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Abstract
Genome sequencing is essential to understand individual variation and to study the
mechanisms that explain relations between genotype and phenotype. The accumulated
knowledge from large-scale genome sequencing projects of Saccharomyces cerevisiae
isolates is being used to study the mechanisms that explain such relations. Our objective
was to undertake genetic characterization of 172 S. cerevisiae strains from different
geographical origins and technological groups, using 11 polymorphic microsatellites,
and computationally relate these data with the results of 30 phenotypic tests. Genetic
characterization revealed 280 alleles, with the microsatellite ScAAT1 contributing most
to intrastrain variability, together with alleles 20, 9 and 16 from the microsatellites
ScAAT4, ScAAT5 and ScAAT6. These microsatellite allelic profiles are characteristic
for both the phenotype and origin of yeast strains. We confirm the strength of these
associations by construction and cross-validation of computational models that can pre-
dict the technological application and origin of a strain from the microsatellite allelic
profile. Associations between microsatellites and specific phenotypes were scored using
information gain ratios, and significant findings were confirmed by permutation tests
and estimation of false discovery rates. The phenotypes associated with higher number
of alleles were the capacity to resist to sulphur dioxide (tested by the capacity to grow in
the presence of potassium bisulphite) and the presence of galactosidase activity. Our
study demonstrates the utility of computational modelling to estimate a strain techno-
logical group and phenotype from microsatellite allelic combinations as tools for pre-
liminary yeast strain selection. Copyright © 2014 John Wiley & Sons, Ltd.
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Introduction

Large-scale genome-sequencing projects of
Saccharomyces cerevisiae strains are essential to
understand individual variation and to study the
mechanisms that explain relations between geno-
type and phenotype. Revealing such associations
will help to increase our understanding of genetic
and phenotypic strain diversity, which is particu-
larly high in the case of winemaking strains.

Relational studies of genetic and phenotypic
variability should help to decipher genotype–
phenotype relationships and elucidate genetic ad-
aptations involved in phenotypes that are relevant
to thrive in stressful industrial environments. They
should also contribute towards strain improvement
strategies through breeding and genetic engineer-
ing, taking into consideration the diversity of the
wild strains (Borneman et al., 2013; Dequin and
Casaregola, 2011; Roberts and Oliver, 2011).
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Recent phylogenetic analyses of S. cerevisiae
strains showed that the species as a whole consists
of both ‘domesticated’ and ‘wild’ populations,
whereby the genetic divergence is associated with
both ecology and geography. Sequence compari-
son of 70 S. cerevisiae isolates confirmed the exis-
tence of five well-defined lineages and some
mosaics, suggesting the occurrence of two domes-
tication events during the history of association
with human activities, one for sake strains and
one for wine yeasts (Liti and Schacherer, 2011;
Liti et al., 2009; Schacherer et al., 2009). S.
cerevisiae isolates associated with vineyards and
wine production form a genetically differentiated
group, distinct from ‘wild’ strains isolated from
soil and oak-tree habitats, and also from strains de-
rived from other fermentations, such as palm wine
and sake or clinical strains. Recent research indi-
cates that wine strains were domesticated from
wild S. cerevisiae (Fay and Benavides, 2005;
Legras et al., 2007), followed by dispersal, and
the diversifying selection imposed after yeast ex-
pansion into new environments due to unique pres-
sures led to strain diversity (Borneman et al., 2013;
Diezmann and Dietrich, 2009; Dunn et al., 2012).
The interactions between S. cerevisiae and humans
are considered drivers of yeast evolution and the
development of genetically, ecologically and geo-
graphically divergent groups (Goddard et al.,
2010; Legras et al., 2007; Sicard and Legras,
2011). The limited knowledge about the mecha-
nisms responsible for the fixation of specific
genetic variants due to ecological pressures can
be extended by combining genetic and phenotypic
characteristics. Recent studies show that groups of
strains can be distinguished on the basis of specific
traits that were shaped by the species’ population
history. Wine and sake strains are phenotypically
more diverse than would be expected from their
genetic relatedness, and the contrary is the case
for strains collected from oak trees (Kvitek et al.,
2008). Wine yeasts and other strains accustomed
to growing in the presence of musts with high
sugar concentrations are able to efficiently ferment
synthetic grape musts, contrary to isolates from
oak trees or plants that occur in environments with
low sugar concentrations. Commercial wine yeasts
were differentiated by their fermentative perfor-
mances as well as their low acetate production
(Camarasa et al., 2011). West African population
shared low-performance alleles conferring unique

