supported by FCT fellowships [SFRH/BD/80934/
2011 and SFRH/BD/42565/2007, respectively].

Author details
1CBMA, Campus de Gualtar, University of Minho, Braga, Portugal. 2Division of
Biology and Biological Engineering, California Institute of Technology,
Pasadena, California, USA.

Received: 13 August 2014 Accepted: 20 March 2015
References
1. Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for

rapid construction of biochemical pathways. Nucleic Acids Res. 2009;37:e16.
2. Gibson DG, Young L, Chuang R-Y, Venter 3rd JC, Hutchison CA, Smith HO.

Enzymatic assembly of DNA molecules up to several hundred kilobases.
Nat Methods. 2009;6:343–5.

3. Dharmadi Y, Patel K, Shapland E, Hollis D, Slaby T, Klinkner N, et al.
High-throughput, cost-effective verification of structural DNA assembly.
Nucleic Acids Res. 2013;42:e22.

4. Cock PJA, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, et al.
Biopython: freely available Python tools for computational molecular
biology and bioinformatics. Bioinformatics. 2009;25:1422–3.

5. Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics,
and function using NetworkX. In: Proceedings of the 7th python in science
conference (SciPy2008). Pasadena, CA USA: 2008. p. 11–5

6. pydna - a Python module for representing and working with DNA - Google
Project Hosting [https://code.google.com/p/pydna/]

7. pydna 0.8.2 : Python Package Index [https://pypi.python.org/pypi/pydna/]
8. Automatic build site for pydna [https://travis-ci.org/BjornFJohansson/pydna]
9. pydna live [http://pydna-shell.appspot.com/]
10. Pydna on-line cookbook [http://nbviewer.ipython.org/urls/dl.dropboxuser-

content.com/u/1263722/Link_to_cookbook/cookbook.ipynb]
11. Anaconda Scientific Python Distribution [https://store.continuum.io/cshop/

anaconda/]
12. spyderlib - Spyder is the Scientific PYthon Development EnviRonment -

Google Project Hosting [https://github.com/spyder-ide/spyder/releases]
13. IPython [http://ipython.org/]
14. Pydna documentation [http://pydna.readthedocs.org]
15. Pydna mailing list [https://groups.google.com/forum/#!forum/pydna]
16. Gibson DG, Benders GA, Axelrod KC, Zaveri J, Algire MA, Moodie M, et al.

One-step assembly in yeast of 25 overlapping DNA fragments to form a
complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci.
2008;105:20404–9.

17. Ivanov EL, Sugawara N, Fishman-Lobell J, Haber JE. Genetic requirements
for the single-strand annealing pathway of double-strand break repair in
saccharomyces cerevisiae. Genetics. 1996;142:693–704.

18. Kärkkäinen J, Sanders P. Simple linear work suffix array construction. In:
Baeten JCM, Lenstra JK, Parrow J, Woeginger GJ, editors. Automata,
languages and programming. Berlin Heidelberg: Springer; 2003. p. 943–55.

19. Johansson B, Christensson C, Hobley T, Hahn-Hägerdal B. Xylulokinase
overexpression in two strains of Saccharomyces cerevisiae also expressing
xylose reductase and xylitol dehydrogenase and its effect on fermentation
of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol.
2001;67:4249–55.

20. Poch O, L’Hôte H, Dallery V, Debeaux F, Fleer R, Sodoyer R. Sequence of the
Kluyveromyces lactis beta-galactosidase: comparison with prokaryotic
enzymes and secondary structure analysis. Gene. 1992;118:55–63.

21. Chang YD, Dickson RC. Primary structure of the lactose permease gene
from the yeast Kluyveromyces lactis. Presence of an unusual transcript
structure. J Biol Chem. 1988;263:16696–703.

22. Schlieper D, von Wilcken-Bergmann B, Schmidt M, Sobek H, Müller-Hill B. A
positive selection vector for cloning of long polymerase chain reaction
fragments based on a lethal mutant of the crp gene of Escherichia coli.
Anal Biochem. 1998;257:203–9.

23. Iizasa E, Nagano Y. Highly efficient yeast-based in vivo DNA cloning of
multiple DNA fragments and the simultaneous construction of yeast/
Escherichia coli shuttle vectors. Biotechniques. 2006;40:79–83.

24. Rossant C. IPython interactive computing and visualization cookbook.
Birmingham, UK: Packt Publishing; 2014.

https://pypi.python.org/pypi/pydna
http://www.biomedcentral.com/content/supplementary/s12859-015-0544-x-s1.zip
http://www.biomedcentral.com/content/supplementary/s12859-015-0544-x-s2.zip
https://code.google.com/p/pydna/
https://pypi.python.org/pypi/pydna/
https://travis-ci.org/BjornFJohansson/pydna
http://pydna-shell.appspot.com/
http://nbviewer.ipython.org/urls/dl.dropboxusercontent.com/u/1263722/Link_to_cookbook/cookbook.ipynb
http://nbviewer.ipython.org/urls/dl.dropboxusercontent.com/u/1263722/Link_to_cookbook/cookbook.ipynb
https://store.continuum.io/cshop/anaconda/
https://store.continuum.io/cshop/anaconda/
https://github.com/spyder-ide/spyder/releases
http://ipython.org/
http://pydna.readthedocs.org
https://groups.google.com/forum/#!forum/pydna

Pereira et al. BMC Bioinformatics (2015) 16:142 Page 10 of 10
25. Pérez F, Granger BE. IPython: a system for interactive scientific computing.
Comput Sci Engineer. 2007;9:21–9.

26. Guimarães PMR, François J, Parrou JL, Teixeira JA, Domingues L. Adaptive
evolution of a lactose-consuming Saccharomyces cerevisiae recombinant.
Appl Environ Microbiol. 2008;74:1748–56.

27. Hillson NJ, Rosengarten RD, Keasling JD. j5 DNA assembly design
automation software. ACS Synth Biol. 2011;1:14–21.

28. Appleton E, Tao J, Haddock T, Densmore D. Interactive assembly algorithms
for molecular cloning. Nat Methods. 2014;11:657–62.
Submit your next manuscript to BioMed Central
and take full advantage of:

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

	Abstract
	Background
	Results
	Conclusions

	Background
	Implementation
	Results and discussion
	Interactive usage
	Assembly primer design
	PCR simulation
	Assembly simulation
	Pydna scripts
	Construction of the YEp24PGK-XK vector by restriction digestion and ligation
	Construction of the pGUP1 vector by homologous recombination
	Assembly of the lactose pathway
	Comparison with existing tools

	Conclusions
	Availability and requirements
	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

