

Global transcriptome characterization of Candida glabrata biofilms in response to acetate and fluconazole

Rosana Alves¹, Stavroula Kastora², Eva Pinho³, Célia Rodrigues³, Sónia Silva³, Margarida Casal¹, Alistair J Brown², Mariana Henriques³ and Sandra Paiva¹

1. INTRODUCTION

DEADLY, DRUG-RESISTANT CANDIDA INFECTIONS Candida glabrata thrives as a normal flora in healthy individuals but when immune defenses are compromised it is responsible for life-threatening disseminated infections.

- 1 This fungus uses the biofilm lifestyle as a mode of protection which facilitates survival in diverse environmental niches.
- 2 In order to adapt and survive in these different environmental niches, C. glabrata assimilates alternative carbon sources such as acetate.

ADAPTATION TO COMPLEX HOST-NICHES Main Carbon Source Glucose Alternative Carbon Sources **Lactate - Acetate - Malate** Metabolic adaptation Morphogenesis Cell wall

Pathogenesis

Antifungal drug

Biofilm

To identify the molecular mechanisms in C. glabrata that contribute to biofilm formation and antifungal drug resistance, in acidic pH niches associated with the presence of acetic acid, following a RNA-Seq approach.

Acetate as an alternative carbon source

3. METHODOLOGY

RNA QUALITY CONTROL AND SEQUENCING

- > RNA quality was assessed on a **Bioanalyzer 2100**.
- performed at Edinburgh Genomics (Scotland, UK). All samples were prepared in triplicate and subjected

to removal of rRNA before cDNA library generation.

> 50 base single-end sequence reads were produced with **Illumina Hiseq 2000** from cDNA libraries.

Galaxy CGD Assemble transcripts Quantify abundance Tables of counts (digital expression)

BIOINFORMATIC DATA ANALYSIS

- Raw fastq files were processed in the following order: Fastqc (v.10.1), Trimgalore (v.3.1), **Samtools** (v.1.19), **Bowtie2** (v.2.1) and **Htseq** (v.5.4).
- ➤ Genome alignment was conducted against the C. glabrata genome file provided by CGD.
- > Gene expression analysis was performed using **Partek** software (v. 6.6).
- ➤ GO-term analysis was performed in parallel through the CGD GO Term Finder and the Cytoscape (v. 3) Clue GO plugin.
- > Venn diagrams were performed with Venny (v. 2.0.2) and heat maps with TM4 MultiExperiment Viewer (MeV; v. 4.9).

QUANTITATIVE REAL-TIME PCR (qPCR)

Test for differential

Partek¹

> Gene expression was calculated using the comparative C_T method (PGK1 used housekeeping gene).

5. CONCLUSIONS

- ✓ Adaptation of biofilms to the alternative carbon source acetate is achieved by a considerably downregulation of various metabolic processes.
- ✓ Dissecting the RNA-seq data allowed us to recover the essential pathway biology behind fluconazole resistance in biofilms formed in the presence of acetate.
- ✓ Understanding and targeting some of these pathways is potentially useful for developing diagnostics and new antifungals to treat biofilm-based infections.

4. RESULTS

4.1 Differentially expressed genes between the different conditions

4.2 Acetate-specific changes in gene expression

4.3 Fluconazole-specific changes in gene expression

4.4 Validation of RNA-seq results

To validate the findings from our RNA-Seq analysis, we performed qPCR for 5 putative acetate transporters: ADY2a, ADY2b, FPS1, FPS2 and ATO3.

qPCR results are in agreement with the results from the RNA-Seq analysis.

6. ACKNOWLEDGMENTS