phenotypes regarding mitotic proliferation under
different stress-resistance environments. Other
phenotypes differentiated lineages from Malaysia,
North America and Europe, in which the frequency
of population-specific traits could be mapped onto
a corresponding population genomics tree based
on low-coverage genome sequence data (Warringer
et al., 2011).
The global genetic architecture underlying phe-

notypic variation arising from populations adapting
to different niches is very complex. Most pheno-
typic traits of interest in S. cerevisiae strains are
quantitative, controlled by multiple genetic loci re-
ferred to as quantitative trait loci (QTLs). Genome
regions associated with a given trait can be detected
by QTL analysis, using pedigree information or
known population structure to make specific
crosses for particular phenotypes. The crosses are
then genotyped using single nucleotide polymor-
phisms (SNPs) or other markers across the whole
genome and statistical associations of the linkage
disequilibrium between genotype and phenotype
are identified (Borneman et al., 2013; Dequin and
Casaregola, 2011; Liti and Louis, 2012; Salinas
et al., 2012; Swinnen et al., 2012). QTL mapping
was successfully applied to dissect phenotypes that
are relevant in winemaking, such as fermentation
traits (Ambroset et al., 2011) or aromatic com-
pounds production (Katou et al., 2009; Steyer
et al., 2012). QTLs that were relevant for oenolog-
ical traits and wine metabolites were mapped to
genes related to mitochondrial metabolism, sugar
transport and nitrogen metabolism. Strong epistatic
interactions were shown to occur between genes in-
volved in succinic acid production (Salinas et al.,
2012). The genotype–phenotype landscape has also
been explored by several studies using statistical
and probabilistic models (MacDonald and Beiko,
2010; Mehmood et al., 2011; O’Connor and
Mundy, 2009), as well as gene knockout
approaches (Hillenmeyer et al., 2008).
Current methods to infer genomic variation and

determine relationships between S. cerevisiae strains
include microsatellite analyses (Franco-Duarte
et al., 2009; Legras et al., 2005; Muller and
McCusker, 2009; Richards et al., 2009), detection
of genetic alterations using comparative genome
hybridization (aCGH) (Carreto et al., 2008; Dunn
et al., 2012; Kvitek et al., 2008; Winzeler et al.,
2003) and SNPs detection by tiling arrays
(Schacherer et al., 2009).
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Within our previous work (Franco-Duarte et al.,
2009) we evaluated the phenotypic and genetic
variability of 103 S. cerevisiae strains that were
isolated from vineyards of the Vinho Verde wine
region (north-west Portugal). We used a set of 11
polymorphic microsatellite loci and, through sub-
group discovery-based data mining, successfully
identified strains with similar genetic characteris-
tics (microsatellite alleles) that exhibited similar,
mostly taxonomic phenotypes, allowing us also
to make predictions about the phenotypic traits of
strains. Within this study, we aim to investigate
whether such computational associations can be
established in a larger collection of 172 diverse
S. cerevisiae strains obtained from worldwide geo-
graphical origins and distinct technological uses
(winemaking, brewing, bakery, distillery, labora-
tory, natural, etc.). In the study we use 30 physio-
logical traits, most of them being important from
an oenological point of view.

Materials and methods

Strain collection and phenotypic
characterization

The S. cerevisiae strain collection used in this
work consists of 172 strains of different geograph-
ical origins and technological applications or
origins (see supporting information, Table S1,
strains Z1–Z187). The collection includes strains
used for winemaking (commercial and natural iso-
lates that were obtained from winemaking environ-
ments), brewing, bakery, distillery (sake, cachaça)
and ethanol production, laboratory strains and also
strains from particular environments (e.g. patho-
genic strains, isolates from fruits, soil and oak
exudates). The collection further includes a set of
sequenced strains (Liti et al., 2009). All strains
were stored at –80ºC in cryotubes containing 1 ml
glycerol (30% v/v).
Phenotypic screening was performed consider-

ing a wide range of physiological traits that are
also important from an oenological point of view.
In a first set of phenotypic tests, strains were inoc-
ulated into replicate wells of 96-well microplates.
Isolates were grown overnight in YPD medium
(yeast extract 1% w/v, peptone 1% w/v, glucose
2% w/v) and the optical density (A640) was then
determined and adjusted to 1.0. After washing with

peptone water (1% w/v), 15 μl of this suspension
were inoculated in quadruplicate in microplate
wells containing 135 μl white grape must of the
variety Loureiro, supplemented with the com-
pounds mentioned below. The initial cellular den-
sity was 5 × 106 cells/ml (A640 = 0.1) and the final
optical density was determined in a microplate
spectrophotometer after 22 h of incubation (30ºC,
200 rpm). All microplates were carefully sealed
with parafilm, and no evaporation was observed
for incubation temperatures of 30ºC and 40ºC. As
summarized in Table S2 (see supporting informa-
tion), this approach included the following tests:
growth at various temperatures (18ºC, 30ºC and
40ºC), evaluation of ethanol resistance (6%, 10%
and 14% v/v) and tolerance to several stress condi-
tions caused by extreme pH values (2 and 8),
osmotic/saline stress (0.75 M KCl and 1.5 M NaCl).
Growth was also assessed in the presence of potas-
sium bisulphite (KHSO3, 150 and 300 mg/l),
copper sulphate (CuSO4, 5 mM), sodium dodecyl
sulphate (SDS, 0.01% w/v), the fungicides
iprodion (0.05 and 0.1 mg/ml) and procymidon
(0.05 and 0.1 mg/ml), as well as cycloheximide
(0.05 and 0.1 mg/ml). The growth in finished
wines was determined by adding glucose (0.5 and
1% w/v) to a commercial white wine (12.5% v/v
alcohol). Galactosidase activity was evaluated by
adding galactose (5% w/v) to Yeast Nitrogen Base
(YNB, DifcoTM, cat. no. 239210), using test tubes
with 5 ml culture medium and the same initial
cell concentration (5 × 106 cells/ml), followed by
5–6 days of incubation at 26ºC and subsequent
visual evaluation of growth. Other tests were
performed using solid media. Overnight cultures
were prepared as previously described, adjusted
to an optical density (A640) of 10.0 and washed;
1 μl of this suspension was placed on the surface
of the culture media mentioned below. Hydrogen
sulphide production was evaluated using BiGGY
medium (Sigma-Aldrich, cat. no. 73608) (Jiranek
et al., 1995), followed by incubation at 27ºC for
3 days. The colony colour, which represents the
amount of H2S produced, was then analysed,
attributing a score from 0 (no colour change) to 3
(dark brown colony). Ethanol resistance (12% v/v)
and the combined resistance to ethanol (12%, 14%,
16% and 18% v/v) and sodium bisulphite (Na2S2O5;

75 and 100 mg/l) was evaluated by adding the
mentioned compounds to Malt Extract Agar
(MEA; Sigma-Aldrich, cat. no. 38954) and growth
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was visually scored after incubation (2 days at
27ºC). All phenotypic results were assigned to a
class between 0 and 3 before the statistical analysis
(0, no growth in liquid media (A640 = 0.1) or no vis-
ible growth on solid media; 3, A640≥ 1.0, extensive
growth on solid media or a dark brown colony
formed in the BiGGY medium; scores 1 and 2
corresponded toA640 of 0.2–0.4 and 0.5–1.0, respec-
tively, and to intermediate values of growth and col-
our changes in solid medium and BiGGY medium),
as shown in Table S2 (see supporting information).

Genetic characterization

After cultivation of a frozen aliquot of yeast cells
in 1 ml YPD medium (yeast extract 1% w/v,
peptone 1% w/v, glucose 2% w/v) for 36 h at
28ºC (160 rpm), DNA isolation was performed as
previously described (Schuller et al., 2004) and
used for microsatellite analysis.
Genetic characterization was performed using 11

highly polymorphic S. cerevisiae-specific microsat-
ellite loci: ScAAT1, ScAAT2, ScAAT3, ScAAT4,
ScAAT5, ScAAT6, ScYPL009c, ScYOR267c, C4,
C5 and C11 (Field and Wills, 1998; Legras et al.,
2005; Perez et al., 2001; Schuller et al., 2007,
2012; Techera et al., 2001). Multiplex PCR
mixtures and cycling conditions were optimized
and performed in 96-well PCR plates, as previously
described (Franco-Duarte et al., 2009).

Data analysis

We have estimated the number of repeats for the
alleles from each locus based on the genome
sequence of strain S288c available in the
Saccharomyces Genome Database (http://www.
yeastgenome.org) and the results obtained for the
size of microsatellite amplicons of this strain.
Principal component analysis (PCA), available

in the The Unscrambler® X software (Camo),
was used for microsatellite variability analysis. A
set of standard predictive data-mining methods,
as implemented in the Orange data mining suite
(Demsar et al., 2013), were used to study the rela-
tions between the genetic constitutions of strains
and their geographical origins or technological
applications. Alleles that were present in less than
five strains were removed, and the k nearest-
neighbour algorithm (kNN) (Tan et al., 2006)
was used for inference. The modelling approach

was tested in five-fold cross-validation, each time
fitting the model on 80% of the data and testing it
on the remaining 20%. Results were reported in
terms of cross-validated area under the receiver
operating characteristics curve (AUC), which esti-
mates the probability that the predictive model
would correctly differentiate between distinct tech-
nological applications of the strains (Hanley and
McNeil, 1982).
The strength of associations between micro-

satellites and specific phenotypes was scored using
information gain ratio, as implemented in the
Orange data-mining suite. Significant findings
were confirmed by permutation tests and estima-
tion of false-discovery rate. Data was first
preprocessed to filter out features with only a sin-
gle, constant value, in which the distribution was
too skewed, or when more than 95% of strains
shared the same value. This was done for both mi-
crosatellite and phenotypic data. The filtering pro-
cedure reduced our dataset to retain 40 of the
initial 295 microsatellite features and 60 of the ini-
tial 83 phenotypic ones. We then considered the
resulting dataset to test 40 × 60 = 2400 associations
between microsatellites and phenotypes. Informa-
tion gain (IG) (Quinlan, 1986), also popularly
referred to as ‘mutual information’, is a measure
of mutual dependence of two random variables.
In the present study we used it to assess the influ-
ence of an independent variable, X, on a dependent
class variable, Y. IG tells us how much information
we gain about Y by knowing the value of X. If the
class variable Y can take l distinct values, y1, y2,…, yl,
we can define its entropy by:

H Yð Þ ¼ ∑
l

j¼1
P Y ¼ yj
� �� log2 P Y ¼ yj

� �� �
(1)

Here, P is a probability measure. The entropy
H(Y) measures the unpredictability of a random
variable Y that represents the amount of informa-
tion required to answer the question, ‘what is the
value of Y?’. By knowing the value of independent
variable X one can reduce this uncertainty if the
dependent and independent variables are related.
Suppose that X = xi, where xi is one of k distinct
values x1, x2,…, xk that variable X can take. By re-
placing the probability P(Y= yj) in equation 1, with
conditional probability P(Y= yj|X= xi), we define a
conditional entropy H(Y|X = xi) of Y, assuming that
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the value of X is xi. By knowing the distribution of
X, i.e. by knowing the probabilities P(X = xi) for all
i= 1,…, k, we can define a conditional entropy of
Y, given the variable X:

H Y jXð Þ ¼ ∑
k

i¼1
H Y X ¼ xiÞ�P X ¼ xið Þjð (2)

The reduction of uncertainty from H(Y) to H(Y|X)
is called information gain and is defined as the
difference IG(X) =H(Y)�H(Y|X). If this difference
is normalized by H(X), the entropy of the variable
X, the ratio is called information gain ratio (IGR).
This score was first introduced in IG Xð Þ

H Xð Þ Quinlan
(1986) in order to avoid overestimation of multi-
valued variables. IGR(X) ranges from 0, where
knowing the value of X provides no information
about Y, to 1 in cases where X and Y are perfectly
correlated. To compute IGR we need to estimate
the unconditional and conditional probabilities from
the data; in the present work these probabilities were
estimated with relative frequencies. For computation
of IGR, Orange software (v. 2.7.1) was used. Each
IGR estimate was compared to its null distribution,
obtained from 100 000 computations of IGR for that
particular feature combination on permuted data.We
then tested the null hypothesis (IGR=0) and
obtained p values as proportions of permutation
experiments where IGR≥ the score obtained from
original dataset. The permutation procedure was
repeated for all microsatellite–phenotype pairs and
the computed p values were corrected using the
false-discovery rate procedure (FDR) (Benjamini
and Hochberg, 1995). We here report on pairs of
correlated microsatellites and phenotypic features
with FDR< 0.2.

Results

Strain collection and genetic characterization

A S. cerevisiae collection was constituted, including
172 strains from different geographical origins and
technological origins, as follows: wine and vine
(74 isolates), commercial wine strains (47 isolates),
other fermented beverages (12 isolates), other
natural environments – soil woodland, plants and
insects (12 isolates), clinical (nine isolates),
sake (six isolates), bread (four isolates), laboratory

(three isolates), beer (one isolate) and four isolates
of unknown origin (see supporting information,
Table S1).
All 172 strains were genetically characterized

regarding allelic combinations for the previously
described microsatellites ScAAT1, ScAAT2,
ScAAT3, ScAAT4, ScAAT5, ScAAT6,
ScYPL009c, ScYOR267c, C4, C5 and C11 (Field
and Wills, 1998; Legras et al., 2005; Perez et al.,
2001; Schuller and Casal, 2007; Schuller et al.,
2007, 2012; Techera et al., 2001). As shown in
Table 1, a total of 280 alleles was obtained;
microsatellites ScAAT1 and ScAAT5were the most
and the least polymorphic, with 39 and 5 alleles,
respectively. The genetic diversity of the collection
is illustrated on the principal component analysis
(PCA) plot in Figure 1. Some patterns of genetic
relatedness between strains sharing the same techno-
logical origin became evident, as shown in
Figure 1A. Sake strains (black dots) were located
in the right part of the PCA plot, due to the larger
sizes of alleles for loci ScYOR267c and C4. For this
group of strains, we identified nine unique alleles,
where three were present in more than one strain
and belonged to three different loci (ScAAT6, C4
and ScYOR267c). Strains from fermented bever-
ages other than wine were separated by PC-2, being
located in the upper part of the PCA plot, indicating
that they share a combination between smaller
alleles of microsatellite C4 and bigger alleles of
ScYOR267c. These 12 strains are marked in the
PCA plot inside the area surrounded by a dotted line.
Twelve unique alleles were found for these strains,
two of them (C4-58 and ScYPL009c-57) being
present in six of the 12 strains. On the contrary, the
group of wine strains (both natural isolates and
commercial strains) showed heterogeneous distribu-
tion across the two components, being preferentially
located in the left side of the PCA plot. The nine
clinical strains were distributed across both compo-
nents, with no discriminant results in any locus.
The 172 strains (scores) were also segregated in
the first two components of the PCA constructed
from the allelic combination for 11 loci. Loci
ScYOR267c and C4 had the highest weight in strain
variability, followed by ScYPL009c and ScAAT4,
although within a smaller extent (Figure 1B).
To reveal the weight of different alleles on the

genetic variability of the strains, the profile of the
11 microsatellites was represented for each strain
as a vector where the values 0, 1 and 2 corresponded
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to the absence of an allele, the presence of a hetero-
zygous allele and the presence of two copies of the
allele, respectively. We assumed that all strains were
diploid, because aneuploid loci were rarely detected
(< 3%). In addition, the DNA content of a represen-
tative set of homozygous strains corresponded to a
diploid strain (flow-cytometry analysis, data not
shown). A total of 48 160 data points were generated
and the segregation of the 280 alleles in the two
components of the PCA is shown in Figure 2. Al-
leles ScAAT4-20, ScAAT5-9 and ScAAT6-16 have
the highest weight in strain variability, due to their
positioning in the right and upper part of the PCA

plot. Among the 11 microsatellite loci, 30 alleles
were identified by PCA as contributing to the
highest strain variability among 172 strains
(Table 1). Loci ScAAT3, ScAAT4, and ScAAT5
were the ones with the higher number of variable
alleles (four), in opposition to loci ScAAT1, C5
and C11 with 1 allele each.

Prediction of the technological group based on
microsatellite alleles

We examined the relations between strains’ tech-
nological groups and the corresponding genotypes

Table 1. Summary of the distribution of alleles (indicated in numbers of repetitions) among 172 Saccharomyces cerevisiae
strains from 11 microsatellite loci

Microsatellite
designation

Total number
of alleles

(range of allele
sizes in number

of repeats)

Most
frequent
alleles

Number of
strains in
which the
allele was
obtained

Most variable
alleles (number
of repetitions)
identified by

PCA (Figure 2)

Percentage of
most variable
alleles among

the total number
of alleles per locus References*

ScAAT1 39 (6–54) 24 27 19 15 A, B
16 21

ScAAT2 18 (5–22) 15 58 7, 14, 15 28
16 33
14 34
13 21

ScAAT3 19 (3–49) 16 45 11, 14, 16, 22 32 B, C
14 32
22 28

ScAAT4 17 (1–27) 20 100 7, 9, 11, 20 35 B
11 22

ScAAT5 6 (2–49) 9 80 8, 9, 10, 11 67 B
10 63
8 37

ScAAT6 10 (12–44) 16 124 14, 16, 17 50 B
17 40

C4 9 (16–61) 21 52 21, 24, 40 56 D
24 44
22 31

C5 19 (3–38) 4 31 3 16 D
3 25
12 23
13 22

C11 18 (1–47) 13 42 23 17 D
14 24
24 28

ScYPL009c 13 (57–86) 80 47 65, 80, 81 46 A, C
81 45
82 28
79 23
65 20

ScYOR267c 12 (37–100) 52 52 52, 56, 62 42 A, C
56 24

*A, Techera et al., 2001; B, Perez et al., 2001; C, Field and Wills, 1998; D, Legras et al., 2005.
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and scored them for their predictive value. Compu-
tational models were constructed to either predict
the strains’ technological application or origin
from microsatellite data. Alleles that were present
in less than five strains were removed, reducing
the total number of alleles from 280 to 153. In
71% of the cases, the removed alleles were present
in only one or two strains. The k nearest-neighbour
(kNN) algorithm was used for inference, as

implemented in the Orange data-mining software.
A good prediction model was obtained in terms
of both area under the receiver-operating-
characteristics curve (AUC) (Hanley and McNeil,
1982) and classification accuracy (0.8018 and
0.547, respectively). Table 2 shows the confusion
matrix of the kNN cross-validation classifications,
where the report on averaged posterior AUCs esti-
mated only on the test data that are not included in

Figure 1. Principal component analysis of microsatellite data. (A) Distribution of 172 strains according to their allelic com-
binations for 11 loci (scores): symbols represent the strains technological applications or origin: ★, wine and vine; , com-
mercial wine strain; ■, beer; , baker; ●, sake; , other fermented beverages; , clinical; , natural isolates; , laboratory;

, unknown biological origin. Sake strains and strains from other fermented beverages are surrounded by unbroken and
dotted lines, respectively. (B) Contribution of microsatellite loci (loadings) to the separation of strains shown in (A)
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the training of the model. For the strains derived
from winemaking environments (commercial and
natural wine strains), 47% and 72% of strains, re-
spectively, were correctly assigned. Interestingly,
the majority of ‘false’ assignments did not fall
out of the wine strains group, occurring for com-
mercial wine strains that were assigned to the
natural wine strains (21 of 47 strains) or natural
wine strains that were catalogued as commercial
wine strains (16 of 74 strains). If all wine strains
were grouped in one single category, the propor-
tion of correct assignments would increase to
93% (112 of 121 strains). For the groups of strains
isolated from sake, natural environments, other
fermented beverages and bread, the proportion of
correct assignments were 67%, 42%, 50% and
50%, respectively, which is rather high consider-
ing the relatively small number of isolates included
in these groups (6, 12, 12 and 4, respectively). The
high number of correct assignments, even for small
groups of strains, and a very high AUC score both
reinforce the validity of the modelling technique,
confirming a strong relation between our genotype
profiles and strain groups. On the other side, and
with only 22% of correct assignments, our
approach was not successful in identification of
clinical strains, which was expected due the
absence of a common ancestor for this group, and
because pathogenic S. cerevisiae strains arise from
different origins (Liti and Schacherer, 2011).

Associations between microsatellites and
phenotypes

The 172 S. cerevisiae strains were characterized
phenotypically, considering 30 physiological traits
that are important from an oenological point of
view, in four replicates, measuring A640 after 22 h
of growth. A high reproducibility was obtained be-
tween the four replicates, with the average standard
deviation (SD) = 0.08. Results were catalogued
with a number between 0 and 3 [0, no growth in
liquid media (A640 = 0.1) or no visible growth on
solid media or no colour change of the BiGGY
medium; 3, at least 1.5-fold increase of A640,
extensive growth on solid media or a dark brown
colony formed in the BiGGY medium; scores 1
and 2 corresponded to the respective intermediate
values], resulting in a total of 5160 data points,
as summarized in Table S2 (see supporting infor-
mation). Our objective was to identify subsets of
strains sharing similar phenotypic results and
allelic combinations. To test the associations be-
tween phenotypic results and microsatellite alleles,
we analysed pairwise relationships between corre-
sponding variables (each microsatellite variable
vs each phenotypic feature). First we binarized all
phenotypic features in order to analyse the rela-
tionship more precisely (which phenotypic value
is associated with a certain microsatellite), then
the constant features (shared by> 95% of strains)

Figure 2. Principal component analysis of a Boolean matrix of 280 alleles from 11 microsatellites in 172 Saccharomyces
cerevisiae strains
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were removed. Information gain ratio (IGR) was
computed between microsatellite predictor and
binarized phenotypic response variable, and re-
peated again using permutated phenotypic data,
as described in Materials and methods; p values
were reported after correction using the false-dis-
covery rate (FDR) procedure, and the pairs for
which FDR was< 0.2 are marked in Figure 3. In
Table S3 (see supporting information) the exact
FDR-adjusted p values are shown for associations
between all phenotypic and genetic data. Significant
associations were obtained between microsatellites
ScAAT1, ScAAT2, ScAAT5, ScAAT6, YPL009c,
C4 and C5, and for 13 phenotypic classes. For the
phenotypic classes in which significant associations
were found with microsatellite alleles, between one
and eight associations were found with a particular
microsatellite allele (number following black cir-
cles). For nine phenotypic tests and classes, a single
association was established: ‘40°C= 1’, ‘40°C=3’,
‘SDS (0.01% w/v) = 0’, ‘KHSO3 (150 mg/l) = 2’,
‘ethanol 10% v/v (liquid medium)= 0’, ‘ethanol
10% v/v (liquid medium) = 2’, ‘ethanol 10% v/v
(liquid medium)= 3’, ‘ethanol 12% v/v+Na2S2O5

75 mg/l (solid medium) = 1’ and ‘wine
supplemented with glucose 1%=0’. The pheno-
types with the highest number of allelic associations
were ‘KHSO3 (300 mg/l) = 3’ and ‘galactosidase
activity = 1’, with eight associated alleles each. In
terms of microsatellite alleles, 22 alleles had an
association with at least one phenotype. For two
alleles, three significant associations were obtained
(ScAAT2-13 and C4-21), being the highest number
of associations with phenotypes (seven) found for
microsatellites ScAAT1 and ScAAT2, in opposition
to ScAAT5, ScAAT6 and YPL009c, with only three
associations each established. These numbers are
not related to the total number of alleles and the
range of allele sizes shown in Table 2.

Discussion

In our previous work (Franco-Duarte et al., 2009)
we developed a method to computationally associ-
ate the genotype and phenotype of 103 S. cerevisiae
strains, mainly from the Vinho Verde winemaking
region, using microsatellite data obtained with
11 polymorphic markers and phenotypic data from
a set of 24 taxonomic tests. Herein, we aimed toT
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investigate whether such associations could be
established in a worldwide collection of 172
S. cerevisiae strains from different geographical ori-
gins and technological uses (winemaking, brewing,
bakery, distillery, laboratory, natural, etc.). We
considered 30 physiological traits that are mainly
used in S. cerevisiae winemaking strain selection
programmes (Mannazzu et al., 2002). Phenotypic
analysis revealed a high diversity, similar to other
studies that showed high diversity within domesti-
cated and natural populations of S. cerevisiae,
describing also mosaic strains, depending on their
origin and application (Agnolucci et al., 2007;
Brandolini et al., 2002; Camarasa et al., 2011;
Goddard et al., 2010; Kvitek et al., 2008; Liti
et al., 2009; Salinas et al., 2010; Schacherer et al.,
2009; Warringer et al., 2011). In addition, we

showed significant associations between phenotypic
results and strains’ technological applications or
origins using the Mann–Whitney test (Mendes
et al., 2013). Part of the high phenotypic variability
and intrastrain variation can also be explained by the
existence of genetic rearrangements that are charac-
teristic for S. cerevisiae, being particularly high in
the case of winemaking strains (Schuller et al.,
2007). Large-scale genome sequencing projects are
now under way to provide data for an in-depth
understanding of relationships between genotype
and phenotype.
The collection of 172 S. cerevisiae strains

obtained from different geographical origins and
technological groups also revealed high genetic
diversity (Figures 1, 2, Table 1), with a total of
280 alleles obtained with 11 polymorphic

Figure 3. Significant associations (black circles) between microsatellites and phenotypes, obtained with Orange data-mining
software. Each association was calculated between a microsatellite allele (numbers following black circles) of the microsatel-
lite represented at the top, and a phenotypic class (0–3). Marked associations refer to significant p values obtained after false-
discovery rate correction (p value after FDR< 0.2), using information gain ratio associations compared against data from
permutation test (for details, see Materials and methods)
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microsatellites. PCA components of Figure 2
explain only a small part of the total variance
(PC-1, 7%; PC-2, 5%), which seems to indicate
that all the microsatellite alleles are important to
differentiate between strains, but also revealed a
group of 54 alleles that are the most relevant to
explain variability among strains. Microsatellite
ScAAT1 was the most polymorphic one, with 39
alleles, followed by ScAAT3 and C5 with 19 alleles
each, confirming the data of our previous study
(Franco-Duarte et al., 2009). Herein we also
observed some patterns of distribution according to
the strains’ technological applications or origins,
when considering the PCA of genetic data, in partic-
ular for sake strains and strains from fermented
beverages other than wine. Clinical strains, which
are opportunistic environmental strains colonizing
human tissues (Muller and McCusker, 2009;
Schacherer et al., 2007), did not show any discrimi-
nant distribution with PCA, which was expected
because they do not share a common ancestor (Liti
and Schacherer, 2011). Sake strains and strains
obtained from fermented beverages other than wine
showed some unique alleles in loci ScAAT6, C4,
ScYOR267c and ScAAT1, ScAAT5, ScAAT6,
C4, ScYPL009c, ScYOR267c, respectively. These
results highlight the existence of alleles that are
representative of a specific technological group,
which justifies the approach used in this research.
Regarding microsatellite distributions in human

populations (5795 individuals and 645 microsatel-
lite loci), multidimensional scaling detected 240
intrapopulation and 92 interpopulation pairs
regarding genetic and geographical relatedness
(Pemberton et al., 2013). In our study we demon-
strate that a strain’s allelic combination and the
respective technological application or origin
(Table 2) are strongly related, as the latter can be
predicted from the proposed genotypic characteriza-
tion. Regarding winemaking strains (both natural
and commercial), the approach was able to predict
the technological application or origin for 93% of
the strains. The AUC score of the model was
0.802, between the values of an arbitrary and perfect
classification (AUC=0.5 and 1.0, respectively) and
can be considered as moderately high (Mozina et al.,
2004). These results demonstrate the potential of
the approach to predict the technological origin
of a strain from the entire microsatellite profile,
even for groups of strains with small sample size
(sake or bread, six and four strains, respectively).

The genetic and phenotypic profile of strains
obtained with 11 markers and 30 phenotypic tests
was used to computationally score and rank
genotype–phenotype associations. Associations
were scored using information gain ratio (Quinlan,
1986) and significant results were shown in form
of p value after the false-discovery rate procedure.
Thirty-two associations, representing 13 pheno-
typic classes and 22 microsatellite alleles, were
significantly established. The phenotypic classes
with more associations were related to high capac-
ity to resist to the presence of KHSO3 during
fermentation, and to galactosidase activity; these
two phenotypes were associated with eight alleles
each. These results are valuable to select strains
that are resistant to sulphur dioxide, an antioxidant
and bacteriostatic agent used in vinification (Beech
and Thomas, 1985), and that were tested by the
capacity of strains to grow in a medium
supplemented with KHSO3. The association
between eight alleles and the strains’ moderate
galactosidase activity, although not directly related
to winemaking, could be also a beneficial criterion
to choose S. cerevisiae strains capable to hydrolyse
galactose, an alternative to the use of glucose as
carbon source, pointing to an improved evolution-
ary capacity of these strains. The most polymor-
phic locus, ScAAT1, also revealed the highest
number of associations with phenotypes, but this
was not observed for other polymorphic loci.
Seven phenotype–genotype associations were
found for each of the alleles ScAAT2–13 and
C4-21, which can be considered as the most infor-
mative to predict strains biotechnological potential
regarding the associated phenotypes.
The prediction of the technological group from

allelic combinations and the presence of statisti-
cally significant associations between phenotypes
and allele both demonstrate that computational
approaches can be successfully used to relate geno-
type and phenotype of yeast strains. Microsatellite
analysis revealed to be an efficient marker to eval-
uate genetic relatedness in yeasts and can be
employed in the industry as a quick and cheap
analysis. Although microsatellite analysis is the
most accurate method for S. cerevisiae strain char-
acterization, the 11 microsatellites are spread on
only nine chromosomes and might provide for a
rather coarse representation of a genotype. Taking
into account that the discovered associations apply
to smaller fraction of the genome, this study could
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be beneficially complemented with additional
markers of other genomic regions. These findings
may become particularly important for the simplifi-
cation of strain selection programmes, by partially
replacing phenotypic screens through a preliminary
selection based on the strain’s microsatellite
allelic combinations.
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